WorldWideScience

Sample records for engineering research laboratory

  1. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  2. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  3. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, 'Yayoi', electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  4. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, `Yayoi`, electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  5. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  6. Eighteenth annual risk reduction engineering laboratory research symposium

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Eighteenth Annual Risk Reduction Engineering Laboratory Research Symposium was held in Cincinnati, Ohio, April 14-16, 1992. The purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects funded by the Risk Reduction Engineering Laboratory (RREL). These Proceedings are organized into two sections. Sessions A and B, which contain extended abstracts of the paper presentations. A list of poster displays is also included. Subjects include remedial action, treatment, and control technologies for waste disposal, landfill liner and cover systems, underground storage tanks, and demonstration and development of innovative/alternative treatment technologies for hazardous waste. Alternative technology subjects include thermal destruction of hazardous wastes, field evaluations, existing treatment options, emerging treatment processes, waste minimization, and biosystems for hazardous waste destruction

  7. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1991

    International Nuclear Information System (INIS)

    1992-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1991 are summarized. In this Laboratory, there are four large research facilities, that is, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of the research by using respective research facilities were summarized in separate reports. In this annual report, the course of the management and operation of respective research facilities is described, and the research activities, the theses for doctorate and graduation theses of the teachers, personnel and graduate students in the Laboratory are summarized. In the research, those on first wall engineering for fusion reactors, fuel cycle engineering, electromagnetic structure engineering, AI and robotics, quantum beam engineering, new type reactor design and so on are included. (K.I.)

  8. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This report summerizes the research and educational activities at the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The Laboratory holds four main facilities, which are Yayoi reactor, an electron accelerator, fusion blanket research facility, and heavy ion irradiation research facility. And they are open to the researchers both inside and outside the University. The application of the facilities are described. The activities and achievements of the Laboratory staffs, and theses for graduate, master, and doctor degrees are also summerized. (J.P.N.)

  9. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1990

    International Nuclear Information System (INIS)

    1991-01-01

    In this annual report, the activities of research and education and the state of operation of the research facilities in this Laboratory in fiscal year 1990 are summarized. There are four large research facilities in this Laboratory, that is, the fast neutron source reactor 'Yayoi', the electron beam linear accelerator, the nuclear fusion reactor blanket experiment device and the heavy ion irradiation research facility. Those are used to execute research and education in the wide fields of atomic energy engineering, and put to the common utilization by universities in whole Japan. The results of the research with these facilities have been reported in the separate reports. The research aims at developing the most advanced and new fields in nuclear reactor engineering, and includes the engineering of the first wall and the fuel cycle for nuclear fusion reactors, electromagnetic structure engineering, AI and robotics, quantum beam engineering, the design of new type reactors, the basic process of radiochemistry and so on. The report on the course of the large scale facilities, research activities, the publication of research, education and the events in the Laboratory in the year are described. (K.I.)

  10. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1992

    International Nuclear Information System (INIS)

    1993-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1992 are summarized. In this Laboratory, there are four large research facilities, that are, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of research by using respective research facilities have been summarized in separate reports. The course of the management and operation of each research facility is described, and the research activities, the theses for doctorate and graduation these of teachers, personnel and graduate students in the Laboratory are summarized. (J.P.N.)

  11. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  12. Software engineering laboratory series: Annotated bibliography of software engineering laboratory literature

    Science.gov (United States)

    Morusiewicz, Linda; Valett, Jon

    1992-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  13. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1996

    International Nuclear Information System (INIS)

    1997-08-01

    This report summarizes research and educational activities, operation status of the research facilities of the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo on fiscal year 1996. This facility has four major research facilities such as fast neutron source reactor 'Yayoi', electron Linac, fundamental experiment facility for nuclear fusion reactor blanket design and high fluence irradiation facility(HIT). Education and research activities are conducted in a wide fields of nuclear engineering using these facilities. The former two facilities are available for various studies by universities all over Japan, facility for nuclear fusion reactor blanket design is utilized for research within the Faculty of Engineering and HIT is used for the research within the University of Tokyo. The facility established a plan to reorganized into a nation wide research collaboration center in fiscal year 1995 and after further discussion of a future program it is decided to hold 'Nuclear energy symposium' periodically after fiscal year 1997 as a part of the activity for appealing the research results to the public. (G.K.)

  14. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Robert W. Carling; Gurpreet Singh

    2000-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work

  15. Report of the research results with University of Tokyo Nuclear Engineering Research Laboratory's facilities in fiscal 1975

    International Nuclear Information System (INIS)

    1976-08-01

    Results of the research works by educational institutions using fast neutron source reactor 'Yayoi' etc. of Nuclear Engineering Research Laboratory in fiscal 1975 are reported in individual summaries. Fields of research are the following: shielding benchmark experiment, research on medical irradiation, irradiation experiments, experiments by small research groups, fast neutron streaming experiment, and so on. (Mori, K.)

  16. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-08-01

    This annual report is the summary of the research and education activities, the state of operating research facilities and others in fiscal year 1994 in this Research Laboratory. In this Research Laboratory, there are four main installations, namely the fast neutron source reactor 'Yayoi', the electron linear accelerator, the basic experiment facility for the design of nuclear fusion reactor blanket and the heavy irradiation research facility. The former two are put to the joint utilization by all Japanese universities, the blanket is to that within Faculty of Engineering, and the HIT is to that within this university. The fast neutron science research facility, the installation of which was approved in 1993 as the ancillary equipment of the Yayoi, has been put to the joint utilization for all Japan, and achieved good results. In this report, the management and operation of these main installations, research activities, the publication of research papers,graduation and degree theses, the publication of research papers, graduation and degree theses, the events in the Laboratory for one year, the list of the visitors to the Laboratory, the list of the records of official trips to foreign countries and others, and the list of UTNL reports are described. (K.I.)

  17. Pollution prevention for cleaner air: EPA's air and energy engineering research laboratory

    International Nuclear Information System (INIS)

    Shaver, E.M.

    1992-01-01

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribute to air quality problems. The Laboratory has successfully developed and demonstrated cost-effective sulfur dioxide, nitrogen oxides, and particulate control technologies for fossil fuel combustion sources. More recently, it has expanded its research activities to include indoor air quality, radon, organic control, stratospheric ozone depletion, and global warming. AEERL also develops inventories of air emissions of many types. Over the last several years, it has made substantial efforts to expand research on pollution prevention as the preferred choice for air emissions reduction

  18. Simula Research Laboratory

    CERN Document Server

    Tveito, Aslak

    2010-01-01

    The Simula Research Laboratory, located just outside Oslo in Norway, is rightly famed as a highly successful research facility, despite being, at only eight years old, a very young institution. This fascinating book tells the history of Simula, detailing the culture and values that have been the guiding principles of the laboratory throughout its existence. Dedicated to tackling scientific challenges of genuine social importance, the laboratory undertakes important research with long-term implications in networks, computing and software engineering, including specialist work in biomedical comp

  19. Fundamental Research in Engineering Education. Student Learning in Industrially Situated Virtual Laboratories

    Science.gov (United States)

    Koretsky, Milo D.; Kelly, Christine; Gummer, Edith

    2011-01-01

    The instructional design and the corresponding research on student learning of two virtual laboratories that provide an engineering task situated in an industrial context are described. In this problem-based learning environment, data are generated dynamically based on each student team's distinct choices of reactor parameters and measurements.…

  20. POLLUTION PREVENTION RESEARCH ONGOING - EPA'S RISK REDUCTION ENGINEERING LABORATORY

    Science.gov (United States)

    The mission of the Risk Reduction Engineering Laboratory is to advance the understanding, development and application of engineering solutions for the prevention or reduction of risks from environmental contamination. This mission is accomplished through basic and applied researc...

  1. Annotated bibliography of Software Engineering Laboratory literature

    Science.gov (United States)

    Morusiewicz, Linda; Valett, Jon D.

    1991-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  2. Summaries of the Idaho National Engineering Laboratory Radioecology and Ecology Program research projects

    International Nuclear Information System (INIS)

    Markham, O.D.

    1987-06-01

    This report provides summaries of individual research projects conducted by the Idaho National Engineering Laboratory Radioecology and Ecology Program. Summaries include projects in various stages, from those that are just beginning, to projects that are in the final publication stage

  3. Ice Engineering Research Area

    Data.gov (United States)

    Federal Laboratory Consortium — Refrigerated Physical Modeling of Waterways in a Controlled EnvironmentThe Research Area in the Ice Engineering Facility at the Cold Regions Research and Engineering...

  4. Studies on engineering technologies in the Mizunami Underground Research Laboratory. FY 2007 (Contract research)

    International Nuclear Information System (INIS)

    Noda, Masaru; Suyama, Yasuhiro; Nobuto, Jun; Ijiri, Yuji; Mikake, Shinichiro; Matsui, Hiroya

    2009-07-01

    The Mizunami Underground Research Laboratory (MIU) of the Japan Atomic Energy Agency is a major site for geoscientific research to advance the scientific and technological basis for geological disposal of high-level radioactive waste in crystalline rock. Studies on relevant engineering technologies in the MIU consist of a) research on design and construction technology for very deep underground applications, and b) research on engineering technology as a basis of geological disposal. In the Second Phase of the MIU project (the construction phase), engineering studies have focused on research into design and construction technologies for deep underground. The main subjects in the study of very deep underground structures consist of the following: 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction'. In the FY 2007 studies, identification and evaluation of the subjects for study of engineering technologies in the construction phase were carried out to optimize future research work. Specific studies included: validation of the existing design methodology based on data obtained during construction; validation of existing and supplementary rock excavation methods for very deep shafts; estimation of rock stability under high differential water pressures, methodology on long-term maintenance of underground excavations and risk management systems for construction of underground structures have been performed. Based on these studies, future research focused on the four subject areas, which are 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction', has been identified. The design methodology in the first phase of the MIU Project (surface-based investigation phase) was verified to

  5. Annotated bibliography of software engineering laboratory literature

    Science.gov (United States)

    Kistler, David; Bristow, John; Smith, Don

    1994-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 56: Technical Communications in Engineering and Science: The Practices Within a Government Defense Laboratory

    Science.gov (United States)

    VonSeggern, Marilyn; Jourdain, Janet M.; Pinelli, Thomas E.

    1996-01-01

    Research in recent decades has identified the varied information needs of engineers versus scientists. While most of that research looked at the differences among organizations, we surveyed engineers and scientists within a single Air Force research and development laboratory about their information gathering, usage, and production practices. The results of the Phillips Laboratory survey confirm prior assumptions about distinctions between engineering and science. Because military employees responded at a much higher rate than civilian staff, the survey also became an opportunity to profile a little-known segment of the engineer/scientist population. In addition to the effect Phillips Laboratory's stated mission may have on member engineers and scientists, other factors causing variations in technical communication and information-related activities are identified.

  7. Expansion of the Idaho National Engineering Laboratory Research Center: Environmental assessment

    International Nuclear Information System (INIS)

    1994-03-01

    The US Department of Energy (DOE) proposes to expand and upgrade facilities at the Idaho National Engineering Laboratory (INEL) Research Center (IRC) by constructing a research laboratory addition on the northeast corner of existing laboratory building; upgrading the fume hood system in the existing laboratory building; and constructing a hazardous waste handling facility and a chemical storage building. The DOE also proposes to expand the capabilities of biotechnology research programs by increasing use of radiolabeled compounds to levels in excess of current facility limits for three radionuclides (carbon-14, sulfur-35, and phosphorus-32). This Environmental assessment identifies the need for the new facilities, describes the proposed projects and environmental setting, and evaluates the potential environmental effects. Impacts associated with current operation are discussed and established as a baseline. Impacts associated with the proposed action and cumulative impacts are described against this background. Alternatives to the proposed action (No action; Locating proposed facilities at a different site) are discussed and a list of applicable regulations is provided. The no action alternative is continuation of existing operations at existing levels as described in Section 4 of this EA. Proposed facilities could be constructed at a different location, but these facilities would not be useful or practical since they are needed to provide a support function for IRC operations. Further, the potential environmental impacts would not be reduced if a different site was selected

  8. The laboratory test rig with miniature jet engine to research aviation fuels combustion process

    Directory of Open Access Journals (Sweden)

    Gawron Bartosz

    2015-12-01

    Full Text Available This article presents laboratory test rig with a miniature turbojet engine (MiniJETRig – Miniature Jet Engine Test Rig, that was built in the Air Force Institute of Technology. The test rig has been developed for research and development works aimed at modelling and investigating processes and phenomena occurring in full scale jet engines. In the article construction of a test rig is described, with a brief discussion on the functionality of each of its main components. Additionally examples of measurement results obtained during the realization of the initial tests have been included, presenting the capabilities of the test rig.

  9. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  10. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This is the report of the results of research carried out by the common utilization of the reactor 'Yayoi' and an electron accelerator in the Nuclear Engineering Research Laboratory in fiscal year 1989. In fiscal year 1989, the research themes using the reactor Yayoi or related to it were 15, and those using the linear accelerator reached 12, thus the common utilization attracted the strong interest of users. The Yayoi has been operated satisfactorily without trouble. The results of the research carried out by the common utilization of the Yayoi and a linac and the reports of 12 Yayoi research meetings in fiscal year 1989 are collected. (J.P.N.)

  11. Sandia Laboratories technical capabilities: engineering analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    This report characterizes the engineering analysis capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  12. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  13. FJ44 Turbofan Engine Test at NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory

    Science.gov (United States)

    Lauer, Joel T.; McAllister, Joseph; Loew, Raymond A.; Sutliff, Daniel L.; Harley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was tested in the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory. This report presents the test set-up and documents the test conditions. Farfield directivity, in-duct unsteady pressures, duct mode data, and phased-array data were taken and are reported separately.

  14. Report of the research results with University of Tokyo, Nuclear Engineering Research laboratory's Facilities in fiscal 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This publication summarizes the results of the joint utilization of the research 'Yayoi' and the electron beam accelerator in the Nuclear Engineering Research Laboratory, University of Tokyo, in the fiscal year 1992. The Yayoi was operated smoothly through the year, and the number of research themes, for which the reactor Yayoi was jointly utilized and the related themes reached 23 cases. The research themes of the linac count up to 17, after its reconstruction to be twin-linac. In this publication, in addition to the utilization reports, also the 16 reports of Yayoi Study Meetings held in fiscal year 1992 are collected. (J.P.N.)

  15. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  16. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  17. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  18. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita; Eng, Susan; Enriquez-Leder, Rosario; Franz, Barbara; Gorden, Patricia; Hanson, Louise; Lamble, Geraldine; Martin, Harriet; Mastrangelo, Iris; McLane, Victoria; Villela, Maria-Alicia; Vivirito, Katherine; Woodhead, Avril

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  19. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  20. Engineered nanomaterials: toward effective safety management in research laboratories.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Hofmann, Heinrich; Meyer, Thierry

    2016-03-15

    It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided. Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk. We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation

  1. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-01-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  2. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-05-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG&G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG&G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  3. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1991

    International Nuclear Information System (INIS)

    1992-01-01

    This publication summarizes the results of the joint utilization of the nuclear reactor 'Yayoi' and the electron beam accelerator in the Nuclear Engineering Research Laboratory, University of Tokyo, in fiscal year 1991. The Yayoi was operated smoothly throughout the year, and the number of research themes, for which the reactor Yayoi was jointly utilized, and the related themes reached 21 cases. After the linear accelerator was reconstructed as the twin linac, the joint utilization was resumed in October, 1989, and the number of research themes, was 15 cases. In this publication, in addition to the utilization reports, also the reports of 15 cases of Yayoi Study Meetings held in fiscal year 1991 are collected. (K.I.)

  4. Reducing the number of laboratory animals used in tissue engineering research by restricting the variety of animal models. Articular cartilage tissue engineering as a case study.

    Science.gov (United States)

    de Vries, Rob B M; Buma, Pieter; Leenaars, Marlies; Ritskes-Hoitinga, Merel; Gordijn, Bert

    2012-12-01

    The use of laboratory animals in tissue engineering research is an important underexposed ethical issue. Several ethical questions may be raised about this use of animals. This article focuses on the possibilities of reducing the number of animals used. Given that there is considerable debate about the adequacy of the current animal models in tissue engineering research, we investigate whether it is possible to reduce the number of laboratory animals by selecting and using only those models that have greatest predictive value for future clinical application of the tissue engineered product. The field of articular cartilage tissue engineering is used as a case study. Based on a study of the scientific literature and interviews with leading experts in the field, an overview is provided of the animal models used and the advantages and disadvantages of each model, particularly in terms of extrapolation to the human situation. Starting from this overview, it is shown that, by skipping the small models and using only one large preclinical model, it is indeed possible to restrict the number of animal models, thereby reducing the number of laboratory animals used. Moreover, it is argued that the selection of animal models should become more evidence based and that researchers should seize more opportunities to choose or create characteristics in the animal models that increase their predictive value.

  5. Engineering Manhattan style: Sandia Laboratories as an example of postwar engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    A great deal has been written about the history of science in America since World War II. Much of that work has explored the government`s research and development establishment, focusing on the scientific community immediately after the war. It is generally argued that the apparent triumphs of the huge and expensive wartime research and development projects gave rise to a belief that scientific resources should be nurtured and kept on hand - ready to provide service in an emergency. The Cold War drive for more and better weapons further fed this belief, leading to a massive system of national laboratories, military laboratories, and defense industries. The science of this complex is built on extensive financial support, the central strategy of which is that by steadily, and occasionally even lavishly funding large research programs, you will have a constant stream of scientific ideas that can be applied to national security purposes. What is true of science, is also true, in slightly modified form, of postwar engineering. The story I want to tell you today is, I think, an example of the way Cold War engineering r&d for national security worked. This report describes aspects of the Sandia National Laboratories.

  6. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's facilities in fiscal 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This publication summarizes the results of the joint utilization of the research 'Yayoi' and the electron beam accelerator in the Nuclear Engineering Research Laboratory, University of Tokyo, in the fiscal year 1993. In this report, the gists of 15 researches which were carried out on pile of the Yayoi, 9 researches off pile of the Yayoi and 14 researches by using the linear accelerator are collected. In addition, the 13 reports of Yayoi Study Meeting held in fiscal year 1993 are collected. Moreover, the list of the events carried out in the facility in fiscal year 1993, the registers of names of various committees, and the register of the names of persons who were in charge of joint utilization experiments in fiscal year 1993 are attached. (K.I.)

  7. Optimization of In-Cylinder Pressure Filter for Engine Research

    Science.gov (United States)

    2017-06-01

    ARL-TR-8034 ● JUN 2017 US Army Research Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth...Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth S Kim, Michael T Szedlmayer, Kurt M Kruger, and Chol-Bum M...

  8. Education and Research Laboratories as a Means of Enhancing the Quality of Professional Engineering Education in Design and Production of Composite Parts

    Science.gov (United States)

    Khaliulin, Valentin I.; Gershtein, Elena M.

    2016-01-01

    Relevance of this research is determined by quality improvement of professional engineering education. The purpose of this paper is to offer practical recommendations for those interested in establishment of education and research laboratories as a means of enhancing the quality of professional engineering education in design and production of…

  9. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  10. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This book contains a large number of reports of studies made in 1986 through joint utilization of the nuclear reactor 'Yayoi' and electron beam type accelerator which are installed in the Nuclear engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The reports presented deal with 'Behaviors of Neutrons in Fast Reactor Blanket Shield', 'Effect of Fast Neutron Radiation on Organic Materials', 'Production and Recovery of Tritium in Nuclear Fusion Reactor Blanket System', 'Bench Mark Experiment of Effect of Atmospheric Scattering of Neutron', 'Experimental Evaluation of Nuclear Heat Rate', 'Fast Neutron Shielding Experiment', 'Effect of Fast Neutron Radiation on Hot Water', 'Neutron Shielding Experiment', 'Biological and Medical Application of 'Yayoi' Neutron', 'Effect of Fission-Fusion Correlation Radiation on Semiconductors (Si, GaAs)', 'Application of Fast Neutron to Radiography Technology', 'Streaming in Offset Slit', 'Design and Evaluation of New Reactor', 'LET Effect on Organic Material', 'Handling, Separation and Recovery of Transuranium Elements', 'Reactor Operation Support System Using Knowledge Engineering Technique', 'Application of Shape Memory Alloys to Nuclear Reactor Devices', 'Numerical Simulation of Turbulent Hear Transfer', and many other studies. (Nogami, K.)

  11. First-year Engineering Education with the Creative Electrical Engineering Laboratory

    Science.gov (United States)

    Tsukamoto, Takehiko; Sugito, Tetsumasa; Ozeki, Osamu; Ushiroda, Sumio

    The Department of Electrical and Electronic Engineering in Toyota National College of Technology has put great emphasis on fundamental subjects. We introduced the creative electrical engineering laboratory into the first-year engineering education since 1998. The laboratory concentrates on the practice exercise. The final questionnaire of students showed that our first-year education is very effective to promote students motivation and their scholastic ability in engineering.

  12. Techniques in cancer research: a laboratory manual

    International Nuclear Information System (INIS)

    Deo, M.G.; Seshadri, R.; Mulherkar, R.; Mukhopadhyaya, R.

    1995-01-01

    Cancer Research Institute (CRI) works on all facets of cancer using the latest biomedical tools. For this purpose, it has established modern laboratories in different branches of cancer biology such as cell and molecular biology, biochemistry, immunology, chemical and viral oncogenesis, genetics of cancer including genetic engineering, tissue culture, cancer chemotherapy, neurooncology and comparative oncology. This manual describes the protocols used in these laboratories. There is also a chapter on handling and care of laboratory animals, an essential component of any modern cancer biology laboratory. It is hoped that the manual will be useful to biomedical laboratories, specially those interested in cancer research. refs., tabs., figs

  13. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  14. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 14

    Science.gov (United States)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  15. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 15

    Science.gov (United States)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  16. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 13

    Science.gov (United States)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  17. Replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) on the replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory at the Idaho National Engineering Laboratory (INEL). The purpose of this project is to replace the existing Health Physics Instrumentation Laboratory (HPIL) with a new facility to provide a safe environment for maintaining and calibrating radiation detection instruments used at the Idaho National Engineering Laboratory. The existing HPIL facility provides portable health physics monitoring instrumentation and direct reading dosimetry procurement, maintenance and calibration of radiation detection instruments, and research and development support-services to the INEL and others. However, the existing facility was not originally designed for laboratory activities and does not provide an adequate, safe environment for calibration activities. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality (CEQ) Regulations (40 CFR Parts 1500-1508). Based on the environmental analysis in the attached EA, the proposed action will not have a significant effect on the human environment within the meaning of the National Environmental Policy Act (NEPA) and 40 CFR Parts 1508.18 and 1508.27. The selected action (the proposed alternative) is composed of the following elements, each described or evaluated in the attached EA on the pages referenced. The proposed action is expected to begin in 1997 and will be completed within three years: design and construction of a new facility at the Central Facility Area of the INEL; operation of the facility, including instrument receipt, inspections and repairs, precision testing and calibration, and storage and issuance. The selected action will result in no significant environmental impacts

  18. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  19. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.

  20. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  1. The Plant Genetic Engineering Laboratory For Desert Adaptation

    Science.gov (United States)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  2. 1996 Laboratory directed research and development annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  3. Remote Laboratory Collaboration Plan in Communications Engineering

    Directory of Open Access Journals (Sweden)

    Akram Ahmad Abu-aisheh

    2012-11-01

    Full Text Available Communications laboratories for electrical engineering undergraduates typically require that students perform practical experiments and document findings as part of their knowledge and skills development. Laboratory experiments are usally designed to support and reinforce theories presented in the classroom and foster independent thinking; however, the capital cost of equipment needed to sustain a viable laboratory environment is large and ongoing maintenance is an annual expense. Consequently, there is a need to identify and validate more economic solutions for engineering laboratories. This paper presents a remote laboratory collaboration plan for use in an elctrical engineering communications course.

  4. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1983

    International Nuclear Information System (INIS)

    1984-01-01

    Much achievement was obtained also in fiscal 1983 by the common utilization of the nuclear reactor ''Yayoi'' and the linear accelerator in the Nuclear Engineering Research Laboratory, University of Tokyo. These results were summarized, and this report is published. In the utilization of the reactor ''Yayoi'', the period of operation and the maximum output were limited very much, because long cooling period is necessary to prepare for the repair of fuel cladding in the next year. Also foreign research students commonly utilized the reactor ''Yayoi''. The common utilization of the linear accelerator was begun six years ago, and now it is carried out widely and smoothly. The total number of those who commonly utilized the facilities reached 3,179. The summaries of the results of 5 on-pile researches, 17 off-pile researches, and 16 researches using the linear accelerator are collected. The committee meetings and study meetings held in fiscal 1983 are listed. The names of the members of various committees and the names of those in charge of various experiments are given. (Kako, I.)

  5. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  6. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  7. Laboratory directed research development annual report. Fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  8. Structures Laboratory | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  9. Engineering sciences research highlights. Fiscal year 1983

    International Nuclear Information System (INIS)

    Tucker, E.F.; Dobratz, B.

    1984-05-01

    The Laboratory's overall mission is sixfold. We are charged with developing nuclear warheads for defense, technology for arms control, and new concepts for defense against nuclear attack; with supporting programs for both nonnuclear defense and energy research and development; and with advancing our knowledge of science and technology so that we can respond to other national needs. Major programs in support of this mission involve nuclear weapons, energy, environmental science, and basic research. Specific areas of investigation include the design, development, and testing of nuclear weapons; nuclear safeguards and security; inertial and magnetic fusion and nuclear, solar, fossil, and geothermal energy; and basic research in physics, chemistry, mathematics, engineering, and the computer and life sciences. With the staff and facilities maintained for these and other programs, the Laboratory can respond to specific national needs in virtually all areas of the physical and life sciences. Within the Laboratory's organization, most technical research activities are carried out in three directorates: Engineering Sciences; Physics and Mathematics; and Chemistry, Earth and Life Sciences. The activities highlighted here are examples of unclassified work carried out in the seven divisions that made up the Engineering Sciences Directorate at the end of fiscal year 1983. Brief descriptions of these divisions' goals and capabilities and summaries of selected projects illustrate the diversity of talent, expertise, and facilities maintained within the Engineering Sciences Directorate

  10. Reducing the number of laboratory animals used in tissue engineering research by restricting the variety of animal models. Articular cartilage tissue engineering as a case study

    NARCIS (Netherlands)

    Vries, R.B.M. de; Buma, P.; Leenaars, M.; Ritskes-Hoitinga, M.; Gordijn, B.

    2012-01-01

    The use of laboratory animals in tissue engineering research is an important underexposed ethical issue. Several ethical questions may be raised about this use of animals. This article focuses on the possibilities of reducing the number of animals used. Given that there is considerable debate about

  11. Safety Research Experiment Facilities, Idaho National Engineering Laboratory, Idaho. Draft environmental statement

    International Nuclear Information System (INIS)

    1977-01-01

    This environmental statement was prepared in accordance with the National Environmental Policy Act of 1969 (NEPA) in support of the Energy Research and Development Administration's (ERDA) proposal for legislative authorization and appropriations for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evalution of some design options and in the assessment of the long-term potential risk associated with wide-scale deployment of the FBR

  12. Annual report of Radiation Laboratory Department of Nuclear Engineering Faculty of Engineering, Kyoto University

    International Nuclear Information System (INIS)

    1993-07-01

    This publication is the collection of the papers presented research activities of Radiation laboratory, Department of Nuclear Engineering, Kyoto University during the 1992 academic/fiscal year (April, 1992 - March, 1993). The 48 of the presented papers are indexed individually. (J.P.N.)

  13. Laboratory directed research and development annual report: 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2005 for Sandia National Laboratories. In addition to a programmatic and financial overview, the report includes progress reports from 410 individual R and D projects in 19 categories. The categories and subheadings are: Science, Technology and Engineering (Advanced Components and Certification Engineering; Advanced Manufacturing; Biotechnology; Chemical and Earth Sciences; Computational and Information Sciences; Electronics and Photonics; Engineering Sciences; Materials Science and Technology; Pulsed Power Sciences and High Energy Density Sciences; Science and Technology Strategic Objectives); Mission Technologies (Energy and Infrastructure Assurance; Homeland Security; Military Technologies and Applications; Nonproliferation and Assessments; Grand Challanges); and Corporate Objectives (Advanced Concepts; Seniors' Council; University Collaborations)

  14. Safety research experiment facilities, Idaho National Engineering Laboratory, Idaho. Final environmental impact statement

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1977-09-01

    This environmental statement was prepared for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evaluation of some design options and in the assessment of the long-term potential risk associated with wide-acale deployment of the FBR

  15. Software Engineering Laboratory Series: Proceedings of the Twentieth Annual Software Engineering Workshop

    Science.gov (United States)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  16. Engineering Research Division publication report, calendar year 1980

    International Nuclear Information System (INIS)

    Miller, E.K.; Livingston, P.L.; Rae, D.C.

    1980-06-01

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented

  17. Management of water hyacinth. Report from India (Regional Research Laboratory, Jorhat, Assam)

    International Nuclear Information System (INIS)

    Baruah, J.N.

    1981-01-01

    The main objective of the project is the development of an environmentally sound management scheme for water hyacinth infestation through its various utilization potentials. Such an approach is considered desirable from the point ov view of economic viability and environmental protection. Accordingly various aspects of the problem have been studied in India in three different laboratories. Regional Research Laboratory, Jorhat, which is the lead laboratory, is concerned with the study of various factors involved in the growth of this weed, production of biogas, paper and board from water hyacinth, screening of compounds and organisms with commercial potential in this plant and utilization of this weed for mushroom cultivation. Developmental and engineering aspects of biogas production from water hyacinth are studied at Central Mechanical Engineering Research Institute, Durgapur, and Nagarjuna Sagar Engineering College, J N Technological University, Hyderabad. Pilot plant investigation on the production of handmade paper and board is being investigated at Regional Research Laboratory, Hyderabad

  18. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    Full text: In 2002, the US Department of Energy (US DOE) transferred sponsorship of the INEEL and ANL-W to the DOE Office of Nuclear Energy, Science and Technology and designated the INEEL and ANL-W as the nation's lead laboratories for nuclear reactor and nuclear fuel cycle research and development. This transfer acknowledged the laboratories' history, infrastructure, expertise and commitment to collaborate broadly in order to fulfill its assigned role as the nation's center for nuclear energy research and development. Key to this role is the availability of well-educated and trained nuclear engineers, professionals from other disciplines of engineering, nuclear scientists, and others with advanced degrees in supporting disciplines such as physics, chemistry, and math. In 2005 the INEEL and ANL-W will be combined into the Idaho National Laboratory (INL). One of US DOE's objectives for the INL will be for it to take a strong role in the revitalization of nuclear engineering and nuclear science education in the US. Responding to this objective for the INL and the national need to rejuvenate nuclear engineering and nuclear science research and education, ISU, University of Idaho (UI), Boise State University, the INEEL, and ANL-W are all supporting a new Institute of Nuclear Science and Engineering (INSE), initially proposed by and to be administered by ISU. The Institute will rely on the resources of both universities and the INL to create a US center for reactor and fuel cycle research to development and attract outstanding faculty and students to Idaho and to the INL. The Institute and other university based education development efforts represent only one component of a viable Human Resources Pipeline from university to leading edge laboratory researcher. Another critical component is the successful integration of new graduates into the laboratory research environment, the transfer of knowledge from senior researchers, and the development of these individuals into

  19. Outline of new extra high voltage research equipment at Kumatori research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hohki, S; Ikeda, G

    1965-01-01

    Following up the construction in 1939 of an ehv research laboratory, another new research laboratory was established at Kumatori with a ground area of 142,000 square meters. As the first stage of this construction plan, the new research equipment was installed in November 1963 and began operation. The laboratory consists of comprehensive ehv research equipment and facilities relating to atomic energy. The former includes a 6000-kV impulse voltage generator, a 1650-kV alternating current testing transformer, a 300-m overhead transmission test line, a tower strength testing facility, and other various high-power test facilities. Studies on a 400- to 500-kV overhead power transmission system and other new transmission systems are currently being conducted. The details of the construction of the ehv research equipment together with the research policy for future ehv engineering are given.

  20. Robotic Manufacturing Science and Engineering Laboratory (RMSEL)

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Robotic Manufacturing Science and Engineering Laboratory (RMSEL) at Sandia National Laboratories/New Mexico (SNL). This facility is needed to integrate, consolidate, and enhance the robotics research and testing currently in progress at SNL. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  1. Retrospect over past 25 years at Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Aoki, Shigebumi

    1983-01-01

    Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, was established on April 1, 1956, with the aims of the investigation on the peaceful use of nuclear energy and of the education of scientists and engineers in this field. This report reviews the history of the Laboratory during 25 years and traces the process of growth concerning research divisions, buildings, large-scale experimental facilities and the education in the graduate course for nuclear engineering. In addition, considering what the Laboratory has to be and what the future plan will be, it is mentioned that the research interest should be extended to the field of nuclear fusion reactor, especially the blanket engineering, as a long-term future project of the Research Laboratory. (author)

  2. Annual report of the CTR Blanket Engineering research facility in 1994

    International Nuclear Information System (INIS)

    1995-09-01

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor(CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1994. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (author)

  3. Annual report of the CTR blanket engineering research facility in 1993

    International Nuclear Information System (INIS)

    1994-08-01

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor (CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1993. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (author)

  4. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  5. Universities and national laboratory roles in nuclear engineering

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    Nuclear Engineering Education is being significantly challenged in the United States. The decline in enrollment generally and the reduction of the number of nuclear engineering departments has been well documented. These declines parallel a lack of new construction for nuclear power plants and a decline in research and development to support new plant design. Precisely at a time when innovation is is needed to deal with many issues facing nuclear power, the number of qualified people to do so is being reduced. It is important that the University and National Laboratory Communities cooperate to address these issues. The Universities must increasingly identify challenges facing nuclear power that demand innovative solutions and pursue them. To be drawn into the technology the best students must see a future, a need and identify challenges that they can meet. The University community can provide that vision with help from the National Laboratories. It has been a major goal within the reactor development program at Argonne National Laboratory to establish the kind of program that can help accomplish this

  6. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  7. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  8. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  9. Annual report of the CTR Blanket Engineering research facility in 1992

    International Nuclear Information System (INIS)

    1993-08-01

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor (CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1992. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (J.P.N.)

  10. Annual report of the CTR Blanket Engineering research facility in 1996

    International Nuclear Information System (INIS)

    1998-02-01

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor (CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1996. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (J.P.N.)

  11. Naval Arctic Research Laboratory (NARL) Subsurface Containment Berm Investigation

    Science.gov (United States)

    2015-10-01

    Degree-Days CRREL Cold Regions Research and Engineering Laboratory ERDC U.S. Army Engineer Research and Development Center FWENC Foster Wheeler ...contract with the Navy, Foster Wheeler Environmental Corporation (FWENC) constructed a subsurface containment berm at the airfield of the Naval...659J91.61 ncURE 3- 3 NAVAl.. AACnC R(Sf.ARCH l,.ASORATORY POINT 9ARROW. AlASKA AS-BUILT CONTAINMENT BERM EXTENSION AND MONITORING WELLS FOSTER W

  12. Software Engineering Laboratory Series: Proceedings of the Twenty-First Annual Software Engineering Workshop

    Science.gov (United States)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  13. Software Engineering Laboratory Series: Proceedings of the Twenty-Second Annual Software Engineering Workshop

    Science.gov (United States)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  14. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  15. Sandia National Laboratories: Research: Research Foundations: Engineering

    Science.gov (United States)

    Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community Library Events Careers View All Jobs Students & Postdocs Internships & Co-ops Fellowships

  16. Laboratory-directed research and development

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Caughran, A.B.

    1992-05-01

    This report summarizes progress from the Laboratory-Directed Research and Development (LDRD) program during fiscal year 1991. In addition to a programmatic and financial overview, the report includes progress reports from 230 individual R ampersand D projects in 9 scientific categories: atomic and molecular physics; biosciences; chemistry; engineering and base technologies; geosciences; space sciences, and astrophysics; materials sciences; mathematics and computational sciences; nuclear and particle physics; and plasmas, fluids, and particle beams

  17. Biometrics Research and Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As the Department of Defense moves forward in its pursuit of integrating biometrics technology into facility access control, the Global War on Terrorism and weapon...

  18. Engineering research, development and technology

    International Nuclear Information System (INIS)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report

  19. Full-participation of students with physical disabilities in science and engineering laboratories.

    Science.gov (United States)

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  20. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  1. Low-Cost Virtual Laboratory Workbench for Electronic Engineering

    Science.gov (United States)

    Achumba, Ifeyinwa E.; Azzi, Djamel; Stocker, James

    2010-01-01

    The laboratory component of undergraduate engineering education poses challenges in resource constrained engineering faculties. The cost, time, space and physical presence requirements of the traditional (real) laboratory approach are the contributory factors. These resource constraints may mitigate the acquisition of meaningful laboratory…

  2. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  3. Data collection procedures for the Software Engineering Laboratory (SEL) database

    Science.gov (United States)

    Heller, Gerard; Valett, Jon; Wild, Mary

    1992-01-01

    This document is a guidebook to collecting software engineering data on software development and maintenance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled Data Collection Procedures for the Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in October 1987. It presents procedures to be followed on software development and maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of SEL software engineering research activities. These procedures include detailed instructions for the completion and submission of SEL data collection forms.

  4. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  5. Successful neural network projects at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Cordes, G.A.

    1991-01-01

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs

  6. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  7. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  8. Study on engineering technologies in the Mizunami Underground Research Laboratory. FY 2014. Development of recovery and mitigation technology on excavation damage (Contract research)

    International Nuclear Information System (INIS)

    Fukaya, Masaaki; Hata, Koji; Akiyoshi, Kenji; Sato, Shin; Takeda, Nobufumi; Miura, Norihiko; Uyama, Masao; Kanata, Tsutomu; Ueda, Tadashi; Hara, Akira; Torisu, Seda; Ishida, Tomoko; Sato, Toshinori; Mikake, Shinichiro; Aoyagi, Yoshiaki

    2016-03-01

    The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project consist of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security and (5) development of technologies for restoration and/or reduction of the excavation damage. As a part of the second phase of the MIU project, research has been focused on the evaluation of engineering technologies including the initial design based on the data obtained during construction. In this research, examination of the plug applied to the future reflood test was conducted as a part of (5) development of technologies for restoration and/or reduction of the excavation damage relating to the engineering technology in the MIU (2014), specifically focused on (1) plug examination (e.g. functions, structure and material) and the quality control methods and (2) analytical evaluation of rock mass behavior around the plug through the reflood test. As a result, specifications of the plug were determined. These specifications should be able to meet requirements for the safety structure and surrounding rock mass against predicted maximum water pressure, temperature stress and seismic force, and for controlling the groundwater inflow, ensuring the access into the reflood gallery and the penetration performance of measurement cable. Also preliminary knowledge regarding the rock mass behavior around the plug after flooding the reflood gallery by installed plug was obtained. A CD-ROM is attached as an appendix. (J.P.N.)

  9. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  10. Mapping the Use of Engineered NM in Quebec's Industries and Research Laboratories

    International Nuclear Information System (INIS)

    Ostiguy, Claude; Emond, Claude; Dossa, Inès; Plavski, Anton; Malki, Yasmina; Boily, Chantale; Roughley, David; Endo, Charles-Anica

    2013-01-01

    Engineered NanoMaterials (NM) offer an opportunity to develop a wide variety of new products with unique properties but many studies have shown potential OHS risks specific to NM. Addressing these risks requires knowledge about release of NM into the workplaces. This research aimed to map the state of nanotechnology OHS practices in Quebec through a questionnaire following a first contact by telephone when possible and by compiling the type and volumes of NM used as well as gathering information related to the working conditions and OHS aspects. This survey was conducted among 1310 Quebec industries and 653 researchers working in different specialties potentially involved in the development/production/distribution/integration of NM and use of NM containing products. Overall, 90 questionnaires, including 51 from the industries, were completed. These showed that NM are mainly used into the powder form, in many different sectors and deserve a wide range of markets. The prevention measures implemented vary widely from a workplace to another but about one third of the participants report that they have implemented NP adapted prevention measures but they remain worried on some specific operations. More than 50% of the participants request more information about the safe laboratory/plant design, toxicity, regulation, good work practices and prevention measures, efficiency of personal protective equipment and environmental impacts.

  11. Mapping the Use of Engineered NM in Quebec's Industries and Research Laboratories

    Science.gov (United States)

    Ostiguy, Claude; Emond, Claude; Dossa, Inès; Malki, Yasmina; Boily, Chantale; Roughley, David; Plavski, Anton; Endo, Charles-Anica

    2013-04-01

    Engineered NanoMaterials (NM) offer an opportunity to develop a wide variety of new products with unique properties but many studies have shown potential OHS risks specific to NM. Addressing these risks requires knowledge about release of NM into the workplaces. This research aimed to map the state of nanotechnology OHS practices in Quebec through a questionnaire following a first contact by telephone when possible and by compiling the type and volumes of NM used as well as gathering information related to the working conditions and OHS aspects. This survey was conducted among 1310 Quebec industries and 653 researchers working in different specialties potentially involved in the development/production/distribution/integration of NM and use of NM containing products. Overall, 90 questionnaires, including 51 from the industries, were completed. These showed that NM are mainly used into the powder form, in many different sectors and deserve a wide range of markets. The prevention measures implemented vary widely from a workplace to another but about one third of the participants report that they have implemented NP adapted prevention measures but they remain worried on some specific operations. More than 50% of the participants request more information about the safe laboratory/plant design, toxicity, regulation, good work practices and prevention measures, efficiency of personal protective equipment and environmental impacts.

  12. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    International Nuclear Information System (INIS)

    Markham, O.D.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports

  13. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  14. Quality assurance in a large research and development laboratory

    International Nuclear Information System (INIS)

    Neill, F.H.

    1980-01-01

    Developing a quality assurance program for a large research and development laboratory provided a unique opportunity for innovative planning. The quality assurance program that emerged has been tailored to meet the requirements of several sponsoring organizations and contains the flexibility for experimental programs ranging from large engineering-scale development projects to bench-scale basic research programs

  15. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  16. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Markham, O. D. [ed.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

  17. Engineer Research and Development Center's Materials Testing Center (MTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center's Materials Testing Center (MTC) is committed to quality testing and inspection services that are delivered on time and...

  18. 1997 Laboratory directed research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  19. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  20. Laboratory directed research and development FY91

    International Nuclear Information System (INIS)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K.

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator

  1. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  2. Pump and valve research at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1992-01-01

    Over the last several years, the Oak Ridge National Laboratory (ORNL) has carried out several aging assessments on pumps and valves under the NRC's Nuclear Plant Aging Research (NPAR) Program. In addition, ORNL has established an Advanced Diagnostic Engineering Research and Development Center (ADEC) in order to play a key role in the field of diagnostic engineering. Initial ADEC research projects have addressed problems that were identified, at least in part, by the NPAR and other NRC-sponsored programs. This paper summarizes the pump and valve related research that has been done at ORNL and describes in more detail several diagnostic techniques developed at ORNL which are new commercially available

  3. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    Science.gov (United States)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  4. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  5. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  6. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  7. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  8. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  9. Laboratory directed research and development FY91

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. (eds.)

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  10. Remote Laboratory Collaboration Plan in Communications Engineering

    OpenAIRE

    Akram Ahmad Abu-aisheh; Tom Eppes

    2012-01-01

    Communications laboratories for electrical engineering undergraduates typically require that students perform practical experiments and document findings as part of their knowledge and skills development. Laboratory experiments are usally designed to support and reinforce theories presented in the classroom and foster independent thinking; however, the capital cost of equipment needed to sustain a viable laboratory environment is large and ongoing maintenance is an annual expense. Consequentl...

  11. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    Science.gov (United States)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  12. Electronic battlespace facility for research, develoment and engineering

    NARCIS (Netherlands)

    Jense, Hans; Kuijpers, N.H.L.; Elias, R.J.D.

    1997-01-01

    In order to support its research, development and engineering activities in the area of distributed simulation for training and command & control, TNO Physics and Electronics Laboratory has developed (and continues to enhance) an Electronic Battlespace Facility (EBF). This paper presents an overview

  13. Towards a mature measurement environment: Creating a software engineering research environment

    Science.gov (United States)

    Basili, Victor R.

    1990-01-01

    Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.

  14. Remote Laser Laboratory: Lifebuoy for Laser Engineering Curriculum

    Directory of Open Access Journals (Sweden)

    Igor Titov

    2012-05-01

    Full Text Available Laboratory experience is one of the essentials of engineering curriculum and even more so for laser engineering specialities. But such experience might be hazardous both for students and for expensive equipment. This paper presents a ready-to-use solution fitting great in both e-learning and safe remote operation paradigms: Remote Laser Laboratory (RLL. Software and hardware solutions are presented. In addition, a short description of ongoing student activities within the RLL framework is given.

  15. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  16. The Horonobe Underground Research Laboratory (Tentative name) Project. A program on survey and research performed from earth surface

    International Nuclear Information System (INIS)

    2001-03-01

    The Horonobe Underground Research Laboratory (Tentative name) Project under planning at Horonobe-machi by the Japan Nuclear Cycle Development Institute (JNC) is a research facility on deep underground shown in the Long-term program on research, development and application of nuclear energy (June, 1994)' (LPNE), where some researches on the deep underground targeted at sedimentary rocks are carried out. The plan on The Horonobe Underground Research Laboratory performed at Horonobe-machi' is an about 20 years plan ranging from beginning to finishing of its survey and research, which is carried out by three steps such as 'Survey and research performed from earth surface', 'Survey and research performed under excavation of road', and Survey and research performed by using the road'. The Horonobe Underground Research Laboratory is one of research facilities on deep underground shown its importance in LPNE, and carries out some researches on the deep underground at a target of the sedimentary rocks. And also The Horonobe Underground Research Laboratory confirms some technical reliability and support on stratum disposal shown in the 'Technical reliability on stratum disposal of the high level radioactive wastes. The Second Progress Report of R and D on geological disposal' summarized on November, 1999 by JNC through actual tests and researches at the deep stratum. The obtained results are intended to reflect to disposal business of The Horonobe Underground Research Laboratory and safety regulation and so on performed by the government, together with results of stratum science research, at the Tono Geoscience Center, of geological disposal R and D at the Tokai Works, or of international collaborations. For R and D at the The Horonobe Underground Research Laboratory after 2000, following subjects are shown: 1) Survey technique on long-term stability of geological environment, 2) Survey technique on geological environment, 3) Engineering technique on engineered barrier and

  17. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sreenath [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Muni [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Sekar, Raj [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-08-01

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  18. Research Collaborations | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  19. Smart Electronic Laboratory Notebooks for the NIST Research Environment.

    Science.gov (United States)

    Gates, Richard S; McLean, Mark J; Osborn, William A

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time.

  20. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  1. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  2. Laboratory directed research and development annual report: Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  3. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  4. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    International Nuclear Information System (INIS)

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry

  5. Annual report 2004. Laboratory of Energy Engineering and Environmental Protection

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, L.; Zevenhoven, R. (eds.)

    2005-07-01

    This fifth annual report in this series, covering year 2004, gives an overview of the research, education and other activities of the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. From the research point of view, the laboratory continues in the Nordic Energy Research Program (2003-2006) in the field of CO{sub 2} capture and storage, and in the EU project 'ToMeRed' on toxic trace elements emissions control. The laboratory is also the operating agent for the IEA project 'Energy systems integration between society and industry'. The bulk of the research can be classified into three groups, in short: energy systems; spraying and combustion and combustion and waste treatment. This research takes mainly place in national and international consortia, but sometimes also in a direct cooperation with one industry partner. Some of the work involves the use and development of models and sub- models for the simulation and optimisation of energy systems and processes. Commercial softwares like Aspen Plus and Prosim are important tools for our work as well. Besides this, single particle modelling can be applied to fuel droplets, fuel particles or particles found in metallurgical industry. We make CFD calculations with commercial codes are made as well, while working on the improvement of (sub-) models for multiphase fluid dynamics.

  6. Mini-projects in Chemical Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Angeles Cancela

    2013-03-01

    Full Text Available Chemical engineering laboratory practices based in mini-projects were design and applied the students of forestry engineering in chemical subject. This way of practice reveals a more cooperative learning and a different style of experimentation. The stated goal was to design practices that motivate students and to enable them to develop different skills, including cross teamwork and communication. This paper describes how these practices were developed and the advantages and disadvantages of using this methodology of teaching.

  7. Annual cooperative research report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This is FY 1995 annual report of research results of the Yayoi research group and the high speed neutron science group as well as the cooperative application research results of reactor `Yayoi` application, related to reactor `Yayoi` and of accelerator Linac. The reactor was also operated smoothly in FY 1995, and its application and related research reached to 25 themes. The research using Linac reduced apparently to 7 themes from 14 in FY 1994, which showed apparent reduction because of integration of the cooperative research theme but showed more results in general. in particular, it was a wonderful result to success the formation of sub-pico second pulsed beam in world wide area. The Yayoi research group reported 13 researches which was two more than these in last fiscal year, all of which were the most advanced discussions in the field related to nuclear engineering. The high speed neutron science group started in FY 1993 aiming at construction of new research field on application of the high speed neutron as a quantum beam with excellent nuclear transfer and transmittance, to manifestation and control of new material function and design and creation of intelligent material. In FY 1995, the group began his full scale operation and reported on 8 themes. (G.K.)

  8. Annual cooperative research report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This is FY 1995 annual report of research results of the Yayoi research group and the high speed neutron science group as well as the cooperative application research results of reactor 'Yayoi' application, related to reactor 'Yayoi' and of accelerator Linac. The reactor was also operated smoothly in FY 1995, and its application and related research reached to 25 themes. The research using Linac reduced apparently to 7 themes from 14 in FY 1994, which showed apparent reduction because of integration of the cooperative research theme but showed more results in general. in particular, it was a wonderful result to success the formation of sub-pico second pulsed beam in world wide area. The Yayoi research group reported 13 researches which was two more than these in last fiscal year, all of which were the most advanced discussions in the field related to nuclear engineering. The high speed neutron science group started in FY 1993 aiming at construction of new research field on application of the high speed neutron as a quantum beam with excellent nuclear transfer and transmittance, to manifestation and control of new material function and design and creation of intelligent material. In FY 1995, the group began his full scale operation and reported on 8 themes. (G.K.)

  9. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    In a joint effort with the Argonne National Laboratory - West (ANL-W), the Idaho National Engineering and Environmental Laboratory (INEEL) has assumed the lead role for nuclear energy reactor research for the United States Government. In 2005, these two laboratories will be combined into one entity, the Idaho National Laboratory (INL). There are two objectives for the INL: (1) to act as the lead systems integrator for the Department of Energy's Office of Nuclear Energy Science and Technology and, (2) to establish a Center for Advanced Energy Studies. Focusing on the Center for Advanced Energy Studies, this paper presents a Human Resources Pipeline Model outlining a nuclear educational pathway that leads to university and industry research partnerships. The pathway progresses from education to employment and into retirement. Key to the model is research and mentoring and their impact upon each stage. The Center's success will be the result of effective and advanced communications, faculty/student involvement, industry support, inclusive broadbased involvement, effective long-term partnering, and increased federal and state support. (author)

  10. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  11. Laboratory Directed Research and Development Program, FY 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology

  12. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  13. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  14. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  15. Project-Based Laboratory Experiences in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Narendra Sharma

    2011-12-01

    Full Text Available In this paper we describe project-based laboratories in Mechanical Engineering designed to provide semester-long team experiences which mimic the real life industrial processes of design, development, testing and optimization. The labs are focused on courses at the sophomore level and thus require special attention to constraints of student backgrounds and experience. This paper describes laboratory projects in Dynamics and Fluid Mechanics.

  16. Developing Digital Courseware for a Virtual Nano-Biotechnology Laboratory: A Design-Based Research Approach

    Science.gov (United States)

    Yueh, Hsiu-Ping; Chen, Tzy-Ling; Lin, Weijane; Sheen, Horn-Jiunn

    2014-01-01

    This paper first reviews applications of multimedia in engineering education, especially in laboratory learning. It then illustrates a model and accreditation criteria adopted for developing a specific set of nanotechnology laboratory courseware and reports the design-based research approach used in designing and developing the e-learning…

  17. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  18. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  19. Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015). Development of design and construction planning and countermeasure technologies (Contract research)

    International Nuclear Information System (INIS)

    Toguri, Satohito; Kobayashi, Shinji; Tsuji, Masakuni; Yahagi, Ryoji; Yamada, Toshiko; Matsui, Hiroya; Mikake, Shinichiro; Aoyagi, Yoshiaki; Sato, Toshinori

    2017-03-01

    The study on engineering technology in the Mizunami Underground Research Laboratory (MIU) project roughly consists of (1)development of design and construction planning technologies, (2)development of construction technology, (3)development of countermeasure technology, (4)development of technology for security, and (5) development of technologies regarding restoration and mitigating of the excavation effect. So far, the verification of the initial design based on the data obtained during excavation was mainly conducted as a research in the Construction Phase, also the countermeasure technologies to control groundwater inflow were examined as a research in the Operation Phase. In FY2015, as a part of the important issues on the research program, “Development of countermeasure technologies for reducing groundwater inflow” in the Japan Atomic Energy Agency 3rd Midterm Plan, water-tight grouting method has been developed. Grouting methods utilized in the MIU were evaluated and the post-excavation grouting at the -500m Access/Research Gallery-South was planned based on these evaluation results. Also, technology development from the viewpoint of geological disposal was summarized, and information on the alternative method to the grouting method was collected and organized. (author)

  20. Annual report of Radiation Laboratory Department of Nuclear Engineering Kyoto University for fiscal 1993

    International Nuclear Information System (INIS)

    1994-07-01

    This publication is the collection of the papers presented research activities of Radiation Laboratory, Department of Nuclear Engineering, Kyoto University during the 1993 academic/fiscal year (April, 1993 - March, 1994). The 47 of the presented papers are indexed individually. (J.P.N.)

  1. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    Science.gov (United States)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  2. Interdisciplinary Research for Engineering Skills Development Interdisciplinary Research for Engineering Skills Development

    Directory of Open Access Journals (Sweden)

    Angel E. González-Lizardo

    2012-02-01

    Full Text Available Este trabajo reporta los resultados de una experiencia interdisciplinaria de investigaciónpara estudiantes de ingeniería, en el Laboratorio de Ingeniería de Plasma (PEL por sussiglas en inglés de la Universidad Politécnica de Puerto Rico (UPPR. Los rasgos fuertes de esta experiencia y su relación con los resultados esperados por la Junta de Acreditación para Ingeniería y Tecnología (ABET por sus siglas en inglés son destacados, y una descripción cualitativa de los resultados en términos de la ejecución de los estudiantes durante la experiencia y después de ella. Se presenta un ejemplo de las diferentes actividades realizadas por un equipo de estudiantes subgraduados y su relación con los resultados esperados por ABET. La experiencia de investigación en el PEL provee a los estudiantes con una oportunidad única para practicar la ingeniería antes de su graduación, a través de problemas reales, innovación, colaboración con otras instituciones, y presentación de su trabajo a audiencias de científicos e ingenieros. This work reports the results of an ad hoc interdisciplinary research experience for undergraduate engineering students at the Plasma Engineering Laboratory (PEL of the Polytechnic University of Puerto Rico (PUPR. The strong features of this experience and their relationship with Accreditation Board for Engineering and Technology (ABET outcomes are pointed out, and a qualitative description of the results is discussed, in terms of the performance of the students during the experience and after it. An example of the different activities performed by a team of undergraduate students, and their relationship with the ABET outcomes is presented. The undergraduate research at the PEL provides the students with a unique opportunity to practice engineering before graduation through real life problems, innovation, collaboration with other institutions, and presentation of their work for engineering and scientific audiences.

  3. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  4. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  5. Fiscal 1974-1975 Sunshine Project research report. Hydrogen energy research results (National laboratories and institutes); 1974, 1975 nendo suiso energy kenkyu seika hokokushu. Kokuritsu shiken kenkyusho kankei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-10-01

    This report summarizes the 21 research results on hydrogen energy promoted by 3 national laboratories and 2 national institutes. (1) Tokyo National Industrial Research Institute (TNIRI): Ca-I system, Mn system, S system and hybrid cycles, and water decomposition reaction by CO as thermochemical hydrogen production technique. (2) Osaka National Industrial Research Institute (ONIRI): Fe system, Cu system and ammonia system cycles, and high-temperature high-pressure water electrolysis. (3) Electrotechnical Laboratory: high- temperature direct thermolysis hydrogen production technique. (4) TNIRI: Mg-base and transition metal-base hydrogen solidification technique. (5) ONIRI: Ti-base and rare metal- base hydrogen solidification technique. (6) Mechanical Engineering Laboratory: hydrogen-fuel engines. (7) Electrotechnical Laboratory and ONIRI: fuel cell. (8) TNIRI: disaster preventive technology for gaseous and liquid hydrogen. (9) Chugoku National Industrial Research Institute: preventing materials from embrittlement due to hydrogen. (10) Electrotechnical Laboratory: hydrogen energy system. (NEDO)

  6. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  7. A 50-year research journey. From laboratory to clinic.

    Science.gov (United States)

    Ross, John

    2009-01-01

    Prior important research is not always cited, exemplified by Oswald Avery's pioneering discovery that DNA is the genetic transforming factor; it was not cited by Watson and Crick 10 years later. My first laboratory research (National Institutes of Health 1950s) resulted in the clinical development of transseptal left heart catheterization. Laboratory studies on cardiac muscle mechanics in normal and failing hearts led to the concept of afterload mismatch with limited preload reserve. At the University of California, San Diego in La Jolla (1968) laboratory experiments on coronary artery reperfusion after sustained coronary occlusion showed salvage of myocardial tissue, a potential treatment for acute myocardial infarction proven in clinical trials of thrombolysis 14 years later. Among 60 trainees who worked with me in La Jolla, one-third were Japanese and some of their important laboratory experiments are briefly recounted, beginning with Sasayama, Tomoike and Shirato in the 1970 s. Recently, we developed a method for cardiac gene transfer, and subsequently we showed that gene therapy for the defect in cardiomyopathic hamsters halted the progression of advanced disease. Cardiovascular research and medicine are producing continuing advances in technologies for gene transfer and embryonic stem cell transplantation, targeting of small molecules, and tissue and organ engineering.

  8. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  9. GridSpace Engine of the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Ciepiela, E.; Kocot, J.; Gubala, T.; Malawski, M.; Kasztelnik, M.; Bubak, M.; Bubak, M.; Turała, M.; Wiatr, K.

    2008-01-01

    GridSpace Engine is the central operational unit of the ViroLab Virtual Laboratory. This specific runtime environment enables access to computational and data resources by coordinating execution of experiments written in the Ruby programming language extended with virtual laboratory capabilities.

  10. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  11. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  12. Research Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Multimedia Software Laboratory Computer Science Nanotechnology for Sustainable Energy and Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  13. 1986 environmental monitoring program report for the Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Rope, S.K.

    1987-05-01

    This report presents onsite and offsite data collected in 1986 for the routine environmental monitoring program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of the Department of Energy (DOE) at the Idaho National Engineering Laboratory (INEL) Site. The purpose of this routine program is to monitor radioactive and nonradioactive materials resulting from INEL Site operations which may reach the surrounding offsite environment and population. This report is prepared in accordance with the DOE requirements in draft DOE Order 5484.1 and is not intended to cover the numerous special environmental research programs being conducted at the INEL by RESL and others

  14. Systems engineering research

    OpenAIRE

    Sahraoui , Abd-El-Kader; Buede , Dennis ,; Sage , Andrew ,

    2008-01-01

    International audience; In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that ar...

  15. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  16. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  17. Laboratory directed research and development FY91. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. [eds.

    1991-12-31

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director`s initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  18. Research and Development Program for transportation packagings at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-01-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support

  19. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F

    Energy Technology Data Exchange (ETDEWEB)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

  20. Engineering Research, Development and Technology, FY95: Thrust area report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  1. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  2. Development of the environmental management integrated baseline at the Idaho National Engineering Laboratory using systems engineering

    International Nuclear Information System (INIS)

    Murphy, J.A.; Caliva, R.M.; Wixson, J.R.

    1997-01-01

    The Idaho National Engineering Laboratory (INEL) is one of many Department of Energy (DOE) national laboratories that has been performing environmental cleanup and stabilization, which was accelerated upon the end of the cold war. In fact, the INEL currently receives two-thirds of its scope to perform these functions. However, the cleanup is a highly interactive system that creates an opportunity for systems engineering methodology to be employed. At the INEL, a group called EM (Environmental Management) Integration has been given this charter along with a small core of systems engineers. This paper discusses the progress to date of converting the INEL legacy system into one that uses the systems engineering discipline as the method to ensure that external requirements are met

  3. Designing requirements engineering research

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Heerkens, Johannes M.G.

    2007-01-01

    Engineering sciences study different topics than natural sciences, and utility is an essential factor in choosing engineering research problems. But despite these differences, research methods for the engineering sciences are no different than research methods for any other kind of science. At most

  4. Multimedia Software Laboratory | College of Engineering & Applied Science

    Science.gov (United States)

    Support Milwaukee Engineering Research Conference 2018 Poster Competition Business Corporate Partners Engineer Research Collaborations Corporate Services Product Realization Business Tour Give Entrepreneurship -oriented methods, and performance analysis. Research Message from the Associate Dean Milwaukee Engineerâ

  5. Engines for experiment: laboratory revolution and industrial labor in the nineteenth-century city.

    Science.gov (United States)

    Dierig, Sven

    2003-01-01

    This article brings together what until now have been separate fields of nineteenth-century history: the development of experimental physiology, the growth of mechanized industry, and the city, where their threads intertwined. The main argument is that the laboratory in the city employed the same technological and organizational approaches to modernize that the city used to industrialize. To bring the adoption of technology into focus, the article discusses laboratory research as it developed after the introduction of small-scale power engines. With its machines, the industrialized city provided not only the key metaphor of the nineteenth-century life sciences but also a key technology that shifted experimental practices in animal research from a kind of preindustrial craft to a more mechanized production of knowledge. With its "factory-laboratories," the late-nineteenth-century city became the birthplace for the first living, data-producing hybird---part animal and part machine.

  6. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    Science.gov (United States)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  7. Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. FY2015

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Nakayama, Mariko; Kobayashi, Masato

    2016-07-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, 'Geoscientific Research' and 'Research and Development on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal - Hydrological - Mechanical - Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2016. The summarized data of the EBS experiment will be published periodically. A CD-ROM is attached as an appendix. (J.P.N)

  8. Ecology studies at the Idaho National Engineering Laboratory Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Arthur, W.J.; Markham, O.D.

    1978-01-01

    In September 1977 a radioecological research program was initiated at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex in the southcentral Idaho. The primary goals of the research are to: (1) determine floral and faunal composition in the area; (2) sample various ecosystem components for radionuclides; (3) determine impacts of small mammal burrowing and vegetation growth on movement of radioactive materials; (4) compare ambient radiation exposures to radiation doses received by animals inhabiting the area; and (5) understand the interrelationships between the organisms and their role in radionuclide transport

  9. Development and enhancement of grouting technologies in the Mizunami Underground Research Laboratory (Contract research)

    International Nuclear Information System (INIS)

    Nobuto, Jun; Mikake, Shinichiro

    2008-03-01

    In the Tono Geoscience Center of Japan Atomic Energy Agency (hereafter, JAEA), Mizunami Underground Research Laboratory project is being advanced to develop a scientific and technological basis for geological disposal. The concept of geological disposal is based on a multi-barrier system which combines a stable geological environment with an engineered barrier system (EBS). In order to develop a engineering basis for the construction of disposal system, the enhancement of grouting technologies among engineering technologies is needed. In this study, the comprehensive performance of suspension type grouting materials to seal rock fractures encountered in excavation works at deep underground has been checked, and the clogging phenomenon at the entrance of rock fractures has been investigated following the previous year. Research issues are as follows; Study on grouting concept to secure high-level water sealing, study on the test method to check grout clogging under high injection pressure, study on grouting material which can penetrate into finer fractures. Among these, in the study on penetrability test method, prototype test instruments were made and a series of preliminary tests were conducted. (author)

  10. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  11. Center for Alternative Fuels Research Program | College of Engineering &

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  12. New Laboratory Course for Senior-Level Chemical Engineering Students

    Science.gov (United States)

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  13. Some research advances in computer graphics that will enhance applications to engineering design

    Science.gov (United States)

    Allan, J. J., III

    1975-01-01

    Research in man/machine interactions and graphics hardware/software that will enhance applications to engineering design was described. Research aspects of executive systems, command languages, and networking used in the computer applications laboratory are mentioned. Finally, a few areas where little or no research is being done were identified.

  14. Develop virtual joint laboratory for education like distance engineering system for robotic applications

    Science.gov (United States)

    Latinovic, T. S.; Deaconu, S. I.; Latinović, M. T.; Malešević, N.; Barz, C.

    2015-06-01

    This paper work with a new system that provides distance learning and online training engineers. The purpose of this paper is to develop and provide web-based system for the handling and control of remote devices via the Internet. Remote devices are currently the industry or mobile robots [13]. For future product development machine in the factory will be included in the system. This article also discusses the current use of virtual reality tools in the fields of science and engineering education. One programming tool in particular, virtual reality modeling language (VRML) is presented in the light of its applications and capabilities in the development of computer visualization tool for education. One contribution of this paper is to present the software tools and examples that can encourage educators to develop a virtual reality model to improve teaching in their discipline. [12] This paper aims to introduce a software platform, called VALIP where users can build, share, and manipulate 3D content in cooperation with the interaction processes in a 3D context, while participating hardware and software devices can be physical and / or logical distributed and connected together via the Internet. VALIP the integration of virtual laboratories to appropriate partners; therefore, allowing access to all laboratories in any of the partners in the project. VALIP provides advanced laboratory for training and research within robotics and production engineering, and thus, provides a great laboratory facilities with only having to invest a limited amount of resources at the local level to the partner site.

  15. Laboratory-Directed Research and Development 2016 Summary Annual Report

    International Nuclear Information System (INIS)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    2017-01-01

    energy deployment, and secure and modernize critical infrastructure. INL's research, development, and demonstration capabilities, its resources, and its unique geography enable integration of scientific discovery, innovation, engineering, operations, and controls into complex large-scale testbeds for discovery, innovation, and demonstration of transformational clean energy and security concepts. These attributes strengthen INL's leadership as a demonstration laboratory. As a national resource, INL also applies its capabilities and skills to the specific needs of other federal agencies and customers through DOE's Strategic Partnership Program.

  16. Education and research in biomedical engineering of the Budapest University of Technology and Economics.

    Science.gov (United States)

    Benyó, Z

    2006-03-01

    Biomedical Engineering is a relatively new interdisciplinary science. This review paper presents the biomedical engineering activity, which is carried out at the Budapest University of Technology and Economics (BUTE) and its partner institutions. In the first parts the main goals and the curriculum of the Biomedical Engineering Education Program is presented. The second part of the paper summarizes the most important biomedical engineering researches most of them carried out in the Biomedical Engineering Laboratory of BUTE.

  17. Upgrades of Hanford Engineering Development Laboratory hot cell facilities

    International Nuclear Information System (INIS)

    Daubert, R.L.; DesChane, D.J.

    1987-01-01

    The Hanford Engineering Development Laboratory operates the 327 Postirradiation Testing Laboratory (PITL) and the 324 Shielded Materials Facility (SMF). These hot cell facilities provide diverse capabilities for the postirradiation examination and testing of irradiated reactor fuels and materials. The primary function of these facilities is to determine failure mechanisms and effects of irradiation on physical and mechanical properties of reactor components. The purpose of this paper is to review major equipment and facility upgrades that enhance customer satisfaction and broaden the engineering capabilities for more diversified programs. These facility and system upgrades are providing higher quality remote nondestructive and destructive examination services with increased productivity, operator comfort, and customer satisfaction

  18. Laboratory directed research and development annual report. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  19. Multi-modal virtual environment research at Armstrong Laboratory

    Science.gov (United States)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  20. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1982

    International Nuclear Information System (INIS)

    1983-03-01

    This report presents summaries of the research work performed during Fiscal Year 1982 by laboratories and organizations under contracts administered by the NRC's Materials Engineering Branch, Office of Nuclear Regulatory Research. The contractor reports are organized into the major areas of concern to Primary System Integrity: Vessel and Piping Fracture Mechanics; Pressure Vessel Surveillance Dosimetry; Steam Generators and Environmental Cracking; and Nondestructive Examination

  1. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  2. Empirical Research In Engineering Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Increasingly engineering design research involves the use of empirical studies that are conducted within an industrial environment [Ahmed, 2001; Court 1995; Hales 1987]. Research into the use of information by designers or understanding how engineers build up experience are examples of research...... of research issues. This paper describes case studies of empirical research carried out within industry in engineering design focusing upon information, knowledge and experience in engineering design. The paper describes the research methods employed, their suitability for the particular research aims...

  3. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  4. Laboratory Directed Research and Development Annual Report for 2010

    International Nuclear Information System (INIS)

    Hughes, Pamela J.

    2011-01-01

    This report documents progress made on all LDRD-funded projects during fiscal year 2010. The projects supported by LDRD funding all have demonstrable ties to DOE missions. In addition, many of the LDRD projects are relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff needed to serve the highest priority DOE mission objectives. The flexibility provided by the LDRD program allows us to make rapid decisions about projects that address emerging scientific challenges so that PNNL remains a modern research facility well into the 21st century. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline. Though multidisciplinary, each project in this report appears under one of the following primary research categories: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; and (6) Engineering and Manufacturing Processes.

  5. Teaching engineering design research

    DEFF Research Database (Denmark)

    Blessing, Lucienne; Andreasen, Mogens Myrup

    2005-01-01

    The importance og engineering design as an industrial activity, and the increasingly complex and dynamic context in which it takes place, has led to the wish to improve the effectiveness and efficiency of engineering design in practice as well as in education. Although attempts have been made...... to improve design for centuries, it was not until well in the second half of the 20th century that engineering design became a research topic (see pahl and Beitz (1996), Heymann (2004) for historical overviews). Engineering research, such as research into thermodynamics, mechanics and materials, has a much...... by PhD students. This has created the demand for a clear, efficient way of learning the crafmanship of doing design research, a demand which is in strong contrast to the state of design research in general. This article reflects the authors' efforts in running a summer school om engineering design...

  6. Experiential learning in control systems laboratories and engineering project management

    Science.gov (United States)

    Reck, Rebecca Marie

    Experiential learning is a process by which a student creates knowledge through the insights gained from an experience. Kolb's model of experiential learning is a cycle of four modes: (1) concrete experience, (2) reflective observation, (3) abstract conceptualization, and (4) active experimentation. His model is used in each of the three studies presented in this dissertation. Laboratories are a popular way to apply the experiential learning modes in STEM courses. Laboratory kits allow students to take home laboratory equipment to complete experiments on their own time. Although students like laboratory kits, no previous studies compared student learning outcomes on assignments using laboratory kits with existing laboratory equipment. In this study, we examined the similarities and differences between the experiences of students who used a portable laboratory kit and students who used the traditional equipment. During the 2014- 2015 academic year, we conducted a quasi-experiment to compare students' achievement of learning outcomes and their experiences in the instructional laboratory for an introductory control systems course. Half of the laboratory sections in each semester used the existing equipment, while the other sections used a new kit. We collected both quantitative data and qualitative data. We did not identify any major differences in the student experience based on the equipment they used. Course objectives, like research objectives and product requirements, help provide clarity and direction for faculty and students. Unfortunately, course and laboratory objectives are not always clearly stated. Without a clear set of objectives, it can be hard to design a learning experience and determine whether students are achieving the intended outcomes of the course or laboratory. In this study, I identified a common set of laboratory objectives, concepts, and components of a laboratory apparatus for undergraduate control systems laboratories. During the summer of

  7. Engineering research, development and technology. Thrust area report, FY93

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  8. METHODICS, SOFTWARE AND LABORATORY EQUIPMENT FOR AN INNOVATIVE ELECTRICAL ENGINEERING DISCIPLINE

    Directory of Open Access Journals (Sweden)

    V.S. Petrushin

    2016-09-01

    Full Text Available Purpose. Development of innovative electrical engineering discipline «Electric Machines in Mechatronic Systems» in order to improve the training of specialists of electrical engineering specialty. Methodology. The proposed project concerns the educational reforms that promote the intensification of the educational process. Results. The structure of interactive educational and training complex, which is a computer learning tool in the form of software and methodical support, as well as data and knowledge bases and consists of functionally related multimedia learning systems, interactive learning, automated control of the learning process. Originality. To offer online training and research facilities, guidelines for laboratory and computational and graphic works. Practical value. Increase the knowledge of students of educational material related to the discipline of innovation «Electric Machines in Mechatronic Systems».

  9. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1993

    International Nuclear Information System (INIS)

    1994-08-01

    In this annual report, the activities of research and education, the state of operation of research facilities and others in fiscal year 1993 are summarized. Four main research facilities are the fast neutron source reactor 'Yayoi', the electron linear accelerator, the basic experiment facility for nuclear fusion reactor blanket design and the heavy irradiation research facility. The reactor and the accelerator are for the joint utilization by all universities in Japan, the blanket is used by the Faculty of Engineering, and the HIT is for the joint utilization in University of Tokyo. In fiscal year 1993, the installation of the fast neutron science research facility was approved. In this annual report, the management and operation of the above research facilities are described, and the research activities, the theses for doctorate and graduation theses of teachers, are summarized. (K.I.)

  10. The deep underground science and engineering laboratory at Homestake

    Energy Technology Data Exchange (ETDEWEB)

    Lesko, Kevin T, E-mail: ktlesko@lbl.go [Department of Physics, University of California Berkeley and Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50R5239, Berkeley, CA 94720-8156 (United States)

    2009-06-01

    The US National Science Foundation and the US underground science community are well into the campaign to establish a world-class, multi-disciplinary deep underground science and engineering laboratory - DUSEL. The NSF's review committee, following the first two NSF solicitations, selected Homestake as the prime site to be developed into an international, multidisciplinary, world-class research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer of the former Homestake Gold Mine and has initiated re-entry and rehabilitation of the facility to host a modest interim science program with state funds and those from a substantial philanthropic donor. I review the scientific case for DUSEL and the progress in developing the preliminary design of DUSEL in Homestake and the initial suite of experiments to be funded along with the facility.

  11. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  12. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  13. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  14. GRS' research on clay rock in the Mont Terri underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, Klaus; Czaikowski, Oliver [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH, Braunschweig (Germany)

    2016-07-15

    For constructing a nuclear waste repository and for ensuring the safety requirements are met over very long time periods, thorough knowledge about the safety-relevant processes occurring in the coupled system of waste containers, engineered barriers, and the host rock is indispensable. For respectively targeted research work, the Mont Terri rock laboratory is a unique facility where repository research is performed in a clay rock environment. It is run by 16 international partners, and a great variety of questions are investigated. Some of the work which GRS as one of the Mont Terri partners is involved in is presented in this article. The focus is on thermal, hydraulic and mechanical behaviour of host rock and/or engineered barriers.

  15. TECHNOLOGICAL COMPETENCE OF FUTURE ENGINEER: FORMATION AND DEVELOPMENT IN COMPUTER INTEGRATED LABORATORY WORKSHOP ON PHYSICS

    Directory of Open Access Journals (Sweden)

    Ihor S. Chernetskyi

    2013-12-01

    Full Text Available The article examines the category «technological competence» and the definition of its components according to the educational process. A structural and functional model of technological competence of future engineers through forms, means, methods and technologies of computer oriented laboratory work. Selected blocks and elements of the model in the course of a typical student laboratory work on the course of general physics. We consider the possibility of using some type of digital labs «Phywe», «Fourier» and modern electronic media (flash books to optimize laboratory work at the Technical University. The analysis of the future research of structural elements model of technological competence.

  16. Idaho National Engineering Laboratory site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    Mitchell, R.G.; Peterson, D.; Hoff, D.L.

    1996-08-01

    This report presents a compilation of data collected in 1995 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering Laboratory (INEL). During 1995, the offsite surveillance program was conducted by the Environmental Science and Research Foundation. Onsite surveillance was performed by Lockheed Idaho Technologies Company (LITCO). Ground-water monitoring, both on and offsite, was performed by the US Geological Survey (USGS). This report also presents summaries of facility effluent monitoring data collected by INEL contractors. This report, prepared in accordance with the requirements in DOE Order 5400.1, is not intended to cover the numerous special environmental research programs being conducted at the INEL by the Foundation, LITCO, USGS, and others

  17. Idaho National Engineering Laboratory site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.G.; Peterson, D.; Hoff, D.L.

    1996-08-01

    This report presents a compilation of data collected in 1995 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering Laboratory (INEL). During 1995, the offsite surveillance program was conducted by the Environmental Science and Research Foundation. Onsite surveillance was performed by Lockheed Idaho Technologies Company (LITCO). Ground-water monitoring, both on and offsite, was performed by the US Geological Survey (USGS). This report also presents summaries of facility effluent monitoring data collected by INEL contractors. This report, prepared in accordance with the requirements in DOE Order 5400.1, is not intended to cover the numerous special environmental research programs being conducted at the INEL by the Foundation, LITCO, USGS, and others.

  18. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  19. An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy

    Science.gov (United States)

    Russo, D.; Fagan, R. D.; Hesjedal, T.

    2011-01-01

    The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…

  20. Laboratory-Directed Research and Development 2016 Summary Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Julie Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    , enable clean energy deployment, and secure and modernize critical infrastructure. INL’s research, development, and demonstration capabilities, its resources, and its unique geography enable integration of scientific discovery, innovation, engineering, operations, and controls into complex large-scale testbeds for discovery, innovation, and demonstration of transformational clean energy and security concepts. These attributes strengthen INL’s leadership as a demonstration laboratory. As a national resource, INL also applies its capabilities and skills to the specific needs of other federal agencies and customers through DOE’s Strategic Partnership Program.

  1. CAD, 3D modeling, engineering analysis, and prototype experimentation industrial and research applications

    CERN Document Server

    Zheng Li, Jeremy

    2015-01-01

    This succinct book focuses on computer aided design (CAD), 3-D modeling, and engineering analysis and the ways they can be applied effectively in research and industrial sectors including aerospace, defense, automotive, and consumer products. These efficient tools, deployed for R&D in the laboratory and the field, perform efficiently three-dimensional modeling of finished products, render complex geometrical product designs, facilitate structural analysis and optimal product design, produce graphic and engineering drawings, and generate production documentation. Written with an eye toward green energy installations and novel manufacturing facilities, this concise volume enables scientific researchers and engineering professionals to learn design techniques, control existing and complex issues, proficiently use CAD tools, visualize technical fundamentals, and gain analytic and technical skills. This book also: ·       Equips practitioners and researchers to handle powerful tools for engineering desi...

  2. Science | Argonne National Laboratory

    Science.gov (United States)

    Security Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Scientific Publications Researchers Postdocs Exascale Computing Institute for Molecular Engineering at Argonne Work with Us About Safety News Careers Education Community Diversity Directory Argonne National Laboratory

  3. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  4. A Low Cost Implementation of an Existing Hands-on Laboratory Experiment in Electronic Engineering

    Directory of Open Access Journals (Sweden)

    Clement Onime

    2014-10-01

    Full Text Available In engineering the pedagogical content of most formative programmes includes a significant amount of practical laboratory hands-on activity designed to deliver knowledge acquisition from actual experience alongside traditional face-to-face classroom based lectures and tutorials; this hands-on aspect is not always adequately addressed by current e-learning platforms. An innovative approach to e-learning in engineering, named computer aided engineering education (CAEE is about the use of computer aids for the enhanced, interactive delivery of educational materials in different fields of engineering through two separate but related components; one for classroom and another for practical hands-on laboratory work. The component for hands-on laboratory practical work focuses on the use of mixed reality (video-based augmented reality tools on mobile devices/platforms. This paper presents the computer aided engineering education (CAEE implementation of a laboratory experiment in micro-electronics that highlights some features such as the ability to closely implement an existing laboratory based hands-on experiment with lower associated costs and the ability to conduct the experiment off-line while maintaining existing pedagogical contents and standards.

  5. The Brazilian research and teaching center in biomedicine and aerospace biomedical engineering.

    Science.gov (United States)

    Russomano, T; Falcao, P F; Dalmarco, G; Martinelli, L; Cardoso, R; Santos, M A; Sparenberg, A

    2008-08-01

    The recent engagement of Brazil in the construction and utilization of the International Space Station has motivated several Brazilian research institutions and universities to establish study centers related to Space Sciences. The Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) is no exception. The University initiated in 1993 the first degree course training students to operate commercial aircraft in South America (the School of Aeronautical Sciences. A further step was the decision to build the first Brazilian laboratory dedicated to the conduct of experiments in ground-based microgravity simulation. Established in 1998, the Microgravity Laboratory, which was located in the Instituto de Pesquisas Cientificas e Tecnologicas (IPCT), was supported by the Schools of Medicine, Aeronautical Sciences and Electrical Engineering/Biomedical Engineering. At the end of 2006, the Microgravity Laboratory became a Center and was transferred to the School of Engineering. The principal activities of the Microgravity Centre are the development of research projects related to human physiology before, during and after ground-based microgravity simulation and parabolic flights, to aviation medicine in the 21st century and to aerospace biomedical engineering. The history of Brazilian, and why not say worldwide, space science should unquestionably go through PUCRS. As time passes, the pioneering spirit of our University in the aerospace area has become undeniable. This is due to the group of professionals, students, technicians and staff in general that have once worked or are still working in the Center of Microgravity, a group of faculty and students that excel in their undeniable technical-scientific qualifications.

  6. Reliability and Engineering of Thin-Film Photovoltaic Modules. Research forum proceedings

    Science.gov (United States)

    Ross, R. G., Jr. (Editor); Royal, E. L. (Editor)

    1985-01-01

    A Research Forum on Reliability and Engineering of Thin Film Photovoltaic Modules, under sponsorship of the Jet Propulsion Laboratory's Flat Plate Solar Array (FSA) Project and the U.S. Department of Energy, was held in Washington, D.C., on March 20, 1985. Reliability attribute investigations of amorphous silicon cells, submodules, and modules were the subjects addressed by most of the Forum presentations. Included among the reliability research investigations reported were: Arrhenius-modeled accelerated stress tests on a Si cells, electrochemical corrosion, light induced effects and their potential effects on stability and reliability measurement methods, laser scribing considerations, and determination of degradation rates and mechanisms from both laboratory and outdoor exposure tests.

  7. Laboratory directed research and development. FY 1991 program activities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle``; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  8. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  9. Cross-Cultural Communication Training for Students in Multidisciplinary Research Area of Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2014-08-01

    Full Text Available Biomedical Engineering makes multidisciplinary research area, which includes biology, medicine, engineering and others. Communication training is important for students, who have a potential to develop Biomedical Engineering. Communication is not easy in a multidisciplinary research area, because each area has its own background of thinking. Because each nation has its own background of culture, on the other hand, international communication is not easy, either. A cross-cultural student program has been designed for communication training in the multidisciplinary research area. Students from a variety of backgrounds of research area and culture have joined in the program: mechanical engineering, material science, environmental engineering, science of nursing, dentist, pharmacy, electronics, and so on. The program works well for communication training in the multidisciplinary research area of biomedical engineering. Foreign language and digital data give students chance to study several things: how to make communication precisely, how to quote previous data. The experience in the program helps students not only understand new idea in the laboratory visit, but also make a presentation in the international research conference. The program relates to author's several experiences: the student internship abroad, the cross-cultural student camp, multi PhD theses, various affiliations, and the creation of the interdisciplinary department.

  10. The DOE/NOAA meteorological program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    George, D.H.

    1996-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has recently upgraded the U.S. Department of Energy's (DOE's) Idaho National Engineering Laboratory (INEL) Meteorological Measuring Network. This has allowed the entire service system to be modernized

  11. Putting Reusability First: A Paradigm Switch in Remote Laboratories Engineering

    Directory of Open Access Journals (Sweden)

    Romain Vérot

    2009-02-01

    Full Text Available In this paper, we present a new devices brought online thanks to our Collaborative Remote Laboratories framework. Whereas previous devices integrated in our remote laboratory belongs to the domain of electronics, such as Vector Network Analyzers, the devices at the concern in this paper are, on one hand, an antenna workbench, and on the other, an homemade switching device, which embeds several electronic components. Because the middleware and framework for our environment were designed to be reusable, we wanted to put it to the test by integrating new and different devices in our Online Engineering catalog. After presenting the devices to be put online, we will expose the software development efforts required in regards to the reusability of the solution. As a consequence, the expose work and results tend to make the Online Engineering software architects to think reusability first, breaking with the current trends to implement Remote Labs one after the other, without much reusability, apart the capitalized experience. In this, we defend a paradigm switch in our current engineering approaches for Remote Laboratories implementations: Reusability should be thought first.

  12. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  13. Air Force Research Laboratory Sensors Directorate Leadership Legacy, 1960-2011

    Science.gov (United States)

    2011-03-01

    Area, Tinker AFB, Okla- homa . The mission of this 200 engineer organization was providing engineering sup- port to the current operational fleet...advanced development of ESM, ELINT, IR warning receiver technology. 1980-1984 Avionics Directorate, Air Force Wright Laboratory, WPAFB, OH - Chief...Wright Laboratory, WPAFB, OH - Deputy Chief of Electronic Warfare Division. Major technology areas included RF/ IR /EO/ COM countermeasures, stealth

  14. Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. FY2014

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Nakayama, Mariko; Kobayashi, Masato

    2015-09-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, “Geoscientific Research” and “Research and Development on Geological Disposal Technologies”, and proceeds in three overlapping phases, “Phase I: Surface-based investigations”, “Phase II: Investigations during tunnel excavation” and “Phase III: Investigations in the underground facilities”, over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal – Hydrological – Mechanical – Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2015. The summarized data of the EBS experiment will be published periodically. A CD-ROM is attached as an appendix. (J.P.N)

  15. Idaho National Engineering Laboratory irradiation facilities and their applications

    International Nuclear Information System (INIS)

    Gupta, V.P.; Herring, J.S.; Korenke, R.E.; Harker, Y.D.

    1986-05-01

    Although there is a growing need for neutron and gamma irradiation by governmental and industrial organizations in the United States and in other countries, the number of facilities providing such irradiations are limited. At the Idaho National Engineering Laboratory, there are several unique irradiation facilities producing high neutron and gamma radiation environments. These facilities could be readily used for nuclear research, materials testing, radiation hardening studies on electronic components/circuitry and sensors, and production of neutron transmutation doped (NTD) silicon and special radioisotopes. In addition, a neutron radiography unit, suitable for examining irradiated materials and assemblies, is also available. This report provides a description of the irradiation facilities and the neutron radiography unit as well as examples of their unique applications

  16. In summary: Idaho National Engineering Laboratory site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    Roush, D.; Mitchell, R.G.; Peterson, D.

    1996-08-01

    Every human is exposed to natural radiation. This exposure comes from many sources, including cosmic radiation from outer space, naturally-occurring radon, and radioactivity from substances in our bodies. In addition to natural sources of radiation, humans can also be exposed to man-made sources of radiation. Examples of man-made sources include nuclear medicine, X-rays, nuclear weapons testing, and accidents at nuclear power plants. The Idaho National Engineering Laboratory (INEL) is a U.S. Department of Energy (DOE) research facility that deals, in part, with studying nuclear reactors and storing radioactive materials. Careful handling and rigorous procedures do not completely eliminate the risk of releasing radioactivity. So, there is a remote possibility for a member of the public near the INEL to be exposed to radioactivity from the INEL. Extensive monitoring of the environment takes place on and around the INEL. These programs search for radionuclides and other contaminants. The results of these programs are presented each year in a site environmental report. This document summarizes the Idaho National Engineering Laboratory Site Environmental Report for Calendar Year 1995

  17. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  18. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  19. Women's Experiences in the Engineering Laboratory in Japan

    Science.gov (United States)

    Hosaka, Masako

    2014-01-01

    This qualitative study aims to examine Japanese women undergraduate engineering students' experiences of interacting with departmental peers of the same year in the laboratory setting by using interview data of 32 final-year students at two modestly selective national universities in Japan. Expectation state theory that explains unequal…

  20. Statistical Engineering in Air Traffic Management Research

    Science.gov (United States)

    Wilson, Sara R.

    2015-01-01

    NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.

  1. Adsorption of Oxy-Anions in the Teaching Laboratory: An Experiment to Study a Fundamental Environmental Engineering Problem

    Science.gov (United States)

    D'Arcy, Mitch; Bullough, Florence; Moffat, Chris; Borgomeo, Edoardo; Teh, Micheal; Vilar, Ramon; Weiss, Dominik J.

    2014-01-01

    Synthesizing and testing bicomposite adsorbents for the removal of environmentally problematic oxy-anions is high on the agenda of research-led universities. Here we present a laboratory module successfully developed at Imperial College London that introduces the advanced undergraduate student in engineering (chemical, civil, earth) and science…

  2. Engineering research, development and technology: Thrust area report FY 91

    International Nuclear Information System (INIS)

    1991-01-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence, Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) conduct high quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. The thrust area leader is also responsible for carrying out the work that follows from the Engineering Research, Development, and Technology Program so that the results can be applied as early as possible to the needs of LLNL programs. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year, 1991. Its intent is to provide timely summaries of objectives, theories, methods, and results

  3. Case Studies in Sustainability Used in an Introductory Laboratory Course to Enhance Laboratory Instruction

    Science.gov (United States)

    Luster-Teasley, Stephanie; Hargrove-Leak, Sirena; Gibson, Willietta; Leak, Roland

    2017-01-01

    This educational research seeks to develop novel laboratory modules by using Case Studies in the Science Teaching method to introduce sustainability and environmental engineering laboratory concepts to 21st century learners. The increased interest in "going green" has led to a surge in the number of engineering students studying…

  4. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  5. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  6. Laboratory directed research and development annual report 2004

    International Nuclear Information System (INIS)

    Not Available

    2005-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives

  7. The research on teaching reformation of photoelectric information science and engineering specialty experiments

    Science.gov (United States)

    Zhu, Zheng; Yang, Fan; Zhang, Yang; Geng, Tao; Li, Yuxiang

    2017-08-01

    This paper introduced the idea of teaching reformation of photoelectric information science and engineering specialty experiments. The teaching reformation of specialty experiments was analyzed from many aspects, such as construction of specialized laboratory, experimental methods, experiment content, experiment assessing mechanism, and so on. The teaching of specialty experiments was composed of four levels experiments: basic experiments, comprehensive and designing experiments, innovative research experiments and engineering experiments which are aiming at enterprise production. Scientific research achievements and advanced technology on photoelectric technology were brought into the teaching of specialty experiments, which will develop the students' scientific research ability and make them to be the talent suitable for photoelectric industry.

  8. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  9. Learning by Brewing: Beer Production Experiments in the Chemical Engineering Laboratory

    Science.gov (United States)

    Cerretani, Colin; Kelkile, Esayas; Landry, Alexandra

    2017-01-01

    We discuss the successful creation and implementation of a biotechnology track within the chemical engineering unit operations course. The track focuses on engineering principles relevant to brewing. Following laboratory modules investigating heat transfer processes and yeast fermentation kinetics, student groups design and implement a project to…

  10. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  11. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.

    1986-10-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. Under the sponsorship of the US Nuclear Regulatory Commission (NRC), the NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR and TRAC-PWR, with well-developed computer color graphics programs and large repositories of reactor design and experimental data. An important feature of the NPA is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual Control Data Corporation Cyber 176 mainframe computers at the Idaho National Engineering Laboratory and Cray-1S computers at the Los Alamos National Laboratory (LANL) and Kirtland Air Force Weapons Laboratory (KAFWL)

  12. General Motors and the University of Michigan smart materials and structures collaborative research laboratory

    Science.gov (United States)

    Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.

    2007-04-01

    The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.

  13. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program

  14. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  15. Horonobe Underground Research Laboratory Project. Plans for surface-based investigations. Phase 1

    International Nuclear Information System (INIS)

    Goto, Junichi; Hama, Katsuhiro

    2003-10-01

    The Horonobe Underground Research Laboratory Project is an investigation project which is planned over 20 years. The investigations are conducted in the three phases: investigations from surface (Phase 1), investigations during construction of the underground facility (Phase 2) and investigations using the facility (Phase 3). Taking into account the results from 'H12: Project of Establish the Scientific and Technical Basis for HLW Disposal in Japan - Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan-' (JNC, 2000), research and development goals for the Horonobe URL project were re-defined as follows; a) Development of investigation technologies for the geological environment, b) Development of monitoring technologies for the geological environment, c) Study on the long-term stability of the geological environment, d) Development of the basis for engineering technologies in deep underground, e) Verification of technologies for engineered barriers, f) Development of detailed designing technologies of the repositories, and g) Improvement of safety assessment methodologies. Investigations for the goals a) to d) and e) to g) are conducted in the 'Geoscientific Research' and 'Research and Development on Geological Disposal', respectively. In Phase 1, a 'laboratory construction area' of a few kilometers square is selected based on the results from early stage investigations. Subsequent investigations are concentrated in the selected area and its periphery. Acquisition of data by surface-based investigations, modeling of the geological environment and predictions of changes in the geological environment caused by the construction of the underground facility, are conducted in a) Development of investigation technologies for the geological environment. Development and installation of monitoring equipments and data acquisition prior to the construction of the underground facility fall under b) Development of monitoring technologies

  16. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  17. Global Journal of Engineering Research

    African Journals Online (AJOL)

    The Global Journal of Engineering Research is aimed at promoting research in all areas of Engineering Research including Mechanical, Civil, Electrical, Chemical, Electronics, Geological etc. Visit the Global Journal Series website here: http://www.globaljournalseries.com/ ...

  18. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  19. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  20. Laboratory Directed Research and Development FY2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader national needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.

  1. Framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available In this paper a framework is proposed to perform systems engineering research within South Africa. It is proposed that within the reference of the National Research Foundation (NRF) classification of research, systems engineering is a Field...

  2. Research | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering & Applied Science. Please explore this webpage to learn about research activities and Associate Dean for Research College of Engineering and Applied Sciences Director, Center for Sustainable magazine. College ofEngineering & Applied Science Academics About People Students Research Business

  3. Laboratory for Large Data Research

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Laboratory for Large Data Research (LDR) addresses a critical need to rapidly prototype shared, unified access to large amounts of data across both the...

  4. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  5. Sandia National Laboratories: Research

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD and decision-making. Materials science Leading the nation in the knowledge of materials engineering success is our foundational scientific research, which provides us with knowledge and capabilities that

  6. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1993 and research proposal for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Birnbaum, H.K.

    1993-03-01

    The materials research laboratory program is about 30% of total Materials Science and Engineering effort on the Univ. of Illinois campus. Coordinated efforts are being carried out in areas of structural ceramics, grain boundaries, field responsive polymeric and organic materials, molecular structure of solid-liquid interfaces and its relation to corrosion, and x-ray scattering science.

  7. Optical Beam Deflection Based AFM with Integrated Hardware and Software Platform for an Undergraduate Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Siu Hong Loh

    2017-02-01

    Full Text Available Atomic force microscopy (AFM has been used extensively in nanoscience research since its invention. Recently, many teaching laboratories in colleges, undergraduate institutions, and even high schools incorporate AFM as an effective teaching tool for nanoscience education. This paper presents an optical beam deflection (OBD based atomic force microscope, designed specifically for the undergraduate engineering laboratory as a teaching instrument. An electronic module for signal conditioning was built with components that are commonly available in an undergraduate electronic laboratory. In addition to off-the-shelf mechanical parts and optics, the design of custom-built mechanical parts waskept as simple as possible. Hence, the overall cost for the setup is greatly reduced. The AFM controller was developed using National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS, an integrated hardware and software platform which can be programmed in LabVIEW. A simple yet effective control algorithm for scanning and feedback control was developed. Despite the use of an educational platform and low-cost components from the undergraduate laboratory, the developed AFM is capable of performing imaging in constant-force mode with submicron resolution and at reasonable scanning speed (approximately 18 min per image. Therefore, the AFM is suitable to be used as an educational tool for nanoscience. Moreover, the construction of the system can be a valuable educational experience for electronic and mechanical engineering students.

  8. The Deep Underground Science and Engineering Laboratory at Homestake

    Energy Technology Data Exchange (ETDEWEB)

    Lesko, Kevin T [Department of Physics, University of California Berkeley and the Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS50R5239, Berkeley, CA 94720-8146 (United States)], E-mail: KTLesko@lbl.gov

    2008-11-01

    The National Science Foundation and the international underground science community are well into establishing a world-class, multidisciplinary Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in Lead South Dakota. The NSF's review committee, following the first two NSF solicitations, selected the Homestake Proposal and site as the prime location to be developed into an international research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at several different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer from the Homestake Mining Corp. The State, through its Science and Technology Authority with state funds and those of a philanthropic donor has initiated rehabilitation of the surface and underground infrastructure including the Ross and Yates hoists accessing the 4850 Level (feet below ground, 4100 to 4200 mwe). The scientific case for DUSEL and the progress in establishing the preliminary design of the facility and the associated suite of experiments to be funded along with the facility by the NSF are presented.

  9. Idaho National Engineering Laboratory decontamination and decommissioning summary

    International Nuclear Information System (INIS)

    Chapin, J.A.

    1981-01-01

    Topics covered concern the decontamination and decommissioning (D and D) work performed at the Idaho National Engineering Laboratory (INEL) during FY 1979 and include both operations and development projects. Briefly presented are the different types of D and D projects planned and the D and D projects completed. The problems encountered on these projects and the development program recommended are discussed

  10. Pedagogical Training and Research in Engineering Education

    Science.gov (United States)

    Wankat, Phillip C.

    2008-01-01

    Ferment in engineering has focused increased attention on undergraduate engineering education, and has clarified the need for rigorous research in engineering education. This need has spawned the new research field of Engineering Education and greatly increased interest in earning Ph.D. degrees based on rigorous engineering education research.…

  11. Laboratory Directed Research and Development FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  12. Laboratory Directed Research and Development FY 1992

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-01-01

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation's only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible

  13. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  14. National research council report and its impact on nuclear engineering education at the University of Michigan

    International Nuclear Information System (INIS)

    Martin, W.R.

    1991-01-01

    A recent report by the National Research Council raised a number of important issues that will have an impact on nuclear engineering departments across the country. The report has been reviewed in the context of its relevance to the Department of Nuclear Engineering at the University of Michigan (UM), and some observations and conclusions have been drawn. This paper focuses on those portions of Ref. 1 concerning undergraduate and graduate curricula, research facilities and laboratories, faculty research interests, and funding for research and graduate student support because these topics have a direct impact on current and future directions for the department

  15. Aespoe hard rock laboratory. Current research projects 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a `dress rehearsal` for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book `Aespoe Hard Rock Laboratory - 10 years of Research` published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  16. Aespoe hard rock laboratory. Current research projects 1998

    International Nuclear Information System (INIS)

    1998-01-01

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a 'dress rehearsal' for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book 'Aespoe Hard Rock Laboratory - 10 years of Research' published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  17. Development of Servo Motor Trainer for Basic Control System in Laboratory of Electrical Engineering Control System Faculty of Engineering Universitas Negeri Surabaya

    Science.gov (United States)

    Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi

    2018-04-01

    In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.

  18. Study on an equivalent continuum model at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tanno, Takeo; Sato, Toshinori; Matsui, Hiroya; Sanada, Hiroyuki; Kumasaka, Hiroo; Tada, Hiroyuki

    2012-01-01

    The Japan Atomic Energy Agency (JAEA) is conducting the MIzunami Underground research laboratory (MIU) Project in order to develop comprehensive geological investigation and engineering techniques for deep underground applications (e.g. geological disposal of HLW). This modelling study has a two-fold objective, to contribute to the evaluation of the mechanical stability of shaft and research drifts, and to plan the future studies. A crack tensor model, a method of an equivalent continuum model, has been studied at the MIU. In this study, the relationship between the estimated crack tensor parameters and the rock mass classification was revealed. (author)

  19. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  20. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  1. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  2. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    Science.gov (United States)

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  3. Engineering Research and Development and Technology thrust area report FY92

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R.T.; Minichino, C. [eds.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  4. Engineering Research and Development and Technology thrust area report FY92

    International Nuclear Information System (INIS)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering

  5. Rutherford Appleton Laboratory 1983

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, R T; Wroath, P D [eds.

    1984-01-01

    Efforts are summarized in the areas of: cosmic research; solar and interplanetary research; space plasma science; atmospheric research; distributed computing systems; industrial robotics; software engineering; advanced computer networking (Project UNIVERSE); computing applications in engineering; pattern analysis; electron beam lithography; radio research; applied superconductivity; particle physics; neutron beam research; laser research; and computing facilities and operations. Laboratory resources are summarized, and publications and reports resulting from the work reported for the year are listed, as well as lectures and meetings. (LEW)

  6. Idaho National Engineering Laboratory site development plan

    International Nuclear Information System (INIS)

    1994-09-01

    This plan briefly describes the 20-year outlook for the Idaho National Engineering Laboratory (INEL). Missions, workloads, worker populations, facilities, land, and other resources necessary to fulfill the 20-year site development vision for the INEL are addressed. In addition, the plan examines factors that could enhance or deter new or expanded missions at the INEL. And finally, the plan discusses specific site development issues facing the INEL, possible solutions, resources required to resolve these issues, and the anticipated impacts if these issues remain unresolved

  7. Remote Laboratory NetLab for Effective Teaching of 1st Year Engineering Students

    Directory of Open Access Journals (Sweden)

    Z. Nedic

    2007-08-01

    Full Text Available Practical skills are important attributes of every engineering graduate. The Internet has provided tertiary education with the opportunity to develop innovative learning environments. The teaching and learning of practical skills has gained a new dimension with the emergence of remote laboratories. The rapidly growing number of remote laboratories (RL worldwide is the evidence that the educational community has recognized their potential to develop into a creative, flexible, engaging, and student-cantered learning environment. Even a brief review of the existing RLs shows a large diversity in their structure, design and implementation. However, not many researchers disclose how their RLs are integrated within their curricula. Therefore, an important question still remains to be answered: how to optimize the design of RLs and their integration in a course curriculum for the best learning outcomes? This problem is particularly important when RLs are used in teaching 1st year students who have limited technical knowledge and practical experience in using real equipment. In this paper we would like to share our experiences with NetLab, an RL developed at the University of South Australia (UniSA for teaching 1st year engineering students and make recommendations for improvements in teaching practices based on it.

  8. Idaho National Engineering Laboratory installation roadmap assumptions document

    International Nuclear Information System (INIS)

    1993-05-01

    This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL

  9. Feminist Methodologies and Engineering Education Research

    Science.gov (United States)

    Beddoes, Kacey

    2013-01-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory.…

  10. NAS Human Factors Safety Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts an integrated program of research on the relationship of factors concerning individuals, work groups, and organizations as employees perform...

  11. Researchers, other experts examine climate engineering issues

    International Nuclear Information System (INIS)

    Baum, R.

    1994-01-01

    The feasibility of deliberately engineering Earth's climate--and the social, economic, political, and ethical issues raised by such projects--were explored by two panels at the annual meeting of the American Association for the Advancement of Science (AAAS), held in late February in San Francisco. These projects include dispersal of sulfate particles in the stratosphere to reflect sunlight, fertilizing the southern oceans with iron to stimulate phytoplankton growth, and injecting ethane or propane into the stratosphere over Antarctica to counteract ozone-depleting chemical reactions. The feasibility of such projects was the focus of the first panel. Joyce E. Penner, of Lawrence Livermore National Laboratory, describes studies of natural and anthropogenic sulfate aerosols that suggest that these chemical species reduce the solar flux reaching the Earth's surface. The research indicates it might be possible to counteract greenhouse warming, at least in part, by injecting sulfate aerosols into the stratosphere. Should such an approach be used to counteract greenhouse warming? Should any climate engineering project be considered? These sorts of questions were the focus of the second panel

  12. Educational digital resource for data analysis of Civil Engineering laboratory tests

    OpenAIRE

    Gustavo Henrique Nalon; Paulo Sergio de Almeida Barbosa; Walcyr Duarte Nascimento

    2018-01-01

    This work aims to implement and evaluate an interactive educational software that helps Civil Engineering students to perform and analyze the calculations related to different Soil Mechanics laboratory tests. This experience consists of an attempt to incorporate information and communication technologies (ICTs) into the engineering teaching-learning process. The content of the program is distributed into three different modules: “Compaction test”, “Consolidation test”, and “Direct shear test”...

  13. Educational laboratory experiments on chemistry in a nuclear engineering school

    International Nuclear Information System (INIS)

    Akatsu, E.

    1982-01-01

    An educational laboratory experiment on radiochemistry was investigated by students in the general course of the Nuclear Engineering School of Japan Atomic Energy Research Institute. Most of them are not chemical engineers, but electrical and mechanical engineers. Therefore, the educational experiment was designed for them by introducing a ''word experiment'' in the initial stage and by reducing the chemical procedure as far as possible. It began with calculations on a simple solvent extraction process-the ''word experiment''--followed by the chemical separation of 144 Pr from 144 Ce with tri-n-butyl phosphate in a nitric acid system and then measurement of the radioactive decay and growth of the separated 144 Pr and 144 Ce, respectively. The chemical procedure was explained by the phenomenon but not by the mechanism of chelation. Most students thought the experiment was an exercise in solvent extraction or radiochemical separation rather than a radioactive equilibrium experiment. However, a pure chemist considered it as a sort of physical experiment, where the chemical procedure was used only for preparation of measuring samples. Another experiment, where 137 Cs was measured after isolation with ammonium phosphomolybdate, was also investigated. The experiment eliminated the need for students who were not chemists to know how to use radioactive tracers. These students appreciated the realization that they could understand the radioactivity in the environmental samples in a chemical frame of reference even though they were not chemists

  14. What's Happening in the Software Engineering Laboratory?

    Science.gov (United States)

    Pajerski, Rose; Green, Scott; Smith, Donald

    1995-01-01

    Since 1976 the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization the Flight Dynamics Division (FDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. This paper presents an overview of recent activities and studies in SEL, using as a framework the SEL's organizational goals and experience based software improvement approach. It focuses on two SEL experience areas : (1) the evolution of the measurement program and (2) an analysis of three generations of Cleanroom experiments.

  15. Annual Report FY2011: Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2011-12-21

    This project is aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an open laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) thermochemical methods for the deconstruction of lignin. Highlights from these activities include a detailed study of bio-oil production from the fast pyrolysis of microalgae (Scenedesmus sp.) and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  16. A wonderful laboratory and a great researcher

    Science.gov (United States)

    Sheikh, N. M.

    2004-05-01

    It was great to be associated with Prof. Dr. Karl Rawer. He devoted his life to make use of the wonderful laboratory of Nature, the Ionosphere. Through acquisition of the experimental data from AEROS satellites and embedding it with data from ground stations, it was possible to achieve a better empirical model, the International Reference Ionosphere. Prof. Dr. Karl Rawer has been as dynamic as the Ionosphere. His vision about the ionospheric data is exceptional and has helped the scientific and engineering community to make use of his vision in advancing the dimensions of empirical modelling. As a human being, Prof. Dr. Karl Rawer has all the traits of an angel from Heaven. In short he developed a large team of researchers forming a blooming tree from the parent node. Ionosphere still plays an important role in over the horizon HF Radar and GPs satellite data reduction.

  17. Educational digital resource for data analysis of Civil Engineering laboratory tests

    Directory of Open Access Journals (Sweden)

    Gustavo Henrique Nalon

    2018-02-01

    Full Text Available This work aims to implement and evaluate an interactive educational software that helps Civil Engineering students to perform and analyze the calculations related to different Soil Mechanics laboratory tests. This experience consists of an attempt to incorporate information and communication technologies (ICTs into the engineering teaching-learning process. The content of the program is distributed into three different modules: “Compaction test”, “Consolidation test”, and “Direct shear test”. Using vector graphics, tables, illustrative figures, animations, equations, tip buttons, and immediate correction of mistakes, the software clarifies the relationship between theoretical concepts and practical laboratory results, instructs the students in the moments of doubt, attracts their interest, and motivates them to achieve the complete data interpretation. Based on the results of an applied evaluation questionnaire, it was observed that most of the students were satisfied with the contents and functionalities of the program. The developed tool can be an inspiration for the creation of new educational software that improve the quality of education in different engineering areas.

  18. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  19. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  20. Mechanical Engineering Department technical review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E (eds.)

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  1. A framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available This presentation discusses a framework which is proposed to perform systems engineering research within South Africa and the necessity for hybrid research methods in systems engineering....

  2. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  3. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  4. The planning of future research program of underground laboratories in overseas

    International Nuclear Information System (INIS)

    Honma, Nobuyuki; Tanai, Kenji; Hasegawa, Hiroshi

    2002-02-01

    The objectives of this study is to identify the research issues, which are to be conducted in the future underground research laboratory, about operation and logistics systems for the planning of future research and development program. The research programs and experiments, etc. were investigated for the geological disposal projects in overseas sedimentary rocks and coastal geological environments aiming to reflect in the future underground research facility plan in Japan. In the investigation, information on the engineered-barrier performance, design and construction of underground facilities, tunnel support, transportation and emplacement, and backfilling technology, etc. were collected. Based on these informations, the purpose, the content, and the result of each investigations and tests were arranged. The strategy and the aim in the entire underground research facility, and the flow of investigations and tests, etc. were also arranged from the purpose, the relations and the sequence of each investigation and experiment, and the usage of results, etc. (author)

  5. The Australian Institute of Nuclear Science and Engineering - a model for university-national laboratory collaboration

    International Nuclear Information System (INIS)

    Gammon, R.B.

    1994-01-01

    This paper describes the aims and activities of the Australian Institute of Nuclear Science and Engineering (AINSE), from its foundation in 1958 through to 1993. The philosophy, structure and funding of the Institute are briefly reviewed, followed by an account of the development of national research facilities at the Lucas Heights Research Laboratories, with particular emphasis on nuclear techniques of analyses using neutron scattering instruments and particle accelerators. AINSE's program of Grants, fellowships and studentships are explained with many examples given of projects having significance in the context of Australia's national goals. Conference and training programs are also included. The achievements during these years demonstrate that AINSE has been an efficient and cost-effective model for collaboration between universities and a major national laboratory. In recent years, industry, government organisations and the tertiary education system have undergone major re-structuring and rationalization. A new operational structure for AINSE has evolved in response to these changes and is described

  6. Enhancements to the Idaho National Engineering Laboratory motor-operated valve assessment software

    International Nuclear Information System (INIS)

    Holbrook, M.R.; Watkins, J.C.

    1994-01-01

    In January 1991, the U.S. Nuclear Regulatory Commission (USNRC) commenced Part 1 inspections to review licensee's motor-operated valve (MOV) programs that were developed to address Generic Letter 89-10, open-quotes Safety-Related Motor-Operated Valve Testing and Surveillanceclose quotes. In support, of this effort, the Isolation Valve Assessment (IVA) software, Version 3.10, was developed by the Idaho National Engineering Laboratory (INEL) to enable rapid in-depth review of MOV sizing and torque switch setting calculations. In 1994, the USNRC commenced Part 2 inspections, which involve a more in-depth review of MOV in situ testing relative to design-basis assumptions. The purpose of this paper is to describe the latest INEL and industry research that has been incorporated into Version 4.00 of the IVA software to support the latest round of inspections. Major improvements include (a) using dynamic and static test results to determine MOV performance parameters and validate design-basis engineering assumptions, (b) determining the stem/stem-nut coefficient of friction using new research-based techniques, (c) adding the ability to evaluate globe valves, and (d) incorporating new methods to account for the effects of high ambient temperature on the output torque of alternating current (ac) motors

  7. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    Science.gov (United States)

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  8. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    International Nuclear Information System (INIS)

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-01-01

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL)

  9. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  10. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, J.D.; Briggs, J.B.; Garcia, A.S.

    2011-01-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  11. Fuel Combustion and Engine Performance | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion and Engine Performance Fuel Combustion and Engine Performance Photo of a gasoline emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and combustion and engine research activities include: Developing experimental and simulation research platforms

  12. Laboratory Characterization of Gray Masonry Concrete

    National Research Council Canada - National Science Library

    Williams, Erin M; Akers, Stephen A; Reed, Paul A

    2007-01-01

    Personnel of the Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, conducted a laboratory investigation to characterize the strength and constitutive property behavior of a gray masonry concrete...

  13. Stabilization of mixed waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Gillins, R.L.; Larsen, M.M.

    1989-01-01

    EG and G Idaho, Inc. has initiated a program to develop safe, efficient, cost-effective treatment methods for the stabilization of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory. Laboratory-scale testing has shown that extraction procedure toxic wastes can be successfully stabilized by solidification, using various binders to produce nontoxic, stable waste forms for safe, long-term disposal as either landfill waste or low-level radioactive waste, depending upon the radioactivity content. This paper presents the results of drum-scale solidification testing conducted on hazardous, low-level incinerator flyash generated at the Waste Experimental Reduction Facility. The drum-scale test program was conducted to verify that laboratory-scale results could be successfully adapted into a production operation

  14. Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory's 10 waste area groups. Contaminated sites at the laboratory's Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram

  15. A Three-Year Feedback Study of a Remote Laboratory Used in Control Engineering Studies

    Science.gov (United States)

    Chevalier, Amélie; Copot, Cosmin; Ionescu, Clara; De Keyser, Robin

    2017-01-01

    This paper discusses the results of a feedback study for a remote laboratory used in the education of control engineering students. The goal is to show the effectiveness of the remote laboratory on examination results. To provide an overview, the two applications of the remote laboratory are addressed: 1) the Stewart platform, and 2) the quadruple…

  16. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  17. Evaluation of Research in Engineering Science in Norway

    DEFF Research Database (Denmark)

    Van Brussel, Hendrik Van Brussel; Lindberg, Bengt; Cederwall, Klas

    This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway .......This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway ....

  18. The Swedish Research Councils' Laboratory progress report for 1975

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    The Swedish Research Councils' Laboratory herewith presents its progress report for 1975. The report summarizes the current projects carried out by the research groups working at the laboratory. The very efficient assistance of the staff of the laboratory is greatfully acknowledged. The laboratory has been financially supported by the Atomic Research Council, the Medical Research Council, the Natural Science Research Council, and the Board of Technical Development. Valuable support in various ways has also been given by the Atomic Energy Company (AB Atomenergi). (author)

  19. Collected software engineering papers, volume 2

    Science.gov (United States)

    1983-01-01

    Topics addressed include: summaries of the software engineering laboratory (SEL) organization, operation, and research activities; results of specific research projects in the areas of resource models and software measures; and strategies for data collection for software engineering research.

  20. Integration of NASA Research into Undergraduate Education in Math, Science, Engineering and Technology at North Carolina A&T State University

    Science.gov (United States)

    Monroe, Joseph; Kelkar, Ajit

    2003-01-01

    The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.

  1. Geophysical surveys for buried waste detection at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Sandness, G.A.; Rising, J.L.; Kimbrough, J.R.

    1979-12-01

    This report describes a series of geophysical surveys performed at the Idaho National Engineering Laboratory (INEL). The main purpose of the surveys was to evaluate techniques, principally ground-penetrating radar, for detecting and mapping radioactive wastes buried in shallow trenches and pits. A second purpose was to determine the feasibility of using ground-penetrating radar to measure the depth of basalt bedrock. A prototype geophyscal survey system developed by the US Department of Energy's Pacific Northwest Laboratory was used for this study. Radar, magnetometer, and metal detector measurements were made at three sites in the Radioactive Waste Management Complex (RWMC) at INEL. Radar measurements were made at fourth site adjacent to the RWMC. The combination of three geophysical methods was shown to provide considerable information about the distribution of buried waste materials. The tests confirmed the potential effectiveness of the radar method, but they also pointed out the need for continued research and development in ground-penetrating radar technology. The radar system tested in this study appears to be capable of measuring the depth to basalt in the vicinity of the RWMC

  2. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  3. Systems Safety and Engineering Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Systems Safety and Engineering Division conducts engineering, research, and analysis to improve transportation safety, capacity, and resiliency. We provide...

  4. Human subject research for engineers a practical guide

    CERN Document Server

    de Winter, Joost C F

    2017-01-01

    This Brief introduces engineers to the main principles in ethics, research design, statistics, and publishing of human subject research. In recent years, engineering has become strongly connected to disciplines such as biology, medicine, and psychology. Often, engineers (and engineering students) are expected to perform human subject research. Typical human subject research topics conducted by engineers include human-computer interaction (e.g., evaluating the usability of software), exoskeletons, virtual reality, teleoperation, modelling of human behaviour and decision making (often within the framework of ‘big data’ research), product evaluation, biometrics, behavioural tracking (e.g., of work and travel patterns, or mobile phone use), transport and planning (e.g., an analysis of flows or safety issues), etc. Thus, it can be said that knowledge on how to do human subject research is indispensable for a substantial portion of engineers. Engineers are generally well trained in calculus and mechanics, but m...

  5. AECL's underground research laboratory: technical achievements and lessons learned

    International Nuclear Information System (INIS)

    Ohta, M.M.; Chandler, N.A.

    1997-03-01

    During the development of the research program for the Canadian Nuclear Fuel Waste Management Program in the 1970's, the need for an underground facility was recognized. AECL constructed an Underground Research Laboratory (URL) for large-scale testing and in situ engineering and performance-assessment-related experiments on key aspects of deep geological disposal in a representative geological environment. Ale URL is a unique geotechnical research and development facility because it was constructed in a previously undisturbed portion of a granitic pluton that was well characterized before construction began, and because most of the shaft and experimental areas are below the water table. The specific areas of research, development and demonstration include surface and underground characterization; groundwater and solute transport; in situ rock stress conditions; temperature and time-dependent deformation and failure characteristics of rock; excavation techniques to minimize damage to surrounding rock and to ensure safe working conditions; and the performance of seals and backfills. This report traces the evolution of the URL and summarizes the technical achievements and lessons learned during its siting, design and construction, and operating phases over the last 18 years. (author)

  6. FY2012 Engineering Research & Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  7. Physics Research at the Naval Research Laboratory

    Science.gov (United States)

    Coffey, Timothy

    2001-03-01

    The United States Naval Research Laboratory conducts a broad program of research into the physical properties of matter. Studies range from low temperature physics, such as that associated with superconducting systems to high temperature systems such as laser produced or astrophysical plasmas. Substantial studies are underway on surface science and nanoscience. Studies are underway on the electronic and optical properties of materials. Studies of the physical properties of the ocean and the earth’s atmosphere are of considerable importance. Studies of the earth’s sun particularly as it effects the earth’s ionosphere and magnetosphere are underway. The entire program involves a balance of laboratory experiments, field experiments and supporting theoretical and computational studies. This talk will address NRL’s funding of physics, its employment of physicists and will illustrate the nature of NRL’s physics program with several examples of recent accomplishments.

  8. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  9. A Research-Based Laboratory Course Designed to Strengthen the Research-Teaching Nexus

    Science.gov (United States)

    Parra, Karlett J.; Osgood, Marcy P.; Pappas, Donald L., Jr.

    2010-01-01

    We describe a 10-week laboratory course of guided research experiments thematically linked by topic, which had an ultimate goal of strengthening the undergraduate research-teaching nexus. This undergraduate laboratory course is a direct extension of faculty research interests. From DNA isolation, characterization, and mutagenesis, to protein…

  10. The International Cooperation on Remote Laboratories in the Framework of Engineering Didactics

    Directory of Open Access Journals (Sweden)

    Raivo Sell

    2015-02-01

    Full Text Available In the present paper the interactive demonstration of remote laboratories conducted with engineering didactics for creating real conditions for teaching and learning engineering has been presented. The article is focusing on international cooperation, offering the wide range of tools and methodology for effective and interactive teaching of embedded systems and mechatronics as well as exploiting latest web technologies, and offering flexibility and freedom for students.

  11. Implementation and use of cloud-based electronic lab notebook in a bioprocess engineering teaching laboratory.

    Science.gov (United States)

    Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur

    2017-01-01

    Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.

  12. A Bibliometric Analysis of Climate Engineering Research

    Science.gov (United States)

    Belter, C. W.; Seidel, D. J.

    2013-12-01

    The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.

  13. Virtual-reality-based educational laboratories in fiber optic engineering

    Science.gov (United States)

    Hayes, Dana; Turczynski, Craig; Rice, Jonny; Kozhevnikov, Michael

    2014-07-01

    Researchers and educators have observed great potential in virtual reality (VR) technology as an educational tool due to its ability to engage and spark interest in students, thus providing them with a deeper form of knowledge about a subject. The focus of this project is to develop an interactive VR educational module, Laser Diode Characteristics and Coupling to Fibers, to integrate into a fiber optics laboratory course. The developed module features a virtual laboratory populated with realistic models of optical devices in which students can set up and perform an optical experiment dealing with laser diode characteristics and fiber coupling. The module contains three increasingly complex levels for students to navigate through, with a short built-in quiz after each level to measure the student's understanding of the subject. Seventeen undergraduate students learned fiber coupling concepts using the designed computer simulation in a non-immersive desktop virtual environment (VE) condition. The analysis of students' responses on the updated pre- and post tests show statistically significant improvement of the scores for the post-test as compared to the pre-test. In addition, the students' survey responses suggest that they found the module very useful and engaging. The conducted study clearly demonstrated the feasibility of the proposed instructional technology for engineering education, where both the model of instruction and the enabling technology are equally important, in providing a better learning environment to improve students' conceptual understanding as compared to other instructional approaches.

  14. Expanding Usability of Virtual Network Laboratory in IT Engineering Education

    Directory of Open Access Journals (Sweden)

    Dalibor M Dobrilovic

    2013-02-01

    Full Text Available This paper deals with importance of virtual network laboratories usage in IT engineering education. It presents the particular virtual network laboratory model developed for usage in Computer Networks course as well. This virtual network laboratory, called VNLab, is based on virtualization technology. It has been successfully tested in educational process of Computer Network course for IT undergraduate students. Its usability for network related courses is analyzed by comparison of recommended curricula’s of world organizations such as IEEE, ACM and AIS. This paper is focused on expanding the usability of this virtual network laboratory to other non-network related courses. The primary expansion field is in domain of IT System Administration, IT Systems and Data Security and Operating Systems as well. The possible learning scenarios, learning tools and concepts for making this system applicable in these three additional fields are presented by the analyses of compatibility with recommended learning topics and outcomes by IEEE, ACM and AIS.

  15. Thermal Property Engineering: Exploiting the Properties of Ceramic Nanocomposites

    Science.gov (United States)

    2018-03-01

    ARL-TR-8308 ● MAR 2018 US Army Research Laboratory Thermal Property Engineering : Exploiting the Properties of Ceramic...return it to the originator. ARL-TR-8308 ● MAR 2018 US Army Research Laboratory Thermal Property Engineering : Exploiting the...2015 – Dec 31 2017 4. TITLE AND SUBTITLE Thermal Property Engineering : Exploiting the Properties of Ceramic Nanocomposites 5a. CONTRACT NUMBER 5b

  16. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  17. Mechanical Engineering Senior Design Project Final Presentations | College

    Science.gov (United States)

    Engineering Research Computational Mechanics Laboratory Environmental Engineering Laboratory Geotechnical of Engineering & Applied Science A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D2L Programs Concentration in Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer

  18. The Atlantic rift in Engineering Education Research Methodology

    DEFF Research Database (Denmark)

    de Graaff, Erik

    2015-01-01

    engineering. A revival of engineering education research started in the USA around the turn of the century. Building on the concept of ‘scholarship of teaching’, engineers were challenged to investigate their own role as educators. Since these researchers have their academic background mostly in engineering......In Europe educational research branched off from social sciences during the sixties of the last century. Combining theories and methods from pedagogy, sociology and psychology researchers explored the different fields of education, ranging from kindergarten till higher education including...... and science, they tend to aim for ‘rigorous research’ according to the natural sciences. Worldwide the engineering education community has recognized the need to blend both the social sciences research approach and rigorous research. This paper explores the variation in research methods used by researchers...

  19. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Willis, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC is the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.

  20. Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  1. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  2. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  3. Experimental Research of Engine Foundations

    Directory of Open Access Journals (Sweden)

    Violeta-Elena Chiţan

    2004-01-01

    Full Text Available This paper tries a compact presentation of experimental research of engine-foundations. The dynamic phenomena are so complex, that the vibrations cannot be estimated in the design stage. The design engineer of an engine foundation must foresee through a dynamic analysis of the vibrations, those measures that lead to the avoidance or limiting of the bad effects caused by the vibrations.

  4. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    International Nuclear Information System (INIS)

    Cheng, Robert K.

    1999-01-01

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory

  5. Global Journal of Engineering Research: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. The Global Journal of Engineering Research is aimed at promoting research in all areas of Engineering Research including Mechanical, Civil, Electrical, Chemical, Electronics, Geological etc. Section Policies. Articles. Checked Open Submissions, Checked Indexed, Checked Peer Reviewed. Publication ...

  6. Occupational radiation exposures in research laboratories

    International Nuclear Information System (INIS)

    Vaccari, S.; Papotti, E.; Pedrazzi, G.

    2006-01-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ( 57 Co in Moessbauer application) and unsealed form ( 3 H, 14 C, 32 P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  7. Proceedings of the National Renewable Energy Laboratory Wind Energy Systems Engineering Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.

    2014-12-01

    The second National Renewable Energy Laboratory (NREL) Wind Energy Systems Engineering Workshop was held in Broomfield, Colorado, from January 29 to February 1, 2013. The event included a day-and-a-half workshop exploring a wide variety of topics related to system modeling and design of wind turbines and plants. Following the workshop, 2 days of tutorials were held at NREL, showcasing software developed at Sandia National Laboratories, the National Aeronautics and Space Administration's Glenn Laboratories, and NREL. This document provides a brief summary of the various workshop activities and includes a review of the content and evaluation results from attendees.

  8. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  9. Software Engineering Laboratory (SEL) database organization and user's guide

    Science.gov (United States)

    So, Maria; Heller, Gerard; Steinberg, Sandra; Spiegel, Douglas

    1989-01-01

    The organization of the Software Engineering Laboratory (SEL) database is presented. Included are definitions and detailed descriptions of the database tables and views, the SEL data, and system support data. The mapping from the SEL and system support data to the base tables is described. In addition, techniques for accessing the database, through the Database Access Manager for the SEL (DAMSEL) system and via the ORACLE structured query language (SQL), are discussed.

  10. Ecological risk assessment at the Idaho National Engineering Laboratory: Overview

    International Nuclear Information System (INIS)

    VanHorn, R.; Bensen, T.; Green, T.; Hampton, N.; Staley, C.; Morris, R.; Brewer, R.; Peterson, S.

    1994-01-01

    The paper will present an overview of the methods and results of the screening level ecological risk assessment (ERA) performed at the Idaho National Engineering Laboratory (INEL). The INEL is a site with some distinct characteristics. First it is a large Department of Energy (DOE) laboratory (2,300 km 2 ) having experienced 40 years of nuclear material production operations. Secondly, it is a relatively undisturbed cold desert ecosystem. Neither of these issues have been sufficiently addressed in previous ERAs. It was necessary in many instances to develop methods that differed from those used in other studies. This paper should provide useful methodologies for the ERAs performed at other similar sites

  11. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  12. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  13. Development of excavation technologies at the Canadian underground research laboratory

    International Nuclear Information System (INIS)

    Kuzyk, Gregory W.; Martino, Jason B.

    2008-01-01

    Several countries, Canada being among them, are developing concepts for disposal of used fuel from power generating nuclear reactors. As in underground mining operations, the disposal facilities will require excavation of many kilometres of shafts and tunnels through the host rock mass. The need to maintain the stability of excavations and safety of workers will be of paramount importance. Also, excavations required for many radioactive waste repositories will ultimately need to be backfilled and sealed to maintain stability and minimize any potential for migration of radionuclides, should they escape their disposal containers. The method used to excavate the tunnels and shafts, and the rock damage that occurs due to excavation, will greatly affect the performance characteristics of repository sealing systems. The underground rock mechanics and geotechnical engineering work performed at the Canadian Underground Research Laboratory (URL) has led to the development of excavation technologies that reduce rock damage in subsurface excavations. This paper discusses the excavation methods used to construct the URL and their application in planning for the construction of similar underground laboratories and repositories for radioactive wastes. (author)

  14. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  15. Computational and Genomic Analysis of Mycobacteriophage: A Longitudinal Study of Technology Engineered Biology Courses That Implemented an Inquiry Based Laboratory Practice Designed to Enhance, Encourage, and Empower Student Learning

    Science.gov (United States)

    Hollowell, Gail P.; Osler, James E.; Hester, April L.

    2015-01-01

    This paper provides an applied research rational for a longitudinal investigation that involved teaching a "Technology Engineered Science Education Course" via an Interactive Laboratory Based Genomics Curriculum. The Technology st Engineering [TE] methodology was first introduced at the SAPES: South Atlantic Philosophy of Education…

  16. The in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. Examination of backfill material using muck from URL construction

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Tanai, Kenji; Fujita, Tomoo; Sugita, Yutaka

    2016-06-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, “Geoscientific Research” and “Research and Development on Geological Disposal Technologies”, and proceeds in three overlapping phases, “Phase I: Surface-based investigations”, “Phase II: Investigations during tunnel excavation” and “Phase III: Investigations in the underground facilities”, over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) was prepared from 2013 to 2014 fiscal year at G.L.-350m gallery (Niche No.4), and heating by electric heater in simulated overpack started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal – Hydrological – Mechanical – Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. In EBS experiment, the backfill material using mixture of bentonite and muck from Horonobe URL construction was used for backfilling a part of Niche No.4. This report shows the results of properties of the backfill material, confirmation test of compaction method and making backfill material block, and so on. From these results, it was confirmed that the backfill material would satisfy target value of the permeability and the swelling pressure. (author)

  17. Summaries of FY 1996 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report documents the Basic Energy Sciences (BES) Engineering Research Program for fiscal year 1996; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report the principal investigators were asked to submit summaries for their projects that were specifically applicable to fiscal year 1996. The summaries received have been edited if necessary, but the press for timely publication made it impractical to have the investigators review and approve the revised summaries prior to publication. For more information about a given project, it is suggested that the investigators be contacted directly.

  18. Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

    Science.gov (United States)

    Song, Peng

    2017-08-01

    The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students' aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.

  19. Occupational radiation exposures in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Vaccari, S.; Papotti, E. [Parma Univ., Health Physics (Italy); Pedrazzi, G. [Parma Univ., Dept. of Public Health (Italy)

    2006-07-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ({sup 57}Co in Moessbauer application) and unsealed form ({sup 3}H, {sup 14}C, {sup 32}P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  20. TIT reactor laboratory course using JAERI and PNC large experimental facilities

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Obara, Toru; Ohtani, Nobuo.

    1995-01-01

    This report is presented on a reactor laboratory course for graduate students using large facilities in national laboratories in Japan. A reactor laboratory course is offered every summer since 1990 for all graduate students in the Nuclear Engineering Course in Tokyo Institute of Technology (TIT), where the students can choose one of the experiments prepared at Japan Atomic Energy Research Institute (JAERI), Power Reactor and Nuclear Fuel Development Corporation (PNC) and Research Reactor Institute, Kyoto University (KUR). Both JAERI and PNC belong to Science and Technology Agency (STA). This is the first university curriculum of nuclear engineering using the facilities owned by the STA laboratories. This type of collaboration is promoted in the new Long-Term Program for Research, Development and Utilization of Nuclear Energy adopted by Atomic Energy Commission. Most students taking this course reported that they could learn so much about reactor physics and engineering in this course and the experiment done in large laboratory was a very good experience for them. (author)

  1. Research System Integration Laboratory (SIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The VEA Research SIL (VRS) is essential to the success of the TARDEC 30-Year Strategy. The vast majority of the TARDEC Capability Sets face challenging electronics...

  2. Research advances in industrial engineering

    CERN Document Server

    2015-01-01

    This book provides discussions and the exchange of information on principles, strategies, models, techniques, methodologies and applications of industrial engineering. It communicates the latest developments and research activity on industrial engineering and is useful for all those interested in the technological challenges in the field.

  3. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  4. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  5. Idaho National Engineering Laboratory installation roadmap document

    International Nuclear Information System (INIS)

    1993-01-01

    The roadmapping process was initiated by the US Department of Energy's office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included

  6. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2013

    Science.gov (United States)

    2013-10-01

    Aerospace Engineering 1,995 2,207 2,166 -41 -1.9% Electrical Engineering 982 1,193 1,413 220 18.4% Chemistry 744 873 804 -69 -7.9% Operations Research...1313 Geophysics 180 Psychology 690 Industrial Hygiene 1315 Hydrology 184 Sociology 701 Veterinary Medical Science 1320 Chemistry 190 General...Engineering 1520 Mathematics 470 Soil Science 861 Aerospace Engineering 1529 Mathematical Statistician 471 Agronomy 871 Naval Architecture 1530

  7. The Effect of an Open-Ended Design Experience on Student Achievement in an Engineering Laboratory Course

    Directory of Open Access Journals (Sweden)

    Matthew Cullin

    2017-11-01

    Full Text Available This study explores the effect of incorporating an Open-Ended Design Experience (OEDE into an undergraduate materials science laboratory taken by third-year mechanical engineering students. The focus of the OEDE was carbon fiber reinforced plastics and sandwich structures. The results indicate that the incorporation of OEDE’s in laboratory courses produces significant benefits in terms of student engagement, participation, and perception of competence. In addition, the OEDE was found to enhance students’ ability to apply related concepts as compared to non-OEDE lab activities. The authors conclude that the incorporation of OEDE’s can increase the effectiveness of engineering laboratory courses.

  8. Argonne National Laboratory: An example of a US nuclear research centre

    International Nuclear Information System (INIS)

    Bhattacharyya, S.

    2001-01-01

    The nuclear era was ushered in 1942 with the demonstration of a sustained nuclear chain reaction in Chicago Pile 1 facility. The USA then set up five large national multi disciplinary laboratories for developing nuclear technology for civilian use and three national laboratories for military applications. Reactor development, including prototype construction, was the main focus of the Argonne National Laboratory. More than 100 power reactors operating in the USA have benefited from R and D in the national laboratories. However, currently the support for nuclear power has waned. With the end of the cold war there has also been a need to change the mission of laboratories involved in military applications. For all laboratories of the Department of Energy (DOE) the mission, which was clearly focused earlier on high risk, high payoff long term R and D has now become quite diffused with a number of near term programmes. Cost and mission considerations have resulted in shutting down of many large facilities as well as auxiliary facilities. Erosion of infrastructure has also resulted in reduced opportunities for research which means dwindling of interest in nuclear science and engineering among the younger generation. The current focus of nuclear R and D in the DOE laboratories is on plant life extension, deactivation and decommissioning, spent fuel management and waste management. Advanced aspects include space nuclear applications and nuclear fusion R and D. At the Argonne National Laboratory, major initiatives for the future would be in the areas of science, energy, environment and non-proliferation technologies. International collaboration would be useful mechanisms to achieve cost effective solutions for major developmental areas. These include reactor operation and safety, repositories for high level nuclear waste, reactor system decommissioning, large projects like a nuclear fusion reactor and advanced power reactors. The IAEA could have a positive role in these

  9. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  10. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  11. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The... Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development...

  12. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  13. Radiological survey support activities for the decommissioning of the Ames Laboratory Research Reactor Facility, Ames, Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1984-09-01

    At the request of the Engineering Support Division of the US Department of Energy-Chicago Operations Office and in accordance with the programmatic overview/certification responsibilities of the Department of Energy Environmental and Safety Engineering Division, the Argonne National Laboratory Radiological Survey Group conducted a series of radiological measurements and tests at the Ames Laboratory Research Reactor located in Ames, Iowa. These measurements and tests were conducted during 1980 and 1981 while the reactor building was being decontaminated and decommissioned for the purpose of returning the building to general use. The results of these evaluations are included in this report. Although the surface contamination within the reactor building could presumably be reduced to negligible levels, the potential for airborne contamination from tritiated water vapor remains. This vapor emmanates from contamination within the concrete of the building and should be monitored until such time as it is reduced to background levels. 2 references, 8 figures, 6 tables.

  14. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  15. Evaluation of engineered barriers at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Bhatt, R.N.; Porro, I.

    1998-03-01

    Subsurface Disposal (SDA) of the Radioactive Waste Management Complex serves as the low level waste burial ground at the Idaho National Engineering and Environmental Laboratory (INEEL). The low level wastes are buried in trenches, pits, and soil vaults in surficial sediments. A closure/post-closure plan must be written prior to closure of the SDA. The closure plan for the facility must include a design for an engineered barrier closure cover that will meet all applicable regulatory requirements. This paper describes the approach being followed at the INEEL to choose an appropriate cover design for the SDA closure. Regulatory requirements and performance objectives potentially applicable to closure of the SDA were identified. Technical issues related to SDA closure were identified from a literature search of previous arid site engineered barrier studies and from previous SDA closure cover evaluations. Five engineered barrier conceptual design alternatives were identified: (1) a bio/capillary barrier cover, (2) a thin soil cover, (3) a thick soil cover, (4) a Resource Conservation and Recovery Act cover, and (5) a concrete sealed surface cover. Two of these designs were chosen for in situ hydraulic testing, rather than all five, in order to maximize the amount of information generated relative to projected project costs. Testing of these two cover designs provides data to quantify hydrologic model input parameters and for verification of site specific hydrologic models for long term closure cover performance evaluation and detailed analysis of closure cover alternatives. The specific objectives of the field tests are to determine the water balance for the two covers over several years and to determine cover soil physical and hydraulic properties

  16. Publications and geothermal sample library facilities of the Earth Science Laboratory, University of Utah Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Phillip M.; Ruth, Kathryn A.; Langton, David R.; Bullett, Michael J.

    1990-03-30

    The Earth Science Laboratory of the University of Utah Research Institute has been involved in research in geothermal exploration and development for the past eleven years. Our work has resulted in the publication of nearly 500 reports, which are listed in this document. Over the years, we have collected drill chip and core samples from more than 180 drill holes in geothermal areas, and most of these samples are available to others for research, exploration and similar purposes. We hope that scientists and engineers involved in industrial geothermal development will find our technology transfer and service efforts helpful.

  17. Pilot-Scale Laboratory Instruction for Chemical Engineering: The Specific Case of the Pilot-Unit Leading Group

    Science.gov (United States)

    Billet, Anne-Marie; Camy, Severine; Coufort-Saudejaud, Carole

    2010-01-01

    This paper presents an original approach for Chemical Engineering laboratory teaching that is currently applied at INP-ENSIACET (France). This approach, referred to as "pilot-unit leading group" is based on a partial management of the laboratories by the students themselves who become temporarily in charge of one specific laboratory. In…

  18. Spent fuel storage cask testing and operational experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eslinger, L.E.; Schmitt, R.C.

    1989-01-01

    Spent-fuel storage cask research, development, and demonstration activities are being performed for the U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) as a part of the storage cask testing program. The cask testing program at federal sites and other locations supports the Nuclear Waste Policy Act (NWPA) and DOE objectives for cooperative demonstrations with the cask vendors and utilities for development of at-reactor dry cask storage capabilities for spent nuclear fuel assemblies. One research and development program for the storage cask performance testing of metal storage cask was initiated through a cooperative agreement between Virginia Power and DOE in 1984. The performance testing was conducted for the DOE and the Electric Power Research Institute by the Pacific Northwest laboratory, operated for DOE by Battelle Memorial Institute, and the Idaho National Engineering Laboratory (INEL), operated for DOE by EG ampersand G Idaho, Inc. In 1988 a cooperative agreement was entered into by DOE with Pacific Sierra Nuclear Associates (PSN) for performance testing of the PSN concrete Ventilated Storage Cask. Another closely related activity involving INEL is a transportable storage cask project identified as the Nuclear Fuel Services Spent-Fuel Shipping/Storage Cask Demonstration Project. The purpose of this project is to demonstrate the feasibility of packing, transporting, and storing commercial spent fuel in dual-purpose transport/storage casks

  19. Survey and analysis of materials research and development at selected federal laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J.E.; Fink, C.R.

    1984-04-01

    This document presents the results of an effort to transfer existing, but relatively unknown, materials R and D from selected federal laboratories to industry. More specifically, recent materials-related work at seven federal laboratories potentially applicable to improving process energy efficiency and overall productiviy in six energy-intensive manufacturing industries was evaluated, catalogued, and distributed to industry representatives to gauge their reaction. Laboratories surveyed include: Air Force Wright Aeronautical Laboratories Material Laboratory (AFWAL). Pacific Northwest Laboratory (PNL), National Aeronautics and Space Administration Marshall Flight Center (NASA Marshall), Oak Ridge National Laboratory (ORNL), Brookhaven National Laboratory (BNL), Idaho National Engineering Laboratory (INEL), and Jet Propulsion Laboratory (JPL). Industries included in the effort are: aluminum, cement, paper and allied products, petroleum, steel and textiles.

  20. Robotic applications at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Griebenow, B.E.; Marts, D.J.

    1990-01-01

    The Idaho National Engineering Laboratory (INEL) has several programs and projected programs that involve work in hazardous environments. Robotics/remote handling technology is being considered for an active role in these programs. The most appealing aspect of using robotics is in the area of personnel safety. Any task requiring an individual to enter a hazardous or potentially hazardous environment can benefit substantially from robotics by removing the operator from the environment and having him conduct the work remotely. Several INEL programs were evaluated based on their applications for robotics and the results and some conclusions are discussed in this paper. 1 fig

  1. Research laboratories annual report 1991

    International Nuclear Information System (INIS)

    1992-08-01

    The 1990-1991 activities, of the Israel Atomic Energy Commission's research laboratories, are presented in this report. The main fields of interest are chemistry and material sciences, life and environmental sciences, nuclear physics and technology

  2. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research..., behavioral, and clinical science research. The panel meetings will be open to the public for approximately...

  3. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... Crowne Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A...

  4. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... biomedical, behavioral and clinical science research. The panel meetings will be open to the public for...

  5. Engineering Research in Irish Economic Development

    Science.gov (United States)

    Kelly, John

    2011-01-01

    This article summarizes the main findings and recommendations of a report published in December 2010 by the Irish Academy of Engineering (IAE). The report, representing the views of a committee of distinguished Irish engineers from a wide range of disciplines, addresses the role of engineering research in Ireland's economic development and the…

  6. Co-Optimization of Fuels & Engines: FY16 Year in Review

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The U.S. Department of Energy's (DOE) Co-Optimization of Fuels & Engines (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D). This report summarizes accomplishments in the first year of the project. Co-Optima is conducting concurrent research to identify the fuel properties and engine design characteristics needed to maximize vehicle performance and affordability, while deeply cutting emissions. Nine national laboratories - the National Renewable Energy Laboratory and Argonne, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories - are collaborating with industry and academia on this groundbreaking research.

  7. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    International Nuclear Information System (INIS)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER ampersand WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG ampersand G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL's roadmapping efforts

  8. Three-dimensional printing physiology laboratory technology.

    Science.gov (United States)

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  9. Summaries of FY 1994 engineering research

    International Nuclear Information System (INIS)

    1994-12-01

    This report documents the Basic Energy Sciences Engineering Research Program for fiscal year 1994; it provides a summary of each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists

  10. Summaries of FY 1994 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report documents the Basic Energy Sciences Engineering Research Program for fiscal year 1994; it provides a summary of each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists.

  11. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  12. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  13. Assessment of the quality of test results from selected civil engineering material testing laboratories in Tanzania

    CSIR Research Space (South Africa)

    Mbawala, SJ

    2017-12-01

    Full Text Available Civil and geotechnical engineering material testing laboratories are expected to produce accurate and reliable test results. However, the ability of laboratories to produce accurate and reliable test results depends on many factors, among others...

  14. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research.... Neurobiology-D June 10, 2011 Crowne Plaza DC/Silver Spring. Clinical Research Program June 13, 2011 VA Central...

  15. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... & Behav Sci-A June 7, 2010 L'Enfant Plaza Hotel. Clinical Research Program June 9, 2010 *VA Central Office...

  16. Journal of Civil Engineering Research and Practice

    African Journals Online (AJOL)

    The Journal of Civil Engineering Research and Practice aims to publish original research papers of high standard, containing material of significant contribution to civil engineering, with emphasis being placed on material that is applicable to the solution of practical problems.

  17. Innovation and Research on Engineering Education

    DEFF Research Database (Denmark)

    de Graaff, Erik; Kolmos, Anette

    2014-01-01

    Our Western society depends strongly on continuous technological innovation. Engineers, the designers of the future technology need extensive competencies to face the challenge of dealing with ever increasing complexity. In some areas more than half the knowledge they learn in University is obsol......Our Western society depends strongly on continuous technological innovation. Engineers, the designers of the future technology need extensive competencies to face the challenge of dealing with ever increasing complexity. In some areas more than half the knowledge they learn in University...... is obsolete by the time the enter practice. Recognition of these issues has recently resulted in worldwide increase of attention for innovation of engineering education. This chapter presents a brief outline of the traditions in higher engineering education culminating in the stage of research and development...... in the last century. Next, the recent revival of engineering education research is described, contrasting the developments in the USA with Europe and the rest of the world. The efforts in the USA appear to follow Boyer’s concept scholarship of teaching, and aim for the establishment of engineering education...

  18. Reengineering Biomedical Translational Research with Engineering Ethics.

    Science.gov (United States)

    Sunderland, Mary E; Nayak, Rahul Uday

    2015-08-01

    It is widely accepted that translational research practitioners need to acquire special skills and knowledge that will enable them to anticipate, analyze, and manage a range of ethical issues. While there is a small but growing literature that addresses the ethics of translational research, there is a dearth of scholarship regarding how this might apply to engineers. In this paper we examine engineers as key translators and argue that they are well positioned to ask transformative ethical questions. Asking engineers to both broaden and deepen their consideration of ethics in their work, however, requires a shift in the way ethics is often portrayed and perceived in science and engineering communities. Rather than interpreting ethics as a roadblock to the success of translational research, we suggest that engineers should be encouraged to ask questions about the socio-ethical dimensions of their work. This requires expanding the conceptual framework of engineering beyond its traditional focus on "how" and "what" questions to also include "why" and "who" questions to facilitate the gathering of normative, socially-situated information. Empowering engineers to ask "why" and "who" questions should spur the development of technologies and practices that contribute to improving health outcomes.

  19. Research and Progress on Virtual Cloud Laboratory

    Directory of Open Access Journals (Sweden)

    Zhang Jian Wei

    2016-01-01

    Full Text Available In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety, performance, design, function, use case, and value of virtual cloud laboratory, this paper concludes that application based on OpenStack virtual cloud laboratory in universities and research institutes and other departments is essential.

  20. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  1. Technology transfer from accelerator laboratories (challenges and opportunities)

    International Nuclear Information System (INIS)

    Verma, V.K.; Gardner, P.L.

    1994-06-01

    It is becoming increasingly evident that technology transfer from research laboratories must be a key element of their comprehensive strategic plans. Technology transfer involves using a verified and organized knowledge and research to develop commercially viable products. Management of technology transfer is the art of organizing and motivating a team of scientists, engineers and manufacturers and dealing intelligently with uncertainties. Concurrent engineering is one of the most effective approaches to optimize the process of technology transfer. The challenges, importance, opportunities and techniques of transferring technology from accelerator laboratories are discussed. (author)

  2. Sandia National Laboratories ASCI Applications Software Quality Engineering Practices; TOPICAL

    International Nuclear Information System (INIS)

    ZEPPER, JOHN D.; ARAGON, KATHRYN MARY; ELLIS, MOLLY A.; BYLE, KATHLEEN A.; EATON, DONNA SUE

    2002-01-01

    This document provides a guide to the deployment of the software verification activities, software engineering practices, and project management principles that guide the development of Accelerated Strategic Computing Initiative (ASCI) applications software at Sandia National Laboratories (Sandia). The goal of this document is to identify practices and activities that will foster the development of reliable and trusted products produced by the ASCI Applications program. Document contents include an explanation of the structure and purpose of the ASCI Quality Management Council, an overview of the software development lifecycle, an outline of the practices and activities that should be followed, and an assessment tool. These sections map practices and activities at Sandia to the ASCI Software Quality Engineering: Goals, Principles, and Guidelines, a Department of Energy document

  3. Advances in engineering nanometrology at the National Physical Laboratory

    Science.gov (United States)

    Leach, Richard K.; Claverley, James; Giusca, Claudiu; Jones, Christopher W.; Nimishakavi, Lakshmi; Sun, Wenjuan; Tedaldi, Matthew; Yacoot, Andrew

    2012-07-01

    The National Physical Laboratory, UK, has been active in the field of engineering nanometrology for a number of years. A summary of progress over the last five years is presented in this paper and the following research projects discussed in detail. (1) Development of an infrastructure for the calibration of instruments for measuring areal surface topography, along with the development of areal software measurement standards. This work comprises the use of the optical transfer function and a technique for the simultaneous measurement of topography and the phase change on reflection, allowing composite materials to be measured. (2) Development of a vibrating micro-CMM probe with isotropic probing reaction and the ability to operate in a non-contact mode. (3) A review of x-ray computed tomography and its use in dimensional metrology. (4) The further development of a metrology infrastructure for atomic force microscopy and the development of an instrument for the measurement of the effect of the probe-surface interaction. (5) Traceable measurement of displacement using optical and x-ray interferometry to picometre accuracy. (6) Development of an infrastructure for low-force metrology, including the development of appropriate transfer artefacts.

  4. Advances in engineering nanometrology at the National Physical Laboratory

    International Nuclear Information System (INIS)

    Leach, Richard K; Claverley, James; Giusca, Claudiu; Jones, Christopher W; Nimishakavi, Lakshmi; Sun, Wenjuan; Tedaldi, Matthew; Yacoot, Andrew

    2012-01-01

    The National Physical Laboratory, UK, has been active in the field of engineering nanometrology for a number of years. A summary of progress over the last five years is presented in this paper and the following research projects discussed in detail. (1) Development of an infrastructure for the calibration of instruments for measuring areal surface topography, along with the development of areal software measurement standards. This work comprises the use of the optical transfer function and a technique for the simultaneous measurement of topography and the phase change on reflection, allowing composite materials to be measured. (2) Development of a vibrating micro-CMM probe with isotropic probing reaction and the ability to operate in a non-contact mode. (3) A review of x-ray computed tomography and its use in dimensional metrology. (4) The further development of a metrology infrastructure for atomic force microscopy and the development of an instrument for the measurement of the effect of the probe–surface interaction. (5) Traceable measurement of displacement using optical and x-ray interferometry to picometre accuracy. (6) Development of an infrastructure for low-force metrology, including the development of appropriate transfer artefacts. (paper)

  5. Safe handling of plutonium in research laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ''Protection of Workers'' at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  6. Safe handling of plutonium in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ``Protection of Workers`` at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  7. Engineering education research in European Journal of Engineering Education and Journal of Engineering Education: citation and reference discipline analysis

    Science.gov (United States)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE) in 1973 (JEE, 1975 EJEE), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become engineering education research (EER) journals, although JEE transitioned first. In this process the number of citations rose, particularly of education and psychology sources; the percentage of research articles increased markedly as did the number of reference disciplines. The number of papers per issue, the number of single author papers, and the citations of science and engineering sources decreased. EJEE has a very broad geographic spread of authors while JEE authors are mainly US based. A 'silo' mentality where general engineering education researchers do not communicate with EER researchers in different engineering disciplines is evident. There is some danger that EER may develop into a silo that does not communicate with technically oriented engineering professors.

  8. eLearning Hands-On: Blending Interactive eLearning with Practical Engineering Laboratory

    Science.gov (United States)

    Kiravu, Cheddi; Yanev, Kamen M.; Tunde, Moses O.; Jeffrey, Anna M.; Schoenian, Dirk; Renner, Ansel

    2016-01-01

    Purpose: Integrating laboratory work into interactive engineering eLearning contents augments theory with practice while simultaneously ameliorating the apparent theory-practice gap in traditional eLearning. The purpose of this paper is to assess and recommend media that currently fulfil this desirable dual pedagogical goal.…

  9. IOTA interferometer project - Plans, engineering, and laboratory results

    International Nuclear Information System (INIS)

    Reasenberg, R.D.

    1990-01-01

    The Infrared-Optical Telescope Array (IOTA) is being developed by a consortium comprising Harvard University, the MIT Lincoln Laboratory, the Smithsonian Astrophysical Observatory, the University of Massachusetts at Amherst, and the University of Wyoming. The instrument is intended to generate high-resolution images of astronomical objects by bringing together beams from widely separated telescopes and combining them at a central location. The initial configuration will consist of two 0.45 m telescopes thay may range along an L-shaped track that will permit spacings in the 5 to 38 m range, at the Smithsonian's Fred L. Whipple Observatory on Mt. Hopkins. Initial tests of this configuration are expected to be conducted during the summer of 1991 and to yield both valuable engineering data and the first scientific results including diameters of stars and artificial earth satellites and a measure of the extent of some circumstellar shells. The engineering data will be applied to the refinement of IOTA, particularly to the second IOTA configuration, in which a third telescope will be added, making it possible to obtain phase closure information. 7 refs

  10. 76 FR 44648 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development.... Name: Research, Engineering & Development Advisory Committee. Time and Date: September 21, 2011--9 a.m...

  11. Virtual laboratory for fusion research in Japan

    International Nuclear Information System (INIS)

    Tsuda, K.; Nagayama, Y.; Yamamoto, T.; Horiuchi, R.; Ishiguro, S.; Takami, S.

    2008-01-01

    A virtual laboratory system for nuclear fusion research in Japan has been developed using SuperSINET, which is a super high-speed network operated by National Institute of Informatics. Sixteen sites including major Japanese universities, Japan Atomic Energy Agency and National Institute for Fusion Science (NIFS) are mutually connected to SuperSINET with the speed of 1 Gbps by the end of 2006 fiscal year. Collaboration categories in this virtual laboratory are as follows: the large helical device (LHD) remote participation; the remote use of supercomputer system; and the all Japan ST (Spherical Tokamak) research program. This virtual laboratory is a closed network system, and is connected to the Internet through the NIFS firewall in order to keep higher security. Collaborators in a remote station can control their diagnostic devices at LHD and analyze the LHD data as they were at the LHD control room. Researchers in a remote station can use the supercomputer of NIFS in the same environment as NIFS. In this paper, we will describe detail of technologies and the present status of the virtual laboratory. Furthermore, the items that should be developed in the near future are also described

  12. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical...) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the...

  13. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  14. Research and Exploration for Operational Research Education in Industry and Engineering Subject

    Science.gov (United States)

    Wu, Yu-hua; Wang, Feng-ming; Du, Gang

    2007-01-01

    On the basic of exploring the relationship of industry engineering and operational research technique, the thesis analyzes the location and utility of the operational research education in the whole industry engineering subject education. It brings forward the system design about operational research and relative class among industry engineering…

  15. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES ampersand H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES ampersand H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG ampersand G Idaho, Inc. (EG ampersand G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES ampersand H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes

  16. 77 FR 14462 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2012-03-09

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development.... Name: Research, Engineering & Development Advisory Committee. Time and Date: April 18, 2012--9:30 a.m...

  17. 78 FR 47049 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2013-08-02

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development...; 5 U.S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and.... Name: Research, Engineering & Development Advisory Committee. Time and Date: September 18--8:30 a.m. to...

  18. 78 FR 16357 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2013-03-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development... hereby given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee. Name: Research, Engineering & Development Advisory Committee. Time and Date: April 24--8:30 a.m. to 4...

  19. Culham Laboratory

    International Nuclear Information System (INIS)

    1980-06-01

    The report contains summaries of work carried out under the following headings: fusion research experiments; U.K. contribution to the JET project; supporting studies; theoretical plasma physics, computational physics and computing; fusion reactor studies; engineering and technology; contract research; external relations; staff, finance and services. Appendices cover main characteristics of Culham fusion experiments, staff, extra-mural projects supported by Culham Laboratory, and a list of papers written by Culham staff. (U.K.)

  20. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    Science.gov (United States)

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  1. Mechanical Engineering Department engineering research: Annual report, FY 1986

    International Nuclear Information System (INIS)

    Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O.

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication

  2. Faculty and Student Teams and National Laboratories: Expanding the Reach of Research Opportunities and Workforce Development

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn,N.; White, K.; Stegman, M.

    2009-08-05

    The Faculty and Student Teams (FaST) Program, a cooperative effort between the US Department of Energy (DOE) Office of Science and the National Science Foundation (NSF), brings together collaborative research teams composed of a researcher at Brookhaven National Laboratory, and a faculty member with two or three undergraduate students from a college or university. Begun by the Department of Energy in 2000 with the primary goal of building research capacity at a faculty member's home institution, the FaST Program focuses its recruiting efforts on faculty from colleges and universities with limited research facilities and those institutions that serve populations under-represented in the fields of science, engineering and technology, particularly women and minorities. Once assembled, a FaST team spends a summer engaged in hands-on research working alongside a laboratory scientist. This intensely collaborative environment fosters sustainable relationships between the faulty members and BNL that allow faculty members and their BNL colleagues to submit joint proposals to federal agencies, publish papers in peer-reviewed journals, reform local curriculum, and develop new or expand existing research labs at their home institutions.

  3. 77 FR 54648 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2012-09-05

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development...: Research, Engineering & Development Advisory Committee. TIME AND DATE: September 26, 2012--9 a.m. to 4 p.m...

  4. 76 FR 12404 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2011-03-07

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development...: Research, Engineering & Development Advisory Committee. Time and Date: April 20, 2011--9:30 a.m. to 4 p.m...

  5. 75 FR 14243 - Research, Engineering And Development Advisory Committee

    Science.gov (United States)

    2010-03-24

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering And Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development...: Research, Engineering & Development Advisory Committee. Time and Date: April 21, 2010--9 a.m. to 5 p.m...

  6. Progress report for (1974-1984) of Nuclear Research Laboratory, Srinagar, Kashmir

    International Nuclear Information System (INIS)

    Kaul, P.K.; Razdan, H.

    1985-01-01

    The Nuclear Research Laboratory, established at Srinagar in 1974, serves as a base laboratory to organise research activities at the High Altitude Research Laboratory at Gulmarg. Space physics, nuclear physics, radiation and atmospheric chemistry, and technical physics: are the fields in which the research facilities are established at the Laboratory, over the past ten years. The highlights of the various research programmes undertaken at the Laboratory during the period 1974-1984 are presented in the form of summaries. A list of papers published in various journals and presented at different conferences, symposia etc. is given at the end. (M.G.B.)

  7. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  8. Correlation of Soot Formation in Turbojet Engines and in Laboratory Flames.

    Science.gov (United States)

    1981-02-01

    TURBOJET ENGINES AND IN LABORATORY FLAMES o. . LSO[ lVEl . 7 R. K. GOULD !i~0 B ~. OLSON AERH. EM R"&OESERHLBRTREIC P.O. BOX 12 PRINCETON, NJ 08540 DT I C...than one variable is a true impro.,nent or simply a mathematical artifact. Such an examination is not -iic luded, but it seems likely that only in the

  9. Domain Engineering, A Software Engineering Discipline in Need of Research

    DEFF Research Database (Denmark)

    Bjørner, Dines

    2000-01-01

    . The aim of this paper is to advocate: that researchers study these development method components, and that universities focus their education on basing well-nigh any course on the use of formal techniques: Specification and verification, and that software engineers take heed: Start applying formal......, and these again seem more stable than software designs. Thus, almost like the universal laws of physics, it pays off to first develop theories of domains. But domain engineering, as in fact also requirements engineering, really is in need of thoroughly researched development principles, techniques and tools...... techniques. A brief example of describing stake-holder perspectives will be given - on the background of which we then proceed to survey the notions of domain intrinsics, domain support technologies, domain management & organisation, domain rules & regulations, domain human behaviour, etc. We show elsewhere...

  10. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    Science.gov (United States)

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  11. Current safety practices in nano-research laboratories in China.

    Science.gov (United States)

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  12. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  13. Annual Report (No. 9, fiscal 1994) of Research Laboratory of Carbonaceous Resources Conversion Technology, Kyoto University; Kyoto Daigaku Kogakubu jushitsu tanso shigen tenkan kogaku jikken shisetsu nenpo (1994 nendo No.9)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Research activities at the above institute are reported. In an effort to develop advanced coal utilization techniques aiming at reduction in environmental impact, coals of Canadian origin are investigated in cooperation with Canadian researchers. Outstanding among the achievements are Professor Morio Okazaki's 'Study of manipulation of transfer of heat and substance in porous solid bodies' (winner of prize from The Society of Chemical Engineers, Japan), and Professor Tomoyuki Inui's 'Study of fuel synthesis using porous crystalline catalysts' (winner of prize from The Japan Institute of Energy). Various studies are now under way, which include the development of a technique of high-efficiency pyrolysis for coal etc. at the Research Laboratory of Carbonaceous Resources Conversion Technology; development of a zeolite separation membrane on a ceramic filter at the Hashimoto Laboratory specializing in chemical engineering; measurement of the effect of hydrostatic pressure in active carbon adsorption, research on the state of liquid phase adsorption, etc., at the Okazaki Laboratory; analysis of heated fluid in porous structures by means of the lattice Boltzmann method etc. at the Ogino Laboratory; research on coal liquefaction using iron/sulfur-based catalysts etc. at the Watanabe Laboratory. (NEDO)

  14. Annual Report (No. 9, fiscal 1994) of Research Laboratory of Carbonaceous Resources Conversion Technology, Kyoto University; Kyoto Daigaku Kogakubu jushitsu tanso shigen tenkan kogaku jikken shisetsu nenpo (1994 nendo No.9)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Research activities at the above institute are reported. In an effort to develop advanced coal utilization techniques aiming at reduction in environmental impact, coals of Canadian origin are investigated in cooperation with Canadian researchers. Outstanding among the achievements are Professor Morio Okazaki's 'Study of manipulation of transfer of heat and substance in porous solid bodies' (winner of prize from The Society of Chemical Engineers, Japan), and Professor Tomoyuki Inui's 'Study of fuel synthesis using porous crystalline catalysts' (winner of prize from The Japan Institute of Energy). Various studies are now under way, which include the development of a technique of high-efficiency pyrolysis for coal etc. at the Research Laboratory of Carbonaceous Resources Conversion Technology; development of a zeolite separation membrane on a ceramic filter at the Hashimoto Laboratory specializing in chemical engineering; measurement of the effect of hydrostatic pressure in active carbon adsorption, research on the state of liquid phase adsorption, etc., at the Okazaki Laboratory; analysis of heated fluid in porous structures by means of the lattice Boltzmann method etc. at the Ogino Laboratory; research on coal liquefaction using iron/sulfur-based catalysts etc. at the Watanabe Laboratory. (NEDO)

  15. Tsunami engineering study in India

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    ronmental Laboratory at NOAA, USA has the tsunami - research program ( http://www.pmel.noaa.gov/tsunami/). Th e t sunami research group is part of the Civi l Engineering Department at the Universit y of Southern California where undergra - duate... the engineering point of view. The Tsunami Engineering Labor a tory at the graduate School of Engineering, Tohoku Unive r sit y (http://www.tsunami.civil.tohoku.a c.jp/ hokusai2/main/eng/index.html) offers r e- se arch programmes on tsunami. The Uni - versity...

  16. An overview of the NASA rotary engine research program

    Science.gov (United States)

    Meng, P. R.; Hady, W. F.

    1984-01-01

    A brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center are presented. The test results obtained from turbocharged rotary engines and preliminary results from a high performance single rotor engine were discussed. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies were examined. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies was reviewed. Details are presented on single rotor stratified charge rotary engine research efforts, both in-house and on contract.

  17. The progress of Requirements Engineering research

    Directory of Open Access Journals (Sweden)

    Michael Terstine

    2015-06-01

    Full Text Available This article is describes the path through the process of Requirements Engineering research and some lines are identified that can meet the needs of the emerging software and the complexity of today's problems. First is done a reviews to the state of the art of research in this area, with regard to technologies developed to address requirements specific tasks, such as elicitation, modeling and analysis. This review identified areas for further research. Subsequently, several strategies are described to implement and extend the results, in order to help shape the scope of future research. Finally, some topics for future research are proposed in order to address the Requirements Engineering needed to respond to emerging systems and the complexity of the same.

  18. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  19. Department of Energy, highly enriched uranium ES ampersand H vulnerability assessment, Idaho National Engineering Laboratory site assessment team report

    International Nuclear Information System (INIS)

    1996-01-01

    In accordance with the February 22, 1996 directive issued by Secretary of Energy O'Leary on the Vulnerability Assessment of Highly Enriched Uranium (HEU) Storage, the Idaho National Engineering Laboratory conducted an assessment of the site's HEU holdings and any associated vulnerabilities. The assessment was conducted between April 25 and May 24, 1996. The scope of this assessment, as defined in the Assessment Plan, included all HEU, and any spent fuel not evaluated in the Spent Fuel Vulnerability Assessment. Addressed in this assessment were all of the holdings at the Idaho National Engineering Laboratory (INEL) except any located at Argonne National Laboratory-West (ANL-W) and the Naval Reactors Facility. Excluded from the assessment were those HEU holdings previously assessed in the Idaho National Engineering Laboratory Spent Nuclear Fuel Inventory and Vulnerability Site Assessment Report and any HEU holdings evaluated in the Plutonium Vulnerability Assessment Report

  20. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1983. Vol.2

    International Nuclear Information System (INIS)

    1984-03-01

    This report presents summaries of the research work performed during Fiscal Year 1983 by laboratories and organizations under contracts administered by the NRC's Materials Engineering Branch, Office of Nuclear Regulatory Research. Each contractor has written a more complete and detailed annual report of their work which can be obtained by writing to NRC. The contractor reports are organized into the major areas of concern to Primary System Integrity, which is the main focus for the branch's research. These areas are: Vessel and Piping Fracture Mechanics; Pressure Vesel Surveillance Dosimetry; Steam Generators, Aging, and Environmental Cracking; and Non-Destructive Examination. The research programs reported provide information on the overall program objectives, a more limited scope of work for FY 1983, a technical description of the year's work, and a brief forecast of the plans for continuing work

  1. An internet of laboratory things

    OpenAIRE

    Drysdale, Timothy D.; Braithwaite, N. St.J.

    2017-01-01

    By creating “an Internet of Laboratory Things” we have built a blend of real and virtual laboratory spaces that enables students to gain practical skills necessary for their professional science and engineering careers. All our students are distance learners. This provides them by default with the proving ground needed to develop their skills in remotely operating equipment, and collaborating with peers despite not being co-located. Our laboratories accommodate state of the art research grade...

  2. Mechanical Engineering Department engineering research: Annual report, FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O. (eds.)

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication. (JDH)

  3. Cyber Defense Research and Monitoring Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility acts as a fusion point for bridging ARL's research in tactical and operational Information Assurance (IA) areas and the development and assessment of...

  4. Radioactive effluent monitoring at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Simpson, O.D.

    1975-01-01

    The Effluent and Radiation Measurements Laboratory at the Idaho National Engineering Laboratory (INEL) has recently upgraded capabilities in the field of monitoring and analysis of radioactive airborne and liquid effluents using the techniques of gamma-ray spectrometry. The techniques and equipment used include remotely-operated, computer-based Ge(Li) spectrometers which obtain data on a real-time basis. Permanent record files are maintained of both the effluent release values and the gamma-ray data from which the release values are calculated. Should values for release levels ever be challenged, the gamma-ray spectral information for any measurement can be recalled and analyzed as needed. Daily effluent release reports are provided to operating personnel which contributes to prompt correction of any operational problems. Monthly, quarterly, and annual reports are compiled which provide inventories of the radionuclides released. A description of the effluent monitoring, reporting and records system developed at INEL for this application will be presented

  5. Monitoring and information management system at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J.

    1996-01-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)

  6. Monitoring and information management system at the Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1996-07-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)

  7. Electronics engineering research proposals for FY78

    International Nuclear Information System (INIS)

    Cleland, L.L.; Ekstrom, M.P.; Miller, E.K.

    1977-01-01

    Since most of the Electronics Engineering Research expenditures are in the Engineering Research Division (ERD), the two are inseparable when discussing plans. A reorganization of ERD aimed at further expanding LLL capabilities and being more responsive to LLL needs is now complete. Six discipline related groups constitute the research elements in ERD. Three groups remained unchanged, one group was modified slightly, two groups were added, and one group was dissolved. The technical activities of each of the six research-oriented groups within ERD are reported

  8. Argonne National Laboratory research to help U.S. steel industry

    CERN Multimedia

    2003-01-01

    Argonne National Laboratory has joined a $1.29 million project to develop technology software that will use advanced computational fluid dynamics (CFD), a method of solving fluid flow and heat transfer problems. This technology allows engineers to evaluate and predict erosion patterns within blast furnaces (1 page).

  9. Use of the LITEE Lorn Manufacturing Case Study in a Senior Chemical Engineering Unit Operations Laboratory

    Science.gov (United States)

    Abraham, Nithin Susan; Abulencia, James Patrick

    2011-01-01

    This study focuses on the effectiveness of incorporating the Laboratory for Innovative Technology and Engineering Education (LITEE) Lorn Manufacturing case into a senior level chemical engineering unit operations course at Manhattan College. The purpose of using the case study is to demonstrate the relevance of ethics to chemical engineering…

  10. Modern mechanical engineering research, development and education

    CERN Document Server

    2014-01-01

    This book covers modern subjects of mechanical engineering such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, sustainability as well as all aspects related with mechanical engineering education. The chapters help enhance the understanding of both the fundamentals of mechanical engineering and its application to the solution of problems in modern industry. This book is suitable for students, both in final undergraduate mechanical engineering courses or at the graduate level. It also serves as a useful reference for academics, mechanical engineering researchers, mechanical, materials and manufacturing engineers, professionals in related with mechanical engineering.

  11. GaInSn usage in the research laboratory

    International Nuclear Information System (INIS)

    Morley, N. B.; Burris, J.; Cadwallader, L. C.; Nornberg, M. D.

    2008-01-01

    GaInSn, a eutectic alloy, has been successfully used in the Magneto-Thermofluid Research Laboratory at the University of California-Los Angeles and at the Princeton Plasma Physics Laboratory for the past six years. This paper describes the handling and safety of GaInSn based on the experience gained in these institutions, augmented by observations from other researchers in the liquid metal experimental community. GaInSn is an alloy with benign properties and shows considerable potential in liquid metal experimental research and cooling applications

  12. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    Science.gov (United States)

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  13. A Research Agenda for Security Engineering

    Directory of Open Access Journals (Sweden)

    Rich Goyette

    2013-08-01

    Full Text Available Despite nearly 30 years of research and application, the practice of information system security engineering has not yet begun to exhibit the traits of a rigorous scientific discipline. As cyberadversaries have become more mature, sophisticated, and disciplined in their tradecraft, the science of security engineering has not kept pace. The evidence of the erosion of our digital security – upon which society is increasingly dependent – appears in the news almost daily. In this article, we outline a research agenda designed to begin addressing this deficit and to move information system security engineering toward a mature engineering discipline. Our experience suggests that there are two key areas in which this movement should begin. First, a threat model that is actionable from the perspectives of risk management and security engineering should be developed. Second, a practical and relevant security-measurement framework should be developed to adequately inform security-engineering and risk-management processes. Advances in these areas will particularly benefit business/government risk assessors as well as security engineers performing security design work, leading to more accurate, meaningful, and quantitative risk analyses and more consistent and coherent security design decisions. Threat modelling and security measurement are challenging activities to get right – especially when they need to be applied in a general context. However, these are decisive starting points because they constitute the foundation of a scientific security-engineering practice. Addressing these challenges will require stronger and more coherent integration between the sub-disciplines of risk assessment and security engineering, including new tools to facilitate that integration. More generally, changes will be required in the way security engineering is both taught and practiced to take into account the holistic approach necessary from a mature, scientific

  14. Center for Computing Research Summer Research Proceedings 2015.

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Andrew Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-18

    The Center for Computing Research (CCR) at Sandia National Laboratories organizes a summer student program each summer, in coordination with the Computer Science Research Institute (CSRI) and Cyber Engineering Research Institute (CERI).

  15. Air Force Research Laboratory's Rocket Engine Program Enters Fast-Paced Test Phase

    National Research Council Canada - National Science Library

    Thornburg, Jeff

    2002-01-01

    .... Recent tests of the Integrated Powerhead Demonstration project here established a technical first for the United States and mark the first advancements in boost engine technology since the space...

  16. Physics research 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Research programmes at Oxford University are given for the year 1980 of the Clarendon Laboratory, Nuclear Physics Laboratory, Theoretical Physics Department and the Atmospheric Physics Department, together with provisional research programmes in Astrophysics, Metallurgy and the Science of Materials, and Archaeology and the History of Art. Items of interest to physicists are also included from Engineering Science, Geology and Mineralogy, Laboratory of Molecular Biophysics, Physical Chemistry Laboratory and the Chemical Crystallography Laboratory. (U.K.)

  17. Government-industry-uUniversity and rResearch lLaboratories cCoordination for new product development: Session 2. Government research laboratory perspective

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1997-01-01

    This talk is the second in an expanded series of presentations on the Government-Industry-University and Research Laboratories Coordination for new product development, which is a timely and important public policy issue. Such interactions have become particularly timely in light of the present decline in funding for research and development (R ampersand D) in the nation''s budget and in the private sector. These interactions, at least in principle, provide a means to maximize benefits for the greater good of the nation by pooling the diminishing resources. National laboratories, which traditionally interacted closely with the universities in educational training, now are able to also participate closely with industry in joint R ampersand D thanks to a number of public laws legislated since the early 80s. A review of the experiences with such interactions at Argonne National Laboratory, which exemplifies the national laboratories, shows that, despite differences in their traditions and the missions, the national laboratory-industry-university triangle can work together

  18. Buried waste remote survey of the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Richardson, B.S.; Noakes, M.W.; Griebenow, B.E.; Josten, N.E.

    1991-01-01

    Burial site characterization is an important first step in the restoration of subsurface disposal sites. Testing and demonstration of technology for remote buried waste site characterization were performed at the Idaho National Engineering Laboratory (INEL) by a team from five US Department of Energy (DOE) laboratories. The US Army's Soldier Robot Interface Project (SRIP) vehicle, on loan to the Oak Ridge National Laboratory (ORNL), was used as a remotely operated sensor platform. The SRIP was equipped with an array of sensors including terrain conductivity meter, magnetometer, ground-penetrating radar (GPR), organic vapor detector, gamma-based radar detector, and spectrum analyzer. The testing and demonstration were successfully completed and provided direction for future work in buried waste site characterization

  19. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  20. Department of Petroleum Engineering and Center for Petroleum and Geosystems Engineering annual report, 1990--1991 academic year

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The Department of Petroleum Engineering at The University of Texas at Austin is one of more than 20 such departments in the United States and more than 40 worldwide. The department has more than 20 faculty members and, as of the fall of 1990, 146 undergraduate and 156 graduate students. During the 1990--91 academic year, undergraduate enrollment is up slightly from the several downturns that began in 1986; graduate enrollment continues to increase, significantly in the number of Ph.D. candidates enrolled. The 1990--91 academic year was one of consolidation of gains. A remote teaching program in the Midland-Odessa area was initiated. During 1991, the Center for Petroleum and Geosystems Engineering (CPGE) continued its large, diversified research activities related to oil, gas and geopressured/geothermal energy production, energy and mineral resources analysis, and added new research projects in other areas such as groundwater remediation. Many of these research projects included interdisciplinary efforts involving faculty, research scientists and graduate students in chemistry, mathematics, geology, geophysics, engineering mechanics, chemical engineering, microbiology and other disciplines. Several projects were undertaken in cooperation with either the Bureau of Economic Geology or the Institute for Geophysics at The University of Texas at Austin. Collaborative research projects with scientists at Brookhaven National Laboratory, Los Alamos National Laboratory, Rice University, and Sandia National Laboratory were also initiated. About 43 companies from seven countries around the world continued to provide the largest portion of research funding to CPGE.

  1. Department of Petroleum Engineering and Center for Petroleum and Geosystems Engineering annual report, 1990--1991 academic year

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The Department of Petroleum Engineering at The University of Texas at Austin is one of more than 20 such departments in the United States and more than 40 worldwide. The department has more than 20 faculty members and, as of the fall of 1990, 146 undergraduate and 156 graduate students. During the 1990--91 academic year, undergraduate enrollment is up slightly from the several downturns that began in 1986; graduate enrollment continues to increase, significantly in the number of Ph.D. candidates enrolled. The 1990--91 academic year was one of consolidation of gains. A remote teaching program in the Midland-Odessa area was initiated. During 1991, the Center for Petroleum and Geosystems Engineering (CPGE) continued its large, diversified research activities related to oil, gas and geopressured/geothermal energy production, energy and mineral resources analysis, and added new research projects in other areas such as groundwater remediation. Many of these research projects included interdisciplinary efforts involving faculty, research scientists and graduate students in chemistry, mathematics, geology, geophysics, engineering mechanics, chemical engineering, microbiology and other disciplines. Several projects were undertaken in cooperation with either the Bureau of Economic Geology or the Institute for Geophysics at The University of Texas at Austin. Collaborative research projects with scientists at Brookhaven National Laboratory, Los Alamos National Laboratory, Rice University, and Sandia National Laboratory were also initiated. About 43 companies from seven countries around the world continued to provide the largest portion of research funding to CPGE.

  2. The Laboratories at Seibersdorf: Multi-disciplinary research and support centre

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1987-01-01

    The main research activities performed at the IAEA laboratories at Seibersdorf in the Agriculture Laboratory, Physics-Chemistry-Instrumentation Laboratory and Safeguards Analytical Laboratory, as well as the training activities are briefly described

  3. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  4. Research directions in computer engineering. Report of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H

    1982-09-01

    The results of a workshop held in November 1981 in Washington, DC, to outline research directions for computer engineering are reported upon. The purpose of the workshop was to provide guidance to government research funding agencies, as well as to universities and industry, as to the directions which computer engineering research should take for the next five to ten years. A select group of computer engineers was assembled, drawn from all over the United States and with expertise in virtually every aspect of today's computer technology. Industrial organisations and universities were represented in roughly equal numbers. The panel proceeded to provide a sharper definition of computer engineering than had been in popular use previously, to identify the social and national needs which provide the basis for encouraging research, to probe for obstacles to research and seek means of overcoming them and to delineate high-priority areas in which computer engineering research should be fostered. These included experimental software engineering, architectures in support of programming style, computer graphics, pattern recognition. VLSI design tools, machine intelligence, programmable automation, architectures for speech and signal processing, computer architecture and robotics. 13 references.

  5. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  6. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    Science.gov (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  7. Proceedings of the specialist research meeting on scientific and engineering researches of unstable nuclei and on their nuclear methodology (3)

    International Nuclear Information System (INIS)

    Kawade, K.; Taniguchi, A.; Yamada, S.

    1998-01-01

    New research fields with the use of radioactive ion beams are now rapidly developing by virtue of recent progress in radioactive beam accelerators. The scientific and engineering researches on unstable nuclei far from stability are getting particular interests aiming at the full use of their radiation. In the circumstance many laboratories report utilizations and researches of the RI beam, the Tohoku University's renewal plan of the cyclotron and the short-lived nuclear beam facility at KEK have started. To discuss these new subjects on the scientific and engineering researches of unstable nuclei and on their nuclear methodology, the third specialist meeting was held at the KUR on February 16 and 17, 1998. Several noticeable and wide scope works on the method of RI-beam generation and on the new development of nuclear methodology have been reported, such as fundamental researches with laser, new isotope searchings and researches of nuclear structures with ISOL, in-beam nuclear spectroscopies through the deep-inelastic collision. In this meeting, especially, fundamental support-researches are reported, which are precise measurements of absolute disintegration rates, a gamma peak analysis method, evaluations of fundamental nuclear data, measurements of beta detector response functions for reducing Q values and precise measurement of high energy gamma intensities up to 11 MeV. The 14 papers are indexed individually. (J.P.N.)

  8. Data-driven engineering design research: Opportunities using open data

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2017-01-01

    the already available and continuously growing body of open data sources to create opportunities for research in Engineering Design. Insights are illustrated by an examination of two examples: a study of open source software repositories and an analysis of open business registries in the cleantech industry....... We conclude with a discussion about the limitations, challenges and risks of using open data in Engineering Design research and practice.......Engineering Design research relies on quantitative and qualitative data to describe design-related phenomena and prescribe improvements for design practice. Given data availability, privacy requirements and other constraints, most empirical data used in Engineering Design research can be described...

  9. Research at the Oak Ridge National Laboratory (ORNL)

    International Nuclear Information System (INIS)

    Postma, H.

    1980-01-01

    The Oak Ridge National Laboratory is a large (5300 people), US-government-funded laboratory, which performs research in many disciplines and in many technological areas. Programs and organization of ORNL are described for the People's Republic of China

  10. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2016-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There is a number of such equipment in use at different institutions and are found to be very useful. (author)

  11. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2014-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There are a number of such equipment in use at different institutions and are found to be very useful. (author)

  12. Reactor laboratory course for students majoring in nuclear engineering with the Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    Nishihara, H.; Shiroya, S.; Kanda, K.

    1996-01-01

    With the use of the Kyoto University Critical Assembly (KUCA), a joint reactor laboratory course of graduate level is offered every summer since 1975 by nine associated Japanese universities (Hokkaido University, Tohoku University, Tokyo Institute of Technology, Musashi Institute of Technology, Tokai University, Nagoya University, Osaka University, Kobe University of Mercantile Marine and Kyushu University) in addition to a reactor laboratory course of undergraduate level for Kyoto University. These courses are opened for three weeks (two weeks for the joint course and one week for the undergraduate course) to students majoring in nuclear engineering and a total of 1,360 students have taken the course in the last 21 years. The joint course has been institutionalized with the background that it is extremely difficult for a single university in Japan to have her own research or training reactor. By their effort, the united faculty team of the joint course have succeeded in giving an effective, unique one-week course, taking advantage of their collaboration. Last year, an enquete (questionnaire survey) was conducted to survey the needs for the educational experiments of graduate level and precious data have been obtained for promoting reactor laboratory courses. (author)

  13. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  14. A tracking system for laboratory mice to support medical researchers in behavioral analysis.

    Science.gov (United States)

    Macrì, S; Mainetti, L; Patrono, L; Pieretti, S; Secco, A; Sergi, I

    2015-08-01

    The behavioral analysis of laboratory mice plays a key role in several medical and scientific research areas, such as biology, toxicology, pharmacology, and so on. Important information on mice behavior and their reaction to a particular stimulus is deduced from a careful analysis of their movements. Moreover, behavioral analysis of genetically modified mice allows obtaining important information about particular genes, phenotypes or drug effects. The techniques commonly adopted to support such analysis have many limitations, which make the related systems particularly ineffective. Currently, the engineering community is working to explore innovative identification and sensing technologies to develop new tracking systems able to guarantee benefits to animals' behavior analysis. This work presents a tracking solution based on passive Radio Frequency Identification Technology (RFID) in Ultra High Frequency (UHF) band. Much emphasis is given to the software component of the system, based on a Web-oriented solution, able to process the raw tracking data coming from a hardware system, and offer 2D and 3D tracking information as well as reports and dashboards about mice behavior. The system has been widely tested using laboratory mice and compared with an automated video-tracking software (i.e., EthoVision). The obtained results have demonstrated the effectiveness and reliability of the proposed solution, which is able to correctly detect the events occurring in the animals' cage, and to offer a complete and user-friendly tool to support researchers in behavioral analysis of laboratory mice.

  15. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  16. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  17. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  18. Cognitive engineering in aerospace applications

    Science.gov (United States)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  19. Department of Energy’s ARM Climate Research Facility External Data Center Operations Plan Located At Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cialella, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gregory, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lazar, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liang, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tilp, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wagener, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-01

    The External Data Center (XDC) Operations Plan describes the activities performed to manage the XDC, located at Brookhaven National Laboratory (BNL), for the Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. It includes all ARM infrastructure activities performed by the Data Management and Software Engineering Group (DMSE) at BNL. This plan establishes a baseline of expectation within the ARM Operations Management for the group managing the XDC.

  20. Federal Funding of Engineering Research and Development, 1980-1984.

    Science.gov (United States)

    American Society of Mechanical Engineers, Washington, DC.

    Data on the sources, amounts, and trends of federal funding for engineering research and development (R&D) are presented for 1980-1984. Narrative highlights are provided for: the total federal funding obligations for engineering R&D, mechanical engineering, astronautical engineering, aeronautical engineering, chemical engineering, civil…

  1. NASA Ames Fluid Mechanics Laboratory research briefs

    Science.gov (United States)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  2. Welded rupture disc assemblies for use in Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Faltings, R.E.

    1976-01-01

    Welded rupture disc assemblies were investigated and developed in various ranges for probable use by experimenters in their activities in the Tritium Research Laboratory at Sandia Laboratories, Livermore. This study indicates that currently welded rupture disc assemblies with appropriate testing and installation by certified pressure installers may be used in pressure systems in the Tritium Research Laboratory and other areas at SLL

  3. Bringing the excitement and motivation of research to students; Using inquiry and research-based learning in a year-long biochemistry laboratory : Part II-research-based laboratory-a semester-long research approach using malate dehydrogenase as a research model.

    Science.gov (United States)

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A; Provost, Joseph J

    2010-09-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments for the entire semester. This style of laboratory replaces a variety of shorter labs in favor of an in depth research-based learning experience. The concept is to allow students to function in independent research groups. The research projects are focused on a series of wild-type and mutant clones of malate dehydrogenase. A common research theme for the laboratory helps instructors administer the course and is key to delivering a research opportunity to a large number of students. The outcome of this research-based learning laboratory results in students who are much more confident and skilled in critical areas in biochemistry and molecular biology. Students with research experience have significantly higher confidence and motivation than those students without a previous research experience. We have also found that all students performed better in advanced courses and in the workplace. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  4. Computer systems and software engineering

    Science.gov (United States)

    Mckay, Charles W.

    1988-01-01

    The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.

  5. Changes and challenges in the Software Engineering Laboratory

    Science.gov (United States)

    Pajerski, Rose

    1994-01-01

    Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization, the Flight Dynamics Division (FDD), develops, maintains, and manages complex flight dynamics systems. The SEL is composed of three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation. During the past 18 years, the SEL's overall goal has remained the same: to improve the FDD's software products and processes in a measured manner. This requires that each development and maintenance effort be viewed, in part, as a SEL experiment which examines a specific technology or builds a model of interest for use on subsequent efforts. The SEL has undertaken many technology studies while developing operational support systems for numerous NASA spacecraft missions.

  6. Elevating Learner Achievement Using Formative Electronic Lab Assessments in the Engineering Laboratory: A Viable Alternative to Weekly Lab Reports

    Science.gov (United States)

    Chen, Baiyun; DeMara, Ronald F.; Salehi, Soheil; Hartshorne, Richard

    2018-01-01

    A laboratory pedagogy interweaving weekly student portfolios with onsite formative electronic laboratory assessments (ELAs) is developed and assessed within the laboratory component of a required core course of the electrical and computer engineering (ECE) undergraduate curriculum. The approach acts to promote student outcomes, and neutralize…

  7. Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research: scientific and cultural exchange in undergraduate engineering.

    Science.gov (United States)

    Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin

    2011-01-01

    A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.

  8. MSU-DOE Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  9. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  10. Detonation Engine Research Facility (DERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility is configured to safely conduct experimental pressuregain combustion research. The DERF is capable of supporting up to 60,000 lbf thrust...

  11. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  12. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  13. Laboratory Directed Research and Development annual report, Fiscal year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER ampersand D, as well as other discretionary research and development activities not provided for in a DOE program.'' Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL's LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  14. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  15. Software Engineering Laboratory (SEL) database organization and user's guide, revision 2

    Science.gov (United States)

    Morusiewicz, Linda; Bristow, John

    1992-01-01

    The organization of the Software Engineering Laboratory (SEL) database is presented. Included are definitions and detailed descriptions of the database tables and views, the SEL data, and system support data. The mapping from the SEL and system support data to the base table is described. In addition, techniques for accessing the database through the Database Access Manager for the SEL (DAMSEL) system and via the ORACLE structured query language (SQL) are discussed.

  16. Storage of transuranic contaminated solid wastes at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wehmann, George

    1975-01-01

    The storage method for low-level transuranic wastes employed at the Idaho National Engineering Laboratory is discussed in detail. The techniques used for wastes containing greater than ten nanocuries of transuranic material per gram of waste as well as the technique for lesser concentrations of transuranic wastes are described. The safety, efficiency and adequacy of these storage methods are presented

  17. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  18. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    International Nuclear Information System (INIS)

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources

  19. Horonobe Underground Research Laboratory project. Synthesis of phase 1 investigation 2001-2005, Volume 'geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Ota, Kunio; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Hama, Katsuhiro; Kunimaru, Takanori; Takeuchi, Ryuji; Tanai, Kenji; Kurikami, Hiroshi; Wakasugi, Keiichiro; Ishii, Eiichi

    2011-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project, of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the project as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  20. Horonobe Underground Research Laboratory project synthesis of phase I investigation 2001-2005. Volume 'Geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Tanai, Kenji; Nishimura, Mayuka; Kobayashi, Yasushi; Hiramoto, Masayuki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Wakasugi, Keiichiro; Nakano, Katsushi; Seo, Toshihiro; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Kurikami, Hiroshi; Kunimaru, Takanori; Ishii, Eiichi; Ota, Kunio; Hama, Katsuhiro; Takeuchi, Ryuji

    2007-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project (HOR), of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in HOR as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)