WorldWideScience

Sample records for engineering physics experiment

  1. Engineering Physics Division integral experiments and their analyses

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Integral experiments are performed as part of the Engineering Physics Division's on-going research in the development and application of radiation shielding methods. Integral experiments performed at the Oak Ridge Electron Linear Accelerator (ORELA) under the Division's Magnetic Fusion program are designed to provide data against which ORNL and all other organizations involved in shielding calculations for fusion devices can test their calculational methods and interaction data. The Tower Shielding Facility (TSF) continues to be the primary source of integral data for fission reactor shielding design. The experiments performed at the TSF during the last few years have been sponsored by the Gas Cooled Fast Reactor (GCFR) program. During this report period final documentation was also prepared for the remaining LMFBR shielding experiments, including an examination of streaming through annular slits and measurement of secondary gamma-ray production in reinforced concrete

  2. The engineering design of the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1994-01-01

    A mission and supporting physics objectives have been developed, which establishes an important role for the Tokamak Physics Experiment (TPX) in developing the physic basis for a future fusion reactor. The design of TPX include advanced physics features, such as shaping and profile control, along with the capability of operating for very long pulses. The development of the superconducting magnets, actively cooled internal hardware, and remote maintenance will be an important technology contribution to future fusion projects, such as ITER. The Conceptual Design and Management Systems for TPX have been developed and reviewed, and the project is beginning Preliminary Design. If adequately funded the construction project should be completed in the year 2000

  3. Engineering physics

    CERN Document Server

    Mukherji, Uma

    2015-01-01

    ENGINEERING PHYSICS is designed as a textbook for first year engineering students of a two semester course in Applied Physics according to new revised syllabus. However the scope of this book is not only limited to undergraduate engineering students and science students, it can also serve as a reference book for practicing scientists.Advanced technological topics like LCD, Squid, Maglev system, Electron microscopes, MRI, Photonics - Photonic fibre, Nano-particles, CNT, Quantum computing etc., are explained with basic underlying principles of Physics.This text explained following topics with numerous solved, unsolved problems and questions from different angles. Part-I contains crystal structure, Liquid crystal, Thermo-electric effect, Thermionic emission, Ultrasonic, Acoustics, semiconductor and magnetic materials. Whereas Part-2 contains Optics, X-rays, Electron optics, Dielectric materials, Quantum Physics and Schrodinger wave equation, Laser, Fibre-optics and Holography, Radio-activity, Super-conductivity,...

  4. Nuclear engineering laboratory self regulated power oscillation experiments at the Health Physics Research Reactor

    International Nuclear Information System (INIS)

    Miller, L.F.; Mihalczo, J.T.; Bailiff, E.G.; Woody, N.D.; Gardner, G.D.

    1983-01-01

    Self regulated power oscillation experiments with a variety of initial conditions have been performed with the ORNL Health Physics Research Reactor (HPRR) by undergraduate nuclear engineering students from The University of Tennessee for several years. These experiments demonstrate the coupling between reactor kinetics and heat transfer and show how the temperature coefficient of reactivity affects reactor behavior. A model that consists of several coupled first order nonlinear differential equations is used to calculate the temperature of the core center and surface and power as a function of time which are compared with the experimental data; also, the model is also used to study the effects of various model parameters and initial conditions on the amplitude, frequency and damping of the power and temperature oscillations. A previous paper presented some limited experimental results and demonstrated the correspondence between a simple point model and the experimental data. This paper presents the results of experiments for: (1) the initial power fixed at 9 kW with central core temperatures of 300 0 F and 500 0 F, annd (2) the initial central core temperature fixed at 500 0 F with initial powers of 6 and 8 kW

  5. Particle physics experiments 1992

    International Nuclear Information System (INIS)

    Roberts, B.A.

    1993-03-01

    The research programs described here were carried out in 1992 at Rutherford Appleton Laboratory and funded by the United Kingdom Science and Engineering Research Council. The area covered in these experiments is particle physics. Unedited contributions from over forty experimental programs are included. Experiments are listed according to their current status, the accelerator used and its years of operation. (UK)

  6. Educational analysis of a first year engineering physics experiment on standing waves: based on the ACELL approach

    International Nuclear Information System (INIS)

    Bhathal, Ragbir; Sharma, Manjula D; Mendez, Alberto

    2010-01-01

    This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The experiment is likely to be found in many physics departments, hence is appropriate to illustrate the ACELL approach in physics. The concepts associated with standing waves are difficult; however, they are underpinned by mathematical formulation which lend themselves to be visualized in experiments. The challenge is to strike a balance between these two for the particular student cohort. In this study, this balance is achieved by using simple equipment and providing appropriate scaffolds for students to associate abstract concepts with concrete visuals. In essence the experiment is designed to adequately manage cognitive resources. Students work in pairs and are questioned and assisted by demonstrators and academic staff during a 2 h practical class. Students were surveyed using the ACELL instrument. Analysis of the data showed that by completing the practical students felt that their understanding of physics had increased. Furthermore, students could see the relevance of this experiment to their engineering studies and that it provided them with an opportunity to take responsibility for their own learning. Overall they had a positive learning experience. In short there is a lot of dividend from a small outlay of resources.

  7. Modern physics for engineers

    CERN Document Server

    Singh, Jasprit

    1999-01-01

    Linking physics fundamentals to modern technology-a highly applied primer for students and engineersReminding us that modern inventions-new materials, information technologies, medical technological breakthroughs-are based on well-established fundamental principles of physics, Jasprit Singh integrates important topics from quantum mechanics, statistical thermodynamics, and materials science, as well as the special theory of relativity. He then goes a step farther and applies these fundamentals to the workings of electronic devices-an essential leap for anyone interested in developing n

  8. Particle physics experiments 1983

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1983-01-01

    The report describes work carried out in 1983 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  9. Electromagnetic design, engineering development and magnetic qualification of a horizontal layered scaled magnet for physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Praveen; Teotia, Vikas; Malhotra, Sanjay; Taly, Y.K., E-mail: praveent@barc.gov.in [Control Instrumentation Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Neutrino detectors around the world have shown evidence that these weakly interacting, little-understood particles are not really mass less, as was thought so far. Not only do they have non-zero masses, different species (or flavors) of neutrinos seem to mix and oscillate into one another as they traverse through the cosmos. If this is true, this is not only one of the first pieces of evidence for physics beyond the so-called Standard Model of Particle Physics, but would also have great impact on diverse fields such as nuclear and particle physics, astrophysics and cosmology. It is thus imperative to study the details of the interactions of these particles. These will be detected by means of an iron calorimeter (ICAL), comprising detectors sandwiched in alternate layers of soft magnetic iron. The iron core is magnetized to allow bending of the charged particles. The direction and the energy of the original incoming neutrino, that caused the interaction, can then be accurately determined. Racetrack coils through slots cut in the iron core create a uniform magnetic field in the iron core. A highly uniform magnetic field in the soft iron core is required to accurately determine the mass and energy of incident particle. The charged particles bend in this magnetic field; oppositely charged particles bending in opposite directions. The charge, energy and momentum of the emitted particle is thus determined. An electromagnet was designed as a laboratory facility for conducting experimental studies in particle physics. This paper discusses the electromagnetic design, development, fabrication, magnetic qualification and magnetic measurement issues of an electromagnet developed for physics studies. (author)

  10. Emulation-Based Virtual Laboratories: A Low-Cost Alternative to Physical Experiments in Control Engineering Education

    Science.gov (United States)

    Goodwin, G. C.; Medioli, A. M.; Sher, W.; Vlacic, L. B.; Welsh, J. S.

    2011-01-01

    This paper argues the case for emulation-based virtual laboratories in control engineering education. It demonstrates that such emulation experiments can give students an industrially relevant educational experience at relatively low cost. The paper also describes a particular emulation-based system that has been developed with the aim of giving…

  11. Particle physics experiments 1989

    International Nuclear Information System (INIS)

    Bairstow, R.

    1990-01-01

    This report describes work carried out in 1989 on experiments approved by the Particle Physics Experiments Selection Panel of Rutherford Appleton Laboratory. The contents consist of unedited contributions from each experiment. (author)

  12. Particle physics experiments 1987

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1988-01-01

    This report describes work carried out in 1987 on experiments approved by the Particle Physics Experiments Selection Panel (United Kingdom). The contents consist of unedited contributions from each experiment. (author)

  13. Particle physics experiments

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1986-01-01

    The report of the Rutherford Appleton Laboratory describes the work carried out in 1985 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  14. Particle physics experiments 1984

    International Nuclear Information System (INIS)

    Stuart, G.

    1985-01-01

    The Rutherford Appleton laboratory report describes work carried out in 1984 on experiments approved by the Particle Physics selection panel. The contents consist of unedited contributions from each experiment. (author)

  15. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  16. Particle physics experiments 1982

    International Nuclear Information System (INIS)

    Rousseau, M.D.; Stuart, G.

    1983-01-01

    Work carried out in 1982 on 52 experiments approved by the Particle Physics Experiments Selection Panel is described. Each experiment is listed under title, collaboration, technique, accelerator, year of running, status and spokesman. Unedited contributions are given from each experiment. (U.K.)

  17. An exciting experiment for pre-engineering and introductory physics students: creating a DC motor using the Lorentz force

    International Nuclear Information System (INIS)

    Abdul-Razzaq, Wathiq N; Boehm, Manfred H; Bushey, Ryan K

    2008-01-01

    Introductory physics laboratories have been demonstrated in some instances to be difficult or uninteresting to students at the collegiate level. We have developed a laboratory that introduces the concept of the Lorentz force and allows students to build a non-traditional DC motor out of easily acquired materials. Basic electricity and magnetism concepts are joined together in a simple and enjoyable experiment that allows the students to demonstrate physics at first hand and without the use of complex materials

  18. Particle physics experiments 1986

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1987-01-01

    The paper presents research work carried out in 1986 on 52 elementary particle experiments approved by the Particle Physics Experiments Selection Panel. Most of the experiments were collaborative and involved research groups from different countries. About half of the experiments were conducted at CERN, the remaining experiments employed the accelerators: LAMPT, LEP, PETRA, SLAC, and HERA. The contents consist of unedited contributions from each experiment. (U.K.)

  19. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    Science.gov (United States)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  20. Particle physics experiments 1988

    International Nuclear Information System (INIS)

    Bairstow, R.

    1989-01-01

    This report describes work carried out in 1988 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. More than forty projects at different accelerators (SPS, ISIS, PETRA, LAMPF, LEP, HERA, BNL, ILL, LEAR) are listed. Different organisations collaborate on different projects. A brief progress report is given. References to published articles are given. (author)

  1. VIII International Congress of Engineering Physics

    International Nuclear Information System (INIS)

    2017-01-01

    Optics Engineering Physics History Acoustics Related Topics The conference integrates lectures on top trending topics with pre-congress workshops, which are given by recognized scientists with an outstanding academic record. The lectures and workshops allow to share experiences and create research networks. The Conference also encourages professional mobility among all universities and research institutes. CIIF2016 Organizing and Editorial Committee Dr. Ernesto Rodrigo Vázquez Cerón Dra. Inés Riech Méndez Dr. Oscar Olvera Neria Dra. Milenis Acosta Díaz Dr. Roberto Tito Hernández López Dr. Cesar Renán Acosta Prof. Jaime Granados Samaniego Dr. José Méndez Gamboa Dr. Anatolio Martínez Jiménez Dr. Luis Enrique Noreña Franco (paper)

  2. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  3. Subterranean stress engineering experiments

    International Nuclear Information System (INIS)

    Campbell, J.R.; Colgate, S.A.; Wheat, B.M.

    1980-01-01

    The state of stress in a subterranean rock mass has classically been assumed to be constant at best. In soil with a high clay content, preconsolidation and drainage methods can lead to more stable foundation material, but methods for engineering the stresses in large masses of rock are not well known. This paper shows the results from an experiment designed to alter the in situ rock stress field in an oil shale mine. This was done by hydrofracturing the rock by use of a packed-well injection system and then propping the crack open with a thixotropic gel, which slowly hardened to the consistency of cement. Successive hydrofracture and high-pressure grouting resulted in an overstressed region. Well-head injection pressures, surface tilts, injection rates, and subterranean strains were measured and recorded on floppy disk by a Z-80 microprocessor. The results were then transmitted to the large computer system at the Los Alamos Scientific Laboratory (LASL). To put the data in a more useful form, computer-generated movies of the tilts and strains were made by use of computer graphics developed at LASL. The purpose of this paper is to present results from the Single Large Instrumented Test conducted in the Colony Oil Shale Mine near Rifle, Colorado. 13 figures

  4. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.

  5. Dr Kathryn Beers, Assistant Director Physical Sciences and Engineering, Office of Science and Technology Policy Executive Office of the President United States of America visit the CMS experiment at point 5.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Dr Kathryn Beers, Assistant Director Physical Sciences and Engineering, Office of Science and Technology Policy Executive Office of the President United States of America visit the CMS experiment at point 5.

  6. Collaborative engineering experiences

    NARCIS (Netherlands)

    Ir. Peter van Kollenburg; Dr. Ir. P. Mulders; Ir. Dick van Schenk Brill; Dr. Ir. G. Schouten; Dr. J. Ochs

    2000-01-01

    In the fall of 1999, an international integrated product development pilot project based on collaborative engineering was started with team members in two international teams from the United States, The Netherlands and Germany. Team members interacted using various Internet capabilities, including,

  7. VII International Congress of Engineering Physics

    Science.gov (United States)

    2015-01-01

    In the frame of the fortieth anniversary celebration of the Universidad Autónoma Metropolitana and the Physics Engineering career, the Division of Basic Science and Engineering and its Departments organized the "VII International Congress of Physics Engineering". The Congress was held from 24 to 28 November 2014 in Mexico City, Mexico. This congress is the first of its type in Latin America, and because of its international character, it gathers experts on physics engineering from Mexico and all over the globe. Since 1999, this event has shown research, articles, projects, technological developments and vanguard scientists. These activities aim to spread, promote, and share the knowledge of Physics Engineering. The topics of the Congress were: • Renewable energies engineering • Materials technology • Nanotechnology • Medical physics • Educational physics engineering • Nuclear engineering • High precision instrumentation • Atmospheric physics • Optical engineeringPhysics history • Acoustics This event integrates lectures on top trending topics with pre-congress workshops, which are given by recognized scientists with an outstanding academic record. The lectures and workshops allow the exchange of experiences, and create and strengthen research networks. The Congress also encourages professional mobility among all universities and research centres from all countries. CIIF2014 Organizing and Editorial Committee Dr. Ernesto Rodrigo Vázquez Cerón Universidad Autónoma Metropolitana - Azcapotzalco ervc@correo.azc.uam.mx Dr. Luis Enrique Noreña Franco Universidad Autónoma Metropolitana - Azcapotzalco lnf@correo.azc.uam.mx Dr. Alberto Rubio Ponce Universidad Autónoma Metropolitana - Azcapotzalco arp@correo.azc.uam.mx Dr. Óscar Olvera Neria Universidad Autónoma Metropolitana - Azcapotzalco oon@correo.azc.uam.mx Professor Jaime Granados Samaniego Universidad Autónoma Metropolitana - Azcapotzalco jgs@correo.azc.uam.mx Dr. Roberto Tito Hern

  8. Teaching Knowledge Engineering: Experiences

    DEFF Research Database (Denmark)

    Andersen, Tom; Hartvig, Susanne C

    1998-01-01

    Includes description of experiences gained by teaching KE in construction domains. It outlines good starting points and overall guidance to education in applied AI.......Includes description of experiences gained by teaching KE in construction domains. It outlines good starting points and overall guidance to education in applied AI....

  9. Mathematics in physics and engineering

    CERN Document Server

    Irving, J; Massey, H S W; Brueckner, Keith A

    1959-01-01

    Mathematics in Physics and Engineering describes the analytical and numerical (desk-machine) methods that arise in pure and applied science, including wave equations, Bessel and Legendre functions, and matrices. The manuscript first discusses partial differential equations, as well as the method of separation of variables, three-dimensional wave equation, diffusion or heat flow equation, and wave equation in plane and cylindrical polar coordinates. The text also ponders on Frobenius' and other methods of solution. Discussions focus on hypergeometric equation, Bessel's equation, confluent hyper

  10. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  11. Aerospace engineering training: universities experience

    Directory of Open Access Journals (Sweden)

    Mertins Kseniya

    2016-01-01

    Full Text Available Contemporary professional working in aerospace engineering must have a set of soft and hard skills. The experience gained in universities shows that training of a competent professional is impossible without an employer involved in this process. The paper provides an analysis of missions, tasks and experience of aerospace professionals and identifies the present and future roles, missions and required skills of a highly qualified specialist in aerospace engineering. This analysis can be used to design a master’s program aiming at providing students with the required knowledge, know-how and attitudes needed to succeed as professionals in industrial companies.

  12. An Exciting Experiment for Pre-Engineering and Introductory Physics Students: Creating a DC Motor Using the Lorentz Force

    Science.gov (United States)

    Abdul-Razzaq, Wathiq N.; Boehm, Manfred H.; Bushey, Ryan K.

    2008-01-01

    Introductory physics laboratories have been demonstrated in some instances to be difficult or uninteresting to students at the collegiate level. We have developed a laboratory that introduces the concept of the Lorentz force and allows students to build a non-traditional DC motor out of easily acquired materials. Basic electricity and magnetism…

  13. Sustained spheromak physics experiment

    International Nuclear Information System (INIS)

    Hooper, E.B.; Bulmer, R.H.; Cohen, B.I.

    2001-01-01

    The Sustained Spheromak Physics Experiment, SSPX, will study spheromak physics with particular attention to energy confinement and magnetic fluctuations in a spheromak sustained by electrostatic helicity injection. In order to operate in a low collisionality mode, requiring T e >100 eV, vacuum techniques developed for tokamaks will be applied, and a divertor will be used for the first time in a spheromak. The discharge will operate for pulse lengths of several milliseconds, long compared to the time to establish a steady-state equilibrium but short compared to the L/R time of the flux conserver. The spheromak and helicity injector ('gun') are closely coupled, as shown by an ideal MHD model with force-free injector and edge plasmas. The current from the gun passes along the symmetry axis of the spheromak, and the resulting toroidal magnetic field causes the safety factor, q, to diverge on the separatrix. The q-profile depends on the ratio of the injector current to spheromak current and on the magnetic flux coupling the injector to the spheromak. New diagnostics include magnetic field measurements by a reflectometer operating in combined O- and X-modes and by a transient internal probe (TIP). (author)

  14. Sustained spheromak physics experiment

    International Nuclear Information System (INIS)

    Hooper, E.B.; Bulmer, R.H.; Cohen, B.I.

    1999-01-01

    The Sustained Spheromak Physics Experiment, SSPX, will study spheromak physics with particular attention to energy confinement and magnetic fluctuations in a spheromak sustained by electrostatic helicity injection. In order to operate in a low collisionality mode, requiring T e > 100 eV, vacuum techniques developed for tokamaks will be applied, and a divertor will be used for the first time in a spheromak. The discharge will operate for pulse lengths of several milliseconds, long compared to the time to establish a steady-state equilibrium but short compared to the L/R time of the flux conserver. The spheromak and helicity injector ('gun') are closely coupled, as shown by an ideal MHD model with force-free injector and edge plasmas. The current from the gun passes along the symmetry axis of the spheromak, and the resulting toroidal magnetic field causes the safety factor, q, to diverge on the separatrix. The q-profile depends on the ratio of the injector current to spheromak current and on the magnetic flux coupling the injector to the spheromak. New diagnostics include magnetic field measurements by a reflectometer operating in combined O- and X-modes and by a transient internal probe (TIP). (author)

  15. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  16. PVD TBC experience on GE aircraft engines

    Science.gov (United States)

    Maricocchi, Antonio; Bartz, Andi; Wortman, David

    1995-01-01

    The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micron (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than non-PVD TBC components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however a significant temperature reduction was realized over an airfoil without TBC.

  17. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  18. Experiments in Fundamental Neutron Physics

    OpenAIRE

    Nico, J. S.; Snow, W. M.

    2006-01-01

    Experiments using slow neutrons address a growing range of scientific issues spanning nuclear physics, particle physics, astrophysics, and cosmology. The field of fundamental physics using neutrons has experienced a significant increase in activity over the last two decades. This review summarizes some of the recent developments in the field and outlines some of the prospects for future research.

  19. Simulated experiments in modern physics

    International Nuclear Information System (INIS)

    Tirnini, Mahmud Hasan

    1981-01-01

    Author.In this thesis a number of the basic experiments of atomic and nuclear physics are simulated on a microcomputer interfaced to a chart recorder and CRT. These will induce the student to imagine that he is actually performing the experiments. He will collect data to be worked out. The thesis covers the relevant material to set up such experiments in the modern physics laboratory

  20. Engineering Sustainable Engineers through the Undergraduate Experience

    Science.gov (United States)

    Weatherton, Yvette Pearson; Sattler, Melanie; Mattingly, Stephen; Chen, Victoria; Rogers, Jamie; Dennis, Brian

    2012-01-01

    In order to meet the challenges of sustainable development, our approach to education must be modified to equip students to evaluate alternatives and devise solutions that meet multi-faceted requirements. In 2009, faculty in the Departments of Civil, Industrial and Mechanical Engineering at the University of Texas at Arlington began implementation…

  1. Conference on medical physics and biomedical engineering

    International Nuclear Information System (INIS)

    2013-01-01

    Due to the rapid technological development in the world today, the role of physics in modern medicine is of great importance. The frequent use of equipment that produces ionizing radiation further increases the need for radiation protection, complicated equipment requires technical support, the diagnostic and therapeutic methods impose the highest professionals in the field of medical physics. Thus, medical physics and biomedical engineering have become an inseparable part of everyday medical practice. There are a certain number of highly qualified and dedicated professionals in medical physics in Macedonia who committed themselves to work towards resolving medical physics issues. In 2000 they established the first and still only professional Association for Medical Physics and Biomedical Engineering (AMPBE) in Macedonia; a one competent to cope with problems in the fields of medicine, which applies methods of physics and biomedical engineering to medical procedures in order to develop tools essential to the physicians that will ultimately lead to improve the quality of medical practice in general. The First National Conference on Medical Physics and Biomedical Engineering was organized by the AMPBE in 2007. The idea was to gather all the professionals working in medical physics and biomedical engineering in one place in order to present their work and increase the collaboration among them. Other involved professions such as medical doctors, radiation technologists, engineers and professors of physics at the University also took part and contributed to the success of the conference. As a result, the Proceedings were published in Macedonian, with summaries in English. In order to further promote the medical physics amongst the scientific community in Macedonia, our society decided to organize The Second Conference on Medical Physics and Biomedical Engineering in November 2010. Unlike the first, this one was with international participation. This was very suitable

  2. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2010-01-01

    Intended for a first course in modern physics, following an introductory course in physics with calculus, Modern Physics for Scientists and Engineers begins with a brief and focused account of the historical events leading to the formulation of modern quantum theory, while later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac Equation and Quantum Field Theory, and a robust pedagogy and ancillary package including an accompanying website with computer applets assists students in learning the essential material.

  3. Safety engineering experiments of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Noboru

    1987-07-24

    The outline of large scale experiments carried out every year since 1969 to obtain fundamental data and then establish the safety engineering standards concerning the manufacturing, storage and transportation, etc. of all explosives was described. Because it becomes recently difficult to ensure the safety distance in powder magazines and powder plants, the sandwich structure with sand is thought to be suitable as the neighboring barrier walls. The special vertical structure for embankments to provide against a emergency explosion is effective to absorb the blast. Explosion behaviors such as initiating sensitivity, detonation, sympathetic detonation, and shock occurence of the ANFO explosives in place of dynamite and the slurry explosives were studied. The safety engineering standards for the manufacturing and application of explosives were studied to establish because accidents by tabacco fire are not still distinguished. Much data concerning early stage fire fighting, a large quantity of flooding and shock occurence from a assumption of ignition during machining in the propellants manufacturing plant, could be obtained. Basic studies were made to prevent pollution in blasting sites. Collected data are utilized for the safety administration after sufficient discussion. (4 figs, 2 tabs, 3 photos, 17 refs)

  4. Particle physics experiments, 1991

    International Nuclear Information System (INIS)

    Roberts, B.A.

    1992-01-01

    Data taking for this experiment was completed in December 1983. The samples include approximately 19,000 (ν) and 11,000 (ν-bar) charged current events. These constitute the largest data set of interactions on free protons. Work published to date includes studies of inclusive structure functions and final state properties, exclusive final states, neutral current cross sections and production of strange and charmed particles. During the past year results have been published on the production of f 2 (1270) and ν 0 (770) mesons in ρp and ρ-barp charged current interactions. In the case of the f 2 this represents the first observation of such production. It is found that the multiplicities are 0.047±0.017 in ρp and 0.17±0.018 in ρ-barp. The f 2 mesons are mostly produced at large hadronic invariant mass W and in the forward hemisphere. The production of ν 0 mesons can be observed with high statistics in both ρp and ρ-barp interactions and the differential cross section studied. The observations are compared with LUND Monte Carlo predictions, which are generally found to be too high. However qualitative features of the data are reproduced. Work continues on a precise determination of the neutral current/charged current ratio, on the study of charged and neutral current structure functions and on the production of strange particles. (author)

  5. Nuclear physics experiment at INS

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo.

    1981-02-01

    Present activities at the Institute for Nuclear Study (INS) are presented. Selected topics are from recent experiments by use of the INS cyclotron, experiments at the Bevalac facility under the INS-LBL collaboration program, and preparatory works for the Numatron project, a new project for the high-energy heavy-ion physics. (author)

  6. Physics and engineering of radiation detection

    CERN Document Server

    Ahmed, Syed Naeem

    2015-01-01

    Physics and Engineering of Radiation Detection presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. The second edition is fully revised and provides the latest developments in detector technology and analyses software. Also, more material related to measurements in particle physics and a complete solutions manual have been added.

  7. Technical problems and future underground engineering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, G H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1969-07-01

    The technical problems to be solved in future underground engineering experiments are of two kinds. One concerns adequate description of the variation of nuclear explosion effects with physical nd chemical properties of the explosion site. The other concerns engineering of the explosive detonation system to provide adequate safety and security, concurrently with minimum total costs per explosion. The semiempirical equations for explosion effects can be trusted only in the range of explosive energy, depth of burst, and rock type for which there is prior experience. Effects calculations based on the principles of continuum mechanics and measurable geophysical properties appear to work in the few test cases, such as Gasbuggy, to which they have been applied. These calculational methods must be tested in a variety of situations. The relevance of dynamic and static measurements on Dragon Trail, Bronco, Rulison, Stoop, Ketch, and Pinedale to proving the methods are discussed in this paper. The traditional methods of assembling and fielding nuclear explosives have evolved from practice at the Nevada Test Site. These provide great flexibility and assure maximum recovery of all data from each test, thus minimizing the time required to achieve desired results. Timing and firing, radiation monitoring, explosives assembly and emplacement, explosive performance, weather monitoring, and dynamic measurements of earth and building motion have all been handled traditionally as independent functions. To achieve lower costs in underground engineering experiments and projects, one prototype system combining all electronic, measurement, and communication functions is being built. Much further work will be required to complete this effort, including, especially, an examination of safety criteria and means for assuring operational and public safety at reduced costs. (author)

  8. Technical problems and future underground engineering experiments

    International Nuclear Information System (INIS)

    Higgins, G.H.

    1969-01-01

    The technical problems to be solved in future underground engineering experiments are of two kinds. One concerns adequate description of the variation of nuclear explosion effects with physical nd chemical properties of the explosion site. The other concerns engineering of the explosive detonation system to provide adequate safety and security, concurrently with minimum total costs per explosion. The semiempirical equations for explosion effects can be trusted only in the range of explosive energy, depth of burst, and rock type for which there is prior experience. Effects calculations based on the principles of continuum mechanics and measurable geophysical properties appear to work in the few test cases, such as Gasbuggy, to which they have been applied. These calculational methods must be tested in a variety of situations. The relevance of dynamic and static measurements on Dragon Trail, Bronco, Rulison, Stoop, Ketch, and Pinedale to proving the methods are discussed in this paper. The traditional methods of assembling and fielding nuclear explosives have evolved from practice at the Nevada Test Site. These provide great flexibility and assure maximum recovery of all data from each test, thus minimizing the time required to achieve desired results. Timing and firing, radiation monitoring, explosives assembly and emplacement, explosive performance, weather monitoring, and dynamic measurements of earth and building motion have all been handled traditionally as independent functions. To achieve lower costs in underground engineering experiments and projects, one prototype system combining all electronic, measurement, and communication functions is being built. Much further work will be required to complete this effort, including, especially, an examination of safety criteria and means for assuring operational and public safety at reduced costs. (author)

  9. Infusing Real World Experiences into Engineering Education

    Science.gov (United States)

    National Academies Press, 2012

    2012-01-01

    The aim of this report is to encourage enhanced richness and relevance of the undergraduate engineering education experience, and thus produce better-prepared and more globally competitive graduates, by providing practical guidance for incorporating real world experience in US engineering programs. The report, a collaborative effort of the…

  10. Design of experiments in production engineering

    CERN Document Server

    2016-01-01

    This book covers design of experiments (DoE) applied in production engineering as a combination of manufacturing technology with applied management science. It presents recent research advances and applications of design experiments in production engineering and the chapters cover metal cutting tools, soft computing for modelling and optmization of machining, waterjet machining of high performance ceramics, among others.

  11. Physics and information technology an interplay between science and engineering

    CERN Multimedia

    Hagstrom, S B

    1999-01-01

    In the last decade of this century and millennium, the computer and communication revolution has shown its power to transform the society. In this talk I will reflect on my personal experience of witnessing this revolution from an observation post in Silicon Valley. In particular, I will emphasize the role of physics and the interplay between science and engineering in this development. Information technology is often viewed as based on some physics discoveries and inventions such as the transistor and the semiconductor laser. Much of the subsequent development, the integrated circuit being a good example, has been an engineering feat. With shrinking dimensions of the circuits we are approaching the quantum limitations, requiring new types of computer architectures based on fundamental physics concepts. In this context we may ask if we should include the basic concepts of information and information handling as part of physics. Finally I will include some remarks on the views of physics as seen in the eyes of...

  12. Physics Experiments at the UNEDLabs Portal

    Directory of Open Access Journals (Sweden)

    Juan pedro Sánchez

    2012-01-01

    Full Text Available UNEDLabs is a web portal based on a free, modern, open source, and well-known learning management system: Moodle. This portal joins two theme networks of virtual and remote laboratories (one for Control Engineering and another one for Physics, named AutomatL@bs and FisL@bs, respectively together. AutomatL@bs has been operative for five years now. Following AutomatL@bs’ scheme, FisL@bs was created as a network of remote and virtual laboratories for physics university education via the Internet to offer students the possibility of performing hands-on experiences in different fields of physics in two ways: simulation and real remote operation. Now, both FisL@bs and AutomatL@bs join together (while maintaining their independency into an unique new web portal called UNEDLabs. This work focuses on this new web environment and gives a detailed account of a novel way in Physics to let distance learning students gain practical experience autonomously. This paper explains how the new portal works and the software tools used for creating it. In addition, it also describes the physics experiments which are already operative.

  13. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  14. Sustained Spheromak Physics Experiment, SSPX

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1997-01-01

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of T e = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ''''gun'''' into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for T e measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at T e of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime

  15. Quantum mechanics for applied physics and engineering

    CERN Document Server

    Fromhold, Albert T

    2011-01-01

    This excellent text, directed to upper-level undergraduates and graduate students in engineering and applied physics, introduces the fundamentals of quantum mechanics, emphasizing those aspects of quantum mechanics and quantum statistics essential to an understanding of solid-state theory. A heavy background in mathematics and physics is not required beyond basic courses in calculus, differential equations, and calculus-based elementary physics.The first three chapters introduce quantum mechanics (using the Schrödinger equations), quantum statistics, and the free-electron theory of metals. Ch

  16. Reactor physics for non-nuclear engineers

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2011-01-01

    A one-term undergraduate course in reactor physics is described. The instructional format is strongly influenced by its intended audience of non-nuclear engineering students. In contrast to legacy treatments of the subject, the course focuses on the physics of nuclear power reactors with no attempt to include instruction in numerical methods. The multi-physics of power reactors is emphasized highlighting the close interactions between neutronic and thermal phenomena in design and analysis. Consequently, the material's sequencing also differs from traditional treatments, for example treating kinetics before the neutron diffusion is introduced. (author)

  17. An experiment in diffractive physics

    International Nuclear Information System (INIS)

    Santoro, Alberto

    2001-01-01

    The purpose of this talk is to show one of the next future experiment in diffractive Physics which will be installed at the DO experiment at Tevatron/Fermilab for run II, and the importance for Quantum Chromodynamics (QCD) as the theory of the strong interactions. The apparatus that we have developed is the Forward Proton Detector (FPD) to be introduced on the beam line of the Tevatron at both sides of the DO detector. The FPD is composed by a set of Roman Pots as we will see in the text below

  18. Physics for Scientists and Engineers, 5th edition - Volume 1

    Science.gov (United States)

    Tipler, Paul A.; Mosca, Gene P.

    For nearly 30 years, Paul Tipler's Physics for Scientists and Engineers has set the standard in the introductory calculus-based physics course for clarity, accuracy, and precision. In this fifth edition, Paul has recruited Gene Mosca to bring his years of teaching experience to bear on the text, to scrutinize every explanation and example from the perspective of the freshman student. The result is a teaching tool that retains its precision and rigor, but offers struggling students the support they need to solve problems strategically and to gain real understanding of physical concepts.

  19. Physics and engineering of radiation detection

    CERN Document Server

    Ahmed, Syed Naeem

    2007-01-01

    Physics and Engineering of Radiation Detection presents an overview of basic physics of radiation and its applications and covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. Covering both the basic physics of radiation and its applications, it will provide an up-to-date and coherent account of the origins and properties of the different kinds of ionizing radiation, and their detection and measurement. This book will illustrate the basic physical principles with an abundance of practical, worked-out examples, numerical problems, real world applications, and data, including biological effects, radon, risk assessment, and statistics.

  20. The activity of Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Levedev, L.

    1994-01-01

    Various information about Moscow Engineering Physics Institute (MEPhI) structure and scientific activity are discussed. The four main faculties of MEPhI: the faculty of theoretical and experimental physics, the faculty of technical physics, the faculty of automatics and electronics and the faculty of cybernetics are being written in this report. The information about the research reactors and the scientific research laboratories is also presented. The participation of MEPhI in the state scientific technological programs such as 'High energy physics', 'High-temperature superconductivity', 'Controlled thermonuclear synthesis and plasma processes'. 'Informatization', 'Security of population and industrial objects on account of hazard of natural and technogenic accidents', 'Ecology of Russia', 'Synchrotron radiation and its application', 'Future technologies, machines and productions' and others are presented too. (author)

  1. Advancing intercultural competency: Canadian engineering employers' experiences with immigrant engineers

    Science.gov (United States)

    Friesen, Marcia; Ingram, Sandra

    2013-05-01

    This paper explores Canadian engineering employers' perceptions of and experiences with internationally educated engineers (recent immigrants to Canada) employed in their organisations for varying lengths of time. Qualitative data were collected from employers using focus group methodology. Findings reflected employers' observations of culturally different behaviours and characteristics in their internationally educated employees, employers' reactions to cultural differences ranging from negative attributions to tolerance, and the implementation of largely ad hoc intra-organisational strategies for managing cultural differences in employer-employee relationships. Findings exposed the lack of corporate intercultural competency in the Canadian engineering profession. Equity and gatekeeping implications are discussed.

  2. Early wind engineering experiments in Denmark

    DEFF Research Database (Denmark)

    Larose, Guy; Franck, Niels

    1997-01-01

    A review of works by Danish wind engineers is presented to commemorate the 100th year anniversary of the first wind tunnel experiments. Pioneer tests by Irminger and Nøkkentved in "artificial" wind on scaled models are described. The early experiments aimed at measuring the surface pressure......" that governs today´s wind engineering practice and gave birth to the boundary layer wind tunnel....

  3. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  4. The Caltech physics/engineering network

    International Nuclear Information System (INIS)

    Melvin, J.D.

    1985-01-01

    The California Institute of Technology Physics/Engineering network (referred to as the ''Caltech network'' in this paper) is a software system which has been developed over the last four years for high-speed data acquisition, graphics, and distributed computer resource communications. This paper presents: a brief history of past and current development of the network software; features currently implemented; current speed performance; and applications of the network to research and education at Caltech and at other institutions

  5. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  6. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  7. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  8. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  9. International Symposium on Biomedical Engineering and Medical Physics

    CERN Document Server

    Katashev, Alexei; Lancere, Linda

    2013-01-01

    This volume presents the proceedings of the International Symposium on Biomedical Engineering and Medical Physics and is dedicated to the 150 anniversary of the Riga Technical University, Latvia. The content includes various hot topics in biomedical engineering and medical physics.

  10. Mathematical methods in engineering and physics

    CERN Document Server

    Felder, Gary N

    2016-01-01

    This text is intended for the undergraduate course in math methods, with an audience of physics and engineering majors. As a required course in most departments, the text relies heavily on explained examples, real-world applications and student engagement. Supporting the use of active learning, a strong focus is placed upon physical motivation combined with a versatile coverage of topics that can be used as a reference after students complete the course. Each chapter begins with an overview that includes a list of prerequisite knowledge, a list of skills that will be covered in the chapter, and an outline of the sections. Next comes the motivating exercise, which steps the students through a real-world physical problem that requires the techniques taught in each chapter.

  11. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2015-01-01

    The second edition of Modern Physics for Scientists and Engineers is intended for a first course in modern physics. Beginning with a brief and focused account of the historical events leading to the formulation of modern quantum theory, later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac equation and quantum field theory, as well as a robust pedagogy and ancillary package, including an accompanying website with computer applets, assist students in learning the essential material. The applets provide a realistic description of the energy levels and wave functions of electrons in atoms and crystals. The Hartree-Fock and ABINIT applets are valuable tools for studying the properties of atoms and semiconductors.

  12. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    Science.gov (United States)

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  13. Physical engineering and medical physics on boron neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori

    2011-01-01

    The contents of physical engineering and medical physics that support boron neutron capture therapy (BNCT) can be roughly classified to the four items, (1) neutron irradiation system, (2) development and improvement of dose assessment techniques, (3) development and improvement of dose planning system, and (4) quality assurance and quality control. This paper introduces the BNCT at Kyoto University Research Reactor Institute, with a focus on the basic physics of BNCT, thermal neutron irradiation and epithermal neutron irradiation, heavy water neutron irradiation facilities of KUR, and medical irradiation system of KUR. It also introduces the world's first BNCT clinical cyclotron irradiation system (C-BENS) of Kyoto University Research Reactor Institute, BNCT dose assessment techniques, dose planning system, and quality assurance and quality control. (A.O.)

  14. A submersible physics laboratory experiment. Technical report

    International Nuclear Information System (INIS)

    Stehling, K.R.

    1979-01-01

    Since 1972, NOAA (OOE and MUSandT) and the University of Washington Physics Department, have been associated in the underwater detection and analysis of cosmic radiation flux. The purpose of experiments described in this paper has been to take advantage of the nuclear cosmic-ray related qualities of the ocean water mass by allowing the experimenter(s) to work in situ on the sea floor, rather than attempting to try an impractical alternative: lowering a prepared photoemulsion detector to the bottom from a surface vessel, a method that would yield an unacceptably surface-radiation-cluttered emulsion. This report describes briefly the four elements that motivated or comprised the subject experiment: basic physics which motivated the mission; applied physics, including particle detection, emulsion chemistry, calibration, and scanning; engineering, including design and fabrication of supporting apparatus, use of a submersible (JSL was modified slightly to permit lock-on to the bottom chamber), and a bottom lockout chamber; and operations, including submersible dives, ship support, emulsion preparation, deployment, recovery, and development

  15. Engineering embedded systems physics, programs, circuits

    CERN Document Server

    Hintenaus, Peter

    2015-01-01

    This is a textbook for graduate and final-year-undergraduate computer-science and electrical-engineering students interested in the hardware and software aspects of embedded and cyberphysical systems design. It is comprehensive and self-contained, covering everything from the basics to case-study implementation. Emphasis is placed on the physical nature of the problem domain and of the devices used. The reader is assumed to be familiar on a theoretical level with mathematical tools like ordinary differential equation and Fourier transforms. In this book these tools will be put to practical use. Engineering Embedded Systems begins by addressing basic material on signals and systems, before introducing to electronics. Treatment of digital electronics accentuating synchronous circuits and including high-speed effects proceeds to micro-controllers, digital signal processors and programmable logic. Peripheral units and decentralized networks are given due weight. The properties of analog circuits and devices like ...

  16. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  17. Mathematical methods in physics and engineering

    CERN Document Server

    Dettman, John W

    2011-01-01

    Intended for college-level physics, engineering, or mathematics students, this volume offers an algebraically based approach to various topics in applied math. It is accessible to undergraduates with a good course in calculus which includes infinite series and uniform convergence. Exercises follow each chapter to test the student's grasp of the material; however, the author has also included exercises that extend the results to new situations and lay the groundwork for new concepts to be introduced later. A list of references for further reading will be found at the end of each chapter. For t

  18. Nuclear reactor safety: physics and engineering aspects

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1982-01-01

    In order to carry out the sort of probabilistic analysis referred to by Farmer (Contemp. Phys.; 22:349(1981)), it is necessary to have a good understanding of the processes involved in both normal and accident conditions in a nuclear reactor. Some of these processes, for a variety of different reactor systems, are considered in sections dealing with the neutron chain reaction, the removal of heat from the reactor, material problems, reliability of protective systems and a number of specific topics of particular interest from the point of view of physics or engineering. (author)

  19. Generomak: Fusion physics, engineering and costing model

    International Nuclear Information System (INIS)

    Delene, J.G.; Krakowski, R.A.; Sheffield, J.; Dory, R.A.

    1988-06-01

    A generic fusion physics, engineering and economics model (Generomak) was developed as a means of performing consistent analysis of the economic viability of alternative magnetic fusion reactors. The original Generomak model developed at Oak Ridge by Sheffield was expanded for the analyses of the Senior Committee on Environmental Safety and Economics of Magnetic Fusion Energy (ESECOM). This report describes the Generomak code as used by ESECOM. The input data used for each of the ten ESECOM fusion plants and the Generomak code output for each case is given. 14 refs., 3 figs., 17 tabs

  20. University Experiences and Women Engineering Student Persistence

    Science.gov (United States)

    Ayers, LoAnn Debra Gienger

    Riverside University (a pseudonym), like many universities, has not significantly increased the number of women who graduate with bachelor's degrees in engineering. The purpose of the study is to understand how the university experiences of women students influence the decision to persist in an undergraduate engineering degree and to understand the role of self-perception in how the students perceive experiences as supporting or hindering their persistence in the major. Archival data, documents and artifacts, observations, individual interviews, and a focus group with women engineering students provide insights into students' perceived barriers and supports of student success. Analysis of the data results in two major themes. First, students' self-confidence and self-efficacy influence how women assimilate university experiences as either supportive or diminishing of academic success. Second, university policies and practices shape the campus environment within which student experiences are formed and influence a student's level of institutional, academic, and social integration. The results of the study indicate opportunities for university leadership to enhance strategies that positively shape students' institutional, academic and social integration as precursors toward increasing the number of women students who successfully complete undergraduate engineering degrees at Riverside University. Future research is indicated to better understand how gender and gender identity intersects with other demographic factors, such as socio-economic status, immigration status, and life stage (e.g., traditional versus non-traditional students), to support or deter the persistence of engineering students to degree completion.

  1. Unifying Rigid and Soft Bodies Representation: The Sulfur Physics Engine

    Directory of Open Access Journals (Sweden)

    Dario Maggiorini

    2014-01-01

    Full Text Available Video games are (also real-time interactive graphic simulations: hence, providing a convincing physics simulation for each specific game environment is of paramount importance in the process of achieving a satisfying player experience. While the existing game engines appropriately address many aspects of physics simulation, some others are still in need of improvements. In particular, several specific physics properties of bodies not usually involved in the main game mechanics (e.g., properties useful to represent systems composed by soft bodies, are often poorly rendered by general-purpose engines. This issue may limit game designers when imagining innovative and compelling video games and game mechanics. For this reason, we dug into the problem of appropriately representing soft bodies. Subsequently, we have extended the approach developed for soft bodies to rigid ones, proposing and developing a unified approach in a game engine: Sulfur. To test the engine, we have also designed and developed “Escape from Quaoar,” a prototypal video game whose main game mechanic exploits an elastic rope, and a level editor for the game.

  2. Fundamentals of linear systems for physical scientists and engineers

    CERN Document Server

    Puri, N N

    2009-01-01

    Thanks to the advent of inexpensive computing, it is possible to analyze, compute, and develop results that were unthinkable in the '60s. Control systems, telecommunications, robotics, speech, vision, and digital signal processing are but a few examples of computing applications. While there are many excellent resources available that focus on one or two topics, few books cover most of the mathematical techniques required for a broader range of applications. Fundamentals of Linear Systems for Physical Scientists and Engineers is such a resource. The book draws from diverse areas of engineering and the physical sciences to cover the fundamentals of linear systems. Assuming no prior knowledge of complex mathematics on the part of the reader, the author uses his nearly 50 years of teaching experience to address all of the necessary mathematical techniques. Original proofs, hundreds of examples, and proven theorems illustrate and clarify the material. An extensive table provides Lyapunov functions for differentia...

  3. Educational laboratory experiments on chemistry in a nuclear engineering school

    International Nuclear Information System (INIS)

    Akatsu, E.

    1982-01-01

    An educational laboratory experiment on radiochemistry was investigated by students in the general course of the Nuclear Engineering School of Japan Atomic Energy Research Institute. Most of them are not chemical engineers, but electrical and mechanical engineers. Therefore, the educational experiment was designed for them by introducing a ''word experiment'' in the initial stage and by reducing the chemical procedure as far as possible. It began with calculations on a simple solvent extraction process-the ''word experiment''--followed by the chemical separation of 144 Pr from 144 Ce with tri-n-butyl phosphate in a nitric acid system and then measurement of the radioactive decay and growth of the separated 144 Pr and 144 Ce, respectively. The chemical procedure was explained by the phenomenon but not by the mechanism of chelation. Most students thought the experiment was an exercise in solvent extraction or radiochemical separation rather than a radioactive equilibrium experiment. However, a pure chemist considered it as a sort of physical experiment, where the chemical procedure was used only for preparation of measuring samples. Another experiment, where 137 Cs was measured after isolation with ammonium phosphomolybdate, was also investigated. The experiment eliminated the need for students who were not chemists to know how to use radioactive tracers. These students appreciated the realization that they could understand the radioactivity in the environmental samples in a chemical frame of reference even though they were not chemists

  4. Handbook of accelerator physics and engineering

    CERN Document Server

    Mess, Karl Hubert; Tigner, Maury; Zimmermann, Frank

    2013-01-01

    Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing more than 100 new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to the common formulae of previous compilations, hard-to-find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practitioners of the art and science of accelerators.

  5. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  6. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    R. Jarek

    2005-01-01

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  7. Introducing the Institute of Physics in Engineering and Medicine (IPEM)

    Science.gov (United States)

    Keevil, Stephen F.

    2014-04-01

    Physics in Medicine and Biology is one of three journals owned by the UK based Institute of Physics and Engineering in Medicine (IPEM), along with Physiological Measurement and Medical Engineering and Physics. IPEM is a charity and journal revenues are a vital part of our income stream. By subscribing to our journals, you are helping to support the work of IPEM, so you may be interested to learn more about who we are and what we do. IPEM aims to advance physics and engineering applied to medicine and biology for the public good. Our membership comprises over 4000 physicists, engineers and technologists working in healthcare, academia and industry. Most of our work depends on these members generously volunteering their expert knowledge and extensive experience to work in the following areas. Promoting research and innovation Along with the scientific journals mentioned above, we also regularly produce scientific reports. There are currently 40 IPEM reports in print, as well as reference books such as The Gamma Camera—A Comprehensive Guide and the recently published Physicists and Physicians: A History of Medical Physics from the Renaissance to Röntgen. Publishing is just one way in which we encourage R&D and increase the uptake of new knowledge and innovations. We also support scientific conferences, such as the International Conference on Medical Physics 50th anniversary meeting, which we hosted in 2013 on behalf of the International Organization for Medical Physics (IOMP). This four-day event explored the contribution that physics and engineering can make to healthcare and showcased the latest developments via 312 international speakers, 212 posters and an exhibition. Our awards, travel bursaries and grants enable us to facilitate, recognize and reward the work of our members. In 2012 we awarded almost #95 000 (around 155 000) this way. Championing the sector IPEM provides a unified voice with which to represent the views of our membership and raise the

  8. Remote Communication Engineering Experiments Through Internet

    Directory of Open Access Journals (Sweden)

    A. K. Gogoi

    2006-02-01

    Full Text Available In technical education, laboratory components comprise an essential and integral part without which engineering education remains incomplete. Experiments conducted on laboratory equipments lend a practical touch to the theoretical knowledge acquired by the students. However, setting up a specialized laboratory consisting of sophisticated and expensive equipments such as Digital Storage Oscilloscope, Signal Generator, Spectrum Analyzer and Network Analyzer is an expensive and unaffordable proposition for many universities and engineering colleges. Sophisticated technologies incorporated in recent models of such high-end equipments enable remote access through Internet to the instruments. This concept of accessing these expensive instruments over the Internet can be exploited by setting up a Remote Laboratory. This remote laboratory system aims at not only providing an opportunity to students from distant places to conduct hardware experiments but also to take the corresponding measurements. In this work, real-time hardware experiments have been designed and implemented. These are based on modulation techniques widely employed in Communication Engineering. An interactive Graphical User Interface (GUI environment has also been developed using Microsoft Visual Basic. This GUI is provided at the user end to facilitate the remote control and access of various instruments and experiment setups. It has been specifically designed and optimized for a low-bandwidth remote access link. The above mentioned system, as a whole, uses real-time capture of images and data from the instruments to perform experiment-related measurements.

  9. Physics and engineering of medical imaging

    International Nuclear Information System (INIS)

    Guzzardi, R.

    1987-01-01

    The ever-developing technology of medical imaging has a continuous and significant impact on the practice of medicine as well as on clinical research activity. The information and level of accuracy obtained by an imaging methodology is a complex result of a multidisciplinary effort of physics, engineering, electronics, chemistry and medicine. In this book, the state of the art is described for NMR, ultrasound, X-ray CT, nuclear medicine, positron tomography and other imaging modalities. For every imaging modality, the most important clinical applications are described together with the delineation of problems and future needs. Furthermore, specific sections of the book are devoted to general aspects of medical imaging, such as reconstruction techniques, 2-D and 3-D display, quality control, archiving, market trends and correlative assessment

  10. Physics and engineering of medical imaging

    International Nuclear Information System (INIS)

    Guzzardi, R.

    1987-01-01

    The ever-growing development in the technology of Medical Imaging has a continuous and significant impact in the practice of Medicine as well as in the clinical research activity. The information and accuracy obtained by whatever imaging methodology is a complex result of a multidisciplinary effort of several sciences, such as Physics, Engineering, Electronics, Chemistry and Medicine. In this book, the state-of-the-art is described of the technology at the base of NMR, Ultrasound, X-ray CT, Nuclear Medicine, Positron Tomography and other Imaging Modalities such as Thermography or Biomagnetism, considering both the research and industrial point of view. For every imaging modality the most important clinical applications are described, together with the delineation of problems and future needs. Furthermore, specific sections of the book are devoted to general aspects of Medical Imaging, such as Reconstruction Techniques, 2-D and 3-D Display, Quality Control, Archiving, Market Trends and Correlative Assessment. (Auth.)

  11. MRI Experiments for Introductory Physics

    Science.gov (United States)

    Taghizadeh, Sanaz; Lincoln, James

    2018-01-01

    The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly…

  12. MRI experiments for introductory physics

    Science.gov (United States)

    Taghizadeh, Sanaz; Lincoln, James

    2018-04-01

    The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly relevant application of modern physics, especially with so many of our students planning to pursue a career in medicine. This article provides an overview of the physics of MRI and gives advice on how physics teachers can introduce this topic. Also included are some demonstration activities and a discussion of a desktop MRI apparatus that may be used by students in the lab or as a demo.

  13. Reactor physics computations for nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Huria, H.C.

    1989-01-01

    The undergraduate program in nuclear engineering at the University of Cincinnati provides three-quarters of nuclear reactor theory that concentrate on physical principles, with calculations limited to those that can be conveniently completed on programmable calculators. An additional one-quarter course is designed to introduce the student to realistic core physics calculational methods, which necessarily requires a computer. Such calculations can be conveniently demonstrated and completed with the modern microcomputer. The one-quarter reactor computations course includes a one-group, one-dimensional diffusion code to introduce the concepts of inner and outer iterations, a cell spectrum code based on integral transport theory to generate cell-homogenized few-group cross sections, and a multigroup diffusion code to determine multiplication factors and power distributions in one-dimensional systems. Problem assignments include the determination of multiplication factors and flux distributions for typical pressurized water reactor (PWR) cores under various operating conditions, such as cold clean, hot clean, hot clean at full power, hot full power with xenon and samarium, and a boron concentration search. Moderator and Doppler coefficients can also be evaluated and examined

  14. Physics rationale for the engineering specifications for ZTH

    International Nuclear Information System (INIS)

    Dimarco, J.N.

    1987-01-01

    This report presents the physics rationale that established the engineering design of ZTH. The physics criteria are given and the implications regarding the engineering design are presented. Experimental and theoretical background evidence is given in support of the criteria but the justification is left to other reports and peer reviews. The physics criteria discussed here are limited to the ones deemed to be of highest engineering priority. 32 refs., 9 figs

  15. Engineering High Assurance Distributed Cyber Physical Systems

    Science.gov (United States)

    2015-01-15

    engineering ( MDE ), Model- centric software engineering (MCSE), and others have attempted to leverage and integrate techniques for requirements...Part I: Principles of Software Engineering.” IBM Syst. J. 38, 2-3, pp.289-295, June 1999. [2] Xie, T, “Software Engineering Conferences”, web page

  16. Chain Experiment competition inspires learning of physics

    Science.gov (United States)

    Dziob, Daniel; Górska, Urszula; Kołodziej, Tomasz

    2017-05-01

    The Chain Experiment is an annual competition which originated in Slovenia in 2005 and later expanded to Poland in 2013. For the purpose of the event, each participating team designs and builds a contraption that transports a small steel ball from one end to the other. At the same time the constructed machine needs to use a number of interesting phenomena and physics laws. In the competition’s finale, all contraptions are connected to each other to form a long chain transporting steel balls. In brief, they are all evaluated for qualities such as: creativity and advance in theoretical background, as well as the reliability of the constructed machine to work without human help. In this article, we present the contraptions developed by students taking part in the competition in order to demonstrate the advance in theoretical basis together with creativity in design and outstanding engineering skills of its participants. Furthermore, we situate the Chain Experiment in the context of other group competitions, at the same time demonstrating that—besides activating numerous group work skills—it also improves the ability to think critically and present one’s knowledge to a broader audience. We discussed it in the context of problem based learning, gamification and collaborative testing.

  17. International conference on Advances in Engineering Technologies and Physical Science

    CERN Document Server

    Ao, Sio-Iong; Rieger, Burghard; IAENG Transactions on Engineering Technologies : Special Edition of the World Congress on Engineering and Computer Science 2011

    2013-01-01

    This volume contains thirty revised and extended research articles written by prominent researchers participating in an international conference in engineering technologies and physical science and applications. The conference serves as good platforms for the engineering community to meet with each other and to exchange ideas. The conference has also struck a balance between theoretical and application development. The conference is truly international meeting with a high level of participation from many countries. Topics covered include chemical engineering, circuits, communications systems, control theory, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.

  18. Engineering-scale dust control experiments

    International Nuclear Information System (INIS)

    Winberg, M.R.; Pawelko, R.J.; Jacobs, N.C.; Thompson, D.N.

    1990-12-01

    This report presents the results of engineering scale dust-control experiments relating to contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of misting systems, soil fixatives, and dust suppression agents. The Dryfog Ultrasonic Misting Head, manufactured by Sonics, Incorporated, and ENTAC, an organic resin derived from tree sap manufactured by ENTAC Corporation, were tested. The results of the experiments include product performance and recommended application methods. 19 figs., 7 refs., 6 tabs

  19. [Eutrophication control in local area by physic-ecological engineering].

    Science.gov (United States)

    Li, Qiu-Hua; Xia, Pin-Hua; Wu, Hong; Lin, Tao; Zhang, You-Chun; Li, Cun-Xiong; Chen, Li-Li; Yang, Fan

    2012-07-01

    An integrated physical and ecological engineering experiment for ecological remediation was performed at the Maixi River bay in Baihua Reservoir Guizhou Province, China. The results show that eutrophic parameters, such as total nitrogen, total phosphorus, chlorophyll a and chemical oxygen demand from the experimental site (enclosed water) were significantly lower than those of the reference site. The largest differences between the sites were 0.61 mg x L(-1), 0.041 mg x L(-1), 23.06 microg x L(-1), 8.4 mg x L(-1) respectively; experimental site transparency was > 1.50 m which was significantly higher than that of the reference site. The eutrophic index of the experimental site was oligo-trophic and mid-trophic, while the control site was mid-trophic state and eutrophic state. Phytoplankton abundance was 2 125.5 x 10(4) cells x L(-1) in June, 2011 at the control site,but phytoplankton abundance was lower at the experimental site with 33 x 10(4) cells x L(-1). Cyanobacteria dominated phytoplankton biomass at both sites, however the experimental site consisted of a higher proportion of diatoms and dinoflagellates. After more than one year of operation, the ecological engineering technology effectively controlled the occurrence of algae blooms, changed phytoplankton community structure, and controlled the negative impacts of eutrophication. Integrating physical and ecological engineering technology could improve water quality for reservoirs on the Guizhou plateau.

  20. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  1. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  2. Physics and experiments at RHIC

    International Nuclear Information System (INIS)

    Young, G.R.

    1995-01-01

    The Relativistic Heavy Ion Collider (RHIC), under construction at Brookhaven National Laboratory, will be the site of a series of experiments seeking to discover the quark-gluon plasma and elucidate its properties. Several observables should exhibit characteristic behaviors if a quark-gluon plasma is indeed created in the laboratory. Four experiments are now under construction for RHIC to measure certain of these observables over kinematic ranges where effects due to quark-gluon plasma formation should be manifest

  3. Accelerator based atomic physics experiments: an overview

    International Nuclear Information System (INIS)

    Moak, C.D.

    1976-01-01

    Atomic Physics research with beams from accelerators has continued to expand and the number of papers and articles at meetings and in journals reflects a steadily increasing interest and an increasing support from various funding agencies. An attempt will be made to point out where interdisciplinary benefits have occurred, and where applications of the new results to engineering problems are expected. Drawing from material which will be discussed in the conference, a list of the most active areas of research is presented. Accelerator based atomic physics brings together techniques from many areas, including chemistry, astronomy and astrophysics, nuclear physics, solid state physics and engineering. An example is the use of crystal channeling to sort some of the phenomena of ordinary heavy ion stopping powers. This tool has helped us to reach a better understanding of stopping mechanisms with the result that now we have established a better base for predicting energy losses of heavy ions in various materials

  4. Two methodologies for physical penetration testing using social engineering

    NARCIS (Netherlands)

    Dimkov, T.; van Cleeff, A.; Pieters, Wolter; Hartel, Pieter H.

    2010-01-01

    Penetration tests on IT systems are sometimes coupled with physical penetration tests and social engineering. In physical penetration tests where social engineering is allowed, the penetration tester directly interacts with the employees. These interactions are usually based on deception and if not

  5. Teaching Ethics to Engineers: A Socratic Experience.

    Science.gov (United States)

    Génova, Gonzalo; González, M Rosario

    2016-04-01

    In this paper we present the authors' experience of teaching a course in Ethics for Engineers, which has been delivered four times in three different universities in Spain and Chile. We begin by presenting the material context of the course (its place within the university program, the number of students attending, its duration, etc.), and especially the intellectual background of the participating students, in terms of their previous understanding of philosophy in general, and of ethics in particular. Next we set out the objectives of the course and the main topics addressed, as well as the methodology and teaching resources employed to have students achieve a genuine philosophical reflection on the ethical aspects of the profession, starting from their own mindset as engineers. Finally we offer some results based on opinion surveys of the students, as well as a more personal assessment by the authors, recapitulating the most significant achievements of the course and indicating its underlying Socratic structure.

  6. Design of Experiments for Food Engineering

    DEFF Research Database (Denmark)

    Pedersen, Søren Juhl; Geoffrey Vining, G.

    This work looks at the application of Design of Experiments (DoE) to Food Engineering (FE) problems in relation to quality. The field of Quality Engineering (QE) is a natural partnering field for FE due to the extensive developments that QE has had in using DoE for quality improvement especially...... in manufacturing industries. In the thesis the concepts concerning food quality is addressed and in addition how QE proposes to define quality. There is seen a merger in how QE’s definition of quality has been translated for food. At the same time within FE a divergence has been proposed in the literature...... that the fundamental principles of DoE have as much importance and relevance as ever for both the food industry and FE research....

  7. Experiments in intermediate energy physics

    International Nuclear Information System (INIS)

    Dehnhard, D.

    2003-01-01

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers

  8. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  9. First Experiences with Google Earth Engine

    OpenAIRE

    Navarro, José A.

    2017-01-01

    This paper presents the first experiences of the author with GEE (Google Earth Engine). A C++ image processing algorithm, still under development, was migrated to this new environment using GEE’s web interface and the JavaScript language. The idea is to discover the problems that might arise when migrating to this environment as well as to assess the presumable performance boost that should be achieved. A reduced—more didactic—version of the aforementioned algorithm is presented in a step-by-...

  10. Accelerator physics experiments at Aladdin

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Cornacchia, M.; Jackson, A.; Zisman, M.S.

    1985-07-01

    The Aladdin accelerator is a 1 GeV synchrotron light source located at the University of Wisconsin. The results of experimental studies of the Aladdin accelerator are described. The primary purpose of the experiments reported was to investigate reported anomalies in the behavior of the linear lattice, particularly in the vertical plane. A second goal was to estimate the ring broadband impedance. Experimental observations and interpretation of the linear properties of the Aladdin ring are described, including the beta function and dispersion measurements. Two experiments are described to measure the ring impedance, the first a measurement of the parasitic mode loss, and the second a measurement of the beam transfer function. Measurements of the longitudinal and transverse emittance at 100 and 200 MeV are described and compared with predictions. 10 refs., 24 figs., 2 tabs

  11. Exploding metallic fuse physics experiments

    International Nuclear Information System (INIS)

    Goforth, J.H.; Hackett, K.E.; Lindemuth, I.R.; Lopez, E.A.; McCullough, W.F.; Dona, H.; Reinovsky, R.E.

    1986-01-01

    The ultimate practicality of inductive pulse compression systems as drivers for energetic plasma implosions hinges on the development of a suitable opening switch capable of interrupting tons of megamp currents in time scales of a few hundred nanoseconds while withstanding L(dI/dt) voltages of a megavolt or more. 1. Exploding metallic foils (fuses) are a candidate for switching elements in the inductive store pulsed power systems used in the Los Alamos and Air Force Weapons Laboratory foil implosion X-ray source generation programs. To verify or modify new theoretical and computational predictions about the electrical and hydrodynamic behavior of exploding metallic foils used as fuses. The authors have initiated a new series of small scale capacitor bank driven fuse experiments. The experiments represent an extension of previous experiments, but in the new series a foil geometry more amenable to theoretical and computational analysis is used. The metallic foil (aluminum or copper) is laminated between two thin layers of insulating material (mylar or kaptan). Adjacent to one layer of insulation is a much heavier backing insulator (polyethylene) whereas air is adjacent to the other layer. Because of the differing masses on the two sides of the foil, the foil expansion and hydrodynamic motion is essentially one-sided and the layer of insulation on the expanding side becomes a readily-characterizable ''flyer'' which provides a controlled amount of hydrodynamic tamping. In addition to the usual voltage, current, and dI/dt electrical measurements, time-resolved spectrometer measurements are used to determine the temperature of the expanding metallic foil. Post-shot examination of the flyer and the insulation impacted by the flyer gives insight into the experimental behavior

  12. Current experiments in elementary particle physics. Revision

    International Nuclear Information System (INIS)

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  13. Current experiments in elementary-particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated

  14. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  15. Tokamak Physics Experiment (TPX) design

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1995-01-01

    TPX is a national project involving a large number of US fusion laboratories, universities, and industries. The element of the TPX requirements that is a primary driver for the hardware design is the fact that TPX tokamak hardware is being designed to accommodate steady state operation if the external systems are upgraded from the 1,000 second initial operation. TPX not only incorporates new physics, but also pioneers new technologies to be used in ITER and other future reactors. TPX will be the first tokamak with fully superconducting magnetic field coils using advanced conductors, will have internal nuclear shielding, will use robotics for machine maintenance, and will remove the continuous, concentrated heat flow from the plasma with new dispersal techniques and with special materials that are actively cooled. The Conceptual Design for TPX was completed during Fiscal Year 1993. The Preliminary Design formally began at the beginning of Fiscal Year 1994. Industrial contracts have been awarded for the design, with options for fabrication, of the primary tokamak hardware. A large fraction of the design and R and D effort during FY94 was focused on the tokamak and in turn on the tokamak magnets. The reason for this emphasis is because the magnets require a large design and R and D effort, and are critical to the project schedule. The magnet development is focused on conductor development, quench protection, and manufacturing R and D. The Preliminary Design Review for the Magnets is planned for fall, 1995

  16. Current experiments in elementary particle physics. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  17. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. (Lawrence Berkeley Lab., CA (USA)); Oyanagi, Y. (Tsukuba Univ., Ibaraki (Japan)); Dodder, D.C. (Los Alamos National Lab., NM (USA)); Ryabov, Yu.G.; Slabospitsky, S.R. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  18. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Slabospitsky, S.R.; Olin, A.; Klumov, I.A.

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  19. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Galic, H.; Dodder, D.C.; Klyukhin, V.I.; Ryabov, Yu.G.; Illarionova, N.S.; Lehar, F.; Oyanagi, Y.; Frosch, R.

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  20. Mind Games: Game Engines as an Architecture for Intuitive Physics.

    Science.gov (United States)

    Ullman, Tomer D; Spelke, Elizabeth; Battaglia, Peter; Tenenbaum, Joshua B

    2017-09-01

    We explore the hypothesis that many intuitive physical inferences are based on a mental physics engine that is analogous in many ways to the machine physics engines used in building interactive video games. We describe the key features of game physics engines and their parallels in human mental representation, focusing especially on the intuitive physics of young infants where the hypothesis helps to unify many classic and otherwise puzzling phenomena, and may provide the basis for a computational account of how the physical knowledge of infants develops. This hypothesis also explains several 'physics illusions', and helps to inform the development of artificial intelligence (AI) systems with more human-like common sense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Annual conference on engineering and the physical sciences in medicine

    International Nuclear Information System (INIS)

    Le Heron, J.

    1999-01-01

    The venue for the 1998 annual conference on Engineering and the Physical Sciences in Medicine was the Wrest Point Casino Convention Centre, Hobart, from 15 to 19 November. Jointly sponsored by the Australasian College of Physical Scientists and Engineers in Medicine, the College of Biomedical Engineers and the Society of Medical and Biomedical Engineering, this meeting is a major forum for professionals working in these areas in Australasia. The theme for the conference was Relevance beyond rationalism - charting a course for the future. This reviewer will consider only those presentations concerned with the use of radiation in medicine. (author)

  2. World Congress on Medical Physics and Biomedical Engineering

    CERN Document Server

    2015-01-01

    This book presents the proceedings of the IUPESM World Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand, and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.

  3. Proceedings of European Medical Physics and Engineering Conference

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a compilation of papers presented at the at the European Medical Physics and Engineering Conference, which incorporates 11th National Conference of the Bulgarian Society of Biomedical Physics and Engineering (BSBPE) and 6th Conference of the European Federation of Organizations for Medical Physics (EFOMP). The reports are grouped in following scientific sessions: 1) Radiation therapy; 2) Biomedical engineering; 3) Education and training; 4) Biophysical methods for diagnostics and therapy; 5) Diagnostic and interventional radiology; 6) Modelling and information technology; 7) Dosimetry and standards; 8) Nuclear medicine and 9) Radiation protection. The individual papers are recorded in INIS as separate items

  4. Final Physics Report for the Engineering Test Reactor

    International Nuclear Information System (INIS)

    Wolfe, I. B.

    1956-01-01

    This report is a summary of the physics design work performed on the Engineering Test Reactor. The ETR presents computational difficulties not found in other reactors because of the large number of experimental holes in the core. The physics of the ETR depends strongly upon the contents of the in-core experimental facilities. In order to properly evaluate the reactor' taking into account the experiments in the core, multi-region, two-dimensional calculations are required. These calculations require the use of a large computer such as the Remington Rand Univac and are complex and expensive enough to warrant a five-stage program: 1. In the early stages of design, only preliminary two-dimensional calculations were performed .in order to obtain a rough idea of the general behavior of the reactor and its critical mass with tentative experiments in place. 2. A large amount of work was carried out in which the reactor was approximated as one with a uniform homogeneous core. With this model, detailed studies were carried out to investigate the feasibility and to obtain general design data on such points as the design and properties of the gray and black control rods, the design of the beryllium reflector, gamma and neutron heating, the use of burnable poisons, etc. In performing these calculations, use was made of the IBM 650 PROD code obtained from KAPL. 3. With stages 1 and 2 carried out, two-dimensional calculations of the core at start-up conditions were performed on the Univac computer. 4. Detailed two-dimensional calculations of the properties of the ETR with a proposed first set of experiments in place were carried out. 5. A series of nuclear tests were performed at the reactivity measurements facility at the MTR site in order to confirm the validity of the analytical techniques in physics analysis. In performing the two-dimensional Univac calculations, the MUG code developed by KAPL and the Cuthill code developed at the David Taylor Model Basin were utilized. In

  5. e-Learning in medical physics and engineering

    International Nuclear Information System (INIS)

    Stoeva, M.; Tabakov, S.; Lewis, C.; Tabakova, V.; Sprawls, P.; Milano, F.; Cvetkov, A.

    2012-01-01

    Full text: Introduction: e-Learning is among the contemporary methods for high quality knowledge exchange in various areas of medicine. Medical Physics/Engineering is one of the leading areas for creating e-content and practical application of e-Learning methods and curricula. Objectives: The objective of this abstract is to present the various e-Learning resources in the field of Medical Physics/Engineering and introduce some of the leading programs worldwide. Material and methods: e-Learning is applied at various levels in Medical Physics/Engineering. These versatile e-Learning methods use different approaches to deliver both general and high quality professional knowledge at virtually any point, thus increasing both the availability of the knowledge and quality of the results. Results and discussion: Medical Physics/ Engineering was among the first professions to develop and apply e-Learning - the Online Medical Physics resources, e-Encyclopaedia (www.emitel2. eu), EMERALD and EMIT materials and the Medical Physics Dictionary. An indicator for this is the first international prize in the field - EU Leonardo da Vinci Award and the increased popularity at all levels - local and international; students and professionals; medical physicists/engineers and other related specialties. Conclusion: The results so far present a solid background and show a perspective for development. Medical Physics/Engineering needs special forum to discuss regularly these questions and exchange expertise.

  6. Seminar Neutronika-2012. Neutron-physical problems of nuclear-power engineering. Program and abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    On October, 30 - November, 2 in State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky a seminar Neutron-physical problems of nuclear power engineering - Neutronika-2012 took place. On the seminar the following problems were discussed: justification of neutron-physical characteristics of reactor facilities and innovation projects; constant support of neutron-physical calculations of nuclear power installations; numerical simulation during solving reactor physics problems; simulation of neutron-physical processes in reactor facilities by Monte Carlo method; development and verification of programs for reactor facilities neutron-physical calculations; algorithms and programs for solving nonstationary problems of neutron-physical calculation of nuclear reactors; analysis of integral and reactor experiments, experimental database; justification of nuclear and radiation safety of fuel cycle [ru

  7. Current Experiments in Particle Physics (September 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  8. Comparison of Physics Frameworks for WebGL-Based Game Engine

    Directory of Open Access Journals (Sweden)

    Yogya Resa

    2014-03-01

    Full Text Available Recently, a new technology called WebGL shows a lot of potentials for developing games. However since this technology is still new, there are still many potentials in the game development area that are not explored yet. This paper tries to uncover the potential of integrating physics frameworks with WebGL technology in a game engine for developing 2D or 3D games. Specifically we integrated three open source physics frameworks: Bullet, Cannon, and JigLib into a WebGL-based game engine. Using experiment, we assessed these frameworks in terms of their correctness or accuracy, performance, completeness and compatibility. The results show that it is possible to integrate open source physics frameworks into a WebGLbased game engine, and Bullet is the best physics framework to be integrated into the WebGL-based game engine.

  9. Communicating science a practical guide for engineers and physical scientists

    CERN Document Server

    Boxman, Raymond

    2017-01-01

    Read this book before you write your thesis or journal paper! Communicating Science is a textbook and reference on scientific writing oriented primarily at researchers in the physical sciences and engineering. It is written from the perspective of an experienced researcher. It draws on the authors' experience of teaching and working with both native English speakers and English as a Second Language (ESL) writers. For the range of topics covered, this book is relatively short and tersely written, in order to appeal to busy researchers.Communicating Science offers comprehensive guidance on: Graduate students and early career researchers will be guided through the researcher's basic communication tasks: writing theses, journal papers, and internal reports, presenting lectures and posters, and preparing research proposals. Extensive best practice examples and analyses of common problems are presented. Advanced researchers who aim to commercialize their research results will be introduced to business plans and pat...

  10. Romanian knowledge transfer network in nuclear physics and engineering - REFIN

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie

    2007-01-01

    According to the requirements of the Romanian Nuclear Programme regarding the education and training of the skilled personnel for the nuclear facilities, a knowledge transfer network named REFIN (in Romanian: Retea Educationala in Fizica si Ingineria Nucleara) was developed since 2005. The knowledge target field is nuclear physics and engineering. The main objective of this network is to develop an effective, flexible and modern educational system in the nuclear physics and engineering area which could meet the requirements of all known types of nuclear facilities and therewith be redundant with the perspectives of the European Research Area (FP7, EURATOM). A global strategy was proposed in order to harmonize the curricula between the network facilities to implement pilot modern teaching programs (courses/modules), to introduce advanced learning methods (as Systematic Approach to Training, e-learning and distance-learning), to strengthen and better use the existing research infrastructures of the research institutes in network. The education and training strategy is divided into several topics: university engineering , master, post-graduate, Ph.D. degree, post-doctoral activity, training for industry, improvement. For the first time in our country, a modular scheme is used allowing staff with different technical background to participate at different levels. In this respect, the European system with transferable credits (ECTS) is used. Based on this strategy, courses in 'Radioactive Waste Management' and 'Numerical and Experimental Methods in Reactor Physics' for both MS students and for industry. This way the training activity which a student attends will allow him or her to be involved, depending on specific professional needs, into a flexible educational scheme. This scheme will ensure competence and enhancement and also the possibility of qualification development and a better mobility on labour market. This kind of activity is already in progress in the

  11. Fundamental math and physics for scientists and engineers

    CERN Document Server

    Yevick, David

    2014-01-01

    This text summarizes the core undergraduate physics curriculum together with the mathematics frequently encountered in engineering and physics calculations, focusing on content relevant to practical applications.Covers  major undergraduate physics topics including the complete Physics GRE subject examination syllabusOverview of key results in undergraduate applied mathematics and introduces scientific programmingPresents simple, coherent derivations and illustrations of fundamental concepts

  12. Computer-aided engineering in High Energy Physics

    International Nuclear Information System (INIS)

    Bachy, G.; Hauviller, C.; Messerli, R.; Mottier, M.

    1988-01-01

    Computing, standard tool for a long time in the High Energy Physics community, is being slowly introduced at CERN in the mechanical engineering field. The first major application was structural analysis followed by Computer-Aided Design (CAD). Development work is now progressing towards Computer-Aided Engineering around a powerful data base. This paper gives examples of the power of this approach applied to engineering for accelerators and detectors

  13. Weerts to lead Physical Sciences and Engineering directorate | Argonne

    Science.gov (United States)

    Physical Sciences and Engineering directorate By Lynn Tefft Hoff * August 10, 2015 Tweet EmailPrint Hendrik Engineering (PSE) directorate at the U.S. Department of Energy's Argonne National Laboratory. Weerts has , chemistry, materials science and nanotechnology. Weerts joined Argonne in 2005 as director of Argonne's High

  14. Support of Study on Engineering Technology from Physics and Mathematics

    OpenAIRE

    Mynbaev, Djafar K.; Cabo, Candido; Kezerashvili, Roman Ya.; Liou-Mark, Janet

    2008-01-01

    An approach that provides students with an ability to transfer learning in physics and mathematics to the engineering-technology courses through e-teaching and e-learning process is proposed. E-modules of courses in mathematics, physics, computer systems technology, and electrical and telecommunications engineering technology have been developed. These modules being used in the Blackboard and Web-based communications systems create a virtual interdisciplinary learning community, which helps t...

  15. Experiments on Plume Spreading by Engineered Injection and Extraction

    Science.gov (United States)

    Mays, D. C.; Jones, M.; Tigera, R. G.; Neupauer, R.

    2014-12-01

    The notion that groundwater remediation is transport-limited emphasizes the coupling between physical (i.e., hydrodynamic), geochemical, and microbiological processes in the subsurface. Here we leverage this coupling to promote groundwater remediation using the approach of engineered injection and extraction. In this approach, inspired by the literature on chaotic advection, uncontaminated groundwater is injected and extracted through a manifold of wells surrounding the contaminated plume. The potential of this approach lies in its ability to actively manipulate the velocity field near the contaminated plume, generating plume spreading above and beyond that resulting from aquifer heterogeneity. Plume spreading, in turn, promotes mixing and reaction by chemical and biological processes. Simulations have predicted that engineered injection and extraction generates (1) chaotic advection whose characteristics depend on aquifer heterogeneity, and (2) faster rates and increased extent of groundwater remediation. This presentation focuses on a complimentary effort to experimentally demonstrate these predictions experimentally. In preparation for future work using refractive index matched (RIM) porous media, the experiments reported here use a Hele-Shaw apparatus containing silicone oil. Engineered injection and extraction is used to manipulate the geometry of an initially circular plume of black pigment, and photographs record the plume geometry after each step of injection of extraction. Image analysis, using complimentary Eulerian and Lagrangian approaches, reveals the thickness and variability of the dispersion zone surrounding the deformed plume of black pigment. The size, shape, and evolution of this dispersion zone provides insight into the interplay between engineered injection and extraction, which generates plume structure, and dispersion (here Taylor dispersion), which destroys plume structure. These experiments lay the groundwork for application of engineered

  16. Experience Engineering: An Engineering Course for Non-Majors

    Science.gov (United States)

    Hargrove-Leak, Sirena

    2012-01-01

    The engineering profession continues to struggle to attract new talent, in part because it is not well understood by the general public and often viewed in a negative light. Therefore, engineering professionals have called for new approaches promote better understanding and change negative perceptions. One suggested approach is for engineering…

  17. Engineering and physical sciences in oncology: challenges and opportunities.

    Science.gov (United States)

    Mitchell, Michael J; Jain, Rakesh K; Langer, Robert

    2017-11-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.

  18. Cometary nucleus release experiments and ice physics

    International Nuclear Information System (INIS)

    Huebner, W.F.

    1976-01-01

    Some physical and chemical processes involved in the evaporation and sublimation of mixtures of frozen gases are discussed. Effects of zero gravity, vacuum and solar radiation are emphasized. Relevant experiments that can be carried out with the aid of the space shuttle are proposed. The ice surface and the space just above the surface, i.e., the physics and chemistry of ice sublimation are mainly considered

  19. Current Experiments in Particle Physics. 1996 Edition.

    Energy Technology Data Exchange (ETDEWEB)

    Galic, Hrvoje

    2003-06-27

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  20. Physics for Scientists and Engineers with Modern Physics

    CERN Document Server

    Fishbane, Paul M; Thornton, Stephen T

    2005-01-01

    This text is designed for a calculus-based physics course at the beginning university and college level. It is written with the expectation that students have either taken or are currently taking a beginning course in calculus. Students taking a physics course based on this book should leave with a solid conceptual understanding of the fundamental physical laws and how these laws can be applied to solve many problems. The key word for this edition is "understanding." The third edition of this text remains rigorous while including a number of new pedagogical elements which emphasize conceptual understanding.

  1. Industrial metrology as applied to large physics experiments

    International Nuclear Information System (INIS)

    Veal, D.

    1993-05-01

    A physics experiment is a large complex 3-D object (typ. 1200 m 3 , 35000 tonnes), with sub-millimetric alignment requirements. Two generic survey alignment tasks can be identified; first, an iterative positioning of the apparatus subsystems in space and, second, a quantification of as-built parameters. The most convenient measurement technique is industrial triangulation but the complexity of the measured object and measurement environment constraints frequently requires a more sophisticated approach. To enlarge the ''survey alignment toolbox'' measurement techniques commonly associated with other disciplines such as geodesy, applied geodesy for accelerator alignment, and mechanical engineering are also used. Disparate observables require a heavy reliance on least squares programs for campaign pre-analysis and calculation. This paper will offer an introduction to the alignment of physics experiments and will identify trends for the next generation of SSC experiments

  2. Geneva University: Experiments in Physics: Hands-on Creative Processes

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92   Lundi 3 octobre 2011, 17h00 Ecole de Physique, Auditoire Stueckelberg «Experiments in Physics : Hands-on Creative Processes» Prof. Manfred Euler Leibniz-Institute for Mathematics and Science Education (IPN) University of Kiel, Deutschland Experiments play a variety of different roles in knowledge generation. The lecture will focus on the function of experiments as engines of intuition that foster insights into complex processes. The experimental presentations consider self-organization phenomena in various domains that range from the nanomechanics of biomolecules to perception and cognition. The inherent universality contributes to elucidating the enigmatic phenomenon of creativity. Une verrée en compagnie du conférencier sera offerte après le colloque.       &...

  3. Industrial metrology as applied to large physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Veal, D.

    1993-05-01

    A physics experiment is a large complex 3-D object (typ. 1200 m{sup 3}, 35000 tonnes), with sub-millimetric alignment requirements. Two generic survey alignment tasks can be identified; first, an iterative positioning of the apparatus subsystems in space and, second, a quantification of as-built parameters. The most convenient measurement technique is industrial triangulation but the complexity of the measured object and measurement environment constraints frequently requires a more sophisticated approach. To enlarge the ``survey alignment toolbox`` measurement techniques commonly associated with other disciplines such as geodesy, applied geodesy for accelerator alignment, and mechanical engineering are also used. Disparate observables require a heavy reliance on least squares programs for campaign pre-analysis and calculation. This paper will offer an introduction to the alignment of physics experiments and will identify trends for the next generation of SSC experiments.

  4. DIRAC in Large Particle Physics Experiments

    Science.gov (United States)

    Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC

    2017-10-01

    The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.

  5. PEOPLE IN PHYSICS: Interview with Scott Durow, Software Engineer, Oxford

    Science.gov (United States)

    Burton, Conducted by Paul

    1998-05-01

    Scott Durow was educated at Bootham School, York. He studied Physics, Mathematics and Chemistry to A-level and went on to Nottingham University to read Medical Physics. After graduating from Nottingham he embarked on his present career as a Software Engineer based in Oxford. He is a musician in his spare time, as a member of a band and playing the French horn.

  6. Annual technical report - 1987 - Nuclear Engineering Institute - Dept. of Physics

    International Nuclear Information System (INIS)

    Silva, A.G. da; Cabral, S.C.; Bastos, M.A.V.

    1987-01-01

    The research reports carried out in the Physics Department of Nuclear Engineering Institute/Brazilian CNEN, in nuclear physics, isotope production and hazards by irradiation using the CV-28 cyclotron capable to accelerate protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively, are presented. (M.C.K.) [pt

  7. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1985-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8 to 12 T) and high toroidal currents (7 to 10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  8. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1986-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8-12 T) and high toroidal currents (7-10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  9. Brahms Experiment at RHIC Day-1 Physics

    International Nuclear Information System (INIS)

    Videbaek, Flemming

    1999-01-01

    The BRAHMS experiment is designed to measure semi-inclusive spectra of charged hadron over a wide range of rapidity. It will yield information on particle production, both at central rapidity and in the baryon rich fragmentation region. The physics plans for measurements in the first year of running at RHIC are discussed

  10. Physical and engineering aspects of thermal pollution

    International Nuclear Information System (INIS)

    Parker, F.L.; Krenkel, P.A.

    1970-01-01

    The problems of the thermal pollution of our water ways by central electricity generating stations are discussed under the following headings: physical, biological, and chemical effects on water quality; effects of heated discharges on waste assimilation; beneficial effects of heat additions; prediction of heat dissipation; mechanism of heated water discharges; modeling of heated discharges; cooling ponds and run of the river cooling; cooling towers; cooling tower problems; and comparison of cooling methods

  11. Investigation of students' experiences of gendered cultures in engineering workplaces

    Science.gov (United States)

    Male, Sally A.; Gardner, Anne; Figueroa, Eugenia; Bennett, Dawn

    2018-05-01

    Women remain severely under-represented in engineering in Australia as in all Western countries. This limits the pool of talent, standpoints and approaches within the profession. Furthermore, this under-representation equates to restriction of the benefits of being an engineer mainly to men. Gendered workplace experiences have been found to contribute to women leaving the profession. In this study we explore students' experiences of gendered cultures in engineering workplaces, using interviews with a purposive sample of 13 students (4 male) recruited following a previous survey. Although the overall experience of workplace learning is positive for many students, male and female engineering students reported experiences consistent with masculine cultures. Educators and employers must proactively lead improvements to the culture in engineering workplaces, prepare students for gendered workplaces and support students to reflect during and after workplace experiences. The experiences presented here could be adapted to enhance inclusivity training.

  12. Demonstration Experiments with a Stirling Engine.

    Science.gov (United States)

    Deacon, Christopher G.; And Others

    1994-01-01

    Describes an investigation with the primary purpose of allowing students to generate and interpret a pressure/volume diagram of a Stirling engine. Explains how the Stirling engine can be used to demonstrate the principles of operation of a refrigerator and a heat pump. (DDR)

  13. Nuclear physics experiments with low cost instrumentation

    Science.gov (United States)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  14. Impact of detector simulation in particle physics collider experiments

    Science.gov (United States)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  15. Review on study of multi-physics in environment engineering

    International Nuclear Information System (INIS)

    Liu Shanli; Zhao Jian; Sheng Jinchang

    2006-01-01

    This paper analyzes some problems on multi-field coupling ones between seepage mechanics and other physical and chemical processes (such as temperature field. stress field, solute transport. chemical action and so on) in environment engineering, it explains the research theory of multi-field coupling, it summarizes the abroad and domestic research about the model of multi-field problem and finally it looks into the future of research tendency in environment engineering. (authors)

  16. Statistical physics a prelude and fugue for engineers

    CERN Document Server

    Piazza, Roberto

    2017-01-01

    This book, provides a general introduction to the ideas and methods of statistical mechanics with the principal aim of meeting the needs of Master’s students in chemical, mechanical, and materials science engineering. Extensive introductory information is presented on many general physics topics in which students in engineering are inadequately trained, ranging from the Hamiltonian formulation of classical mechanics to basic quantum mechanics, electromagnetic fields in matter, intermolecular forces, and transport phenomena. Since engineers should be able to apply physical concepts, the book also focuses on the practical applications of statistical physics to material science and to cutting-edge technologies, with brief but informative sections on, for example, interfacial properties, disperse systems, nucleation, magnetic materials, superfluidity, and ultralow temperature technologies. The book adopts a graded approach to learning, the opening four basic-level chapters being followed by advanced “starred�...

  17. Simulations and Experiments in Astronomy and Physics

    Science.gov (United States)

    Maloney, F. P.; Maurone, P. A.; Dewarf, L. E.

    1998-12-01

    There are new approaches to teaching astronomy and physics in the laboratory setting, involving the use of computers as tools to simulate events and concepts which can be illuminated in no other reasonable way. With the computer, it is possible to travel back in time to replicate the sky as Galileo saw it. Astronomical phenomena which reveal themselves only after centuries of real time may be compressed in the computer to a simulation of several minutes. Observations simulated on the computer do not suffer from the vagaries of weather, fixed time or geographic position, or non-repeatability. In physics, the computer allows us to secure data for experiments which, by their nature, may not be amenable to human interaction. These could include experiments with very fast or very slow timescales, large number of data samples, complex or tedious manipulation of the data which hides the fundamental nature of the experiment, or data sampling which would need a specialized probe, such as for acid rain. This innovation has become possible only recently, due to the availability and affordability of sophisticated computer hardware and software. We have developed a laboratory experience for non-scientists who need an introductory course in astronomy or physics. Our approach makes extensive use of computers in this laboratory. Using commercially available software, the students use the computer as a time machine and a space craft to explore and rediscover fundamental science. The physics experiments are classical in nature, and the computer acts as a data collector and presenter, freeing the student from the tedium of repetitive data gathering and replotting. In this way, the student is encouraged to explore, to try new things, to refine the measurements, and to discover the principles underlying the observed phenomena.

  18. Nanoscale device physics science and engineering fundamentals

    CERN Document Server

    Tiwari, Sandip

    2017-01-01

    Nanoscale devices are distinguishable from the larger microscale devices in their specific dependence on physical phenomena and effects that are central to their operation. The size change manifests itself through changes in importance of the phenomena and effects that become dominant and the changes in scale of underlying energetics and response. Examples of these include classical effects such as single electron effects, quantum effects such as the states accessible as well as their properties; ensemble effects ranging from consequences of the laws of numbers to changes in properties arising from different magnitudes of the inter-actions, and others. These interactions, with the limits placed on size, make not just electronic, but also magnetic, optical and mechanical behavior interesting, important and useful. Connecting these properties to the behavior of devices is the focus of this textbook. Description of the book series: This collection of four textbooks in the Electroscience series span the undergrad...

  19. Physically - engineering problems of the Salaspils Nuclear reactor: Solutions and their topicality

    International Nuclear Information System (INIS)

    Mozgirs, Z.V.

    2005-01-01

    The paper generalizes technical solutions of physically-engineering problems of the Salaspils nuclear research reactor, experience of its modernization and exploitation. New equipment and the related technical solutions have been tested at the Salaspils reactor during its operation time and are now recommended for further use at nuclear reactors. (author)

  20. Nuclear engineering experiments at experimental facilities of JNC in graduate course of Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Hayashizaki, Noriyosu; Takahashi, Minoru; Aoyama, Takafumi; Onose, Shoji

    2005-01-01

    Nuclear engineering experiments using outside facilities of the campus have been offered for graduate students in the nuclear engineering course in Tokyo Institute of Technology (Tokyo Tech.). The experiments are managed with the collaboration of Japan Nuclear Cycle Development Institute (JNC), Japan Atomic Energy Research Institute (JAERI) and Research Reactor Institute, Kyoto University (KUR). This report presents the new curriculum of the nuclear engineering experiments at JNC since 2002. The change is due to the shutdown of Deuterium Criticality Assembly Facility (DCA) that was used as an experimental facility until 2001. Reactor physics experiment using the training simulator of the experimental fast reactor JOYO is continued from the previous curriculum with the addition of the criticality approach experiment and control rods calibration. A new experimental subject is an irradiated material experiment at the Material Monitoring Facility (MMF). As a result, both are acceptable as the student experiments on the fast reactor. (author)

  1. Mathematical physics applied mathematics for scientists and engineers

    CERN Document Server

    Kusse, Bruce R

    2006-01-01

    What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations

  2. Connecting High School Physics Experiences, Outcome Expectations, Physics Identity, and Physics Career Choice: A Gender Study

    Science.gov (United States)

    Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.; Shanahan, Marie-Claire

    2010-01-01

    This study explores how students' physics identities are shaped by their experiences in high school physics classes and by their career outcome expectations. The theoretical framework focuses on physics identity and includes the dimensions of student performance, competence, recognition by others, and interest. Drawing data from the Persistence…

  3. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In 2010 the activities of the Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF), RPI-IBIS, and Impulse Plasma Deposition (IPD) facilities; · Research on plasma technologies; · Selected problems of plasma theory and computational modeling. In the frame of the EURATOM program, efforts were devoted to the development of diagnostics methods for tokamak-type facilities. In 2010 Cherenkov detectors were applied in the ISTTOK and TORE SUPRA facilities to detect energetic electrons (of energy > 60 keV), to determine their spatial and temporal behavior and to estimate their energy spectra. Attention was also paid to measurements of hard X rays emitted from ISTTOK and to their correlations with run-away electrons. The new data on fast electrons, collected within the TORE-SUPRA machine in 2010, confirmed the appearance of intense electron streams (possible ripple-born and runaway ones), which have a similar character to the electron signals recorded by means of other diagnostic techniques. Other fusion-oriented efforts are connected with the application of solid-state nuclear track detectors to detect fast alpha particles in tokamak experiments. As for experimental studies, particular attention was paid to the investigation of fast ion- and electron-beams emitted from high-current plasma discharges in PF and RPI facilities. Ion streams from discharges were studied by means of nuclear track detector, corpuscular diagnostic techniques, and particularly of a miniature Thompson-type mass-spectrometer. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers, e.g. pure niobium film on the surface of copper resonant cavities

  4. Neutrino physics with short baseline experiments

    International Nuclear Information System (INIS)

    Zimmerman, E.D.

    2006-01-01

    Neutrino physics with low- to medium-energy beams has progressed steadily over the last several years. Neutrino oscillation searches at short baseline (defined as 2 - -> 0.1eV 2 . One positive signal, from the LSND collaboration, exists and is being tested by the MiniBooNE experiment. Neutrino cross-section measurements are being made by MiniBooNE and K2K, which will be important for reducing systematic errors in present and future oscillation measurements. In the near future, dedicated cross- section experiments will begin operating at Fermilab. (author)

  5. Compilation of current high energy physics experiments

    International Nuclear Information System (INIS)

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  6. Introductory Physics Experiments Using the Wiimote

    Science.gov (United States)

    Somers, William; Rooney, Frank; Ochoa, Romulo

    2009-03-01

    The Wii, a video game console, is a very popular device with millions of units sold worldwide over the past two years. Although computationally it is not a powerful machine, to a physics educator its most important components can be its controllers. The Wiimote (or remote) controller contains three accelerometers, an infrared detector, and Bluetooth connectivity at a relatively low price. Thanks to available open source code, any PC with Bluetooth capability can detect the information sent out by the Wiimote. We have designed several experiments for introductory physics courses that make use of the accelerometers and Bluetooth connectivity. We have adapted the Wiimote to measure the: variable acceleration in simple harmonic motion, centripetal and tangential accelerations in circular motion, and the accelerations generated when students lift weights. We present the results of our experiments and compare them with those obtained when using motion and/or force sensors.

  7. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  8. Flavour Physics with High-Luminosity Experiments

    CERN Document Server

    2016-01-01

    With the first dedicated B-factory experiments BaBar (USA) and BELLE (Japan) Flavour Physics has entered the phase of precision physics. LHCb (CERN) and the high luminosity extension of KEK-B together with the state of the art BELLE II detector will further push this precision frontier. Progress in this field always relied on close cooperation between experiment and theory, as extraction of fundamental parameters often is very indirect. To extract the full physics information from existing and future data, this cooperation must be further intensified. This MIAPP programme aims in particular to prepare for this task by joining experimentalists and theorists in the various relevant fields, with the goal to build the necessary tools in face of the challenge of new large data sets. The programme will begin with a focus on physics with non-leptonic final states, continued by semileptonic B meson decays and Tau decays, and on various aspects of CP symmetry violation closer to the end. In addition, in the final ...

  9. Turkish Students' Career Choices in Engineering: Experiences from Turkey

    Science.gov (United States)

    Cavas, Bulent; Cakiroglu, Jale; Cavas, Pinar; Ertepinar, Hamide

    2011-01-01

    The shortfall of young people, particularly women, in the field of Science, Mathematics and Engineering (SME) has been shown in many national studies. Schreiner and Sjoberg (2007) indicated that boys outnumber girls in physics and engineering studies, while the gender balance is shifted towards the girls in studies including medicine, veterinary…

  10. Microprocessors in physics experiments at SLAC

    International Nuclear Information System (INIS)

    Rochester, L.S.

    1981-01-01

    The increasing size and complexity of high energy physics experiments is changing the way data are collected. To implement a trigger or event filter requires complex logic which may have to be modified as the experiment proceeds. Simply to monitor a detector, large amounts of data must be processed online. The use of microprocessors or other programmable devices can help to achieve these ends flexibly and economically. At SLAC, a number of microprocessor-based systems have been built and are in use in experimental setups, and others are now being developed. This talk is a review of existing systems and their use in experiments, and of developments in progress and future plans. (orig.)

  11. Microprocessors in physics experiments at SLAC

    International Nuclear Information System (INIS)

    Rochester, L.S.

    1981-04-01

    The increasing size and complexity of high energy physics experiments is changing the way data are collected. To implement a trigger or event filter requires complex logic which may have to be modified as the experiment proceeds. Simply to monitor a detector, large amounts of data must be processed on line. The use of microprocessors or other programmable devices can help to achieve these ends flexibly and economically. At SLAC, a number of microprocessor-based systems have been built and are in use in experimental setups, and others are now being developed. This talk is a review of existing systems and their use in experiments, and of developments in progress and future plans

  12. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  13. Two methodologies for physical penetration testing using social engineering

    NARCIS (Netherlands)

    Dimkov, T.; Pieters, Wolter; Hartel, Pieter H.

    2009-01-01

    During a penetration test on the physical security of an organization, if social engineering is used, the penetration tester directly interacts with the employees. These interactions are usually based on deception and if not done properly can upset the employees, violate their privacy or damage

  14. Nucleo electric conversion; an approximation from physics engineering

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The main purpose of this article is carry out some aspects of Civil use in produced Energy conversion from nuclear fi sion in electric energy from one point of view of physical engineering,emphasizing in nuclear power reactors and their fuel oil.

  15. American Physics and the Origins of Electrical Engineering.

    Science.gov (United States)

    Rosenberg, Robert

    1983-01-01

    Traces the development of electrical engineering (EE) from its roots of academic physics in the 1890s to a discipline with its own priorities and departmental structure. Includes a description of the first EE course offered at the Massachusetts Institute of Technology (MIT). (JN)

  16. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  17. Ecological aspects in civil engineering and physical planning

    International Nuclear Information System (INIS)

    Engelhardt, W.

    1983-01-01

    This book presents an introduction to aspects of ecology and has been quite purposefully restricted to the aspects of interest in connection with civil engineering and physical planning. The various chapters deal with soil, water bodies, air, plants and plant communities, trees in towns, animal life, noise and health, as well as high-energy radiation and its impact on man and environment. The book is intended to make engineers and other interested readers working in the technical professions familiar with ecologic principles and ecologically minded thinking in order to pave the way for ecology-mindedness in civil engineering and physical planning, hopefully contributing to avoiding mistakes and their harmful consequences. (orig.) [de

  18. PREFACE: Nanobiology: from physics and engineering to biology

    Science.gov (United States)

    Nussinov, Ruth; Alemán, Carlos

    2006-03-01

    Biological systems are inherently nano in scale. Unlike nanotechnology, nanobiology is characterized by the interplay between physics, materials science, synthetic organic chemistry, engineering and biology. Nanobiology is a new discipline, with the potential of revolutionizing medicine: it combines the tools, ideas and materials of nanoscience and biology; it addresses biological problems that can be studied and solved by nanotechnology; it devises ways to construct molecular devices using biomacromolecules; and it attempts to build molecular machines utilizing concepts seen in nature. Its ultimate aim is to be able to predictably manipulate these, tailoring them to specified needs. Nanobiology targets biological systems and uses biomacromolecules. Hence, on the one hand, nanobiology is seemingly constrained in its scope as compared to general nanotechnology. Yet the amazing intricacy of biological systems, their complexity, and the richness of the shapes and properties provided by the biological polymers, enrich nanobiology. Targeting biological systems entails comprehension of how they work and the ability to use their components in design. From the physical standpoint, ultimately, if we are to understand biology we need to learn how to apply physical principles to figure out how these systems actually work. The goal of nanobiology is to assist in probing these systems at the appropriate length scale, heralding a new era in the biological, physical and chemical sciences. Biology is increasingly asking quantitative questions. Quantitation is essential if we are to understand how the cell works, and the details of its regulation. The physical sciences provide tools and strategies to obtain accurate measurements and simulate the information to allow comprehension of the processes. Nanobiology is at the interface of the physical and the biological sciences. Biology offers to the physical sciences fascinating problems, sophisticated systems and a rich repertoire of

  19. Physics Potential of Long-Baseline Experiments

    Directory of Open Access Journals (Sweden)

    Sanjib Kumar Agarwalla

    2014-01-01

    Full Text Available The discovery of neutrino mixing and oscillations over the past decade provides firm evidence for new physics beyond the Standard Model. Recently, θ13 has been determined to be moderately large, quite close to its previous upper bound. This represents a significant milestone in establishing the three-flavor oscillation picture of neutrinos. It has opened up exciting prospects for current and future long-baseline neutrino oscillation experiments towards addressing the remaining fundamental questions, in particular the type of the neutrino mass hierarchy and the possible presence of a CP-violating phase. Another recent and crucial development is the indication of non-maximal 2-3 mixing angle, causing the octant ambiguity of θ23. In this paper, I will review the phenomenology of long-baseline neutrino oscillations with a special emphasis on sub-leading three-flavor effects, which will play a crucial role in resolving these unknowns. First, I will give a brief description of neutrino oscillation phenomenon. Then, I will discuss our present global understanding of the neutrino mass-mixing parameters and will identify the major unknowns in this sector. After that, I will present the physics reach of current generation long-baseline experiments. Finally, I will conclude with a discussion on the physics capabilities of accelerator-driven possible future long-baseline precision oscillation facilities.

  20. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  1. Light-matter interaction physics and engineering at the nanoscale

    CERN Document Server

    Weiner, John

    2013-01-01

    This book draws together the essential elements of classical electrodynamics, surface wave physics, plasmonic materials, and circuit theory of electrical engineering to provide insight into the essential physics of nanoscale light-matter interaction and to provide design methodology for practical nanoscale plasmonic devices. A chapter on classical and quantal radiation also highlights the similarities (and differences) between the classical fields of Maxwell's equations and the wave functions of Schrodinger's equation. The aim of this chapter is to provide a semiclassical picture of atomic absorption and emission of radiation, lending credence and physical plausibility to the "rules" of standard wave-mechanical calculations.

  2. Reactor physics experiment plan using TCA

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Shoichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is one of the next generation water-cooled reactors, which aims at effective utilization of uranium resource, high burn-up, long operation cycle, and plutonium multi-recycle. For verification of the feasibility, negative void reactivity coefficient and conversion ratio more than 1.0 must be confirmed. This report is to plan critical experiments using TCA in JAERI. Critical Experiments performed so far in Europe and Japan are reviewed, and no useful data are available for RMWR development. Critical experiments using TCA (Tank Type Critical Assembly) in JAERI are planned. MOX fuel rods should be prepared for the experiments and some modifications of equipment are needed for use of MOX fuel rods. This report describes the preliminary plan of physics experiments. The number of MOX-fuel rods used in the experiments is obtained by calculations and modification of the equipment for the experiments are shown. New MOX fuel and UO{sub 2} fuel rods are necessary for the RMWR critical experiments. Number of MOX fuel rods is 1000 for Plutonium fissile enrichment of 5 wt%, 1000 for 10 wt%, 1500 for 15 wt% and 500 for 20 wt%, respectively. Depleted UO{sub 2} fuel rods for blanket/buffer region are 4000. Driver fuel rods of 4.9 wt% UO{sub 2} are 3000. Modification of TCA facility is requested to treat the large amount of MOX fuels from safety point of view. Additional shielding device at the top of the tank for loading the MOX fuels and additional safety plates to ensure safety are requested. The core is divided into two regions by inserting an inner tank to avoid criticality in MOX region only. The test region is composed by MOX fuel rods in the inner tank. Criticality is established by UO{sub 2} driver fuel rods outside of the inner tank. (Tsuchihashi, K.)

  3. The basic physics of neutron scattering experiments

    International Nuclear Information System (INIS)

    Mezei, F.

    1999-01-01

    The basic physical principles behind the well-established but also developing practice of neutron scattering experiments are presented. A few examples are given either to illustrate the physical principles or to give an idea of the variety, importance or magnitude of various phenomena. The evolution of neutron scattering experimental techniques is investigated from a special aspect: the increasing capability of taking into account more and more important and sometimes decisive finer details by using more and more realistic mathematical models of the evolution of the neutrons from birth do death, eventually passing by the sample and being scattered more than one times. Working with such numerical 'virtual instruments' one will have to go far beyond notions like resolution function, convolution etc, and actually eliminate a large number of approximations currently in use. (K.A.)

  4. Review Committee report on the conceptual design of the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    1993-04-01

    This report discusses the following topics on the conceptual design of the Tokamak Physics Experiment: Role and mission of TPX; overview of design; physics design assessment; engineering design assessment; evaluation of cost, schedule, and management plans; and, environment safety and health

  5. Experiences of Scientific Thinking in Physics Classrooms

    Directory of Open Access Journals (Sweden)

    Alexandre Fagundes Faria

    2018-04-01

    Full Text Available There is a contemporary demand on STEM education to support learning experiences in which students use scientific thinking to solve tasks. Scientific thinking involves domain-specific knowledge and general domain strategies of thinking. The object of interest in this research was the set of students’ experiences of scientific thinking in which they articulate domain-general strategies and domain-specific knowledge to solve physics tasks. Our goal was to characterize the experiences of scientific thinking of two groups of four students engaged in tasks about Newtonian Mechanics. The volunteers were 19 students, 15-17 years old, enrolled in electronics or computer science courses (11th grade of a Brazilian vocational high school at Belo Horizonte/Minas Gerais. All class activities proposed to the students have been regularly used since 2010, therefore, we made no special intervention to conduct the study. Data collection occurred during the classes and involved audio and video recordings of students working in group; field notes; and photographs of students’ notebooks and of the posters they made to conduct oral presentations. The choice of the groups was based on how assiduous the members were. We have transcribed episodes in which we identified experiences of scientific thinking. These transcriptions, the field notes and the photographs were analyzed together, in interaction with each other. Data analysis is based upon John Dewey’s Theory of Experience. Our results show that the experiences of scientific thinking of the two groups were educative experiences, although qualitatively different. This difference was due to the way students interacted with the conditions given to solve the tasks. Additional information is given about the school circumstances in which the study was conducted to allow a better evaluation of results quality.

  6. Experiment-Based Teaching in Advanced Control Engineering

    Science.gov (United States)

    Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K.

    2011-01-01

    This paper discusses an experiment-based approach to teaching an advanced control engineering syllabus involving controlled plant analysis and modeling, control structures and algorithms, real-time laboratory experiments, and their assessment. These experiments are structured around the representative case of the longitudinal slip control of an…

  7. Physics with Photons at the ATLAS experiment

    International Nuclear Information System (INIS)

    Perez-Reale, V.

    2008-01-01

    The identification of photons in the ATLAS experiment is crucial for the study of a number of physics channels, including the search for a Higgs boson decaying to photon pairs, and measurements of direct production of single photons and photon pairs. The photon-photon and photon-jet channels are interesting in their own right, allowing the study of QCD at the new energy range of the LHC. The photon-identification strategy in ATLAS will be presented along with photon-jet cross section measurements and the potential ATLAS constrains on the gluon structure function

  8. Tokamak physics experiment: Diagnostic windows study

    International Nuclear Information System (INIS)

    Merrigan, M.; Wurden, G.A.

    1995-11-01

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented

  9. Creative Turbulence: Experiments in Art and Physics

    Science.gov (United States)

    Fonda, Enrico; Dubois, R. Luke; Camnasio, Sara; Porfiri, Maurizio; Sreenivasan, Katepalli R.; Lathrop, Daniel P.; Serrano, Daniel; Ranjan, Devesh

    2016-11-01

    Effective communication of basic research to non-experts is necessary to inspire the public and to justify support for science by the taxpayers. The creative power of art is particularly important to engage an adult audience, who otherwise might not be receptive to standard didactic material. Interdisciplinarity defines new trends in research, and works at the intersection of art and science are growing in popularity, even though they are often isolated experiments. We present a public-facing collaboration between physicists/engineers performing research in fluid dynamics, and audiovisual artists working in cutting-edge media installation and performance. The result of this collaboration is a curated exhibition, with supporting public programming. We present the artworks, the lesson learned from the interactions between artists and scientists, the potential outreach impact and future developments. This project is supported by the APS Public Outreach Mini Grant.

  10. Clinical Engineering: Experiences of assisted professional practices

    International Nuclear Information System (INIS)

    Langone, Luis; Vanetta, Marcos; Vazquez, Marcelo; Rotger, Viviana I; Olivera, Juan Manuel

    2007-01-01

    In the curricula of the Biomedical Engineering career of the Facultad de Ciencias Exactas y TecnologIa of the Universidad Nacional de Tucuman, Argenitna, there are the Assisted Professional Practices. Within this framework, the students have the possibility of performing practices in the clinic Sanatorio 9 de Julio. One of the objectives of these practices is to apply the concepts, methods and procedures studied along the career in the field work under real work conditions. From the point of view of the host institution, the objective is to improve the performance of the different services and areas applying the tools of Biomedical Engineering. The present work shows an example of such practices where an equipment preliminary analysis was made, its use and maintenance corresponding to the surgical unit of the clinic

  11. Sustainability in Design Engineering Education; Experiences in Northern Europe

    NARCIS (Netherlands)

    Dewulf, K.; Wever, R.; Boks, C.; Bakker, C.; D'hulster, F.

    2009-01-01

    In recent years, the implementation of sustainability into the curricula of engineering has become increasingly important. This paper focuses on the experiences of integrating sustainability in Design Engineering education in the academic bachelor programs at Delft University of Technology in The

  12. Women Engineering Transfer Students: The Community College Experience

    Science.gov (United States)

    Patterson, Susan J.

    2011-01-01

    An interpretative philosophical framework was applied to a case study to document the particular experiences and perspectives of ten women engineering transfer students who once attended a community college and are currently enrolled in one of two university professional engineering programs. This study is important because women still do not earn…

  13. Building a Framework for Engineering Design Experiences in High School

    Science.gov (United States)

    Denson, Cameron D.; Lammi, Matthew

    2014-01-01

    In this article, Denson and Lammi put forth a conceptual framework that will help promote the successful infusion of engineering design experiences into high school settings. When considering a conceptual framework of engineering design in high school settings, it is important to consider the complex issue at hand. For the purposes of this…

  14. The Low Temperature Microgravity Physics Experiments Project

    Science.gov (United States)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  15. A 2009 survey of the Australasian clinical medical physics and biomedical engineering workforce.

    Science.gov (United States)

    Round, W Howell

    2010-06-01

    A survey of the Australasian clinical medical physics and biomedical engineering workforce was carried out in 2009 following on from a similar survey in 2006. 621 positions (equivalent to 575 equivalent full time (EFT) positions) were captured by the survey. Of these 330 EFT were in radiation oncology physics, 45 EFT were in radiology physics, 42 EFT were in nuclear medicine physics, 159 EFT were in biomedical engineering and 29 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data shows the changes to the workforce over the preceding 3 years and identifies shortfalls in the workforce.

  16. A 2012 survey of the Australasian clinical medical physics and biomedical engineering workforce.

    Science.gov (United States)

    Round, W H

    2013-06-01

    A survey of the medical physics and biomedical engineering workforce in Australia and New Zealand was carried out in 2012 following on from similar surveys in 2009 and 2006. 761 positions (equivalent to 736 equivalent full time (EFT) positions) were captured by the survey. Of these, 428 EFT were in radiation oncology physics, 63 EFT were in radiology physics, 49 EFT were in nuclear medicine physics, 150 EFT were in biomedical engineering and 46 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data shows the changes to the workforce over the preceding 6 years and identifies shortfalls in the workforce.

  17. Virtual parameter-estimation experiments in Bioprocess-Engineering education

    NARCIS (Netherlands)

    Sessink, O.D.T.; Beeftink, H.H.; Hartog, R.J.M.; Tramper, J.

    2006-01-01

    Cell growth kinetics and reactor concepts constitute essential knowledge for Bioprocess-Engineering students. Traditional learning of these concepts is supported by lectures, tutorials, and practicals: ICT offers opportunities for improvement. A virtual-experiment environment was developed that

  18. Physical non-viral gene delivery methods for tissue engineering

    Science.gov (United States)

    Mellott, Adam J.; Forrest, M. Laird; Detamore, Michael S.

    2016-01-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that “fits-all” cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications. PMID:23099792

  19. Physical non-viral gene delivery methods for tissue engineering.

    Science.gov (United States)

    Mellott, Adam J; Forrest, M Laird; Detamore, Michael S

    2013-03-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.

  20. Software engineering experience from the LEP experiment OPAL

    International Nuclear Information System (INIS)

    Schaile, O.

    1990-01-01

    This contribution describes some of the activities within the OPAL collaboration at LEP to apply Software Engineering Techniques for program development and data documentation. It concentrates on two aspects: Structured Analysis Techniques and a data documentation system developed within OPAL. As far as evaluations are given they are the authors view and opinion

  1. Physics capabilities of the SNO+ experiment

    Science.gov (United States)

    Arushanova, E.; Back, A. R.; SNO+ Collaboration

    2017-09-01

    SNO+ will soon enter its first phase of physics data-taking. The Canadian-based detector forms part of the SNOLAB underground facility, in a Sudbury nickel mine; its location providing more than two kilometres of rock overburden. We present an overview of the SNO+ experiment and its physics capabilities. Our primary goal is the search for neutrinoless double-beta decay, where our expected sensitivity would place an upper limit of 1.9 × 1026 y, at 90% CL, on the half-life of neutrinoless double-beta decay in 130Te. We also intend to build on the success of SNO by studying the solar neutrino spectrum. In the unloaded scintillator phase SNO+ has the ability to make precision measurements of the fluxes of low-energy pep neutrinos and neutrinos from the CNO cycle. Other physics goals include: determining the spectrum of reactor antineutrinos, to further constrain Δ {m}122; detecting neutrinos produced by a galactic supernova and investigating certain modes of nucleon decay.

  2. Modern physics and engineering technology for the world year of physics 2005

    International Nuclear Information System (INIS)

    Du Xiangwan

    2005-01-01

    In the course of progress of the modern society, physics as part of fundamental science, and engineering technology, which is on the applied side of the scientific spectrum, have played different roles. However, there are strong correlation and close interactions between them. By examining the relations between physics and nuclear energy, laser technology, and astronautics, the paper shows that modern physics has taken a leading role in opening up new areas of engineering technology. And conversely, while directly raising productivity, engineering technology has also provided new conditions and environment and more powerful means with which the research of physical science has been explored both more vastly and deeply. The paper further stipulates that, while benefiting each other by mutual progress and interpenetration, physics and engineering technology work hand in hand with philosophy and other social sciences, jointly promoting economic and social development. Faced with lofty historical duties in the process of understanding and transforming the world, physicists and engineers are required to posses some common, good qualities. (author)

  3. Educational experiments of radiochemistry in the nuclear engineering school

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1995-06-01

    Educational experiments of radiochemistry are described. They were an improvement of educational experiment of burn-up measurement as well as experiments on a solvent extraction, a cation exchange behavior of 60 Co, liquid scintillation spectrometry and half-life determination of 87 Rb, and determination of 137 Cs in sea water. Two or one of the experiments were ordinarily studied, depending the occasional situations, by the students of the general course or of the nuclear engineering course in the Nuclear Engineering School, Nuclear Education Center, JAERI from 1976 to 1994. (author)

  4. Studying Gender Bias in Physics Grading: The Role of Teaching Experience and Country

    Science.gov (United States)

    Hofer, Sarah I.

    2015-01-01

    The existence of gender-STEM (science, technology, engineering, and mathematics) stereotypes has been repeatedly documented. This article examines physics teachers' gender bias in grading and the influence of teaching experience in Switzerland, Austria, and Germany. In a 2?×?2 between-subjects design, with years of teaching experience included as…

  5. A Phenomenographic Investigation of the Ways Engineering Students Experience Innovation

    Science.gov (United States)

    Fila, Nicholas David

    Innovation has become an important phenomenon in engineering and engineering education. By developing novel, feasible, viable, and valued solutions to complex technical and human problems, engineers support the economic competitiveness of organizations, make a difference in the lives of users and other stakeholders, drive societal and scientific progress, and obtain key personal benefits. Innovation is also a complex phenomenon. It occurs across a variety of contexts and domains, encompasses numerous phases and activities, and requires unique competency profiles. Despite this complexity, many studies in engineering education focus on specific aspects (e.g., engineering students' abilities to generate original concepts during idea generation), and we still know little about the variety of ways engineering students approach and understand innovation. This study addresses that gap by asking: 1. What are the qualitatively different ways engineering students experience innovation during their engineering projects? 2. What are the structural relationships between the ways engineering students experience innovation? This study utilized phenomenography, a qualitative research method, to explore the above research questions. Thirty-three engineering students were recruited to ensure thorough coverage along four factors suggested by the literature to support differences related to innovation: engineering project experience, academic major, year in school, and gender. Each participant completed a 1-2 hour, semi-structured interview that focused on experiences with and conceptions of innovation. Whole transcripts were analyzed using an eight-stage, iterative, and comparative approach meant to identify a limited number of categories of description (composite ways of experiencing innovation comprised of the experiences of several participants), and the structural relationships between these categories. Phenomenographic analysis revealed eight categories of description that were

  6. Integrated circuits for particle physics experiments

    CERN Document Server

    Snoeys, W; Campbell, M; Cantatore, E; Faccio, F; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Toifl, Thomas H; Wyllie, Ken H

    2000-01-01

    High energy particle physics experiments investigate the nature of matter through the identification of subatomic particles produced in collisions of protons, electrons, or heavy ions which have been accelerated to very high energies. Future experiments will have hundreds of millions of detector channels to observe the interaction region where collisions take place at a 40 MHz rate. This paper gives an overview of the electronics requirements for such experiments and explains how data reduction, timing distribution, and radiation tolerance in commercial CMOS circuits are achieved for these big systems. As a detailed example, the electronics for the innermost layers of the future tracking detector, the pixel vertex detector, is discussed with special attention to system aspects. A small-scale prototype (130 channels) implemented in standard 0.25 mu m CMOS remains fully functional after a 30 Mrad(SiO/sub 2/) irradiation. A full-scale pixel readout chip containing 8000 readout channels in a 14 by 16 mm/sup 2/ ar...

  7. Experience, gender, and performance: Connecting high school physics experience and gender differences to introductory college physics performance

    Science.gov (United States)

    Tai, Robert H.

    Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics

  8. Physical, technical and engineer concept of ultradeep nuclear geoprobes

    International Nuclear Information System (INIS)

    Vaschenko, V.; Vachev, B.; Pisarenko, T.

    2009-01-01

    This report presents information on the results of works dedicated to theoretical, physical and technical justification of contact thermal melting method of low thermal conductivity substances and to prospects of its practical realization as autonomous geoprobe for penetrating into deep Earth interior. The following problems and tasks were investigated and solved by the authors: 1) Investigation of processes of heat and mass transfer by contact melting in near-bore region due to movement of heat source of arbitrary form. 2) Development of methods and estimate of principal engineer parameters of contact thermal penetrating in low heat conducting environment. 3) Analysis of modern high-temperature materials and element base for construction of autonomous ultra deep thermoprobe. 4) Investigation of ecological consequences of possible emergency in case nuclear thermal heat source loss of sealing. 5) Mathematical problem formulation of ultra deep contact thermal penetrating by melting the environment for heat source of arbitrary form moving under gravity force and propose approach to its solution. 6) Formulation and solution of contact thermal penetration process optimization problem. 7) Development of methods of main engineering parameters of contact thermal melting of low heat conducting substances estimate. 8) Development of base of physical, engineering and technical concept of autonomous geoprobe for ultra deep penetrating into Earth interior. It is important that the results obtained may be used in engineering and constructing development of ultra deep geoprobe and also for calculation of technological apparatus and processes that use contact thermal melting of low thermal conducting materials

  9. The use of physics engines in quantifying breakwater damage

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2013-07-08

    Full Text Available for present purposes is PhysX™ (NVIDIA, 2012). The components of a physics engine are object representation, collision detection, collision processing, and particle kinematics. Each body is represented by a tetrahedral mesh model. It is important... Techniques SIGGRAPH ’08., 2008. Munjiza, A., 2004. The Combined Finite-Discrete Element Method. Wiley. Munjiza, A., 2011. Computational mechanics of discontinua. John Wiley and Sons. NVIDIA, 2012. PhysX. [Online] Available at: HYPERLINK "file...

  10. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  11. A Differentiable Physics Engine for Deep Learning in Robotics

    OpenAIRE

    Degrave, Jonas; Hermans, Michiel; Dambre, Joni; wyffels, Francis

    2016-01-01

    One of the most important fields in robotics is the optimization of controllers. Currently, robots are treated as a black box in this optimization process, which is the reason why derivative-free optimization methods such as evolutionary algorithms or reinforcement learning are omnipresent. We propose an implementation of a modern physics engine, which has the ability to differentiate control parameters. This has been implemented on both CPU and GPU. We show how this speeds up the optimizatio...

  12. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2008-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student''s ability to think in mathematical terms and to apply quantitative methods to scientific problems. By the author''s design, no problems are included in the text, to allow the students to focus on their science course assignments.- Highly accessible presentation of fundamental mathematical techniques needed in science and engineering courses- Use of proven pedagogical techniques develolped during the author's 40 years of teaching experience- illustrations and links to reference material on World-Wide-Web- Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, speci...

  13. Other physics experiments at the Homestake Mine

    International Nuclear Information System (INIS)

    Cherry, M.L.; Davidson, I.; Lande, K.; Lee, C.K.; Marshall, E.; Steinberg, R.I.

    1982-01-01

    The Homestake Gold Mine presently houses the Brookhaven solar neutrino experiment and a 300-ton water Cerenkov detector at a depth of 4200 meters water equivalent. The Cerenkov detector has been used to study nucleon decay, multiple muons, and neutrino bursts. An array of liquid scintillator, with surface area of 130 m 2 , is presently being constructed to measure magnetic monopoles, neutrino oscillations, underground muons, and neutrino bursts. At the same time, a 1 km 2 extensive air shower array is being built on the surface in order to measure the high energy cosmic ray composition with simultaneous surface and underground shower measurements. Future plans call for a 1406-ton liquid scintillator Tracking Spectrometer to measure nucleon decay, n-anti n transitions, and the low energy cosmic ray neutrino spectrum. We describe the present results and the possibilities for physics other than nucleon decay in the nucleon decay detectors

  14. Automatically processing physical data from LHD experiments

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, M., E-mail: emoto.masahiko@nifs.ac.jp; Ida, K.; Suzuki, C.; Yoshida, M.; Akiyama, T.; Nakamura, Y.; Sakamoto, R.; Yokoyama, M.; Yoshinuma, M.

    2014-05-15

    Physical data produced by large helical device (LHD) experiments is supplied by the Kaiseki server, and registers more than 200 types of diagnostic data. Dependencies exist amongst the data; i.e., in many cases, the calculation of one data requires other data. Therefore, to obtain unregistered data, one needs to calculate not only the diagnostic data itself but also the dependent data; however, because the data is registered by different scientists, each scientist must separately calculate and register their respective data. To simplify this complicated procedure, we have developed an automatic calculation system called AutoAna. The calculation programs of AutoAna are distributed on a network, and the number of such programs can be easily increased dynamically. Our system is therefore scalable and ready for substantial increases in the size of the target data.

  15. Engineering teacher training models and experiences

    Science.gov (United States)

    González-Tirados, R. M.

    2009-04-01

    Institutions and Organisations that take training seriously and devote time, effort and resources, etc, to their own teams are more likely to succeed, since both initial teacher training and continuous improvement, studies, hours of group discussion, works on innovation and educational research, talks and permanent meetings, etc, will all serve to enhance teaching and its quality. Teachers will be able to introduce new components from previously taught classes into their university teaching which will contribute to improving their work and developing a suitable academic environment to include shared objectives, teachers and students. Moreover, this training will serve to enhance pedagogic innovation, new teaching-learning methodologies and contribute to getting teaching staff involved in respect of the guidelines set out by the EHEA. Bearing in mind that training and motivation can be key factors in any teacher's "performance", their productivity and the quality of their teaching, Teacher Training for a specific post inside the University Organisation is standard practice of so-called Human Resources management and an integral part of a teacher's work; it is a way of professionalising the teaching of the different branches of Engineering. At Madrid Polytechnic University, in the Institute of Educational Sciences (ICE), since it was founded in 1972, we have been working hard with university teaching staff. But it was not until 1992 after carrying out various studies on training needs that we planned and programmed different training actions, offering a wide range of possibilities. Thus, we designed and taught an "Initial Teacher Training Course", as it was first called in 1992, a programme basically aimed to train young Engineering teachers just setting out on their teaching career. In 2006, the name was changed to "Advanced University Teacher Training Course". Subsequently, with the appearance of the Bologna Declaration and the creation of the European Higher

  16. FPGA fault tolerance in particle physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gebelein, Jano; Engel, Heiko; Kebschull, Udo [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2010-07-01

    The behavior of matter in physically extreme conditions is in focus of many high-energy-physics experiments. For this purpose, high energy charged particles (ions) are collided with each other and energy- or baryon densities are created similar to those at the beginning of the universe or to those which can be found in the center of neutron stars. In both cases a plasma of quarks and gluons (QGP) is present, which immediately decomposes to hadrons within a short period of time. At this process, particles are formed, which allow statements about the beginning of the universe when captured by large detectors, but which also lead to the massive occurance of hardware failures within the detector's electronic devices. This contribution is about methods to mitigate radiation susceptibility for Field Programmable Gate Arrays (FPGA), enabling them to be used within particle detector systems to directly gain valid data in the readout chain or to be used as detector-control-system.

  17. Industry roles in the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1994-01-01

    The Tokamak Physics Experiment (TPX) is the first major fusion project opportunity in many years for US industry. Both the TPX management and the Department of Energy's Office of Fusion Energy are committed to creating industry roles that are integrated throughout the project and that appropriately use the capabilities they offer. To address industry roles in TPX it is first appropriate to describe the collaborative national approach taken for this program. The Director of the Princeton Plasma Physics Laboratory (PPPL) was asked by DOE to set up this national team structure, and the current senior management positions and delegated responsibilities reflect that approach. While reporting lines and delegated roles are clear in the organization chart for TPX, one way to view, it, different from that of the individuals responsible upward through this management structure for various elements of the project, is through institutional responsibilities to the senior management team. In this view the management team relies on several national laboratories, each using industry contracts for major sub-systems and components, to execute the project. These responsibilities for design and for contracting are listed, showing that all major contracts will come through three national laboratories, forming teams for their responsible activities

  18. Hybrid rocket engine, theoretical model and experiment

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  19. Optical engineering: understanding optical system by experiments

    Science.gov (United States)

    Scharf, Toralf

    2017-08-01

    Students have to be educated in theoretical and practical matters. Only one of them does not allow attacking complex problems in research, development, and management. After their study, students should be able to design, construct and analyze technical problems at highest levels of complexity. Who never experienced the difficulty of setting up measurements will not be able to understand, plan and manage such complex tasks in her/his future career. At EPFL a course was developed for bachelor education and is based on three pillars: concrete actions (enactive) to be done by the students, a synthesis of their work by writing a report (considered as the iconic part) and inputs from the teacher to generalize the findings and link it to a possible complete abstract description (symbolic). Intensive tutoring allowed an intermodal transfer between these categories. This EIS method originally introduced by Jerome Bruner for small children is particular well adapted for engineer education for which theoretical understanding often is not enough. The symbiosis of ex-cathedra lecture and practical work in a classroom-like situation presents an innovative step towards integrated learning that complements perfectly more abstract course principles like online courses.

  20. Physics evaluation of compact tokamak ignition experiments

    International Nuclear Information System (INIS)

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/ 2 /q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs

  1. Women and physics A tribute to Engin Arik

    CERN Document Server

    Gagnon, P

    2008-01-01

    More than 2200 scientists coming from 37 countries participate in the ATLAS experiment. Only 17% of these are women. Why is this so? In Turkey, like elsewhere in the Balkans, there is a higher proportion of women physicists than in other European and North American countries. I will address this difference as well as examine the role of women in the ATLAS collaboration. I will also talk about the activities of the ATLAS Women's Network, of which Prof. Engin Arik was a founding member. Since Prof. Arik also worked hard to bring talented young Turkish students to CERN, I will also talk about the Engin Arik Fellowship which was created in memory of Engin and her colleagues, to continue her work offering research opportunities to young Turkish physicists.

  2. Broadening of nuclear engineering programs: An engineering physics approach at Rensselaer

    International Nuclear Information System (INIS)

    Malaviya, B.K.

    1990-01-01

    With the maturing of nuclear engineering as an academic discipline and the uncertainty surrounding the nuclear industry, attention is being increasingly turned to ways in which the base of traditional nuclear engineering programs in universities can be broadened to make them more attractively useful to a wider class of potential students and employers while maintaining the strengths in mainstream areas of nuclear technology. An approach that seems to provide a natural evolution combining the existing programmatic strengths, infrastructure, and resources with the trending needs of a broad segment of diversified industries is the development and initiation of an engineering physics degree program as an adjunct to an established nuclear engineering curriculum. In line with these developments, a new comprehensive academic program offering baccalaureate, master's, and doctoral degrees in engineering physics has been developed and formally instituted at Rensselaer Polytechnic Institute (RPI). It provides a valuable opportunity for students to pursue education and research that cuts across traditional disciplinary lines, leading to a wide variety of career opportunities in industry, government, national research and defense laboratories, and academia

  3. Summary of results of underground engineering experience

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, F [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1969-07-01

    Results pertinent to the use of nuclear explosives in underground engineering applications have been accumulating for the past 10 years from the Plowshare and Weapons tests of the AEC. Thus, predictive and measurement techniques of shock effects and chimney formation were developed in the course of analyzing explosions in granite, salt, and dolomite. The ability to predict effects related specifically to safety has resulted from many measurements on detonations at the Nevada Test Site, where also many of the techniques for handling, emplacing, and firing the explosive have been developed. This gestation period culminated in the execution of Project Gasbuggy, jointly sponsored by industry and government, and the first nuclear explosion in a gasbearing formation. The Gasbuggy explosive had a nominal yield of 25 kt and was detonated 4240 ft below the surface in the San Juan Basin in northwestern New Mexico on December 10, 1967. The shot point was 40 ft below the lower boundary of a 285-ft-thick gas-bearing sandstone formation of very low permeability. No radioactive venting occurred, and no damage to surrounding gas wells or structures resulted. Post-shot geophysical exploration and gas production tests have revealed that the nuclear explosion created a subsurface chimney approximately 160 ft in diameter and 335 ft high. Fractures appear to extend to about 400 ft symmetrically from the detonation point, with shifts or offsets along geological weaknesses extending out to perhaps 750 ft. Presently, radioactive constituents in the gas consist of tritium and krypton-85, with concentrations of approximately 10 {mu}Ci/ft{sup 3} and 1.5 {mu}Ci/ft{sup 3} respectively. These concentrations are decreasing a gas withdrawn from the chimney is replaced by formation gas. Tests to evaluate the increase in productivity and ultimate recovery are currently in progress. (author)

  4. Summary of results of underground engineering experience

    International Nuclear Information System (INIS)

    Holzer, F.

    1969-01-01

    Results pertinent to the use of nuclear explosives in underground engineering applications have been accumulating for the past 10 years from the Plowshare and Weapons tests of the AEC. Thus, predictive and measurement techniques of shock effects and chimney formation were developed in the course of analyzing explosions in granite, salt, and dolomite. The ability to predict effects related specifically to safety has resulted from many measurements on detonations at the Nevada Test Site, where also many of the techniques for handling, emplacing, and firing the explosive have been developed. This gestation period culminated in the execution of Project Gasbuggy, jointly sponsored by industry and government, and the first nuclear explosion in a gasbearing formation. The Gasbuggy explosive had a nominal yield of 25 kt and was detonated 4240 ft below the surface in the San Juan Basin in northwestern New Mexico on December 10, 1967. The shot point was 40 ft below the lower boundary of a 285-ft-thick gas-bearing sandstone formation of very low permeability. No radioactive venting occurred, and no damage to surrounding gas wells or structures resulted. Post-shot geophysical exploration and gas production tests have revealed that the nuclear explosion created a subsurface chimney approximately 160 ft in diameter and 335 ft high. Fractures appear to extend to about 400 ft symmetrically from the detonation point, with shifts or offsets along geological weaknesses extending out to perhaps 750 ft. Presently, radioactive constituents in the gas consist of tritium and krypton-85, with concentrations of approximately 10 μCi/ft 3 and 1.5 μCi/ft 3 respectively. These concentrations are decreasing a gas withdrawn from the chimney is replaced by formation gas. Tests to evaluate the increase in productivity and ultimate recovery are currently in progress. (author)

  5. Physics Experiments at the Agesta Power Station

    International Nuclear Information System (INIS)

    Apelqvist, G.; Bliselius, P. Aa.; Blomberg, P.E.; Jonsson, E.; Aakerhielm, F.

    1966-09-01

    Part A. Dynamic measurements have been performed at the Aagesta reactor at power levels from 0.3 to 65 MW(th). The purposes of the experiments have been both to develop experimental methods and equipment for the dynamic studies and to measure the dynamic characteristics of the reactor in order to check the dynamic model. The experiments have been performed with four different perturbation functions: trapezoidal and step functions and two types of periodic multifrequency signals. Perturbations were introduced in the reactivity and in the load. The recordings were made of the responses of nuclear power, coolant inlet and outlet temperature and control rod position. The results are presented as step responses and transfer functions (Bode diagrams). Inmost cases the relative accuracy is ± 0.5 dB in amplitude and ± 5 deg in phase. The results from the experiments in general show rather good agreement with the results obtained from a dynamic model, which successively has been improved. Experience on reactor noise analysis based on measurements in the Agesta power reactor is discussed. It is shown that the noise measurements have given complementary dynamic information of the reactor. Part B. Static measurements of the physics parameters in the Agesta reactor are carried out to confirm theoretical methods for reactor calculations and to form a good basis for safe operation of the reactor. The reactivity worth of groups of control rods are determined with different methods and compared with calculations with the three-dimensional code HETERO. The excess reactivity as a function of burn up is obtained from the control rod positions. The temperature coefficient of the moderator is measured by lowering the moderator temperature at constant power and observing the change in control rod insertion. As burn up increases the experiments are repeated in order to follow the changes in the coefficient. The xenon poisoning effects are measured by changing the power level and

  6. Physics Experiments at the Agesta Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Apelqvist, G [State Power Board, Stockholm (Sweden); Bliselius, P Aa; Blomberg, P E; Jonsson, E; Aakerhielm, F [AB Atomenergi, Nykoeping (Sweden)

    1966-09-15

    Part A. Dynamic measurements have been performed at the Aagesta reactor at power levels from 0.3 to 65 MW(th). The purposes of the experiments have been both to develop experimental methods and equipment for the dynamic studies and to measure the dynamic characteristics of the reactor in order to check the dynamic model. The experiments have been performed with four different perturbation functions: trapezoidal and step functions and two types of periodic multifrequency signals. Perturbations were introduced in the reactivity and in the load. The recordings were made of the responses of nuclear power, coolant inlet and outlet temperature and control rod position. The results are presented as step responses and transfer functions (Bode diagrams). Inmost cases the relative accuracy is {+-} 0.5 dB in amplitude and {+-} 5 deg in phase. The results from the experiments in general show rather good agreement with the results obtained from a dynamic model, which successively has been improved. Experience on reactor noise analysis based on measurements in the Agesta power reactor is discussed. It is shown that the noise measurements have given complementary dynamic information of the reactor. Part B. Static measurements of the physics parameters in the Agesta reactor are carried out to confirm theoretical methods for reactor calculations and to form a good basis for safe operation of the reactor. The reactivity worth of groups of control rods are determined with different methods and compared with calculations with the three-dimensional code HETERO. The excess reactivity as a function of burn up is obtained from the control rod positions. The temperature coefficient of the moderator is measured by lowering the moderator temperature at constant power and observing the change in control rod insertion. As burn up increases the experiments are repeated in order to follow the changes in the coefficient. The xenon poisoning effects are measured by changing the power level and

  7. Light-matter interaction physics and engineering at the nanoscale

    CERN Document Server

    Weiner, John

    2017-01-01

    Light–matter interaction is pervasive throughout the disciplines of optical and atomic physics, condensedmatter physics, and electrical engineering with frequency and length scales extending over many orders of magnitude. The frequency range extends from a few tens of Hz for sea communications to hundreds of petaHz (1015 s–1) for X-ray imaging systems. Length scales range from thousands of kilometres to a few hundred picometres. Although the present work does not offer an exhaustive treatise on this vast subject, it does aim to provide advanced undergraduates, graduate students, and researchers from these diverse disciplines the principal tools required to understand and contribute to rapidly advancing developments in light–matter interaction centred at optical frequencies and length scales. Classical electrodynamics, with an emphasis on the macroscopic expressions of Maxwell’s equations, physical optics, and quantum mechanics provide unique perspectives to the interaction of light and matter at these...

  8. Ions for LHC Beam Physics and Engineering Challenges

    CERN Document Server

    Maury, Stephan; Baggiolini, Vito; Beuret, Andre; Blas, Alfred; Borburgh, Jan; Braun, Hans Heinrich; Carli, Christian; Chanel, Michel; Fowler, Tony; Gilardoni, S S; Gourber-Pace, Marine; Hancock, Steven; Hill, Charles E; Hourican, Michael; Jowett, John M; Kahle, Karsten; Kuchler, Detlef; Mahner, Edgar; Manglunki, Django; Martini, Michel; Paoluzzi, Mauro M; Pasternak, Jaroslaw; Pedersen, Flemming; Raich, Uli; Rossi, Carlo; Royer, Jean Pierre; Schindl, Karlheinz; Scrivens, Richard; Sermeus, Luc; Shaposhnikova, Elena; Tranquille, Gerard; Vretenar, Maurizio; Zickler, Thomas

    2005-01-01

    The first phase of the heavy ion physics program at the LHC aims to provide lead-lead collisions at energies of 5.5 TeV per colliding nucleon pair and ion-ion luminosity of 1027 cm-2s-1. The transformation of CERN’s ion injector complex (Linac3-LEIR-PS-SPS) presents a number of beam physics and engineering challenges, which are described in this paper. In the LHC itself, there are fundamental performance limitations due to various beam loss mechanisms. To study these without risk of damage there will be an initial period of operation with a reduced number of nominal intensity bunches. While reducing the work required to commission the LHC with ions in 2008, this will still enable early physics discoveries.

  9. Overview of Experiments for Physics of Fast Reactors from the International Handbooks of Evaluated Criticality Safety Benchmark Experiments and Evaluated Reactor Physics Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bess, J. D.; Briggs, J. B.; Gulliford, J.; Ivanova, T.; Rozhikhin, E. V.; Semenov, M. Yu.; Tsibulya, A. M.; Koscheev, V. N.

    2017-07-01

    Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energy Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning

  10. Engineering Physics Division progress report for period ending November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Separate abstracts are included for sections concerning measurement of nuclear cross sections and related quantities; nuclear cross-section evaluations and theory; nuclear cross-section processing, testing, and sensitivity analysis; engineering physics division integral experiments and their analyses; development of methods for shield and reactor analysis; analyses for specific systems or applications; energy model validation; systems reliability and operations research; and information analysis and distribution.

  11. Engineering Physics Division progress report for period ending November 30, 1980

    International Nuclear Information System (INIS)

    1980-12-01

    Separate abstracts are included for sections concerning measurement of nuclear cross sections and related quantities; nuclear cross-section evaluations and theory; nuclear cross-section processing, testing, and sensitivity analysis; engineering physics division integral experiments and their analyses; development of methods for shield and reactor analysis; analyses for specific systems or applications; energy model validation; systems reliability and operations research; and information analysis and distribution

  12. AGS experiments in nuclear/QCD physics at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments.

  13. AGS experiments in nuclear/QCD physics at medium energies

    International Nuclear Information System (INIS)

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments

  14. Research on the NPP human factors engineering operating experience review

    International Nuclear Information System (INIS)

    Ren Xiangchen; Miao Hongxing; Ning Zhonghe

    2006-01-01

    This paper addresses the importance of the human factors engineering (HFE) for the design of nuclear power plant (NPP), especially for the design of human-machine interface in the NPP. It also summarizes the scope and content of the NPP HFE. The function, scope, content and process of the NPP human factors engineering operating experience review (OER) are mainly focused on, and significantly discussed. Finally, it briefly introduces the situation of the studies on the OER in China. (authors)

  15. Aligning physics and physiology: Engineering antibodies for radionuclide delivery.

    Science.gov (United States)

    Tsai, Wen-Ting K; Wu, Anna M

    2018-03-14

    The exquisite specificity of antibodies and antibody fragments renders them excellent agents for targeted delivery of radionuclides. Radiolabeled antibodies and fragments have been successfully used for molecular imaging and radioimmunotherapy (RIT) of cell surface targets in oncology and immunology. Protein engineering has been used for antibody humanization essential for clinical applications, as well as optimization of important characteristics including pharmacokinetics, biodistribution, and clearance. Although intact antibodies have high potential as imaging and therapeutic agents, challenges include long circulation time in blood, which leads to later imaging time points post-injection and higher blood absorbed dose that may be disadvantageous for RIT. Using engineered fragments may address these challenges, as size reduction and removal of Fc function decreases serum half-life. Radiolabeled fragments and pretargeting strategies can result in high contrast images within hours to days, and a reduction of RIT toxicity in normal tissues. Additionally, fragments can be engineered to direct hepatic or renal clearance, which may be chosen based on the application and disease setting. This review discusses aligning the physical properties of radionuclides (positron, gamma, beta, alpha, and Auger emitters) with antibodies and fragments and highlights recent advances of engineered antibodies and fragments in preclinical and clinical development for imaging and therapy. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Experience in education and training of gas engineers in Russia

    International Nuclear Information System (INIS)

    Basniev, K.; Vladimirov, A.

    1997-01-01

    Experience gained in training and retraining of engineers for gas industry is considered in the report. The report contains the material on modern state of higher technical education in Russia in view of the reforms taking place in this country. The report deals with questions concerning the experience gained in a specialized training of gas engineers at higher educational establishments of Russia including training of specialists for foreign countries. Conditions under which retraining of engineers involved in gas industry takes place are presented in the report. The report is based mainly on the experience gained by the Russian leading higher educational establishment of oil and gas profile, that is the State Gubkin Oil and Gas Academy. (au)

  17. Research of Simulation in Character Animation Based on Physics Engine

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Computer 3D character animation essentially is a product, which is combined with computer graphics and robotics, physics, mathematics, and the arts. It is based on computer hardware and graphics algorithms and related sciences rapidly developed new technologies. At present, the mainstream character animation technology is based on the artificial production of key technologies and capture frames based on the motion capture device technology. 3D character animation is widely used not only in the production of film, animation, and other commercial areas but also in virtual reality, computer-aided education, flight simulation, engineering simulation, military simulation, and other fields. In this paper, we try to study physics based character animation to solve these problems such as poor real-time interaction that appears in the character, low utilization rate, and complex production. The paper deeply studied the kinematics, dynamics technology, and production technology based on the motion data. At the same time, it analyzed ODE, PhysX, Bullet, and other variety of mainstream physics engines and studied OBB hierarchy bounding box tree, AABB hierarchical tree, and other collision detection algorithms. Finally, character animation based on ODE is implemented, which is simulation of the motion and collision process of a tricycle.

  18. Students' Attitudes and Enrollment Trends in Physics and Engineering

    Science.gov (United States)

    Banjong, Delphine

    Science, Technology, Engineering, and Mathematics (STEM) fields are critical for meeting ever-increasing demands in the U.S. for STEM and related skills, and for ensuring the global competitiveness of the United States in technological advancement and scientific innovation. Nonetheless, few U.S. students consider a STEM degree after high school and fewer STEM students end up graduating with a STEM degree. In 2012, the United States ranked 35th in math and 27th in science out of 64 participating countries in the Program for International Student Assessment (PISA), sponsored by the Organization for Economic Cooperation and Development (OECD). Considering the significant role physics and engineering play in technological advancement, this work investigates the attitudes of students and recent enrollment trends in these important subject areas.

  19. Engineering Mathematics I : Electromagnetics, Fluid Mechanics, Material Physics and Financial Engineering

    CERN Document Server

    Rančić, Milica

    2016-01-01

    This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. In particular, it features mathematical methods and models of applied analysis, probability theory, differential equations, tensor analysis and computational modelling used in applications to important problems concerning electromagnetics, antenna technologies, fluid dynamics, material and continuum physics and financial engineering. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The ...

  20. Physics Competence Assessment in Engineering Higher Education Institution

    Directory of Open Access Journals (Sweden)

    A. F. An

    2015-01-01

    Full Text Available In designing the undergraduate programmes, a development of objectified procedures to assess students and graduates’ level of skills and learning outcomes aimed at achieving the ultimate goals of training is an important task for Higher Education Institutions (HEI.The purpose of this work is to develop a description of the physics course objectives differentiated according to levels of learning achievements for engineering HEI, as well as the assessment procedures and diagnostic means associated with this description to specify and define the degree of their achievement.The taxonomy of levels to master learning content is proposed and tested. Its aim is to assess rapidly a degree of achieved objectives i.e. meeting requirements for student and graduate’s competences in physics. Classification is given according to which the reproductive activity is a manifestation of the levels of recognition, reproduction and reproductive use of knowledge while the productive activity is an ability to use previously learned information, methods of action for the new scenarios, situations, conditions. The paper presents content of the main features of learning the study materials in physics at each taxonomic level. It offers a developed package of assessment materials based on traditional (tests, training tasks and competence-oriented control methods (professionally oriented and case studies, integrative assignments. The paper proves that when designing the diagnostic means it is expedient to take into consideration the analysis results of the expert assessments that the physics course curricular elements are of significance for fundamental and ideological studies and successful learning of the module of professional disciplines. It also shows that there is a need to use the content of typical tasks in disciplines of professional cycle of the undergraduate programme.The proposed approaches and results can serve as a basis for teaching improvement in physics

  1. Physical and engineering aspects of a fusion engineering test facility based on mirror confinement

    International Nuclear Information System (INIS)

    Kawabe, T.; Hirayama, S.; Hojo, H.; Kozaki, Y.; Yoshikawa, K.

    1986-01-01

    Controlled fusion research has accomplished great progress in the field of confinement of high-density and high-temperature plasmas and breakeven experiments are expected before the end of the 1980s. Many experiments have been proposed as the next step for fusion research. Among them is the study of ignited plasmas and another is the study of fusion engineering. Some of the important studies in fusion engineering are the integrated test in a fusion reactor environment as well as tests of first-wall materials and of the reactor structures, and test for tritium breeding and blanket modules or submodules. An ideal neutron source for the study of fusion engineering is the deuterium-tritium (D-T) fusion plasma itself. A neutron facility based on a D-T-burning plasma consists of all of the components that a real fusion power reactor would have, so eventually the integrated test for fusion reactor engineering can be done as well as the tests for each engineering component

  2. Mathematical methods for mathematicians, physical scientists and engineers

    CERN Document Server

    Dunning-Davies, J

    2003-01-01

    This practical introduction encapsulates the entire content of teaching material for UK honours degree courses in mathematics, physics, chemistry and engineering, and is also appropriate for post-graduate study. It imparts the necessary mathematics for use of the techniques, with subject-related worked examples throughout. The text is supported by challenging problem exercises (and answers) to test student comprehension. Index notation used in the text simplifies manipulations in the sections on vectors and tensors. Partial differential equations are discussed, and special functions introduced

  3. Inorganic scintillators for detector systems physical principles and crystal engineering

    CERN Document Server

    Lecoq, Paul; Korzhik, Mikhail

    2017-01-01

    This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating...

  4. Nonlinear physics with Maple for scientists and engineers

    CERN Document Server

    Enns, Richard H

    1997-01-01

    Philosophy of the Text This text has been designed to be an introductory survey of the basic concepts and applied mathematical methods of nonlinear science. Students in engineer­ ing, physics, chemistry, mathematics, computing science, and biology should be able to successfully use this text. In an effort to provide the students with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of Maple V Release 4 applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The diskette which accompanies the text gives a wide variety of illustrative nonlinear examples solved with Maple. An accompanying laboratory manual of experimental activities keyed to the text allows the student the...

  5. Managing reality shock: Expectations versus experiences of graduate engineers

    Directory of Open Access Journals (Sweden)

    Sarah Riordan

    2007-10-01

    Full Text Available The objective of the study is an analysis of the relationship between the work expectations and experiences of graduate engineers during their early career period. It reports on discrepancies in graduates’ expectations of the world of work and the reality of the early career stage. Conclusions include recommendations of how "reality shock" can be managed better by both organisations and individuals. Qualitative data were obtained through in-depth interviews with sixteen participants with less than five years work experience, employed in a large utility organisation in the Western Cape. Results indicate that participants experience significant incongruence between their expectations of work and work experiences.

  6. Project-Based Laboratory Experiences in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Narendra Sharma

    2011-12-01

    Full Text Available In this paper we describe project-based laboratories in Mechanical Engineering designed to provide semester-long team experiences which mimic the real life industrial processes of design, development, testing and optimization. The labs are focused on courses at the sophomore level and thus require special attention to constraints of student backgrounds and experience. This paper describes laboratory projects in Dynamics and Fluid Mechanics.

  7. Pulsed power accelerator for material physics experiments

    Directory of Open Access Journals (Sweden)

    D. B. Reisman

    2015-09-01

    Full Text Available We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM, circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  8. Physics and engineering assessments of spherical torus component test facility

    International Nuclear Information System (INIS)

    Peng, Y.-K.M.; Neumeyer, C.A.; Kessel, C.; Rutherford, P.; Mikkelsen, D.; Bell, R.; Menard, J.; Gates, D.; Schmidt, J.; Synakowski, E.; Grisham, L.; Fogarty, P.J.; Strickler, D.J.; Burgess, T.W.; Tsai, J.; Nelson, B.E.; Sabbagh, S.; Mitarai, O.; Cheng, E.T.; El-Guebaly, L.

    2005-01-01

    A broadly based study of the fusion engineering and plasma science conditions of a Component Test Facility (CTF), using the Spherical Torus or Spherical Tokamak (ST) configuration, have been carried out. The chamber systems testing conditions in a CTF are characterized by high fusion neutron fluxes Γ n > 4.4x10 13 n/s/cm 2 , over size scales > 10 5 cm 2 and depth scales > 50 cm, delivering > 3 accumulated displacement per atom (dpa) per year. The desired chamber conditions can be provided by a CTF with R 0 1.2 m, A = 1.5, elongation ∼ 3.2, I p ∼ 9 MA, B T ∼ 2.5 T, producing a driven fusion burn using 36 MW of combined neutral beam and RF power. Relatively robust ST plasma conditions are adequate, which have been shown achievable [4] without active feedback manipulation of the MHD modes. The ST CTF will test the single-turn, copper alloy center leg for the toroidal field coil without an induction solenoid and neutron shielding, and require physics data on solenoid-free plasma current initiation, ramp-up, and sustainment to multiple MA level. A new systems code that combines the key required plasma and engineering science conditions of CTF has been prepared and utilized as part of this study. The results show high potential for a family of lowercost CTF devices to suit a variety of fusion engineering science test missions. (author)

  9. Physics of Acoustic Radiation from Jet Engine Inlets

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  10. Women's Experiences in the Engineering Laboratory in Japan

    Science.gov (United States)

    Hosaka, Masako

    2014-01-01

    This qualitative study aims to examine Japanese women undergraduate engineering students' experiences of interacting with departmental peers of the same year in the laboratory setting by using interview data of 32 final-year students at two modestly selective national universities in Japan. Expectation state theory that explains unequal…

  11. Learning English: Experiences and Needs of Saudi Engineering Students

    Science.gov (United States)

    Unruh, Susan; Obeidat, Fayiz

    2015-01-01

    In this qualitative study, Saudi engineering students talk openly of their experiences learning English in the Kingdom of Saudi Arabia (KSA) and as university students in the United States (US). These students reported that they learned only the basics of vocabulary and grammar in KSA. Consequently, they came to the US with few English skills. In…

  12. Engineered barrier experiment. Power control and data acquisition systems

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Martin, P.L.; Molinero, A.; Navarrete, J.J.; Yuste, C.

    1997-01-01

    The engineered barrier concept for the storage of radioactive wastes is being tested at almost full scale at CIEMAT facilities. A data acquisition and control is an element of this experiment. This system would be operating for next three years. (Author)

  13. Physics of Laser Materials Processing Theory and Experiment

    CERN Document Server

    Gladush, Gennady G

    2011-01-01

    This book describes the basic mechanisms, theory, simulations and technological aspects of Laser processing techniques. It covers the principles of laser quenching, welding, cutting, alloying, selective sintering, ablation, etc. The main attention is paid to the quantitative description. The diversity and complexity of technological and physical processes is discussed using a unitary approach. The book aims on understanding the cause-and-effect relations in physical processes in Laser technologies. It will help researchers and engineers to improve the existing and develop new Laser machining techniques. The book addresses readers with a certain background in general physics and mathematical analysis: graduate students, researchers and engineers practicing laser applications.

  14. Engineering Physics and Mathematics Division progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This report provides an archival record of the activities of the Engineering Physics and Mathematics Division during the period June 30, 1985 through September 30, 1987. Work in Mathematical Sciences continues to include applied mathematics research, statistics research, and computer science. Nuclear-data measurements and evaluations continue for fusion reactors, fission reactors, and other nuclear systems. Also discussed are long-standing studies of fission-reactor shields through experiments and related analysis, of accelerator shielding, and of fusion-reactor neutronics. Work in Machine Intelligence continues to feature the development of an autonomous robot. The last descriptive part of this report reflects the work in our Engineering Physics Information Center, which again concentrates primarily upon radiation-shielding methods and related data.

  15. Engineering Physics and Mathematics Division progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    1987-12-01

    This report provides an archival record of the activities of the Engineering Physics and Mathematics Division during the period June 30, 1985 through September 30, 1987. Work in Mathematical Sciences continues to include applied mathematics research, statistics research, and computer science. Nuclear-data measurements and evaluations continue for fusion reactors, fission reactors, and other nuclear systems. Also discussed are long-standing studies of fission-reactor shields through experiments and related analysis, of accelerator shielding, and of fusion-reactor neutronics. Work in Machine Intelligence continues to feature the development of an autonomous robot. The last descriptive part of this report reflects the work in our Engineering Physics Information Center, which again concentrates primarily upon radiation-shielding methods and related data

  16. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    Science.gov (United States)

    Zerkle, Ronald D.; Prakash, Chander

    1995-01-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  17. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    Science.gov (United States)

    Aleong, Richard James Chung Mun

    , relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.

  18. Physics Experiments with Nintendo Wii Controllers

    Science.gov (United States)

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from…

  19. The development for the particle physics experiments platform in university

    International Nuclear Information System (INIS)

    Liang Futian; Yao Yuan; Wang Zhaoqi; Liu Yuzhe; Sang Ziru; Chen Lian; Wen Fei; Jin Ge; Liu Hongbin

    2012-01-01

    Nuclear science and particle physics is an important subject in physics, and it is important to launch particle physics experiments in university to training students. We design an experiments platform based on particle physics experiments in university. By employing digitalization and reconfiguration techniques in our design, we achieve all kinds of device functions with only one device. With the customized software for particular experiments and a website for teaching assistance, the platform is easy to be employed in universities. Students can accomplish a classical particle physics experiment in a modern way with the help of the platform, and they can also try new ideals. The experiments platform is ready to be used, and some of the lab sessions in USTC have already begin to use our experiments platform. (authors)

  20. A practitioner’s experiences operationalizing Resilience Engineering

    International Nuclear Information System (INIS)

    Lay, E.; Branlat, M.; Woods, Z.

    2015-01-01

    Resilience Engineering (RE) is a reframed perspective. This begs the question, “How to operationalize a shift in perspective?” We share strategies, tactics, experiences, and observations from implementing Resilience Engineering in power generation equipment maintenance. Use of Resilience Engineering principles shifts focus to the future, to systems, and to how people really work (not the idealized version of work). We more effectively shape outcomes as we pay attention to what’s coming, looking for signs we’re outside normal work or running out of margins that enable us to adapt and respond. Use of these principles opens new possibilities grounded in theoretical fields of biology, cognitive and system sciences (understand Cartesian views of the world work well for machines but not for people) and underlain by core principles (e.g., people fundamentally want to do a good job, actions taken make sense at the time, and system factors are tremendously influential on outcomes). This paper presents a practitioner’s account of a Resilience Engineering approach in the context of power plant maintenance. The paper will describe how the introduction of RE principles was made possible through supporting/fostering shifts in perspective and gaining buy-in at various levels of the organization. - Highlights: • Resilience Engineering is a shifted perspective as compared to a new program. • RE is grounded in fields of biology, cognitive and system sciences. • We share strategies, tactics, experiences, and observations for implementing RE. • We used a middle out approach

  1. The Physics of Bird Flight: An Experiment

    Science.gov (United States)

    Mihail, Michael D.; George, Thomas F.; Feldman, Bernard J.

    2008-01-01

    This article describes an experiment that measures the forces acting on a flying bird during takeoff. The experiment uses a minimum of equipment and only an elementary knowledge of kinematics and Newton's second law. The experiment involves first digitally videotaping a bird during takeoff, analyzing the video to determine the bird's position as a…

  2. First experiments results about the engineering model of Rapsodie

    International Nuclear Information System (INIS)

    Chalot, A.; Ginier, R.; Sauvage, M.

    1964-01-01

    This report deals with the first series of experiments carried out on the engineering model of Rapsodie and on an associated sodium facility set in a laboratory hall of Cadarache. It conveys more precisely: 1/ - The difficulties encountered during the erection and assembly of the engineering model and a compilation of the results of the first series of experiments and tests carried out on this installation (loading of the subassemblies preheating, thermal chocks...). 2/ - The experiments and tests carried out on the two prototypes control rod drive mechanisms which brought to the choice for the design of the definitive drive mechanism. As a whole, the results proved the validity of the general design principles adopted for Rapsodie. (authors) [fr

  3. Physics design requirements for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Neilson, G.H.; Goldston, R.J.; Jardin, S.C.; Reiersen, W.T.; Porkolab, M.; Ulrickson, M.

    1993-01-01

    The design of TPX is driven by physics requirements that follow from its mission. The tokamak and heating systems provide the performance and profile controls needed to study advanced steady state tokamak operating modes. The magnetic control systems provide substantial flexibility for the study of regimes with high beta and bootstrap current. The divertor is designed for high steady state power and particle exhaust

  4. Lecture note on circuit technology for high energy physics experiment

    International Nuclear Information System (INIS)

    Ikeda, Hirokazu.

    1992-07-01

    This lecture gives basic ideas and practice of the circuit technology for high energy physics experiment. The program of this lecture gives access to the integrated circuit technology to be applied for a high luminosity hadron collider experiment. (author)

  5. Physics experiments with Nintendo Wii controllers

    Science.gov (United States)

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from a spring undergoing simple harmonic motion, a pair of controllers mounted on colliding gliders on a linear air track, and a person jumping from a balance board.

  6. Experiments in Creative Engineering at the Department of Mechanical Engineering in Kurume National College of Technology

    Science.gov (United States)

    Tanaka, Hiroshi; Hashimura, Shinji; Hiroo, Yasuaki

    We present a program to learn ability to solve problems on engineering. This program is called “Experiments in creative engineering” in the department of mechanical engineering in Kurume National College of Technology advanced engineering school. In the program, students have to determine own theme and manufacture experimental devices or some machines by themselves. The students must also perform experiments to valid the function and performance of their devices by themselves. The restriction of the theme is to manufacture a device which function dose not basically exist in the world with limited cost (up to 20,000Yen) . As the results of questionnaire of students, the program would be very effective to the creative education for the students.

  7. The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine

    Science.gov (United States)

    Liu, Yuan; Zhang, Xin; Zhang, Tianhong

    2017-11-01

    A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.

  8. Business oriented educational experiments enhance active learning by engineering students

    DEFF Research Database (Denmark)

    Christiansen, Nynne Mia; Schjær-Jacobsen, Hans; Simon, Jens

    2012-01-01

    It is generally agreed that one of the keys to recreating industrial growth after the financial crisis is to mobilize universities and engineering schools to be more actively involved in innovation and entrepreneurship activities in cooperation with industrial companies. This active learning...... exploration symposium on bridging the gap between engineering education and business is proposed on the basis of the Copenhagen University College of Engineering (IHK) being involved in a DKK 50m ongoing project “Business Oriented Educational Experiments” financed by the Capital Region of Denmark...... and the European Social Fund. The project is carried out with other major educational institutions in the Copenhagen area and organized in five themes: 1) world class competences, 2) new interactions between education and business, 3) the experimenting organization, 4) education on demand, and 5) new career paths...

  9. Apollo experience report: Guidance and control systems. Engineering simulation program

    Science.gov (United States)

    Gilbert, D. W.

    1973-01-01

    The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.

  10. High temperature engineering research facilities and experiments in China

    International Nuclear Information System (INIS)

    Xu, Yuanhui; Liu, Meisheng; Yao, Huizhong; Ju, Huaiming

    1998-01-01

    June 14, 1995, the construction of a pebble bed type high temperature gas-cooled reactor (HTGR) started in China. It is a test reactor with 10 MW thermal power output (termed HTR- 10). The test reactor is located on the site of Institute of Nuclear Energy Technology (INET) of Tsinghua University in the northwest suburb of Beijing, about 40 km away from the city. Design of the HTR-10 test reactor represents the features of HTR-Modular design: 'side-by-side' arrangement, spherical fuel elements with 'multi-pass' loading scheme, completely passive decay heat removal, reactor shutdown systems in the side reflector, etc. However, in the HTR-10 design some modifications from the HTR-Module were made to satisfy Chinese conditions. For example, the steam generator is composed of a number of modular helical tubes with small diameter, pulse pneumatic discharging apparatus are used in the fuel handling system and step motor driving control rods are designed. These modifications would cause some uncertainty in our design. It is necessary to do engineering experiments to prove these new or modified ideas. Therefore, a program of engineering experiments for HTR-10 key technologies is being conducted at INET. The main aims of these engineering experiments are to verify the designed characteristics and performance of the components and systems, to feedback on design and to obtain operational experiences. Those engineering experiments are depressurization test of the hot gas duct at room temperature and operating pressure, performance test of the hot gas duct at operating helium temperature and pressure, performance test of the pulse pneumatic fuel handling system, test of the control rods driving apparatus, two phase flow stability test for the once through steam generator and cross mixture test at the bottom of the reactor core

  11. 10 years of engineering and physics achievements by the Large Helical Device project

    International Nuclear Information System (INIS)

    Yamada, H.; Imagawa, S.; Takeiri, Y.; Kaneko, O.; Mutoh, T.; Mito, T.; Chikaraishi, H.; Hamaguchi, S.; Ida, K.; Igami, H.; Ikeda, K.; Kasahara, H.; Kobayashi, M.; Kubo, S.; Kumazawa, R.; Maekawa, R.; Masuzaki, S.; Miyazawa, J.; Morisaki, T.; Morita, S.

    2009-01-01

    This article reviews 10 years of engineering and physics achievements by the Large Helical Device (LHD) project with emphasis on the latest results. The LHD is the largest magnetic confinement device among diversified helical systems and employs the world's largest superconducting coils. The cryogenic system has been operated for 50,000 h in total without any serious trouble and routinely provides a confining magnetic field up to 2.96 T in steady state. The heating capability to date is 23 MW of NBI, 2.9 MW of ICRF and 2.1 MW of ECH. Negative-ion-based ion sources with the accelerating voltage of 180 keV are used for a tangential NBI with the power of 16 MW. The ICRF system has full steady-state operational capability with 1.6 MW. In these 10 years, operational experience as well as a physics database have been accumulated and the advantages of stable and steady-state features have been demonstrated by the combination of advanced engineering and the intrinsic physical advantage of helical systems in LHD. Highlighted physical achievements are high beta (5% at the magnetic field of 0.425 T), high density (1.1 x 10 21 m -3 at the central temperature of 0.4 keV), high ion temperature (T i of 5.2 keV at 1.5 x 10 19 m -3 ), and steady-state operation (3200 s with 490 kW). These physical parameters have elucidated the potential of net-current free helical plasmas for an attractive fusion reactor. It also should be pointed out that a major part of these engineering and physics achievements is complementary to the tokamak approach and even contributes directly to ITER.

  12. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    Grama, C.; Ionescu-Bujor, M.; Poenaru, D.; Pop, A.

    1994-01-01

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  13. Renewable energy technology from underpinning physics to engineering application

    International Nuclear Information System (INIS)

    Infield, D G

    2008-01-01

    The UK Energy Research Centre (UKERC) in it's submission to the DTI's 2006 Energy Review reminded us that the 'UK has abundant wind, wave and tidal resources available; its mild climate lends itself to bio-energy production, and solar radiation levels are sufficient to sustain a viable solar industry'. These technologies are at different stages of development but they all draw on basic and applied Science and Engineering. The paper will briefly review the renewable energy technologies and their potential for contributing to a sustainable energy supply. Three research topics will be highlighted that bridge the gap between the physics underpinning the energy conversion, and the engineering aspects of development and deployment; all three are highly relevant to the Government's programme on micro-generation. Two are these are taken from field of thin film photovoltaics (PV), one related to novel device development and the other to a measurement technique for assessing the manufacturing quality of PV modules and their performance. The third topic concerns the development of small building integrated wind turbines and examines the complex flow associated with such applications. The paper will conclude by listing key research challenges that are central to the search for efficient and cost-effective renewable energy generation

  14. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i's incompletely developed in some areas. Details of this analysis are provided in this report

  15. An Experiment on a Physical Pendulum and Steiner's Theorem

    Science.gov (United States)

    Russeva, G. B.; Tsutsumanova, G. G.; Russev, S. C.

    2010-01-01

    Introductory physics laboratory curricula usually include experiments on the moment of inertia, the centre of gravity, the harmonic motion of a physical pendulum, and Steiner's theorem. We present a simple experiment using very low cost equipment for investigating these subjects in the general case of an asymmetrical test body. (Contains 3 figures…

  16. First order error corrections in common introductory physics experiments

    Science.gov (United States)

    Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team

    As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.

  17. Engineering Physics Division progress report for period ending November 30, 1978. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, F.C.

    1979-01-01

    Research and other activities of the Engineering Physics Division (formerly Neutron Physics Division) of ORNL during the period February 28, 1977 to November 30, 1978, are reported. The format is that of abstracts and summaries of prepared papers. Work is summarized in the following general areas: measurements of neutron cross sections and related quantities; cross-section theory, evaluations, and evaluation techniques; cross-section processing, testing, and sensitivity analyses; integral experiments and their analyses; development of methods for shield and reactor analyses; analyses for specific systems or applications (liquid-metal fast breeder reactor program, gas-cooled reactor program, alternate fuel cycle program, magnetic fusion energy program, high-energy physics program, accelerator breeding studies, miscellaneous studies); and information analysis and distribution. Overviews of each of these areas are included. (RWR)

  18. Engineering Physics Division progress report for period ending November 30, 1978

    International Nuclear Information System (INIS)

    Maienschein, F.C.

    1979-01-01

    Research and other activities of the Engineering Physics Division (formerly Neutron Physics Division) of ORNL during the period February 28, 1977 to November 30, 1978, are reported. The format is that of abstracts and summaries of prepared papers. Work is summarized in the following general areas: measurements of neutron cross sections and related quantities; cross-section theory, evaluations, and evaluation techniques; cross-section processing, testing, and sensitivity analyses; integral experiments and their analyses; development of methods for shield and reactor analyses; analyses for specific systems or applications (liquid-metal fast breeder reactor program, gas-cooled reactor program, alternate fuel cycle program, magnetic fusion energy program, high-energy physics program, accelerator breeding studies, miscellaneous studies); and information analysis and distribution. Overviews of each of these areas are included

  19. Experience with Aero- and Fluid-Dynamic Testing for Engineering and CFD Validation

    Science.gov (United States)

    Ross, James C.

    2016-01-01

    Ever since computations have been used to simulate aerodynamics the need to ensure that the computations adequately represent real life has followed. Many experiments have been performed specifically for validation and as computational methods have improved, so have the validation experiments. Validation is also a moving target because computational methods improve requiring validation for the new aspect of flow physics that the computations aim to capture. Concurrently, new measurement techniques are being developed that can help capture more detailed flow features pressure sensitive paint (PSP) and particle image velocimetry (PIV) come to mind. This paper will present various wind-tunnel tests the author has been involved with and how they were used for validation of various kinds of CFD. A particular focus is the application of advanced measurement techniques to flow fields (and geometries) that had proven to be difficult to predict computationally. Many of these difficult flow problems arose from engineering and development problems that needed to be solved for a particular vehicle or research program. In some cases the experiments required to solve the engineering problems were refined to provide valuable CFD validation data in addition to the primary engineering data. All of these experiments have provided physical insight and validation data for a wide range of aerodynamic and acoustic phenomena for vehicles ranging from tractor-trailers to crewed spacecraft.

  20. CMS experiment at the LHC Commissioning and early physics

    CERN Document Server

    Safonov, A

    2010-01-01

    The CMS collaboration used the past year to greatly improve the level of detector readiness for the first collisions data. The acquired operational experience over this year, large gains in understanding the detector and improved preparedness for early physics will be instrumental in minimizing the time from the first collisions to first LHC physics. The following describes the status of the CMS experiment and outlines early physics plans with the first LHC data.

  1. Physical Science Informatics: Providing Open Science Access to Microheater Array Boiling Experiment Data

    Science.gov (United States)

    McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran

    2014-01-01

    The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.

  2. NTES laser facility for physics experiments

    International Nuclear Information System (INIS)

    Christie, D.J.; Foley, R.J.; Frank, D.N.

    1989-01-01

    This paper discusses the following topics on the NTES laser facility: Mission Statement and Project Description; Experiment Area; High-Energy, Double-Pass Laser; Facilities; Laser Control and Data Acquisition; and Auxiliary Lasers

  3. Current experiments in elementary particle physics. Revision 1-85

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  4. An Engineer's Physics Lab -- using a Large Force Frame

    Science.gov (United States)

    Heid, Christy; Rampolla, Donald

    2009-03-01

    We have constructed very economical, easy to assemble force frames that are used by students in our general physics laboratory at Chatham University. The force frame is used at the beginning of the semester to study vector properties of forces. The force frame can be used as a horizontal or vertical force table. Angles of forces are measured using a large movable (rotation and translation) Cartesian coordinate board attached to the frame with large binder clips. The force frame is a versatile device which is used for a number of other experiments, including beam bending and torsion, mechanical resonance, projectile trajectories, torque, mechanical equilibrium, an isolated non-magnetic support for magnetic field experiments, easily adjustable support for inclined plane experiments, support for traveling wave experiments with heavy rope, and support for large scale fluid flow experiments. One advantage to a wood frame is that things can be easily stapled, nailed, screwed or glued just about anywhere on the frame, and damaged frame members can be replaced easily. As one of the few remaining women's undergraduate institutions, we have found the use of these frames to provide an additional advantage in helping women overcome their fear of simple power tools and assembly of mechanical parts as they become comfortable with these through working with the force frames throughout the semester. We intend to describe and model these applications during the session.

  5. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In April 2009 the Department of Materials Studies was united with the Department of Plasma Physics and Technology, This action followed twenty years of close cooperation in the implementation of high-intensity ion-beam pulses for the implantation of materials. In 2009 the activities of the new Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges at the Plasma-Focus and RPI-IBIS facilities; · Research on plasma technologies, search for new methods of surface engineering; · Selected problems of plasma theory and computational modelling. In the framework of the EURATOM program. efforts were devoted to the development of diagnostics methods for tokamak-type facilities. Such studies included the elaboration of a special detection system based on a Cherenkov-type detector. Other fusion-oriented efforts were connected with the application of activation methods to the investigation of neutrons from the JET tokamak. Also. solid-state nuclear track detectors of the PM-355 type were used for measurements of energetic protons emitted from ultra-intense laser produced plasmas. In our continuing experimental studies, particular attention was paid to the development and application of optical spectroscopy for diagnostics of high-temperature plasma within the RPI-IBIS device and Plasma-Focus facilities. Fast ions escaping from the plasma were studied with nuclear track detectors, The interaction of plasma-ion streams with different targets was also investigated. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers. c.g. pure niobium film on the surface of copper resonant cavities of accelerators. The vacuum arc deposition technique was also applied to

  6. Dod physical security equipment application experience

    International Nuclear Information System (INIS)

    Dixon, H.M.

    1978-01-01

    In the Department of Defense, the subject of physical security is very broad in scope. Its application ranges from countering the shoplifters in the post exchange facilities to the sophisticated terrorist who may attempt to obtain access to one of our nuclear weapons. This paper focuses on the area of specific interest to the members of INMM which is the protection of nuclear devices and the classified information associated with them

  7. Application of radix sorting in high energy physics experiment

    International Nuclear Information System (INIS)

    Chen Xuan; Gu Minhao; Zhu Kejun

    2012-01-01

    In the high energy physics experiments, there are always requirements to sort the large scale of experiment data. To meet the demand, this paper introduces one radix sorting algorithms, whose sub-sort is counting sorting and time complex is O (n), based on the characteristic of high energy physics experiment data that is marked by time stamp. This paper gives the description, analysis, implementation and experimental result of the sorting algorithms. (authors)

  8. Safeguards and physical protection - The Belarus experience

    International Nuclear Information System (INIS)

    Krevsun, E.

    1999-01-01

    Taking into account the new initiatives of the IAEA Belarus indented to continue activity on improving the Material Protection, Control and Accounting system in various directions. The significant ones are: electronic transmission of information to the IAEA, measurement standards of nuclear materials, upgraded Wiegard cards with photographs of their holders, preventive measures (threat, evaluation of safety for objects, sabotage from the staff etc.). The Belarus experience testifies that there is a unique way for increasing nuclear and radiation safety: cooperation and exchange of experience on a global scale

  9. High temperature engineering research facilities and experiments in Russia

    International Nuclear Information System (INIS)

    Kodochigov, N.G.; Kuzavkov, N.G.; Sukharev, Y.P.; Chudin, A.G.

    1998-01-01

    An overview is given of the characteristics of the experimental facilities and experiments in the Russian Federation: the HTGR neutron-physical investigation facilities ASTRA and GROG; facilities for fuel, graphite and other elements irradiation; and thermal hydraulics experimental facilities. The overview is presented in the form of copies of overhead sheets

  10. Experiences of girls in a fabrication engineering environment

    CSIR Research Space (South Africa)

    Dlodlo, N

    2009-01-01

    Full Text Available % Mathematical and statistical sciences 6,903 9,505 42 % Biological sciences 11,951 11,831 50 % Physical and chemical sciences 4,575 10,050 31 % Engineering 1,467 30,897 5 % Source: Department of Science and Technology, 2009b. NOT FOR COMMERCIAL US E 130... that the introductory phase of the activities which consisted of explaining to the students was diffi cult to understand. Their eyes were opened when they started implementing the practical aspects. In the Fab Kids lab, the learners are introduced to theory...

  11. Physical Adsorption: Experiment, Theory and Application

    DEFF Research Database (Denmark)

    Marcussen, Lis; Kjær, Ulla Dorte; Nielsen, Peter A.

    .ADSORPTION/DESORPTION IN BUILDING MATERIALS: Short description of our research project which deals with lab size and full scale experiments, mathematical modelling and development of a standard test method for characterization of the sorption properties of indoor materials.STUDIES OF ADSORPTION/DESORPTION IN DUST...

  12. Solution Calorimetry Experiments for Physical Chemistry.

    Science.gov (United States)

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  13. Engineering education for youth: Diverse elementary school students' experiences with engineering design

    Science.gov (United States)

    Hegedus, Theresa

    Lingering concerns over the persistent achievement gap amidst the trend of an increasingly diverse society have been compounded by calls from the Oval Office, the National Science Board, and nationwide media to also address our current creativity crisis. Now, more than ever, we have a responsibility to produce a STEM-capable (science, technology, engineering, and mathematics) workforce to meet the demands of our rapidly changing local and global economic landscape. Barriers exist in our traditional educational system, which has historically limited underrepresented groups' affiliation and membership in the disciplines of science and engineering. The recent incorporation of engineering into the latest science education reform efforts presents an opportunity to expose students as early as elementary school to engineering practices and habits of mind, which have the potential to stimulate creative thinking skills through engineering design. This qualitative study was designed to examine the ways in which engineering education has the potential to promote creativity and academic competence in elementary science classrooms. As a part of my study, a diverse group of students from two fifth-grade classrooms took part in a 10-12 hour, engineering-based curriculum unit (Engineering is Elementary) during their regular science instructional time. Using a sociocultural lens, to include cultural production and identities in practice as part of my framework, I analyzed group and individual performances through classroom observations, student interviews, and teacher reflections to better understand the meaning students made of their experiences with engineering. Findings from the study included the ways in which creativity was culturally produced in the classroom to include: 1) idea generation; 2) design and innovation; 3) gumption/resourcefulness; and 4) social value. Opportunities for collaboration increased through each stage of the unit culminating with the design challenge

  14. Transferring experience labs for production engineering students to universities in newly industrialized countries

    Science.gov (United States)

    Leiden, A.; Posselt, G.; Bhakar, V.; Singh, R.; Sangwan, K. S.; Herrmann, C.

    2018-01-01

    The Indian economy is one of the fastest growing economies in the world and the demand for the skilled engineers is increasing. Subsequently the Indian education sector is growing to provide the necessary number of skilled engineers. Current Indian engineering graduates have broad theoretical background but lack in methodological, soft and practical skills. To bridge this gap, the experience lab ideas from the engineering education at “Die Lernfabrik” (learning factory) of the Technische Universität Braunschweig (TU Braunschweig) is transferred to the Birla Institute of Technology and Science in Pilani (BITS Pilani), India. This Lernfabrik successfully strengthened the methodological, soft and practical skills of the TU Braunschweig production-engineering graduates. The target group is discrete manufacturing education with focusing on energy and resource efficiency as well as cyber physical production systems. As the requirements of industry and academia in India differs from Germany, the transfer of the experience lab to the Indian education system needs special attention to realize a successful transfer project. This publication provides a unique approach to systematically transfer the educational concept in Learning Factory from a specific university environment to a different environment in a newly industrialized country. The help of a bilateral university driven practice partnership between the two universities creates a lighthouse for the Indian university environment.

  15. Collaboration for cooperative work experience programs in biomedical engineering education.

    Science.gov (United States)

    Krishnan, Shankar

    2010-01-01

    Incorporating cooperative education modules as a segment of the undergraduate educational program is aimed to assist students in gaining real-life experience in the field of their choice. The cooperative work modules facilitate the students in exploring different realistic aspects of work processes in the field. The track records for cooperative learning modules are very positive. However, it is indeed a challenge for the faculty developing Biomedical Engineering (BME) curriculum to include cooperative work experience or internship requirements coupled with a heavy course load through the entire program. The objective of the present work is to develop a scheme for collaborative co-op work experience for the undergraduate training in the fast-growing BME programs. A few co-op/internship models are developed for the students pursuing undergraduate BME degree. The salient features of one co-op model are described. The results obtained support the proposed scheme. In conclusion, the cooperative work experience will be an invaluable segment in biomedical engineering education and an appropriate model has to be selected to blend with the overall training program.

  16. Shifting standards experiments in particle physics in the twentieth century

    CERN Document Server

    Franklin, Allan

    2013-01-01

    In Shifting Standards, Allan Franklin provides an overview of notable experiments in particle physics. Using papers published in Physical Review, the journal of the American Physical Society, as his basis, Franklin details the experiments themselves, their data collection, the events witnessed, and the interpretation of results. From these papers, he distills the dramatic changes to particle physics experimentation from 1894 through 2009.Franklin develops a framework for his analysis, viewing each example according to exclusion and selection of data; possible experimenter bias; details of the experimental apparatus; size of the data set, apparatus, and number of authors; rates of data taking along with analysis and reduction; distinction between ideal and actual experiments; historical accounts of previous experiments; and personal comments and style.From Millikan’s tabletop oil-drop experiment to the Compact Muon Solenoid apparatus measuring approximately 4,000 cubic meters (not including accelerators) and...

  17. Physics with photons at the ATLAS experiment

    CERN Document Server

    Pérez-Réale, V

    2008-01-01

    ATLAS is a general-purpose detector due to start operation next year at the Large Hadron Collider (LHC). The LHC will collide pairs of protons at a centre-of-mass energy of 14 TeV, with a bunch-crossing frequency of 40 MHz, and luminosities up to L = 10^34 cm^-2s^-1. The identification of photons is crucial for the study of a number of physics channels, including the search for a Higgs boson decaying to photon pairs, and measurements of direct production of single photons and photon pairs. Events containing true high-p_T photons must be selected with high efficiency, while rejecting the bulk of high-p_T jet events produced with enormously larger rate through QCD processes. The photon--photon and photon--jet channels are interesting in their own right, allowing the study of QCD at high energy. It is also essential to understand these proceses as the dominant background in the search for certain new physics processes, notably the production and decay of Higgs bosons to photon pairs. There are large uncertaintin...

  18. Smashing physics inside the world's biggest experiment

    CERN Document Server

    Butterworth, Jon

    2014-01-01

    The discovery of the Higgs boson made headlines around the world. Two scientists, Peter Higgs and Francois Englert, whose theories predicted its existence, shared a Nobel Prize. The discovery was the culmination of the largest experiment ever run, the ATLAS and CMS experiments at CERN's Large Hadron Collider. But what really is a Higgs boson and what does it do? How was it found? And how has its discovery changed our understanding of the fundamental laws of nature? And what did it feel like to be part of it? Jon Butterworth is one of the leading physicists at CERN and this book is the first popular inside account of the hunt for the Higgs. It is a story of incredible scientific collaboration, inspiring technological innovation and ground-breaking science. It is also the story of what happens when the world's most expensive experiment blows up, of neutrinos that may or may not travel faster than light, and the reality of life in an underground bunker in Switzerland. This book will also leave you with a working...

  19. Engineering aspects of the Stanford relativity gyro experiment

    Science.gov (United States)

    Everitt, C. W. F.; Debra, D. B.

    1981-01-01

    According to certain theoretical predictions, the Newtonian laws of motion must be corrected for the effect of a gravitational field. Schiff (1960) proposed an experiment which would demonstrate the effect predicted by Einstein's Theory of General Relativity on a gyroscope. The experiment has been under development at Stanford University since 1961. The requirements involved make it necessary that the test be performed in a satellite to take advantage of weightlessness in space. In a discussion of engineering developments related to the experiment, attention is given to the development of proportional helium thrusters, the simulation of the attitude control system, aspects of inner loop control, the mechanization of the two-loop attitude control system, the effects of helium slosh on spacecraft pointing, and the data instrumentation system.

  20. Physics experiments with the operating reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cullington, G R; King, D C

    1973-09-27

    Experimental techniques have been developed and used on Dragon to give consistent information on excess reactivity and shut down margin. The reactivity measurements have been correlated with the theoretical calculations and have led to improvements in the calculations. The methods used and the results obtained are accepted by the Safety Committee as sufficient evidence for compliance with the fuel loading safety rules. Although the reactor was not designed as an experimental facility, flux and dose measurements experiments have been successfully carried out. Mass flow and negative reactivity transient measurements have been carried out. These are valuable for demonstration of the flexibility of the reactor system and for giving confidence in theoretical calculations.

  1. Hadron physics at the COMPASS experiment

    Directory of Open Access Journals (Sweden)

    Krinner Fabian

    2015-01-01

    The Compass experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new JPC = 1++ state, the a1(1420, is observed with a mass and width in the ranges m = 1412 − 1422MeV/c2 and Γ = 130 − 150MeV/c2.

  2. Physics Analysis of the FIRE Experiment

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Meade, D.; Breslau, J.; Fu, G.; Gorelenkov, N.; Manickam, J.; Park, W.; Strauss, H.

    2002-01-01

    An integrated model of a complete discharge in the FIRE experiment has been developed based on the TSC simulation code. The complete simulation model includes a choice of several models for core transport, combined with an edge pedestal model and the Porcelli sawtooth model. Burn control is provided by feedback on the auxiliary heating power. We find that with the GLF23 and MMM95 transport models, Q >10 operation should be possible for H-mode pedestal temperatures in the range of 4-5 keV

  3. Physics experiment on the Dragon reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, C.

    1974-10-15

    The paper describes a set of DRAGON experiments planned to measure burn-up effects in DRAGON irradiated fuel. Irradiated fuel elements from DRAGON are to be subjected to reactivity measurements in the HECTOR experimental reactor to infer the residual U235 content followed by isotopic analyses at CEA laboratories in 1975. Fast neutron damage to DRAGON graphite is compared to fast neutron dose measurements using Ni58 (n,p) Co58 activation wires in both DRAGON and the DIDO MTR. Gamma scanning of irradiated fuel elements are used to compare axial power profiles to those derived from two-dimensional and three-dimensional calculations of the DRAGON reactor.

  4. Undergraduate engineering student experiences: Comparing sex, gender and switcher status

    Science.gov (United States)

    Fergen, Brenda Sue

    This dissertation explores undergraduate engineering experiences, comparing men with women and switchers with non-switchers. Factors related to a chilly academic climate and gender-role socialization are hypothesized to contribute to variations in men's and women's academic experiences and persistence rates. Both quantitative and qualitative data are utilized in an effort to triangulate the findings. Secondary survey data, acquired as result of a 1992 Academic Environment Survey, were utilized to test the hypothesis that sex is the most important predictor (i.e., demographic variable) of perceptions of academic climate. Regression analyses show that sex by itself is not always a significant determinant. However, when sex and college (engineering vs. other) are combined into dummy variables, they are statistically significant in models where sex was not significant alone. This finding indicates that looking at sex differences alone may be too simplistic. Thirty personal interviews were conducted with a random stratified sample of undergraduate students from the 1993 engineering cohort. The interview data indicate that differences in childhood socialization are important. With regard to persistence, differences in socialization are greater for switchers vs. non-switchers than men vs. women. Thus, gender-role socialization does not appear to play as prominent a role in women's persistence as past literature would indicate. This may be due to the self-selection process that occurs among women who choose to pursue engineering. Other aspects of childhood socialization such as parents' level of educational and occupation, students' high school academic preparation and knowledge of what to expect of college classes appear to be more important. In addition, there is evidence that, for women, male siblings play an important role in socialization. There is also evidence that women engineering students at Midwestern University face a chilly academic climate. The factors which

  5. Advances in engineering nanometrology at the National Physical Laboratory

    Science.gov (United States)

    Leach, Richard K.; Claverley, James; Giusca, Claudiu; Jones, Christopher W.; Nimishakavi, Lakshmi; Sun, Wenjuan; Tedaldi, Matthew; Yacoot, Andrew

    2012-07-01

    The National Physical Laboratory, UK, has been active in the field of engineering nanometrology for a number of years. A summary of progress over the last five years is presented in this paper and the following research projects discussed in detail. (1) Development of an infrastructure for the calibration of instruments for measuring areal surface topography, along with the development of areal software measurement standards. This work comprises the use of the optical transfer function and a technique for the simultaneous measurement of topography and the phase change on reflection, allowing composite materials to be measured. (2) Development of a vibrating micro-CMM probe with isotropic probing reaction and the ability to operate in a non-contact mode. (3) A review of x-ray computed tomography and its use in dimensional metrology. (4) The further development of a metrology infrastructure for atomic force microscopy and the development of an instrument for the measurement of the effect of the probe-surface interaction. (5) Traceable measurement of displacement using optical and x-ray interferometry to picometre accuracy. (6) Development of an infrastructure for low-force metrology, including the development of appropriate transfer artefacts.

  6. Advances in engineering nanometrology at the National Physical Laboratory

    International Nuclear Information System (INIS)

    Leach, Richard K; Claverley, James; Giusca, Claudiu; Jones, Christopher W; Nimishakavi, Lakshmi; Sun, Wenjuan; Tedaldi, Matthew; Yacoot, Andrew

    2012-01-01

    The National Physical Laboratory, UK, has been active in the field of engineering nanometrology for a number of years. A summary of progress over the last five years is presented in this paper and the following research projects discussed in detail. (1) Development of an infrastructure for the calibration of instruments for measuring areal surface topography, along with the development of areal software measurement standards. This work comprises the use of the optical transfer function and a technique for the simultaneous measurement of topography and the phase change on reflection, allowing composite materials to be measured. (2) Development of a vibrating micro-CMM probe with isotropic probing reaction and the ability to operate in a non-contact mode. (3) A review of x-ray computed tomography and its use in dimensional metrology. (4) The further development of a metrology infrastructure for atomic force microscopy and the development of an instrument for the measurement of the effect of the probe–surface interaction. (5) Traceable measurement of displacement using optical and x-ray interferometry to picometre accuracy. (6) Development of an infrastructure for low-force metrology, including the development of appropriate transfer artefacts. (paper)

  7. Physics and engineering aspects of the EBT reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Bettis, E.S.; Hedrick, C.L.; Santoro, R.T.; Watts, H.L.; Yeh, H.T.

    1977-01-01

    The ELMO Bumpy Torus (EBT) reactor has the advantage of high-β, steady-state operation. The first reactor study based on the EBT confinement concept was initiated in 1976. It provided the required starting point for continued assessment of the validity of the concept. A new design based on the present physics understanding, practical design approaches, and present and near-term technologies has been established. One of the important factors in an EBT reactor is the large aspect ratio (large toroidal major radius as well). This leads to a power plant with a comparatively large total energy output, usually in the range of 2000-6000 MW(th) for a conventional neutron wall loading of 1-2 MW/m 2 (the high value of β in an EBT device provides a net cost per unit energy roughly equal to or somewhat less than that for a Tokamak system). The large aspect ratio also provides very simple engineering and design requirements because of good access and small force loading asymmetries. Another important factor is the steady-state operation. In an EBT system, less power handling, energy storage, and filtering equipment will be needed. An EBT reactor is less likely to be subject to thermal and mechanical fatigue than reactors with large pulsed magnetic fields and short bursts of fusion power. The details of the key design elements and critical scientific and technology factors which are substantially different from other fusion reactor approaches are described

  8. Reliability physics and engineering time-to-failure modeling

    CERN Document Server

    McPherson, J W

    2013-01-01

    Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include:  ·       Materials/Device Degradation ·       Degradation Kinetics ·       Time-To-Failure Modeling ·       Statistical Tools ·       Failure-Rate Modeling ·       Accelerated Testing ·       Ramp-To-Failure Testing ·       Important Failure Mechanisms for Integrated Circuits ·       Important Failure Mechanisms for  Mechanical Components ·       Conversion of Dynamic  Stresses into Static Equivalents ·       Small Design Changes Producing Major Reliability Improvements ·       Screening Methods ·       Heat Generation and Dissipation ·       Sampling Plans and Confidence Intervals This textbook includes numerous example problems with solutions. Also, exercise problems along with the answers are included at the end of each chapter. Relia...

  9. Basics of Laser Physics For Students of Science and Engineering

    CERN Document Server

    Renk, Karl F

    2012-01-01

    Basics of Laser Physics provides an introductory presentation of the field of all types of lasers. It contains a general description of the laser, a theoretical treatment and a characterization of its operation as it deals with gas, solid state, free-electron and semiconductor lasers and, furthermore, with a few laser related topics. The different subjects are connected to each other by the central principle of the laser, namely, that it is a self-oscillating system. Special emphasis is put on a uniform treatment of gas and solid-state lasers, on the one hand, and semiconductor lasers, on the other hand. The discussions and the treatment of equations are presented in a way that a reader can immediately follow. The book addresses undergraduate and graduate students of science and engineering. Not only should it enable instructors to prepare their lectures, but it can be helpful to students for preparing for an examination.

  10. Centralising Space: The Physical Education and Physical Activity Experiences of South Asian, Muslim Girls

    Science.gov (United States)

    Stride, Annette

    2016-01-01

    This paper explores the physical education (PE) and physical activity experiences of a group of South Asian, Muslim girls, a group typically marginalised in PE and physical activity research. The study responds to ongoing calls for research to explore across different spaces in young people's lives. Specifically, I draw on a…

  11. Divertor design for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Hill, D.N.; Braams, B.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4x L-mode), high beta (β N ≥ 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74 degrees from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m 2 with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities

  12. The PANDA experiment: Antiproton physics at FAIR

    International Nuclear Information System (INIS)

    Montagna, P.

    2011-01-01

    The new Facility for Antiproton and Ion Research (FAIR), under construction at the GSI laboratory at Darmstadt, in a few years will make available, among different types of beams, even antiproton beams with unique features. Through a High Energy Storage Ring (HESR) for antiprotons, an antiproton beam will be available in a momentum range from 1.5 to 15 GeV/c, which will interact on a hydrogen target. The products of the interaction, including hadronic systems with strangeness and/or charm, will be detected with the PANDA magnetic spectrometer (antiProton ANnihilation at DArmstadt), and the spectroscopic analysis will allow a detailed investigation on a number of open problems of the hadronic physics, as the quark confinement, the existence of non-conventional meson states (so-called glueballs and hybrids), the structure of hadrons and of the strong interaction, with particular attention to charmonium spectroscopy. An overview of the scientific program of PANDA and the current status of the project will be presented.

  13. Theory and experiment in gravitational physics

    Science.gov (United States)

    Will, C. M.

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  14. Diamond detectors for high energy physics experiments

    Science.gov (United States)

    Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dorfer, C.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Hutton, C.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Konovalov, V.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Oliviero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Smith, S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Tannenwald, B.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2018-01-01

    Beam test results of the radiation tolerance study of chemical vapour deposition (CVD) diamond against different particle species and energies is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition functionality of poly-crystalline CVD diamond 3D devices was demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high luminosity experiments.

  15. The impact of war experiences and physical abuse on formerly ...

    African Journals Online (AJOL)

    2006-04-25

    Apr 25, 2006 ... Many studies have reported that physical, behavioural, cognitive, and emotional sequelae ... 1Department of Psychology, Gulu University, Gulu, Uganda. 2Division of ...... Goldstein RD, Wampler NS, Wise PH. War experiences ...

  16. Simple Experiments on the Physics of Vision: The Retina

    Science.gov (United States)

    Cortel, Adolf

    2005-01-01

    Many simple experiments can be performed in the classroom to explore the physics of vision. Students can learn of the two types of receptive cells (rods and cones), their distribution on the retina and the existence of the blind spot.

  17. Engineering Physics and Mathematics Division progress report for period ending August 31, 1989

    International Nuclear Information System (INIS)

    1989-12-01

    This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center

  18. Engineering Physics and Mathematics Division progress report for period ending August 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center. (LSP)

  19. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  20. IRPhE - International Reactor Physics Experiments database

    International Nuclear Information System (INIS)

    Sartori, E.

    2004-01-01

    The OECD/NEA Nuclear Science Committee (NSC) has identified the need to establish international databases containing all the important experiments that are available for sharing among the specialists and has set up or sponsored specific activities to achieve this. The aim is to preserve them in an agreed standard format in computer accessible form, to use them for international activities involving validation of current and new calculational schemes including computer codes and nuclear data libraries, for assessing uncertainties, confidence bounds and safety margins, and to record measurement methods and techniques. It is a significant saving results from disseminating a standard benchmark set to be used worldwide. A framework for professionals that use the standard benchmark set to validate and verify modeling codes and data for radiation transport, criticality safety and reactor physics applications guarantees a comparative set of analyses. It represents also a good basis for pinpointing important gaps and where efforts should be concentrated and ensures knowledge and competence preservation, management and transfer in nuclear science and engineering. A large number of experimentalists, physicists, evaluators, modelers have devoted large amounts of their efforts and competencies to produce the data on which the methods we are using today are based. These data are far from having been exploited fully for the different nuclear and radiation technologies. This wealth of information needs to be preserved in a form more easily exploitable by modern information technology and for use in connection with novel and refined computational models with limitations of the past removed. These data will form the basis for the studies of more advanced nuclear technology, will be instrumental in identifying areas where there is a lack of knowledge and thus provide support to justifying new experiments that would reduce design uncertainties and consequently costs. Improvement of

  1. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1985-01-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  2. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1984-12-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  3. Physical exercise and return to work: cancer survivors' experiences

    NARCIS (Netherlands)

    Groeneveld, Iris F.; de Boer, Angela G. E. M.; Frings-Dresen, Monique H. W.

    2013-01-01

    In this qualitative study, we aimed to explore cancer survivors' experiences with (1) return to work (RtW) and work performance, (2) a physical exercise program after treatment, and (3) the perceived link between physical exercise and work. Semi-structured individual interviews were held with ten

  4. The experiences of women engineers who have completed one to five years of professional engineering employment: A phenomenological study

    Science.gov (United States)

    White, Susan M.

    Women engineers remain underrepresented in employment in engineering fields in the United States. Feminist theory views this gender disparity beyond equity in numbers for women engineers and looks at structural issues of women's access, opportunities, and quality of experience in the workplace. Research on women's success and persistence in engineering education is diverse; however, there are few studies that focus on the early years of women's careers in engineering and less using a phenomenological research design. Experiences of women engineers who have completed one to five years of professional engineering employment are presented using a phenomenological research design. Research questions explored the individual and composite experiences for the co-researchers of the study as well as challenges and advantages of the phenomenon of having completed one to five years of professional engineering employment. Themes that emanated from the data were a feeling that engineering is a positive profession, liking math and science from an early age, having experiences of attending math and science camps or learning and practicing engineering interests with their fathers for some co-researchers. Other themes included a feeling of being different as a woman in the engineering workplace, taking advantage of opportunities for training, education, and advancement to further their careers, and the role of informal and formal mentoring in developing workplace networks and engineering expertise. Co-researchers negotiated issues of management quality and support, experiences of gender discrimination in the workplace, and having to make decisions balancing their careers and family responsibilities. Finally, the women engineers for this research study expressed intentions to persist in their careers while pursuing expertise and experience in their individual engineering fields.

  5. Analysis of pre-service physics teacher skills designing simple physics experiments based technology

    Science.gov (United States)

    Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.

    2018-03-01

    Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.

  6. Experiences that influence a student's choice on majoring in physics

    Science.gov (United States)

    Dobbin, Donya Rae

    Currently the production of college graduates with science and engineering degrees is insufficient to fill the increasing number of jobs requiring these skills. This study focuses on physics majors with an in-depth examination of student transitions from high school to college. Many different areas of influence could affect a student's decision to major in physics. The first phase of this study addresses all of the potential areas of influence identified from the literature. The goal was to identify common influences that might be used to increase students' interest in majoring in physics. Subjects (N=35) from the first phase were recruited from physics majors at diverse Michigan colleges and universities. The second phase of this study explored, in more depth, important areas of influence identified in the first phase of the study. Subjects (N=94) from the second phase were recruited from diverse colleges and universities in Indiana, Illinois, and Ohio. The interviews were also conducted via email. Approximately half of the students in the study decided to major in physics while still in high school. Their reasons relate to many of the areas of influence. For example, high school physics teachers were cited as a strong influence in many students' decisions to major in physics. Influential physics teachers were described as being helpful, encouraging and interesting. The teachers also need to be their students' number one cheerleader and not their number one critic. Some areas of influence were found to be different for males vs. females. A high percentage of all physics majors had influential adults with careers in physical or biological science fields. This percentage was even larger for female physics majors. Female students also showed a greater initial interest in astronomy than the male students. Thus, high school and college physics teachers should seek to expose students to science-related careers and adults with these careers. Astronomy is also an

  7. Specialists training on nuclear materials control, accounting and physical protection in the Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Khromov, V.V.; Pogozhin, N.S.; Kryuchkov, E.F.; Glebov, V.B.; Geraskin, N.I.

    1998-01-01

    Educational program to train specialists on non-proliferation problems and nuclear materials control, accounting and physical protection systems (NMCA and PP) at the Science Master's level was developed and is being realized in Moscow Sate Institute of Engineering and Physics at the support of the USA Ministry of Energy. The program is intended to train students who already got the Bachelor's degree on physical and technical subjects. The United methodological base of the program comprises lecture courses, practice in laboratories and computer programs. The educational program contains the following parts for training the students. 1) Deep scientific and technical knowledge. 2) System approach to designing and analysis of the NMCA and PP systems. 3) Knowledge of scientific and technical principles, means, devices and procedures used in the NMCA and PP systems. 4) Judicial, international and economical aspects of nuclear materials management. 5) Application of computer and information technologies for nuclear materials control and accounting. 6) Extensive practice in laboratories, using the most up-to-date equipment and devices used in the worldwide practice of NM control

  8. Tissue engineering of heart valves: in vitro experiences.

    Science.gov (United States)

    Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E

    2000-07-01

    Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced

  9. 10. colloquium on aspects of chemical and physical safety engineering. Current trends in safety engineering - research findings and legal boundary conditions - new options for large-scale experiments; 10. Kolloquium zu Fragen der chemischen und physikalischen Sicherheitstechnik. Aktuelle Entwicklungen in der Sicherheitstechnik - Forschungsergebnisse und gesetzliches Umfeld - neue Moeglichkeiten fuer Grossversuche

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Since 1981, BAM and PTB have been hosting of this series of colloquia, at which attendants were informed on current news and trends in chemical and physical safety engineering. This volume informs on explosion protection to prevent formation of explosive solvent/vapour/air mixtures in dryers, ignition source safety of ga/air, dust/air, and dust layers, sudden ignition processes in hydrogen/air mixtures, test methods, influencing parameters of the hazardous properties of ammonium nitrate and materials containing it, fire behaviour and fire hazards of bulk goods and specific materials, problems in the application of new technical rules and directives on a national and European level, and new approaches to probabilistic risk assessment for safe design of gas stores. At this anniversary meeting, the attendants were also given the opportunity to visit the BAM test facilities at Horstwalde, about 50 km south of Berlin. This test site, with an area of 12 km{sup 2}, has an explosion test area with a diameter of 400 m for fire and explosion tests up to 150 kg TNT. (orig.)

  10. Nucleation Characteristics in Physical Experiments/explosions

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.

    1976-01-01

    Large-scale vapor explosion experiments have shown that intimate contact between hot and cold liquids, and a temperature upon contact that is greater than the spontaneous nucleation temperature of the system, are two necessary conditions for the onset of large scale vapor explosions. A model, based on spontaneous nucleation of the homogeneous type, has been proposed to describe the relevant processes and the resulting energetics for explosive boiling systems. The model considers that spontaneous nucleation cannot occur either during the relief time for constant volume heating or until the thermal boundary layer is sufficiently thick to support a vapor cavity of the critical size. After nucleation, bubble growth does not occur until an acoustic wave establishes a pressure gradient in the cold liquid. These considerations lead to the prediction that, for a given temperature, drops greater than a critical size will remain in film boiling due to coalescence of vapor nuclei and drops smaller than this value will wet and be captured by the hot liquid surface. These results are compared to small drop data for well-wetted systems and excellent agreement is obtained between the observed behavior and the model predictions. In conclusion: A model, based on spontaneous nucleation, has been proposed to describe vaporization potential and behavior upon contact in a liquid/liquid system. This behavior is determined by the size of the liquid mass, single-phase pressurization and acoustic relief, nucleation frequency due to random density fluctuations, the initiation of unstable growth and acoustic relief, and the development of the thermal boundary layer in the cold liquid. The proposed model predicts that the stability of a given size drop upon intimate contact with another liquid is extremely dependent upon the interface temperature. For low interface temperatures, large masses will be captured by the hot liquid and the resulting vaporization rates will be extremely low because

  11. Data acquisition systems for high energy physics experiments

    International Nuclear Information System (INIS)

    Duran, I.; Olmos, P.

    1986-01-01

    The Data Acquisition Systems most frequently used in High Energy Physics experiments is described. This report begins with a brief description of the main elements of a typical signal processing chain, following with a detailed exposition of the four most popular instrumentation standards used in this kind of experiments: NIM, CAMAC, and VMI. (author). 20 figs., 9 ref

  12. Perceptions of Overweight Students Concerning Their Experiences in Physical Education

    Science.gov (United States)

    Trout, Josh; Graber, Kim C.

    2009-01-01

    The purpose of this investigation was to examine overweight students' perceptions of and experiences in physical education. Specifically, the applicability of learned helplessness as a framework to understand their experiences was explored. Participants were seven female and five male high school students whose body mass index was at or higher…

  13. Globalization and Organizational Change: Engineers' Experiences and Their Implications for Engineering Education

    Science.gov (United States)

    Lucena, Juan C.

    2006-01-01

    The demand for flexible engineers presents significant challenges to engineering education. Among these is the need for engineers to be prepared to understand and deal with organizational change. Yet engineering education and research on engineers have overlooked the impact of organizational change on engineering work. After outlining the impact…

  14. Experiments in atomic and applied physics using synchrotron radiation

    International Nuclear Information System (INIS)

    Jones, K.W.

    1987-01-01

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs

  15. Current status and improvement of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology

    International Nuclear Information System (INIS)

    Qu Guopu; Guo Lanying

    1999-01-01

    The author reviews the current status of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology in higher education and expresses author's views on the future improvement of the nuclear physics experiment course

  16. Detecting physics beyond the Standard Model with the REDTOP experiment

    Science.gov (United States)

    González, D.; León, D.; Fabela, B.; Pedraza, M. I.

    2017-10-01

    REDTOP is an experiment at its proposal stage. It belongs to the High Intensity class of experiments. REDTOP will use a 1.8 GeV continuous proton beam impinging on a fixed target. It is expected to produce about 1013 η mesons per year. The main goal of REDTOP is to look for physics beyond the Standard Model by detecting rare η decays. The detector is designed with innovative technologies based on the detection of prompt Cherenkov light, such that interesting events can be observed and the background events are efficiently rejected. The experimental design, the physics program and the running plan of the experiment is presented.

  17. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  18. Physics analysis of the TIBER-II engineering test reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Houlberg, W.A.; Attenberger, S.E.; Dory, R.A.; Spong, D.A.; Tolliver, J.S.; Sheffield, J.

    1987-11-01

    Confinement capability, burn characteristics, heating and fueling requirements, and fast alpha particle effects are assessed for the TIBER-II engineering test reactor (ETR/ITER). Confinement predictions for a wide variety of empirical scaling laws show that ignition in TIBER-II (or similar ETR-like devices) is marginal at 10 MA, whereas the design goal to achieve noninductively driven, steady-state burn with Q > 5 can easily be attained. Operation at the higher plasma currents being discussed for ITER or the attainment of higher density limits and/or favorable H-mode scalings improves the ignition capability. Pellet penetration calculations indicate that density profile control with pellets may not be feasible even for pellet velocities up to about 50 km/s, however, density peaking could result from inward pinch effects, as frequently inferred from experiments. The fast alpha contribution to pressure is substantial (10 to 30%) at TIBER (or any ETR/ITER) burn temperatures (8 to 20 keV). A relatively low level of fast alpha radial diffusion or a modest level of thermal alpha buildup significantly influences the ignition and steady-state burn capability. The fast alpha population can also modify the background plasma ballooning mode stability boundaries, lowering the beta limit β/sub crit/ - in particular, operation at the high electron temperatures needed for efficient current drive can exacerbate this effect. The use of high-energy neutral beams offers the promise of two important improvements in projected performance: an effective method for noninductive current drive and a means for controlling the current density profile deep within the plasma, as required for stable operation at high beta levels. 14 refs., 10 figs., 1 tab

  19. Physics analysis of the TIBER-II engineering test reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Houlberg, W.A.; Attenberger, S.E.; Dory, R.A.; Spong, D.A.; Tolliver, J.S.; Sheffield, J.

    1987-01-01

    Confinement capability, burn characteristics, heating and fueling requirements, and fast-alpha particle effects are assessed for the TIBER-II engineering test reactor (ETR/ITER). Confinement predictions for a wide variety of empirical scaling laws show that ignition on TIBER-II (or similar ETR-like devices) is marginal at 10 MA, whereas the design goal to achieve noninductively driven, steady-state burn with Q > 5 can easily be attained. Operation at the higher plasma currents being discussed for ITER or the attainment of higher density limits and/or favorable H-mode scalings improves the ignition capability. Pellet penetration calculations indicate that density profile control with pellets may not be feasible even for pellet velocities up to bout 50 km/s; however, density peaking could result from inward pinch effects, as frequently inferred from experiments. The fast alpha contribution to pressure is substantial (10-30%) at TIBER (or any ETR/ITER) burn temperatures (8-20 keV). A relatively low level of fast alpha radial diffusion or a modest level of thermal alpha buildup significantly influences the ignition and steady-state burn capability. The fast alpha population can also modify the background plasma ballooning mode stability boundaries, lowering the beta limit β/sub crit/ - in particular, operation at the high electron temperatures needed for efficient current drive can exacerbate this effect. The use of high-energy neutral beams offers the promise of two important improvements in projected performance: an effective method for noninductive current drive and a means for controlling the current density profile deep within the plasma, as required for stable operation at high beta levels

  20. Gender, experience, and self-efficacy in introductory physics

    Directory of Open Access Journals (Sweden)

    Jayson M. Nissen

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE styles of physics instruction. We investigated one gender gap in the area of attitudes and beliefs. This was men’s and women’s physics self-efficacy, which comprises students’ thoughts and feelings about their capabilities to succeed as learners in physics. According to extant research using pre- and post-course surveys, the self-efficacy of both men and women tends to be reduced after taking traditional and IE physics courses. Moreover, self-efficacy is reduced further for women than for men. However, it remains unclear from these studies whether this gender difference is caused by physics instruction. It may be, for instance, that the greater reduction of women’s self-efficacy in physics merely reflects a broader trend in university education that has little to do with physics per se. We investigated this and other alternative causes, using an in-the-moment measurement technique called the Experience Sampling Method (ESM. We used ESM to collect multiple samples of university students’ feelings of self-efficacy during four types of activity for two one-week periods: (i an introductory IE physics course, (ii students’ other introductory STEM courses, (iii their non-STEM courses, and (iv their activities outside of school. We found that women experienced the IE physics course with lower self-efficacy than men, but for the other three activity types, women’s self-efficacy was not reliably different from men’s. We therefore concluded that the experience of physics instruction in the IE physics course depressed women’s self-efficacy. Using complementary measures showing the IE

  1. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    Science.gov (United States)

    Kersten, Jennifer Anna

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design

  2. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  3. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    International Nuclear Information System (INIS)

    Sincovec, R.F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division

  4. 1st International Symposium ‘Physics, Engineering and Technologies for Bio-Medicine’

    International Nuclear Information System (INIS)

    2017-01-01

    The 1st International Symposium “Physics, Engineering and Technologies for BioMedicine” was held in Moscow at the occasion of the foundation of the new Institute PhysBio at MEPHI (Russia) on October 20-23, 2016. Under the auspices of the Russian Ministry of Science and Education, the Ministry of Health and the State Company Rosatom, the Symposium is organized by the Institute of Engineering Physics for Biomedicine (PhysBio), which has recently been established at National Research Nuclear University MEPhI (Moscow Engineering Physics Institute). The PhysBio’s goal is to train highly-skilled personnel through the research and development in engineering physics for biomedicine, including nuclear medicine, material science, laser physics and biophotonic technologies. The Symposium was aimed to meet the leading scientists and experts in nuclear medicine, biophysics, biophotonics, and emerging fields to present their works and to have invited lectures. (paper)

  5. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sincovec, R.F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL`s research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  6. Implementing a Flip-Flop Teaching Model in Thermal Physics for Engineering Students

    Directory of Open Access Journals (Sweden)

    Dr. Emil C. Alcantara

    2015-11-01

    Full Text Available Implementing flip-flop teaching in a physics classroom allows students to learn concepts outside of the classroom and apply what they learn in the classroom, working with other students and getting immediate feedback from the instructor. The purpose of this study was to determine the effect of flip-flop teaching in the performance of engineering students in introductory physics particularly in thermal physics. The study employed descriptive and quasi-experimental method to describe and compare the performance of engineering students in thermal physics when grouped according to sex and types of instruction. Three physics classes consisting of 125 sophomore engineering students at the Batangas State University during the second semester of the SY 2013-2014 were handled by the researcher and selected purposively as participants of the study. It was found out that the variation in the performances of male and female students in the conceptual questions, in the problem solving questions, and overall performance in thermal physics are not significantly different. Male and female students have an overall satisfactory performance in thermal physics. The study also revealed that the variation in the performances of the students in the conceptual questions, in the problem solving questions, and overall performance in thermal physics when grouped according to the types of instruction are not significantly different. Engineering students taught in a traditional physics classroom, in a flipped physics classroom, and in an enhanced-flipped physics classroom are more likely to have similar performances in thermal physics.

  7. ABB.-Combustion Engineering's Experience in Nuclear Power Plant Engineering and Construction in Korea

    International Nuclear Information System (INIS)

    Veris, James W.

    1992-01-01

    The Yonggwang Nuclear Project is a milestone project for the Korean Nuclear Industry. The Project has the two objectives of obtaining self-reliance in all aspects of nuclear technology and of constructing two modern nuclear power plants under the leadership of Korean companies acting as prime contractors. ABB.-Combustion Engineering 1000 MW System 80+ TM was chosen in 1987 as the NSLS design to meet these two objectives. This paper summarizers the significant experiences and lessons learned through the first four years of the Project as well as identifying implications for such future projects. The unique challenges of the project are identified and an evaluation of the experiences in the technology, self-reliance program and in the design and manufacturing processes will be made

  8. FROM GEOMETRY TO DIAGNOSIS: EXPERIENCES OF GEOMATICS IN STRUCTURAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    B. Riveiro

    2012-07-01

    Full Text Available Terrestrial photogrammetry and laser scanning are technologies that have been successfully used for metric surveying and 3D modelling in many different fields (archaeological and architectural documentation, industrial retrofitting, mining, structural monitoring, road surveying, etc.. In the case of structural applications, these techniques have been successfully applied to 3D modelling and sometimes monitoring; but they have not been sufficiently implemented to date, as routine tools in infrastructure management systems, in terms of automation of data processing and integration in the condition assessment procedures. In this context, this paper presents a series of experiences in the usage of terrestrial photogrammetry and laser scanning in the context of dimensional and structural evaluation of structures. These experiences are particularly focused on historical masonry structures, but modern prestressed concrete bridges are also investigated. The development of methodological procedures for data collection, and data integration in some cases, is tackled for each particular structure (with access limitations, geometrical configuration, range of measurement, etc.. The accurate geometrical information provided by both terrestrial techniques motivates the implementation of such results in the complex, and sometimes slightly approximated, geometric scene that is frequently used in structural analysis. In this sense, quantitative evaluating of the influence of real and accurate geometry in structural analysis results must be carried out. As main result in this paper, a series of experiences based on the usage of photogrammetric and laser scanning to structural engineering are presented.

  9. Banach Gelfand Triples for Applications in Physics and Engineering

    Science.gov (United States)

    Feichtinger, Hans G.

    2009-07-01

    description of many problems in engineering or physics, including the classical Fourier transform or the Kohn-Nirenberg or Weyl calculus for pseudo-differential operators. Particular emphasis will be given to the concept of w*-convergence and w*-continuity of operators which allows to prove conceptual uniqueness results, and to give a correct interpretation to certain formal expressions coming up in various versions of the Dirac formalism.

  10. Bioscience methodologies in physical chemistry an engineering and molecular approach

    CERN Document Server

    D'Amore, Alberto

    2013-01-01

    The field of bioscience methodologies in physical chemistry stands at the intersection of the power and generality of classical and quantum physics with the minute molecular complexity of chemistry and biology. This book provides an application of physical principles in explaining and rationalizing chemical and biological phenomena. It does not stick to the classical topics that are conventionally considered as part of physical chemistry; instead it presents principles deciphered from a modern point of view, which is the strength of this book.

  11. Becoming physics people: Development of integrated physics identity through the Learning Assistant experience

    Science.gov (United States)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.

  12. Gender and Satisfaction with the Cooperative Education Experience in Engineering

    Science.gov (United States)

    Wilkinson, Karen R.; Sullivan, Laura L.

    This study investigated gender differences in job satisfaction following the first term of a cooperative education program in engineering. Using data from a survey of freshmen, this study tested hypotheses about gender differences in the co-op job experience and the correlates of co-op job satisfaction. Gender-based predictive models of job satisfaction are presented. In general, the correlates of co-op job satisfaction are the same as those identified in past studies of job satisfaction. The level of co-op job satisfaction is the same for men and women, even though women do face some disadvantages. Social influences are important to both men and women, but there are gender differences in the specific predictors.

  13. Experiment with expert system guidance of an engineering analysis task

    International Nuclear Information System (INIS)

    Ransom, V.H.; Fink, R.K.; Callow, R.A.

    1986-01-01

    An experiment is being conducted in which expert systems are used to guide the performance of an engineering analysis task. The task chosen for experimentation is the application of a large thermal hydraulic transient simulation computer code. The expectation from this work is that the expert system will result in an improved analytical result with a reduction in the amount of human labor and expertise required. The code associated functions of model formulation, data input, code execution, and analysis of the computed output have all been identified as candidate tasks that could benefit from the use of expert systems. Expert system modules have been built for the model building and data input task. Initial results include the observation that human expectations of an intelligent environment rapidly escalate and structured or stylized tasks that are tolerated in the unaided system are frustrating within the intelligent environment

  14. First Year Experiences in School of Mechanical Engineering Kanazawa University

    Science.gov (United States)

    Kinari, Toshiyasu; Kanjin, Yuichi; Furuhata, Toru; Tada, Yukio

    This paper reports two lectures of the first year experience, ‧Lecture on Life in Campus and Society‧ and ‧Freshman Seminar‧ and discusses their effects. Both lectures have been given freshmen of the school of mechanical engineering, Kanazawa University in H20 spring term. The former lecture is aimed at freshmen to keep on a proper way in both social and college life. It consists of normal class and e-learning system lectures. E-learning system examination requires students to review the whole text book and that seems to have brought better results in the survey. The latter seminar is aimed at freshmen to get active and self-disciplined learning way through their investigation, discussion, presentation, writing work, and so on.

  15. A phenomenographic study of students' experiences with transition from pre-college engineering programs to first-year engineering

    Science.gov (United States)

    Salzman, Noah

    Recent national dialogues on the importance of preparing more students for careers in Science, Technology, Engineering, and Mathematics has driven the development of formal and informal learning opportunities for children and adolescents to explore engineering. Despite the growth of these programs, relatively little research exists on how participation in these programs affects students who choose to pursue further study in engineering. The present study addressed this gap through an exploration of the different ways that First-Year Engineering students experience the transition from pre-college engineering to undergraduate engineering studies. Given the focus of this research on students' experiences, phenomenography was chosen to explore the phenomenon of transition from pre-college to first-year engineering at a large, public Midwestern university. This facilitated understanding the range of variation in the ways that students experienced this transition. Twenty-two students with different amounts of participation in a variety of different engineering programs were selected to be interviewed using a purposeful maximum variation sampling strategy. The interviews were guided by a semi-structured interview protocol that encouraged the participants to reflect on their pre-college engineering experiences, their experiences in First-Year Engineering, and the transition between the two domains. The interviews were analyzed using phenomenographic methods to develop an outcome space consisting of five qualitatively different but related ways of experiencing the transition from pre-college to First-Year Engineering. These categories of description included Foreclosure, Frustration, Tedium, Connection, and Engaging Others. With the exception of the first category which was characterized by a lack of passion and commitment to engineering, the remaining four categories formed a hierarchical relationship representing increasing integration in First-Year Engineering. The

  16. Becoming Physics People: Development of Integrated Physics Identity through the Learning Assistant Experience

    Science.gov (United States)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-01-01

    In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of "community of practice" and "physics identity," and explore the implications suggested by these theories for LA program adoption and adaptation.…

  17. The physics of musical scales: Theory and experiment

    Science.gov (United States)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  18. Experience acquired in health physics at Saclay Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Fitoussi, L.; Joffre, H.

    1963-06-15

    Description is given of the general organization and functions of the Health Physics Department of Saclay Nuclear Research Establishment. The means employed for the various installations covered and the general rules adopted for health physics are presented. From an overall survey of the results obtained in 1962, conclusions were drawn from past experience and to foresee improvements for the future are foreseen. (P.C.H.)

  19. Physics in your pocket: experimenting and learning with your smartphone

    OpenAIRE

    González, Manuel Á.; González Rebollo, Miguel Ángel

    2015-01-01

    Along the last years the use of mobile devices in education has increased hugely. This increase includes not only the use of ICTs as learning facilitators. Mobile devices have also become useful tools in experimental physics thanks to their rich sets of built-in sensors. The use of smartphones as measurement devices in physics experiments requires careful attention to ensure good learning outcomes. Some aspects that must be considered are the reliability and accuracy of the smartphone sensors...

  20. Current experiments in particle physics - particle data group

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Lehar, F. [Centre d`Etudes Nucleaires de Saclay, Gif-sur-Yvette (France); Kettle, P.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  1. Current experiments in particle physics - particle data group

    International Nuclear Information System (INIS)

    Galic, H.; Kettle, P.R.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries

  2. Basic experiments of reactor physics using the critical assembly TCA

    International Nuclear Information System (INIS)

    Obara, Toru; Igashira, Masayuki; Sekimoto, Hiroshi; Nakajima, Ken; Suzaki, Takenori.

    1994-02-01

    This report is based on lectures given to graduate students of Tokyo Institute of Technology. It covers educational experiments conducted with the Tank-Type Critical Assembly (TCA) at Japan Atomic Energy Research Institute in July, 1993. During this period, the following basic experiments on reactor physics were performed: (1) Critical approach experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, (5) Measurement of safety sheet worth by the rod drop method. The principle of experiments, experimental procedure, and analysis of results are described in this report. (author)

  3. Advanced detection techniques for educational experiments in cosmic ray physics

    International Nuclear Information System (INIS)

    Aiola, Salvatore; La-Rocca, Paola; Riggi, Francesco; Riggi, Simone

    2013-06-01

    In this paper we describe several detection techniques that can be employed to study cosmic ray properties and carry out training activities at high school and undergraduate level. Some of the proposed devices and instrumentation are inherited from professional research experiments, while others were especially developed and marketed for educational cosmic ray experiments. The educational impact of experiments in cosmic ray physics in high-school or undergraduate curricula will be exploited through various examples, going from simple experiments carried out with small Geiger counters or scintillation devices to more advanced detection instrumentation which can offer starting points for not trivial research work. (authors)

  4. Experiences in sport, physical activity, and physical education among Christian, Buddhist, and Hindu Asian adolescent girls.

    Science.gov (United States)

    Araki, Kaori; Kodani, Iku; Gupta, Nidhi; Gill, Diane L

    2013-01-01

    Multicultural scholarship in sport and exercise psychology should help us understand and apply cultural competencies for all to be physically active. In the present study, two Asian countries, Japan and Singapore, were chosen. The participation rate for physical activities among adolescent girls tends to be lower than that of boys in both countries. Thus, the purpose of the project was to gain knowledge and understanding about sociocultural factors that may explain adolescent girls' perceptions and behaviors toward sport, physical activity, and physical education (PE). A qualitative approach using semi-structured interviews with focus groups was used to understand meanings of physical activity among Buddhist Japanese, and Hindu Indians and Christian Chinese from Singapore. Each focus group consisted of four or five girls and female researchers. Based on the analysis, we created four themes which were "cultural identities," "Asian girls and sport/physical activities," "PE experiences," "motivation for future involvement." The Buddhist Japanese, Hindu Indian, and Christian Chinese participants each reported unique physical activity experiences, and all the participants were aware of how Asian culture may affect being physically active. Experiences of PE classes were similar but perceptions of their PE attire were different for Christian Chinese and Hindu Indian adolescent girls. Based on the results, the importance of nurturing cultural competencies and ways to encourage girls to be physically active throughout life were discussed.

  5. A Study on school experiences of physics department students

    International Nuclear Information System (INIS)

    Cerit, N.

    2005-01-01

    Bringing up the young people who are seen as the guaranty of the future depends on a better education. One of the best ways of forming a high in quality education is connected to developing the quality in teacher training. Most of the developed countries have been carrying on studies in order to develop teacher training. School experience classes are the ones which are planned for the candidate teachers to observe the school in learning and teaching period and to practice in classrooms. Beginning from candidate teachers first years at school, this class should be thought to be beneficial for identifying their future school atmosphere, and it should be run effectively. For this purpose, it has been identified what difficulties the physics undergraduate and physics (with no thesis) master students, who took part in School Experience classes at the practice schools of Konya at which faculty-school cooperation is applied, had during activities, and their success at overcoming these difficulties, and their ideas about the practice school and its teachers. The research was done by making a survey to the physics undergraduate and physics(with no thesis) master students in 2003 Spring semester. The results of the research were analyzed for both girls and boys separately. After analyzed, the results showed that the most striking activity which both the undergraduate physics and physics(with no thesis) master students had difficulty was group activities. Moreover, it showed that 90 percent of the two groups had the idea that school experience activities would be beneficial for being a good physics teacher. It has been also recognized that the physics undergraduate students had a more positive view than physics(with no thesis) master students on the matter of meeting lack of interest from practice teachers, and taking the same course from the same teacher

  6. A programmatic framework for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Thomassen, K.I.; Goldston, R.J.; Neilson, G.H.

    1993-01-01

    Significant advances have been made in the confinement of reactor-grade plasmas, so that the authors are now preparing for experiments at the open-quotes power breakevenclose quotes level in the JET and TFTR experiments. In ITER the authors will extend the performance of tokamaks into the burning plasma regime, develop the technology of fusion reactors, and produce over a gigawatt of fusion power. Besides taking these crucial steps toward the technical feasibility of fusion, the authors must also take steps to ensure its economic acceptability. The broad requirements for economically attractive tokamak reactors based on physics advancements have been set forth in a number of studies. An advanced physics data base is emerging from a physics program of concept improvement using existing tokamaks around the world. This concept improvements program is emerging as the primary focus of the US domestic tokamak program, and a key element of that program is the proposed Tokamak Physics Experiment (TPX). With TPX the authors can develop the scientific data base for compact, continuously-operating fusion reactors, using advanced steady-state control techniques to improve plasma performance. The authors can develop operating techniques needed to ensure the success of ITER and provide first-time experience with several key fusion reactor technologies. This paper explains the relationships of TPX to the current US fusion physics program, to the ITER program, and to the development of an attractive tokamak demonstration plant for this next stage in the fusion program

  7. Lifetime Traumatic Experiences and Leisure Physical Inactivity among Adolescent Boys.

    Science.gov (United States)

    Malinauskas, Romualdas; Malinauskiene, Vilija; Malinauskas, Mindaugas

    2018-03-01

    The aim of this study was to examine the associations between lifetime traumatic experiences and leisure physical inactivity among adolescent boys and to determine to what extent those associations are mediated by posttraumatic stress symptoms, unhealthy behaviors (smoking, alcohol use), the daily consumption of fresh fruit, and sense of coherence. A self-administered questionnaire combining 3 instruments measured leisure physical activity level (Godin and Shephard), symptoms of posttraumatic stress (IES-revised), lifetime traumatic experiences, sense of coherence (SOC-13, from Antonovsky), and behavioral and dietary patterns in a representative sample of eighth grade boys from a number of Kaunas, Lithuania, secondary schools (N = 885; response rate 88.6%). Fifty-six point eight percent of boys had experienced at least 1 lifetime traumatic event, with a 20.5% prevalence of PTS symptoms, and 5.4% were inactive during leisure time. In the logistic regression models, leisure physical inactivity was associated with lifetime traumatic experiences (adjusted OR = 2.33; 95% CI: 1.09-4.98). Sense of coherence and posttraumatic stress symptoms did not mediate those associations. Less-than-daily consumption of fresh fruit showed an independent effect, while smoking and weekly consumption of alcohol did not. Consistent associations between lifetime traumatic experiences and leisure physical inactivity among adolescent boys indicate that the presence of lifetime traumatic events should be taken into account when employing intervention and prevention programs on unhealthy lifestyles (physical inactivity, smoking, and alcohol).

  8. Great experiments in physics firsthand accounts from Galileo to Einstein

    CERN Document Server

    1959-01-01

    From Galileo's famous experiments in accelerated motion to Einstein's revolutionary theory of relativity, the experiments recorded here trace the evolution of modern physics from its beginnings to the mid-20th century. Brought together for the first time in one volume are important source readings on 25 epochal discoveries that changed man's understanding of the physical world. The accounts, written by the physicists who made them, include:Issac Newton: The Laws of MotionHenry Cavendish: The Law of GravitationAugustin Fresnel: The Diffraction of LightHans Christian Oersted: ElecromagnetismH

  9. Future high precision experiments and new physics beyond Standard Model

    International Nuclear Information System (INIS)

    Luo, Mingxing.

    1993-01-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here

  10. Compilation of current high-energy-physics experiments

    International Nuclear Information System (INIS)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976

  11. The physics analysis tools project for the ATLAS experiment

    International Nuclear Information System (INIS)

    Lenzi, Bruno

    2012-01-01

    The Large Hadron Collider is expected to start colliding proton beams in 2009. The enormous amount of data produced by the ATLAS experiment (≅1 PB per year) will be used in searches for the Higgs boson and Physics beyond the standard model. In order to meet this challenge, a suite of common Physics Analysis Tools has been developed as part of the Physics Analysis software project. These tools run within the ATLAS software framework, ATHENA, covering a wide range of applications. There are tools responsible for event selection based on analysed data and detector quality information, tools responsible for specific physics analysis operations including data quality monitoring and physics validation, and complete analysis tool-kits (frameworks) with the goal to aid the physicist to perform his analysis hiding the details of the ATHENA framework. (authors)

  12. The research on teaching reformation of photoelectric information science and engineering specialty experiments

    Science.gov (United States)

    Zhu, Zheng; Yang, Fan; Zhang, Yang; Geng, Tao; Li, Yuxiang

    2017-08-01

    This paper introduced the idea of teaching reformation of photoelectric information science and engineering specialty experiments. The teaching reformation of specialty experiments was analyzed from many aspects, such as construction of specialized laboratory, experimental methods, experiment content, experiment assessing mechanism, and so on. The teaching of specialty experiments was composed of four levels experiments: basic experiments, comprehensive and designing experiments, innovative research experiments and engineering experiments which are aiming at enterprise production. Scientific research achievements and advanced technology on photoelectric technology were brought into the teaching of specialty experiments, which will develop the students' scientific research ability and make them to be the talent suitable for photoelectric industry.

  13. Accelerator Technology and High Energy Physic Experiments, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the ...

  14. Engineering of the divertor injection tokamak experiment (DITE)

    International Nuclear Information System (INIS)

    Plummer, K.M.; Bayes, D.V.; Bell, D.; Burt, J.; Galloway, F.; Sanders, B.C.; Skelton, D.E.; Varley, G.L.

    1976-01-01

    The DITE assembly has been constructed to study the effect of powerful neutral injection and the use of magnetic divertors in Tokamak systems. In addition, the plasma is stabilized by a position controlled feed-back vertical field system developed from results on the CLEO experiment, and added to DITE later in the design stage. The machine is designed for an ultimate plasma current of 340 kA, having a minor radius of 23 cm at q = 2, on a major radius of 113 cm. The 28 kG Bphi field, from 16 liquid nitrogen cooled coils has a 2% ripple at the edge of the plasma. The divertor is a ''bundle'' type, the present design of which is limited to operating in a Bphi field of 18 kG. Neutral Injection, initially by two, and ultimately by four injectors, is intended to supply about 1,500 kW of beam power. The engineering is now complete and the machine commissioned; this paper describes the up-to-date design of the machine and includes some of our experiences during design, construction and commissioning

  15. Modular safety interlock system for high energy physics experiments

    International Nuclear Information System (INIS)

    Kieffer, J.; Golceff, B.V.

    1980-10-01

    A frequent problem in electronics systems for high energy physics experiments is to provide protection for personnel and equipment. Interlock systems are typically designed as an afterthought and as a result, the working environment around complex experiments with many independent high voltages or hazardous gas subsystems, and many different kinds of people involved, can be particularly dangerous. A set of modular hardware has been designed which makes possible a standardized, intergrated, hierarchical system's approach and which can be easily tailored to custom requirements

  16. When Physical Activity Participation Promotes Inactivity: Negative Experiences of Spanish Adolescents in Physical Education and Sport

    Science.gov (United States)

    Beltran-Carrillo, Vicente J.; Devis-Devis, Jose; Peiro-Velert, Carmen; Brown, David H. K.

    2012-01-01

    This article analyses negative experiences in physical education and sport reported during qualitative interviews of a group of inactive adolescent Spanish boys and girls. The purpose of this analysis is twofold. First and most important, it seeks to give voice to these young people reporting negative experiences and connect them to contexts of…

  17. A Physics-Based Starting Model for Gas Turbine Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing an integrated starting model for gas turbine engines using a new physics-based...

  18. Demountable toroidal fusion core facility for physics optimization and fusion engineering

    International Nuclear Information System (INIS)

    Bogart, S.L.; Wagner, C.E.; Krall, N.A.; Dalessandro, J.A.; Weggel, C.F.; Lund, K.O.; Sedehi, S.

    1986-01-01

    Following a successful compact ignition tokamak (CIT) experiment, a fusion facility will be required for physics optimization (POF) and fusion engineering research (FERF). The POF will address issues such as high-beta operation, current drive, impurity control, and will test geometric and configurational variations such as the spherical torus or the reversed-field pinch (RFP). The FERF will be designed to accumulate rapidly a large neutron dose in prototypical fusion subsystems exposed to radiation. Both facilities will require low-cost replacement cores and rapid replacement times. The Demountable Toroidal Fusion Core (DTFC) facility is designed to fulfill these requirements. It would be a cost-effective stepping stone between the CIT and a demonstration fusion reactor

  19. Techniques for nuclear and particle physics experiments. 2. rev. ed.

    International Nuclear Information System (INIS)

    Leo, W.R.

    1992-01-01

    This book is an outgrowth of an advanced laboratory course in experimental nuclear and particle physics the author gave to physics majors at the University of Geneva during the years 1978- 1983. The course was offered to third and fourth year students, the latter of which had, at this point in their studies, chosen to specialize in experimental nuclear or particle physics. This implied that they would go on to do a 'diplome' thesis with one of the high- or intermediate-energy research groups in the physics department. The format of the course was such that the students were required to concentrate on only one experiment during the trimester, rather than perform a series of experiments as is more typical of a traditional course of this type. Their tasks thus included planning the experiment, learning the relevant techniques, setting up and troubleshooting the measuring apparatus, calibration, data-taking and analysis, as well as responsibility for maintaining their equipment, i.e., tasks resembling those in a real experiment. This more intensive involvement provided the students with a better understanding of the experimental problems encountered in a professional experiment and helped instill a certain independence and confidence which would prepare them for entry into a research group in the department. Teaching assistants were presented to help the students during the trimester and a series of weekly lectures was also given on various topics in experimental nuclear and particle physics. This included general information on detectors, nuclear electronics, statistics, the interaction of radiation in matter, etc., and a good deal of practical information for actually doing experiments. (orig.) With 254 figs

  20. Open educational resources, cultural artifacts, conception’s physics teachers for engineering analysis of two case studies

    Directory of Open Access Journals (Sweden)

    Oscar Jardey Suárez

    2016-09-01

    Full Text Available The research attempts to answer questions such as: What are the concepts of physics teachers who work in the engineering faculty on the use of Open Educational Resources (OER?  This article focuses on revealing the conceptions of physics teachers working in the engineering faculty in relation to OER. Methodologically the project has a qualitative and a quantitative component; This article is the result of a qualitative and interpretive phase from extensive interviews with active teachers, who run courses in physics in engineering careers in higher education institutions public or private; interviews were conducted from elicitadoras situations that emerge from the categories that emerged from the literature review (cultural artifact, Learning environment, social-scientific, technical and technological. The interpretation of the interviews suggests that there conceptions of laboratory reality and its relationship with models, they do consider that this reality may be far from the models when experiments are discussed through simulations (which can be misleading. Conclusions point out that mathematics is the most important in the construction and reconstruction of physical models, although not unanimously mediation; infers that can be incorporated as complementary elements OER mediation possible a spectrum of educational options in teaching physics.

  1. Changing the Teaching/Learning Procedures in Physics for Agricultural Engineering. A Case Study

    Science.gov (United States)

    Mulero, Angel; Parra, M. Isabel; Cachadina, Isidro

    2012-01-01

    The subject "Physical Fundamentals of Engineering" for agricultural engineers in the University of Extremadura has long had high rates of students not attending classes, not presenting for examinations and, finally, failing the subject. During the 2007 and 2008 courses, the teaching/learning procedures were strongly modified. Analysis of the…

  2. Physics and engineering of compact quantum dot-based lasers for biophotonics

    CERN Document Server

    Rafailov, Edik U

    2013-01-01

    Written by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics.

  3. TU-C-BRF-01: Innovation in Medical Physics and Engineering

    International Nuclear Information System (INIS)

    Mohan, R; Pelc, N; Jaffray, D; Mackie, T

    2014-01-01

    We seek to heighten the awareness of the role of research and innovation that leads to clinical advances in the field of medical physics and engineering. Marie Curie (discovery and use of radium) and Harold Johns (Co-60 tele-therapy) in radiotherapy, and pioneers in imaging (Allan Cormack and Godfrey Hounsfield for the CT and Paul Lauterbur, Peter Mansfield for MRI, etc.) were scientists often struggling against great odds. Examples of more recent innovations that are clearly benefitting our patients include IMRT, Image Guided Radiation Therapy and Surgery, Particle Therapy, Quantitative imaging, amongst others.We would also like to highlight the fact that not all of the discovery and engineering that we benefit from in today’s world, was performed at research institutions alone. Rather, companies often tread new ground at financial and reputational risk. Indeed the strength of the private sector is needed in order to bring about new advances to our practice. The keys to long term success in research and development may very well include more public and private research spending. But, when more investigators are funded, we also need to recognize that there needs to be a willingness on the part of the funding institutions, academic centers and investigators to risk failure for the greater potential achievements in innovation and research. The speakers will provide examples and insight into the fields of innovation and research in medical physics from their own first hand experiences. Learning Objectives: To obtain an understanding of the importance of research and development towards advances in physics in medicine. To raise awareness of the role of interdisciplinary collaborations in translational research and innovation. To highlight the importance of entrepreneurships and industrial-institutional research partnerships in fostering new ideas and their commercial success. To recognize and account for the risk of failure for the greater potential achievements in

  4. TU-C-BRF-01: Innovation in Medical Physics and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States); Pelc, N [Stanford University, Stanford, CA (United States); Jaffray, D [Princess Margaret Hospital, Toronto, ON (Canada); Mackie, T [University of Wisconsin, Madison, WI (United States)

    2014-06-15

    We seek to heighten the awareness of the role of research and innovation that leads to clinical advances in the field of medical physics and engineering. Marie Curie (discovery and use of radium) and Harold Johns (Co-60 tele-therapy) in radiotherapy, and pioneers in imaging (Allan Cormack and Godfrey Hounsfield for the CT and Paul Lauterbur, Peter Mansfield for MRI, etc.) were scientists often struggling against great odds. Examples of more recent innovations that are clearly benefitting our patients include IMRT, Image Guided Radiation Therapy and Surgery, Particle Therapy, Quantitative imaging, amongst others.We would also like to highlight the fact that not all of the discovery and engineering that we benefit from in today’s world, was performed at research institutions alone. Rather, companies often tread new ground at financial and reputational risk. Indeed the strength of the private sector is needed in order to bring about new advances to our practice. The keys to long term success in research and development may very well include more public and private research spending. But, when more investigators are funded, we also need to recognize that there needs to be a willingness on the part of the funding institutions, academic centers and investigators to risk failure for the greater potential achievements in innovation and research. The speakers will provide examples and insight into the fields of innovation and research in medical physics from their own first hand experiences. Learning Objectives: To obtain an understanding of the importance of research and development towards advances in physics in medicine. To raise awareness of the role of interdisciplinary collaborations in translational research and innovation. To highlight the importance of entrepreneurships and industrial-institutional research partnerships in fostering new ideas and their commercial success. To recognize and account for the risk of failure for the greater potential achievements in

  5. ASIC design used in high energy physics experiments

    International Nuclear Information System (INIS)

    Zhang Hongyu; Lin Tao; Wu Ling; Zhao jingwei; Gu Shudi

    1997-01-01

    The author introduces an ASIC (Application Specific Integrated Circuit) design environment based on PC. Some design tools used in such environment are also introduced. A kind of ASIC chip used in high energy physics experiment, weighting mean timer, is being developed now

  6. Chladni Patterns on Drumheads: A "Physics of Music" Experiment

    Science.gov (United States)

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional…

  7. Lessons from feedback of safety operating experience for reactor physics

    International Nuclear Information System (INIS)

    Suchomel, J.; Rapavy, S.

    1999-01-01

    Analyses of events in WWER operations as a part of safety experience feedback provide a valuable source of lessons for reactor physics. Examples of events from Bohunice operation will be shown such as events with inadequate approach to criticality, positive reactivity insertions, expulsion of a control rod from shut-down reactor, problems with reactor protection system and control rods. (Authors)

  8. The physical imitation experiments of nuclear belt weight scaler

    International Nuclear Information System (INIS)

    Shi Qicun; Wang Mingqian; Sun Jinhua; Li Zhonghao

    1993-01-01

    The physical imitation experiments of the nuclear belt weight scaler (NBWS) were performed with a coal-loaded belt. The linearity, repetition and long-time stability; of the NBWS were measured. And the influence of pile shape, load bias and the composition of coal on weight calculation were studied

  9. The physics analysis environment of the ZEUS experiment

    International Nuclear Information System (INIS)

    Bauerdick, L.A.T.; Derugin, O.; Gilkinson, D.; Kasemann, M.; Manczak, O.

    1995-12-01

    The ZEUS Experiment has over the last three years developed its own model of the central computing environment for physics analysis. This model has been designed to provide ZEUS physicists with powerful and user friendly tools for data analysis as well as to be truly scalable and open. (orig.)

  10. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    Science.gov (United States)

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  11. Data acquisition systems for high energy Physics experiments

    International Nuclear Information System (INIS)

    Duran, I.; Olmos, P.

    1986-01-01

    We describe here the Data Acquisition Systems most frequently used in High Energy Physics experiments. This report begins with a brief description of the main elements of a typical signal processing chain, following with a detailed exposition of the four most popular instrumentation standards used in this kind of experimental: NIM, CAMAC, FASTBUS and VME. (Author) 9 refs

  12. Statistical physics of human beings in games: Controlled experiments

    International Nuclear Information System (INIS)

    Liang Yuan; Huang Ji-Ping

    2014-01-01

    It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems. (topical review - statistical physics and complex systems)

  13. The AMS experiment: first results and physics prospects

    International Nuclear Information System (INIS)

    Vialle, J.P.

    2000-04-01

    The main physics goal of the AMS experiment is the search for primordial antimatter, non-baryonic dark matter, and the measurement with high statistics and high accuracy of the electrically charged cosmic ray particles and light nuclei in the extraterrestrial space beyond the atmosphere. AMS is the first magnetic spectrometer which will be flown in space. It will be installed for 3 years on the international space station (ISS) in 2003. A precursor flight with the space shuttle DISCOVERY took place in June 1998. 100 millions particles were recorded during the test flight and unexpected physics results were observed on fluxes of protons, electrons, positrons, and helium nuclei. These results are described below, and the physics prospects for the second phase of the experiment on the space station as well. (author)

  14. B-physics prospects with the LHCb experiment

    International Nuclear Information System (INIS)

    Harnew, N.

    2008-01-01

    This paper summarizes the B-physics prospects of the LHCb experiment. Firstly, a brief introduction to the CKM matrix and the mechanism of CP violation in the Standard Model is given. The advantages of the LHCb experiment for B-physics exploitation will then be described, together with a short description of the detector components. Finally, the LHCb physics aims and prospects will be summarized, focusing on the measurements of sin(2β) in tree and gluonic penguin diagrams, sin(2α) in B d 0 → π + π - and π + π - π 0 , neutral B-meson oscillations and the B s 0 mixing phase, and the measurement of γ using a variety of complementary methods

  15. Nuclear engineering, health physics, and radioactive waste management fellowship program: Summary of program activities: Nuclear engineering and health physics fellowship, 1985-1986

    International Nuclear Information System (INIS)

    1986-01-01

    Progress is reported in the nuclear engineering and health physics elements of the fellowship program. Statistics are given on numbers of student applications and new appointments, the degree areas of applicants, GPA and GRE score averages of the fellows, and employment of completed fellows

  16. Observation, experiment and hypothesis in modern physical science

    CERN Document Server

    Hannaway, Owen

    1985-01-01

    These original contributions by philosophers and historians of science discuss a range of issues pertaining to the testing of hypotheses in modern physics by observation and experiment. Chapters by Lawrence Sklar, Dudley Shapere, Richard Boyd, R. C. Jeffrey, Peter Achinstein, and Ronald Laymon explore general philosophical themes with applications to modern physics and astrophysics. The themes include the nature of the hypothetico-deductive method, the concept of observation and the validity of the theoretical-observation distinction, the probabilistic basis of confirmation, and the testing of idealizations and approximations.The remaining four chapters focus on the history of particular twentieth-century experiments, the instruments and techniques utilized, and the hypotheses they were designed to test. Peter Galison reviews the development of the bubble chamber; Roger Stuewer recounts a sharp dispute between physicists in Cambridge and Vienna over the interpretation of artificial disintegration experiments;...

  17. Engineering development for a small-scale recirculator experiment

    International Nuclear Information System (INIS)

    Newton, M.A.; Deadrick, F.J.; Hanks, R.L.; Hawkins, S.A.; Holm, K.A.; Kirbie, H.C.; Karpenko, V.P.; Nattrass, L.A.; Longinotti, D.B.

    1995-01-01

    Lawrence Livermore National Laboratory (LLNL) is evaluating the physics and technology of recirculating induction accelerators for heavy-ion inertial-fusion drivers. As part of this evaluation, the authors are building a small-scale recirculator to demonstrate the concept and to use as a test bed for the development of recirculator technologies. System designs have been completed and components are presently being designed and developed for the small-scale recirculator. This paper discusses results of the design and development activities that are presently being conducted to implement the small-scale recirculator experiments. An, overview of the system design is presented along with a discussion of the implications of this design on the mechanical and electrical hardware. The paper focuses primarily on discussions of the development and design of the half-lattice period hardware and the advanced solid-state modulator

  18. Proceedings of the second conference on medical physics and biomedical engineering of R. Macedonia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    In the 21st century many branches in medicine can not exist without physicists. Most recent methods in medicine, especially new technologies in cancer diagnostic and treatments, have resulted in a great need for medical physicists in growing number of institutions and hospitals. I There are a certain number of highly qualified and dedicated professionals in medical physics in Macedonia whose work is mainly performed in governmental institutions committed towards medical physics issues. The Association for Medical Physics and Biomedical Engineering (AMPBE) was established in 2000 as the first professional association in Macedonia competent to cope with problems in the fields of medicine, applying methods of physics and biomedical engineering to medical procedures in order to develop tools essential to the physicians that will improve medical care in general. Three years ago the First National Conference on Medical Physics and Biomedical Engineering was organized by the Association. The idea was to gather all the professionals working in medical physics and biomedical engineering on one place in order to present their work and increase the collaboration among them. Other involved professions such as medical doctors, radiation technologists, engineers and physics professors from the University also took part and contributed to the success of the conference. As a result the Proceedings were published in Macedonian, with summaries in English.

  19. Proceedings of the second conference on medical physics and biomedical engineering of R. Macedonia

    International Nuclear Information System (INIS)

    2010-01-01

    In the 21st century many branches in medicine can not exist without physicists. Most recent methods in medicine, especially new technologies in cancer diagnostic and treatments, have resulted in a great need for medical physicists in growing number of institutions and hospitals. I There are a certain number of highly qualified and dedicated professionals in medical physics in Macedonia whose work is mainly performed in governmental institutions committed towards medical physics issues. The Association for Medical Physics and Biomedical Engineering (AMPBE) was established in 2000 as the first professional association in Macedonia competent to cope with problems in the fields of medicine, applying methods of physics and biomedical engineering to medical procedures in order to develop tools essential to the physicians that will improve medical care in general. Three years ago the First National Conference on Medical Physics and Biomedical Engineering was organized by the Association. The idea was to gather all the professionals working in medical physics and biomedical engineering on one place in order to present their work and increase the collaboration among them. Other involved professions such as medical doctors, radiation technologists, engineers and physics professors from the University also took part and contributed to the success of the conference. As a result the Proceedings were published in Macedonian, with summaries in English.

  20. Analysis of the Impact of Introductory Physics on Engineering Students at Texas A&M University

    Science.gov (United States)

    Perry, Jonathan; Bassichis, William

    Introductory physics forms a major part of the foundational knowledge of engineering majors, independent of discipline and institution. While the content of introductory physics courses is consistent from institution to institution, the manner in which it is taught can vary greatly due to professor, textbook, instructional method, and overall course design. This work attempts to examine variations in student success, as measured by overall academic performance in an engineering major, and matriculation rates, based on the type of introductory physics a student took while enrolled in an engineering degree at Texas A&M University. Specific options for introductory physics at Texas A&M University include two calculus based physics courses, one traditional (UP), and one more mathematically rigorous (DP), transfer credit, and high school (AP or dual) credit. In order to examine the impact of introductory physics on a student's degree progression, data mining analyses are performed on a data set of relatively comprehensive academic records for all students enrolled as an engineering major for a minimum of one academic term. Student data has been collected for years of entering freshman beginning in 1990 and ending in 2010. Correlations will be examined between freshman level courses, including introductory physics, and follow on engineering courses, matriculation rates, and time to graduation.

  1. EDF's Engineering Experience and Contribution to the Nuclear Development

    International Nuclear Information System (INIS)

    Salha, Bernard; Fourest, Bernard; Arpino, Jean-Marc

    2002-01-01

    Electricite de France (EDF) is now operating 58 nuclear power units which produce 76% of the electricity generated in France. This EDF's industrial success is the result of its capacity to master and optimize its production tool, from design through operation. EDF's integrated engineering is in the heart of this process of technical expertise and economic optimization. It allows to be in interface between the needs of operators and industrials suppliers, while accumulating a significant feedback of operating experience. The will of achieving the process of frenchifying PWR technology and to implement new industrial innovations have ended up in the new NPP of 100 % french design, the N4 series and its significant innovations. EDF energy policy is to keep the nuclear option open for the future. This strategy results from the need to improve the availability and the life extension of the units in operation and to prepare the replacement of the operating reactors around 2015. This is the objective of the European Pressurized Reactor (EPR), a French-German joint project. EDF is also applying this industrial process in its international projects. For example China, which desires to implement a standardized nuclear program and to move forward the complete autonomy of its nuclear industry, has decided to adopt a similar approach to EDF's one. (authors)

  2. World Congress on Medical Physics and Biomedical Engineering

    CERN Document Server

    Chen, Shan-Ben; Chen, Xiao-Qi

    2015-01-01

    The primary aim of this volume is to provide researchers and engineers from both academic and industry with up-to-date coverage of new results in the field of robotic welding, intelligent systems and automation. The book is mainly based on papers selected from the 2014 International Conference on Robotic Welding, Intelligence and Automation (RWIA’2014), held  Oct. 25-27, 2014, at Shanghai, China. The articles show that the intelligentized welding manufacturing (IWM) is becoming an inevitable trend with the intelligentized robotic welding as the key technology. The volume is divided into four logical parts: Intelligent Techniques for Robotic Welding, Sensing of Arc Welding Processing, Modeling and Intelligent Control of Welding Processing, as well as Intelligent Control and its Applications in Engineering.  .

  3. Statistical physics of human beings in games: Controlled experiments

    Science.gov (United States)

    Liang, Yuan; Huang, Ji-Ping

    2014-07-01

    It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems.

  4. Physical Limitations to Tissue Engineering of Intervertabral Disc Cells

    OpenAIRE

    Kobayashi, Shigeru; Baba, Hisatoshi; Takeno, Kenichi; Miyazaki, Tsuyoshi; Meir, Adam; Urban, Jill

    2010-01-01

    There is increasing interest in the using biological methods to repair degenerate discs. Biological repair depends on the disc maintaining a population of viable and active cells. Adequate nutrition of the disc influences the outcome of such therapies and, hence, must be considered to be a crucial parameter. Therefore, it is very important to maintain an appropriate physicochemical environment to achieve successful disc repair by biological methods and tissue engineering procedures.

  5. Interactive Lecture Experiments in Large Introductory Physics Classes

    Science.gov (United States)

    Milner-Bolotin, Marina M.; Kotlicki, A.; Rieger, G.; Bates, F.; Moll, R.; McPhee, K.; Nashon, S.

    2006-12-01

    We describe Interactive Lecture Experiments (ILE), which build on Interactive Lecture Demonstrations proposed by Sokoloff and Thornton (2004) and extends it by providing students with the opportunity to analyze experiments demonstrated in the lecture outside of the classroom. Real time experimental data is collected, using Logger Pro combined with the digital video technology. This data is uploaded to the Internet and made available to the students for further analysis. Student learning is assessed in the following lecture using conceptual questions (clickers). The goal of this project is to use ILE to make large lectures more interactive and promote student interest in science, critical thinking and data analysis skills. We report on the systematic study conducted using the Colorado Learning Attitudes about Science Survey, Force Concept Inventory, open-ended physics problems and focus group interviews to determine the impact of ILE on student academic achievement, motivation and attitudes towards physics. Three sections of students (750 students) experienced four ILE experiments. The surveys were administered twice and academic results for students who experienced the ILE for a particular topic were compared to the students, from a different section, who did not complete the ILE for that topic. Additional qualitative data on students’ attitudes was collected using open ended survey questions and interviews. We will present preliminary conclusions about the role of ILEs as an effective pedagogy in large introductory physics courses. Sokoloff, D.R. and R.K. Thornton (2004). Interactive Lecture Demonstrations: Active Learning in Introductory Physics, J.Wiley & Sons, INC. Interactive Lecture Experiments: http://www.physics.ubc.ca/ year1lab/p100/LectureLabs/lectureLabs.html

  6. Real-time virtual EAST physical experiment system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: lidan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Xiao, B.J., E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui (China); Xia, J.Y., E-mail: jyxia@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Yang, Fei, E-mail: fyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Department of Computer Science, Anhui Medical University, Hefei, Anhui (China)

    2014-05-15

    Graphical abstract: - Highlights: • 3D model of experimental advanced superconducting tokamak is established. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, plasma shape visualization and simulation. • Browser-oriented system is web-based and more interactive, immersive and convenient. • The system provides the framework for virtual physical experimental environment. - Abstract: As a large fusion reaction device, experimental advanced superconducting tokamak (EAST)’s internal structure is complicated and not easily accessible. Moreover, various diagnostic systems and complicated configuration bring about the inconveniency to the scientists who are unfamiliar with the system but interested in the data. We propose a virtual system to display the 3D model of EAST facility and enable people to view its inner structure and get access to the information of its components in various view sights. We would also provide most of the diagnostic configuration details together with their signal names and physical properties. Compared to the previous ways of viewing information by reference to collected drawings and videos, virtual EAST system is more interactive and immersive. We constructed the browser-oriented virtual EAST physical experiment system, integrated real-time experiment data acquisition, plasma shape visualization and experiment result simulation in order to reproduce physical experiments in a web browser. This system used B/S (Browser/Server) structure in combination with the technology of virtual reality – VRML (Virtual Reality Modeling Language) and Java 3D. In order to avoid the bandwidth limit across internet, we balanced the rendering speed and the precision of the virtual model components. Any registered user can view the experimental information visually and efficiently by logining the system through a web browser. The establishment of the system provides the

  7. Real-time virtual EAST physical experiment system

    International Nuclear Information System (INIS)

    Li, Dan; Xiao, B.J.; Xia, J.Y.; Yang, Fei

    2014-01-01

    Graphical abstract: - Highlights: • 3D model of experimental advanced superconducting tokamak is established. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, plasma shape visualization and simulation. • Browser-oriented system is web-based and more interactive, immersive and convenient. • The system provides the framework for virtual physical experimental environment. - Abstract: As a large fusion reaction device, experimental advanced superconducting tokamak (EAST)’s internal structure is complicated and not easily accessible. Moreover, various diagnostic systems and complicated configuration bring about the inconveniency to the scientists who are unfamiliar with the system but interested in the data. We propose a virtual system to display the 3D model of EAST facility and enable people to view its inner structure and get access to the information of its components in various view sights. We would also provide most of the diagnostic configuration details together with their signal names and physical properties. Compared to the previous ways of viewing information by reference to collected drawings and videos, virtual EAST system is more interactive and immersive. We constructed the browser-oriented virtual EAST physical experiment system, integrated real-time experiment data acquisition, plasma shape visualization and experiment result simulation in order to reproduce physical experiments in a web browser. This system used B/S (Browser/Server) structure in combination with the technology of virtual reality – VRML (Virtual Reality Modeling Language) and Java 3D. In order to avoid the bandwidth limit across internet, we balanced the rendering speed and the precision of the virtual model components. Any registered user can view the experimental information visually and efficiently by logining the system through a web browser. The establishment of the system provides the

  8. The physics of degradation in engineered materials and devices fundamentals and principles

    CERN Document Server

    Swingler, Jonathan

    2015-01-01

    Degradation is apparent in all things and is fundamental to both manufactured and natural objects. It is often described by the second law of thermodynamics, where entropy, a measure of disorder, tends to increase with time in a closed system. Things age! This concise reference work brings together experts and key players engaged in the physics of degradation to present the background science, current thinking and developments in understanding, and gives a detailed account of emerging issues across a selection of engineering applications. The work has been put together to equip the upper level undergraduate student, postgraduate student, as well as the professional engineer and scientist, in the importance of physics of degradation. The aim of The Physics of Degradation in Engineered Materials and Devices is to bridge the gap between published textbooks on the fundamental science of degradation phenomena and published research on the engineering science of actual fabricated materials and devices. A history o...

  9. Case study of a problem-based learning course of physics in a telecommunications engineering degree

    Science.gov (United States)

    Macho-Stadler, Erica; Jesús Elejalde-García, Maria

    2013-08-01

    Active learning methods can be appropriate in engineering, as their methodology promotes meta-cognition, independent learning and problem-solving skills. Problem-based learning is the educational process by which problem-solving activities and instructor's guidance facilitate learning. Its key characteristic involves posing a 'concrete problem' to initiate the learning process, generally implemented by small groups of students. Many universities have developed and used active methodologies successfully in the teaching-learning process. During the past few years, the University of the Basque Country has promoted the use of active methodologies through several teacher training programmes. In this paper, we describe and analyse the results of the educational experience using the problem-based learning (PBL) method in a physics course for undergraduates enrolled in the technical telecommunications engineering degree programme. From an instructors' perspective, PBL strengths include better student attitude in class and increased instructor-student and student-student interactions. The students emphasised developing teamwork and communication skills in a good learning atmosphere as positive aspects.

  10. Annual Technical Report - Nuclear Engineering Institute/ Dept. of Physics (IEN/DEFI) 1988

    International Nuclear Information System (INIS)

    Silva, A.G. da; Cabral, S.C.; Osso Junior, J.A.

    1988-01-01

    The researches carried out by physics department of Nuclear Engineering Institute(IEN)/Brazilian CNEN are presented. The researches in nuclear physics, isotope production and irradiation damages using CV-28 cyclotron which accelerates protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively are described. (M.C.K.)

  11. The experiment PANDA: physics with antiprotons at FAIR

    Directory of Open Access Journals (Sweden)

    Boca Gianluigi

    2015-01-01

    The PANDA experiment is designed to achieve the above mentioned physics goals with a setup with the following characteristics: an almost full solid angle acceptance; excellent tracking capabilities with high resolution (1–2 % at 1 GeV/c in the central region; secondary vertex detection with resolution ≈ 100 microns or better; electromagnetic calorimetry for detections of gammas and electrons up to 10 GeV; good particle identification of charge tracks (electrons, muons, pions, kaons, protons; a dedicated interchangeable central apparatus for the hypernuclear physics; detector and data acquisition system capable of working at 20 MHz interaction rate with an intelligent software trigger that can provide maximum flexibility.

  12. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    Energy Technology Data Exchange (ETDEWEB)

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  13. LHCf experiment: forward physics at LHC for cosmic rays study

    Directory of Open Access Journals (Sweden)

    Del Prete M.

    2016-01-01

    Full Text Available The LHCf experiment, optimized for the study of forward physics at LHC, completes its main physics program in this year 2015, with the proton-proton collisions at the energy of 13 TeV. LHCf gives important results on the study of neutral particles at extreme pseudo-rapidity, both for proton-proton and for proton-ion interactions. These results are an important reference for tuning the models of the hadronic interaction currently used for the simulation of the atmospheric showers induced by very high energy cosmic rays. The results of this analysis and the future perspective are presented in this paper.

  14. A system for designing and simulating particle physics experiments

    International Nuclear Information System (INIS)

    Zelazny, R.; Strzalkowski, P.

    1987-01-01

    In view of the rapid development of experimental facilities and their costs, the systematic design and preparation of particle physics experiments have become crucial. A software system is proposed as an aid for the experimental designer, mainly for experimental geometry analysis and experimental simulation. The following model is adopted: the description of an experiment is formulated in a language (here called XL) and put by its processor in a data base. The language is based on the entity-relationship-attribute approach. The information contained in the data base can be reported and analysed by an analyser (called XA) and modifications can be made at any time. In particular, the Monte Carlo methods can be used in experiment simulation for both physical phenomena in experimental set-up and detection analysis. The general idea of the system is based on the design concept of ISDOS project information systems. The characteristics of the simulation module are similar to those of the CERN Geant system, but some extensions are proposed. The system could be treated as a component of greater, integrated software environment for the design of particle physics experiments, their monitoring and data processing. (orig.)

  15. Experience of Developing a Meta-Semantic Search Engine

    OpenAIRE

    Mukhopadhyay, Debajyoti; Sharma, Manoj; Joshi, Gajanan; Pagare, Trupti; Palwe, Adarsha

    2013-01-01

    Thinking of todays web search scenario which is mainly keyword based, leads to the need of effective and meaningful search provided by Semantic Web. Existing search engines are vulnerable to provide relevant answers to users query due to their dependency on simple data available in web pages. On other hand, semantic search engines provide efficient and relevant results as the semantic web manages information with well defined meaning using ontology. A Meta-Search engine is a search tool that ...

  16. Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience

    Science.gov (United States)

    Seif, Mujan; Beck, Matthew

    2018-01-01

    Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…

  17. Software Engineering Issues for Cyber-Physical Systems

    DEFF Research Database (Denmark)

    Al-Jaroodi, Jameela; Mohamed, Nader; Jawhar, Imad

    2016-01-01

    step; however, designing and implementing the right software to integrate and use them effectively is essential. The software facilitates better interfaces, more control and adds smart services, high flexibility and many other added values and features to the CPS. However, software development for CPS......Cyber-Physical Systems (CPS) provide many smart features for enhancing physical processes. These systems are designed with a set of distributed hardware, software, and network components that are embedded in physical systems and environments or attached to humans. Together they function seamlessly...... to offer specific functionalities or features that help enhance human lives, operations or environments. While different CPS components play important roles in a successful CPS development, the software plays the most important role among them. Acquiring and using high quality CPS components is the first...

  18. HISTORY OF THE ENGINEERING PHYSICS AND MATHEMATICS DIVISION 1955-1993

    Energy Technology Data Exchange (ETDEWEB)

    Maskewitz, B.F.

    2001-09-14

    A review of division progress reports noting significant events and findings of the Applied Nuclear Physics, Neutron Physics, Engineering Physics, and then Engineering Physics and Mathematics divisions from 1955 to 1993 was prepared for use in developing a history of the Oak Ridge National Laboratory in celebration of its 50th year. The research resulted in an accumulation of historic material and photographs covering 38 years of effort, and the decision was made to publish a brief history of the division. The history begins with a detailed account of the founding of the Applied Nuclear Physics Division in 1955 and continues through the name change to the Neutron Physics Division in the late 1950s. The material thereafter is presented in decades--the sixties, seventies, and eighties--and ends as we enter the nineties.

  19. Archival of the ZPPR-15B physics experiment

    International Nuclear Information System (INIS)

    Lell, R.; McKnight, R.

    2012-01-01

    This I-NERI collaboration between Argonne National Laboratory (ANL) and Korea Atomic Energy Research Institute (KAERI) began mid-year (April, 2010). This report summarizes the progress for year two of the proposed three-year collaboration to generate a physics validation database of integral experiments for metallic fueled fast reactor systems. The objective of the proposed project is to archive and evaluate the integral experiment data, analyze the experiments, and prepare detailed computational models to be used for validating the modern suites of fast reactor design analysis tools which are under development at ANL and KAERI. A series of mockup experiments for a 330 MWe Integral Fast Reactor (IFR) at ANL under the ZPPR-15 Program, also known as the IFR Benchmark Physics Test Program will be retrieved and analyzed in this project. The ZPPR-15 program was conducted in four phases. Each phase was marked by a particular composition of the reference assembly. In the first phase (15A), only plutonium, depleted uranium, stainless steel and sodium were included in this very clean physics assembly. This allowed examination of the effect of removing oxygen from the typical oxide-fueled sodium fast reactor. Zirconium was added in the second phase (15B). Additionally, 13 control rods and channels were added after the first phase. In the third phase (15C), roughly half of the core volume was fueled by enriched uranium to simulate a fast reactor transition composition. In the final phase (15D), the enriched uranium component was increased to 90%, simulating a near-beginning-of-life composition. In addition to criticality, control rod worths, reaction rate distribution, reactivity coefficients, gamma heating, neutron spectrum and kinetics, there were a number of measurements aimed at addressing special issues of safety, economics and metal fuel composition. The BFS-73-1 and BFS-75-1 experiments of KAERI carried out as the mockup experiment of KALIMER-150 at the Russian BFS-1

  20. Persistence of physics and engineering students via peer mentoring, active learning, and intentional advising

    Science.gov (United States)

    McCavit, K.; Zellner, N. E. B.

    2016-11-01

    Albion College, a private, undergraduate-only, liberal arts college in Michigan, USA, has developed and implemented a low-cost peer-mentoring programme that blends personal and academic support to help students achieve academic success in the introductory courses required for the Physics Major or the Dual-Degree Program in Engineering. This enhanced mentoring programme provides much-needed assistance for undergraduate students to master introductory physics and mathematics coursework, to normalise the struggle of learning hard material, and to accept their identity as physics or engineering students (among other goals). Importantly, this programme has increased retention among entering science, technology, engineering and mathematics students at Albion College as they move through the introductory classes, as shown by a 20% increase in retention from first-semester to third-semester physics courses compared to years when this programme was not in place.

  1. Outline of scientific and research activities of the Faculty of Nuclear Science and Physical Engineering

    International Nuclear Information System (INIS)

    Loncar, G.

    1982-01-01

    A survey is presented of scientific and research activities carried out in the departments of the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. The first section lists the principal results achieved in the course of the 6th Five-Year Plan in Physical Electronics, Solid State Engineering, Materials Structure and Properties, Nuclear Physics, Theory and Technology of Nuclear Reactors, Dosimetry and Application of Ionizing Radiation and Nuclear Chemistry. The second part gives a summary of scientific and research work carried out in the Faculty of Nuclear Science and Physical Engineering in the 7th Five-Year Plan in all branches of science represented. The Faculty's achievements in international scientific cooperation are assessed. (author)

  2. An Introduction to Logic for Students of Physics and Engineering

    Science.gov (United States)

    Kolecki, Joseph C.

    2004-01-01

    A physicist with an engineering background, the author presents a brief tutorial on logic. In his work at NASA and in his encounters with students, he has often found that a firm grounding in basic logic is lacking - perhaps because there are so many other demands on people that time simply cannot be taken to really examine the roots of human reasoning. This report provides an overview of this all-too-important subject with the dual hope that it will suffice insofar as it goes and that it will spur at least some to further study.

  3. Orthogonal polarization in lasers physical phenomena and engineering applications

    CERN Document Server

    Zhang, Shulian

    2013-01-01

    This practical book summarizes the latest research results of orthogonally polarized lasers, birefringence laser cavities, and their applications. Coverage ranges from basic principles and technologies to the characteristics of different cavities and lasers to various measurement techniques. A number of figures, experimental designs, and measurement curves are included, helping readers gain a thorough understanding of the many applications in modern engineering and start their own projects. Many types of relevant lasers (Helium/Neon lasers, Nd:YAG lasers, laser diodes, etc.) are also discussed

  4. Renewable energy physics, engineering, environmental impacts, economics & planning

    CERN Document Server

    Sorensen, Bent

    2011-01-01

    This volume is a true shelf reference, providing a thorough overview of the entire renewable energy sphere, while still functioning as a go-to information source for professionals and students when they need answers about a specific technical issue. Crafted over the last 15 years into a problem-solving tool for engineers, researchers, consultants and planners currently working in the field, as well as a detailed map of the renewables universe for those looking to expand into new technological specialties, Renewable Energy by Sorensen offers the most comprehensive coverage of the subject available.

  5. Introduction to the study of particle accelerators. Atomic, nuclear and high energy physics for engineers

    International Nuclear Information System (INIS)

    Warnecke, R.R.

    1975-01-01

    This book is destined for engineers taking part in the design building and running of nuclear physics and high-energy physics particle accelerators. It starts with some notions on the theory of relativity, analytical and statistical mechanics and quantum mechanics. An outline of the properties of atomic nuclei, the collision theory and the elements of gaseous plasma physics is followed by a discussion on elementary particles: characteristic parameters, properties, interactions, classification [fr

  6. National Educators' Workshop. Update 92: Standard Experiments in Engineering Materials Science and Technology

    Science.gov (United States)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Craig, Douglas F. (Compiler)

    1993-01-01

    This document contains a collection of experiments presented and demonstrated at the workshop. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  7. MESA. An ERL project for particle physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hug, Florian [Institut fuer Kernphysik, Universitaet Mainz (Germany)

    2016-07-01

    The Mainz Energy-recovering Superconducting Accelerator (MESA) will be constructed at the Institut fuer Kernphysik of the Johannes Gutenberg University of Mainz. The accelerator is a low energy continuous wave (CW) recirculating electron linac for particle physics experiments. MESA will be operated in two different modes serving mainly two experiments: the first is the external beam (EB) mode, where the beam is dumped after being used with the external fixed target experiment P2, whose goal is the measurement of the weak mixing angle with highest accuracy. The required beam current for P2 is 150 μA with polarized electrons at 155 MeV. In the second operation mode MESA will be run as an energy recovery linac (ERL). In an ERL the energy of the electrons is recovered after their experimental use by decelerating them in the superconducting acceleration cavities. The experiment served in this mode is a (pseudo) internal fixed target experiment named MAGIX. It demands an unpolarized beam of 1 mA at 105 MeV. In a later construction stage of MESA the achievable beam current in ERL-mode shall be upgraded to 10 mA. Within this talk an overview of the MESA project will be given highlighting the challenges of operation with high density internal gas targets and the (*new*) physics applications.

  8. Review of recent experiments in intermediate energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P D [Carnegie-Mellon Univ., Pittsburgh, PA (USA)

    1978-01-01

    The data generated at intermediate-energy accelerator facilities has expanded rapidly over the past few years. A number of recent experiments chosen for their impact on nuclear structure questions are reviewed. Proton scattering together with pionic and muonic atom X-ray measurements are shown to be giving very precise determinations of gross nuclear properties. Pion scattering and reaction data although less precise, are starting to generate a new understanding of wave functions of specific nuclear states. Specific examples where new unpublished data are now available are emphasized. In addition, other medium-energy experiments that are starting to contribute to nuclear structure physics are summarized.

  9. SNEAK-4, a series of physics experiments for KNK II

    International Nuclear Information System (INIS)

    Engelmann, P.

    1969-10-01

    At the end of 1968 a three months program of neutron physics experiments was performed at SNEAK for the investigation of some nuclear properties of the KNK II reactor. The experiments were conducted by the Karlsruhe Nuclear Research Center in close cooperation with INTERATOM. The results of the measurements on SNEAK assemblies 4A and 4B are reported and compared with calculations. The experimental results of critical mass and reactivities, control rod worths, Doppler coefficient and power distribution were used to draw conclusions for the KNK II design

  10. Recent activity on Heliotron E physics study and engineering developments

    International Nuclear Information System (INIS)

    Obiki, T.; Wakatani, M.; Sato, M.

    1989-06-01

    Recent activity on Heliotron E physics study about transport, MHD stability, and divertor action with new equipments is summarized. For the above purpose, appropriate pellet injector and new diagnostics are developed. Moreover, research and developments about heating systems and the other new systems for the Large Helical Device are being carried out by the Heliotron group. (author)

  11. Compilation of current high energy physics experiments - Sept. 1978

    Energy Technology Data Exchange (ETDEWEB)

    Addis, L.; Odian, A.; Row, G. M.; Ward, C. E. W.; Wanderer, P.; Armenteros, R.; Joos, P.; Groves, T. H.; Oyanagi, Y.; Arnison, G. T. J.; Antipov, Yu; Barinov, N.

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche. (RWR)

  12. An Overview of the International Reactor Physics Experiment Evaluation Project

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Gulliford, Jim

    2014-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties associated with advanced modeling and simulation accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Data provided by those two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades. An overview of the IRPhEP and a brief update of the ICSBEP are provided in this paper.

  13. B Physics at the D0 experiment A Mexican review

    International Nuclear Information System (INIS)

    De La Cruz-Burelo, E.

    2010-01-01

    On April of 1992 a Mexican group from Cinvestav officially joined the D0 experiment, one of the two experiments in the Tevatron collider at Fermilab. The seed for this experimental group on high energy physics from Cinvestav was planted in Mexico in some measure by Augusto Garcia, to whom this workshop is in memorial. Augusto's efforts and support to groups dedicated to this area was clear and important. Some of these seeds have given origin to today's established Mexican groups on experimental high energy physics, one example of this is the Mexican group at D0. I present here a short review of some of the D0 results on which the Mexican group has contributed, emphasizing the last decade, which I have witnessed.

  14. Physics Regimes in the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    D.M. Meade; S.C.Jardin; C.E. Kessel; M.A. Ulrickson; J.H. Schultz; P.H. Rutherford; J.A. Schmidt; J.C. Wesley; K.M. Young; N.A.Uckan; R.J. Thome; P. Heitzenroeder; B.E. Nelson; and C.C.Baker

    2001-01-01

    Burning plasma science is recognized widely as the next frontier in fusion research. The Fusion Ignition Research Experiment (FIRE) is a design study of a next-step burning plasma experiment with the goal of developing a concept for an experimental facility to explore and understand the strong nonlinear coupling among confinement, magnetohydrodynamic (MHD) self-heating, stability, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. This will require plasmas dominated by alpha heating (Q greater than or equal to 5) that are sustained for a duration comparable to characteristic plasma timescales (greater than or equal to 10) tau(subscript ''E''), approximately 4 tau(subscript ''He''), approximately 2 tau(subscript ''skin''). The work reported here has been undertaken with the objective of finding the minimum size (cost) device to achieve these physics goals

  15. Experiences with Integrating Simulation into a Software Engineering Curriculum

    Science.gov (United States)

    Bollin, Andreas; Hochmuller, Elke; Mittermeir, Roland; Samuelis, Ladislav

    2012-01-01

    Software Engineering education must account for a broad spectrum of knowledge and skills software engineers will be required to apply throughout their professional life. Covering all the topics in depth within a university setting is infeasible due to curricular constraints as well as due to the inherent differences between educational…

  16. 3D engineered models for highway construction : the Iowa experience.

    Science.gov (United States)

    2015-06-01

    3D engineered modeling is a relatively new and developing technology that can provide numerous bene ts to owners, engineers, : contractors, and the general public. This manual is for highway agencies that are considering or are in the process of s...

  17. Experiences on dynamic simulation software in chemical engineering education

    DEFF Research Database (Denmark)

    Komulainen, Tiina M.; Enemark-rasmussen, Rasmus; Sin, Gürkan

    2012-01-01

    Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics...

  18. BOOK REVIEW: Physics for Scientists and Engineers Third Edition

    Science.gov (United States)

    Giancoli, Douglas C.

    2000-09-01

    There are a large number of textbooks for the college and university student produced in the USA and here is one that I had not seen before even though it is now in the third edition. But it is so similar to many others. The standard version as reviewed here covers the usual topics of classical physics, namely kinematics, energy, waves and oscillations, thermodynamics, electricity and magnetism and light. Also, as is usual with the American coverage, it includes fluids, special relativity and a short chapter on quantum theory and the atom. An extended version is available covering modern physics, astrophysics and cosmology. There is also available back-up material such as instructor's manual, CD-ROM, video and other extra teaching material Full colour is used and the book is lavishly illustrated with diagrams and photographs. Calculus is used throughout the book, although this is limited to basic differentiation and integration. There is an extensive range of worked examples plus end-of-chapter questions and problems, with numerical answers given to the odd-numbered problems. The physics is illustrated with many everyday examples. The styles of course presentation and hence the styles of book used in the USA and the UK seem to be diverging. It is unlikely such a book as this would be used at A-level. This is not only because of the calculus, albeit simple, but because of the detailed coverage of classical topics. Increasingly there has been a trend in this country to be more selective in content, and yet at the same time to incorporate more modern topics such as solids, environmental and atmospheric physics, particle physics and cosmology, but described in a fairly elementary way. The book would be suitable for preliminary year and first-year university physics courses but its size and weight are daunting. I am not sure why physics described in such an encyclopaedic way is popular in the US but less so here. However, of its type this book is both attractive and

  19. Cleaners' experiences with group-based workplace physical training

    DEFF Research Database (Denmark)

    Kirkelund, Lasse; Mortensen, Ole Steen; Holtermann, Andreas

    2012-01-01

    This study investigates how work-site health promotion intervention, by involving group-based physical coordination training, may increase participants’ social awareness of new ways to use the body. Purpose: We investigated cleaners’ experiences with a one-year health promotion intervention...... involving group-based physical coordination training (PCT) during working hours. Design: We conducted a qualitative evaluation using method triangulation; continuous unfocused participant observation during the whole intervention, semi-structured focus group interview, and individual written evaluations one...... for implementation seem to be important for sustained effects of health-promotion interventions in the workplace. Originality: The social character of the physical training facilitated a community of practice, which potentially supported the learning of new competencies, and how to improve the organization...

  20. Health physics practices and experience at Duke Power Company

    International Nuclear Information System (INIS)

    Lewis, L.

    1986-01-01

    The history and development of the health physics and as-low-as-reasonably-achievable (ALARA) program at Duke Power Company's Oconee Nuclear Station is described as are the fundamental elements of the program and how the program works. The benefits of this health physics/ALARA program have been determined to be (a) improved quality of manpower planning and scheduling, (b) increased efficiency of shutdown activities, (c) reduced cost of shutdown, (d) immediate awareness of adverse job exposure trends, (e) better management information on exposure-related problems, (f) improved accuracy of personnel and job dose records, and (g) in general, improved outage performance and subsequent plant operation. Experience with the health physics/ALARA program is discussed in terms of (a) savings of critical path time, (b) maintaining ALARA personnel doses, and (c) record capacity factors

  1. Engineering Physics Division progress report period ending May 31, 1982

    International Nuclear Information System (INIS)

    1982-07-01

    Progress is described in the following areas: nuclear cross sections and related quantities; methods for generating and validating multigroup cross-section libraries; methods for reactor and shield analysis; methods for sensitivity and uncertainty analysis; integral experiments and nuclear analyses (integral experiments supporting fusion reactor designs, nuclear analyses supporting fusion reactor designs, high-energy particle transport calculations, integral experiments supporting gas-cooled fast breeder reactor designs, nuclear analyses supporting gas-cooled reactor designs, nuclear analyses supporting utilization of light-water reactors, and integral experiment analyses supporting surveillance dosimetry improvement program); energy economics modeling and analysis; safety and reliability assessments for nuclear power reactors; and information analysis and distribution. Publications and papers presented are listed

  2. Engineering Physics Division progress report period ending May 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Progress is described in the following areas: nuclear cross sections and related quantities; methods for generating and validating multigroup cross-section libraries; methods for reactor and shield analysis; methods for sensitivity and uncertainty analysis; integral experiments and nuclear analyses (integral experiments supporting fusion reactor designs, nuclear analyses supporting fusion reactor designs, high-energy particle transport calculations, integral experiments supporting gas-cooled fast breeder reactor designs, nuclear analyses supporting gas-cooled reactor designs, nuclear analyses supporting utilization of light-water reactors, and integral experiment analyses supporting surveillance dosimetry improvement program); energy economics modeling and analysis; safety and reliability assessments for nuclear power reactors; and information analysis and distribution. Publications and papers presented are listed. (WHK)

  3. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas

  4. Physics prospects of the KTeV experiment at Fermilab

    International Nuclear Information System (INIS)

    Whitmore, J.

    1996-10-01

    KTeV is a new Fermilab fixed target experiment which will search for direct CP violation in the neutral kaon system. In addition, we will make precision measurements of other CP and CPT violating parameters and make high sensitivity studies of rare kaon decays. The detector has been commissioned and is currently taking data. The physics goals and detector performance are presented. 12 refs., 1 fig

  5. A fast ADC scanner for multiparameter nuclear physics experiments

    International Nuclear Information System (INIS)

    Midttun, G.; Ingebretsen, F.; Holt, K.; Skaali, B.

    1983-04-01

    A fast readout system for multiparameter experiments in nuclear physics is described. The central part of the CAMAC aquisition hardware is an ADC scanner module. The scanner incorporates a new arbitration logic and direct memory access for simultaneous transfer of singles and correlated data. Together with specially designed ADC interfaces the system can be set up for any configuration of singles and multiparameter events from 1 up to 15 ADC's in one crate

  6. A fast ADC scanner for multiparameter nuclear physics experiments

    International Nuclear Information System (INIS)

    Midttun, G.; Holt, K.; Ingebretsen, F.; Skaali, B.

    1983-01-01

    A fast readout system for multiparameter experiments in nuclear physics is described. The central part of the CAMAC aquisition hardware is an ADC scanner module. The scanner incorporates a new arbitration logic and direct memory access for simultaneous transfer of singles and correlated data. Together with specially designed ADC interfaces the system can be set up for any configurations of singles and multiparameter events from 1 up to 15 ADC's in one crate

  7. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    Science.gov (United States)

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  8. Studying Gender Bias in Physics Grading: The role of teaching experience and country

    Science.gov (United States)

    Hofer, Sarah I.

    2015-11-01

    The existence of gender-STEM (science, technology, engineering, and mathematics) stereotypes has been repeatedly documented. This article examines physics teachers' gender bias in grading and the influence of teaching experience in Switzerland, Austria, and Germany. In a 2 × 2 between-subjects design, with years of teaching experience included as moderating variable, physics teachers (N = 780) from Switzerland, Austria, and Germany graded a fictive student's answer to a physics test question. While the answer was exactly the same for each teacher, only the student's gender and specialization in languages vs. science were manipulated. Specialization was included to gauge the relative strength of potential gender bias effects. Multiple group regression analyses, with the grade that was awarded as the dependent variable, revealed only partial cross-border generalizability of the effect pattern. While the overall results in fact indicated the existence of a consistent and clear gender bias against girls in the first part of physics teachers' careers that disappeared with increasing teaching experience for Swiss teachers, Austrian teachers, and German female teachers, German male teachers showed no gender bias effects at all. The results are discussed regarding their relevance for educational practice and research.

  9. Trends in integrated circuit design for particle physics experiments

    International Nuclear Information System (INIS)

    Atkin, E V

    2017-01-01

    Integrated circuits are one of the key complex units available to designers of multichannel detector setups. A whole number of factors makes Application Specific Integrated Circuits (ASICs) valuable for Particle Physics and Astrophysics experiments. Among them the most important ones are: integration scale, low power dissipation, radiation tolerance. In order to make possible future experiments in the intensity, cosmic, and energy frontiers today ASICs should provide new level of functionality at a new set of constraints and trade-offs, like low-noise high-dynamic range amplification and pulse shaping, high-speed waveform sampling, low power digitization, fast digital data processing, serialization and data transmission. All integrated circuits, necessary for physical instrumentation, should be radiation tolerant at an earlier not reached level (hundreds of Mrad) of total ionizing dose and allow minute almost 3D assemblies. The paper is based on literary source analysis and presents an overview of the state of the art and trends in nowadays chip design, using partially own ASIC lab experience. That shows a next stage of ising micro- and nanoelectronics in physical instrumentation. (paper)

  10. Enhancing the Programming Experience for First-Year Engineering Students through Hands-On Integrated Computer Experiences

    Science.gov (United States)

    Canfield, Stephen L.; Ghafoor, Sheikh; Abdelrahman, Mohamed

    2012-01-01

    This paper describes the redesign and implementation of the course, "Introduction to Programming for Engineers" using microcontroller (MCU) hardware as the programming target. The objective of this effort is to improve the programming competency for engineering students by more closely relating the initial programming experience to the student's…

  11. [Physical therapy in pediatric primary care: a review of experiences].

    Science.gov (United States)

    de Sá, Miriam Ribeiro Calheiros; Thomazinho, Paula de Almeida; Santos, Fabiano Luiz; Cavalcanti, Nicolette Celani; Ribeiro, Carla Trevisan Martins; Negreiros, Maria Fernanda Vieira; Vinhaes, Marcia Regina

    2014-11-01

    To review pediatric physical therapy experiences described in the literature and to analyze the production of knowledge on physical therapy in the context of pediatric primary health care (PPHC). A systematic review was conducted according to the PRISMA criteria. The following databases were searched: MEDLINE, LILACS, SciELO, PubMed, Scopus and Cochrane; Brazilian Ministry of Health's CAPES doctoral dissertations database; and System for Information on Grey Literature in Europe (SIGLE). The following search terms were used: ["primary health care" and ("physical therapy" or "physiotherapy") and ("child" or "infant")] and equivalent terms in Portuguese and Spanish, with no restriction on publication year. Thirteen articles from six countries were analyzed and grouped into three main themes: professional dilemmas (three articles), specific competencies and skills required in a PPHC setting (seven articles), and practice reports (four articles). Professional dilemmas involved expanding the role of physical therapists to encompass community environments and sharing the decision-making process with the family, as well as collaborative work with other health services to identify the needs of children. The competencies and skills mentioned in the literature related to the identification of clinical and sociocultural symptoms that go beyond musculoskeletal conditions, the establishment of early physical therapy diagnoses, prevention of overmedication, and the ability to work as team players. Practice reports addressed stimulation in children with neurological diseases, respiratory treatment, and establishing groups with mothers of children with these conditions. The small number of studies identified in this review suggests that there is little knowledge regarding the roles of physical therapists in PPHC and possibly regarding the professional abilities required in this setting. Therefore, further studies are required to provide data on the field, along with a continuing

  12. Basics of laser physics for students of science and engineering

    CERN Document Server

    Renk, Karl F

    2017-01-01

    This textbook provides an introductory presentation of all types of lasers. It contains a general description of the laser, a theoretical treatment and a characterization of its operation as it deals with gas, solid state, free-electron and semiconductor lasers. This expanded and updated second edition of the book presents a description of the dynamics of free-electron laser oscillation using a model introduced in the first edition that allows a reader to understand basic properties of a free-electron laser and makes the difference to “conventional” lasers. The discussions and the treatment of equations are presented in a way that a reader can immediately follow. The book addresses graduate and undergraduate students in science and engineering, featuring problems with solutions and over 400 illustrations.

  13. Supervisor's experiments on radiation safety trainings in school of engineering

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    2005-01-01

    Radiation safety training courses in School of Engineering, The University of Tokyo, were introduced. The number of radiation workers and the usage of radiation and radioisotopes have been surveyed for past 14 years. The number of radiation workers in School of Engineering has increased due to the treatment of X-ray analysis of materials, recently. It is important for workers to understand the present situation of School of Engineering before the treatment of radiation and radioisotopes. What the supervisor should tell to radiation workers were presented herewith. The basic questionnaires after the lecture are effective for radiation safety trainings. (author)

  14. Physical basis of coastal productivity: The SEEP and MASAR experiments

    Science.gov (United States)

    Csanady, G. T.

    Two major cooperative experiments, code-named Shelf Edge Exchange Processes (SEEP) I and II, were carried out on the northeast U.S. continental shelf and slope by an interdisciplinary group of scientists in the past decade. The work, supported by the Department of Energy, Office of Health and Environmental Research, had the broad aim of determining whether or to what extent energy-related human activities interfere with the high biological productivity of coastal waters. Much of SEEP I work was reported in a dedicated issue of Continental Shelf Research, including a summary article on the experiment as a whole [Walsh et al., 1988[. A parallel experiment, supported by the Minerals Management Service and code-named Mid Atlantic Slope and Rise (MASAR), had the objective of exploring physical processes over the continental slope and rise, including especially currents in the upper part of the water column. A good deal of MASAR work was also reported in the SEEP issue just mentioned, mainly in an article by Csanady and Hamilton (1988). There have been other papers and publications on these experiments, and more are forthcoming. While many questions remain, our horizons have broadened considerably after a decade of work on this problem, as if our aeroplane had just emerged from clouds to expose an interesting landscape. In this article I shall try to describe the physical (-oceanographic) features of that landscape, not in the chronological order in which we have espied them, but as the logic of the subject dictates.

  15. Autonomy and the Student Experience in Introductory Physics

    Science.gov (United States)

    Hall, Nicholas Ron

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students perceived their instructors to be. An autonomy supportive instructor acknowledges students' perspectives, feelings, and perceptions and provides students with information and opportunities for choice, while minimizing external pressures. It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (beta=0.31***) and negatively correlated with student anxiety about taking physics (beta=-0.23**). It was also positively correlated with how autonomous (vs. controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to vs. had to; beta=0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (beta=0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (beta=0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable experience in the course. If greater autonomy support was in fact the cause of a more favorable student experience, as suggested by Self-determination Theory and experimental studies in other contexts, these results would have implications for instruction and instructor professional development in similar contexts. I discuss these implications. Study II, an experimental study, investigated the effect

  16. Results in Developing an Engineering Degree Program in Safeguards and Security of Nuclear Materials at Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.; Duncan, Cristen L.

    2007-01-01

    The world's first master's degree program in nuclear safeguards and security, established at Moscow Engineering Physics Institute (MEPhI), has now graduated nine classes of students. Most of the graduates have gone on to work at government agencies, research organizations, or obtain their PhD. In order to meet the demand for safeguards and security specialists at nuclear facilities, MEPhI established a 5-1/2 year engineering degree program that provides more hands-on training desired by facilities. In February 2004, the first students began their studies in the new discipline Nuclear Material Safeguards and Nonproliferation. This class, as well as other subsequent classes, included students who started the program in their third year of studies, as the first 2-1/2 years consists of general engineering curriculum. Fourteen students made up the first graduating class, receiving their engineering degrees in February 2007. The topics addressed in this paper include specific features of the program caused by peculiarities of Russian education legislation and government quality control of academic education. This paper summarizes the main joint actions undertaken by MEPhI and the US National Laboratories in conjunction with the U.S. Department of Energy, to develop the engineering degree program. Also discussed are the program's specific training requirements, student internships, and job placement. The paper concludes with recommendations from a recent international seminar on nonproliferation education and training

  17. Comparing the Attitudes of Pre-Health Professional and Engineering Students in Introductory Physics Courses

    Science.gov (United States)

    McKinney, Meghan

    2015-04-01

    This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.

  18. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  19. Introductory Physics Experiments Using the Wii Balance Board

    Science.gov (United States)

    Starr, Julian; Sobczak, Robert; Iqbal, Zohaib; Ochoa, Romulo

    2010-02-01

    The Wii, a video game console by Nintendo, utilizes several different controllers, such as the Wii remote (Wiimote) and the balance board, for game-playing. The balance board was introduced in early 2008. It contains four strain gauges and has Bluetooth connectivity at a relatively low price. Thanks to available open source code, such as GlovePie, any PC with Bluetooth capability can detect the information sent out by the balance board. Based on the ease with which the forces measured by each strain gauge can be obtained, we have designed several experiments for introductory physics courses that make use of this device. We present experiments to measure the forces generated when students lift their arms with and without added weights, distribution of forces on an extended object when weights are repositioned, and other normal forces cases. The results of our experiments are compared with those predicted by Newtonian mechanics. )

  20. Software for physics of tau lepton decay in LHC experiments

    CERN Document Server

    Przedzinski, Tomasz

    2010-01-01

    Software development in high energy physics experiments offers unique experience with rapidly changing environment and variety of different standards and frameworks that software must be adapted to. As such, regular methods of software development are hard to use as they do not take into account how greatly some of these changes influence the whole structure. The following thesis summarizes development of TAUOLA C++ Interface introducing tau decays to new event record standard. Documentation of the program is already published. That is why it is not recalled here again. We focus on the development cycle and methodology used in the project, starting from the definition of the expectations through planning and designing the abstract model and concluding with the implementation. In the last part of the paper we present installation of the software within different experiments surrounding Large Hadron Collider and the problems that emerged during this process.

  1. Educational reactor-physics experiments with the critical assembly TCA

    International Nuclear Information System (INIS)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki; Horiki, Oichiro; Suzaki, Takenori.

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for 1) Critical approach and Exponential experiment, 2) Measurement of neutron flux distribution, 3) Measurement of power distribution, 4) Measurement of fuel rod worth distribution, and 5) Measurement of safety plate worth by the rod drop method. (author)

  2. In-Service Physical Educators' Experiences of Online Adapted Physical Education Endorsement Courses.

    Science.gov (United States)

    Sato, Takahiro; Haegele, Justin A; Foot, Rachel

    2017-04-01

    The purpose of this study was to investigate in-service physical education (PE) teachers' experiences during online adapted physical education (APE) graduate courses. Based on andragogy theory (adult learning theory) we employed a descriptive qualitative methodology using an explanatory case study design. The participants (6 female and 3 male) were in-service PE teachers enrolled in an online graduate APE endorsement program. Data collection included journal reflection reports and face-to-face interviews. A constant comparative method was used to interpret the data. Three interrelated themes emerged from the participants' narratives. The first theme, instructor communication, exposes the advantages and disadvantages the participants perceived regarding communication while enrolled in the online APE graduate courses. The second theme, bulletin board discussion experiences, described participants' perceptions of the use of the bulletin board discussion forum. Lastly, the final theme, assessment experiences, described how the participants learned knowledge and skills through online courses related to assessment and evaluation.

  3. Physical and Virtual Laboratories in Science and Engineering Education: review

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.; Linn, Marcia C.; Zacharia, Zacharias C.

    2013-01-01

    The world needs young people who are skillful in and enthusiastic about science and who view science as their future career field. Ensuring that we will have such young people requires initiatives that engage students in interesting and motivating science experiences. Today, students can investigate

  4. Computer networks for remote laboratories in physics and engineering

    Science.gov (United States)

    Starks, Scott; Elizandro, David; Leiner, Barry M.; Wiskerchen, Michael

    1988-01-01

    This paper addresses a relatively new approach to scientific research, telescience, which is the conduct of scientific operations in locations remote from the site of central experimental activity. A testbed based on the concepts of telescience is being developed to ultimately enable scientific researchers on earth to conduct experiments onboard the Space Station. This system along with background materials are discussed.

  5. Distribution theory with applications in engineering and physics

    CERN Document Server

    Teodorescu, Petre P; Toma, Antonela

    2013-01-01

    In this comprehensive monograph, the authors apply modern mathematical methods to the study of mechanical and physical phenomena or techniques in acoustics, optics, and electrostatics, where classical mathematical tools fail.They present a general method of approaching problems, pointing out different aspects and difficulties that may occur. With respect to the theory of distributions, only the results and the principle theorems are given as well as some mathematical results. The book also systematically deals with a large number of applications to problems of general Newtonian mechanics,

  6. An Introduction to Tensors for Students of Physics and Engineering

    Science.gov (United States)

    Kolecki, Joseph C.

    2002-01-01

    Tensor analysis is the type of subject that can make even the best of students shudder. My own post-graduate instructor in the subject took away much of the fear by speaking of an implicit rhythm in the peculiar notation traditionally used, and helped us to see how this rhythm plays its way throughout the various formalisms. Prior to taking that class, I had spent many years "playing" on my own with tensors. I found the going to be tremendously difficult but was able, over time, to back out some physical and geometrical considerations that helped to make the subject a little more transparent. Today, it is sometimes hard not to think in terms of tensors and their associated concepts. This article, prompted and greatly enhanced by Marlos Jacob, whom I've met only by e-mail, is an attempt to record those early notions concerning tensors. It is intended to serve as a bridge from the point where most undergraduate students "leave off" in their studies of mathematics to the place where most texts on tensor analysis begin. A basic knowledge of vectors, matrices, and physics is assumed. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and higher vector products. The reader must be prepared to do some mathematics and to think. For those students who wish to go beyond this humble start, I can only recommend my professor's wisdom: find the rhythm in the mathematics and you will fare pretty well.

  7. Compendium of quantum physics. Concepts, experiments, history and philosophy

    International Nuclear Information System (INIS)

    Greenberger, Daniel; Hentschel, Klaus; Weinert, Friedel

    2009-01-01

    With contributions by many of today's leading quantum physicists, philosophers and historians, including three Nobel laureates, this comprehensive A to Z of quantum physics provides a lucid understanding of the key concepts of quantum theory and experiment. It covers technical and interpretational aspects alike, and includes both traditional topics and newer areas such as quantum information and its relatives. The central concepts that have shaped contemporary understanding of the quantum world are clearly defined, with illustrations where helpful, and discussed at a level suitable for undergraduate and graduate students of physics, history of science, and philosophy of physics. All articles share three main aims: (1) to provide a clear definition and understanding of the term concerned; (2) where possible, to trace the historical origins of the concept; and (3) to provide a small but optimal selection of references to the most relevant literature, including pertinent historical studies. Also discussed are the often contentious philosophical implications derived from quantum theory and its associated experimental findings. This compendium will be an indispensable resource for all those seeking concise up-to-date information about the many facets of quantum physics. (orig.)

  8. Alvar engine. An engine with variable compression ratio. Experiments and tests

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Olof

    1998-09-01

    This report is focused on tests with Variable Compression Ratio (VCR) engines, according to the Alvar engine principle. Variable compression ratio means an engine design where it is possible to change the nominal compression ratio. The purpose is to increase the fuel efficiency at part load by increasing the compression ratio. At maximum load, and maybe supercharging with for example turbocharger, it is not possible to keep a high compression ratio because of the knock phenomena. Knock is a shock wave caused by self-ignition of the fuel-air mix. If knock occurs, the engine will be exposed to a destructive load. Because of the reasons mentioned it would be an advantage if it would be possible to change the compression ratio continuously when the load changes. The Alvar engine provides a solution for variable compression ratio based on well-known engine components. This paper provides information about efficiency and emission characteristics from tests with two Alvar engines. Results from tests with a phase shift mechanism (for automatic compression ratio control) for the Alvar engine are also reviewed Examination paper. 5 refs, 23 figs, 2 tabs, 5 appendices

  9. Introducing systems engineering to industrial design engineering students with hands-on experience

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Lutters-Weustink, Ilanit F.; van Houten, Frederikus J.A.M.; Selvaraj, H.; Muthukumar, V.

    2005-01-01

    The article presents an innovative educational project to introduce systems engineering to third year students in industrial design engineering at the University of Twente. In a short period the students are confronted with new technology, namely sensors and actuators. They have to apply this

  10. An Experiment in Integrating an Engineering Communication Toolkit into the Industrial Engineering Curriculum

    Science.gov (United States)

    2011-01-31

    A recent survey on the working habits of professional engineers found that nearly 2/3 of their day is spent communicating with others, while only 1/3 is spent on tasks commonly associated with engineering (Sageev & Romanowski, 2001). Whether it is fa...

  11. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2013-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly), which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed Illustrations and links to reference material online help further comprehension. The

  12. COMPUTER-BASED SYSTEMS OF PHYSICAL EXPERIMENT IN INDEPENDENT WORK OF STUDENTS OF TECHNICAL UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Iryna Slipukhina

    2016-11-01

    Full Text Available Purpose: The self-study activity of students is an important form of educational process under the conditions of rapid changes of technologies. Ability and readiness of future engineers for independent education is one of their key competences. Investigation of modern methods of planning, organization and control of independent cognitive activity of students while studying physics as effective means of complex forming of their professional qualities is the object of the research. Methods: We analyse the curricula of some engineering specialities in leading technical universities, existent methods and forms of organization of students’ self-study, and own pedagogical experience. Results: Based on the theoretical analysis of existing methods of students’ self-study, it was found that a systematizing factor of appropriate educational technology is the problem focused cognitive tasks. They have to be implemented by application of the modern technological devices integrated with a computer-based experiment. We define the aim of individual or group laboratory works; the necessary theoretical and practical knowledge and skills of students are rationalized; timing and form of presentation of the results are clarified after individual and group consulting. The details of preparatory, searching-organizational, operational, and control stages in organization of students’ self-study with the use of computer oriented physical experiment are specified, these details differ depending on the didactic purpose, form of organization and students’ individuality. Discussion: The research theoretical aspect confirms the determining role of subject-subject cooperation in forming of competences of independent learning of the future engineers. Basic practical achievements of the research consist of improving methods of using of digital learning systems, creation of textbooks that promote consultative and guiding role for the educational process, working-out of

  13. Tokamak Physics Experiment (TPX) power supply design and development

    International Nuclear Information System (INIS)

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-01-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes

  14. Unpacking Gender Differences in Students' Perceived Experiences in Introductory Physics

    Science.gov (United States)

    Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.

    2009-11-01

    Prior research has shown, at our institution: 1) males outperform females on conceptual assessments (a gender gap), 2) the gender gap persists despite the use of research-based reforms, and 3) the gender gap is correlated with students' physics and mathematics background and prior attitudes and beliefs [Kost, et al. PRST-PER, 5, 010101]. Our follow-up work begins to explore how males and females experience the introductory course differently and how these differences relate to the gender gap. We gave a survey to students in the introductory course in which we investigated students' physics identity and self-efficacy. We find there are significant gender differences in each of these three areas, and further find that these measures are weakly correlated with student conceptual performance, and moderately correlated with course grade.

  15. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  16. Software Engineering Researchers' Attitudes on Case Studies and Experiments: an Exploratory Survey

    OpenAIRE

    Tofan, Dan; Galster, Matthias; Avgeriou, Paris; Weyns, Danny

    2011-01-01

    Background: Case studies and experiments are research methods frequently applied in empirical software engineering. Experiments are well-­understood and their value as an empirical method is recognized. On the other hand, there seem to be different opinions on what constitutes a case study, and about the value of case studies as a thorough research method. Aim: We aim at exploring the attitudes of software engineering researchers on case studies and experiments. Furthermore, we investigate ho...

  17. Negative Experiences in Physical Education and Sport: How Much Do They Affect Physical Activity Participation Later in Life?

    Science.gov (United States)

    Cardinal, Bradley J.; Yan, Zi; Cardinal, Marita K.

    2013-01-01

    People's feelings toward physical activity are often influenced by memories of their childhood experiences in physical education and sport. Unfortunately, many adults remember negative experiences, which may affect their desire to maintain a physically active lifestyle. A survey that asked 293 students about recollections from their childhood…

  18. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; /SUNY, Albany /Alberta U. /Ankara U. /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington /Athens U. /Natl. Tech. U., Athens /Baku, Inst. Phys. /Barcelona, IFAE /Belgrade U. /VINCA Inst. Nucl. Sci., Belgrade /Bergen U. /LBL, Berkeley /Humboldt U., Berlin /Bern U., LHEP /Birmingham U. /Bogazici U. /INFN, Bologna /Bologna U.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. In this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of

  19. International Reactor Physics Experiment Evaluation (IRPhE) Project

    International Nuclear Information System (INIS)

    2013-01-01

    The International Reactor Physics Experiment Evaluation (IRPhE) Project aims to provide the nuclear community with qualified benchmark data sets by collecting reactor physics experimental data from nuclear facilities, worldwide. More specifically the objectives of the expert group are as follows: - maintaining an inventory of the experiments that have been carried out and documented; - archiving the primary documents and data released in computer-readable form; - promoting the use of the format and methods developed and seek to have them adopted as a standard. For those experiments where interest and priority is expressed by member countries or working parties and executive groups within the NEA provide guidance or co-ordination in: - compiling experiments into a standard international agreed format; - verifying the data, to the extent possible, by reviewing original and subsequently revised documentation, and by consulting with the experimenters or individuals who are familiar with the experimenters or the experimental facility; - analysing and interpreting the experiments with current state-of-the-art methods; - publishing electronically the benchmark evaluations. The expert group will: - identify gaps in data and provide guidance on priorities for future experiments; - involve the young generation (Masters and PhD students and young researchers) to find an effective way of transferring know-how in experimental techniques and analysis methods; - provide a tool for improved exploitation of completed experiments for Generation IV reactors; - coordinate closely its work with other NSC experimental work groups in particular the International Criticality Safety Benchmark Evaluation Project (ICSBEP), the Shielding Integral Benchmark Experiment Data Base (SINBAD) and others, e.g. knowledge preservation in fast reactors of the IAEA, the ANS Joint Benchmark Activities; - keep a close link with the working parties on scientific issues of reactor systems (WPRS), the expert

  20. Integrated Tokamak modeling: When physics informs engineering and research planning

    Science.gov (United States)

    Poli, Francesca Maria

    2018-05-01

    Modeling tokamaks enables a deeper understanding of how to run and control our experiments and how to design stable and reliable reactors. We model tokamaks to understand the nonlinear dynamics of plasmas embedded in magnetic fields and contained by finite size, conducting structures, and the interplay between turbulence, magneto-hydrodynamic instabilities, and wave propagation. This tutorial guides through the components of a tokamak simulator, highlighting how high-fidelity simulations can guide the development of reduced models that can be used to understand how the dynamics at a small scale and short time scales affects macroscopic transport and global stability of plasmas. It discusses the important role that reduced models have in the modeling of an entire plasma discharge from startup to termination, the limits of these models, and how they can be improved. It discusses the important role that efficient workflows have in the coupling between codes, in the validation of models against experiments and in the verification of theoretical models. Finally, it reviews the status of integrated modeling and addresses the gaps and needs towards predictions of future devices and fusion reactors.

  1. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  2. USING INTERNET-RESOURCES FOR SCHOOL PHYSICS EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Nina P. Dementievska

    2012-06-01

    Full Text Available Using virtual computer simulation of physics processes and phenomena is becoming increasingly popular among teachers of science around the world. Such simulation for school experiment has several advantages, but teaching needs improvement of methodology for using in modern school. In order to computer simulations were successful in education it requires compliance with a number of conditions. Educators around the world collaborate on the web site Phet (http://phet.colorado.edu/, which provides science-based and effective computer simulations for studying the natural sciences in different languages, as well as the methodology for use in secondary school.

  3. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR

  4. The lived experiences of being physically active when morbidly obese

    DEFF Research Database (Denmark)

    Toft, Bente Skovsby; Uhrenfeldt, Lisbeth

    2015-01-01

    The aim is to identify facilitators and barriers for physical activity (PA) experienced by morbidly obese adults in the Western world. Inactivity and a sedentary lifestyle have become a major challenge for health and well-being, particularly among persons with morbid obesity. Lifestyle changes may...... lead to long-term changes in activity level, if facilitators and barriers are approached in a holistic way by professionals. To develop lifestyle interventions, the perspective and experiences of this group of patients are essential for success. The methodology of the systematic review followed...... active....

  5. A Summer Research Experience in Particle Physics Using Skype

    Science.gov (United States)

    Johnston, Curran; Alexander, Steven; Mahmood, A. K.

    2012-10-01

    This last summer I did research in particle physics as part of a ``remote REU.'' This poster will describe that experience and the results of my project which was to experimentally verify the mass ranges of the Z' boson. Data from the LHC's Atlas detector was filtered by computers to select for likely Z boson decays; my work was in noting all instances of Z or Z' boson decays in one thousand events and their masses, separating the Z from Z' bosons, and generating histograms of the masses.

  6. Female peer mentors early in college increase women's positive academic experiences and retention in engineering.

    Science.gov (United States)

    Dennehy, Tara C; Dasgupta, Nilanjana

    2017-06-06

    Scientific and engineering innovation is vital for American competitiveness, quality of life, and national security. However, too few American students, especially women, pursue these fields. Although this problem has attracted enormous attention, rigorously tested interventions outside artificial laboratory settings are quite rare. To address this gap, we conducted a longitudinal field experiment investigating the effect of peer mentoring on women's experiences and retention in engineering during college transition, assessing its impact for 1 y while mentoring was active, and an additional 1 y after mentoring had ended. Incoming women engineering students ( n = 150) were randomly assigned to female or male peer mentors or no mentors for 1 y. Their experiences were assessed multiple times during the intervention year and 1-y postintervention. Female (but not male) mentors protected women's belonging in engineering, self-efficacy, motivation, retention in engineering majors, and postcollege engineering aspirations. Counter to common assumptions, better engineering grades were not associated with more retention or career aspirations in engineering in the first year of college. Notably, increased belonging and self-efficacy were significantly associated with more retention and career aspirations. The benefits of peer mentoring endured long after the intervention had ended, inoculating women for the first 2 y of college-the window of greatest attrition from science, technology, engineering, and mathematics (STEM) majors. Thus, same-gender peer mentoring for a short period during developmental transition points promotes women's success and retention in engineering, yielding dividends over time.

  7. Alpha particle physics experiments in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Zweben, S.J.; Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.

    2000-01-01

    Alpha particle physics experiments were done on TFTR during its DT run from 1993 to 1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single particle confinement model in MHD quiescent discharges. The alpha loss due to toroidal field ripple was identified in some cases, and the low radial diffusivity inferred for high energy alphas was consistent with orbit averaging over small scale turbulence. Finally, the observed alpha particle interactions with sawteeth, toroidal Alfven eigenmodes and ICRF waves were approximately consistent with theoretical modelling. What was learned is reviewed and what remains to be understood is identified. (author)

  8. An unfolding method for high energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    2002-06-01

    Finite detector resolution and limited acceptance require one to apply unfolding methods in high energy physics experiments. Information on the detector resolution is usually given by a set of Monte Carlo events. Based on the experience with a widely used unfolding program (RUN) a modified method has been developed. The first step of the method is a maximum likelihood fit of the Monte Carlo distributions to the measured distribution in one, two or three dimensions; the finite statistics of the Monte Carlo events is taken into account by the use of Barlow's method with a new method of solution. A clustering method is used before combining bins in sparsely populated areas. In the second step a regularization is applied to the solution, which introduces only a small bias. The regularization parameter is determined from the data after a diagonalization and rotation procedure. (orig.)

  9. Controlled damping of a physical pendulum: experiments near critical conditions

    International Nuclear Information System (INIS)

    Gonzalez, Manuel I; Bol, Alfredo

    2006-01-01

    This paper presents an experimental device for the study of damped oscillatory motion along with three associated experiments. Special emphasis is given on both didactic aspects and the interactivity of the experimental set-up, in order to assist students in understanding fundamental aspects of damped oscillatory motion and allow them to directly compare their experimental results with the well-known theory they can find in textbooks. With this in mind, a physical pendulum was selected with an eddy-current damping system that allows the damping conditions to be controlled with great precision. The three experiments examine accurate control of damping, frequency shift near critical damping and the transition from underdamped to overdamped conditions

  10. Utilizing HPC Network Technologies in High Energy Physics Experiments

    CERN Document Server

    AUTHOR|(CDS)2088631; The ATLAS collaboration

    2017-01-01

    Because of their performance characteristics high-performance fabrics like Infiniband or OmniPath are interesting technologies for many local area network applications, including data acquisition systems for high-energy physics experiments like the ATLAS experiment at CERN. This paper analyzes existing APIs for high-performance fabrics and evaluates their suitability for data acquisition systems in terms of performance and domain applicability. The study finds that existing software APIs for high-performance interconnects are focused on applications in high-performance computing with specific workloads and are not compatible with the requirements of data acquisition systems. To evaluate the use of high-performance interconnects in data acquisition systems a custom library, NetIO, is presented and compared against existing technologies. NetIO has a message queue-like interface which matches the ATLAS use case better than traditional HPC APIs like MPI. The architecture of NetIO is based on a interchangeable bac...

  11. International conference on the performance of engineered barriers. Physical and chemical properties, behaviour and evolution. Short abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Schaefers, Annika; Fahland, Sandra (eds.)

    2014-08-01

    The volume includes the abstracts of the papers presented at the international conference on the performance of engineered barrier systems, their physical and chemical properties, behavior and evolution. The papers cover the topics bentonite buffers, radioactive waste repository safety, geophysical and geochemical property monitoring, repository sealing materials, thermo-hydro-mechanical characterization, gas injection tests, hydration and heating tests, clay-iron interaction experiments, water retention behavior, thermal stability of materials, numerical modeling studies, long-term simulations, thermo-hydrologic phenomena, uncertainty and sensitivity studies, probabilistic assessments, preliminary safety analyses of Gorleben.

  12. Biomaterials — where biology, physics, chemistry, engineering and medicine meet

    Science.gov (United States)

    Hing, K. A.

    2008-03-01

    The success or failure of an implant material in the body depends on a complex interaction between a synthetic 'foreign body' and the 'host tissue'. These interactions occur at many levels from the sub-microscopic level, where subtle changes in the surface physio-chemistry can substantially alter the nature of the biomaterial-host tissue interface, through the microscopical level (e.g. sensitivity to surface topography) to the macrostructural level (e.g. dependence on scaffold porosity). Thus the factors that control these responses are not only biologically determined but also mechanically, physically and chemically mediated, although identifying where one starts and the other finishes can be difficult. Design of a successful medical device has therefore to call on expertise within a wide range of disciplines. In terms of both investigating the basic science behind the factors which orchestrate a biological response and developing research tools that enable study of these responses. However, a medical device must also meet the economic and practical demands of health care professionals who will ultimately be using it in the clinic. Bone graft substitute materials are used in orthopaedics as an alternative or adjunct to autografting, a practice where the patient 'donates' bone from a healthy site to aid bone repair at a damaged or diseased site. These materials are used in a wide range of procedures from total hip revision to spinal fusion and their evolution over the last 10 years illustrates how an interdisciplinary approach has benefited their development and may lead to further innovation in the future.

  13. MANAGING CONFLICT IN ENGINEERING PROJECTS: NEW ZEALAND EXPERIENCES

    Directory of Open Access Journals (Sweden)

    Nicola Naismith

    2016-07-01

    Full Text Available There is a wealth of knowledge concerning conflict management and its resolution in the workplace, however there is a dearth of information relating to conflict management and its resolution in engineering project management. This paper set out to examine the reality of conflict management in engineering project management in New Zealand. This was achieved through a review of credible literature sources and the completion of a pilot study to gain subject matter expert perspectives. The research suggests that conflicts can be destructive, resulting in anxiety and strong emotional responses leading to reflexive reactions including avoidance, aggression, fight, hostility and a breakdown in communications and relationships. Findings indicate that managing a project structure is synonymous with handling conflict and these disagreements can be detrimental to the success of a project. The initial results suggest that a number of factors act as drivers of conflict in engineering projects in New Zealand. These drivers are: power, personality, group dynamics and organisation culture. The conflict resolution tools cited as being widely used for engineering projects are collaboration and negotiation. The paper also offers recommendations for future research.

  14. Cell Formation in Industrial Engineering : Theory, Algorithms and Experiments

    NARCIS (Netherlands)

    Goldengorin, B.; Krushynskyi, D.; Pardalos, P.M.

    2013-01-01

    This book focuses on a development of optimal, flexible, and efficient models and algorithms for cell formation in group technology. Its main aim is to provide a reliable tool that can be used by managers and engineers to design manufacturing cells based on their own preferences and constraints

  15. Recent Efforts and Experiments in the Construction of Aviation Engines

    Science.gov (United States)

    SCHWAGER

    1920-01-01

    It became evident during World War I that ever-increasing demands were being placed on the mean power of aircraft engines as a result of the increased on board equipment and the demands of aerial combat. The need was for increased climbing efficiency and climbing speed. The response to these demands has been in terms of lightweight construction and the adaptation of the aircraft engine to the requirements of its use. Discussed here are specific efforts to increase flying efficiency, such as reduction of the number of revolutions of the propeller from 1400 to about 900 r.p.m. through the use of a reduction gear, increasing piston velocity, locating two crankshafts in one gear box, and using the two-cycle stroke. Also discussed are improvements in the transformation of fuel energy into engine power, the raising of compression ratios, the use of super-compression with carburetors constructed for high altitudes, the use of turbo-compressors, rotary engines, and the use of variable pitch propellers.

  16. Contracting for engineering services: Experience with innovative fee arrangements

    International Nuclear Information System (INIS)

    Criner, D.E.; Schenk, J.L.

    1995-01-01

    The relationship between an engineering firm and a client can be favorably influenced by a clearly defined incentive plan. This paper addresses several approaches and the advantages and disadvantages of each. It also summarizes the lessons learned to date in using incentive fee arrangements

  17. ATS-6 engineering performance report. Volume 4: Television experiments

    Science.gov (United States)

    Wales, R. O. (Editor)

    1981-01-01

    Experiments sponsored by the US Department of Health Education and Welfare are discussed, including telecommunications, Alaskan health service, Appalachian education satellite project, and the University of the West Indies. The Satellite Instructional Television Experiment in India is reviewed. Independent television experiments are addressed, including AIDSAT and Project Look Up.

  18. First-Hand Experience with Engineering Design and Career Interest in Engineering: An Informal STEM Education Case Study

    Science.gov (United States)

    Ayar, Mehmet C.

    2015-01-01

    The purpose of this study is to present students' experiences, interest in engineering, and personal narratives while participating in a robotics summer camp in a metropolitan city in Turkey. In this study, I used qualitative data collection methods such as interviews, field notes, and observations. I used the four principles of Engle and Conant…

  19. Software engineering knowledge at your fingertips: Experiences with a software engineering-portal

    OpenAIRE

    Punter, T.; Kalmar, R.

    2003-01-01

    In order to keep up the pace with technology development, knowledge on Software Engineering (SE) methods, techniques, and tools is required. For an effective and efficient knowledge transfer, especially Small and Medium-sized Enterprises (SMEs) might benefit from Software Engineering Portals (SE-Portals). This paper provides an analysis of SE-Portals by distinguishing two types: 1) the Knowledge Portal and 2) the Knowledge & Community Portal. On behalf of the analysis we conclude that most SE...

  20. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.