WorldWideScience

Sample records for engineering model society

  1. Korean society of mechanical engineers 60 years

    International Nuclear Information System (INIS)

    2005-12-01

    This book introduces 60 years of Korean society of mechanical engineers with birth, foundation, development process, change of enforcement regulation and articles of association, important data of this association, 60 years of parts, committee and branch, business of association like academic event, publication, technical development business, supporting research centers, bond Korean society of mechanical engineers and mechanical industry and development of related organizations, development for industrial fields and development direction of Korean society of mechanical engineers.

  2. ABOUT THE ROMANIAN SOCIETY FOR ENGINEERING GRAPHICS

    Directory of Open Access Journals (Sweden)

    SIMION Ionel

    2015-06-01

    Full Text Available SORGING is a non-profit, non-governmental society, opened to all professionals interested in Engineering Graphics and Design. It aims to promote the research, development and innovation activities, together with the dissemination of best practices and assistance for educational purposes. In this paper the research and educational activities of the Romanian Society for Engineering Graphics will be briefly reviewed.

  3. Biomedical engineering and society: policy and ethics.

    Science.gov (United States)

    Flexman, J A; Lazareck, L

    2007-01-01

    Biomedical engineering impacts health care and contributes to fundamental knowledge in medicine and biology. Policy, such as through regulation and research funding, has the potential to dramatically affect biomedical engineering research and commercialization. New developments, in turn, may affect society in new ways. The intersection of biomedical engineering and society and related policy issues must be discussed between scientists and engineers, policy-makers and the public. As a student, there are many ways to become engaged in the issues surrounding science and technology policy. At the University of Washington in Seattle, the Forum on Science Ethics and Policy (FOSEP, www.fosep.org) was started by graduate students and post-doctoral fellows interested in improving the dialogue between scientists, policymakers and the public and has received support from upper-level administration. This is just one example of how students can start thinking about science policy and ethics early in their careers.

  4. Teaching science, technology, and society to engineering students: a sixteen year journey.

    Science.gov (United States)

    Ozaktas, Haldun M

    2013-12-01

    The course Science, Technology, and Society is taken by about 500 engineering students each year at Bilkent University, Ankara. Aiming to complement the highly technical engineering programs, it deals with the ethical, social, cultural, political, economic, legal, environment and sustainability, health and safety, reliability dimensions of science, technology, and engineering in a multidisciplinary fashion. The teaching philosophy and experiences of the instructor are reviewed. Community research projects have been an important feature of the course. Analysis of teaching style based on a multi-dimensional model is given. Results of outcome measurements performed for ABET assessment are provided. Challenges and solutions related to teaching a large class are discussed.

  5. 78 FR 26375 - Food and Drug Administration/International Society for Pharmaceutical Engineering Co-Sponsorship...

    Science.gov (United States)

    2013-05-06

    ...] Food and Drug Administration/International Society for Pharmaceutical Engineering Co-Sponsorship... Society of Pharmaceutical Engineering (ISPE), is announcing a conference entitled ``Redefining the `C' in CGMP: Creating, Implementing and Sustaining a Culture of Quality'' Pharmaceutical Quality System (ICH...

  6. Engineering Good: How Engineering Metaphors Help us to Understand the Moral Life and Change Society

    Science.gov (United States)

    2009-01-01

    Engineering can learn from ethics, but ethics can also learn from engineering. In this paper, I discuss what engineering metaphors can teach us about practical philosophy. Using metaphors such as calculation, performance, and open source, I articulate two opposing views of morality and politics: one that relies on images related to engineering as science and one that draws on images of engineering practice. I argue that the latter view and its metaphors provide a more adequate way to understand and guide the moral life. Responding to two problems of alienation and taking into account developments such as Fab Lab I then further explore the implications of this view for engineering and society. PMID:19722107

  7. The Nigerian Society of Engineers (Electrical Division). National Workshop on Energy Conservation in Buildings. Proceedings

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-03-01

    This is a combined proceedings of the two national workshops held in Abuja and Lagos, by the Electrical Division of the Nigerian Society of Engineers. We wish to thank the Nigerian Society of Engineers for making available this document

  8. Computational modeling for eco engineering: Making the connections between engineering and ecology (Invited)

    Science.gov (United States)

    Bowles, C.

    2013-12-01

    Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of

  9. Tsunamis: bridging science, engineering and society.

    Science.gov (United States)

    Kânoğlu, U; Titov, V; Bernard, E; Synolakis, C

    2015-10-28

    Tsunamis are high-impact, long-duration disasters that in most cases allow for only minutes of warning before impact. Since the 2004 Boxing Day tsunami, there have been significant advancements in warning methodology, pre-disaster preparedness and basic understanding of related phenomena. Yet, the trail of destruction of the 2011 Japan tsunami, broadcast live to a stunned world audience, underscored the difficulties of implementing advances in applied hazard mitigation. We describe state of the art methodologies, standards for warnings and summarize recent advances in basic understanding, and identify cross-disciplinary challenges. The stage is set to bridge science, engineering and society to help build up coastal resilience and reduce losses. © 2015 The Author(s).

  10. Service Modeling for Service Engineering

    Science.gov (United States)

    Shimomura, Yoshiki; Tomiyama, Tetsuo

    Intensification of service and knowledge contents within product life cycles is considered crucial for dematerialization, in particular, to design optimal product-service systems from the viewpoint of environmentally conscious design and manufacturing in advanced post industrial societies. In addition to the environmental limitations, we are facing social limitations which include limitations of markets to accept increasing numbers of mass-produced artifacts and such environmental and social limitations are restraining economic growth. To attack and remove these problems, we need to reconsider the current mass production paradigm and to make products have more added values largely from knowledge and service contents to compensate volume reduction under the concept of dematerialization. Namely, dematerialization of products needs to enrich service contents. However, service was mainly discussed within marketing and has been mostly neglected within traditional engineering. Therefore, we need new engineering methods to look at services, rather than just functions, called "Service Engineering." To establish service engineering, this paper proposes a modeling technique of service.

  11. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  12. A nuclear engineer's ethical responsibility to society

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1989-01-01

    Chernobyl notwithstanding, this paper seeks to illustrate why, on numerous fronts, nuclear technology provides the safest, cleanest and most effective method of base-load power generation. In particular it seeks to demonstrate that, despite the strident rhetoric and media exposure given to the anti-nuclear lobby, the technology is fundamental to the quality of life and the equitable sharing of energy by the year 2000. Therefore, the safety and technological superiority of the nuclear fuel cycle together with its high technology peripheral benefits both societal and fiscal are viewed as an ever increasing challenge and motivation which constitutes a major part of the nuclear engineer's ethical responsibility to society

  13. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991

    International Nuclear Information System (INIS)

    Tiwari, S.N.

    1991-09-01

    In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spent 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. The objects were the following: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA center

  14. Towards an ontological model defining the social engineering domain

    CSIR Research Space (South Africa)

    Mouton, F

    2014-08-01

    Full Text Available -1 ICT and Society IFIP Advances in Information and Communication Technology Volume 431, 2014, pp 266- 279 Towards an Ontological Model Defining the Social Engineering Domain Francois Mouton 1 , Louise Leenen 1 , Mercia M. Malan 2 , and H...

  15. Y2K of the society of chemical engineers, Japan; Kagaku kogakukai no 2000nen mondai

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, K. [Kobe University, Kobe (Japan)

    2000-01-05

    In this paper, the coming problem of the Y2K problems by the cataclysm of economic society that the Society of Chemical Engineers holds is described. And it is explained in dividing into the present problems for the development of the Society of Chemical Engineers, a science and technology promotion policy, a university/industry cooperation, a regional cooperation, an internationality and international contribution, an effect of an independent administrative corporation of national universities, the movement of a future plan, the terms of member needs and a base establishment. In the paragraph of the movement of a future plan, the facts that a basic philosophy of the Society of Chemical Engineers was suggested standing on the report of the Vision Settlement Preparation Committee organized in 1998, the Chemical Industry Vision 2011 Settlement Committee was inaugurated for constituting its future images and the Working Group composed of the members of the Industry Institute in their forties leading the next generation was established is introduced. (NEDO)

  16. Visions for change - the role of the industrial engineer in a changing society

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the sixth national conference of the South African Institute of Industrial Engineers are presented. The theme of the conference was V isions for change - the role of the industrial engineer in a changing society . Two of the papers presented have been indexed separately for INIS. The remaining papers were considered outside the INIS subject scope

  17. The Model of Formation of Professional Competence of Future Software Engineers

    Directory of Open Access Journals (Sweden)

    Viktor Sedov

    2016-05-01

    Full Text Available The rapid technological development of modern society fundamentally changes processes of production, communication and services. There is a great demand for specialists who are competent in recently emerged industries. Moreover, the gap between scientific invention and its wide distribution and consumption has significantly reduced. Therefore, we face an urgent need for preparation of specialists in higher education that meet the requirements of modern society and labour market. Particularly relevant is the issue of training of future software engineers in the system of master’s degree, which is the level of education that trains not only professionals, but also scientists and university teachers. The article presents a developed model of formation of professional competence of future software engineers in the system of master’s degree. The model comprises units of training of future software engineers, identifies methodological approaches, a number of general didactic and methodological principles that underpin learning processes in higher education. It describes methods, forms of organization and means that are used in the system of master’s degree, and also provides pedagogical conditions of effective implementation of the model. The developed model addresses the issue of individualization, intensification and optimization of studying. While developing the model, special attention was paid to updating the content of education and searching for new organizational forms of training of future software engineers.

  18. Metabolic engineering tools in model cyanobacteria.

    Science.gov (United States)

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Major challenges in engineering and its role in society

    Directory of Open Access Journals (Sweden)

    José Ismael Peña-Reyes

    2011-02-01

    Full Text Available Engineering has a long historical tradition; it began as a discipline in the sixteenth century and reached maturity during the twentieth century. However, the twenty-first century’s features strongly differentiate it from earlier times; when referring to this period, we speak of globalisation, knowledge society and national innovation systems. This is a period marked by contradictions. Technological developments and social and political changes have improved human beings’ quality of life. New technologies have provided the context for its opening decade: nanotechnology, microelectronics and nanoelectronics, photonics, materials science, biotechnology, information and communications technology, logistics, medical engineering and renewable and clean energy. Technologies feed each other and off each other, offering endless possibilities for development. This is a time where the doors of political democratisation, art and culture have opened; however, it is also a world facing political, financial and environmental crisis. Colombia, particularly, is a country encountering problems regarding its competitiveness, having crippling levels of corruption and impunity, problems related to education, health and infrastructure. Colombia needs more engineers who can contribute towards resolving complex problems. Such engineers must have had excellent technical and humanistic training; they must be creative, able to work as a team, have become leaders who can listen and communicate and help develop a world to ensure that humans and other living species on earth can flourish with a uniform, durable level regarding their quality of life. Work must thus be done on critical engineering education and the present work presents some characteristics concerning what these engineers training/education should be.

  20. Standards for transport and storage components established by The Atomic Energy Society of Japan and The Japan Society of Mechanical Engineers

    International Nuclear Information System (INIS)

    Hirose, M.; Aritomi, M.; Saegusa, T.; Hayashi, T.; Takeda, T.; Onishi, K.; Kawakami, K.

    2004-01-01

    Since June 1997 the standards/specifications and inspection/certification of various products in Japan have been reviewed by Ministries and Agencies, with the aim of reducing direct government intervention to a necessary minimum and creating a free and fair socio-economic system that is fully opened to the international community and based on the rules of self-responsibility and market principles. Reflecting this policy the administrative regulations which prescribe technical standards as specific requirements have been revised by degrees into performance prescriptions. Detailed provisions in ordinances and notices have been abolished gradually to utilize voluntary standards and rules. In the nuclear energy field voluntary standards are being developed to make up statutory performance requirements by the Atomic Energy Society of Japan (AESJ) and the Japan Society of Mechanical Engineers (JSME) together with other organizations such as the Japan Electric Association, the Thermal and Nuclear Power Engineering Society. These voluntary standards and rules by these organizations have been established in order to maintain openness, transparency, fairness, professionalism and promptness and to promote development and globalization

  1. Global environment action plant of Japan Society of Civil Engineers. ; Agenda 21 / Japan Society of Civil Engineers. Doboku gakkai chikyu kankyo kodo keikaku. ; Agenda 21 / doboku gakkai

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-15

    This paper explains the involvement of the global environment action plan of Japan Society of Civil Engineers, Agenda 21, with civil engineerings and global environmental problems, as well as the global environment action plan. Global environmental problems require handling the matters in three ways: identification and elucidation of events, effect analysis estimation, and alleviation, avoidance and prevention of the effect. Settlement and proliferation of civil engineering technologies transferred to developing countries demand indispensably understanding such features of the developing countries as social and economic conditions, natural conditions, climates, histories, races, and cultures. Realizing the sustainable development requires the followings: formation of civil engineerings that contribute to improving global environments; development of civil engineerings that make coexistence of human being and other living organisms possible; analyses of effects and mechanisms of global warming and weather change and the corresponding technique and system development; and development of techniques to build resource circulating type national land and cities. It is also essential to move forward positively structuring civil engineerings that contribute to solving such global environmental problems as acid rains and marine pollution, and technical development thereof; providing guidelines on execution of international civil engineering constructions, and technical development thereof; developing civil engineerings in developing countries and assisting training of people.

  2. Narrow-Minded Nerd or Indispensable Source of a Future-Proof Society? Engineering Students on their Profession

    DEFF Research Database (Denmark)

    Haase, Sanne Schioldann

    The unflattering notion “nerd” is often associated with the engineering profession. In this paper engineering descriptions made by future engineers are examined and a far more nuanced and positive understanding of the role of the engineer in a complex, future-oriented society is uncovered...... that the professional engineering identity is disappearing or defragmenting. This paper investigates engineering identity as future engineers describe it. In a nation-wide, webbased survey to a year group of engineering students at the end of their first year the students were asked to describe an engineer...

  3. Abstracts Book of 42. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1999-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important chemical forum of Polish chemists organised annually. The state of art of many fundamental and applied investigations have been presented and discussed. The following scientific sessions and microsymposia have been proposed: plenary session, analytical chemistry, inorganic chemistry, organic chemistry, chemistry and environment, chemistry and technology of polymers, chemistry didactics, electrochemistry, young scientists forum, chemical technology, chemical engineering, high energetics materials, computers in research and teaching of chemistry, structure modelling and polymer properties, silicon-organic compounds

  4. A Fuel-Sensitive Reduced-Order Model (ROM) for Piston Engine Scaling Analysis

    Science.gov (United States)

    2017-09-29

    of high Reynolds number nonreacting and reacting JP-8 sprays in a constant pressure flow vessel with a detailed chemistry approach . J Energy Resour...for rapid grid generation applied to in-cylinder diesel engine simulations. Society of Automotive Engineers ; 2007 Apr. SAE Technical Paper No.: 2007...ARL-TR-8172 ● Sep 2017 US Army Research Laboratory A Fuel-Sensitive Reduced-Order Model (ROM) for Piston Engine Scaling Analysis

  5. Nuclear power and modern society

    International Nuclear Information System (INIS)

    Komarek, A.

    1999-01-01

    A treatise consisting of the following sections: Development of modern society (Origin of modern society; Industrial society; The year 1968; Post-industrial society; Worldwide civic society); Historic breaks in the development of the stationary power sector (Stationary thermal power; Historic breaks in the development of nuclear power); Czech nuclear power engineering in the globalization era (Major causes of success of Czech nuclear power engineering; Future of Czech nuclear power engineering). (P.A.)

  6. Career Persistence Model for Female Engineers in the Indonesian Context

    Directory of Open Access Journals (Sweden)

    Lies Dahlia

    2017-08-01

    Full Text Available Extant studies about female engineers have suggested their career persistency in the engineering career is influenced by the workplace, which is characterized by male dominated culture making them feel marginalized. In Indonesia, similar studies for reference are limited. This paper is based on an exploratory quantitative study using a questionnaire developed based on the Career Persistence Model. This paper is based on an empirical exploratory quantitative study by adopting Buse’s et al. Career Persistence Model (2013. The intention is to contribute to the literature in the context of Indonesia. It explores the Indonesian cultural dimensions and investigates their relationship to the roles of women in family, society and the workplace, and how women manage to navigate barriers to avoid taking alternative career paths. Contrary to extant studies, findings show women feel equally treated to men in the workplace, however some work demands may hinder. The strong acknowledgement of one’s roles in this collective society outdoes the opinions that the Islamic jurisprudence (fiqh has marginalized empowerment of women, resulting in gender-based injustices and discrimination. Future studies should look into social supports at the workplace in an attempt to retain and increase the share of women in the engineering career in Indonesia.

  7. Introducing Model-Based System Engineering Transforming System Engineering through Model-Based Systems Engineering

    Science.gov (United States)

    2014-03-31

    Web  Presentation...Software  .....................................................  20   Figure  6.  Published   Web  Page  from  Data  Collection...the  term  Model  Based  Engineering  (MBE),  Model  Driven  Engineering  ( MDE ),  or  Model-­‐Based  Systems  

  8. Future Trends in Production Engineering : Proceedings of the First Conference of the German Academic Society for Production Engineering

    CERN Document Server

    Neugebauer, Reimund; Uhlmann, Eckart

    2013-01-01

    To meet and adapt to the current and future trends and issues in technology and society, the science committee of The German Academic Society for Production Engineering (WGP) continues to define future topics for production technology. These themes represent not only the key focus for the scientific work of the WGP, but also the central themes of the first annual conference in June 2011, whose paper is publically available in this volume. Such themes, including electric mobility, medical technology, lightweight construction, and resource efficiency, as well as mass production ability have all been identified as future, large-scale, and long-term drivers of change. Future trends influence changes sustainably and fundamentally; they permeate society, technology, economics, and value systems and have an effect in virtually all areas of life. The WGP has, as part of its research, established for itself the goal of not only observing these emerging changes, but also of supervising and influencing their development...

  9. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  10. Model Driven Engineering

    Science.gov (United States)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  11. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  12. Green IT engineering concepts, models, complex systems architectures

    CERN Document Server

    Kondratenko, Yuriy; Kacprzyk, Janusz

    2017-01-01

    This volume provides a comprehensive state of the art overview of a series of advanced trends and concepts that have recently been proposed in the area of green information technologies engineering as well as of design and development methodologies for models and complex systems architectures and their intelligent components. The contributions included in the volume have their roots in the authors’ presentations, and vivid discussions that have followed the presentations, at a series of workshop and seminars held within the international TEMPUS-project GreenCo project in United Kingdom, Italy, Portugal, Sweden and the Ukraine, during 2013-2015 and at the 1st - 5th Workshops on Green and Safe Computing (GreenSCom) held in Russia, Slovakia and the Ukraine. The book presents a systematic exposition of research on principles, models, components and complex systems and a description of industry- and society-oriented aspects of the green IT engineering. A chapter-oriented structure has been adopted for this book ...

  13. Reconstruction of nuclear science and engineering harmonized with human society

    International Nuclear Information System (INIS)

    2003-03-01

    At the beginning of the 21th century, the use of nuclear power has assumed very serious dimensions, because there are many problems not only safety technologies but also action of technical expert. The situation and problems of nuclear power are explained. It consists of six chapter as followings; introduction, history and R and D of nuclear power, paradigm change of nuclear science and engineering, energy science, investigation of micro world, how to research and development and education and training of special talent. The improvement plans and five proposals are stated as followings; 1) a scholar and engineer related to nuclear power have to understand ethics and build up closer connection with person in the various fields. 2) Nuclear power generation and nuclear fuel cycle are important in future, so that they have to be accepted by the society by means of opening to the public. Safety science, anti-pollution measurements, treatment and disposal of radioactive waste and development of new reactor and fusion reactor should be carried out. 3) It is necessary that the original researches of quantum beam and isotope have to step up. 4) The education of nuclear science and technology and upbringing special talent has to be reconstructed. New educational system such as 'nuclear engineering course crossing with many universities' is established. 5) Cooperation among industry, academic world and government. (S.Y.)

  14. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  15. Engine Modelling for Control Applications

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1997-01-01

    In earlier work published by the author and co-authors, a dynamic engine model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. In its newer form, it is easy to fit to many different engines and requires little...... engine data for this purpose. It is especially well suited to embedded model applications in engine controllers, such as nonlinear observer based air/fuel ratio and advanced idle speed control. After a brief review of this model, it will be compared with other similar models which can be found...

  16. Antibody Engineering & Therapeutics 2016: The Antibody Society's annual meeting, December 11-15, 2016, San Diego, CA.

    Science.gov (United States)

    Larrick, James W; Alfenito, Mark R; Scott, Jamie K; Parren, Paul W H I; Burton, Dennis R; Bradbury, Andrew R M; Lemere, Cynthia A; Messer, Anne; Huston, James S; Carter, Paul J; Veldman, Trudi; Chester, Kerry A; Schuurman, Janine; Adams, Gregory P; Reichert, Janice M

    Antibody Engineering & Therapeutics, the largest meeting devoted to antibody science and technology and the annual meeting of The Antibody Society, will be held in San Diego, CA on December 11-15, 2016. Each of 14 sessions will include six presentations by leading industry and academic experts. In this meeting preview, the session chairs discuss the relevance of their topics to current and future antibody therapeutics development. Session topics include bispecifics and designer polyclonal antibodies; antibodies for neurodegenerative diseases; the interface between passive and active immunotherapy; antibodies for non-cancer indications; novel antibody display, selection and screening technologies; novel checkpoint modulators / immuno-oncology; engineering antibodies for T-cell therapy; novel engineering strategies to enhance antibody functions; and the biological Impact of Fc receptor engagement. The meeting will open with keynote speakers Dennis R. Burton (The Scripps Research Institute), who will review progress toward a neutralizing antibody-based HIV vaccine; Olivera J. Finn, (University of Pittsburgh School of Medicine), who will discuss prophylactic cancer vaccines as a source of therapeutic antibodies; and Paul Richardson (Dana-Farber Cancer Institute), who will provide a clinical update on daratumumab for multiple myeloma. In a featured presentation, a representative of the World Health Organization's INN expert group will provide a perspective on antibody naming. "Antibodies to watch in 2017" and progress on The Antibody Society's 2016 initiatives will be presented during the Society's special session. In addition, two pre-conference workshops covering ways to accelerate antibody drugs to the clinic and the applications of next-generation sequencing in antibody discovery and engineering will be held on Sunday December 11, 2016.

  17. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  18. Home | Society of Women Engineers

    Science.gov (United States)

    Public Policy sweSwag History International Member Services Event Funding I AM WITH SWE Governance img a fellow woman engineer's growth and success. Donate Now img Join Join SWE Today! I AM WITH SWE When Engineers 05/07/18 Year of the Woman - Back to the Future in 2018? 04/27/18 SWE Magazine: Shaping Tomorrow's

  19. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    Science.gov (United States)

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  20. 1997 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    Science.gov (United States)

    Tiwari, Surendra N. (Compiler); Young, Deborah B. (Compiler)

    1998-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives of the program are as follows: (1) To further the professional knowledge of qualified engineering and science faculty members, (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; and (4) To contribute to the research objectives of the NASA center. Program description is as follows: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lectures and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry.

  1. Mean Value Engine Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Müller, Martin; Chevalier, Alain

    1999-01-01

    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models what are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas...... Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experimental engine...

  2. CASEIB 2016: 34. annual congress of the Spanish Society of Biomedical Engineering, 23-25 November 2016, Valencia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    Nowadays SEIB has members of Spanish research groups in Bioelectronics, Physiological System Modelization, Telemedicine, Biomechanics, Biosignal Processing, Bioinformatics,…, besides other members froms Health institutions and companies. The main public activity of SEIB is the organization of a annual congress (CASEIB) that presents scientific papers in order to diseminate into research groups, students, companies and institutions the latest works and advances of Spanish researches that year. Together with this Conference, the Main Meeting of the Society and the Conference of the Thematic Network on Biomedical Engineering (REDINBIO) are hold, as a meeting point of the researchers belonging to this network.

  3. Engineering graphic modelling a workbook for design engineers

    CERN Document Server

    Tjalve, E; Frackmann Schmidt, F

    2013-01-01

    Engineering Graphic Modelling: A Practical Guide to Drawing and Design covers how engineering drawing relates to the design activity. The book describes modeled properties, such as the function, structure, form, material, dimension, and surface, as well as the coordinates, symbols, and types of projection of the drawing code. The text provides drawing techniques, such as freehand sketching, bold freehand drawing, drawing with a straightedge, a draughting machine or a plotter, and use of templates, and then describes the types of drawing. Graphic designers, design engineers, mechanical engine

  4. American Society of Civil Engineers | ASCE

    Science.gov (United States)

    Membership Your New Membership: Getting Started Member Value Civil Engineering Salaries Manage Your Account Vote Now Education & Careers Training & Courses Getting Licensed & Certified Live Exam Reviews Specialty Certifications Civil Engineering Body of Knowledge Volunteer Opportunities Jobs Ethics

  5. Intersubjective management in aerospace engineering

    Directory of Open Access Journals (Sweden)

    Arpentieva Mariam

    2017-01-01

    Full Text Available This article presents a postnonclassical approach to create the science of management processes organization in a developing society, the focus of which is “the man of culture”, i.e. the man, not just adhering to cultural norms, but also creating new concepts and products of culture. This science is proposed to be called Evergetics. The purpose of the study is the analysis science of management processes organization in a developing aerospace engineering and other industrial areas of society. The authors describe the main aspects and procedures evergetics management in aerospace engineering. They uses the comparison method, compares classical and modern approaches and technologies of management. In evergetics management model each member of society or organization is interested in augmenting his cultural heritage he is producing, which entails a raise of stability in process of engineering actions and a raise cultural potential of the society as a whole and, as a consequence, an increase in the proportion of moral and ethical managerial decisions and corresponding to them benevolent actions in organizational life. Summarize the article’s main findings, authors may in some main conclusions about necessity evergetics model and intersubjective technologies in the creation and development of aerospace engineering.

  6. Proceedings of the Joint Conference of Australasian College of Physical Scientists and Engineers in Medicine and IEAust College of Biomedical Engineers; Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society

    International Nuclear Information System (INIS)

    1996-01-01

    This is a celebration of the centenary of Rontgen''s discovery of Xrays. It is also the 50th anniversary of the first hospital physicist appointment in New Zealand. The historical element of the programme will complement the emphasis on current applications of the physical and engineering sciences to medicine and an anticipation of future developments. For the first time the Australasian College of Physical Scientists and Engineers in Medicine, together with the IEAust College of Biomedical Engineers, are joined by the Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society to make this a truly international conference. The proceedings include many papers on radiology and radiotherapy

  7. Transforming Systems Engineering through Model Centric Engineering

    Science.gov (United States)

    2017-08-08

    Contract No. HQ0034-13-D-0004 Report No. SERC-2017-TR-110 Date: August 8, 2017 Transforming Systems Engineering through Model-Centric... Engineering Technical Report SERC-2017-TR-110 Update: August 8, 2017 Principal Investigator: Mark Blackburn, Stevens Institute of Technology Co...Evangelista Sponsor: U.S. Army Armament Research, Development and Engineering Center (ARDEC), Office of the Deputy Assistant Secretary of Defense for

  8. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  9. Transforming Systems Engineering through Model-Centric Engineering

    Science.gov (United States)

    2018-02-28

    Contract No. HQ0034-13-D-0004 Research Tasks: 48, 118, 141, 157, 170 Report No. SERC-2018-TR-103 Transforming Systems Engineering through...Model-Centric Engineering Technical Report SERC-2018-TR-103 February 28, 2018 Principal Investigator Dr. Mark Blackburn, Stevens Institute of...Systems Engineering Research Center This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the

  10. Did Educational Expansion Trigger the Development of an Education Society? Chances and Risks of a New Model of Society

    Science.gov (United States)

    Haunberger, Sigrid

    2010-01-01

    This article focuses on the question of whether educational expansion leads to a new type of society, the education society. Taking into consideration the combined elements of three models of society (the post-industrial society, the knowledge society and the information society)--the chances and risks of an educational society will be elicited…

  11. Engineering model for body armor

    NARCIS (Netherlands)

    Roebroeks, G.H.J.J.; Carton, E.P.

    2014-01-01

    TNO has developed an engineering model for flexible body armor, as one of their energy based engineering models that describe the physics of projectile to target interactions (weaves, metals, ceramics). These models form the basis for exploring the possibilities for protection improvement. This

  12. A Model for Freshman Engineering Retention

    Science.gov (United States)

    Veenstra, Cindy P.; Dey, Eric L.; Herrin, Gary D.

    2009-01-01

    With the current concern over the growing need for more engineers, there is an immediate need to improve freshman engineering retention. A working model for freshman engineering retention is needed. This paper proposes such a model based on Tinto's Interactionalist Theory. Emphasis in this model is placed on pre-college characteristics as…

  13. Workshop on Engineering Turbulence Modeling

    Science.gov (United States)

    Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)

    1992-01-01

    Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.

  14. Integration and framing between system engineering, enterprise engineering and whole of society

    CSIR Research Space (South Africa)

    Erasmus, Louwrence D

    2017-07-01

    Full Text Available with the semantic theoretical constructs of systems levels of Boulding’s General Systems Theory. The construct of systems hierarchy levels addresses the progression from complicated engineered levels to the complexity of human interaction with engineered... predicates in: • A theory of the systems engineering process (Doeben-Henisch, et al., 2008) (Erasmus & Doeben-Henisch, 2011a) • A theory of systems engineering management (SEMBASE) (Erasmus & Doeben-Henisch, 2011b). In the structuralist programme...

  15. Introduction of interdisciplinary teaching: two case studies : commentary on "teaching science, technology, and society to engineering students: a sixteen year journey".

    Science.gov (United States)

    Spitzer, Hartwig

    2013-12-01

    Interdisciplinary courses on science, engineering and society have been successfully established in two cases, at Bilkent University, Ankara, Turkey, and at the University of Hamburg, Germany. In both cases there were institutional and perceptual barriers that had to be overcome in the primarily disciplinary departments. The ingredients of success included a clear vision of interdisciplinary themes and didactics, and the exploitation of institutional opportunities. Haldun M. Ozaktas in Ankara used the dynamics of an accreditation process to establish courses on engineering and society. At the University of Hamburg the introduction of optional courses into all curricula allowed for the establishment of a seminar series on physics and society, as well as on peace education and peace building. Both of these approaches have a weakness in common: the courses can disappear once their initiators have left, unless the interdisciplinary themes are integrated into compulsory core curricula.

  16. Gas Turbine Engine Behavioral Modeling

    OpenAIRE

    Meyer, Richard T; DeCarlo, Raymond A.; Pekarek, Steve; Doktorcik, Chris

    2014-01-01

    This paper develops and validates a power flow behavioral model of a gas tur- bine engine with a gas generator and free power turbine. “Simple” mathematical expressions to describe the engine’s power flow are derived from an understand- ing of basic thermodynamic and mechanical interactions taking place within the engine. The engine behavioral model presented is suitable for developing a supervisory level controller of an electrical power system that contains the en- gine connected to a gener...

  17. Modeling student success in engineering education

    Science.gov (United States)

    Jin, Qu

    In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation. However, there are only a limited number of works that have systematically developed models to investigate important factors and to predict student success in engineering. Therefore, this research presents three separate but highly connected investigations to address this gap. The first investigation involves explaining and predicting engineering students' success in Calculus I courses using statistical models. The participants were more than 4000 first-year engineering students (cohort years 2004 - 2008) who enrolled in Calculus I courses during the first semester in a large Midwestern university. Predictions from statistical models were proposed to be used to place engineering students into calculus courses. The success rates were improved by 12% in Calculus IA using predictions from models developed over traditional placement method. The results showed that these statistical models provided a more accurate calculus placement method than traditional placement methods and help improve success rates in those courses. In the second investigation, multi-outcome and single-outcome neural network models were designed to understand and to predict first-year retention and first-year GPA of engineering students. The participants were more than 3000 first year engineering students (cohort years 2004 - 2005) enrolled in a large Midwestern university. The independent variables include both high school academic performance factors and affective factors measured prior to entry. The prediction performances of the multi-outcome and single-outcome models were comparable. The ability to predict cumulative GPA at the end of an engineering

  18. THE INDUSTRIAL ENGINEER: CAUGHT BETWEEN TWO REVOLUTIONS?

    Directory of Open Access Journals (Sweden)

    Niek Du Preez

    2012-01-01

    Full Text Available The .Industrial Engineer is caught between the Industrial Revolution and the Information revolution. He is confronted with choosing between pragmatic improvements in productivity and efficiency of a single operation or the opportunistic modelling and reshaping of the networked "virtual enterprise" to become more competitive in a global marketplace . The diagram below depicts the different extremes of the Industrial Engineering timeline. This implies that the two societies (Industrial and information might have conflicting characteristics which requires careful repositioning of the Industrial Engineer to ensure that the benefits that can be obtained from the two societies are maximised.

    This paper documents the development of Industrial engineering , then evaluates the nature of the much publicized Information revolution and its impact on society. In order to establish the nature and composition of contemporary Industrial Engineering in the 1990' s, an analysis and categorization of the literature in four journals for the last two years are performed. This is enhanced with an INTERNET search into Industrial Engineering Research and developments that are currently under development.

  19. Optimization in engineering models and algorithms

    CERN Document Server

    Sioshansi, Ramteen

    2017-01-01

    This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...

  20. Rehabilitation Engineering & Assistive Technology Society (RESNA) position on the application of wheelchair standing devices: 2013 current state of the literature.

    Science.gov (United States)

    Dicianno, Brad E; Morgan, Amy; Lieberman, Jenny; Rosen, Lauren

    2016-01-01

    This article, approved by the Rehabilitation Engineering & Assistive Technology Society of North America Board of Directors on December 23, 2013, shares typical clinical applications and provides evidence from the literature supporting the use of wheelchair standers.

  1. Traditional Leadership Model of Pluralistic Society in Ciamis District

    Directory of Open Access Journals (Sweden)

    Akhmad Satori

    2017-03-01

    Full Text Available This study provides an analysis of traditional leadership model in managing plural society. This study sees the whole pattern formed in a very pluralistic society susuru. Although very pluralistic, the society is able to create the harmony conditions in social life. A qualitative ethnography is applied as the method of analysis. The research approach uses contructivism which develop the idea through data to produce a complete picture of the reasearch focus. The result indicates that the leadership style applies a model of charismatic and traditional authority in Susuru. Power and popularity are obtained through leadership ability in  leading the religious rituals. The role of the leader is not only for religious issue, but also for a social escalation. The respect for diversity is more influenced by leader’s ability to manage potential conflict. A local model, duduluran, appear in the effort to establish peace among these differences.

  2. Animal models for bone tissue engineering and modelling disease

    Science.gov (United States)

    Griffin, Michelle

    2018-01-01

    ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995

  3. A probabilistic maintenance model for diesel engines

    Science.gov (United States)

    Pathirana, Shan; Abeygunawardane, Saranga Kumudu

    2018-02-01

    In this paper, a probabilistic maintenance model is developed for inspection based preventive maintenance of diesel engines based on the practical model concepts discussed in the literature. Developed model is solved using real data obtained from inspection and maintenance histories of diesel engines and experts' views. Reliability indices and costs were calculated for the present maintenance policy of diesel engines. A sensitivity analysis is conducted to observe the effect of inspection based preventive maintenance on the life cycle cost of diesel engines.

  4. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  5. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  6. Model engineering : balancing between virtuality and reality

    NARCIS (Netherlands)

    Hee, van K.M.

    2011-01-01

    Model engineering concerns the development of models of complex systems. This modeling is performed for a variety of reasons, such as system behavior prediction, system optimization or system construction. Model engineering requires a modeling framework that includes a language to represent the

  7. Mean Value Modelling of a Turbocharged SI Engine

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.

    1998-01-01

    An important paradigm for the modelling of naturallly aspirated (NA) spark ignition (SI) engines for control purposes is the Mean Value Engine Model (MVEM). Such models have a time resolution which is just sufficient to capture the main details of the dynamic performance of NA SI engines...... but not the cycle-by-cycle behavior. In principle such models are also physically based,are very compact in a mathematical sense but nevertheless can have reasonable prediction accuracy. Presently no MVEMs have been constructed for intercooled turbocharged SI engines because their complexity confounds the simple...... physical understanding and description of such engines. This paper presents a newly constructed MVEM for a turbocharged SI engine which contains the details of the compressor and turbine characteristics in a compact way. The model has been tested against the responses of an experimental engine and has...

  8. Loss terms in free-piston Stirling engine models

    Science.gov (United States)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  9. NATO Advanced Research Workshop on The Design of Mathematical Modelling Courses for Engineering Education

    CERN Document Server

    Moscardini, Alfredo

    1994-01-01

    As the role of the modern engineer is markedly different from that of even a decade ago, the theme of engineering mathematics educa­ tion (EME) is an important one. The need for mathematical model­ ling (MM) courses and consideration of the educational impact of computer-based technology environments merit special attention. This book contains the proceeding of the NATO Advanced Research Workshop held on this theme in July 1993. We have left the industrial age behind and have entered the in­ formation age. Computers and other emerging technologies are penetrating society in depth and gaining a strong influence in de­ termining how in future society will be organised, while the rapid change of information requires a more qualified work force. This work force is vital to high technology and economic competitive­ ness in many industrialised countries throughout the world. Within this framework, the quality of EME has become an issue. It is expected that the content of mathematics courses taught in schools o...

  10. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  11. Searching for Women in Korean Scientific Societies

    Indian Academy of Sciences (India)

    ranjeetha

    III. Female Participation in S&E Societies. 16. ▫ the Committee for Women in KOFST (the Korean Federation of Science and Technology Societies) in 2012. Size of Responding Societies. ▫. Monitored gender ratio of committee members of its member societies in. Science and engineering. 52. 60. 80. 100. 120. Total Number.

  12. An algebraic approach to modeling in software engineering

    International Nuclear Information System (INIS)

    Loegel, C.J.; Ravishankar, C.V.

    1993-09-01

    Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ''computer science'' objects like abstract data types, but in practice software errors are often caused because ''real-world'' objects are improperly modeled. There is a large semantic gap between the customer's objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form

  13. Metabolic Engineering X Conference

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Evan [American Institute of Chemical Engineers

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  14. Numerical methods and modelling for engineering

    CERN Document Server

    Khoury, Richard

    2016-01-01

    This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...

  15. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1997-01-01

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods

  16. Classification and moral evaluation of uncertainties in engineering modeling.

    Science.gov (United States)

    Murphy, Colleen; Gardoni, Paolo; Harris, Charles E

    2011-09-01

    Engineers must deal with risks and uncertainties as a part of their professional work and, in particular, uncertainties are inherent to engineering models. Models play a central role in engineering. Models often represent an abstract and idealized version of the mathematical properties of a target. Using models, engineers can investigate and acquire understanding of how an object or phenomenon will perform under specified conditions. This paper defines the different stages of the modeling process in engineering, classifies the various sources of uncertainty that arise in each stage, and discusses the categories into which these uncertainties fall. The paper then considers the way uncertainty and modeling are approached in science and the criteria for evaluating scientific hypotheses, in order to highlight the very different criteria appropriate for the development of models and the treatment of the inherent uncertainties in engineering. Finally, the paper puts forward nine guidelines for the treatment of uncertainty in engineering modeling.

  17. The Little Engines That Could: Modeling the Performance of World Wide Web Search Engines

    OpenAIRE

    Eric T. Bradlow; David C. Schmittlein

    2000-01-01

    This research examines the ability of six popular Web search engines, individually and collectively, to locate Web pages containing common marketing/management phrases. We propose and validate a model for search engine performance that is able to represent key patterns of coverage and overlap among the engines. The model enables us to estimate the typical additional benefit of using multiple search engines, depending on the particular set of engines being considered. It also provides an estim...

  18. New model for selection of applicants at the universities in the conditions Smart-society

    Directory of Open Access Journals (Sweden)

    Alexandr S. Molchanov

    2017-01-01

    Full Text Available Smart-society -– a new quality of society. The greatest value to society will be represented by people trained by the new technologies or who require minimal resources to study up to the required level. Universities will use the smarteducational technology, that will require a new level of training the applicant and the other search engines, selection and motivation of applicants. The paper proposes a new model of selection of applicants to universities, which will improve the selection process of students, focusing on the management of individual educational routes learner, since elementary school.The main beneficiaries are the selection system are applicants, potential employer, educational organization. The main core of the system -– its own route management. System functionality includes:– monitoring of the environment (demography, economics, education;– work with targets;– analysis of the previous route and its correlation with the target;– control and fixing the trajectory of learning;– additional control and validation competencies as the demand for an employer or educational institution, and at the request of the trainees;– forecasting and calculation of several route options, with a choice for the student’s request.Taking into account the changes in society and the division of labor, as well as a set of really existing and planned information systems, we can conclude the feasibility of practical implementation of the proposed model. The development of such system of selection of applicants can contribute to:– earlier determining of the future profession with the involvement of employers and educational institutions;– early professional self-determination of applicants;– improve the quality of education at the expense of formation of additional motivation to learn;– possibility of operative management request to the construction or design of the educational program for the educational institution

  19. Propulsion Controls Modeling for a Small Turbofan Engine

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin

    2017-01-01

    A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.

  20. Simulation of Road Traffic Applying Model-Driven Engineering

    Directory of Open Access Journals (Sweden)

    Alberto FERNÁNDEZ-ISABEL

    2016-05-01

    Full Text Available Road traffic is an important phenomenon in modern societies. The study of its different aspects in the multiple scenarios where it happens is relevant for a huge number of problems. At the same time, its scale and complexity make it hard to study. Traffic simulations can alleviate these difficulties, simplifying the scenarios to consider and controlling their variables. However, their development also presents difficulties. The main ones come from the need to integrate the way of working of researchers and developers from multiple fields. Model-Driven Engineering (MDE addresses these problems using Modelling Languages (MLs and semi-automatic transformations to organise and describe the development, from requirements to code. This paper presents a domain-specific MDE framework for simulations of road traffic. It comprises an extensible ML, support tools, and development guidelines. The ML adopts an agent-based approach, which is focused on the roles of individuals in road traffic and their decision-making. A case study shows the process to model a traffic theory with the ML, and how to specialise that specification for an existing target platform and its simulations. The results are the basis for comparison with related work.

  1. IBC's 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences and the 2012 Annual Meeting of The Antibody Society: December 3-6, 2012, San Diego, CA.

    Science.gov (United States)

    Klöhn, Peter-Christian; Wuellner, Ulrich; Zizlsperger, Nora; Zhou, Yu; Tavares, Daniel; Berger, Sven; Zettlitz, Kirstin A; Proetzel, Gabriele; Yong, May; Begent, Richard H J; Reichert, Janice M

    2013-01-01

    The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3-6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3-5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4-5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society's special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5-6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy.

  2. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    International Nuclear Information System (INIS)

    Mikalsen, R.; Roskilly, A.P.

    2009-01-01

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator

  3. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)], E-mail: tony.roskilly@ncl.ac.uk

    2009-01-15

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator.

  4. A theoretical design for learning model addressing the networked society

    DEFF Research Database (Denmark)

    Levinsen, Karin; Nielsen, Janni; Sørensen, Birgitte Holm

    2010-01-01

    The transition from the industrial to the networked society produces contradictions that challenges the educational system and force it to adapt to new conditions. In a Danish virtual Master in Information and Communication Technologies and Learning (MIL) these contradictions appear as a field of...... which enables students to develop Networked Society competencies and maintain progression in the learning process also during the online periods. Additionally we suggest that our model contributes to the innovation of a networked society's design for learning....... is continuously decreasing. We teach for deep learning but are confronted by students' cost-benefit strategies when they navigate through the study programme under time pressure. To meet these challenges a Design for Learning Model has been developed. The aim is to provide a scaffold that ensures students......' acquisition of the subject matter within a time limit and at a learning quality that support their deep learning process during a subsequent period of on-line study work. In the process of moving from theory to application the model passes through three stages: 1) Conceptual modelling; 2) Orchestration, and 3...

  5. Vibration modelling and verifications for whole aero-engine

    Science.gov (United States)

    Chen, G.

    2015-08-01

    In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

  6. Systems Security Engineering Capability Maturity Model SSE-CMM Model Description Document

    National Research Council Canada - National Science Library

    1999-01-01

    The Systems Security Engineering Capability Maturity Model (SSE-CMM) describes the essential characteristics of an organization's security engineering process that must exist to ensure good security engineering...

  7. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  8. Cycle Engine Modelling Of Spark Ignition Engine Processes during Wide-Open Throttle (WOT) Engine Operation Running By Gasoline Fuel

    International Nuclear Information System (INIS)

    Rahim, M F Abdul; Rahman, M M; Bakar, R A

    2012-01-01

    One-dimensional engine model is developed to simulate spark ignition engine processes in a 4-stroke, 4 cylinders gasoline engine. Physically, the baseline engine is inline cylinder engine with 3-valves per cylinder. Currently, the engine's mixture is formed by external mixture formation using piston-type carburettor. The model of the engine is based on one-dimensional equation of the gas exchange process, isentropic compression and expansion, progressive engine combustion process, and accounting for the heat transfer and frictional losses as well as the effect of valves overlapping. The model is tested for 2000, 3000 and 4000 rpm of engine speed and validated using experimental engine data. Results showed that the engine is able to simulate engine's combustion process and produce reasonable prediction. However, by comparing with experimental data, major discrepancy is noticeable especially on the 2000 and 4000 rpm prediction. At low and high engine speed, simulated cylinder pressures tend to under predict the measured data. Whereas the cylinder temperatures always tend to over predict the measured data at all engine speed. The most accurate prediction is obtained at medium engine speed of 3000 rpm. Appropriate wall heat transfer setup is vital for more precise calculation of cylinder pressure and temperature. More heat loss to the wall can lower cylinder temperature. On the hand, more heat converted to the useful work mean an increase in cylinder pressure. Thus, instead of wall heat transfer setup, the Wiebe combustion parameters are needed to be carefully evaluated for better results.

  9. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  10. THE SOCIAL POSITION AS AN IMPORTANT DIMENSION OF ENGINEERS' QUALITY OF LIFE IN THE SOCIETY OF POST-SOCIALIST TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    Smiljana Mirkov

    2017-12-01

    Full Text Available Quality of life may be analyzed from different perspectives. In compliance with that, it may be assumed that the social position of the profession has significant impact on quality of life. The paper presents the analysis of the research which aim was to examine the three dimensions of the social position of the engineering profession in the society of post-socialist transformation: material status, social power, and social reputation. We compared the results of the current study with the results of the research that we had conducted in the period when socialist relations still exist in organizations. Moreover, we studied how the engineers perceive these three aspects of the social position of their profession. The first research was conducted in 1998 and the second in 2015. 200 engineers were questioned in 146 companies. The results indicate that the dimensions of social position, such as the material standard and the social influence of engineers in Serbia today are a little more favorable than they used to be at the end of the 90s. Finally, a majority of the engineers from our research believe that their expectations regarding the engineering profession have not been fulfilled and in future, their quality of life may be enhanced in terms of social importance and recognition.

  11. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...... with a major international engineering company....

  12. Graph-based modelling in engineering

    CERN Document Server

    Rysiński, Jacek

    2017-01-01

    This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be. .

  13. A concise wall temperature model for DI Diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Torregrosa, A.; Olmeda, P.; Degraeuwe, B. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Reyes, M. [Centro de Mecanica de Fluidos y Aplicaciones, Universidad Simon Bolivar (Venezuela)

    2006-08-15

    A concise resistor model for wall temperature prediction in diesel engines with piston cooling is presented here. The model uses the instantaneous in-cylinder pressure and some usually measured operational parameters to predict the temperature of the structural elements of the engine. The resistor model was adjusted by means of temperature measurements in the cylinder head, the liner and the piston. For each model parameter, an expression as a function of the engine geometry, operational parameters and material properties was derived to make the model applicable to other similar engines. The model predicts well the cylinder head, liner and piston temperature and is sensitive to variations of operational parameters such as the start of injection, coolant and oil temperature and engine speed and load. (author)

  14. Modeling Techniques for a Computational Efficient Dynamic Turbofan Engine Model

    Directory of Open Access Journals (Sweden)

    Rory A. Roberts

    2014-01-01

    Full Text Available A transient two-stream engine model has been developed. Individual component models developed exclusively in MATLAB/Simulink including the fan, high pressure compressor, combustor, high pressure turbine, low pressure turbine, plenum volumes, and exit nozzle have been combined to investigate the behavior of a turbofan two-stream engine. Special attention has been paid to the development of transient capabilities throughout the model, increasing physics model, eliminating algebraic constraints, and reducing simulation time through enabling the use of advanced numerical solvers. The lessening of computation time is paramount for conducting future aircraft system-level design trade studies and optimization. The new engine model is simulated for a fuel perturbation and a specified mission while tracking critical parameters. These results, as well as the simulation times, are presented. The new approach significantly reduces the simulation time.

  15. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1985. [Space Stations and Their Environments

    Science.gov (United States)

    Chilton, R. G. (Editor); Williams, C. E. (Editor)

    1986-01-01

    The 1985 NASA/ASEE Summer Faculty Fellowship Research Program was conducted by Texas A&M University and the Johnson Space Center. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The faculty fellows spent the time at JSC engaged in research projects commensurate with their interests and background and worked in collaboration with NASA/JSC colleagues. This document is a compilation of the final reports of their research during the summer of 1985.

  16. Engineering and design skills

    DEFF Research Database (Denmark)

    Schrøder, Anne Lise

    2006-01-01

    In various branches of society there is focus on the need for design skills and innovation potential as a means of communicating and handling constant change. In this context, the traditional idea of the engineer as a poly-technician inventing solutions by understanding the laws of nature...... concept of diagrammatic reasoning to some extent incarnates the very method of engineering and design. On this background, it is argued how the work field and techniques of the engineer and the engineering scientist could be characterized in a broader creative context of learning and communication....... This leads to considering the fundamental skills of the engineering practice as basic abilities to see the structures and dynamics of the world, to model it, and to create new solutions concerning practical as well as theoretical matters. Finally, it is assumed that the essence of engineering “bildung...

  17. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  18. Underwater striling engine design with modified one-dimensional model

    Directory of Open Access Journals (Sweden)

    Daijin Li

    2015-05-01

    Full Text Available Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA. The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  19. Impacting Society through Engineering Design Research

    DEFF Research Database (Denmark)

    Howard, Thomas J.

    2011-01-01

    Following the recent ICED11 conference in Copenhagen, Thomas Howard, ICED11 Assistant Chair and Ass. Professor at DTU has written a reflection on design research and design practice, suggesting that in addition to benefiting society through the improved understanding of methods of and approaches...... to design, the academic design community should through design practice produce empowering products which address societal needs unbound by the necessity for profit....

  20. Earthquakes, Cities, and Lifelines: lessons integrating tectonics, society, and engineering in middle school Earth Science

    Science.gov (United States)

    Toke, N.; Johnson, A.; Nelson, K.

    2010-12-01

    Earthquakes are one of the most widely covered geologic processes by the media. As a result students, even at the middle school level, arrive in the classroom with preconceptions about the importance and hazards posed by earthquakes. Therefore earthquakes represent not only an attractive topic to engage students when introducing tectonics, but also a means to help students understand the relationships between geologic processes, society, and engineering solutions. Facilitating understanding of the fundamental connections between science and society is important for the preparation of future scientists and engineers as well as informed citizens. Here, we present a week-long lesson designed to be implemented in five one hour sessions with classes of ~30 students. It consists of two inquiry-based mapping investigations, motivational presentations, and short readings that describe fundamental models of plate tectonics, faults, and earthquakes. The readings also provide examples of engineering solutions such as the Alaskan oil pipeline which withstood multi-meter surface offset in the 2002 Denali Earthquake. The first inquiry-based investigation is a lesson on tectonic plates. Working in small groups, each group receives a different world map plotting both topography and one of the following data sets: GPS plate motion vectors, the locations and types of volcanoes, the location of types of earthquakes. Using these maps and an accompanying explanation of the data each group’s task is to map plate boundary locations. Each group then presents a ~10 minute summary of the type of data they used and their interpretation of the tectonic plates with a poster and their mapping results. Finally, the instructor will facilitate a class discussion about how the data types could be combined to understand more about plate boundaries. Using student interpretations of real data allows student misconceptions to become apparent. Throughout the exercise we record student preconceptions

  1. Statistical models of petrol engines vehicles dynamics

    Science.gov (United States)

    Ilie, C. O.; Marinescu, M.; Alexa, O.; Vilău, R.; Grosu, D.

    2017-10-01

    This paper focuses on studying statistical models of vehicles dynamics. It was design and perform a one year testing program. There were used many same type cars with gasoline engines and different mileage. Experimental data were collected of onboard sensors and those on the engine test stand. A database containing data of 64th tests was created. Several mathematical modelling were developed using database and the system identification method. Each modelling is a SISO or a MISO linear predictive ARMAX (AutoRegressive-Moving-Average with eXogenous inputs) model. It represents a differential equation with constant coefficients. It were made 64th equations for each dependency like engine torque as output and engine’s load and intake manifold pressure, as inputs. There were obtained strings with 64 values for each type of model. The final models were obtained using average values of the coefficients. The accuracy of models was assessed.

  2. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    The Journal of Modeling, Design & Management of Engineering Systems publishes original ... systems Electronic/Electrical systems Engineering management systems Fuel and Energy systems Information Technology ... systems Pubic Health systems Software Engineering systems Systems and Industrial Engineering ...

  3. Understanding engineering professionalism: a reflection on the rights of engineers.

    Science.gov (United States)

    Stieb, James A

    2011-03-01

    Engineering societies such as the National Society of Professional Engineers (NSPE) and associated entities have defined engineering and professionalism in such a way as to require the benefit of humanity (NSPE 2009a, Engineering Education Resource Document. NSPE Position Statements. Governmental Relations). This requirement has been an unnecessary and unfortunate "add-on." The trend of the profession to favor the idea of requiring the benefit of humanity for professionalism violates an engineer's rights. It applies political pressure that dissuades from inquiry, approaches to new knowledge and technologies, and the presentation, publication, and use of designs and research findings. Moreover, a more politically neutral definition of engineering and/or professionalism devoid of required service or benefit to mankind does not violate adherence to strong ethical standards.

  4. Abstracts Book of 41. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1998-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important scientific forum of Polish Chemists. The state of the art in many basic, fundamental and applied investigations has been presented and discussed. The following scientific sessions and microsymposia have been proposed: theoretical chemistry; molecular interactions; metal compounds - chemical, physical, electronic and biological aspects; catalysis and surface physico-chemistry; polymers - radiochemistry, modifications, physics and analytical methods; organic and bioorganic chemistry; physico-chemistry of condensed matter; chemical metallurgy; environmental protection; inorganic technology; chemistry and technology of coal; radiation chemistry; analytical chemistry; chemical engineering; young scientists forum; chemical didactics; petrochemistry; energetic materials; membranes and membrane processes; medical chemistry

  5. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    Science.gov (United States)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  6. Model engineering in a modular PSA

    International Nuclear Information System (INIS)

    Friedlhuber, Thomas

    2014-01-01

    For the purpose of PSA (Probabilistic Safety Analysis) for complex industrial systems, often PSA models in the form of fault and event trees are developed to model the risk of unwanted situations (hazards). While the recent decades, PSA models have gained high acceptance and have been developed massively. This lead to an increase in model sizes and complexity. Today, PSA models are often difficult to understand and maintain. This manuscript presents the concept of a modular PSA. A modular PSA tries to cope with the increased complexity by the techniques of modularization and instantiation. Modularization targets to treat a model by smaller pieces (the 'modules') to regain control over models. Instantiation aims to configure a generic model to different contexts. Both try to reduce model complexity. A modular PSA proposes new functionality to manage PSA models. Current model management is rather limited and not efficient. This manuscript shows new methods to manage the evolutions (versions) and deviations (variants) of PSA models in a modular PSA. The concepts of version and variant management are presented in this thesis. In this context, a model comparison and fusion of PSA models is precised. Model comparison provides important feedback to model engineers and model fusion kind of combines the work from different model engineers (concurrent model engineering). Apart from model management, methods to understand the content of PSA models are presented. The methods focus to highlight the dependencies between modules rather than their contents. Dependencies are automatically derived from a model structure. They express relations between model objects (for example a fault tree may have dependencies to basic events). To visualize those dependencies (for example in form of a model cartography) can constitute a crucial aid to model engineers for understanding complex interrelations in PSA models. Within the scope of this thesis, a software named 'Andromeda' has been

  7. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  8. [Biomedical engineering today : An overview from the viewpoint of the German Biomedical Engineering Society].

    Science.gov (United States)

    Schlötelburg, C; Becks, T; Stieglitz, T

    2010-08-01

    Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.

  9. Mean Value Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Muller, Martin; Chevalier, Alain

    1999-01-01

    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR......). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, ver fast manifold pressure, manifold temperature, port and EGR mass flow sensores. Reasonable agreement has been obtained on an experimental engine, mounted on a dynamometer....

  10. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. ... Journal Home > Vol 5, No 1 (2007) ... or mathematical modeling, computing, simulation, design and/or operations research tools for solving engineering problems.

  11. Rehabilitation Engineering and Assistive Technology Society of North America

    Science.gov (United States)

    ... certification, how it has helped them in their careers, and what it means to them personally. #ATPproud ... and has been a steering force in my career as a rehabilitation engineer. ---Casmir Usiatynski, Rehabilitation Engineer ...

  12. Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach

    Science.gov (United States)

    Yu, Bing; Shu, Wenjun

    2017-03-01

    The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.

  13. Mean Value Modelling of Turbocharged SI Engines

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.

    1998-01-01

    The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented.......The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented....

  14. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    Science.gov (United States)

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  15. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  16. Materials of 48. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical

    International Nuclear Information System (INIS)

    2005-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: chemistry of metalorganic and supramolecular compounds; organic and bioorganic chemistry; coordination and bioinorganic chemistry; chemistry of polymers and biopolymers; physical and theoretical chemistry; catalysis; structural chemistry; analytical chemistry and environmental protection chemistry of materials and nanomaterials; technology and chemical engineering; didactics of chemistry; young scientist forum; chemistry for economy

  17. Preliminary collection 891 of lectures/papers in symposium by Society of Automotive Engineers of Japan. Jidosha gijutsukai gakujutsu koenkai maezurishu 891

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-29

    This preliminary collection collected lectures given and papers presented in the symposium by the Society of Automotive Engineers of Japan to be held in May, 1989. Totally 86 papers, together with two basic lectures, were presented therein. The categories comprise two basic lectures titled Future problems on CVT and automatic transmission and Advances of gasoline engine and measuring techniques, ten papers for the gasoline engine, covering the supercharger, air/fuel mixture, noise, bore deformation, etc., ten papers for the diesel engine, covering the exhaust gas, supercharger, methanol engine, etc., ten papers for the car body, covering the aerodynamical characteristics and movement of car body, movement analysis of motor bicycle, head lamp, painting, etc., ten papers for the car parts, ten papers for the fuel injection, ten papers for the engine parts, covering the piston, oil ring, cylinder, connecting rod, plug, rotary, car heater, etc., three papers for the car production, covering the line control, welding, production method, etc., seven papers for the car steering and stability, eight papers for the vibration and noise attenuation and three papers for the others. 370 refs., 857 figs., 100 tabs.

  18. Model-driven software engineering

    NARCIS (Netherlands)

    Amstel, van M.F.; Brand, van den M.G.J.; Protic, Z.; Verhoeff, T.; Hamberg, R.; Verriet, J.

    2014-01-01

    Software plays an important role in designing and operating warehouses. However, traditional software engineering methods for designing warehouse software are not able to cope with the complexity, size, and increase of automation in modern warehouses. This chapter describes Model-Driven Software

  19. Engineering design of systems models and methods

    CERN Document Server

    Buede, Dennis M

    2009-01-01

    The ideal introduction to the engineering design of systems-now in a new edition. The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: * The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology * Additional material on partitioning functions and components * More descriptive material on usage scenarios based on literature from use case development * Updated homework assignments * The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference ...

  20. Adaptive Engine Torque Compensation with Driveline Model

    Directory of Open Access Journals (Sweden)

    Park Jinrak

    2018-01-01

    Full Text Available Engine net torque is the total torque generated by the engine side, and includes the fuel combustion torque, the friction torque, and additionally the starter motor torque in case of hybrid vehicles. The engine net torque is utilized to control powertrain items such as the engine itself, the transmission clutch, also the engine clutch, and it must be accurate for the precise powertrain control. However, this net torque can vary with the engine operating conditions like the engine wear, the changes of the atmospheric pressure and the friction torque. Thus, this paper proposes the adaptive engine net torque compensator using driveline model which can cope with the net torque change according to engine operating conditions. The adaptive compensator was applied on the parallel hybrid vehicle and investigated via MATLAB Simcape Driveline simulation.

  1. Materials of 44. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    2001-01-01

    Scientific assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: solid state chemistry; didactics of chemistry; electrochemistry; biologically active compounds; geochemistry; organic chemistry; physical chemistry; environment quality and protection; coordination chemistry; chemical technology; polymers; explosive materials; analytical chemistry; theoretical chemistry

  2. THE INDUSTRIAL ENGINEER: CAUGHT BETWEEN TWO REVOLUTIONS?

    OpenAIRE

    Niek Du Preez; Liliane Pintelon

    2012-01-01

    The .Industrial Engineer is caught between the Industrial Revolution and the Information revolution. He is confronted with choosing between pragmatic improvements in productivity and efficiency of a single operation or the opportunistic modelling and reshaping of the networked "virtual enterprise" to become more competitive in a global marketplace . The diagram below depicts the different extremes of the Industrial Engineering timeline. This implies that the two societies (Industrial and info...

  3. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2013-06-01

    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired." Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  5. International Conference on Transformations in Engineering Education

    CERN Document Server

    2015-01-01

    This book comprises the proceedings of the International Conference on Transformations in Engineering Education conducted jointly by BVB College of Engineering & Technology, Hubli, India and Indo US Collaboration for Engineering Education (IUCEE). This event is done in collaboration with International Federation of Engineering Education Societies (IFEES), American Society for Engineering Education (ASEE) and Global Engineering Deans' Council (GEDC). The conference is about showcasing the transformational practices in Engineering Education space.

  6. Semantic modeling and interoperability in product and process engineering a technology for engineering informatics

    CERN Document Server

    2013-01-01

    In the past decade, feature-based design and manufacturing has gained some momentum in various engineering domains to represent and reuse semantic patterns with effective applicability. However, the actual scope of feature application is still very limited. Semantic Modeling and Interoperability in Product and Process Engineering provides a systematic solution for the challenging engineering informatics field aiming at the enhancement of sustainable knowledge representation, implementation and reuse in an open and yet practically manageable scale.   This semantic modeling technology supports uniform, multi-facet and multi-level collaborative system engineering with heterogeneous computer-aided tools, such as CADCAM, CAE, and ERP.  This presented unified feature model can be applied to product and process representation, development, implementation and management. Practical case studies and test samples are provided to illustrate applications which can be implemented by the readers in real-world scenarios. �...

  7. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  8. Materials and society -- Impacts and responsibilities

    Energy Technology Data Exchange (ETDEWEB)

    Westwood, A.R.C.

    1995-11-01

    The needs of today`s advanced societies have moved well beyond the requirements for food and shelter, etc., and now are focused on such concerns as international peace and domestic security, affordable health care, the swift and secure transmission of information, the conservation of resources, and a clean environment. Progress in materials science and engineering is impacting each of these concerns. This paper will present some examples of how this is occurring, and then comment on ethical dilemmas that can arise as a consequence of technological advances. The need for engineers to participate more fully in the development of public policies that help resolve such dilemmas, and so promote the benefits of advancing technology to society, will be discussed.

  9. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    Science.gov (United States)

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  10. Strategies for the Curation of CAD Engineering Models

    Directory of Open Access Journals (Sweden)

    Manjula Patel

    2009-06-01

    Full Text Available Normal 0 Product Lifecycle Management (PLM has become increasingly important in the engineering community over the last decade or so, due to the globalisation of markets and the rising popularity of products provided as services. It demands the efficient capture, representation, organisation, retrieval and reuse of product data over its entire life. Simultaneously, there is now a much greater reliance on CAD models for communicating designs to manufacturers, builders, maintenance crews and regulators, and for definitively expressing designs. Creating the engineering record digitally, however, presents problems not only for its long-term maintenance and accessibility - due in part to the rapid obsolescence of the hardware, software and file formats involved - but also for recording the evolution of designs, artefacts and products. We examine the curation and preservation requirements in PLM and suggest ways of alleviating the problems of sustaining CAD engineering models through the use of lightweight formats, layered annotation and the collection of Representation Information as defined in the Open Archival Information System (OAIS Reference Model.  We describe two tools which have been specifically developed to aid in the curation of CAD engineering models in the context of PLM: Lightweight Models with Multilayered Annotation (LiMMA and a Registry/Repository of Representation Information for Engineering (RRoRIfE.

  11. Thermodynamic modeling of direct injection methanol fueled engines

    International Nuclear Information System (INIS)

    Shen Yuan; Bedford, Joshua; Wichman, Indrek S.

    2009-01-01

    In-cylinder pressure is an important parameter that is used to investigate the combustion process in internal combustion (IC) engines. In this paper, a thermodynamic model of IC engine combustion is presented and examined. A heat release function and an empirical conversion efficiency factor are introduced to solve the model. The pressure traces obtained by solving the thermodynamic model are compared with measured pressure data for a fully instrumented laboratory IC spark ignition (SI) engine. Derived scaling parameters for time to peak pressure, peak pressure, and maximum rate of pressure rise (among others) are developed and compared with the numerical simulations. The models examined here may serve as pedagogic tools and, when suitably refined, as preliminary design tools.

  12. Applied data analysis and modeling for energy engineers and scientists

    CERN Document Server

    Reddy, T Agami

    2011-01-01

    ""Applied Data Analysis and Modeling for Energy Engineers and Scientists"" discusses mathematical models, data analysis, and decision analysis in modeling. The approach taken in this volume focuses on the modeling and analysis of thermal systems in an engineering environment, while also covering a number of other critical areas. Other material covered includes the tools that researchers and engineering professionals will need in order to explore different analysis methods, use critical assessment skills and reach sound engineering conclusions. The book also covers process and system design and

  13. A Study on the Attitudes and Opinions of Engineering Students from the University of Baja California, Mexico, on Science, Technology, and Society

    Science.gov (United States)

    Oliveros Ruiz, Maria Amparo; Sevilla Garcia, Juan Jose; Schorr, Michael

    2010-01-01

    A proposal is presented for the incorporation of the concepts of STS into the teaching of science and technology at the Faculty of Engineering, Mexicali Campus, of the University of Baja California. The method outlined for the development of research and the application of the "Opinions Questionnaire on Science, Technology and Society"…

  14. Internal combustion engines - Modelling, estimation and control issues

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, C.W.

    2001-12-01

    Alternative power-trains have become buzz words in the automotive industry in the recent past. New technologies like Lithium-Ion batteries or fuel cells combined with high efficient electrical motors show promising results. However both technologies are extremely expensive and important questions like 'How are we going to supply fuel-cells with hydrogen in an environmentally friendly way?', 'How are we going to improve the range - and recharging speed - of electrical vehicles?' and 'How will our existing infrastructure cope with such changes?' are still left unanswered. Hence, the internal combustion engine with all its shortcomings is to stay with us for the next many years. What the future will really bring in this area is uncertain, but one thing can be said for sure; the time of the pipe in - pipe out engine concept is over. Modem engines, Diesel or gasoline, have in the recent past been provided with many new technologies to improve both performance and handling and to cope with the tightening emission legislations. However, as new devices are included, the number of control inputs is also gradually increased. Hence, the control matrix dimension has grown to a considerably size, and the typical table and regression based engine calibration procedures currently in use today contain both challenging and time-consuming tasks. One way to improve understanding of engines and provide a more comprehensive picture of the control problem is by use of simplified physical modelling - one of the main thrusts of this dissertation. The application of simplified physical modelling as a foundation for engine estimation and control design is first motivated by two control applications. The control problem concerns Air/Fuel ratio control of Spark Ignition engines. Two different ways of control are presented; one based on. a model based Extended Kalman Filter updated predictor, and one based on robust H {infinity} techniques. Both controllers are

  15. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  16. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    Science.gov (United States)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  17. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    Science.gov (United States)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  18. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    Science.gov (United States)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  19. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  2. Philosophical Reflection Smart-Society as a New Model of the Information Society and its Impact on the Education of the 21st Century

    Directory of Open Access Journals (Sweden)

    Valentina Voronkova

    2017-07-01

    Full Text Available This article presents philosophical and educational reflection of smart-society as a new model of the information society and presents its impact on human (intellectual capital. It reveals timeliness of this topic, which is innovative and hardly developed. It analyses international experience in establishment and growth of smart-society and dimensions of axiological field of smart-society, which is based on axiological matrix of information and knowledge, which are considered and being civilized dimensions of modern society. The main idea is to prove the evolution of the information society to smart-society and the possibility of establishment of smart-society in Ukraine. The analysis of smart-society formation was made and its characteristics were defined, which claims priority role in the world information space formation and contribute to the competitiveness of Ukraine in the international information space.

  3. Mean Value SI Engine Model for Control Studies

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Sorenson, Spencer C

    1990-01-01

    This paper presents a mathematically simple nonlinear three state (three differential equation) dynamic model of an SI engine which has the same steady state accuracy as a typical dynamometer measurement of the engine over its entire speed/load operating range (± 2.0%). The model's accuracy...... for large, fast transients is of the same order in the same operating region. Because the model is mathematically compact, it has few adjustable parameters and is thus simple to fit to a given engine either on the basis of measurements or given the steady state results of a larger cycle simulation package....... The model can easily be run on a Personal Computer (PC) using a ordinary differential equation (ODE) integrating routine or package. This makes the model is useful for control system design and evaluation....

  4. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  5. ETRAN 1999: Society for Electronics,Telecommunications, Computers, Automation and Nuclear Engineering. Section for Nuclear Techniques and Technology. Proceedings of the XLIII Conference. Vol IV

    International Nuclear Information System (INIS)

    Spasojevic, D.; Smiljanic, M.; Bozic, D.; Stankovic, D.

    1999-01-01

    The XLIII ETRAN Conference of the Society for Electronic, Telecommunications, Computers, Automation and Nuclear Engineering was held on 20-22 Sep, 1999. In the Proceedings of the Conference The Commission of the Nuclear Technique and Technology has 19 papers presented in three sessions.

  6. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  7. Modeling as an Engineering Habit of Mind and Practice

    Science.gov (United States)

    Lammi, Matthew D.; Denson, Cameron D.

    2017-01-01

    In this paper we examine a case study of a pedagogical strategy that focuses on the teaching of modeling as a habit of mind and practice for novice designers engaged in engineering design challenges. In an engineering design course, pre-service teachers created modeling artifacts in the form of conceptual models, graphical models, mathematical…

  8. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  9. Using Notable Women in Environmental Engineering to Dispel Misperceptions of Engineers

    Science.gov (United States)

    Hoh, Yin Kiong

    2009-01-01

    This paper describes an activity the author has carried out with 72 high school science teachers to enable them to overcome their stereotypical perceptions of engineers. The activity introduced them to notable women in environmental engineering, and raised their awareness of these female engineers' contributions to engineering and society. The…

  10. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study.

    Science.gov (United States)

    Rulifson, Greg; Bielefeldt, Angela R

    2018-03-20

    Engineers should learn how to act on their responsibility to society during their education. At present, however, it is unknown what students think about the meaning of socially responsible engineering. This paper synthesizes 4 years of longitudinal interviews with engineering students as they progressed through college. The interviews revolved broadly around how students saw the connections between engineering and social responsibility, and what influenced these ideas. Using the Weidman Input-Environment-Output model as a framework, this research found that influences included required classes such as engineering ethics, capstone design, and some technical courses, pre-college volunteering and familial values, co-curricular groups such as Engineers Without Borders and the Society of Women Engineers, as well as professional experiences through internships. Further, some experiences such as technical courses and engineering internships contributed to confine students' understanding of an engineer's social responsibility. Overall, students who stayed in engineering tended to converge on basic responsibilities such as safety and bettering society as a whole, but tended to become less concerned with improving the lives of the marginalized and disadvantaged. Company loyalty also became important for some students. These results have valuable, transferable contributions, providing guidance to foster students' ideas on socially responsible engineering.

  11. Control of Stirling engine. Simplified, compressible model

    Science.gov (United States)

    Plotnikov, P. I.; Sokołowski, J.; Żochowski, A.

    2016-06-01

    A one-dimensional free boundary problem on a motion of a heavy piston in a tube filled with viscous gas is considered. The system of governing equations and boundary conditions is derived. The obtained system of differential equations can be regarded as a mathematical model of an exterior combustion engine. The existence of a weak solution to this model is proved. The problem of maximization of the total work of the engine is considered.

  12. Compact and Accurate Turbocharger Modelling for Engine Control

    DEFF Research Database (Denmark)

    Sorenson, Spencer C; Hendricks, Elbert; Magnússon, Sigurjón

    2005-01-01

    With the current trend towards engine downsizing, the use of turbochargers to obtain extra engine power has become common. A great díffuculty in the use of turbochargers is in the modelling of the compressor map. In general this is done by inserting the compressor map directly into the engine ECU...... turbocharges with radial compressors for either Spark Ignition (SI) or diesel engines...

  13. Engineering Abstractions in Model Checking and Testing

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus

    2009-01-01

    Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and testing is still state of the art in falsification. We show how user-defined abstractions can be integrated into a Java PathFinder setting with tools like AspectJ or Javassist and discuss implications of remaining weaknesses of these tools. We believe that a principled engineering approach to designing...... and implementing abstractions will improve the applicability of model checking in practice....

  14. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.

    2009-06-01

    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  15. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed

  16. Engineering Education: Challenges for Innovation

    OpenAIRE

    Restivo, Teresa; Alves, Gustavo R.

    2014-01-01

    Engineering Education: Challenges for Innovation” is the scope of the 1st International Conference of the Portuguese Society for Engineering Education (in Portuguese: Sociedade Portuguesa para a Educação em Engenharia, SPEE) [1]. SPEE is a young society now completing four years since its public presentation and launching by the Faculty of Engineering of University of Porto, in February 19, 2010. info:eu-repo/semantics/publishedVersion

  17. 76 FR 44245 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Science.gov (United States)

    2011-07-25

    ... Conditions No. 25-441-SC] Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for... for transport category airplanes. These design features include engine size and the potential torque... engine mounts and the supporting structures must be designed to withstand a ``limit engine torque load...

  18. Interactive Model-Centric Systems Engineering (IMCSE) Phase 5

    Science.gov (United States)

    2018-02-28

    Interactive Model-Centric Systems Engineering (IMCSE) Phase 5 Technical Report SERC-2018-TR-104 Feb 28, 2018 Principal Investigator...Date February 28, 2018 Copyright © 2018 Stevens Institute of Technology, Systems Engineering ...Research Center The Systems Engineering Research Center (SERC) is a federally funded University Affiliated Research Center managed by Stevens

  19. Performance analysis and dynamic modeling of a single-spool turbojet engine

    Science.gov (United States)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  20. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  1. Design of nuclear power generation plants adopting model engineering method

    International Nuclear Information System (INIS)

    Waki, Masato

    1983-01-01

    The utilization of model engineering as the method of design has begun about ten years ago in nuclear power generation plants. By this method, the result of design can be confirmed three-dimensionally before actual production, and it is the quick and sure method to meet the various needs in design promptly. The adoption of models aims mainly at the improvement of the quality of design since the high safety is required for nuclear power plants in spite of the complex structure. The layout of nuclear power plants and piping design require the model engineering to arrange rationally enormous quantity of things in a limited period. As the method of model engineering, there are the use of check models and of design models, and recently, the latter method has been mainly taken. The procedure of manufacturing models and engineering is explained. After model engineering has been completed, the model information must be expressed in drawings, and the automation of this process has been attempted by various methods. The computer processing of design is in progress, and its role is explained (CAD system). (Kako, I.)

  2. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  3. Current trends in rehabilitation engineering in Japan.

    Science.gov (United States)

    Ohnabe, Hisaichi

    2006-01-01

    In 2005, the elderly generation comprised 20% of the Japanese population. This percentage will grow to approximately 30% in 2030, meaning that nearly one in three people in Japan will be 65 years of age or older. Japan is the first nation in the world to face this situation. This article uses the context of Japanese society to give an overview of the elderly and people with disabilities; the International Classification of Functioning, Disability, and Health model; rehabilitation engineering-related policy; and education. In addition, we examine how governmental programs and Japanese law regarding technical aids may evolve by 2030. Partner robots, intelligent powered wheelchairs, nursing robots, and other technologies are introduced as examples of rehabilitation engineering and assistive technology. We also discuss the volunteer activities of the Rehabilitation Engineering Society of Japan (RESJA) in response to the Asian tsunami disaster and the achievements of a group of students from a Japanese senior high school of industry.

  4. "Genetic Engineering" Gains Momentum (Science/Society Case Study).

    Science.gov (United States)

    Moore, John W.; Moore, Elizabeth A., Eds.

    1980-01-01

    Reviews the benefits and hazards of genetic engineering, or "recombinant-DNA" research. Recent federal safety rules issued by NIH which ease the strict prohibitions on recombinant-DNA research are explained. (CS)

  5. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  6. International Combined Orthopaedic Research Societies: A model for international collaboration to promote orthopaedic and musculoskeletal research

    Directory of Open Access Journals (Sweden)

    Theodore Miclau

    2014-10-01

    Full Text Available In October 2013, the International Combined Orthopaedic Research Societies (ICORS; http://i-cors.org was founded with inaugural member organisations from the previous Combined Orthopaedic Research Society, which had sponsored combined meetings for more than 2 decades. The ICORS is dedicated to the stimulation of orthopaedic and musculoskeletal research in fields such as biomedical engineering, biology, chemistry, and veterinary and human clinical research. The ICORS seeks to facilitate communication with member organisations to enhance international research collaborations and to promote the development of new international orthopaedic and musculoskeletal research organisations. Through new categories of membership, the ICORS represents the broadest coalition of orthopaedic research organisations globally.

  7. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Science.gov (United States)

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  8. Test-Driven, Model-Based Systems Engineering

    DEFF Research Database (Denmark)

    Munck, Allan

    Hearing systems have evolved over many years from simple mechanical devices (horns) to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers, batteries, etc. Digital signal processors replaced analog filters to provide better performance end new features. Central....... This thesis concerns methods for identifying, selecting and implementing tools for various aspects of model-based systems engineering. A comprehensive method was proposed that include several novel steps such as techniques for analyzing the gap between requirements and tool capabilities. The method...... was verified with good results in two case studies for selection of a traceability tool (single-tool scenario) and a set of modeling tools (multi-tool scenarios). Models must be subjected to testing to allow engineers to predict functionality and performance of systems. Test-first strategies are known...

  9. The Historical Basis of Engineering Ethics

    Science.gov (United States)

    Furuya, Keiichi

    There are different objects and motives between scientists and engineers. Science is to create new knowledge (episteme), while technology (techne) is to create new utility. Both types of social responsibility are required for engineer, because modern technology is tightly connected with science. The relationship between ethics for scientists and engineers is discussed as an evolution of ethical objects. A short history of engineering societies in U.S.A. and Japan are introduced with their ethical perspectives. As a conclusion, respect for fundamental rights for existence of those who stand in, with, and around engineers and their societies is needed for better engineering ethics.

  10. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes

    2016-01-01

    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  11. An introductory model of a one-piston engine

    International Nuclear Information System (INIS)

    GlarIa, Jaime; Wendler, Thomas; Goodwin, Graham

    2005-01-01

    Reciprocating internal combustion engine models have the antithetical goals of accurately describing complex nonlinear behaviour and being simple enough for such purposes as automatic control and online diagnosis. A one-piston four-stroke engine is modelled here by recursively stating simple physical equations. To do that, the domestic ideas of domination and dependence are called as methodological tools for modelling, since they hand out necessary and sufficient equations with few manoeuvres, allocate simulations with the same characteristic and, hopefully, provide a fine way to understanding. The resulting model reveals both steady cycles and transient behaviour

  12. Materials of 47. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry. Volume 3

    International Nuclear Information System (INIS)

    2004-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum

  13. Effect of different heat transfer models on HCCI engine simulation

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2014-01-01

    Highlights: • A new multi zone model is developed for HCCI combustion modeling. • New heat transfer model is used for prediction of heat transfer in HCCI engines. • Model can predict engine combustion, performance and emission characteristics well. • Appropriate mass and heat transfer models cause to accurate prediction of CO, UHC and NOx. - Abstract: Heat transfer from engine walls has an important role on engine combustion, performance and emission characteristics. The main focus of this study is offering a new relation for calculation of convective heat transfer from in-cylinder charge to combustion chamber walls of HCCI engines and providing the ability of new model in comparison with the previous models. Therefore, a multi zone model is developed for homogeneous charge compression ignition engine simulation. Model consists of four different types of zones including core zone, boundary layer zone, outer zones, which are between core and boundary layer, and crevice zone. Conductive heat transfer and mass transfer are considered between neighboring zones. For accurate calculation of initial conditions at inlet valve closing, multi zone model is coupled with a single zone model, which simulates gas exchange process. Various correlations are used as convective heat transfer correlations. Woschni, modified Woschni, Hohenberg and Annand correlations are used as convective heat transfer models. The new convection model, developed by authors, is used, too. Comparative analyses are done to recognize the accurate correlation for prediction of engine combustion, performance and emission characteristics in a wide range of operating conditions. The results indicate that utilization of various heat transfer models, except for new convective heat transfer model, leads to significant differences in prediction of in-cylinder pressure and exhaust emissions. Using Woschni, Chang and new model, convective heat transfer coefficient increases near top dead center, sharply

  14. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  15. 76 FR 54373 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    Science.gov (United States)

    2011-09-01

    ... diesel piston engines, with high-pressure (HP) fuel pump, part number (P/N) E4A- 30-100-000, installed... Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines AGENCY: Federal Aviation... pressure supply for excessive oscillations to determine if high-pressure (HP) fuel pumps have been exposed...

  16. Rotary engine performance limits predicted by a zero-dimensional model

    Science.gov (United States)

    Bartrand, Timothy A.; Willis, Edward A.

    1992-01-01

    A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.

  17. Two Models of Engineering Education for the Professional Practice

    NARCIS (Netherlands)

    Ir. Dick van Schenk Brill; Ir Peter Boots; Ir. Peter van Kollenburg

    2002-01-01

    Two models for engineering education that may answer the needs for "Renaissance Engineers" are described in this paper. They were the outcome of an educational renewal project, funded by the Dutch Ministry of Education and industrial companies. The first model (Corporate Curriculum) aims to bring

  18. Future Students | College of Engineering & Applied Science

    Science.gov (United States)

    race car with the Society of Automotive Engineers. Members of the American Society of Mechanical . icons_100x100_Engage Over 20 engineering and computer science organizations await! Race a Baja car or concrete canoe

  19. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    Science.gov (United States)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  20. Complete modeling for systems of a marine diesel engine

    Science.gov (United States)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  1. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    Science.gov (United States)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  2. A Mathematical Model of Marine Diesel Engine Speed Control System

    Science.gov (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  3. Space engineering modeling and optimization with case studies

    CERN Document Server

    Pintér, János

    2016-01-01

    This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary Trajectories •Satellite Constellation Image Acquisition •Re-entry Test Vehicle Configuration Selection •Collision Risk Assessment on Perturbed Orbits •Optimal Robust Design of Hybrid Rocket Engines •Nonlinear Regression Analysis in Space Engineering< •Regression-Based Sensitivity Analysis and Robust Design ...

  4. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  5. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  6. Software Engineering Tools for Scientific Models

    Science.gov (United States)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  7. Computer-aided modeling for efficient and innovative product-process engineering

    DEFF Research Database (Denmark)

    Heitzig, Martina

    Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy and water. This trend is set to continue due to the substantial benefits computer...... in chemical and biochemical engineering have been solved to illustrate the application of the generic modelling methodology, the computeraided modelling framework and the developed software tool.......-aided methods provide. The key prerequisite of computer-aided productprocess engineering is however the availability of models of different types, forms and application modes. The development of the models required for the systems under investigation tends to be a challenging, time-consuming and therefore cost...

  8. Applications and issues of GIS as tool for civil engineering modeling

    Science.gov (United States)

    Miles, S.B.; Ho, C.L.

    1999-01-01

    A tool that has proliferated within civil engineering in recent years is geographic information systems (GIS). The goal of a tool is to supplement ability and knowledge that already exists, not to serve as a replacement for that which is lacking. To secure the benefits and avoid misuse of a burgeoning tool, engineers must understand the limitations, alternatives, and context of the tool. The common benefits of using GIS as a supplement to engineering modeling are summarized. Several brief case studies of GIS modeling applications are taken from popular civil engineering literature to demonstrate the wide use and varied implementation of GIS across the discipline. Drawing from the case studies, limitations regarding traditional GIS data models find the implementation of civil engineering models within current GIS are identified and countered by discussing the direction of the next generation of GIS. The paper concludes by highlighting the potential for the misuse of GIS in the context of engineering modeling and suggests that this potential can be reduced through education and awareness. The goal of this paper is to promote awareness of the issues related to GIS-based modeling and to assist in the formulation of questions regarding the application of current GIS. The technology has experienced much publicity of late, with many engineers being perhaps too excited about the usefulness of current GIS. An undoubtedly beneficial side effect of this, however, is that engineers are becoming more aware of GIS and, hopefully, the associated subtleties. Civil engineers must stay informed of GIS issues and progress, but more importantly, civil engineers must inform the GIS community to direct the technology development optimally.

  9. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  10. Handbook of sustainable engineering

    CERN Document Server

    Lee, Kun-Mo

    2013-01-01

    "The efficient utilization of energy, sustainable use of natural resources, and large-scale adoption of sustainable technologies is the key to a sustainable future. The Handbook of Sustainable Engineering provides tools that will help us achieve these goals". Nobel Prize Winner Dr. R.K. Pauchauri, Chairman, UN Intergovernmental Panel on Climate Change As global society confronts the challenges of diminishing resources, ecological degradation, and climate change, engineers play a crucial role designing and building technologies and products that fulfil our needs for utility and sustainability. The Handbook of Sustainable Engineering equips readers with the context and the best practices derived from both academic research and practical examples of successful implementations of sustainable technical solutions. The handbook’s content revolves around the two themes, new ways of thinking and new business models, including sustainable production, products, service systems and consumption while addressing key asse...

  11. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  12. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants.

    Science.gov (United States)

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor's belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K-12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. © 2015 S. E. DeChenne et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Development of a Dynamic Engine Brake Model for Control Purposes

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Willems, F.P.T.; Vink, W.; van den Heuvel, I.T.M.

    2006-01-01

    This paper presents the extension of an existing mean value dynamic engine model with new models for the combination of a compression release brake and an exhaust valve brake. The focus is on the prediction of engine brake torque, exhaust gas temperatures and mass flow rates. The implemented models

  14. Development of a dynamic engine brake model for control purposes

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Willems, F.P.T.; Vink, W.; van den Heuvel, I.T.M.; Corde, G.

    2007-01-01

    This paper presents the extension of an existing mean value dynamic engine model with new models for the combination of a compression release brake and an exhaust valve brake. The focus is on the prediction of engine brake torque, exhaust gas temperatures and mass flow rates. The implemented models

  15. Four-Stroke, Internal Combustion Engine Performance Modeling

    Science.gov (United States)

    Wagner, Richard C.

    In this thesis, two models of four-stroke, internal combustion engines are created and compared. The first model predicts the intake and exhaust processes using isentropic flow equations augmented by discharge coefficients. The second model predicts the intake and exhaust processes using a compressible, time-accurate, Quasi-One-Dimensional (Q1D) approach. Both models employ the same heat release and reduced-order modeling of the cylinder charge. Both include friction and cylinder loss models so that the predicted performance values can be compared to measurements. The results indicate that the isentropic-based model neglects important fluid mechanics and returns inaccurate results. The Q1D flow model, combined with the reduced-order model of the cylinder charge, is able to capture the dominant intake and exhaust fluid mechanics and produces results that compare well with measurement. Fluid friction, convective heat transfer, piston ring and skirt friction and temperature-varying specific heats in the working fluids are all shown to be significant factors in engine performance predictions. Charge blowby is shown to play a lesser role.

  16. AADL and Model-based Engineering

    Science.gov (United States)

    2014-10-20

    pictures – MDE and MDA with UML – Automatically generated documents We need language for architecture modeling • Strongly typed • Well-defined...Mail Software Engineering Institute Customer Relations 4500 Fifth Avenue Pittsburgh, PA 15213-2612 USA Web Wiki.sei.cmu.edu/aadl www.aadl.info

  17. The Influence of Engineers' Training Models on Ethics and Civic Education Component in Engineering Courses in Portugal

    Science.gov (United States)

    Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina

    2017-01-01

    The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its…

  18. Abstracts of the 10th Conference of the Italian Society of Agricultural Engineering

    Directory of Open Access Journals (Sweden)

    Danilo Monarca

    2013-09-01

    Full Text Available it is my pleasure to welcome you to the 10th AIIA Conference: “AIIA13 – Horizons in agricultural, forestry and biosystems engineering”, and to welcome you to Viterbo. For the first time the AIIA conference will be held in English. The purpose of this choice is to involve academics and researchers coming from other nations. This conference will then be a unique opportunity for scientists, researchers, experts, students and people representing the business world to show, share and discuss the results of their researches. Another goal of this conference is the promotion of the cooperation and networking in the field of Biosystems Engineering, also trying to include the business world in it. By doing that, we will be able to take on the new challenge of Horizon 2020, the new European Framework Programme. This programme attributes a capital and fundamental role to research and innovation, seen as important means to guarantee an intelligent, sustainable and comprehensive growth to Europe. Horizon 2020 is articulated on 3 strategic objectives 1 Excellent science, intended to secure Europe’s leadership in science worldwide. 2 Industrial Leadership , aimed at supporting research and innovation of European industry, with a strong focus on industrial technologies and investments for SMEs, 3 Societal challenges , aimed at tackling major global challenges in the following areas: health, demographic change and wellbeing, food security, sustainable agriculture, secure, clean and efficient energy, smart, green and integrated transport, climate action, resource efficiency and raw materials, inclusive, innovative and secure societies. In all these fields Agricultural, Forestry and Biosystems Engineering in the coming years will have a major role. I conclude by saying that AIIA13 is also an opportunity to know the Tuscia, a still intact territory, in which culture and respect for the land, innovation and tradition come together in a truly original model of

  19. Genome scale engineering techniques for metabolic engineering.

    Science.gov (United States)

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    Science.gov (United States)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  1. Computing in Hydraulic Engineering Education

    Science.gov (United States)

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  2. The futures of climate engineering

    Science.gov (United States)

    Low, Sean

    2017-01-01

    This piece examines the need to interrogate the role of the conceptions of the future, as embedded in academic papers, policy documents, climate models, and other artifacts that serve as currencies of the science-society interface, in shaping scientific and policy agendas in climate engineering. Growing bodies of work on framings, metaphors, and models in the past decade serve as valuable starting points, but can benefit from integration with science and technology studies work on the sociology of expectations, imaginaries, and visions. Potentially valuable branches of work to come might be the anticipatory use of the future: the design of experimental spaces for exploring the future of an engineered climate in service of responsible research and innovation, and the integration of this work within the unfolding context of the Paris Agreement.

  3. 48th Annual Convention of Computer Society of India

    CERN Document Server

    Avadhani, P; Udgata, Siba; Lakshminarayana, Sadasivuni; ICT and Critical Infrastructure

    2014-01-01

      This volume contains 85 papers presented at CSI 2013: 48th Annual Convention of Computer Society of India with the theme “ICT and Critical Infrastructure”. The convention was held during 13th –15th December 2013 at Hotel Novotel Varun Beach, Visakhapatnam and hosted by Computer Society of India, Vishakhapatnam Chapter in association with Vishakhapatnam Steel Plant, the flagship company of RINL, India. This volume contains papers mainly focused on Data Mining, Data Engineering and Image Processing, Software Engineering and Bio-Informatics, Network Security, Digital Forensics and Cyber Crime, Internet and Multimedia Applications and E-Governance Applications.

  4. Turbofan engine mathematic model for its static and dynamic characteristics research

    Directory of Open Access Journals (Sweden)

    О.Є. Карпов

    2004-01-01

    Full Text Available  Demands to mathematical model of the turbofan engine are determined in the article. The mathematical model is used for calculations static and dynamic parameters, which are required for estimation of engine technical state in operation. There are the mathematical model of the turbofan engine AИ-25 and the results of calculations static and dynamic parameters at initial condition in the article.

  5. IEEE [Institute of Electrical and Electronics Engineers] standards and nuclear software quality engineering

    International Nuclear Information System (INIS)

    Daughtrey, T.

    1988-01-01

    Significant new nuclear-specific software standards have recently been adopted under the sponsorship of the American Nuclear Society and the American Society of Mechanical Engineers. The interest of the US Nuclear Regulatory Commission has also been expressed through their issuance of NUREG/CR-4640. These efforts all indicate a growing awareness of the need for thorough, referenceable expressions of the way to build in and evaluate quality in nuclear software. A broader professional perspective can be seen in the growing number of software engineering standards sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Computer Society. This family of standards represents a systematic effort to capture professional consensus on quality practices throughout the software development life cycle. The only omission-the implementation phase-is treated by accepted American National Standards Institute or de facto standards for programming languages

  6. Expanding the Use of Solid Modeling throughout the Engineering Curriculum.

    Science.gov (United States)

    Baxter, Douglas H.

    2001-01-01

    Presents the initial work that Rensselaer Polytechnic Institute has done to integrate solid modeling throughout the engineering curriculum. Aims to provide students the opportunity to use their solid modeling skills in several courses and show students how solid modeling tools can be used to help solve a variety of engineering problems.…

  7. The Effects Of Gender, Engineering Identification, and Engineering Program Expectancy On Engineering Career Intentions: Applying Hierarchical Linear Modeling (HLM) In Engineering Education Research

    Science.gov (United States)

    Tendhar, Chosang; Paretti, Marie C.; Jones, Brett D.

    2017-01-01

    This study had three purposes and four hypotheses were tested. Three purposes: (1) To use hierarchical linear modeling (HLM) to investigate whether students' perceptions of their engineering career intentions changed over time; (2) To use HLM to test the effects of gender, engineering identification (the degree to which an individual values a…

  8. The psychological disengagement model among women in science, engineering, and technology.

    Science.gov (United States)

    Beaton, Ann M; Tougas, Francine; Rinfret, Natalie; Monger, Tanya

    2015-09-01

    Psychological responses to personal relative deprivation based on self/outgroup comparisons (named self/outgroup PRD) were explored among women in science, engineering, and technology according to the Psychological Disengagement Model. Three studies revealed that the experience of self/outgroup PRD increased women's likelihood of discounting the feedback they received at work. In turn, discounting led them to devalue their profession. Each study further documented the damaging effect of both psychological disengagement mechanisms. Study 1 (N = 93) revealed that discounting and devaluing were associated with decreased self-esteem. These results were replicated in Studies 2 and 3. Study 2 (N = 163) demonstrated that discounting and devaluing were also associated with reduced self-esteem stability. Study 3 (N = 187) further showed that psychological disengagement was also associated with women's occupational commitment. Theoretical and practical implications of these results are considered. © 2014 The British Psychological Society.

  9. Digital Denmark: From Information Society to Network Society

    DEFF Research Database (Denmark)

    Henten, Anders; Falch, Morten

    2000-01-01

    for a welfare society. However, globalisation and the spreading use of new information and communication technologies and services challenge this position. This article examines Denmark's performance in implementing its IS 2000 plans, the background to the Digital Denmark report, and its implications......The Danish Government recently issued a new policy report, Digital Denmark, on the "conversion to a network society", as a successor to its Information Society 2000 report (1994). This is part of a new round of information society policy vision statements that are, or will be forthcoming from...... national governments everywhere. Denmark provides an interesting case study because it ranks high in the benchmark indicators of information network society developments. This position has been obtained largely by public sector initiatives and without erosion of the highly reputed Scandinavian model...

  10. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    International Nuclear Information System (INIS)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik; Andreasen, Anders; Larsen, Ulrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NO x emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NO x emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN B and W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NO x emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation. - Highlights: ► A fast realistic model of a marine two-stroke low speed diesel engine was derived. ► The model is fast and accurate enough for future complex energy systems analysis. ► The effects of engine tuning were validated with experimental tests. ► The model was validated while constrained by experimental input and output data.

  11. The Institutional Approach for Modeling the Evolution of Human Societies.

    Science.gov (United States)

    Powers, Simon T

    2018-01-01

    Artificial life is concerned with understanding the dynamics of human societies. A defining feature of any society is its institutions. However, defining exactly what an institution is has proven difficult, with authors often talking past each other. This article presents a dynamic model of institutions, which views them as political game forms that generate the rules of a group's economic interactions. Unlike most prior work, the framework presented here allows for the construction of explicit models of the evolution of institutional rules. It takes account of the fact that group members are likely to try to create rules that benefit themselves. Following from this, it allows us to determine the conditions under which self-interested individuals will create institutional rules that support cooperation-for example, that prevent a tragedy of the commons. The article finishes with an example of how a model of the evolution of institutional rewards and punishments for promoting cooperation can be created. It is intended that this framework will allow artificial life researchers to examine how human groups can themselves create conditions for cooperation. This will help provide a better understanding of historical human social evolution, and facilitate the resolution of pressing societal social dilemmas.

  12. An introduction to network modeling and simulation for the practicing engineer

    CERN Document Server

    Burbank, Jack; Ward, Jon

    2011-01-01

    This book provides the practicing engineer with a concise listing of commercial and open-source modeling and simulation tools currently available including examples of implementing those tools for solving specific Modeling and Simulation examples. Instead of focusing on the underlying theory of Modeling and Simulation and fundamental building blocks for custom simulations, this book compares platforms used in practice, and gives rules enabling the practicing engineer to utilize available Modeling and Simulation tools. This book will contain insights regarding common pitfalls in network Modeling and Simulation and practical methods for working engineers.

  13. Nuclear energy: a world of service to humanity. 27th annual conference of the Canadian Nuclear Society and 30th Canadian Nuclear Society/Canadian Nuclear Association student conference

    International Nuclear Information System (INIS)

    2006-01-01

    The 27th Annual conference of the Canadian Nuclear Society was held on June 11-14, 2006 in Toronto, Ontario, Canada. The conference gathered close to 400 scientists, engineers, technologists and students interested in all aspects and applications of energy from the atom. The central objective of this conference was to provide a forum for exchange of views on how this technical enterprise can best serve the needs of humanity, now and in the future. The plenary sessions addressed broad industrial and commercial developments in the field. Over eighty papers were presented in 15 technical sessions on the following topics: safety analysis; plant refurbishment; control room operation; nuclear chemistry and materials; advanced reactor design; plant operation; reactor physics; safety analysis; nuclear instrumentation; and, nuclear general topics. Embedded in the conference was the 30th student conference, sponsored by the Canadian Nuclear Society and the Canadian Nuclear Association. Over thirty-five papers were presented in five sessions on the following topics: corrosion processes; control systems / physics / modelling; and, chemistry / chemical engineering

  14. ITs in Engineering Education: Joining Efforts Between SPEE and IGIP

    Directory of Open Access Journals (Sweden)

    Alberto Cardoso

    2012-01-01

    Full Text Available The International Society for Engineering Education (IGIP and The Portuguese Society for Engineering Education (SPEE, the first being the oldest European Society for Engineering Education in Europe and the second the very young Society for Engineering Education in Portugal, have been intensifying the collaboration between the two societies as well as the exchange and dissemination of information about their relevant activities, whilst promoting understanding and cooperation between their respective members. One possible way is to create joint working groups, open to the members of both societies, on common topics of interest. In fact, both societies already kicked off this activity. The first initiative happened during the 1st World Engineering Education Flash Week (WEE, Lisbon, 2011. The SPEE-IGIP Flash Moment was a one day event integrated in the main Conference, which was dedicated to “Information & Communication Technologies in Engineering Education”.
    ITs allow the development of different teaching strategies which contribute to enhance the learning outcomes of students. ITs are also particularly suited to develop Life Long Learning tools, in a broad range of Engineering subjects, either open to the general market or oriented to a very specific public.
    Examples of teaching strategies involving ITs have been addressed during the Flash Moment SPEE-IGIP which took place during WEE, and some are described in detail in the present work.

  15. Accreditation of nuclear engineering programs

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1989-01-01

    The American Nuclear Society (ANS) Professional Development and Accreditation Committee (PDAC) has the responsibility for accreditation of engineering and technology programs for nuclear and similarly named programs. This committee provides society liaison with the Accreditation Board for Engineering and Technology (ABET), is responsible for the appointment and training of accreditation visitors, nomination of members for the ABET Board and Accreditation Commissions, and review of the criteria for accreditation of nuclear-related programs. The committee is composed of 21 members representing academia and industry. The ABET consists of 19 participating bodies, primarily professional societies, and 4 affiliate bodies. Representation on ABET is determined by the size of the professional society and the number of programs accredited. The ANS, as a participating body, has one member on the ABET board, two members on the Engineering Accreditation Commission, and one on the Technology Accreditation Commission. The ABET board sets ABET policy and the commissions are responsible for accreditation visits

  16. Modeling reacting gases and aftertreatment devices for internal combustion engines

    Science.gov (United States)

    Depcik, Christopher David

    As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream

  17. Protein engineering and the use of molecular modeling and simulation: the case of heterodimeric Fc engineering.

    Science.gov (United States)

    Spreter Von Kreudenstein, Thomas; Lario, Paula I; Dixit, Surjit B

    2014-01-01

    Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort

    Science.gov (United States)

    Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.

    2017-01-01

    The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.

  19. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    Baeten, J.C.M.; van de Mortel - Fronczak, J.M.; Rooda, J.E.

    2016-01-01

    Increasing system complexity, time to market and development costs reduction place higher demands on engineering processes. Formal models play an important role here because they enable the use of various model-based analyses and early integration techniques and tools. Engineering processes based on

  20. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  1. Alternative approaches to reliability modeling of a multiple engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.

    1994-01-01

    The lifetime of the engineered barrier system used for containment of high-level radioactive waste will significantly impact the total performance of a geological repository facility. Currently two types of designs are under consideration for an engineered barrier system, single engineered barrier system and multiple engineered barrier system. Multiple engineered barrier system consists of several metal barriers and the waste form (cladding). Some recent work show that a significant improvement of performance can be achieved by utilizing multiple engineered barrier systems. Considering sequential failures for each barrier, we model the reliability of the multiple engineered barrier system. Weibull and exponential lifetime distributions are used through out the analysis. Furthermore, the number of failed engineered barrier systems in a repository at a given time is modeled using a poisson approximation

  2. 3D modeling based on CityEngine

    Science.gov (United States)

    Jia, Guangyin; Liao, Kaiju

    2017-03-01

    Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.

  3. Engineering and "Standards for Technological Literacy."

    Science.gov (United States)

    Gorham, Douglas

    2002-01-01

    Describes the relationship between engineering and technological literacy, criteria used by the Accrediting Board for Engineering and Technology, and the role of professional engineering societies in promoting technological literacy. (SK)

  4. Genome-scale modeling for metabolic engineering.

    Science.gov (United States)

    Simeonidis, Evangelos; Price, Nathan D

    2015-03-01

    We focus on the application of constraint-based methodologies and, more specifically, flux balance analysis in the field of metabolic engineering, and enumerate recent developments and successes of the field. We also review computational frameworks that have been developed with the express purpose of automatically selecting optimal gene deletions for achieving improved production of a chemical of interest. The application of flux balance analysis methods in rational metabolic engineering requires a metabolic network reconstruction and a corresponding in silico metabolic model for the microorganism in question. For this reason, we additionally present a brief overview of automated reconstruction techniques. Finally, we emphasize the importance of integrating metabolic networks with regulatory information-an area which we expect will become increasingly important for metabolic engineering-and present recent developments in the field of metabolic and regulatory integration.

  5. A systematic approach to engineering ethics education.

    Science.gov (United States)

    Li, Jessica; Fu, Shengli

    2012-06-01

    Engineering ethics education is a complex field characterized by dynamic topics and diverse students, which results in significant challenges for engineering ethics educators. The purpose of this paper is to introduce a systematic approach to determine what to teach and how to teach in an ethics curriculum. This is a topic that has not been adequately addressed in the engineering ethics literature. This systematic approach provides a method to: (1) develop a context-specific engineering ethics curriculum using the Delphi technique, a process-driven research method; and (2) identify appropriate delivery strategies and instructional strategies using an instructional design model. This approach considers the context-specific needs of different engineering disciplines in ethics education and leverages the collaboration of engineering professors, practicing engineers, engineering graduate students, ethics scholars, and instructional design experts. The proposed approach is most suitable for a department, a discipline/field or a professional society. The approach helps to enhance learning outcomes and to facilitate ethics education curriculum development as part of the regular engineering curriculum.

  6. Engineering Student's Ethical Awareness and Behavior: A New Motivational Model.

    Science.gov (United States)

    Bairaktarova, Diana; Woodcock, Anna

    2017-08-01

    Professional communities are experiencing scandals involving unethical and illegal practices daily. Yet it should not take a national major structure failure to highlight the importance of ethical awareness and behavior, or the need for the development and practice of ethical behavior in engineering students. Development of ethical behavior skills in future engineers is a key competency for engineering schools as ethical behavior is a part of the professional identity and practice of engineers. While engineering educators have somewhat established instructional methods to teach engineering ethics, they still rely heavily on teaching ethical awareness, and pay little attention to how well ethical awareness predicts ethical behavior. However the ability to exercise ethical judgement does not mean that students are ethically educated or likely to behave in an ethical manner. This paper argues measuring ethical judgment is insufficient for evaluating the teaching of engineering ethics, because ethical awareness has not been demonstrated to translate into ethical behavior. The focus of this paper is to propose a model that correlates with both, ethical awareness and ethical behavior. This model integrates the theory of planned behavior, person and thing orientation, and spheres of control. Applying this model will allow educators to build confidence and trust in their students' ability to build a professional identity and be prepared for the engineering profession and practice.

  7. Development and validation of a free-piston engine generator numerical model

    International Nuclear Information System (INIS)

    Jia, Boru; Zuo, Zhengxing; Tian, Guohong; Feng, Huihua; Roskilly, A.P.

    2015-01-01

    Highlights: • Detailed numerical model of free-piston engine generator is presented. • Sub models for both starting process and steady operation are derived. • Simulation results show good agreement with prototype test data. • Engine performance with different starting motor force and varied loads are simulated. • The efficiency of the prototype is estimated to be 31.5% at a power output of 4 kW under full load. - Abstract: This paper focuses on the numerical modelling of a spark ignited free-piston engine generator and the model validation with test results. Detailed sub-models for both starting process and steady operation were derived. The compression and expansion processes were not regarded as ideal gas isentropic processes; both heat transfer and air leakage were taken into consideration. The simulation results show good agreement with the prototype test data for both the starting process and steady operation. During the starting process, the difference of the in-cylinder gas pressure can be controlled within 1 bar for every running cycle. For the steady operation process, the difference was less than 5% and the areas enclosed on the pressure–volume diagram were similar, indicating that the power produced by the engine and the engine efficiency could be predicted by this model. Based on this model, the starting process with different starting motor forces and the combustion process with various throttle openings were simulated. The engine performance during stable operation at 100% engine load was predicted, and the efficiency of the prototype was estimated to be 31.5% at power output of 4 kW

  8. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    Science.gov (United States)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are

  9. Information Technology: A challenge to the Human Factors Society?

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1988-01-01

    In his presidential address at the annual meeting of the Human Factors Society, Julian Christensen urged the members of the society to spread the gospel and to persuade the members of other professional societies such as psychologists,sociologists and engineers to join the Human Factors Society......, the argument being that advanced technology requires a cross-disciplinary approach to human factors problems. In the present note, I would like to support this presidential effort. In fact, I will go further in that direction and argue that the present fast pace of information technology threatens to overrun...

  10. Multi dimentional modeling of a CI engine

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the coming shortage of fossil fuels and rising concerns about the environment, it is important to develop new technologies that reduce both energy consumption and pollution at the same time. In the transportation sector, new combustion processes are under development to provide clean diesel combustion with no particulate and NOx emissions. However, these processes have issues such as limited power output, high levels of unburned hydrocarbons, and carbon monoxide emissions. The aim of this paper is to determine in-cylinder flow characteristics to improve combustion performance. Combustion modeling was performed using the ECFM-3Z combustion model and 1D dynamic model and calculations on the configuration of a direct injection diesel engine were made. This study showed that the new ECFM-3Z combustion model provides results in accordance with previous research but that further studies are needed to determine the optimum engine parameters.

  11. The gerontechnology engineer

    NARCIS (Netherlands)

    Bronswijk, van J.E.M.H.; Brink, M.; Vlies, van der R.D.

    2011-01-01

    Pushing supportive technology to serve an aging society originated from the social sciences. Only about 20 years ago did engineers discover the field and formulated it as gerontechnology. The question arises whether engineers and social scientists have succeeded to form a community of practice with

  12. Proceedings of European Medical Physics and Engineering Conference

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a compilation of papers presented at the at the European Medical Physics and Engineering Conference, which incorporates 11th National Conference of the Bulgarian Society of Biomedical Physics and Engineering (BSBPE) and 6th Conference of the European Federation of Organizations for Medical Physics (EFOMP). The reports are grouped in following scientific sessions: 1) Radiation therapy; 2) Biomedical engineering; 3) Education and training; 4) Biophysical methods for diagnostics and therapy; 5) Diagnostic and interventional radiology; 6) Modelling and information technology; 7) Dosimetry and standards; 8) Nuclear medicine and 9) Radiation protection. The individual papers are recorded in INIS as separate items

  13. Mathematical Model of Growth Factor Driven Haptotaxis and Proliferation in a Tissue Engineering Scaffold

    KAUST Repository

    Pohlmeyer, J. V.

    2013-01-29

    Motivated by experimental work (Miller et al. in Biomaterials 27(10):2213-2221, 2006, 32(11):2775-2785, 2011) we investigate the effect of growth factor driven haptotaxis and proliferation in a perfusion tissue engineering bioreactor, in which nutrient-rich culture medium is perfused through a 2D porous scaffold impregnated with growth factor and seeded with cells. We model these processes on the timescale of cell proliferation, which typically is of the order of days. While a quantitative representation of these phenomena requires more experimental data than is yet available, qualitative agreement with preliminary experimental studies (Miller et al. in Biomaterials 27(10):2213-2221, 2006) is obtained, and appears promising. The ultimate goal of such modeling is to ascertain initial conditions (growth factor distribution, initial cell seeding, etc.) that will lead to a final desired outcome. © 2013 Society for Mathematical Biology.

  14. A quantum heat engine based on Tavis-Cummings model

    Science.gov (United States)

    Sun, Kai-Wei; Li, Ran; Zhang, Guo-Feng

    2017-09-01

    This paper will investigate a four-stroke quantum heat engine based on the Tavis-Cummings model. The cycle of the heat engine is similar to the Otto cycle in classical thermodynamics. The relationship between output power as well as cycle efficiency and external physical system parameters are given. Under this condition, the entanglement behavior of the system will be studied. The system can show considerable entanglement by strictly controlling relevant parameters. Unlike common two-level quantum heat engines, efficiency is a function of temperature, showing interesting and unexpected phenomena. Several ways to adjust engine properties by external parameters are proposed, with which the output power and efficiency can be optimized. The heat engine model exhibits high efficiency and output power with the participation of a small number of photons, and decay rapidly as the number of photons increases in entangled area but shows interesting behaviors in non-entangled area of photon numbers.

  15. Sensor fault diagnosis of aero-engine based on divided flight status

    Science.gov (United States)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  16. Sensor fault diagnosis of aero-engine based on divided flight status.

    Science.gov (United States)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  17. Precision engineering: an evolutionary perspective.

    Science.gov (United States)

    Evans, Chris J

    2012-08-28

    Precision engineering is a relatively new name for a technology with roots going back over a thousand years; those roots span astronomy, metrology, fundamental standards, manufacturing and money-making (literally). Throughout that history, precision engineers have created links across disparate disciplines to generate innovative responses to society's needs and wants. This review combines historical and technological perspectives to illuminate precision engineering's current character and directions. It first provides us a working definition of precision engineering and then reviews the subject's roots. Examples will be given showing the contributions of the technology to society, while simultaneously showing the creative tension between the technological convergence that spurs new directions and the vertical disintegration that optimizes manufacturing economics.

  18. Influencing Student Beliefs about the Role of the Civil Engineer in Society

    Science.gov (United States)

    Nesbit, Susan E.; Sianchuk, Robert; Aleksejuniene, Jolanta; Kindiak, Rebecca

    2012-01-01

    This study suggests that community service learning experiences facilitate the reconstruction of civil engineering student beliefs about both the type of work performed by civil engineers and the broad impact of civil engineering knowledge. Further, the service learning experiences highlight for students 1) the importance of relationships between…

  19. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    Baeten, J.C.M.; Mortel - Fronczak, van de J.M.; Rooda, J.E.

    2011-01-01

    Due to increasing system complexity, time-to-market and development costs reduction, there are higher demands on engineering processes. Model-based engineering can play a role here because it supports system development by enabling the use of various model-based analysis techniques and tools. As a

  20. Abstracts of the 17. world congress of the International Commission of Agriculture and Biosystems Engineering (CIGR) : sustainable biosystems through engineering

    Energy Technology Data Exchange (ETDEWEB)

    Savoie, P.; Villeneuve, J.; Morisette, R. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada). Soils and Crops Research and Development Centre] (eds.)

    2010-07-01

    This international conference provided a forum to discuss methods to produce agricultural products more efficiently through improvements in engineering and technology. It was attended by engineers and scientists working from different perspectives on biosystems. Beyond food, farms and forests can provide fibre, bio-products and renewable energy. Seven sections of CIGR were organized in the following technical sessions: (1) land and water engineering, (2) farm buildings, equipment, structures and environment, (3) equipment engineering for plants, (4) energy in agriculture, (5) management, ergonomics and systems engineering, (6) post harvest technology and process engineering, and (7) information systems. The Canadian Society of Bioengineering (CSBE) merged its technical program within the 7 sections of CIGR. Four other groups also held their activities during the conference. The American Society of Agricultural and Biological Engineers (ASABE) organized its 9th international drainage symposium and the American Ecological Engineering Society (AEES) held its 10th annual meeting. The International Network for Information Technology in Agriculture (INFITA), and the 8th world congress on computers in agriculture also joined CIGR 2010.

  1. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2012-01-01

    Most people agree that our world face daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel dominant...... perspectives in challenge per-ception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping of engineering education...... and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter strives to elicit the bodies...

  2. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2011-01-01

    Abstract: Most people agree that our world faces daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel...... dominant perspectives in challenge perception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping...... of engineering education and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter...

  3. ETRAN 2002: Society for Electronics,Telecommunications, Computers, Automation and Nuclear Engineering. Section for Nuclear Techniques and Technology. Proceedings of the XLVI Conference. Vol IV

    International Nuclear Information System (INIS)

    Milosevic, M.; Jaksic, Z.; Bozic, D.; Potkonjak, V.

    2002-01-01

    The XLVI ETRAN Conference of the Society for Electronic, Telecommunications, Computers, Automation and Nuclear Engineering was held on 4-7 June, 2002. In the Proceedings of the Conference The Commission of the Nuclear Technique and Technology has 14 papers presented in three following sessions: 1. Actual problems in nuclear technologies; 2. Accelerator and reactor systems; and 3. Radiation protection and ionizing radiation uses

  4. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.

    Science.gov (United States)

    Mohammadi, Mohammad Hossein; Heidary Araghi, Behnaz; Beydaghi, Vahid; Geraili, Armin; Moradi, Farshid; Jafari, Parya; Janmaleki, Mohsen; Valente, Karolina Papera; Akbari, Mohsen; Sanati-Nezhad, Amir

    2016-10-01

    In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Reclaiming Society Publishing

    Directory of Open Access Journals (Sweden)

    Philip E. Steinberg

    2015-07-01

    Full Text Available Learned societies have become aligned with commercial publishers, who have increasingly taken over the latter’s function as independent providers of scholarly information. Using the example of geographical societies, the advantages and disadvantages of this trend are examined. It is argued that in an era of digital publication, learned societies can offer leadership with a new model of open access that can guarantee high quality scholarly material whose publication costs are supported by society membership dues.

  6. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric

  7. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...

  8. Modelling and Simulation of Gas Engines Using Aspen HYSYS

    Directory of Open Access Journals (Sweden)

    M. C. Ekwonu

    2013-12-01

    Full Text Available In this paper gas engine model was developed in Aspen HYSYS V7.3 and validated with Waukesha 16V275GL+ gas engine. Fuel flexibility, fuel types and part load performance of the gas engine were investigated. The design variability revealed that the gas engine can operate on poor fuel with low lower heating value (LHV such as landfill gas, sewage gas and biogas with biogas offering potential integration with bottoming cycles when compared to natural gas. The result of the gas engine simulation gave an efficiency 40.7% and power output of 3592kW.

  9. Solar engineering 1994

    International Nuclear Information System (INIS)

    Klett, D.E.; Hogan, R.E.; Tanaka, Tadayoshi

    1994-01-01

    This volume of 83 papers constitutes the Proceedings of the 1994 International Solar Energy Conference held March 27--30, 1994 in San Francisco, California. The Conference was jointly sponsored by the Solar Energy Division of the American Society of Mechanical Engineers, The Japan Society of Mechanical Engineers and the Japan Solar Energy Society. This is the fourth cooperation between ASME, JSME and JSES in cosponsoring the International Solar Energy Conference. The papers cover a wide range of solar technologies from low temperature solar ponds and desalinization to high temperature concentrators for space applications and central receivers for terrestrial power generation. Other topics covered include solar detoxification of hazardous waste, dish Stirling systems, solar cooling, photovoltaics, building energy analysis and conservation, simulation, and testing and measurement techniques. All papers were indexed separately for the data base

  10. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    Science.gov (United States)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  11. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    Science.gov (United States)

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  12. A hybrid society model for simulating residential electricity consumption

    International Nuclear Information System (INIS)

    Xu, Minjie; Hu, Zhaoguang; Wu, Junyong; Zhou, Yuhui

    2008-01-01

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  13. A hybrid society model for simulating residential electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)

    2008-12-15

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  14. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  15. Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models.

    Science.gov (United States)

    Carretta, Marco; de Boer, Bauke; Jaques, Jenny; Antonelli, Antonella; Horton, Sarah J; Yuan, Huipin; de Bruijn, Joost D; Groen, Richard W J; Vellenga, Edo; Schuringa, Jan Jacob

    2017-07-01

    Recently, NOD-SCID IL2Rγ -/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34 + hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34 + cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34 + cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis. Copyright © 2017 ISEH - International Society for Experimental Hematology. All rights reserved.

  16. A Novel Modeling Method for Aircraft Engine Using Nonlinear Autoregressive Exogenous (NARX) Models Based on Wavelet Neural Networks

    Science.gov (United States)

    Yu, Bing; Shu, Wenjun; Cao, Can

    2018-05-01

    A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.

  17. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  18. Modelling a variable valve timing spark ignition engine using different neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Beham, M. [BMW AG, Munich (Germany); Yu, D.L. [John Moores University, Liverpool (United Kingdom). Control Systems Research Group

    2004-10-01

    In this paper different neural networks (NN) are compared for modelling a variable valve timing spark-ignition (VVT SI) engine. The overall system is divided for each output into five neural multi-input single output (MISO) subsystems. Three kinds of NN, multilayer Perceptron (MLP), pseudo-linear radial basis function (PLRBF), and local linear model tree (LOLIMOT) networks, are used to model each subsystem. Real data were collected when the engine was under different operating conditions and these data are used in training and validation of the developed neural models. The obtained models are finally tested in a real-time online model configuration on the test bench. The neural models run independently of the engine in parallel mode. The model outputs are compared with process output and compared among different models. These models performed well and can be used in the model-based engine control and optimization, and for hardware in the loop systems. (author)

  19. Abstracts Book of Jubilee Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    2000-01-01

    Scientific Assemblies of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry are most important chemical discussion forum organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as sections and symposia topics: organic chemistry, physical chemistry (chemical kinetics, catalysis, thermodynamics), membranes and membrane processes, biological chemistry, biotechnology, metalorganic compounds and complexes, polymer chemistry, crystallochemical study, spectroscopy in nowadays chemistry, supramolecular chemistry, chemistry and technology of coal, high-energetic materials, environment protection, didactics in chemistry, radiation chemistry, photochemistry, electrochemistry, chemistry and technology of carbohydrates, theoretical and computer chemistry, young scientists forum, history of chemistry

  20. Constitutive Modeling of Geomaterials Advances and New Applications

    CERN Document Server

    Zhang, Jian-Min; Zheng, Hong; Yao, Yangping

    2013-01-01

    The Second International Symposium on Constitutive Modeling of Geomaterials: Advances and New Applications (IS-Model 2012), is to be held in Beijing, China, during October 15-16, 2012. The symposium is organized by Tsinghua University, the International Association for Computer Methods and Advances in Geomechanics (IACMAG), the Committee of Numerical and Physical Modeling of Rock Mass, Chinese Society for Rock Mechanics and Engineering, and the Committee of Constitutive Relations and Strength Theory, China Institution of Soil Mechanics and Geotechnical Engineering, China Civil Engineering Society. This Symposium follows the first successful International Workshop on Constitutive Modeling held in Hong Kong, which was organized by Prof. JH Yin in 2007.   Constitutive modeling of geomaterials has been an active research area for a long period of time. Different approaches have been used in the development of various constitutive models. A number of models have been implemented in the numerical analyses of geote...

  1. Software And Systems Engineering Risk Management

    Science.gov (United States)

    2010-04-01

    RSKM 2004 COSO Enterprise RSKM Framework 2006 ISO/IEC 16085 Risk Management Process 2008 ISO/IEC 12207 Software Lifecycle Processes 2009 ISO/IEC...1 Software And Systems Engineering Risk Management John Walz VP Technical and Conferences Activities, IEEE Computer Society Vice-Chair Planning...Software & Systems Engineering Standards Committee, IEEE Computer Society US TAG to ISO TMB Risk Management Working Group Systems and Software

  2. A Compositional Knowledge Level Process Model of Requirements Engineering

    NARCIS (Netherlands)

    Herlea, D.E.; Jonker, C.M.; Treur, J.; Wijngaards, W.C.A.

    2002-01-01

    In current literature few detailed process models for Requirements Engineering are presented: usually high-level activities are distinguished, without a more precise specification of each activity. In this paper the process of Requirements Engineering has been analyzed using knowledge-level

  3. Applications of computational modeling in metabolic engineering of yeast.

    Science.gov (United States)

    Kerkhoven, Eduard J; Lahtvee, Petri-Jaan; Nielsen, Jens

    2015-02-01

    Generally, a microorganism's phenotype can be described by its pattern of metabolic fluxes. Although fluxes cannot be measured directly, inference of fluxes is well established. In biotechnology the aim is often to increase the capacity of specific fluxes. For this, metabolic engineering methods have been developed and applied extensively. Many of these rely on balancing of intracellular metabolites, redox, and energy fluxes, using genome-scale models (GEMs) that in combination with appropriate objective functions and constraints can be used to predict potential gene targets for obtaining a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering, tools from synthetic biology have emerged, enabling integration and assembly of naturally nonexistent, but well-characterized components into a living organism. To describe these systems kinetic models are often used and to integrate these systems with the standard metabolic engineering approach, it is necessary to expand the modeling of metabolism to consider kinetics of individual processes. This review will give an overview about models available for metabolic engineering of yeast and discusses their applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  4. 40 CFR 205.153 - Engine displacement.

    Science.gov (United States)

    2010-07-01

    ..., in accordance with American Society for Testing Materials (ASTM) E 29-67. (b) For rotary engines... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine...

  5. Industry Demands and Future of Engineering Education in Kenya

    Directory of Open Access Journals (Sweden)

    Daniel Rutto

    2015-05-01

    Full Text Available Engineering Education in Kenya remains the major determinant of country’s economic agenda. However, at the moment the education system offers the industry and society unsatisfactory knowledge and services due to mismatch between the supplied educational talents and the ever changing world of engineering. It is imperative that the Kenyan engineering education be designed to tackle challenges emerging in our societies and industries by providing real tangible practical skills. The government on its part should take its share by supporting and giving direction to institution offering such courses. In order to produce graduates with employable skills, institutions of engineering must aim at quality while ensuring massification of students into programs never happens. This paper is thus designed to show challenges facing quality of engineering education offered in Kenya in relation to the society and industrial needs. The paper also highlights the future demands needed on Kenyan engineering education. The write-up is expected to inspire education designers and curriculum developers in preparing programs that provide for the society and industry.

  6. Re-engineering pre-employment check-up systems: a model for improving health services.

    Science.gov (United States)

    Rateb, Said Abdel Hakim; El Nouman, Azza Abdel Razek; Rateb, Moshira Abdel Hakim; Asar, Mohamed Naguib; El Amin, Ayman Mohammed; Gad, Saad abdel Aziz; Mohamed, Mohamed Salah Eldin

    2011-01-01

    The purpose of this paper is to develop a model for improving health services provided by the pre-employment medical fitness check-up system affiliated to Egypt's Health Insurance Organization (HIO). Operations research, notably system re-engineering, is used in six randomly selected centers and findings before and after re-engineering are compared. The re-engineering model follows a systems approach, focusing on three areas: structure, process and outcome. The model is based on six main components: electronic booking, standardized check-up processes, protected medical documents, advanced archiving through an electronic content management (ECM) system, infrastructure development, and capacity building. The model originates mainly from customer needs and expectations. The centers' monthly customer flow increased significantly after re-engineering. The mean time spent per customer cycle improved after re-engineering--18.3 +/- 5.5 minutes as compared to 48.8 +/- 14.5 minutes before. Appointment delay was also significantly decreased from an average 18 to 6.2 days. Both beneficiaries and service providers were significantly more satisfied with the services after re-engineering. The model proves that re-engineering program costs are exceeded by increased revenue. Re-engineering in this study involved multiple structure and process elements. The literature review did not reveal similar re-engineering healthcare packages. Therefore, each element was compared separately. This model is highly recommended for improving service effectiveness and efficiency. This research is the first in Egypt to apply the re-engineering approach to public health systems. Developing user-friendly models for service improvement is an added value.

  7. [Gender equality activity in the Bioimaging Society].

    Science.gov (United States)

    Suzaki, Etsuko

    2013-09-01

    Gender equality activity in the Bioimaging Society was initiated in 2005 when it joined the Japan Inter-Society Liaison Association Committee for Promoting Equal Participation of Men and Women in Science and Engineering (EPMEWSE). The Gender Equality Committee of the Bioimaging Society is acting on this issue by following the policy of the EPMEWSE, and has also been planning and conducting lectures at annual meetings of the society to gain the understanding, consents, and cooperation of the members of the society to become conscious of gender equality. Women's participation in the society has been promoted through the activities of the Gender Equality Committee, and the number of women officers in the society has since increased from two women out of 40 members in 2005 to five out of 44 in 2013. The activities of the Gender Equality Committee of the Japanese Association of Anatomists (JAA) have just started. There are more than 400 women belonging to the JAA. When these women members join together and collaborate, women's participation in the JAA will increase.

  8. Benefits of ecological engineering practices

    NARCIS (Netherlands)

    Van den Boomen, R.; Chaudhuri, N.; Heeb, J.; Jenssen, P.; Kalin, M.; Schönborn, A.; Brüll, A.; Van Bohemen, H.; Costanza, R.; Mitsch, W.J.

    2011-01-01

    With the intention to further promote the field of ecological engineering and the solutions it provides, a workshop on “Benefits of Ecological Engineering Practices” was held 3 Dec 2009. It was conducted by the International Ecological Engineering Society in Paris at the conference “Ecological

  9. 75 FR 68179 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    Science.gov (United States)

    2010-11-05

    ... Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines AGENCY: Federal Aviation... pumps failed as a result of pressure oscillations in the fuel supply line. We are issuing this AD to.... Analyses have shown that high pressure (HP) fuel pumps failed as a result of pressure oscillations in the...

  10. Use of single-representative reverse-engineered surface-models for RSA does not affect measurement accuracy and precision.

    Science.gov (United States)

    Seehaus, Frank; Schwarze, Michael; Flörkemeier, Thilo; von Lewinski, Gabriela; Kaptein, Bart L; Jakubowitz, Eike; Hurschler, Christof

    2016-05-01

    Implant migration can be accurately quantified by model-based Roentgen stereophotogrammetric analysis (RSA), using an implant surface model to locate the implant relative to the bone. In a clinical situation, a single reverse engineering (RE) model for each implant type and size is used. It is unclear to what extent the accuracy and precision of migration measurement is affected by implant manufacturing variability unaccounted for by a single representative model. Individual RE models were generated for five short-stem hip implants of the same type and size. Two phantom analyses and one clinical analysis were performed: "Accuracy-matched models": one stem was assessed, and the results from the original RE model were compared with randomly selected models. "Accuracy-random model": each of the five stems was assessed and analyzed using one randomly selected RE model. "Precision-clinical setting": implant migration was calculated for eight patients, and all five available RE models were applied to each case. For the two phantom experiments, the 95%CI of the bias ranged from -0.28 mm to 0.30 mm for translation and -2.3° to 2.5° for rotation. In the clinical setting, precision is less than 0.5 mm and 1.2° for translation and rotation, respectively, except for rotations about the proximodistal axis (RSA can be achieved and are not biased by using a single representative RE model. At least for implants similar in shape to the investigated short-stem, individual models are not necessary. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:903-910, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Applications of computational modeling in metabolic engineering of yeast

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Lahtvee, Petri-Jaan; Nielsen, Jens

    2015-01-01

    a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering......, it is necessary to expand the modeling of metabolism to consider kinetics of individual processes. This review will give an overview about models available for metabolic engineering of yeast and discusses their applications....

  12. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  13. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  14. Main Dynamics of the Transition from Industrial Society to Information Society

    Directory of Open Access Journals (Sweden)

    Yaşar Tonta

    2005-12-01

    Full Text Available Industrial Society is based on mass production and mass distribution of standardized goods and services. The objective of companies is to reduce the unit cost by producing and distributing the same goods in large quantities cheaper than their competitors. Mass production and mass distribution requires an economic model based on centralization; mechanistical, rigid/hierarchical organizational structures; and traditional education. Companies act on the basis of the logic of “produce, store, and sell”. Information Society on the other hand is an indication of a more complex and richer social structure. The objective of companies is to produce mass customized and personalized goods and services for their customers. The customer can buy a personalized good or service with the best price from anywhere in the world. Called “The Age of Terrific Deal” by Robert B. Reich, Information Society requires an economic model based on personalization; dynamic and flat organizational structures; and customer focused education. Companies must act on the basis of the logic of “sell, produce, and deliver”. This paper discusses the major changes that take place during the transition from Industrial Society to Information Society along with basic dynamics of the Information Society.

  15. Materials of 46. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical. Volume 1,2,3

    International Nuclear Information System (INIS)

    2003-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meetings organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects were proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum as well as the reports of results of works sponsored by Committee of Scientific Research

  16. Holistic Education: The Social Reality of Engineering

    Directory of Open Access Journals (Sweden)

    HELENA TRBUŠIĆ

    2013-12-01

    Full Text Available Over the last few decades, scientists exploring the aspects of engineering education and investigating the strong connection between the engineering profession and society have argued for a more rounded, holistic approach to the engineering curriculum. In addition to fundamental technical subjects, they have proposed the inclusion of a broad range of social subjects in order to equip young engineers with social and communication skills relevant for teamwork, and to enhance their awareness about both the way social changes influence the implementation of certain engineering solutions and about the way developments in engineering have a considerable impact on society in general. This paper presents the results of a two-year qualitative study of the importance of social subjects within the engineering academic curriculum at the Faculty of Mechanical Engineering and Naval Architecture in Zagreb, Croatia.

  17. Gene therapy for cartilage and bone tissue engineering

    CERN Document Server

    Hu, Yu-Chen

    2014-01-01

    "Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.

  18. A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects

    Directory of Open Access Journals (Sweden)

    Shuai Luo

    2016-02-01

    Full Text Available Bioelectrochemical systems (BES are promising technologies to convert organic compounds in wastewater to electrical energy through a series of complex physical-chemical, biological and electrochemical processes. Representative BES such as microbial fuel cells (MFCs have been studied and advanced for energy recovery. Substantial experimental and modeling efforts have been made for investigating the processes involved in electricity generation toward the improvement of the BES performance for practical applications. However, there are many parameters that will potentially affect these processes, thereby making the optimization of system performance hard to be achieved. Mathematical models, including engineering models and statistical models, are powerful tools to help understand the interactions among the parameters in BES and perform optimization of BES configuration/operation. This review paper aims to introduce and discuss the recent developments of BES modeling from engineering and statistical aspects, including analysis on the model structure, description of application cases and sensitivity analysis of various parameters. It is expected to serves as a compass for integrating the engineering and statistical modeling strategies to improve model accuracy for BES development.

  19. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  20. Parametric study of a turbocompound diesel engine based on an analytical model

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong; Zhao, Yanting; Chen, Zhen

    2016-01-01

    Turbocompounding is an important technique to recover waste heat from engine exhaust and reduce CO_2 emission. This paper presents a parametric study of turbocompound diesel engine based on analytical model. An analytical model was developed to investigate the influence of system parameters on the engine fuel consumption. The model is based on thermodynamics knowledge and empirical models, which can consider the impacts of each parameter independently. The effects of turbine efficiency, back pressure, exhaust temperature, pressure ratio and engine speed on the recovery energy, pumping loss and engine fuel reductions were studied. Results show that turbine efficiency, exhaust temperature and back pressure has great influence on the fuel reduction and optimal power turbine (PT) expansion ratio. However, engine operation speed has little impact on the fuel savings obtained by turbocompounding. The interaction mechanism between the PT recovery power and engine pumping loss is presented in the paper. Due to the nonlinear characteristic of turbine power, there is an optimum value of PT expansion ratio to achieve largest power gain. At the end, the fuel saving potential of high performance turbocompound engine and the requirements for it are proposed in the paper. - Highlights: • An analytical model for turbocompound engine is developed and validated. • Parametric study is performed to obtain lowest BSFC and optimal expansion ratio. • The influences of each parameter on the fuel saving potentials are presented. • The impact mechanisms of each parameter on the energy tradeoff are disclosed. • It provides an effective tool to guide the preliminary design of turbocompounding.

  1. Asymptotic analysis soot model and experiment for a directed injection engine

    Science.gov (United States)

    Liu, Yongfeng; Pei, Pucheng; Xiong, Qinghui; Lu, Yong

    2012-09-01

    The existing soot models are either too complex and can not be applied to the internal combustion engine, or too simple to make calculation errors. Exploring the soot model becomes the pursuit of the goal of many researchers within the error range in the current computer speed. On the basis of the latest experimental results, TP (temperature phases) model is presented as a new soot model to carry out optimization calculation for a high-pressure common rail diesel engine. Temperature and excess air factor are the most important two parameters in this model. When zone temperature T0.6, only the soot precursors—polycyclic aromatic hydrocarbons(PAH) is created and there is no soot emission. When zone temperature T ⩾ 1 500 K and excess air factor Φinjection time, variation of rail pressure and variation of speed among TP models. The experimental results indicate that the TP model can carry out optimization and computational fluid dynamics can be a tool to calculate for a high-pressure common rail directed injection diesel engine. The TP model result is closer than the use of the original KIVA-3V results of soot model accuracy by about 50% and TP model gives a new method for engine researchers.

  2. REVIEW ARTICLE: MODELLING AND ANALYSIS OF A GASOLINE ENGINE EXHAUST GAS SYSTEMS

    OpenAIRE

    Barhm Mohamad

    2018-01-01

    The engine exhaust gas behaviour is strongly influencing the engine performance. This paper presents the modelling and analysis of four stroke - gasoline engine exhaust gas systems. An automotive example is considered whereby the pulsating exhausts gas flow through an exhaust pipe and silencer are considered over a wide range of speeds. Analytical procedures are outlined enabling the general analysis and modelling of vehicle engine exhaust gas systems also in this paper present...

  3. Engineering modelling. A contribution to the CommonKADS library

    Energy Technology Data Exchange (ETDEWEB)

    Top, J.L.; Akkermans, J.M.

    1993-12-01

    Generic knowledge components and models for the task of in particular engineering modelling are presented.It is intended as a contribution to the CommonKADS library. In the first chapter an executive summary is provided. Next, the Conceptual Modelling Language (CML) definitions of the various generic library components are given. In the following two chapters the underlying theory is developed. First, a task-oriented analysis is made, based upon the similarities between modelling and design tasks. Second, an ontological analysis is given, which shows that ontology differentiation constitutes an important problem-solving method (PSM) for engineering modelling, on a par with task-decomposition PSMs. Finally, three different modelling applications, based on existing knowledgeable systems, are analyzed, which analysis illustrates and provides data points for the discussed generic components and models for modelling. 50 figs., 77 refs.

  4. Capability maturity models in engineering companies: case study analysis

    Directory of Open Access Journals (Sweden)

    Titov Sergei

    2016-01-01

    Full Text Available In the conditions of the current economic downturn engineering companies in Russia and worldwide are searching for new approaches and frameworks to improve their strategic position, increase the efficiency of the internal business processes and enhance the quality of the final products. Capability maturity models are well-known tools used by many foreign engineering companies to assess the productivity of the processes, to elaborate the program of business process improvement and to prioritize the efforts to optimize the whole company performance. The impact of capability maturity model implementation on cost and time are documented and analyzed in the existing research. However, the potential of maturity models as tools of quality management is less known. The article attempts to analyze the impact of CMM implementation on the quality issues. The research is based on a case study methodology and investigates the real life situation in a Russian engineering company.

  5. Predictive modeling and reducing cyclic variability in autoignition engines

    Science.gov (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-08-30

    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  6. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    Science.gov (United States)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  7. 78 FR 37885 - Approval of American Society of Mechanical Engineers' Code Cases

    Science.gov (United States)

    2013-06-24

    ... listed in these RGs as alternatives to engineering standards for the construction, inservice inspection... to engineering standards for the construction, ISI, and IST of nuclear power plant components. This...

  8. Identifying barriers to Science, Technology, Society and environment (STSE) educational goals and pedagogy in science education: A case study of UMASS Lowell undergraduate engineering

    Science.gov (United States)

    Phaneuf, Tiffany

    The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.

  9. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Performance engineering in the community atmosphere model

    International Nuclear Information System (INIS)

    Worley, P; Mirin, A; Drake, J; Sawyer, W

    2006-01-01

    The Community Atmosphere Model (CAM) is the atmospheric component of the Community Climate System Model (CCSM) and is the primary consumer of computer resources in typical CCSM simulations. Performance engineering has been an important aspect of CAM development throughout its existence. This paper briefly summarizes these efforts and their impacts over the past five years

  11. Non-ideal Stirling engine thermodynamic model suitable for the integration into overall energy systems

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2014-01-01

    The reliability of modelling and simulation of energy systems strongly depends on the prediction accuracy of each system component. This is the case of Stirling engine-based systems, where an accurate modelling of the engine performance is very important to understand the overall system behaviour. In this sense, many Stirling engine analyses with different approaches have been already developed. However, there is a lack of Stirling engine models suitable for the integration into overall system simulations. In this context, this paper aims to develop a rigorous Stirling engine model that could be easily integrated into combined heat and power schemes for the overall techno-economic analysis of these systems. The model developed considers a Stirling engine with adiabatic working spaces, isothermal heat exchangers, dead volumes, and imperfect regeneration. Additionally, it considers mechanical pumping losses due to friction, limited heat transfer and thermal losses on the heat exchangers. The model is suitable for different engine configurations (alpha beta and gamma engines). It was developed using Aspen Custom Modeller ® (ACM®) as modelling software. The set of equations were solved using ACM ® equation solver for steady-state operation. However, due to the dynamic behaviour of the cycle, a C++ code was integrated to solve iteratively a set of differential equations. This resulted in a cyclic steady-state model that calculates the power output and thermal requirements of the system. The predicted efficiency and power output were compared with the numerical model and the experimental work reported by the NASA Lewis Research Centre for the GPU-3 Stirling engine. This showed average absolute errors around ±4% for the brake power, and ±5% for the brake efficiency at different frequencies. However, the model also showed large errors (±15%) for these calculations at higher frequencies and low pressures. Additional results include the calculation of the cyclic

  12. Combustion engine diagnosis model-based condition monitoring of gasoline and diesel engines and their components

    CERN Document Server

    Isermann, Rolf

    2017-01-01

    This book offers first a short introduction to advanced supervision, fault detection and diagnosis methods. It then describes model-based methods of fault detection and diagnosis for the main components of gasoline and diesel engines, such as the intake system, fuel supply, fuel injection, combustion process, turbocharger, exhaust system and exhaust gas aftertreatment. Additionally, model-based fault diagnosis of electrical motors, electric, pneumatic and hydraulic actuators and fault-tolerant systems is treated. In general series production sensors are used. It includes abundant experimental results showing the detection and diagnosis quality of implemented faults. Written for automotive engineers in practice, it is also of interest to graduate students of mechanical and electrical engineering and computer science. The Content Introduction.- I SUPERVISION, FAULT DETECTION AND DIAGNOSIS METHODS.- Supervision, Fault-Detection and Fault-Diagnosis Methods - a short Introduction.- II DIAGNOSIS OF INTERNAL COMBUST...

  13. Estimation of some stochastic models used in reliability engineering

    International Nuclear Information System (INIS)

    Huovinen, T.

    1989-04-01

    The work aims to study the estimation of some stochastic models used in reliability engineering. In reliability engineering continuous probability distributions have been used as models for the lifetime of technical components. We consider here the following distributions: exponential, 2-mixture exponential, conditional exponential, Weibull, lognormal and gamma. Maximum likelihood method is used to estimate distributions from observed data which may be either complete or censored. We consider models based on homogeneous Poisson processes such as gamma-poisson and lognormal-poisson models for analysis of failure intensity. We study also a beta-binomial model for analysis of failure probability. The estimators of the parameters for three models are estimated by the matching moments method and in the case of gamma-poisson and beta-binomial models also by maximum likelihood method. A great deal of mathematical or statistical problems that arise in reliability engineering can be solved by utilizing point processes. Here we consider the statistical analysis of non-homogeneous Poisson processes to describe the failing phenomena of a set of components with a Weibull intensity function. We use the method of maximum likelihood to estimate the parameters of the Weibull model. A common cause failure can seriously reduce the reliability of a system. We consider a binomial failure rate (BFR) model as an application of the marked point processes for modelling common cause failure in a system. The parameters of the binomial failure rate model are estimated with the maximum likelihood method

  14. Coupled thermodynamic-dynamic semi-analytical model of free piston Stirling engines

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F., E-mail: fabien.formosa@univ-savoie.f [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France)

    2011-05-15

    Research highlights: {yields} The free piston Stirling behaviour relies on its thermal and dynamic features. {yields} A global semi-analytical model for preliminary design is developed. {yields} The model compared with NASA-RE1000 experimental data shows good correlations. -- Abstract: The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standardized description of the engine allows efficient and realistic preliminary design of FPSE.

  15. Coupled thermodynamic-dynamic semi-analytical model of free piston Stirling engines

    International Nuclear Information System (INIS)

    Formosa, F.

    2011-01-01

    Research highlights: → The free piston Stirling behaviour relies on its thermal and dynamic features. → A global semi-analytical model for preliminary design is developed. → The model compared with NASA-RE1000 experimental data shows good correlations. -- Abstract: The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standardized description of the engine allows efficient and realistic preliminary design of FPSE.

  16. Using cognitive modeling for requirements engineering in anesthesiology

    NARCIS (Netherlands)

    Pott, C; le Feber, J

    2005-01-01

    Cognitive modeling is a complexity reducing method to describe significant cognitive processes under a specified research focus. Here, a cognitive process model for decision making in anesthesiology is presented and applied in requirements engineering. Three decision making situations of

  17. Ethical Issues in Engineering Models : Personal Reflections

    OpenAIRE

    Kleijnen, Jack P.C.

    2010-01-01

    I start this contribution with an overview of my personal involvement—as an Operations Research consultant—in several engineering case-studies that may raise ethical questions; these case studies employ simulation models. Next, I present an overview of the recent literature on ethical issues in modeling, focusing on the validation of the model’s assumptions; the decisive role of these assumptions leads to the quest for robust models. Actually, models are meant to solve practical problems; the...

  18. Research on the User Interest Modeling of Personalized Search Engine

    Institute of Scientific and Technical Information of China (English)

    LI Zhengwei; XIA Shixiong; NIU Qiang; XIA Zhanguo

    2007-01-01

    At present, how to enable Search Engine to construct user personal interest model initially, master user's personalized information timely and provide personalized services accurately have become the hotspot in the research of Search Engine area.Aiming at the problems of user model's construction and combining techniques of manual customization modeling and automatic analytical modeling, a User Interest Model (UIM) is proposed in the paper. On the basis of it, the corresponding establishment and update algorithms of User Interest Profile (UIP) are presented subsequently. Simulation tests proved that the UIM proposed and corresponding algorithms could enhance the retrieval precision effectively and have superior adaptability.

  19. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  20. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  1. Mechanics, Models and Methods in Civil Engineering

    CERN Document Server

    Maceri, Franco

    2012-01-01

    „Mechanics, Models and Methods in Civil Engineering” collects leading papers dealing with actual Civil Engineering problems. The approach is in the line of the Italian-French school and therefore deeply couples mechanics and mathematics creating new predictive theories, enhancing clarity in understanding, and improving effectiveness in applications. The authors of the contributions collected here belong to the Lagrange Laboratory, an European Research Network active since many years. This book will be of a major interest for the reader aware of modern Civil Engineering.

  2. The High Level Mathematical Models in Calculating Aircraft Gas Turbine Engine Parameters

    Directory of Open Access Journals (Sweden)

    Yu. A. Ezrokhi

    2017-01-01

    Full Text Available The article describes high-level mathematical models developed to solve special problems arising at later stages of design with regard to calculation of the aircraft gas turbine engine (GTE under real operating conditions. The use of blade row mathematics models, as well as mathematical models of a higher level, including 2D and 3D description of the working process in the engine units and components, makes it possible to determine parameters and characteristics of the aircraft engine under conditions significantly different from the calculated ones.The paper considers application of mathematical modelling methods (MMM for solving a wide range of practical problems, such as forcing the engine by injection of water into the flowing part, estimate of the thermal instability effect on the GTE characteristics, simulation of engine start-up and windmill starting condition, etc. It shows that the MMM use, when optimizing the laws of the compressor stator control, as well as supplying cooling air to the hot turbine components in the motor system, can significantly improve the integral traction and economic characteristics of the engine in terms of its gas-dynamic stability, reliability and resource.It ought to bear in mind that blade row mathematical models of the engine are designed to solve purely "motor" problems and do not replace the existing models of various complexity levels used in calculation and design of compressors and turbines, because in “quality” a description of the working processes in these units is inevitably inferior to such specialized models.It is shown that the choice of the mathematical modelling level of an aircraft engine for solving a particular problem arising in its designing and computational study is to a large extent a compromise problem. Despite the significantly higher "resolution" and information ability the motor mathematical models containing 2D and 3D approaches to the calculation of flow in blade machine

  3. Modeling and Simulation of Truck Engine Cooling System for Onboard Diagnosis

    Institute of Scientific and Technical Information of China (English)

    朱正礼; 张建武; 包继华

    2004-01-01

    A cooling system model of a selected internal combustion engine has been built for onboard diagnosis. The model uses driving cycle data available within the production Engine Control Module (ECM): vehicle speed, engine speed, and fuel flow rate for the given ambient temperature and pressure, etc. Based on the conservation laws for heat transfer and mass flow process, the mathematical descriptions for the components involved in the cooling circuit are obtained and all the components are integrated into a model on Matlab/Simulink platform. The model can simulate the characteristics of thermostat (e.g. time-lag, hysteresis effect).The changes of coolant temperature, heat transfer flow rate, and pressure at individual component site are also shown.

  4. Use of genome-scale microbial models for metabolic engineering

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Åkesson, M.; Nielsen, Jens

    2004-01-01

    Metabolic engineering serves as an integrated approach to design new cell factories by providing rational design procedures and valuable mathematical and experimental tools. Mathematical models have an important role for phenotypic analysis, but can also be used for the design of optimal metaboli...... network structures. The major challenge for metabolic engineering in the post-genomic era is to broaden its design methodologies to incorporate genome-scale biological data. Genome-scale stoichiometric models of microorganisms represent a first step in this direction....

  5. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies

    International Nuclear Information System (INIS)

    Gottschalk, Fadri; Sun, TianYin; Nowack, Bernd

    2013-01-01

    Scientific consensus predicts that the worldwide use of engineered nanomaterials (ENM) leads to their release into the environment. We reviewed the available literature concerning environmental concentrations of six ENMs (TiO 2 , ZnO, Ag, fullerenes, CNT and CeO 2 ) in surface waters, wastewater treatment plant effluents, biosolids, sediments, soils and air. Presently, a dozen modeling studies provide environmental concentrations for ENM and a handful of analytical works can be used as basis for a preliminary validation. There are still major knowledge gaps (e.g. on ENM production, application and release) that affect the modeled values, but over all an agreement on the order of magnitude of the environmental concentrations can be reached. True validation of the modeled values is difficult because trace analytical methods that are specific for ENM detection and quantification are not available. The modeled and measured results are not always comparable due to the different forms and sizes of particles that these two approaches target. -- Highlights: •Modeled environmental concentrations of engineered nanomaterials are reviewed. •Measured environmental concentrations of engineered nanomaterials are reviewed. •Possible validation of modeled data by measurements is critically evaluated. •Different approaches in modeling and measurement methods complicate validation. -- Modeled and measured environmental concentrations of engineered nanomaterials are reviewed and critically discussed

  6. Development of CFD model for augmented core tripropellant rocket engine

    Science.gov (United States)

    Jones, Kenneth M.

    1994-10-01

    The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.

  7. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    Science.gov (United States)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  8. Deployment of e-health services - a business model engineering strategy.

    Science.gov (United States)

    Kijl, Björn; Nieuwenhuis, Lambert J M; Huis in 't Veld, Rianne M H A; Hermens, Hermie J; Vollenbroek-Hutten, Miriam M R

    2010-01-01

    We designed a business model for deploying a myofeedback-based teletreatment service. An iterative and combined qualitative and quantitative action design approach was used for developing the business model and the related value network. Insights from surveys, desk research, expert interviews, workshops and quantitative modelling were combined to produce the first business model and then to refine it in three design cycles. The business model engineering strategy provided important insights which led to an improved, more viable and feasible business model and related value network design. Based on this experience, we conclude that the process of early stage business model engineering reduces risk and produces substantial savings in costs and resources related to service deployment.

  9. An assessment of CFD-based wall heat transfer models in piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States)

    2017-04-26

    The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictive submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.

  10. Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling

    Science.gov (United States)

    Tew, Roy C., Jr.

    1988-01-01

    NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

  11. Enhanced Core Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  12. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  13. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  14. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  15. Guidelines for Engineering Teachers Concerning Educating the Engineer for Innovative and Entrepreneurial Activity.

    Science.gov (United States)

    Eekels, J.

    1987-01-01

    Emphasizes that the concept of design is fundamental in innovation. Outlines the work of the European Society for Engineering Education-Working group on Innovation. Describes the innovation-management stream in the curriculum of the faculty of Industrial Design Engineering at Delft University of Technology, Netherlands. (CW)

  16. Engineering education in the period with rapid change; Henkakuki no kogaku kyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Y. [Osaka University, Osaka (Japan)

    2000-01-05

    The Accreditation Examination Committee of engineering education was established in 1997 in the Japan Engineering Education Society, and the International Universal Engineer Review Board was established in the Japan Engineering Education Society and the Japan Engineering Society in 1998. A series of the activities was connected to the establishment of 'Japan Accreditation Board for Engineering Education' (JABEE). To adapt to the movements, the Educational Program Review Board in the Engineering was installed in 1997 mainly composed of directors of engineering departments of 8 national universities. This Board arranges the contents of engineering education in the orders as follows, and studies on this base are being promoted. (1) Static (engineering basic knowledge, engineering special knowledge, expert skill), (2) Dynamic (search, design, analysis and application, synthesis and comprehension), (3) Mental 1 (External: Negotiation ability, persuasion linguistic ability, language ability, positiveness cooperativeness, etc.), (4) Mental 2 (world view, engineering ethics, sense of responsibility, self-development, economy sense, international sense, etc.). (NEDO)

  17. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    Science.gov (United States)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  18. Modelling and Fixed Step Simulation of a Turbo Charged Diesel Engine

    OpenAIRE

    Ritzén, Jesper

    2003-01-01

    Having an engine model that is accurate but not too complicated is desirable when working with on-board diagnosis or engine control. In this thesis a four state mean value model is introduced. To make the model usable in an on-line automotive application it is discrete and simulated with a fixed step size solver. Modelling is done with simplicity as main object. Some simple static models are also presented. To validate the model measuring is carried out in a Scania R124LB truck with a 12 lit...

  19. Model-Based Engineering of Supervisory Controllers using CIF

    NARCIS (Netherlands)

    Schiffelers, R.R.H.; Theunissen, R.J.M.; Beek, van D.A.; Rooda, J.E.; Levendovsky, T.; Lengyel, L.

    2009-01-01

    In the Model-Based Engineering (MBE) paradigm, models are the core elements in the design process of a system from its requirements to the actual implementation of the system. By means of Supervisory Control Theory (SCT), supervisory controllers (supervisors) can be synthesized instead of

  20. Software-Engineering Process Simulation (SEPS) model

    Science.gov (United States)

    Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.

    1992-01-01

    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.

  1. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  2. A numerical model on thermodynamic analysis of free piston Stirling engines

    Science.gov (United States)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.

  3. Hydraulic modeling development and application in water resources engineering

    Science.gov (United States)

    Simoes, Francisco J.; Yang, Chih Ted; Wang, Lawrence K.

    2015-01-01

    The use of modeling has become widespread in water resources engineering and science to study rivers, lakes, estuaries, and coastal regions. For example, computer models are commonly used to forecast anthropogenic effects on the environment, and to help provide advanced mitigation measures against catastrophic events such as natural and dam-break floods. Linking hydraulic models to vegetation and habitat models has expanded their use in multidisciplinary applications to the riparian corridor. Implementation of these models in software packages on personal desktop computers has made them accessible to the general engineering community, and their use has been popularized by the need of minimal training due to intuitive graphical user interface front ends. Models are, however, complex and nontrivial, to the extent that even common terminology is sometimes ambiguous and often applied incorrectly. In fact, many efforts are currently under way in order to standardize terminology and offer guidelines for good practice, but none has yet reached unanimous acceptance. This chapter provides a view of the elements involved in modeling surface flows for the application in environmental water resources engineering. It presents the concepts and steps necessary for rational model development and use by starting with the exploration of the ideas involved in defining a model. Tangible form of those ideas is provided by the development of a mathematical and corresponding numerical hydraulic model, which is given with a substantial amount of detail. The issues of model deployment in a practical and productive work environment are also addressed. The chapter ends by presenting a few model applications highlighting the need for good quality control in model validation.

  4. Dialogue on sustainable development as part of engineering education: the relevance of the Finnish case : commentary on "a national collaboration process: Finnish engineering education for the benefit of people and environment".

    Science.gov (United States)

    Geerts, Robert

    2013-12-01

    Society invests in the education of engineers because it is expected that the works of engineers will bring good results for society. Because the work of engineers is not value free or neutral, it is important that engineers are educated in the important principles of the social sciences and humanities. This education is essential for the awareness and understanding of what is good for society. Therefore the concept of sustainable development should be part of an education in engineering but only when the social sciences are also a part of it.

  5. Social Engineering a General Approach

    Directory of Open Access Journals (Sweden)

    Valerica GREAVU-SERBAN

    2014-01-01

    Full Text Available Social engineering is considered to be a taboo subject in nowadays society. It involves the use of social skills or to obtain usernames, passwords, credit card data, or to compromise or altering the information and systems of an entity. Social engineering methods are numerous and people using it are extremely ingenious and adaptable. This technique takes advantage of the intrinsic nature of mankind, to manipulate and obtain sensitive information, persuading people into divulge it, using exceptional communication skills. Thus, five models of persuasion were identified, based on: simplicity, interest, incongruity, confidence and empathy, exploiting key factors which predispose people to fall victim to attacks of social engineering such as greed, self-interest, guilt or ignorance. It is well known fact that security is as strong as the weakest link in its chain (individuals therefore, beyond technical measures, staff training is the key to success in defending against such attacks.

  6. Theoretical foundations for collaboration engineering

    NARCIS (Netherlands)

    Kolfschoten, G.L.

    2007-01-01

    Collaboration is often presented as the solution to numerous problems in business and society. However, collaboration is challenging, and collaboration support is not an off-the-shelf-product. This research offers theoretical foundations for Collaboration Engineering. Collaboration Engineering is an

  7. Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model

    Science.gov (United States)

    Kim, Sangjo; Kim, Kuisoon; Son, Changmin

    2018-04-01

    An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.

  8. Designing a Pedagogical Model for Web Engineering Education: An Evolutionary Perspective

    Science.gov (United States)

    Hadjerrouit, Said

    2005-01-01

    In contrast to software engineering, which relies on relatively well established development approaches, there is a lack of a proven methodology that guides Web engineers in building reliable and effective Web-based systems. Currently, Web engineering lacks process models, architectures, suitable techniques and methods, quality assurance, and a…

  9. 3D engineered models for highway construction : the Iowa experience.

    Science.gov (United States)

    2015-06-01

    3D engineered modeling is a relatively new and developing technology that can provide numerous bene ts to owners, engineers, : contractors, and the general public. This manual is for highway agencies that are considering or are in the process of s...

  10. Engineering models for merging wakes in wind farm optimization applications

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Murcia Leon, Juan Pablo

    2015-01-01

    The present paper deals with validation of 4 different engineering wake superposition approaches against detailed CFD simulations and covering different turbine interspacing, ambient turbulence intensities and mean wind speeds. The first engineering model is a simple linear superposition of wake ...

  11. The software-cycle model for re-engineering and reuse

    Science.gov (United States)

    Bailey, John W.; Basili, Victor R.

    1992-01-01

    This paper reports on the progress of a study which will contribute to our ability to perform high-level, component-based programming by describing means to obtain useful components, methods for the configuration and integration of those components, and an underlying economic model of the costs and benefits associated with this approach to reuse. One goal of the study is to develop and demonstrate methods to recover reusable components from domain-specific software through a combination of tools, to perform the identification, extraction, and re-engineering of components, and domain experts, to direct the applications of those tools. A second goal of the study is to enable the reuse of those components by identifying techniques for configuring and recombining the re-engineered software. This component-recovery or software-cycle model addresses not only the selection and re-engineering of components, but also their recombination into new programs. Once a model of reuse activities has been developed, the quantification of the costs and benefits of various reuse options will enable the development of an adaptable economic model of reuse, which is the principal goal of the overall study. This paper reports on the conception of the software-cycle model and on several supporting techniques of software recovery, measurement, and reuse which will lead to the development of the desired economic model.

  12. Introduction to modeling and control of internal combustion engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, Lino; Onder, Christopher H. [ETH Zuerich (Switzerland). Institute for Dynamic Systems and Control

    2010-07-01

    Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: - restructured and slightly extended section on superchargers; - short subsection on rotational oscillations and their treatment on engine test-benches; - complete section on modeling, detection, and control of engine knock; - improved physical and chemical model for the three-way catalytic converter; - new methodology for the design of an air-to-fuel ratio controller; - short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects. (orig.)

  13. Development of a Systems Engineering Model of the Chemical Separations Process

    International Nuclear Information System (INIS)

    Sun, Lijian; Li, Jianhong; Chen, Yitung; Clarksean, Randy; Ladler, Jim; Vandergrift, George

    2002-01-01

    Work is being performed to develop a general-purpose systems engineering model for the AAA separation process. The work centers on the development of a new user interface for the AMUSE code and on the specification of a systems engineering model. This paper presents background information and an overview of work completed to date. (authors)

  14. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  15. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  16. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    Science.gov (United States)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  17. A decision-making model for engineering designers

    DEFF Research Database (Denmark)

    Ahmed, S.; Hansen, Claus Thorp

    2002-01-01

    This paper describes research that combines the generic decision-making model of Hansen, together with design strategies employed by experienced engineering designers. The relationship between the six decision-making sub-activities and the eight design strategies are examined. By combining...

  18. 3rd International Conference on Modelling and Management of Engineering Processes

    CERN Document Server

    Gericke, Kilian; Szélig, Nikoletta; Vajna, Sándor

    2015-01-01

    Innovative processes for the development of products and services are more and more considered as an organisational capability, which is recognised to be increasingly important for business success in today’s competitive environment. However, management and academia need a more profound understanding of these processes in order to develop improved management approaches to exploit business potentials. This book contains the proceedings of the 3rd International Conference on Modelling and Management of Engineering Processes (MMEP2013) held in Magdeburg, Germany, in November 2013. It includes contributions from international leading researchers in the fields of process modelling and process management. The conference topics were recent trends in modelling and management of engineering processes, potential synergies between different modelling approaches, future challenges for the management of engineering processes as well as future research in these areas.

  19. A Research Agenda for Security Engineering

    Directory of Open Access Journals (Sweden)

    Rich Goyette

    2013-08-01

    Full Text Available Despite nearly 30 years of research and application, the practice of information system security engineering has not yet begun to exhibit the traits of a rigorous scientific discipline. As cyberadversaries have become more mature, sophisticated, and disciplined in their tradecraft, the science of security engineering has not kept pace. The evidence of the erosion of our digital security – upon which society is increasingly dependent – appears in the news almost daily. In this article, we outline a research agenda designed to begin addressing this deficit and to move information system security engineering toward a mature engineering discipline. Our experience suggests that there are two key areas in which this movement should begin. First, a threat model that is actionable from the perspectives of risk management and security engineering should be developed. Second, a practical and relevant security-measurement framework should be developed to adequately inform security-engineering and risk-management processes. Advances in these areas will particularly benefit business/government risk assessors as well as security engineers performing security design work, leading to more accurate, meaningful, and quantitative risk analyses and more consistent and coherent security design decisions. Threat modelling and security measurement are challenging activities to get right – especially when they need to be applied in a general context. However, these are decisive starting points because they constitute the foundation of a scientific security-engineering practice. Addressing these challenges will require stronger and more coherent integration between the sub-disciplines of risk assessment and security engineering, including new tools to facilitate that integration. More generally, changes will be required in the way security engineering is both taught and practiced to take into account the holistic approach necessary from a mature, scientific

  20. Mathematical modelling in engineering: A proposal to introduce linear algebra concepts

    Directory of Open Access Journals (Sweden)

    Andrea Dorila Cárcamo

    2016-03-01

    Full Text Available The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts:  span and spanning set. This was applied to first year engineering students. Results suggest that this type of instructional design contributes to the construction of these mathematical concepts and can also favour first year engineering students understanding of key linear algebra concepts and potentiate the development of higher order skills.

  1. Dynamics of a macroscopic model characterizing mutualism of search engines and web sites

    Science.gov (United States)

    Wang, Yuanshi; Wu, Hong

    2006-05-01

    We present a model to describe the mutualism relationship between search engines and web sites. In the model, search engines and web sites benefit from each other while the search engines are derived products of the web sites and cannot survive independently. Our goal is to show strategies for the search engines to survive in the internet market. From mathematical analysis of the model, we show that mutualism does not always result in survival. We show various conditions under which the search engines would tend to extinction, persist or grow explosively. Then by the conditions, we deduce a series of strategies for the search engines to survive in the internet market. We present conditions under which the initial number of consumers of the search engines has little contribution to their persistence, which is in agreement with the results in previous works. Furthermore, we show novel conditions under which the initial value plays an important role in the persistence of the search engines and deduce new strategies. We also give suggestions for the web sites to cooperate with the search engines in order to form a win-win situation.

  2. Model-driven Service Engineering with SoaML

    Science.gov (United States)

    Elvesæter, Brian; Carrez, Cyril; Mohagheghi, Parastoo; Berre, Arne-Jørgen; Johnsen, Svein G.; Solberg, Arnor

    This chapter presents a model-driven service engineering (MDSE) methodology that uses OMG MDA specifications such as BMM, BPMN and SoaML to identify and specify services within a service-oriented architecture. The methodology takes advantage of business modelling practices and provides a guide to service modelling with SoaML. The presentation is case-driven and illuminated using the telecommunication example. The chapter focuses in particular on the use of the SoaML modelling language as a means for expressing service specifications that are aligned with business models and can be realized in different platform technologies.

  3. Exploratory of society

    Science.gov (United States)

    Cederman, L.-E.; Conte, R.; Helbing, D.; Nowak, A.; Schweitzer, F.; Vespignani, A.

    2012-11-01

    A huge flow of quantitative social, demographic and behavioral data is becoming available that traces the activities and interactions of individuals, social patterns, transportation infrastructures and travel fluxes. This has caused, together with innovative computational techniques and methods for modeling social actions in hybrid (natural and artificial) societies, a qualitative change in the ways we model socio-technical systems. For the first time, society can be studied in a comprehensive fashion that addresses social and behavioral complexity. In other words we are in the position to envision the development of large data and computational cyber infrastructure defining an exploratory of society that provides quantitative anticipatory, explanatory and scenario analysis capabilities ranging from emerging infectious disease to conflict and crime surges. The goal of the exploratory of society is to provide the basic infrastructure embedding the framework of tools and knowledge needed for the design of forecast/anticipatory/crisis management approaches to socio technical systems, supporting future decision making procedures by accelerating the scientific cycle that goes from data generation to predictions.

  4. Modelling pollutant emissions in diesel engines, influence of biofuel on pollutant formation.

    Science.gov (United States)

    Petranović, Zvonimir; Bešenić, Tibor; Vujanović, Milan; Duić, Neven

    2017-12-01

    In order to reduce the harmful effect on the environment, European Union allowed using the biofuel blends as fuel for the internal combustion engines. Experimental studies have been carried on, dealing with the biodiesel influence on the emission concentrations, showing inconclusive results. In this paper numerical model for pollutant prediction in internal combustion engines is presented. It describes the processes leading towards the pollutant emissions, such as spray particles model, fuel disintegration and evaporation model, combustion and the chemical model for pollutant formation. Presented numerical model, implemented in proprietary software FIRE ® , is able to capture chemical phenomena and to predict pollutant emission concentration trends. Using the presented model, numerical simulations of the diesel fuelled internal combustion engine have been performed, with the results validated against the experimental data. Additionally, biodiesel has been used as fuel and the levels of pollutant emissions have been compared to the diesel case. Results have shown that the biodiesel blends release lower nitrogen oxide emissions than the engines powered with the regular diesel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A model of engineering materials inspired by biological tissues

    Directory of Open Access Journals (Sweden)

    Holeček M.

    2009-12-01

    Full Text Available The perfect ability of living tissues to control and adapt their mechanical properties to varying external conditions may be an inspiration for designing engineering materials. An interesting example is the smooth muscle tissue since this "material" is able to change its global mechanical properties considerably by a subtle mechanism within individual muscle cells. Multi-scale continuum models may be useful in designing essentially simpler engineering materials having similar properties. As an illustration we present the model of an incompressible material whose microscopic structure is formed by flexible, soft but incompressible balls connected mutually by linear springs. This simple model, however, shows a nontrivial nonlinear behavior caused by the incompressibility of balls and is very sensitive on some microscopic parameters. It may elucidate the way by which "small" changes in biopolymer networks within individual muscular cells may control the stiffness of the biological tissue, which outlines a way of designing similar engineering materials. The 'balls and springs' material presents also prestress-induced stiffening and allows elucidating a contribution of extracellular fluids into the tissue’s viscous properties.

  6. Developing and Validating the Socio-Technical Model in Ontology Engineering

    Science.gov (United States)

    Silalahi, Mesnan; Indra Sensuse, Dana; Giri Sucahyo, Yudho; Fadhilah Akmaliah, Izzah; Rahayu, Puji; Cahyaningsih, Elin

    2018-03-01

    This paper describes results from an attempt to develop a model in ontology engineering methodology and a way to validate the model. The approach to methodology in ontology engineering is from the point view of socio-technical system theory. Qualitative research synthesis is used to build the model using meta-ethnography. In order to ensure the objectivity of the measurement, inter-rater reliability method was applied using a multi-rater Fleiss Kappa. The results show the accordance of the research output with the diamond model in the socio-technical system theory by evidence of the interdependency of the four socio-technical variables namely people, technology, structure and task.

  7. Review of the Space Mapping Approach to Engineering Optimization and Modeling

    DEFF Research Database (Denmark)

    Bakr, M. H.; Bandler, J. W.; Madsen, Kaj

    2000-01-01

    We review the Space Mapping (SM) concept and its applications in engineering optimization and modeling. The aim of SM is to avoid computationally expensive calculations encountered in simulating an engineering system. The existence of less accurate but fast physically-based models is exploited. S......-based Modeling (SMM). These include Space Derivative Mapping (SDM), Generalized Space Mapping (GSM) and Space Mapping-based Neuromodeling (SMN). Finally, we address open points for research and future development....

  8. A novel active free piston Stirling engine: Modeling, development, and experiment

    International Nuclear Information System (INIS)

    Tavakolpour-Saleh, A.R.; Zare, SH.; Bahreman, H.

    2017-01-01

    Highlights: •A novel active free piston Stirling engine is modeled, fabricated, and tested. •A dynamic model of the engine is presented and experimentally validated. •A systematic way to find gas temperature within the hot and cold spaces is proposed. •The simulated thermal efficiency of 19.4% proves the potential of the concept. -- Abstract: This paper focuses on mathematical modeling, development, and experimental evaluation of a novel active free piston Stirling engine (AFPSE). First, working principles of the proposed AFPSE are described and its advantages are introduced. Then, a comprehensive mathematical model of the proposed Mechatronic system is presented using kinematic, dynamic, thermodynamic, heat transfer, and electrical equations. The Schmidt’s theory assumptions are used throughout the modeling scheme except for finite heat transfer and imperfect regeneration. Next, a systematic way to estimate the gas temperature in the expansion and compression spaces of the engine is presented taking into account the imperfect regeneration and finite heat transfer in the presented converter. Moreover, the engine performance, as well as the resonant frequency of the active converter, is investigated through simulation. Finally, the proposed AFPSE is developed and primarily tested. The obtained practical results clearly demonstrate the feasibility of generating power (i.e. 7.1 W) through thermal excitation of a one degree-of-freedom (1-DOF) dynamic system with its resonant frequency (i.e. 9.2 Hz). Furthermore, it is found that the experimental measurements are in an acceptable agreement with the simulation outcomes of the analytical model through which validity of the mathematical scheme is affirmed.

  9. Mathematical Model of the Jet Engine Fuel System

    Directory of Open Access Journals (Sweden)

    Klimko Marek

    2015-01-01

    Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.

  10. Human Engineering Modeling and Performance Lab Study Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  11. Mathematical Model of the Jet Engine Fuel System

    Science.gov (United States)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  12. Helping CERN give back to society

    CERN Multimedia

    2014-01-01

    The CERN & Society mission: ‘To spread the CERN spirit of scientific curiosity for the inspiration and benefit of society.’   Digital library schools in Africa, Arts@CERN, a beam line for schools competition and perhaps soon a dedicated biomedical research facility: CERN infrastructure and expertise have a great influence on society, and we have the potential to do much more. For that, however, we need help, and that’s why we have launched the CERN & Society initiative, which this week sees the publication of a new website for those who want to understand more about how our research touches everyday life, as well as for those who wish to help CERN in this new endeavour. Fundamental research fulfils a very human need. The quest to understand the universe we live in is as old as humanity itself, and CERN is in the vanguard of that effort today. For our scientists and engineers, pushing technology to the limit is part of their day job, and in doing so they ...

  13. A RANS knock model to predict the statistical occurrence of engine knock

    International Nuclear Information System (INIS)

    D'Adamo, Alessandro; Breda, Sebastiano; Fontanesi, Stefano; Irimescu, Adrian; Merola, Simona Silvia; Tornatore, Cinzia

    2017-01-01

    Highlights: • Development of a new RANS model for SI engine knock probability. • Turbulence-derived transport equations for variances of mixture fraction and enthalpy. • Gasoline autoignition delay times calculated from detailed chemical kinetics. • Knock probability validated against experiments on optically accessible GDI unit. • PDF-based knock model accounting for the random nature of SI engine knock in RANS simulations. - Abstract: In the recent past engine knock emerged as one of the main limiting aspects for the achievement of higher efficiency targets in modern spark-ignition (SI) engines. To attain these requirements, engine operating points must be moved as close as possible to the onset of abnormal combustions, although the turbulent nature of flow field and SI combustion leads to possibly ample fluctuations between consecutive engine cycles. This forces engine designers to distance the target condition from its theoretical optimum in order to prevent abnormal combustion, which can potentially damage engine components because of few individual heavy-knocking cycles. A statistically based RANS knock model is presented in this study, whose aim is the prediction not only of the ensemble average knock occurrence, poorly meaningful in such a stochastic event, but also of a knock probability. The model is based on look-up tables of autoignition times from detailed chemistry, coupled with transport equations for the variance of mixture fraction and enthalpy. The transported perturbations around the ensemble average value are based on variable gradients and on a local turbulent time scale. A multi-variate cell-based Gaussian-PDF model is proposed for the unburnt mixture, resulting in a statistical distribution for the in-cell reaction rate. An average knock precursor and its variance are independently calculated and transported; this results in the prediction of an earliest knock probability preceding the ensemble average knock onset, as confirmed by

  14. Energy transfer modelling of active thermoacoustic engines via Lagrangian thermoacoustic dynamics

    International Nuclear Information System (INIS)

    Hong, Boe-Shong; Chou, Chia-Yu

    2014-01-01

    Highlights: • Resonant control on thermoacoustic engines to amplify power rating. • Least-action principle of thermoacoustic dynamics to shape engine chamber. • Spatiotemporal transfer function into feedback systems. • Conservation law of thermoacoustic storage to figure out engine cycles. • Robin boundary condition to identify flow leakage. - Abstract: This paper develops energy-transfer modelling of active thermoacoustic engines resonantly controlled on boundary for amplification of power rating toward satisfaction of renewable industry. Therein the wave equation of thermoacoustic dynamics in resonators with non-uniform media and boundary actuations is derived and then turned into a least-action principle. With this least-action principle, we obtain the governing equation of longitudinal resonators with spatially variant cross-section areas to investigate how to shape the resonator for boosting piston stroke and power-transmission efficiency. It is followed by spatiotemporal transfer-function modelling that functionally represents the dynamics and interprets the boundary actuations into internal inputs. This helps formulate the overall dynamics into feedback-interconnection between the thermoacoustic dynamics in the resonator and the mechatronic dynamics of the alternative current generator, so that synthesis of feedback systems can be applied to design the entire engine. Transfer-function modelling following least-action principle leads to the conservation law of thermoacoustic storage, which figures out engine cycles, the most fundamental principle in designing active thermoacoustic engines. Based on such feedback realization, digital signal processing is programmed to numerically assess power ratings of active designs

  15. Mathematical modeling of the complete thermodynamic cycle of a new Atkinson cycle gas engine

    International Nuclear Information System (INIS)

    Shojaeefard, Mohammad Hassan; Keshavarz, Mojtaba

    2015-01-01

    The Atkinson cycle provides the potential to increase the efficiency of SI engines using overexpansion concept. This also will suggest decrease in CO_2 generation by internal combustion engine. In this study a mathematical modeling of complete thermodynamic cycle of a new two-stroke Atkinson cycle SI engine will be presented. The mathematical modeling is carried out using two-zone combustion analysis in order to make the model predict exhaust emission so that its values could be compared with the values of conventional SI engine. The model also is validated against experimental tests in that increase in efficiency is achieved compared to conventional SI engines. - Highlights: • The complete cycle model for the rotary Atkinson engine was developed. • Comparing the results with experimental data shows good model validity. • The model needs further improvement for the scavenging phase. • There is 5% increment in thermal efficiency with new engine compared to conventional SI engines.

  16. 2016 Annual Meeting of the German Human Factors and Ergonomics Society

    CERN Document Server

    Duckwitz, Sönke; Flemisch, Frank; Frenz, Martin; Kuz, Sinem; Mertens, Alexander; Mütze-Niewöhner, Susanne

    2017-01-01

    These proceedings summarize the best papers in each research area represented at the 2016 Annual Meeting of the German Human Factors and Ergonomics Society, held at Institute of Industrial Engineering and Ergonomics of RWTH Aachen University from March 2-4. The meeting featured more than 200 presentations and 36 posters reflecting the diversity of subject matter in the field of human and industrial engineering. This volume addresses human factors and safety specialists, industrial engineers, work and organizational psychologists, occupational medicines as well as production planners and design engineers.

  17. Numerical modeling of spray combustion in DI diesel engine using partially stirred reactor (PaSR) model

    International Nuclear Information System (INIS)

    Khaleghi, H.; Hosseini, S.M.

    2003-01-01

    In recent years special attention has been paid to the topic of diesel engine combustion. Various combustion models are used in CFD codes. In this paper Partially Stirred Reactor (PaSR) model, one of the newest turbulent combustion models, is introduced. This model has been employed in conjunction with the non-iterative PISO algorithm to calculate spray combustion in an axi-symmetric, direct injection diesel engine. Qualitative consideration of the results shows very good agreement with physical expectations and other numerical and experimental results. (author)

  18. Mathematical modeling of a four-stroke resonant engine for micro and mesoscale applications

    Science.gov (United States)

    Preetham, B. S.; Anderson, M.; Richards, C.

    2014-12-01

    In order to mitigate frictional and leakage losses in small scale engines, a compliant engine design is proposed in which the piston in cylinder arrangement is replaced by a flexible cavity. A physics-based nonlinear lumped-parameter model is derived to predict the performance of a prototype engine. The model showed that the engine performance depends on input parameters, such as heat input, heat loss, and load on the engine. A sample simulation for a reference engine with octane fuel/air ratio of 0.043 resulted in an indicated thermal efficiency of 41.2%. For a fixed fuel/air ratio, higher output power is obtained for smaller loads and vice-versa. The heat loss from the engine and the work done on the engine during the intake stroke are found to decrease the indicated thermal efficiency. The ratio of friction work to indicated work in the prototype engine is about 8%, which is smaller in comparison to the traditional reciprocating engines.

  19. Zero-dimensional mathematical model of the torch ignited engine

    International Nuclear Information System (INIS)

    Cruz, Igor William Santos Leal; Alvarez, Carlos Eduardo Castilla; Teixeira, Alysson Fernandes; Valle, Ramon Molina

    2016-01-01

    Highlights: • Publications about the torch ignition system are mostly CFD or experimental research. • A zero-dimensional mathematical model is presented. • The model is based on classical thermodynamic equations. • Approximations are based on empirical functions. • The model is applied to a prototype by means of a computer code. - Abstract: Often employed in the analysis of conventional SI and CI engines, mathematical models can also be applied to engines with torch ignition, which have been researched almost exclusively by CFD or experimentally. The objective of this work is to describe the development and application of a zero-dimensional model of the compression and power strokes of a torch ignited engine. It is an initial analysis that can be used as a basis for future models. The processes of compression, combustion and expansion were described mathematically and applied to an existing prototype by means of a computer code written in MATLAB language. Conservation of energy and mass and the ideal gas law were used in determining gas temperature, pressure, and mass flow rate within the cylinder. Gas motion through the orifice was modelled as an isentropic compressible flow. The thermodynamic properties of the mixture were found by a weighted arithmetic mean of the data for each component, computed by polynomial functions of temperature. Combustion was modelled by the Wiebe function. Heat transfer to the cylinder walls was estimated by Annand’s correlations. Results revealed the behaviour of pressure, temperature, jet velocity, energy transfer, thermodynamic properties, among other variables, and how some of these are influenced by others.

  20. Eliciting and characterizing students' mental models within the context of engineering design

    Science.gov (United States)

    Dankenbring, Chelsey

    Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.

  1. Joint American Nuclear Society and Health Physics Society Conference: Applicability of Radiation Response Models to Low Dose Protection Standards.

    Science.gov (United States)

    Glines, Wayne M; Markham, Anna

    2018-05-01

    Seventy-five years after the Hanford Site was initially created as the primary plutonium production site for atomic weapons development under the Manhattan Project, the American Nuclear Society and the Health Physics Society are sponsoring a conference from 30 September through 3 October 2018, in Pasco, Washington, titled "Applicability of Radiation Response Models to Low Dose Protection Standards." The goal of this conference is to use current scientific data to update the approach to regulating low-level radiation doses; i.e., to answer a quintessential question of radiation protection-how to best develop radiation protection standards that protect human populations against detrimental effects while allowing the beneficial uses of radiation and radioactive materials. Previous conferences (e.g., "Wingspread Conference," "Arlie Conference") have attempted to address this question; but now, almost 20 y later, the key issues, goals, conclusions, and recommendations of those two conferences remain and are as relevant as they were then. Despite the best efforts of the conference participants and increased knowledge and understanding of the science underlying radiation effects in human populations, the bases of current radiation protection standards have evolved little. This 2018 conference seeks to provide a basis and path forward for evolving radiation protection standards to be more reflective of current knowledge and understanding of low dose response models.

  2. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  3. Remaining Useful Life Prediction of Gas Turbine Engine using Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Ahsan Shazaib

    2017-01-01

    Full Text Available Gas turbine (GT engines are known for their high availability and reliability and are extensively used for power generation, marine and aero-applications. Maintenance of such complex machines should be done proactively to reduce cost and sustain high availability of the GT. The aim of this paper is to explore the use of autoregressive (AR models to predict remaining useful life (RUL of a GT engine. The Turbofan Engine data from NASA benchmark data repository is used as case study. The parametric investigation is performed to check on any effect of changing model parameter on modelling accuracy. Results shows that a single sensory data cannot accurately predict RUL of GT and further research need to be carried out by incorporating multi-sensory data. Furthermore, the predictions made using AR model seems to give highly pessimistic values for RUL of GT.

  4. Sustainable Development in Engineering Education

    Science.gov (United States)

    Taoussanidis, Nikolaos N.; Antoniadou, Myrofora A.

    2006-01-01

    The principles and practice of environmentally and socially sustainable engineering are in line with growing community expectations and the strengthening voice of civil society in engineering interventions. Pressures towards internationalization and globalization are reflected in new course accreditation criteria and higher education structures.…

  5. Enhancing Canadian Civil Society Research and Knowledge-Based ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Enhancing Canadian Civil Society Research and Knowledge-Based Practice in a Rapidly Changing Landscape for International Development ... Women in the developing world continue to face obstacles that limit their ability to establish careers and become leaders in the fields of science, technology, engineering, and ...

  6. Modular co-culture engineering, a new approach for metabolic engineering.

    Science.gov (United States)

    Zhang, Haoran; Wang, Xiaonan

    2016-09-01

    With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Alternatives for Jet Engine Control. Volume 1: Modelling and Control Design with Jet Engine Data

    Science.gov (United States)

    Sain, M. K.

    1985-01-01

    This document compiles a comprehensive list of publications supported by, or related to, National Aeronautics and Space Administration Grant NSG-3048, entitled "Alternatives for Jet Engine Control". Dr. Kurt Seldner was the original Technical Officer for the grant, at Lewis Research Center. Dr. Bruce Lehtinen was the final Technical Officer. At the University of Notre Dame, Drs. Michael K. Sain and R. Jeffrey Leake were the original Project Directors, with Dr. Sain becoming the final Project Director. Publications cover work over a ten-year period. The Final Report is divided into two parts. Volume i, "Modelling and Control Design with Jet Engine Data", follows in this report. Volume 2, "Modelling and Control Design with Tensors", has been bound separately.

  8. Design of personalized search engine based on user-webpage dynamic model

    Science.gov (United States)

    Li, Jihan; Li, Shanglin; Zhu, Yingke; Xiao, Bo

    2013-12-01

    Personalized search engine focuses on establishing a user-webpage dynamic model. In this model, users' personalized factors are introduced so that the search engine is better able to provide the user with targeted feedback. This paper constructs user and webpage dynamic vector tables, introduces singular value decomposition analysis in the processes of topic categorization, and extends the traditional PageRank algorithm.

  9. Identification of Civil Engineering Structures using Multivariate ARMAV and RARMAV Models

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

    This paper presents how to make system identification of civil engineering structures using multivariate auto-regressive moving-average vector (ARMAV) models. Further, the ARMAV technique is extended to a recursive technique (RARMAV). The ARMAV model is used to identify measured stationary data....... The results show the usefulness of the approaches for identification of civil engineering structures excited by natural excitation...

  10. Modeling for control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Garcia-Canseco, Eloisa; Alvarez-Aguirre, Alejandro; Scherpen, Jacquelien M. A.

    In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine.

  11. Ethical Issues in Engineering Models : Personal Reflections

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.

    2010-01-01

    I start this contribution with an overview of my personal involvement—as an Operations Research consultant—in several engineering case-studies that may raise ethical questions; these case studies employ simulation models. Next, I present an overview of the recent literature on ethical issues in

  12. Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies.

    Science.gov (United States)

    Kalnenieks, Uldis; Pentjuss, Agris; Rutkis, Reinis; Stalidzans, Egils; Fell, David A

    2014-01-01

    Mathematical modeling of metabolism is essential for rational metabolic engineering. The present work focuses on several types of modeling approach to quantitative understanding of central metabolic network and energetics in the bioethanol-producing bacterium Zymomonas mobilis. Combined use of Flux Balance, Elementary Flux Mode, and thermodynamic analysis of its central metabolism, together with dynamic modeling of the core catabolic pathways, can help to design novel substrate and product pathways by systematically analyzing the solution space for metabolic engineering, and yields insights into the function of metabolic network, hardly achievable without applying modeling tools.

  13. A network society communicative model for optimizing the Refugee Status Determination (RSD procedures

    Directory of Open Access Journals (Sweden)

    Andrea Pacheco Pacífico

    2013-01-01

    Full Text Available This article recommends a new way to improve Refugee Status Determination (RSD procedures by proposing a network society communicative model based on active involvement and dialogue among all implementing partners. This model, named after proposals from Castells, Habermas, Apel, Chimni, and Betts, would be mediated by the United Nations High Commissioner for Refugees (UNHCR, whose role would be modeled after that of the International Committee of the Red Cross (ICRC practice.

  14. Next-generation genome-scale models for metabolic engineering

    DEFF Research Database (Denmark)

    King, Zachary A.; Lloyd, Colton J.; Feist, Adam M.

    2015-01-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict...... examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering....

  15. Mathematical modeling in wound healing, bone regeneration and tissue engineering.

    Science.gov (United States)

    Geris, Liesbet; Gerisch, Alf; Schugart, Richard C

    2010-12-01

    The processes of wound healing and bone regeneration and problems in tissue engineering have been an active area for mathematical modeling in the last decade. Here we review a selection of recent models which aim at deriving strategies for improved healing. In wound healing, the models have particularly focused on the inflammatory response in order to improve the healing of chronic wound. For bone regeneration, the mathematical models have been applied to design optimal and new treatment strategies for normal and specific cases of impaired fracture healing. For the field of tissue engineering, we focus on mathematical models that analyze the interplay between cells and their biochemical cues within the scaffold to ensure optimal nutrient transport and maximal tissue production. Finally, we briefly comment on numerical issues arising from simulations of these mathematical models.

  16. Development of the next generation code system as an engineering modeling language (1)

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Uto, Nariaki; Kasahara, Naoto; Nagura, Fuminori; Ishikawa, Makoto; Ohira, Masanori; Kato, Masayuki

    2002-11-01

    In the fast reactor development, numerical simulation using analytical codes plays an important role for complementing theory and experiment. It is necessary that the engineering models and analysis methods can be flexibly changed, because the phenamine to be investigated become more complicated due to the diversity of the needs for research. And, there are large problems in combining physical properties and engineering models in many different fields. In this study, the goal is to develop a flexible and general-purposive analysis system, in which the physical properties and engineering models are represented as a programming language or a diagrams that are easily understandable for humans and executable for computers. The authors named this concept the Engineering Modeling Language (EML). This report describes the result of the investigation for latest computer technologies and software development techniques which seem to be usable for a realization of the analysis code system for nuclear engineering as an EML. (author)

  17. Model-Based Engine Control Architecture with an Extended Kalman Filter

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  18. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model

    Science.gov (United States)

    Brinson, Thomas E.; Kopasakis, George

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  19. Engineered Heart Repair.

    Science.gov (United States)

    Fujita, B; Zimmermann, W-H

    2017-08-01

    There is a pressing need for the development of advanced heart failure therapeutics. Current state-of-the-art is protection from neurohumoral overstimulation, which fails to address the underlying cause of heart failure, namely loss of cardiomyocytes. Implantation of stem cell-derived cardiomyocytes via tissue-engineered myocardium is being advanced to realize the remuscularization of the failing heart. Here, we discuss pharmacological challenges pertaining to the clinical translation of tissue-engineered heart repair with a focus on engineered heart muscle (EHM). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  20. Technology, society and nature. Technik, Gesellschaft und Natur

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, S

    1982-01-01

    This paper intends to counter with a demand for systematics the boom of ecological oriented criticism passed on technical science and engineering and on the fact that individual sciences make a subject of engineering. It deals with the theoretical foundations of relationships between technology, society and nature. An interdisciplinary approach attempts to do justice to the multi-dimensionality of engineering and ''technology''. This approach includes the formulation of questions and the findings of social sciences, philosophy, and technology. The object is to determine technology as a form of social practice - a practice which includes the vital adjustment of man to his natural environment as well as the organisation of his social behaviour.

  1. 7th International Conference on Management Science and Engineering Management

    CERN Document Server

    Fry, John; Lev, Benjamin; Hajiyev, Asaf; Vol.I Focused on Electrical and Information Technology; Vol.II Focused on Electrical and Information Technology

    2014-01-01

    This book presents the proceedings of the Seventh International Conference on Management Science and Engineering Management (ICMSEM2013) held from November 7 to 9, 2013 at Drexel University, Philadelphia, Pennsylvania, USA and organized by the International Society of Management Science and Engineering Management, Sichuan University (Chengdu, China) and Drexel University (Philadelphia, Pennsylvania, USA).   The goals of the Conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current research findings. The selected papers cover various areas in management science and engineering management, such as Decision Support Systems, Multi-Objective Decisions, Uncertain Decisions, Computational Mathematics, Information Systems, Logistics and Supply Chain Management, Relationship Management, Scheduling and Control, Data Warehousing and Data Mining, Electronic Commerce, Neural Networks, Stochastic Models and Simulation, F...

  2. The 23rd Annual Meeting of the European Tissue Repair Society (ETRS) in Reims, France

    DEFF Research Database (Denmark)

    Von den Hoff, Johannes W; Ågren, Sven Per Magnus; Coulomb, Bernard

    2014-01-01

    The 23rd Annual Meeting of the European Tissue Repair Society, Reims, France, October 23 to 25, 2013 focused on tissue repair and regenerative medicine covering topics such as stem cells, biomaterials, tissue engineering, and burns.......The 23rd Annual Meeting of the European Tissue Repair Society, Reims, France, October 23 to 25, 2013 focused on tissue repair and regenerative medicine covering topics such as stem cells, biomaterials, tissue engineering, and burns....

  3. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1997-01-01

    This paper is concerned with the engineering, i.e. the designing and making, of industrial cell control systems. The focus is on automated robot welding cells in the shipbuilding industry. The industrial research project defines models and methods for design and implemen-tation of computer based...... SHIPYARD.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing and operating high quality and high functionality cell control solutions for the industry....... control and monitor-ing systems for production cells. The project participants are The Danish Academy of Technical Sciences, the Institute of Manufacturing Engineering at the Technical University of Denmark and ODENSE STEEL SHIPYARD Ltd.The manufacturing environment and the current practice...

  4. A new closed-form thermodynamic model for thermal simulation of spark ignition internal combustion engines

    International Nuclear Information System (INIS)

    Barjaneh, Afshin; Sayyaadi, Hoseyn

    2015-01-01

    Highlights: • A new closed-form thermal model was developed for SI engines. • Various irreversibilities of real engines were integrated into the model. • The accuracy of the model was examined on two real SI engines. • The superiority of the model to previous closed-form models was shown. • Accuracy and losses were studied over the operating range of engines. - Abstract: A closed form model based on finite speed thermodynamics, FST, modified to consider various losses was developed on Otto cycle. In this regard, the governing equations of the finite speed thermodynamics were developed for expansion/compression processes while heat absorption/rejection of the Otto cycle was determined based on finite time thermodynamics, FTT. In addition, other irreversibility including power loss caused by heat transfer through the cylinder walls and irreversibility due to throttling process was integrated into the model. The developed model was verified by implementing on two different spark ignition internal combustion engines and the results of modeling were compared with experimental results as well as FTT model. It was found that the developed model was not only very simple in use like a closed form thermodynamic model, but also it models a real spark ignition engine with reasonable accuracy. The error in predicting the output power at rated operating range of the engine was 39%, while in the case of the FTT model, this figure was 167.5%. This comparison for predicting thermal efficiency was +7% error (as difference) for the developed model compared to +39.4% error of FTT model.

  5. Innovation and Research on Engineering Education

    DEFF Research Database (Denmark)

    de Graaff, Erik; Kolmos, Anette

    2014-01-01

    Our Western society depends strongly on continuous technological innovation. Engineers, the designers of the future technology need extensive competencies to face the challenge of dealing with ever increasing complexity. In some areas more than half the knowledge they learn in University is obsol......Our Western society depends strongly on continuous technological innovation. Engineers, the designers of the future technology need extensive competencies to face the challenge of dealing with ever increasing complexity. In some areas more than half the knowledge they learn in University...... is obsolete by the time the enter practice. Recognition of these issues has recently resulted in worldwide increase of attention for innovation of engineering education. This chapter presents a brief outline of the traditions in higher engineering education culminating in the stage of research and development...... in the last century. Next, the recent revival of engineering education research is described, contrasting the developments in the USA with Europe and the rest of the world. The efforts in the USA appear to follow Boyer’s concept scholarship of teaching, and aim for the establishment of engineering education...

  6. More talented engineers for hire

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2005-04-01

    The great shortage of professional personnel in industry is discussed and what at least one province is doing in facilitating foreign trained professionals to qualify for professional positions in Canadian industry. The story is about the Calgary Catholic Immigration Society's Engineering and Technology Upgrading for new Canadian Engineers. The program provides a combination of classroom training and practical professional work at Canadian companies, sufficient in length to make participants eligible for licensing by the engineering licensing body in Alberta. The Calgary Catholic Immigration Service is a non-profit agency, funded provincially and federally to assist immigrants and refugees in their resettlement and integration into Canadian society. Some 9,000 clients are assisted each year; the program is greatly diversified; besides professional engineers, it is assisting people qualified as millwrights, electricians, and drilling technicians. This partnering program with the Alberta labour market has had an 85 per cent success rate in placing its graduates into full-time professional positions after graduation.

  7. Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models.

    Science.gov (United States)

    Deddens, Janine C; Sadeghi, Amir Hossein; Hjortnaes, Jesper; van Laake, Linda W; Buijsrogge, Marc; Doevendans, Pieter A; Khademhosseini, Ali; Sluijter, Joost P G

    2017-02-01

    Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An urgent need exists to improve the understanding of adverse cardiac remodeling in order to develop new therapeutic interventions that will prevent, reverse, or regenerate the fibrotic changes in the failing heart. With recent advances in both disease biology and cardiac tissue engineering, the translation of fundamental laboratory research toward the treatment of chronic heart failure patients becomes a more realistic option. Here, the current understanding of cardiac fibrosis and the great potential of tissue engineering are presented. Approaches using hydrogel-based tissue engineered heart constructs are discussed to contemplate key challenges for modeling tissue engineered cardiac fibrosis and to provide a future outlook for preclinical and clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Systems Security Engineering Capability Maturity Model (SSECMM), Model Description, Version 1.1

    National Research Council Canada - National Science Library

    1997-01-01

    This document is designed to acquaint the reader with the SSE-CMM Project as a whole and present the project's major work product - the Systems Security Engineering Capability Maturity Model (SSE- CMM...

  9. Assessing and improving the quality of model transformations

    NARCIS (Netherlands)

    Amstel, van M.F.

    2012-01-01

    Software is pervading our society more and more and is becoming increasingly complex. At the same time, software quality demands remain at the same, high level. Model-driven engineering (MDE) is a software engineering paradigm that aims at dealing with this increasing software complexity and

  10. Quality management using model-driven engineering: an overview

    OpenAIRE

    Ruiz-Rube, Iván; Escalona, María José

    2014-01-01

    Quality Management (QM) is one of the critical points of any software development process. In recent years, several proposals have emerged on this issue, mainly with regard to maturity models, quality standards and best practices collections. Besides, Model Driven Engineering (MDE) aims to build software systems through the construction and transformation of models. However, MDE might be used for other different tasks. In this poster, we summarize the main contributions abou...

  11. A Model for the Development of a CDIO Based Curriculum in Electrical Engineering

    DEFF Research Database (Denmark)

    Bruun, Erik; Kjærgaard, Claus

    2011-01-01

    This paper deals with a model providing a structured method for engineering curriculum design. The model is developed to show the major influencers on the curriculum design and the relations between the influencers. These influencers are identified as the engineering science, the business...... environment, the university environment, and the teachers and students. Each of them and their influence on the curriculum is described and the sources of information about the influencers are discussed. The CDIO syllabus has been defined as part of the basis for the Bachelor of Engineering programs...... at the Technical University of Denmark and this gives a strong direct impact of the university environment on the resulting curriculum in electrical engineering. The resulting Bachelor of Engineering curriculum is presented and it is discussed how it complies with the model for curriculum development. The main...

  12. 23 science societies issue joint call for more federal research dollars

    Science.gov (United States)

    Carlowicz, Michael

    In an unprecedented demonstration of unity, the leaders of 23 American scientific societies and umbrella organizations gathered on March 4 in Washington, D.C., to press the U.S. federal government for increased funding for scientific research and to make an investment in the nation's future. In a “Joint Statement on Scientific Research” addressed to President Bill Clinton and the Congress, the presidents of learned societies representing more than one million scientists, mathematicians, and engineers asked the government “to renew the nation's historical commitment to scientific research and education,” and to reverse the decline of federal investment in science and engineering. The American Geophysical Union was one of the signatories of the statement.

  13. Socio-technical Issues for Ubiquitous Information Society in 2010

    Science.gov (United States)

    Funabashi, Motohisa; Homma, Koichi; Sasaki, Toshiro; Sato, Yoshinori; Kido, Kunihiko; Fukumoto, Takashi; Yano, Koujin

    Impact of the ubiquitous information technology on our society is so significant that directing technological development and preparing institutional apparatus are quite important and urgent. The present paper elaborates, with the efforts by both humanity and engineering disciplines, to find out the socio-technical issues of ubiquitous information society in 2010 by inspecting social implications of emerging technology as well as social expectations. In order to deliberate the issues, scenarios are developed that describes possible life in ubiquitous information society. The derived issues cover integrating information technology and human body, producing smart sharable environment, protecting individual rights, fostering new service business, and forming community.

  14. Modified pressure loss model for T-junctions of engine exhaust manifold

    Science.gov (United States)

    Wang, Wenhui; Lu, Xiaolu; Cui, Yi; Deng, Kangyao

    2014-11-01

    The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.

  15. Engineering Education for Sustainable Development. The Contribution of University Curricula to Engineering Education for Sustainable Development.

    NARCIS (Netherlands)

    Kastenhofer, Karen; Lansu, Angelique; Van Dam-Mieras, Rietje; Sotoudeh, Mahshid

    2010-01-01

    Global failures to reach a sustainable development within present-day societies as well as recent breakthroughs within technoscience pose new challenges to engineering education. The list of competencies which engineers should have to rise to these challenges is long and diverse, and often

  16. Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines

    Science.gov (United States)

    2017-05-01

    Engineering Chemistry Fundamentals, Vol. 5, No. 3, 1966, pp. 356–363. [14] Burns, R. A., Development of scalar and velocity imaging diagnostics...in an Aero- Engine Model Combustor at Elevated Pressure Using URANS and Finite- Rate Chemistry ,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference...FINAL REPORT Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines SERDP Project WP-2151

  17. The Second Law of Thermodynamics in a Quantum Heat Engine Model

    International Nuclear Information System (INIS)

    Zhang Ting; Cai Lifeng; Chen Pingxing; Li Chengzu

    2006-01-01

    The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model, nor greater than the reversible Carnot efficiency.

  18. PBL and CDIO: complementary models for engineering education development

    Science.gov (United States)

    Edström, Kristina; Kolmos, Anette

    2014-09-01

    This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines, engineering projects, and change strategy. The structured comparison is intended as an introduction for learning about any of these models. It also invites reflection to support the understanding and evolution of PBL and CDIO, and indicates specifically what the communities can learn from each other. It is noted that while the two approaches share many underlying values, they only partially overlap as strategies for educational reform. The conclusions are that practitioners have much to learn from each other's experiences through a dialogue between the communities, and that PBL and CDIO can play compatible and mutually reinforcing roles, and thus can be fruitfully combined to reform engineering education.

  19. Geometrically engineering the standard model: Locally unfolding three families out of E8

    International Nuclear Information System (INIS)

    Bourjaily, Jacob L.

    2007-01-01

    This paper extends and builds upon the results of [J. L. Bourjaily, arXiv:0704.0444.], in which we described how to use the tools of geometrical engineering to deform geometrically engineered grand unified models into ones with lower symmetry. This top-down unfolding has the advantage that the relative positions of singularities giving rise to the many 'low-energy' matter fields are related by only a few parameters which deform the geometry of the unified model. And because the relative positions of singularities are necessary to compute the superpotential, for example, this is a framework in which the arbitrariness of geometrically engineered models can be greatly reduced. In [J. L. Bourjaily, arXiv:0704.0444.], this picture was made concrete for the case of deforming the representations of an SU 5 model into their standard model content. In this paper we continue that discussion to show how a geometrically engineered 16 of SO 10 can be unfolded into the standard model, and how the three families of the standard model uniquely emerge from the unfolding of a single, isolated E 8 singularity

  20. Hierarchy of simulation models for a turbofan gas engine

    Science.gov (United States)

    Longenbaker, W. E.; Leake, R. J.

    1977-01-01

    Steady-state and transient performance of an F-100-like turbofan gas engine are modeled by a computer program, DYNGEN, developed by NASA. The model employs block data maps and includes about 25 states. Low-order nonlinear analytical and linear techniques are described in terms of their application to the model. Experimental comparisons illustrating the accuracy of each model are presented.

  1. Systems Engineering Analysis

    Directory of Open Access Journals (Sweden)

    Alexei Serna M.

    2013-07-01

    Full Text Available The challenges proposed by the development of the new computer systems demand new guidance related to engineer´s education, because they will solve these problems. In the XXI century, system engineers must be able to integrate a number of topics and knowledge disciplines that complement that traditionally has been known as Computer Systems Engineering. We have enough software development engineers, today we need professional engineers for software integration, leaders and system architects that make the most of the technological development for the benefit of society, leaders that integrate sciences to the solutions they build and propose. In this article the current situation of Computer Systems Engineering is analyzed and is presented a theory proposing the need for modifying the approach Universities have given to these careers, to achieve the education of leader engineers according to the needs of this century.

  2. Advancements in engineering turbulence modeling

    Science.gov (United States)

    Shih, T.-H.

    1991-01-01

    Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.

  3. Un-Building Blocks: A Model of Reverse Engineering and Applicable Heuristics

    Science.gov (United States)

    2015-12-01

    Inclusion relationships of root events, events, and subevents .................179  Table 5.  Formal specification of reverse engineering model using Monterey...intend to stay technologically competitive at personal as well as societal levels. Third, reverse engineering is important for pedagogical reasons. It is...increasingly blurred (Anderson, 2012).4 Third, reverse engineering can be a pedagogical tool (Otto & Wood, 2000; O’Brien, 2010; Halsmer, 2013

  4. Educating nuclear engineers of the 21st century. Introduction of the recent activities by the Atomic Energy Society of Japan

    International Nuclear Information System (INIS)

    Meshii, Toshiyuki

    2008-01-01

    Since the beginning of the 21st century, educating the next generation nuclear engineers have been an interest to groups, who were concerned of the recent decline in nuclear population in universities and industries. In June 2005, committee on education (CE) was established in AESJ (Atomic Energy Society of Japan), hoping to coordinate the groups related to nuclear education in Japan. The birth of CE was timely; because the importance of nuclear education was emphasized in 'Framework for Nuclear Energy Policy (Oct., 2005)' decided by the Atomic Energy Commission. In this paper, recent activities of CE, especially the proposals CE made related Framework for Nuclear Energy Policy, will be reported. The importance of the partnership with industries, government and academe will be emphasized. (author)

  5. 23rd International Conference on Industrial Engineering and Engineering Management 2016

    CERN Document Server

    Shen, Jiang; Dou, Runliang

    2017-01-01

    International Conference on Industrial Engineering and Engineering Management is sponsored by Chinese Industrial Engineering Institution, CMES, which is the unique national-level academic society of Industrial Engineering. The conference is held annually as the major event in this area. Being the largest and the most authoritative international academic conference held in China, it supplies an academic platform for the experts and the entrepreneurs in International Industrial Engineering and Management area to exchange their research results. Many experts in various fields from China and foreign countries gather together in the conference to review, exchange, summarize and promote their achievements in Industrial Engineering and Engineering Management fields. Some experts pay special attention to the current situation of the related techniques application in China as well as their future prospect, such as Industry 4.0, Green Product Design, Quality Control and Management, Supply Chain and logistics Management...

  6. Envisioning the future of collaborative model-driven software engineering

    NARCIS (Netherlands)

    Di Ruscio, Davide; Franzago, Mirco; Malavolta, Ivano; Muccini, Henry

    2017-01-01

    The adoption of Model-driven Software Engineering (MDSE) to develop complex software systems in application domains like automotive and aerospace is being supported by the maturation of model-driven platforms and tools. However, empirical studies show that a wider adoption of MDSE technologies is

  7. State of the Art : Integrated Management of Requirements in Model-Based Software Engineering

    OpenAIRE

    Thörn, Christer

    2006-01-01

    This report describes the background and future of research concerning integrated management of requirements in model-based software engineering. The focus is on describing the relevant topics and existing theoretical backgrounds that form the basis for the research. The report describes the fundamental difficulties of requirements engineering for software projects, and proposes that the results and methods of models in software engineering can help leverage those problems. Taking inspiration...

  8. Reliability modeling of an engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.; Flueck, J.A.

    1993-01-01

    The Weibull distribution is widely used in reliability literature as a distribution of time to failure, as it allows for both increasing failure rate (IFR) and decreasing failure rate (DFR) models. It has also been used to develop models for an engineered barrier system (EBS), which is known to be one of the key components in a deep geological repository for high level radioactive waste (HLW). The EBS failure time can more realistically be modelled by an IFR distribution, since the failure rate for the EBS is not expected to decrease with time. In this paper, we use an IFR distribution to develop a reliability model for the EBS

  9. Reliability modeling of an engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.; Flueck, J.A.

    1993-01-01

    The Weibull distribution is widely used in reliability literature as a distribution of time to failure, as it allows for both increasing failure rate (IFR) and decreasing failure rate (DFR) models. It has also been used to develop models for an engineered barrier system (EBS), which is known to be one of the key components in a deep geological repository for high level radioactive waste (HLW). The EBS failure time can more realistically be modelled by an IFR distribution, since the failure rate for the EBS is not expected to decrease with time. In this paper, an IFR distribution is used to develop a reliability model for the EBS

  10. 2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Waters, Jiajia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-25

    Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.

  11. Popularizing Geological Education among Civil Engineering Students

    Science.gov (United States)

    Chen, Xiang-jun; Zhou, Ying

    2012-01-01

    The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…

  12. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.

    Science.gov (United States)

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T

    2016-05-01

    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.

  13. Development and validation of spray models for investigating diesel engine combustion and emissions

    Science.gov (United States)

    Som, Sibendu

    Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and

  14. A Dynamic Model for the Evaluation of Aircraft Engine Icing Detection and Control-Based Mitigation Strategies

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.

    2017-01-01

    Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the

  15. Model-based security engineering for the internet of things

    OpenAIRE

    NEISSE RICARDO; STERI GARY; NAI FOVINO Igor; BALDINI Gianmarco; VAN HOESEL Lodewijk

    2015-01-01

    We propose in this chapter a Model-based Security Toolkit (SecKit) and methodology to address the control and protection of user data in the deployment of the Internet of Things (IoT). This toolkit takes a more general approach for security engineering including risk analysis, establishment of aspect-specific trust relationships, and enforceable security policies. We describe the integrated metamodels used in the toolkit and the accompanying security engineering methodology for IoT systems...

  16. Automated Model Fit Method for Diesel Engine Control Development

    NARCIS (Netherlands)

    Seykens, X.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is

  17. Modeling for Control of a Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    García–Canseco, Eloísa; Scherpen, Jacquelien M.A.; Kuindersma, Marnix

    2009-01-01

    In this paper we derive the dynamic model of a four–cylinder double–acting wobble–yoke Stirling engine. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control system perspective to obtain a useful model for the analysis and

  18. Automated model fit method for diesel engine control development

    NARCIS (Netherlands)

    Seykens, X.L.J.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.J.H.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is

  19. Engineering Bereitschaft as an enabler for Concurrent Engineering

    DEFF Research Database (Denmark)

    Christiansen, Kåre; Vesterager, Johan

    1999-01-01

    Industrial companies observe a general trend towards more customised products and shorter product life cycles. Furthermore, the market demands shorter lead-time and high-quality products at a competitive price. Concurrent Engineering address these challenges. Product modelling is a key aspect...... of the Concurrent Engineering literature. One problem with the product modelling literature is that it tends to assume that product development is revolutionary. Very often product development is evolutionary and it means that product modelling should have a major emphasis on reuse. In this paper it is suggested...... that industrial companies should develop an engineering development Bereitschaft (preparatory engineering knowledge) as an approach to Concurrent Engineering and product modelling. To develop such an engineering development Bereitschaft, a company must develop company generic product models.This paper...

  20. ROMANIAN KNOWLEDGE SOCIETY DEVELOPMENT. A PROPOSAL

    Directory of Open Access Journals (Sweden)

    Mirela CERKEZ

    2016-06-01

    Full Text Available This article is an argument for the applicability of the Finnish model of knowledge society oriented public policy-making and not a detailed recommendation on the specific steps Romania should make in order to become a knowledge society. The article is elaborated as a synthesis of the Finnish knowledge society oriented public policies and an analysis of the adequacy of policy transfers from Finland to Romania. Data on Romania are not rich as the task of the article is not to make a diagnosis on Romania’s stage of development. Its main contribution consists of the identification of Finnish public measures meant to foster knowledge society that may be a best practice example for Romania. The introductory part briefly introduces the reader into the theoretical understanding of the concept of knowledge society. Then, I argue that there are several types of knowledge societies and Romania should look for European examples given the resemblance of the starting conditions. The main part of the paper presents the Finnish knowledge society development as an experience modeled by public intervention and I mirror these developments with the Romanian case. In the end, I explore the differences between the two countries that may interfere with the application of the Finnish model. Still, my conclusion is that those differences do not make the Finnish model less applicable. The efforts might need to be more intense and the results might show up later.

  1. Understanding the modeling skill shift in engineering: the impact of self-efficacy, epistemology, and metacognition

    Science.gov (United States)

    Yildirim, Tuba Pinar

    A focus of engineering education is to prepare future engineers with problem solving, design and modeling skills. In engineering education, the former two skill areas have received copious attention making their way into the ABET criteria. Modeling, a representation containing the essential structure of an event in the real world, is a fundamental function of engineering, and an important academic skill that students develop during their undergraduate education. Yet the modeling process remains under-investigated, particularly in engineering, even though there is an increasing emphasis on modeling in engineering schools (Frey 2003). Research on modeling requires a deep understanding of multiple perspectives, that of cognition, affect, and knowledge expansion. In this dissertation, the relationship between engineering modeling skills and students' cognitive backgrounds including self-efficacy, epistemic beliefs and metacognition is investigated using model-eliciting activities (MEAs). Data were collected from sophomore students at two time periods, as well as senior engineering students. The impact of each cognitive construct on change in modeling skills was measured using a growth curve model at the sophomore level, and ordinary least squares regression at the senior level. Findings of this dissertation suggest that self-efficacy, through its direct and indirect (moderation or interaction term with time) impact, influences the growth of modeling abilities of an engineering student. When sophomore and senior modeling abilities are compared, the difference can be explained by varying self-efficacy levels. Epistemology influences modeling skill development such that the more sophisticated the student beliefs are, the higher the level of modeling ability students can attain, after controlling for the effects of conceptual learning, gender and GPA. This suggests that development of modeling ability may be constrained by the naivete of one's personal epistemology

  2. Computational engineering

    CERN Document Server

    2014-01-01

    The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds.

  3. First experiments results about the engineering model of Rapsodie

    International Nuclear Information System (INIS)

    Chalot, A.; Ginier, R.; Sauvage, M.

    1964-01-01

    This report deals with the first series of experiments carried out on the engineering model of Rapsodie and on an associated sodium facility set in a laboratory hall of Cadarache. It conveys more precisely: 1/ - The difficulties encountered during the erection and assembly of the engineering model and a compilation of the results of the first series of experiments and tests carried out on this installation (loading of the subassemblies preheating, thermal chocks...). 2/ - The experiments and tests carried out on the two prototypes control rod drive mechanisms which brought to the choice for the design of the definitive drive mechanism. As a whole, the results proved the validity of the general design principles adopted for Rapsodie. (authors) [fr

  4. Genome engineering of stem cell organoids for disease modeling.

    Science.gov (United States)

    Sun, Yingmin; Ding, Qiurong

    2017-05-01

    Precision medicine emerges as a new approach that takes into account individual variability. Successful realization of precision medicine requires disease models that are able to incorporate personalized disease information and recapitulate disease development processes at the molecular, cellular and organ levels. With recent development in stem cell field, a variety of tissue organoids can be derived from patient specific pluripotent stem cells and adult stem cells. In combination with the state-of-the-art genome editing tools, organoids can be further engineered to mimic disease-relevant genetic and epigenetic status of a patient. This has therefore enabled a rapid expansion of sophisticated in vitro disease models, offering a unique system for fundamental and biomedical research as well as the development of personalized medicine. Here we summarize some of the latest advances and future perspectives in engineering stem cell organoids for human disease modeling.

  5. Modeling the dynamic and thermodynamic operation of Stirling engines by means of an equivalent electrical circuit

    International Nuclear Information System (INIS)

    Cascella, Franco; Sorin, Mikhail; Formosa, Fabien; Teyssedou, Alberto

    2017-01-01

    Highlights: • A model based on the electrical analogy theory has been developed to predict the operation of a Stirling engine. • The models takes into account the continuity, the momentum and the energy conservation equations. • The model predicts the operating conditions of the RE100 Free piston Stirling engine. • The model is sensible to the modeling of the effects of the machine load. - Abstract: The Stirling engines are inherently efficient; their thermodynamic cycles reach the Carnot efficiency. These technologies are suitable to operate under any low temperature difference between the hot and the cold sources. For these reasons, these engines can be considered as reliable power conversion systems to promote the conversion of low-grade waste heat generated by industrial plants. The need of a model to predict the behavior of these engines is of primary importance. Nevertheless, a great difficulty is encountered in developing such a model since it is not simple to take into account coupled thermodynamic and dynamic effects. This is the main reason why several models make use of electrical analogies to describe Stirling engines (in particular, free-piston machines): by assuming the pressure equivalent to a voltage and the flow rate to an electrical current, a coupled dynamic-thermodynamic analysis of the engine can be performed. In this paper, an electrical circuit whose behavior is equivalent to that of the engine is derived from the electrical analogy theory. To this aim, we propose an electrical analogy model based on the three conservation laws (mass, momentum and energy). Since limited experimental information is available in the open literature, the results obtained with the proposed model are compared with the experimental data collected at the NASA Lewis Research center for a free-piston Stirling engine i.e., the RE-1000 engine.

  6. Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, Bruce G [ORNL

    2012-10-01

    The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

  7. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  8. Computational experience with a three-dimensional rotary engine combustion model

    Science.gov (United States)

    Raju, M. S.; Willis, E. A.

    1990-04-01

    A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.

  9. Multi-zone thermodynamic modelling of spark-ignition engine combustion - An overview

    International Nuclear Information System (INIS)

    Verhelst, S.; Sheppard, C.G.W.

    2009-01-01

    'Multi-zone thermodynamic engine model' is a generic term adopted here for the type of model also referred to as quasi-dimensional, two-zone, three-zone, etc.; based on the laws of mass and energy conservation and using a mass burning rate sub-model (as opposed to a prescribed mass burning rate) to predict the in-cylinder pressure and temperature throughout the power cycle. Such models have been used for about three decades and provide valuable tools for rapid evaluation of the influence of key engine parameters. Numerous papers have been published on the development of models of varying complexity and their application. The current work is not intended as a comprehensive review of all these works, but presents an overview of multi-zone thermodynamic models for spark-ignition engines, their pros and cons, the model equations and sub-models used to account for various processes such as turbulent wrinkling, flame development, flame geometry, heat transfer, etc. It is suggested that some past terminology adopted to distinguish combustion models (e.g. 'entrainment' versus 'flamelet') is artificial and confusing; it can also be difficult to compare the different models used. Naturally, different models use varying underlying assumptions; however, the influence of several physical processes has frequently been incorporated into one term, not always well documented or clearly described. The authors propose a unified framework that can be used to compare different sub-models on the same basis, with particular focus on turbulent combustion models.

  10. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    Science.gov (United States)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  11. Engineering model for low-velocity impacts of multi-material cylinder on a rigid boundary

    Directory of Open Access Journals (Sweden)

    Delvare F.

    2012-08-01

    Full Text Available Modern ballistic problems involve the impact of multi-material projectiles. In order to model the impact phenomenon, different levels of analysis can be developed: empirical, engineering and simulation models. Engineering models are important because they allow the understanding of the physical phenomenon of the impact materials. However, some simplifications can be assumed to reduce the number of variables. For example, some engineering models have been developed to approximate the behavior of single cylinders when impacts a rigid surface. However, the cylinder deformation depends of its instantaneous velocity. At this work, an analytical model is proposed for modeling the behavior of a unique cylinder composed of two different metals cylinders over a rigid surface. Material models are assumed as rigid-perfectly plastic. Differential equation systems are solved using a numerical Runge-Kutta method. Results are compared with computational simulations using AUTODYN 2D hydrocode. It was found a good agreement between engineering model and simulation results. Model is limited by the impact velocity which is transition at the interface point given by the hydro dynamical pressure proposed by Tate.

  12. A model for engineering education in the new millennium

    NARCIS (Netherlands)

    Ir Reinder Bakker; Dr.Ir. Hay Geraedts; Ir. Dick van Schenk Brill

    2000-01-01

    This paper describes a model for education in innovative engineering. The kernel of this model is, that students from different departments of the faculty of Applied Science and Technology are placed in industry for a period of eighteen months after two-and-a-half year of theoretical studies. During

  13. A simple mathematical model of society collapse applied to Easter Island

    Science.gov (United States)

    Bologna, M.; Flores, J. C.

    2008-02-01

    In this paper we consider a mathematical model for the evolution and collapse of the Easter Island society. Based on historical reports, the available primary resources consisted almost exclusively in the trees, then we describe the inhabitants and the resources as an isolated dynamical system. A mathematical, and numerical, analysis about the Easter Island community collapse is performed. In particular, we analyze the critical values of the fundamental parameters and a demographic curve is presented. The technological parameter, quantifying the exploitation of the resources, is calculated and applied to the case of another extinguished civilization (Copán Maya) confirming the consistency of the adopted model.

  14. Human Modeling for Ground Processing Human Factors Engineering Analysis

    Science.gov (United States)

    Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim

    2011-01-01

    There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs

  15. A transient one-dimensional numerical model for kinetic Stirling engine

    International Nuclear Information System (INIS)

    Wang, Kai; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2016-01-01

    Highlights: • A non-equilibrium thermal mode with considering loses is adopted in Stirling engine. • Good agreements are achieved for predicting various critical system parameters. • Differences between helium and hydrogen systems are highlighted and analyzed. • Pressure drop of helium system is much larger and more sensitive to frequency. - Abstract: A third-order numerical model based on one-dimensional computational fluid dynamics is developed for kinetic Stirling engines. Various loss mechanisms in Stirling engines, including gas spring hysteresis loss, shuttle loss, appendix displacer gap loss, gas leakage loss, finite speed loss, piston friction loss, pressure drop loss, heat conduction loss, mechanical loss and imperfect heat transfer, are considered and embedded into the basic control equations. The non-equilibrium thermal model is adopted for the regenerator to capture the oscillating features of the gas and solid temperatures. To improve the numerical stability and accuracy, the implicit second-order time difference scheme and the second-order upwind scheme are adopted for discretizing the time differential terms and convective terms, respectively. Experimental validations are then conducted on a beta-type Stirling engine with the extensive experimental data for diverse working conditions. The results show that the developed model has better accuracies than the previous second-order models. Good agreements are achieved for predicting various critical system parameters, including pressure-volume diagram, indicated power, brake power, indicated efficiency, brake efficiency and mechanical efficiency. In particular, both the experiments and simulations show that the Stirling engine charged with helium tends to have much lower optimal working frequencies and poorer performances compared to the hydrogen system. Based on the analyses of the losses, it reveals that the pressure drop in the flow channels plays a critical role in shaping the different

  16. Computational studies of an intake manifold for restricted engine application

    Science.gov (United States)

    Prasetyo, Bagus Dwi; Ubaidillah, Maharani, Elliza Tri; Setyohandoko, Gabriel; Idris, Muhammad Idzdihar

    2018-02-01

    The Formula Society of Automotive Engineer (FSAE) student competition is an international contest for a vehicle that entirely designed and built by students from various universities. The engine design in the Formula SAE competition has to comply a tight regulation. Concerning the engine intake line, an air restrictor of circular cross-section less than 20 mm must be fitted between the throttle valve and the engine inlet. The throat is aimed to limit the engine air flow rate as it strongly influences the volumetric efficiency and then the maximum power. This article focuses on the design of the engine intake system of the Bengawan FSAE team vehicle to optimize the engine power output and its stability. The performance of engine intake system is studied through computational fluid dynamics (CFD). The objective of CFD is to know the pressure, velocity, and airflow of the air intake manifold for the best performance of the engine. The three-dimensional drawing of the intake manifold was made, and CFD simulation was conducted using ANSYS FLUENT. Two models were studied. The result shows that the different design produces a different value of the velocity of airflow and the kind of flow type.

  17. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    Science.gov (United States)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  18. Modern Cast Irons in Chemical Engineering

    Science.gov (United States)

    1934-11-09

    fl’ceew. T I SOCIETY OF CHEMICAL INDUSTRY CHEMICAL ENGINEERING GROUP MODERN CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P...CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P., M.I.E.E.* INTRODUCTION to chemical or thermal resistance. Small blow-holes Any...consideration of modern cast irons in chemical seldom appear to reduce the mechanical strength of engineering should strictly be prefaced by a definition

  19. Developing Project Duration Models in Software Engineering

    Institute of Scientific and Technical Information of China (English)

    Pierre Bourque; Serge Oligny; Alain Abran; Bertrand Fournier

    2007-01-01

    Based on the empirical analysis of data contained in the International Software Benchmarking Standards Group(ISBSG) repository, this paper presents software engineering project duration models based on project effort. Duration models are built for the entire dataset and for subsets of projects developed for personal computer, mid-range and mainframeplatforms. Duration models are also constructed for projects requiring fewer than 400 person-hours of effort and for projectsre quiring more than 400 person-hours of effort. The usefulness of adding the maximum number of assigned resources as asecond independent variable to explain duration is also analyzed. The opportunity to build duration models directly fromproject functional size in function points is investigated as well.

  20. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    International Nuclear Information System (INIS)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze

    2010-01-01

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  1. Curriculum: Integrating Health and Safety Into Engineering Curricula.

    Science.gov (United States)

    Talty, John T.

    1985-01-01

    National Institute for Occupational Safety and Health instituted a project in 1980 to encourage engineering educators to focus on occupational safety and health issues in engineering curricula. Progress to date is outlined, considering specific results in curriculum development, engineering society interaction, and formation of a teaching…

  2. Establishing a `Centre for Engineering Experimentation and Design Simulation': a step towards restructuring engineering education in India

    Science.gov (United States)

    Venkateswarlu, P.

    2017-07-01

    Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with necessary skills to create and advance knowledge that meets global standards. To achieve this goal, this paper proposes establishing a central facility, 'Centre for Engineering Experimentation and Design Simulation' (CEEDS) in autonomous engineering colleges in India. The centre will be equipped with the most recent technology resources and computational facilities where students execute novel interdisciplinary product-oriented projects benefiting both industry and society. Students undertake two projects: a short-term project aimed at an engineering solution to a problem in energy, health and environment and the other a major industry-supported project devoted to a product that enhances innovation and creativity. The paper presents the current status, the theoretical and pedagogical foundation for the centre's relevance, an activity plan and its implementation in the centre for product-based learning with illustrative examples.

  3. Activities for the Promotion of Gender Equality in Japan—Japan Society of Applied Physics

    Science.gov (United States)

    Kodate, Kashiko; Tanaka, Kazuo

    2005-10-01

    Since 1946, the Japan Society of Applied Physics (JSAP) has strived to promote research and development in applied physics for benefits beyond national boundaries. Activities of JSAP involve multidisciplinary fields, from physics and engineering to life sciences. Of its 23,000 members, 48% are from industry, 29% from academia, and about 7% from semi-autonomous national research laboratories. Its large industrial membership is one of the distinctive features of JSAP. In preparation for the First IUPAP International Conference on Women in Physics (Paris, 2002), JSAP members took the first step under the strong leadership of then-JSAP President Toshio Goto, setting up the Committee for the Promotion Equal Participation of Men and Women in Science and Technology. Equality rather than women's advancement is highlighted to further development in science and technology. Attention is also paid to balancing the number of researchers from different age groups and affiliations. The committee has 22 members: 12 female and 10 male; 7 from corporations, 12 from universities, and 3 from semi-autonomous national research institutes. Its main activities are to organize symposia and meetings, conduct surveys among JSAP members, and provide child-care facilities at meetings and conferences. In 2002 the Japan Physics Society and the Chemical Society of Japan jointly created the Japan Inter-Society Liaison Association for the Promotion of Equal Participation of Men and Women in Science and Engineering. Membership has grown to 44 societies (of which 19 are observers) ranging from mathematics, information, and life sciences to civil engineering. Joint activities across sectors and empower the whole. The Gender Equality Bureau in the Cabinet Office recently launched a large-scale project called "Challenge Campaign" to encourage girls to major in natural science and engineering, which JSAP is co-sponsoring.

  4. Modeling planarian regeneration: a primer for reverse-engineering the worm.

    Directory of Open Access Journals (Sweden)

    Daniel Lobo

    Full Text Available A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences-using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an

  5. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  6. Supervisor synthesis in model-based automotive systems engineering

    NARCIS (Netherlands)

    van de Mortel - Fronczak, J.M.; van der Heijden, M.H.R.; Huisman, R.G.M.; Reniers, M.A.

    2014-01-01

    It is recognized by various engineering disciplines that models support and speed up the development of systems consisting of numerous closely related computational and physical elements, since they enable extensive and early functional and performance analysis of the designs and allow for control

  7. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    Science.gov (United States)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  8. Ways of Thinking, Ways of Seeing Mathematical and other Modelling in Engineering and Technology

    CERN Document Server

    Dillon, Chris

    2012-01-01

    This fascinating book examines some of the characteristics of technological/engineering models that are likely to be unfamiliar to those who are interested primarily in the history and philosophy of science and mathematics, and which differentiate technological models from scientific and mathematical ones. Themes that will be highlighted include: • the role of language: the models developed for engineering design have resulted in new ways of talking about technological systems • communities of practice: related to the previous point, particular engineering communities have particular ways of sharing and developing knowledge • graphical (re)presentation: engineers have developed many ways of reducing quite complex mathematical models to more simple representations • reification: highly abstract mathematical models are turned into ‘objects’ that can be manipulated almost like components of a physical system • machines: not only the currently ubiquitous digital computer, but also older analogue dev...

  9. Engineering grand challenges and the attributes of the global engineer

    DEFF Research Database (Denmark)

    Guerra, Aida; Ulseth, Ron; Jonhson, Bart

    2017-01-01

    Technology has been changing world in ways never imagined. The ever-evolving society and rapid development posed different demands and challenges to the engineering profession. Addressing these challenges means to re-vision and reform the ways we educate future engineers and the attributes need...... to be enhanced. This paper reports a literature review with aim to (1) understand the different stakeholders’ perspectives, namely students, educators, and employers, (2) understand the profile of the global engineer (i.e. knowledge, competences and skills), and (3) outline and discuss learning strategies....... As a result, the paper presents the main gaps in the existing knowledge, formulates research hypothesis, and proposes a research design for a follow up empirical study to investigate further the engineering grand challenges, the attributes needed to solve them, and the learning environments required....

  10. Nuclear industry will be short of engineers

    International Nuclear Information System (INIS)

    Yates, M.

    1990-01-01

    This article discusses the potential shortage of nuclear engineers due to reduction of educational and training facilities and difficulty in attracting minorities into nuclear engineering. The article reports on recommendations from the National Research Council Nuclear Education Study Committee on attracting minorities to nuclear engineering, increasing DOE fellowships, funding for research and development, involvement of utilities and vendors, and support of the American Nuclear Society's advocacy of nuclear engineering education

  11. Modeling and dynamic control simulation of unitary gas engine heat pump

    International Nuclear Information System (INIS)

    Zhao Yang; Haibo Zhao; Zheng Fang

    2007-01-01

    Based on the dynamic model of the gas engine heat pump (GEHP) system, an intelligent control simulation is presented to research the dynamic characteristics of the system in the heating operation. The GEHP system simulation model consists of eight models for its components including a natural gas engine, a compressor, a condenser, an expansion valve, an evaporator, a cylinder jacket heat exchanger, an exhaust gas heat exchanger and an auxiliary heater. The intelligent control model is composed of the prediction controller model and the combined controller model. The Runge-Kutta Fehlberg fourth-fifth order algorithms are used to solve the differential equations. The results show that the model is very effective in analyzing the effects of the control system, and the steady state accuracy of the intelligent control scheme is higher than that of the fuzzy controller

  12. Linking Engineering and Medical Training: A USC program seeks to introduce medical and engineering students to medical device development.

    Science.gov (United States)

    Tolomiczenko, George; Sanger, Terry

    2015-01-01

    Medical students are attracted by the prospect of a meaningful addition to their clinical work. Engineering students are excited by a unique opportunity to learn directly alongside their medical student peers. For both, as well as the scientific community at large, the boutique program at the University of Southern California (USC) linking engineering and medical training at the graduate level is instructive of a new way of approaching engineering education that can potentially provide benefits to both students and society. Students who have grown up in an era of ?mass customization? in the retail and service industries can enjoy that same degree of flexibility also in the realm of education. At the same time, society gains engineers who have developed an increased empathy and awareness of the clinical contexts in which their innovations will be implemented.

  13. Engineering the future of military tactical vehicles and systems with modeling and simulation

    Science.gov (United States)

    Loew, Matthew; Watters, Brock

    2005-05-01

    Stewart & Stevenson has developed a Modeling and Simulation approach based on Systems Engineering principles for the development of future military vehicles and systems. This approach starts with a requirements analysis phase that captures and distills the design requirements into a list of parameterized values. A series of executable engineering models are constructed to allow the requirements to be transformed into systems with definable architectures with increasing levels of fidelity. Required performance parameters are available for importation into a variety of modeling and simulation tools including PTC Pro/ENGINEER (for initial engineering models, mechanisms, packaging, and detailed 3-Dimensional solid models), LMS International Virtual.Lab Motion (for vehicle dynamics and ride analysis) and AVL Cruise (Powertrain simulations). Structural analysis and optimization (performed in ANSYS, Pro/MECHANICA, and Altair OptiStruct) is based on the initial geometry from Pro/ENGINEER. Spreadsheets are used for requirements analysis, design documentation and first-order studies. Collectively, these models serve as templates for all design activities. Design variables initially studied within a simplified system model can be cascaded down as the new requirements for a sub-system model. By utilizing this approach premature decisions on systems architectures can be avoided. Ultimately, the systems that are developed are optimally able to meet the requirements by utilizing this top-down approach. Additionally, this M&S approach is seen as a life-cycle tool useful in initially assisting with project management activities through the initial and detail design phases and serves as a template for testing and validation/verification activities. Furthermore, because of the multi-tiered approach, there is natural re-use possible with the models as well.

  14. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    International Nuclear Information System (INIS)

    Vladimir Zamansky; David Moyeda; Mark Sheldon

    2000-01-01

    This project is designed to develop engineering and modeling tools for a family of NO(sub x) control technologies utilizing biomass as a reburning fuel. During the tenth reporting period (January 1-March 31, 2000), EER and NETL R and D group continued to work on Tasks 2, 3, 4, and 5. Information regarding these tasks will be included in the next Quarterly Report. This report includes (Appendix 1) a conceptual design study for the introduction of biomass reburning in a working coal-fired utility boiler. This study was conducted under the coordinated SBIR program funded by the U. S. Department of Agriculture

  15. Foreign Experience in Training Future Engineering Educators for Modeling Technological Processes

    Science.gov (United States)

    Bokhonko, Yevhen

    2017-01-01

    The article deals with the study of foreign experience in training engineering educators for modeling technological processes. It has been stated that engineering education is a field that is being dramatically developed taking into account the occurring changes in educational paradigms, global higher education space, national higher education…

  16. Using Role-Playing Games to Broaden Engineering Education

    Science.gov (United States)

    McConville, Jennifer R.; Rauch, Sebastien; Helgegren, Ida; Kain, Jaan-Henrik

    2017-01-01

    Purpose: In today's complex society, there is an increasing demand to include a wider set of skills in engineering curricula, especially skills related to policy, society and sustainable development. Role-playing and gaming are active learning tools, which are useful for learning relationships between technology and society, problem solving in…

  17. Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications

    International Nuclear Information System (INIS)

    Sakellaridis, Nikolaos F.; Raptotasios, Spyridon I.; Antonopoulos, Antonis K.; Mavropoulos, Georgios C.; Hountalas, Dimitrios T.

    2015-01-01

    Engine cycle simulation models are increasingly used in diesel engine simulation and diagnostic applications, reducing experimental effort. Turbocharger simulation plays an important role in model's ability to accurately predict engine performance and emissions. The present work describes the development of a complete engine simulation model for marine Diesel engines based on a new methodology for turbocharger modelling utilizing physically based meanline models for compressor and turbine. Simulation accuracy is evaluated against engine bench measurements. The methodology was developed to overcome the problem of limited experimental maps availability for compressor and turbine, often encountered in large marine diesel engine simulation and diagnostic studies. Data from the engine bench are used to calibrate the models, as well as to estimate turbocharger shaft mechanical efficiency. Closed cycle and gas exchange are modelled using an existing multizone thermodynamic model. The proposed methodology is applied on a 2-stroke marine diesel engine and its evaluation is based on the comparison of predictions against measured engine data. It is demonstrated model's ability to predict engine response with load variation regarding both turbocharger performance and closed cycle parameters, as well as NOx emission trends, making it an effective tool for both engine diagnostic and optimization studies. - Highlights: • Marine two stroke diesel engine simulation model. • Turbine and compressor simulation using physical meanline models. • Methodology to derive T/C component efficiency and T/C shaft mechanical efficiency. • Extensive validation of predictions against experimental data.

  18. Model-Driven Engineering of Machine Executable Code

    Science.gov (United States)

    Eichberg, Michael; Monperrus, Martin; Kloppenburg, Sven; Mezini, Mira

    Implementing static analyses of machine-level executable code is labor intensive and complex. We show how to leverage model-driven engineering to facilitate the design and implementation of programs doing static analyses. Further, we report on important lessons learned on the benefits and drawbacks while using the following technologies: using the Scala programming language as target of code generation, using XML-Schema to express a metamodel, and using XSLT to implement (a) transformations and (b) a lint like tool. Finally, we report on the use of Prolog for writing model transformations.

  19. Model-based engineering for medical-device software.

    Science.gov (United States)

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  20. Generomak: Fusion physics, engineering and costing model

    International Nuclear Information System (INIS)

    Delene, J.G.; Krakowski, R.A.; Sheffield, J.; Dory, R.A.

    1988-06-01

    A generic fusion physics, engineering and economics model (Generomak) was developed as a means of performing consistent analysis of the economic viability of alternative magnetic fusion reactors. The original Generomak model developed at Oak Ridge by Sheffield was expanded for the analyses of the Senior Committee on Environmental Safety and Economics of Magnetic Fusion Energy (ESECOM). This report describes the Generomak code as used by ESECOM. The input data used for each of the ten ESECOM fusion plants and the Generomak code output for each case is given. 14 refs., 3 figs., 17 tabs

  1. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Energy Technology Data Exchange (ETDEWEB)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  2. Fuel composition impact on heavy duty diesel engine combustion & emissions

    NARCIS (Netherlands)

    Frijters, P.J.M.

    2012-01-01

    The Heavy Duty Diesel or compression ignition (CI) engine plays an important economical role in societies all over the world. Although it is a fuel efficient internal combustion engine design, CI engine emissions are an important contributor to global pollution. To further reduce engine emissions

  3. Inter-Society Research Committee

    International Nuclear Information System (INIS)

    Akiyama, Mamoru; Higuchi, Masahisa.

    1996-01-01

    World-wide tendencies and circumstances for nuclear power cannot be said to be moving full of sail with a favorable wind, due to nuclear power plant accidents and comparatively little economical benefit. The present Nuclear Power Plant situation is that some personnel understand a need for the development from the viewpoint of efficient energy usage in the world and environmental problems like global warming. At the same time others oppose future nuclear development from the viewpoint of safety problems and economic cost. These issues may end nuclear development worldwide. Nuclear development must be considered from an international viewpoint and other various aspects. Therefore, all countries concerned should cooperative in the adjustment of research carried out by each country. Nuclear power's future must be efficient in the utilization of limited resources (money, manpower and facilities). It is concluded that the ISRC should only discuss technical matters on nuclear engineering, independent from political influence. Societies agreeing to this idea, provide the ISRC with money and/or manpower and/or facilities. The ISRC will consist of a research program committee and research task forces. Members of the Research Program Committee are the chairmen of the research task forces who are also society representatives. The Committee will discuss research programs and resources. The research task forces will consist of one society representative chairman and specialists on the program

  4. Quality Practices, Corporate Social Responsibility and the “Society Results” Criterion of the EFQM Model

    Directory of Open Access Journals (Sweden)

    María de la Cruz del Río-Rama

    2017-04-01

    Full Text Available Purpose – The purpose of this research is to analyze whether quality management practices implemented and carried out by the rural accommodation establishments under study influence society results obtained by organizations, which are understood as the participation therein and the development of local community.´ Design/methodology/approach – The working methodology consists of carrying out an exploratory and confirmatory factor analysis in order to test the psychometric properties of measurement scales, and the hypothesized relationships between critical factors and society results are examined using structural equation modeling. Findings – The study provides evidence of a weak relationship between the critical factors of quality and society results in rural accommodation establishments. The results suggest that process management is the only quality practice that has a direct effect on society results and the rest of the critical factors are considered antecedents of it. Originality/value – The contribution of this study, which explores the impact of the critical factors of quality on society results, is to confirm that there is an effect of the critical factors of quality on society results (social and environmental responsibilities through the direct relationship of process management. Very few studies examine this relationship.

  5. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  6. History of nuclear engineering curricula

    International Nuclear Information System (INIS)

    Murphy, G.

    1975-01-01

    With the realization that nuclear energy had a vast potential for peacetime development, universities throughout the country began to develop courses in nuclear energy. A pioneering educational effort was necessary because there was an inadequate number of trained faculty, no established curricula, no textbooks, and very little suitable equipment. Nevertheless, by the early 1950's, several programs in nuclear science and engineering were beginning to provide instruction to potential nuclear engineers. At that time, the American Society for Engineering Education (ASEE) established a nuclear committee to cooperate with the U. S. Atomic Energy Commission (AEC) in nuclear education matters. With the financial support of the AEC, textbook material was developed, faculty training programs were instituted, and funds were made available for equipment. Because of the large interest shown in the field, many colleges and universities began to develop nuclear engineering curricula. After a few years, the need arose for general guidelines in curricular development. This led to the development of a Committee on Objective Criteria in Nuclear Engineering Education in which ASEE and the American Nuclear Society cooperated with the support of AEC. The committee report emphasized basic science, nuclear energy concepts, and nuclear technology, which have continued to be the significant components of a nuclear engineering curriculum. The last ten years have brought increased emphasis on BS programs, the introduction of extensive computer-based instruction, and an increasing emphasis on the engineering aspects of nuclear reactor power systems

  7. The MDE Diploma: First International Postgraduate Specialization in Model-Driven Engineering

    Science.gov (United States)

    Cabot, Jordi; Tisi, Massimo

    2011-01-01

    Model-Driven Engineering (MDE) is changing the way we build, operate, and maintain our software-intensive systems. Several projects using MDE practices are reporting significant improvements in quality and performance but, to be able to handle these projects, software engineers need a set of technical and interpersonal skills that are currently…

  8. Integrated System-Level Optimization for Concurrent Engineering With Parametric Subsystem Modeling

    Science.gov (United States)

    Schuman, Todd; DeWeck, Oliver L.; Sobieski, Jaroslaw

    2005-01-01

    The introduction of concurrent design practices to the aerospace industry has greatly increased the productivity of engineers and teams during design sessions as demonstrated by JPL's Team X. Simultaneously, advances in computing power have given rise to a host of potent numerical optimization methods capable of solving complex multidisciplinary optimization problems containing hundreds of variables, constraints, and governing equations. Unfortunately, such methods are tedious to set up and require significant amounts of time and processor power to execute, thus making them unsuitable for rapid concurrent engineering use. This paper proposes a framework for Integration of System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem models. These approximations are then linked to a system-level optimizer that is capable of reaching a solution quickly due to the reduced complexity of the approximations. The integration structure is described in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model. Further, a comparison is made between the new framework and traditional concurrent engineering (without system optimization) through an experimental trial with two groups of engineers. Each method is evaluated in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level optimization, running as a background process during integrated concurrent engineering sessions, is potentially advantageous as long as it is judiciously implemented.

  9. Advances and prospects in metabolic engineering of Zymomonas mobilis.

    Science.gov (United States)

    Wang, Xia; He, Qiaoning; Yang, Yongfu; Wang, Jingwen; Haning, Katie; Hu, Yun; Wu, Bo; He, Mingxiong; Zhang, Yaoping; Bao, Jie; Contreras, Lydia M; Yang, Shihui

    2018-04-05

    Biorefinery of biomass-based biofuels and biochemicals by microorganisms is a competitive alternative of traditional petroleum refineries. Zymomonas mobilis is a natural ethanologen with many desirable characteristics, which makes it an ideal industrial microbial biocatalyst for commercial production of desirable bioproducts through metabolic engineering. In this review, we summarize the metabolic engineering progress achieved in Z. mobilis to expand its substrate and product ranges as well as to enhance its robustness against stressful conditions such as inhibitory compounds within the lignocellulosic hydrolysates and slurries. We also discuss a few metabolic engineering strategies that can be applied in Z. mobilis to further develop it as a robust workhorse for economic lignocellulosic bioproducts. In addition, we briefly review the progress of metabolic engineering in Z. mobilis related to the classical synthetic biology cycle of "Design-Build-Test-Learn", as well as the progress and potential to develop Z. mobilis as a model chassis for biorefinery practices in the synthetic biology era. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Model-Based Control of a Nonlinear Aircraft Engine Simulation using an Optimal Tuner Kalman Filter Approach

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob

    2013-01-01

    This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.

  11. A kernel principal component analysis–based degradation model and remaining useful life estimation for the turbofan engine

    Directory of Open Access Journals (Sweden)

    Delong Feng

    2016-05-01

    Full Text Available Remaining useful life estimation of the prognostics and health management technique is a complicated and difficult research question for maintenance. In this article, we consider the problem of prognostics modeling and estimation of the turbofan engine under complicated circumstances and propose a kernel principal component analysis–based degradation model and remaining useful life estimation method for such aircraft engine. We first analyze the output data created by the turbofan engine thermodynamic simulation that is based on the kernel principal component analysis method and then distinguish the qualitative and quantitative relationships between the key factors. Next, we build a degradation model for the engine fault based on the following assumptions: the engine has only had constant failure (i.e. no sudden failure is included, and the engine has a Wiener process, which is a covariate stand for the engine system drift. To predict the remaining useful life of the turbofan engine, we built a health index based on the degradation model and used the method of maximum likelihood and the data from the thermodynamic simulation model to estimate the parameters of this degradation model. Through the data analysis, we obtained a trend model of the regression curve line that fits with the actual statistical data. Based on the predicted health index model and the data trend model, we estimate the remaining useful life of the aircraft engine as the index reaches zero. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this prediction method that we propose. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this proposed method, the precision of the method can reach to 98.9% and the average precision is 95.8%.

  12. The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM)

    Science.gov (United States)

    2012-11-01

    that have been incorporated into BIM technologies marketed by competing vendors (e.g., Industry Foundation Class [IFC], Construction Operations...ER D C SR -1 2- 2 The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling ( BIM ) En gi ne er R es ea rc h an...Information Modeling ( BIM ) US Army Corps of Engineers Directorate of Civil Works Engineering and Construction Branch Washington, DC 20314-1000 Final

  13. Standardized Competencies for Parenteral Nutrition Prescribing: The American Society for Parenteral and Enteral Nutrition Model.

    Science.gov (United States)

    Guenter, Peggi; Boullata, Joseph I; Ayers, Phil; Gervasio, Jane; Malone, Ainsley; Raymond, Erica; Holcombe, Beverly; Kraft, Michael; Sacks, Gordon; Seres, David

    2015-08-01

    Parenteral nutrition (PN) provision is complex, as it is a high-alert medication and prone to a variety of potential errors. With changes in clinical practice models and recent federal rulings, the number of PN prescribers may be increasing. Safe prescribing of this therapy requires that competency for prescribers from all disciplines be demonstrated using a standardized process. A standardized model for PN prescribing competency is proposed based on a competency framework, the American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.)-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines. This framework will guide institutions and agencies in developing and maintaining competency for safe PN prescription by their staff. © 2015 American Society for Parenteral and Enteral Nutrition.

  14. Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Hang-cheong Wong

    2012-01-01

    Full Text Available Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM, to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN and decremental least-squares support vector machine (DLSSVM. Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control.

  15. Improved Traceability of Mission Concept to Requirements Using Model Based Systems Engineering

    Science.gov (United States)

    Reil, Robin

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the traditional document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This thesis presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magics MagicDraw modeling tool. The model incorporates mission concept and requirement information from the missions original DBSE design efforts. Active dependency relationships are modeled to analyze the completeness and consistency of the requirements to the mission concept. Overall experience and methodology are presented for both the MBSE and original DBSE design efforts of SporeSat.

  16. Preschool Psychopathology Reported by Parents in 23 Societies: Testing the Seven-Syndrome Model of the Child Behavior Checklist for Ages 1.5–5

    Science.gov (United States)

    Ivanova, Masha Y.; Achenbach, Thomas M.; Rescorla, Leslie A.; Harder, Valerie S.; Ang, Rebecca P.; Bilenberg, Niels; Bjarnadottir, Gudrun; Capron, Christiane; De Pauw, Sarah S.W.; Dias, Pedro; Dobrean, Anca; Doepfner, Manfred; Duyme, Michele; Eapen, Valsamma; Erol, Nese; Esmaeili, Elaheh Mohammad; Ezpeleta, Lourdes; Frigerio, Alessandra; Gonçalves, Miguel M.; Gudmundsson, Halldor S.; Jeng, Suh-Fang; Jetishi, Pranvera; Jusiene, Roma; Kim, Young-Ah; Kristensen, Solvejg; Lecannelier, Felipe; Leung, Patrick W.L.; Liu, Jianghong; Montirosso, Rosario; Oh, Kyung Ja; Plueck, Julia; Pomalima, Rolando; Shahini, Mimoza; Silva, Jaime R.; Simsek, Zynep; Sourander, Andre; Valverde, Jose; Van Leeuwen, Karla G.; Woo, Bernardine S.C.; Wu, Yen-Tzu; Zubrick, Stephen R.; Verhulst, Frank C.

    2014-01-01

    Objective To test the fit of a seven-syndrome model to ratings of preschoolers' problems by parents in very diverse societies. Method Parents of 19,106 children 18 to 71 months of age from 23 societies in Asia, Australasia, Europe, the Middle East, and South America completed the Child Behavior Checklist for Ages 1.5–5 (CBCL/1.5–5). Confirmatory factor analyses were used to test the seven-syndrome model separately for each society. Results The primary model fit index, the root mean square error of approximation (RMSEA), indicated acceptable to good fit for each society. Although a six-syndrome model combining the Emotionally Reactive and Anxious/Depressed syndromes also fit the data for nine societies, it fit less well than the seven-syndrome model for seven of the nine societies. Other fit indices yielded less consistent results than the RMSEA. Conclusions The seven-syndrome model provides one way to capture patterns of children's problems that are manifested in ratings by parents from many societies. Clinicians working with preschoolers from these societies can thus assess and describe parents' ratings of behavioral, emotional, and social problems in terms of the seven syndromes. The results illustrate possibilities for culture–general taxonomic constructs of preschool psychopathology. Problems not captured by the CBCL/1.5–5 may form additional syndromes, and other syndrome models may also fit the data. PMID:21093771

  17. Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines

    Science.gov (United States)

    Morris, Christopher I.

    2005-01-01

    Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous

  18. 76 FR 61255 - Airworthiness Directives; Honeywell International Inc. TPE331 Model Turboprop Engines With...

    Science.gov (United States)

    2011-10-04

    ... Certification Office, FAA, Atlanta Aircraft Certification Office, 1701 Columbia Avenue, College Park, GA 30337... Airworthiness Directives; Honeywell International Inc. TPE331 Model Turboprop Engines With Certain Dixie... Honeywell International Inc. TPE331 model turboprop engines with a part manufacturer approval (PMA...

  19. Software-engineering-based model for mitigating Repetitive Strain ...

    African Journals Online (AJOL)

    The incorporation of Information and Communication Technology (ICT) in virtually all facets of human endeavours has fostered the use of computers. This has induced Repetitive Stress Injury (RSI) for continuous and persistent computer users. Proposing a software engineering model capable of enacted RSI force break ...

  20. Takagi-Sugeno fuzzy model identification for turbofan aero-engines with guaranteed stability

    Directory of Open Access Journals (Sweden)

    Ruichao LI

    2018-06-01

    Full Text Available This paper is concerned with identifying a Takagi-Sugeno (TS fuzzy model for turbofan aero-engines working under the maximum power status (non-afterburning. To establish the fuzzy system, theoretical contributions are made as follows. First, by fixing antecedent parameters, the estimation of consequent parameters in state-space representations is formulated as minimizing a quadratic cost function. Second, to avoid obtaining unstable identified models, a new theorem is proposed to transform the prior-knowledge of stability into constraints. Then based on the aforementioned work, the identification problem is synthesized as a constrained quadratic optimization. By solving the constrained optimization, a TS fuzzy system is identified with guaranteed stability. Finally, the proposed method is applied to the turbofan aero-engine using simulation data generated from an aerothermodynamics component-level model. Results show the identified fuzzy model achieves a high fitting accuracy while stabilities of the overall fuzzy system and all its local models are also guaranteed. Keywords: Constrained optimization, Fuzzy system, Stability, System identification, Turbofan engine

  1. Canadian Civil Society Organizations and Human Rights and Global ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project aims to strengthen the capacity of Canadian civil society organizations (CSOs) to inform Canadian policy on human rights and global justice. ... in the developing world continue to face obstacles that limit their ability to establish careers and become leaders in the fields of science, technology, engineering, and ...

  2. Healthcare Engineering Defined: A White Paper.

    Science.gov (United States)

    Chyu, Ming-Chien; Austin, Tony; Calisir, Fethi; Chanjaplammootil, Samuel; Davis, Mark J; Favela, Jesus; Gan, Heng; Gefen, Amit; Haddas, Ram; Hahn-Goldberg, Shoshana; Hornero, Roberto; Huang, Yu-Li; Jensen, Øystein; Jiang, Zhongwei; Katsanis, J S; Lee, Jeong-A; Lewis, Gladius; Lovell, Nigel H; Luebbers, Heinz-Theo; Morales, George G; Matis, Timothy; Matthews, Judith T; Mazur, Lukasz; Ng, Eddie Yin-Kwee; Oommen, K J; Ormand, Kevin; Rohde, Tarald; Sánchez-Morillo, Daniel; Sanz-Calcedo, Justo García; Sawan, Mohamad; Shen, Chwan-Li; Shieh, Jiann-Shing; Su, Chao-Ton; Sun, Lilly; Sun, Mingui; Sun, Yi; Tewolde, Senay N; Williams, Eric A; Yan, Chongjun; Zhang, Jiajie; Zhang, Yuan-Ting

    2015-01-01

    Engineering has been playing an important role in serving and advancing healthcare. The term "Healthcare Engineering" has been used by professional societies, universities, scientific authors, and the healthcare industry for decades. However, the definition of "Healthcare Engineering" remains ambiguous. The purpose of this position paper is to present a definition of Healthcare Engineering as an academic discipline, an area of research, a field of specialty, and a profession. Healthcare Engineering is defined in terms of what it is, who performs it, where it is performed, and how it is performed, including its purpose, scope, topics, synergy, education/training, contributions, and prospects.

  3. MODEL OF ACCOUNTING ENGINEERING IN VIEW OF EARNINGS MANAGEMENT IN POLAND

    Directory of Open Access Journals (Sweden)

    Leszek Michalczyk

    2012-10-01

    Full Text Available The article introduces the theoretical foundations of the author’s original concept of accounting engineering. We assume a theoretical premise whereby accounting engineering is understood as a system of accounting practice utilising differences in economic events resultant from the use of divergent accounting methods. Unlike, for instance, creative or praxeological accounting, accounting engineering is composed only, and under all circumstances, of lawful activities and adheres to the current regulations of the balance sheet law. The aim of the article is to construct a model of accounting engineering exploiting taking into account differences inherently present in variant accounting. These differences result in disparate financial results of identical economic events. Given the fact that regardless of which variant is used in accounting, all settlements are eventually equal to one another, a new class of differences emerges - the accounting engineering potential. It is transferred to subsequent reporting (balance sheet periods. In the end, the profit “made” in a given period reduces the financial result of future periods. This effect is due to the “transfer” of costs from one period to another. Such actions may have sundry consequences and are especially dangerous whenever many individuals are concerned with the profit of a given company, e.g. on a stock exchange. The reverse may be observed when a company is privatised and its value is being intentionally reduced by a controlled recording of accounting provisions, depending on the degree to which they are justified. The reduction of a company’s goodwill in Balcerowicz’s model of no-tender privatisation allows to justify the low value of the purchased company. These are only some of many manifestations of variant accounting which accounting engineering employs. A theoretical model of the latter is presented in this article.

  4. Academic program models for undergraduate biomedical engineering.

    Science.gov (United States)

    Krishnan, Shankar M

    2014-01-01

    There is a proliferation of medical devices across the globe for the diagnosis and therapy of diseases. Biomedical engineering (BME) plays a significant role in healthcare and advancing medical technologies thus creating a substantial demand for biomedical engineers at undergraduate and graduate levels. There has been a surge in undergraduate programs due to increasing demands from the biomedical industries to cover many of their segments from bench to bedside. With the requirement of multidisciplinary training within allottable duration, it is indeed a challenge to design a comprehensive standardized undergraduate BME program to suit the needs of educators across the globe. This paper's objective is to describe three major models of undergraduate BME programs and their curricular requirements, with relevant recommendations to be applicable in institutions of higher education located in varied resource settings. Model 1 is based on programs to be offered in large research-intensive universities with multiple focus areas. The focus areas depend on the institution's research expertise and training mission. Model 2 has basic segments similar to those of Model 1, but the focus areas are limited due to resource constraints. In this model, co-op/internship in hospitals or medical companies is included which prepares the graduates for the work place. In Model 3, students are trained to earn an Associate Degree in the initial two years and they are trained for two more years to be BME's or BME Technologists. This model is well suited for the resource-poor countries. All three models must be designed to meet applicable accreditation requirements. The challenges in designing undergraduate BME programs include manpower, facility and funding resource requirements and time constraints. Each academic institution has to carefully analyze its short term and long term requirements. In conclusion, three models for BME programs are described based on large universities, colleges, and

  5. An engineering approach to modelling, decision support and control for sustainable systems.

    Science.gov (United States)

    Day, W; Audsley, E; Frost, A R

    2008-02-12

    Engineering research and development contributes to the advance of sustainable agriculture both through innovative methods to manage and control processes, and through quantitative understanding of the operation of practical agricultural systems using decision models. This paper describes how an engineering approach, drawing on mathematical models of systems and processes, contributes new methods that support decision making at all levels from strategy and planning to tactics and real-time control. The ability to describe the system or process by a simple and robust mathematical model is critical, and the outputs range from guidance to policy makers on strategic decisions relating to land use, through intelligent decision support to farmers and on to real-time engineering control of specific processes. Precision in decision making leads to decreased use of inputs, less environmental emissions and enhanced profitability-all essential to sustainable systems.

  6. Model engineering for piping layout of boiling water reactor nuclear station

    International Nuclear Information System (INIS)

    Tsukada, Koji; Uchiyama, Masayuki; Wada, Takanao; Jibu, Noboru.

    1977-01-01

    A nuclear power station is made up of a wide variety of equipment, piping, ventilation ducts, conduits, and cable trays, etc. Even if equipment arrangement and piping layout are carefully planned on drawings, troubles such as interference often occur at field installation. Accordingly, it is thought very useful to make thorough examinations with plastic three-dimensional models in addition to drawings in reducing troubles at field, shortening the construction period, and improving economics. Examination with plastic models offers the following features: (1) It permits visual three-dimensional examination. (2) Group thinking and examination is possible. (3) Troubles due to failure to understand complicated drawings can be reduced drastically. Manufacturing a 1/20 scale model of the reactor building of the Tokai No. 2 Power Station of the Japan Atomic Power Co., Hitachi has performed model engineering-solution of interference troubles related to equipment and piping, securing of work space for in-service inspection (ISI), carry-in/installation of various equipment and piping, and determination of the piping route of which only the starting and terminating points were given under the complicated ambient conditions. Success with this procedure has confirmed that model engineering is an effective technique for future plant engineering. (auth.)

  7. Comparison of Engineering Wake Models with CFD Simulations

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Ivanell, S.

    2014-01-01

    The engineering wake models by Jensen [1] and Frandsen et al. [2] are assessed for different scenarios simulated using Large Eddy Simulation and the Actuator Line method implemented in the Navier-Stokes equations. The scenarios include the far wake behind a single wind turbine, a long row of turb...

  8. Cylinder pressure sensing and model-based control in engine management systems

    Energy Technology Data Exchange (ETDEWEB)

    Truscott, A.; Noble, A.; Akoachere, A.; Beaumont, A. [Ricardo Consulting Engineers Ltd., Bridge Works (United Kingdom); Mueller, R.; Hart, M. [FT2/EA, HPC T721, DaimlerChrysler AG, Stuttgart (Germany); Kroetz, G. [FT2/M, DaimlerChrysler AG, Muenchen (Germany); Cavalloni, C.; Gnielka, M. [Kistler Instrumente AG, Winterthur (Switzerland)

    2000-07-01

    Global demands on fuel economy and lower emissions from automotive vehicles have had a large impact on the development of engine management systems (EMS) in recent years. However, despite the advances in system hardware, the software programmed into these systems has yet to utilise the full potential of modern control methodologies. Model based control and diagnostics is the next step forward in the development of EMS software with the potential of providing improvements in cost, efficiency, emissions and comfort. However, the full utilisation of such techniques requires very close monitoring of engine conditions. This is made possible with the advent of new inexpensive sensor technology that can withstand the harsh environment of the combustion chamber. To exploit the above advances, the AENEAS collaborative project is being carried out by Ricardo, DaimlerChrysler and Kistler, with financial support from the European Commission and Swiss government, and has the objective of realising the benefits of cylinder pressure based engine management system (CPEMS) technology. This paper describes the application of CPEMS technology to a spark ignition (SI) engine. It describes how the combination of model based algorithms, incorporating physical principles, and cylinder pressure sensing can provide an effective means of engine control and diagnostics. (orig.)

  9. 76 FR 33660 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    Science.gov (United States)

    2011-06-09

    ... Model E4 Diesel Piston Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... pressure supply for excessive oscillations to determine if high-pressure fuel pumps have been exposed to damaging pressure oscillations. Pumps that have been exposed require replacement before further flight...

  10. Dynamic material characterization by combining ballistic testing and an engineering model

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Wal, R. van der

    2013-01-01

    At TNO several energy-based engineering models have been created for various failure mechanism occurring in ballistic testing of materials, like ductile hole growth, denting, plugging, etc. Such models are also under development for ceramic and fiberbased materials (fabrics). As the models are

  11. Digital Model-Based Engineering: Expectations, Prerequisites, and Challenges of Infusion

    Science.gov (United States)

    Hale, J. P.; Zimmerman, P.; Kukkala, G.; Guerrero, J.; Kobryn, P.; Puchek, B.; Bisconti, M.; Baldwin, C.; Mulpuri, M.

    2017-01-01

    Digital model-based engineering (DMbE) is the use of digital artifacts, digital environments, and digital tools in the performance of engineering functions. DMbE is intended to allow an organization to progress from documentation-based engineering methods to digital methods that may provide greater flexibility, agility, and efficiency. The term 'DMbE' was developed as part of an effort by the Model-Based Systems Engineering (MBSE) Infusion Task team to identify what government organizations might expect in the course of moving to or infusing MBSE into their organizations. The Task team was established by the Interagency Working Group on Engineering Complex Systems, an informal collaboration among government systems engineering organizations. This Technical Memorandum (TM) discusses the work of the MBSE Infusion Task team to date. The Task team identified prerequisites, expectations, initial challenges, and recommendations for areas of study to pursue, as well as examples of efforts already in progress. The team identified the following five expectations associated with DMbE infusion, discussed further in this TM: (1) Informed decision making through increased transparency, and greater insight. (2) Enhanced communication. (3) Increased understanding for greater flexibility/adaptability in design. (4) Increased confidence that the capability will perform as expected. (5) Increased efficiency. The team identified the following seven challenges an organization might encounter when looking to infuse DMbE: (1) Assessing value added to the organization. Not all DMbE practices will be applicable to every situation in every organization, and not all implementations will have positive results. (2) Overcoming organizational and cultural hurdles. (3) Adopting contractual practices and technical data management. (4) Redefining configuration management. The DMbE environment changes the range of configuration information to be managed to include performance and design models

  12. Real-time modelling of the diesel engine combustion process; Echtzeitfaehige Modellierung des dieselmotorischen Verbrennungsprozesses

    Energy Technology Data Exchange (ETDEWEB)

    Merz, B.

    2008-07-01

    The publication investigates single-zone models of diesel engine combustion which are capable, in addition to pre-injection and main injection, to represent post-injection processes on a physical basis. These must function in real time as they are used in ''hardware-in-the-loop'' test stands. Methods to adapt the models to other engine types are explained. Validation is made across the whole characteristic field on the basis of measured data provided by two serial engines. For assessing pollutant production, models are integrated that are capable of calculating NOx and soot formation. These, too, are calculated in real time using appropriate hardware systems. A runtime analysis compares the computing times of the models. (orig.)

  13. Engineering Education for a New Era

    Science.gov (United States)

    Ohgaki, Shinichiro

    Engineering education is composed of five components, the idea what engineering education ought to be, the knowledge in engineering fields, those who learn engineering, those who teach engineering and the stakeholders in engineering issues. The characteristics of all these five components are changing with the times. When we consider the engineering education for the next era, we should analyze the changes of all five components. Especially the knowledge and tools in engineering fields has been expanding, and advanced science and technology is casting partly a dark shadow on the modern convenient life. Moral rules or ethics for developing new products and engineering systems are now regarded as most important in engineering fields. All those who take the responsibility for engineering education should understand the change of all components in engineering education and have a clear grasp of the essence of engineering for sustainable society.

  14. Retrospective Benefit-Cost Evaluation of U.S. DOE Vehicle Combustion Engine R&D Investments: Impacts of a Cluster of Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Link, Albert N. [Univ. of North Carolina, Greensboro, NC (United States)

    2010-05-01

    Advanced Combustion Engine R&D (ACE R&D) is one of the subprograms within DOE's Vehicle Technologies Office. The ACE subprogram's R&D is conducted in cooperation with the DOE Combustion Research Facility (CRF). This report summarizes the findings from a retrospective study of the net benefits to society from investments by DOE (both EERE and cooperative CRF efforts) in laser diagnostic and optical engine technologies and combustion modeling for heavy-duty diesel engines.

  15. Exhibit celebrates five decades of women in engineering

    OpenAIRE

    Gilbert, Karen

    2007-01-01

    "Petticoats and Slide Rules," a historical exhibit on women in engineering from the Society of Women Engineers (SWE), is currently on display in the lobby of Hancock 100 and will remain at Virginia Tech through March of 2007.

  16. Model-Based Engineering and Manufacturing CAD/CAM Benchmark.; FINAL

    International Nuclear Information System (INIS)

    Domm, T.C.; Underwood, R.S.

    1999-01-01

    The Benchmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supporting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate their engineering practices and processes to determine direction and focus for Y-12 modernization efforts. The companies visited included several large established companies and a new, small, high-tech machining firm. As a result of this effort, changes are recommended that will enable Y-12 to become a more modern, responsive, cost-effective manufacturing facility capable of supporting the needs of the Nuclear Weapons Complex (NWC) into the 21st century. The benchmark team identified key areas of interest, both focused and general. The focus areas included Human Resources, Information Management, Manufacturing Software Tools, and Standards/Policies and Practices. Areas of general interest included Infrastructure, Computer Platforms and Networking, and Organizational Structure. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were somewhere between 3-D solid modeling and surfaced wire-frame models. The manufacturing computer tools were varied, with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) from a common model. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system than a single computer-aided manufacturing (CAM) system. The Internet was a technology that all companies were looking to either transport information more easily throughout the corporation or as a conduit for

  17. Career Persistence Model for Female Engineers in the Indonesian Context

    OpenAIRE

    Lies Dahlia; Lenny Sunaryo

    2017-01-01

    Extant studies about female engineers have suggested their career persistency in the engineering career is influenced by the workplace, which is characterized by male dominated culture making them feel marginalized. In Indonesia, similar studies for reference are limited. This paper is based on an exploratory quantitative study using a questionnaire developed based on the Career Persistence Model. This paper is based on an empirical exploratory quantitative study by adopting Buse’s et al. Car...

  18. Forensic geotechnical engineering

    CERN Document Server

    Babu, GL

    2016-01-01

    In this edited volume on advances in forensic geotechnical engineering, a number of technical contributions by experts and professionals in this area are included. The work is the outcome of deliberations at various conferences in the area conducted by Prof. G.L. Sivakumar Babu and Dr. V.V.S. Rao as secretary and Chairman of Technical Committee on Forensic Geotechnical Engineering of International Society for Soil Mechanics and Foundation Engineering (ISSMGE). This volume contains papers on topics such as guidelines, evidence/data collection, distress characterization, use of diagnostic tests (laboratory and field tests), back analysis, failure hypothesis formulation, role of instrumentation and sensor-based technologies, risk analysis, technical shortcomings. This volume will prove useful to researchers and practitioners alike.

  19. FPGA implementation of predictive degradation model for engine oil lifetime

    Science.gov (United States)

    Idros, M. F. M.; Razak, A. H. A.; Junid, S. A. M. Al; Suliman, S. I.; Halim, A. K.

    2018-03-01

    This paper presents the implementation of linear regression model for degradation prediction on Register Transfer Logic (RTL) using QuartusII. A stationary model had been identified in the degradation trend for the engine oil in a vehicle in time series method. As for RTL implementation, the degradation model is written in Verilog HDL and the data input are taken at a certain time. Clock divider had been designed to support the timing sequence of input data. At every five data, a regression analysis is adapted for slope variation determination and prediction calculation. Here, only the negative value are taken as the consideration for the prediction purposes for less number of logic gate. Least Square Method is adapted to get the best linear model based on the mean values of time series data. The coded algorithm has been implemented on FPGA for validation purposes. The result shows the prediction time to change the engine oil.

  20. The New Paradigm of Social Evolution: Modern Society between Hope and Tragedy

    Directory of Open Access Journals (Sweden)

    Dimitar Tchurovsky

    2015-05-01

    Full Text Available Social evolution is a continuation of biological evolution. The difference is the presence of mind, language and thinking. Therefore, society can be viewed as a living and rational system. The engine of social evolution is knowledge. Development of society is determined bilaterally by objective and subjective factors. Objective factors determine the form of society, subjective – the content. Society has three subsystems: social consciousness, economics and governance. The changes which take place in society are quantitative (evolutionary and qualitative (revolutionary. The spiral of social evolution begins with a cultural revolution that consistently changes economic relations and the organization of society, leading to the emergence of civilization. Declining civilization is a prerequisite for the emergence of a new cultural revolution. From this point of view humanity today faces dramatic changes – the emergence of social self-consciousness and transition from a hierarchical social structure to a horizontal organization. The New World Order advocated by power and the financial elite is impossible to implement because it contradicts the principles of social evolution. Throughout human history, social evolution has been a theory of qualitative changes in social structure, aiming to discover the fundamental laws of the origin and development of humanity as a whole. Social evolution complements several basic research fields in human sciences like history, cultural evolution, anthropology, philosophy of history, social and developmental psychology, etc. The process of social evolution is very complicated and controversial. During the last two centuries, a dozen approaches, theories, concepts and paradigms have been trying to describe and explain how society works and evolves. Modern theories provide models clarifying the relationship between social structure, economy, technology, social values, etc. Nevertheless, social evolution remains