WorldWideScience

Sample records for engineering hybrid systems

  1. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  2. Using hybrid expert system approaches for engineering applications

    Science.gov (United States)

    Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.

    1987-01-01

    In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.

  3. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  4. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  5. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail

    2017-07-20

    Network efficiency and proper utilization of its resources are essential requirements to operate wireless networks in an optimal fashion. Cognitive radio aims to fulfill these requirements by exploiting artificial intelligence techniques to create an entity called cognitive engine. Cognitive engine exploits awareness about the surrounding radio environment to optimize the use of radio resources and adapt relevant transmission parameters. In this paper, we propose a hybrid cognitive engine that employs Case Based Reasoning (CBR) and Decision Trees (DTs) to perform radio adaptation in multi-carriers wireless networks. The engine complexity is reduced by employing DTs to improve the indexing methodology used in CBR cases retrieval. The performance of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes in different scenarios.

  6. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2017-01-01

    of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes

  7. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    Science.gov (United States)

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  8. Fundamentals of automotive and engine technology standard drives, hybrid drives, brakes, safety systems

    CERN Document Server

    2014-01-01

    Hybrid drives and the operation of hybrid vehicles are characteristic of contemporary automotive technology. Together with the electronic driver assistant systems, hybrid technology is of the greatest importance and both cannot be ignored by today’s car drivers. This technical reference book provides the reader with a firsthand comprehensive description of significant components of automotive technology. All texts are complemented by numerous detailed illustrations. Contents History of the automobile.- History of the Diesel engine.- Areas of use for Diesel engines.- Basic principles of the Diesel engine.- Basic principles of Diesel fuel-injection.- Basic principles of the gasoline engine.- Inductive ignition system.- Transmissions for motor vehicles.- Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Vehicle electrical systems.- Overview of electrical and electronic systems in the vehicle.- Control of gasoline engines.- Control of Diesel engines.- Lighting technology.- Elec...

  9. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  10. Hybrid systems: a real-time interface to control engineering

    DEFF Research Database (Denmark)

    Eriksen, Thomas Juul; Heilmann, Søren; Holdgaard, Michael

    1996-01-01

    are usually investigated by control engineers that base their work on the theory of dynamic systems. The mathematical tool for this work is thus mathematical analysis, in particular the theory of differential equations. The paper gives an introduction to a general hybrid systems model for definition of system...

  11. Performance optimum analysis of an irreversible molten carbonate fuel cell–Stirling heat engine hybrid system

    International Nuclear Information System (INIS)

    Chen, Liwei; Zhang, Houcheng; Gao, Songhua; Yan, Huixian

    2014-01-01

    A new hybrid system mainly consists of a molten carbonate fuel cell (MCFC) and a Stirling heat engine is established, where the Stirling heat engine is driven by the high-quality waste heat generated in the MCFC. Based on the electrochemistry and non-equilibrium thermodynamics, analytical expressions for the efficiency and power output of the hybrid system are derived by taking various irreversible losses into account. It shows that the performance of the MCFC can be greatly enhanced by coupling a Stirling heat engine to further convert the waste heat for power generation. By employing numerical calculations, not only the influences of multiple irreversible losses on the performance of the hybrid system are analyzed, but also the impacts of some operating conditions such as the operating temperature, input gas compositions and operating pressure on the performance of the hybrid system are also discussed. The investigation method in the present paper is feasible for some other similar energy conversion systems as well. - Highlights: • A model of MCFC–Stirling heat engine hybrid system is established. • Analytical expressions for the efficiency and power output are derived. • MCFC performance can be greatly enhanced by coupling a Stirling heat engine. • Effects of some operating conditions on the performance are discussed. • Optimum operation regions are subdivided by multi-objective optimization method

  12. Hybrid vehicle system studies and optimized hydrogen engine design

    Science.gov (United States)

    Smith, J. R.; Aceves, S.

    1995-04-01

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  13. Study of Micro Grid Hybrid System of Photovoltaic and Diesel Engine

    Directory of Open Access Journals (Sweden)

    Novitasari Dwi

    2016-01-01

    Full Text Available Indonesia has abundant potentials of new and renewable energy that can be used for electricity generation, especially in rural areas which have no access for grid electricity yet. The energy resources can be from solar, water, biomass or biofuel. Many villagers still use diesel generators to produce electricity in their villages. It is considered expensive because fuel price in rural areas increases 2-3 times than the normal price due to transportation cost. Hybrid system using renewable energy resources is one of the solutions to produce electricity in affordable cost for rural area. The idea is to combine diesel generators and photovoltaic toproduce electricity. Moreover, the diesel engine fuel can be replaced with biofuel. This study will analyze the hybrid system in a small scale which consists of 1kWp photovoltaic and 3 kW diesel engine. Electric load power will vary. The system is controlled by a single bidirectional inverter whichconverts power from DC to AC and vice versa

  14. Efficient Proof Engines for Bounded Model Checking of Hybrid Systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Herde, Christian

    2005-01-01

    In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...

  15. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  16. Simulation of hybrid propulsion system using LSRG and single cylinder engine

    Science.gov (United States)

    Han, C.; Ohyama, K.; Wang, W. Q.

    2017-11-01

    Nowadays, more and more people are beginning to use hybrid vehicles (HVs). The drive system of HVs needs to produce the electric energy with the electric generator and gearbox powered by an engine. Therefore, the structure becomes complex and the cost is high. To solve this issue, this research proposes a new drive system design that combines the engine and a linear switched reluctance generator (LSRG). When the engine is operating, the LSRG can simultaneously assist the engine’s mechanical output or can generate power to charge the battery. In this research, three research steps are executed. In the first step, the LSRG is designed according to the size of normal engine. Then, finite element analysis is used to get the data of flux linkage and calculate the inductance and translator force. Finally, Simulink models of control system are constructed to verify the performance of LSRG.

  17. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  18. A Hybrid approach for aeroacoustic analysis of the engine exhaust system

    OpenAIRE

    Sathyanarayana, Y; Munjal, ML

    2000-01-01

    This paper presents a new hybrid approach for prediction of noise radiation from engine exhaust systems. It couples the time domain analysis of the engine and the frequency domain analysis of the muffler, and has the advantages of both. In this approach, cylinder/cavity is analyzed in the time domain to calculate the exhaust mass flux history at the exhaust valve by means of the method of characteristics, avoiding the tedious procedure of interpolation at every mesh point and solving a number...

  19. Formal Engineering Hybrid Systems: Semantic Underpinnings

    NARCIS (Netherlands)

    Bujorianu, M.C.; Bujorianu, L.M.

    2008-01-01

    In this work we investigate some issues in applying formal methods to hybrid system development and develop a categorical framework. We study the themes of stochastic reasoning, heterogeneous formal specification and retrenchment. Hybrid systems raise a rich pallets of aspects that need to be

  20. New high expansion ratio gasoline engine for the TOYOTA hybrid system. Improving engine efficiency with high expansion ratio cycle; Hybrid system yo kobochohi gasoline engine. Kobochohi cycle ni yoru engine no kokoritsuka

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K; Takaoka, T; Ueda, T; Kobayashi, Y [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    50% reduction of CO2 and fuel consumption have been achieved with the newly developed gasoline engine for the Toyota Hybrid System. This is achieved due to the combination of electric motors and the internal combustion engine which is optimized in the size, swept volume and heat cycle. By delaying the intake valve close timing a high expansion ratio (13.5:1) cycle has been realized. Electricmotor assist enable to cut the maximum engine speed, and friction loss. A best fuel consumption figure better than 230 g/kWh has been achieved. Elimination of lightload firing, motor assisted quick start and improvement of catalyst warm up makes to achieve the clean emission level such as 1/10 of Japanese `78 regulation limit. 10 refs., 16 figs., 1 tab.

  1. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  2. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  3. Hybrid Engine Powered City Car: Fuzzy Controlled Approach

    Science.gov (United States)

    Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany

    2017-03-01

    This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.

  4. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  5. A new hybrid pneumatic combustion engine to improve fuel consumption of wind–Diesel power system for non-interconnected areas

    International Nuclear Information System (INIS)

    Basbous, Tammam; Younes, Rafic; Ilinca, Adrian; Perron, Jean

    2012-01-01

    Highlights: ► We model thermodynamic ideal cycle of a new hybrid pneumaticcombustion engine. ► We optimize commands of all modes and calculate maps of fuel and air consumption. ► We evaluate fuel economy for Wind–Diesel system function of tank volume and wind penetration. ► We find up to 10% of fuel economy i.e. 80 t/year with 100% wind penetration. ► Fuel economy increases with wind penetration and with volume but has asymptotic value. -- Abstract: This paper presents an evaluation of an optimized Hybrid Pneumatic-Combustion Engine (HPCE) concept that permits reducing fuel consumption for electricity production in non-interconnected remote areas, originally equipped with hybrid Wind–Diesel System (WDS). Up to now, most of the studies on the pneumatic hybridization of Internal Combustion Engines (ICE) have dealt with two-stroke pure pneumatic mode. The few studies that have dealt with hybrid pneumatic-combustion four-stroke mode require adding a supplementary valve to charge compressed air in the combustion chamber. This modification means that a new cylinder head should be fabricated. Moreover, those studies focus on spark ignition engines and are not yet validated for Diesel engines. Present HPCE is capable of making a Diesel engine operate under two-stroke pneumatic motor mode, two-stroke pneumatic pump mode and four-stroke hybrid mode, without needing an additional valve in the combustion chamber. This fact constitutes this study’s strength and innovation. The evaluation of the concept is based on ideal thermodynamic cycle modeling. The optimized valve actuation timings for all modes lead to generic maps that are independent of the engine size. The fuel economy is calculated for a known site during a whole year, function of the air storage volume and the wind power penetration rate.

  6. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    Science.gov (United States)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  7. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  8. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  9. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  10. Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2015-01-01

    The largest applied convertors in passenger cars are the internal combustion engines – gasoline, diesel, adapted also for operating on alternative fuels and hybrid modes. The number of components that are necessary to realize modern future propulsion system is inexorably increasing. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the compressed air is investigated as an innovative solu...

  11. General concept of a gas engine for a hybrid vehicle, operating on methanol dissociation products

    International Nuclear Information System (INIS)

    Tartakovsky, L.; Aleinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Schindler, Y.; Zvirin, Y.

    1998-01-01

    The paper presents a general concept of a hybrid propulsion system, based on an SI internal combustion engine fueled by methanol dissociation products (MDP). The proposed hybrid propulsion scheme is a series hybrid, which allows the engine to be operated in an on-off mode at constant optimal regime. The engine is fed by gaseous products of methanol dissociation (mainly hydrogen and carbon monoxide) emerging from an on-board catalytic reformer. The general scheme and base operation features of the propulsion system are described. The benefits that may be achieved by combining the well-known idea of on-board methanol dissociation with the hybrid vehicle concept are discussed. The proposed scheme is compared with those of systems operating on gasoline, liquid methanol, hydrogen and also with the multi-regime (not hybrid) engine fed by MDP

  12. Specification and Verification of Hybrid System

    International Nuclear Information System (INIS)

    Widjaja, Belawati H.

    1997-01-01

    Hybrid systems are reactive systems which intermix between two components, discrete components and continuous components. The continuous components are usually called plants, subject to disturbances which cause the state variables of the systems changing continuously by physical laws and/or by the control laws. The discrete components can be digital computers, sensor and actuators controlled by programs. These programs are designed to select, control and supervise the behavior of the continuous components. Specification and verification of hybrid systems has recently become an active area of research in both computer science and control engineering, many papers concerning hybrid system have been published. This paper gives a design methodology for hybrid systems as an example to the specification and verification of hybrid systems. The design methodology is based on the cooperation between two disciplines, control engineering and computer science. The methodology brings into the design of control loops and decision loops. The external behavior of control loops are specified in a notation which is understandable by the two disciplines. The design of control loops which employed theory of differential equation is done by control engineers, and its correctness is also guaranteed analytically or experimentally by control engineers. The decision loops are designed in computing science based on the specifications of control loops. The verification of systems requirements can be done by computing scientists using a formal reasoning mechanism. For illustrating the proposed design, a problem of balancing an inverted pendulum which is a popular experiment device in control theory is considered, and the Mean Value Calculus is chosen as a formal notation for specifying the control loops and designing the decision loops

  13. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    Science.gov (United States)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the

  14. A Hybrid Approach to Cognitive Engineering: Supporting Development of a Revolutionary Warfighter-Centered Command and Control System

    National Research Council Canada - National Science Library

    Ockerman, Jennifer; McKneely, Jennifer A; Koterba, Nathan

    2005-01-01

    ...) for the requirements analysis and design of revolutionary command and control systems and domains. This hybrid approach uses knowledge elicitation and representation techniques from several current cognitive engineering methodologies...

  15. A novel bioprinting method and system for forming hybrid tissue engineering constructs.

    Science.gov (United States)

    Shanjani, Y; Pan, C C; Elomaa, L; Yang, Y

    2015-12-18

    Three dimensional (3D) bioprinting is a promising approach to form tissue engineering constructs (TECs) via positioning biomaterials, growth factors, and cells with controlled spatial distribution due to its layer-by-layer manufacturing nature. Hybrid TECs composed of relatively rigid porous scaffolds for structural and mechanical integrity and soft hydrogels for cell- and growth factor-loading have a tremendous potential to tissue regeneration under mechanical loading. However, despite excessive progress in the field, the current 3D bioprinting techniques and systems fall short in integration of such soft and rigid multifunctional components. Here we present a novel 3D hybrid bioprinting technology (Hybprinter) and its capability enabling integration of soft and rigid components for TECs. Hybprinter employs digital light processing-based stereolithography (DLP-SLA) and molten material extrusion techniques for soft and rigid materials, respectively. In this study, poly-ethylene glycol diacrylate (PEGDA) and poly-(ε-caprolactone) (PCL) were used as a model material for soft hydrogel and rigid scaffold, respectively. It was shown that geometrical accuracy, swelling ratio and mechanical properties of the hydrogel component can be tailored by DLP-SLA module. We have demonstrated the printability of variety of complex hybrid construct designs using Hybprinter technology and characterized the mechanical properties and functionality of such constructs. The compressive mechanical stiffness of a hybrid construct (90% hydrogel) was significantly higher than hydrogel itself (∼6 MPa versus 100 kPa). In addition, viability of cells incorporated within the bioprinted hybrid constructs was determined approximately 90%. Furthermore, a functionality of a hybrid construct composed of porous scaffold with an embedded hydrogel conduit was characterized for vascularized tissue engineering applications. High material diffusion and high cell viability in about 2.5 mm distance

  16. Optimization of diesel engine performances for a hybrid wind-diesel system with compressed air energy storage

    International Nuclear Information System (INIS)

    Ibrahim, H.; Younes, R.; Basbous, T.; Ilinca, A.; Dimitrova, M.

    2011-01-01

    Electricity supply in remote areas around the world is mostly guaranteed by diesel generators. This relatively inefficient and expensive method is responsible for 1.2 million tons of greenhouse gas (GHG) emission in Canada annually. Some low- and high-penetration wind-diesel hybrid systems (WDS) have been experimented in order to reduce the diesel consumption. We explore the re-engineering of current diesel power plants with the introduction of high-penetration wind systems together with compressed air energy storage (CAES). This is a viable alternative to major the overall percentage of renewable energy and reduce the cost of electricity. In this paper, we present the operative principle of this hybrid system, its economic benefits and advantages and we finally propose a numerical model of each of its components. Moreover, we are demonstrating the energy efficiency of the system, particularly in terms of the increase of the engine performance and the reduction of its fuel consumption illustrated and supported by a village in northern Quebec. -- Highlights: → The Wind-Diesel-Compressed Air Storage System (WDCAS) has a very important commercial potential for remote areas. → The WDCAS is conceived like the adaptation of the existing engines at the level of the intake system. → A wind turbine and an air compression and storage system are added on the diesel plant. → This study demonstrates the potential of WDCAS to reduce fuel consumption and increase the efficiency of the diesel engine. → This study demonstrates that we can expect savings which can reach 50%.

  17. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  18. Performances Study of a Hybrid Rocket Engine

    Directory of Open Access Journals (Sweden)

    Adrian-Nicolae BUTURACHE

    2018-06-01

    Full Text Available This paper presents a study which analyses the functioning and performances optimization of a hybrid rocket engine based on gaseous oxygen and polybutadiene polymer (HTPB. Calculations were performed with NASA CEA software in order to obtain the parameters resulted following the combustion process. Using these parameters, the main parameters of the hybrid rocket engine were optimized. Using the calculus previously stated, an experimental rocket engine producing 100 N of thrust was pre-dimensioned, followed by an optimization of the rocket engine as a function of several parameters. Having the geometry and the main parameters of the hybrid rocket engine combustion process, numerical simulations were performed in the CFX – ANSYS commercial software, which allowed visualizing the flow field and the jet expansion. Finally, the analytical calculus was validated through numerical simulations.

  19. Performance of a hybrid hydrogen–gasoline engine under various operating conditions

    International Nuclear Information System (INIS)

    Ji, Changwei; Wang, Shuofeng; Zhang, Bo

    2012-01-01

    Highlights: ► We develop a combustion strategy for the hybrid hydrogen–gasoline engine (HHGE). ► The HHGE produced much lower HC and CO emissions at cold start. ► The H 2 -gasoline blends were effective for improving engine performance at idle and part loads. ► The HHGE could run smoothly at lean conditions. -- Abstract: This paper proposed a new combustion strategy for the spark-ignited (SI) engines. A gasoline engine was converted into a hybrid hydrogen–gasoline engine (HHGE) by adding a hydrogen injection system and a hybrid electronic control unit. Different from the conventional gasoline and hydrogen–enriched gasoline engines, the HHGE is fueled with the pure hydrogen at cold start to produce almost zero emissions, with the hydrogen–gasoline blends at idle and part loads to further improve thermal efficiency and reduce emissions, and with the pure gasoline to ensure the engine power output at high loads. Because the HHGE is fueled with the pure gasoline at high loads and speeds, experiments are only conducted at clod start, idle and part load conditions. Since lean combustion avails the further improvement of the engine performance, the HHGE was fueled with the lean mixtures in all tests. The experimental results showed that the hybrid hydrogen–gasoline engine was started successfully with the pure hydrogen, which produced 94.7% and 99.5% reductions in HC and CO emissions within 100 s from the onset of the cold start, compared with the original gasoline engine. At an excess air ratio of 1.37 and idle conditions, indicated thermal efficiency of the 3% hydrogen–blended gasoline engine was 46.3% higher than that of the original engine. Moreover, the engine cyclic variation was eased, combustion duration was shortened and HC, CO and NOx emissions were effectively reduced for the hybrid hydrogen–gasoline engines.

  20. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  1. A framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available This presentation discusses a framework which is proposed to perform systems engineering research within South Africa and the necessity for hybrid research methods in systems engineering....

  2. Fault tolerant control design for hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Jiang, Bin [Nanjing University of Aeronautics and Astronautics, Nanjing (China); Cocquempot, Vincent [Universite des Sciences et Technologies de Lille, Villeneuve d' Ascq (France)

    2010-07-01

    This book intends to provide the readers a good understanding on how to achieve Fault Tolerant Control goal of Hybrid Systems. The book can be used as a reference for the academic research on Fault Tolerant Control and Hybrid Systems or used in Ph.D. study of control theory and engineering. The knowledge background for this monograph would be some undergraduate and graduate courses on Fault Diagnosis and Fault Tolerant Control theory, linear system theory, nonlinear system theory, Hybrid Systems theory and Discrete Event System theory. (orig.)

  3. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  4. Quantum state engineering in hybrid open quantum systems

    Science.gov (United States)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  5. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  6. Engineering Interfacial Energetics: A Novel Hybrid System of Metal Oxide Quantum Dots and Cobalt Complex for Photocatalytic Water Oxidation

    International Nuclear Information System (INIS)

    Niu, Fujun; Shen, Shaohua; Wang, Jian; Guo, Liejin

    2016-01-01

    Graphical abstract: A cobalt complex engineers the interfacial energetics of metal oxide quantum dots (n- or p-type) and electrolytes for highly efficient O_2 generation under visible light irradiation. - Highlights: • A noble-metal-free hybrid photocatalytic system using a single-site cobalt catalyst was developed for O_2 generation. • Considerable activity and excellent stability for O_2 production were achieved by this novel system. • CoSlp engineered the QDs/electrolyte interfacical energetics for efficient hole transfer. - Abstract: Here we reported a novel hybrid photocatalytic water oxidation system, containing metal oxide (n-Fe_2O_3 or p-Co_3O_4) quantum dots (QDs) as light harvester, a salophen cobalt(II) complex (CoSlp) as redox catalyst and persulfate (S_2O_8"2"−) as sacrificial electron acceptor, for oxygen generation from fully aqueous solution. The n-Fe_2O_3 QDs/CoSlp and p-Co_3O_4 QDs/CoSlp systems exhibited good O_2 evolution performances, giving turnover numbers (TONs) of ca. 33 and ca. 35 over CoSlp after visible light irradiation for 72 h, respectively. The excellent photocatalytic performance could be ascribed to the efficient hole transfer from QDs to CoSlp catalyst, leading to reduced photogenerated charge recombination, as well as the CoSlp engineered interfacial band bending of QDs, increasing the driving force or decreasing the energy barrier for hole transfer and then benefiting the following O_2 generation at the QDs/electrolyte interface. The present work successfully demonstrated a novel hybrid system for photocatalytic O_2 evolution from fully aqueous solution; and the essential role of cobalt complexes in engineering the interfacial energetics of semiconductors (n- or p-type) and electrolytes could be informative for designing efficient systems for solar water splitting.

  7. Hydrogen hybrid vehicle engine development: Experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, P. [Sandia National Lab., Livermore, CA (United States)

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  8. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  9. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  10. Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines

    Science.gov (United States)

    Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.

    2014-01-01

    Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.

  11. Apomixis: Engineering the Ability to Harness Hybrid Vigor in Crop Plants.

    Science.gov (United States)

    Conner, Joann A; Ozias-Akins, Peggy

    2017-01-01

    Apomixis, commonly defined as asexual reproduction through seed, is a reproductive trait that occurs in only a few minor crops, but would be highly valuable in major crops. Apomixis results in seed-derived progenies that are genetically identical to their maternal parent. The advantage of apomixis would lie in seed propagation of elite food, feed, and biofuel crops that are heterozygous such as hybrid corn and switchgrass or self-pollinating crops for which no commercial-scale hybrid production system is available. While hybrid plants often outperform parental lines in growth and higher yields, production of hybrid seed is accomplished through carefully controlled, labor intensive crosses. Both small farmers in developing countries who produce their own seed and commercial companies that market hybrid seed could benefit from the establishment of engineered apomixis in plants. In this chapter, we review what has been learned from studying natural apomicts and mutations in sexual plants leading to apomixis-like development, plus discuss how the components of apomixis could be successfully engineered in plants.

  12. Characterization of hybrid lighting systems of the Electrical Engineering Building in the Industrial University of Santander

    Science.gov (United States)

    Galvis, D.; Exposito, C.; Osma, G.; Amado, L.; Ordóñez, G.

    2016-07-01

    This paper presents an analysis of hybrid lighting systems of Electrical Engineering Building in the Industrial University of Santander, which is a pilot of green building for warm- tropical conditions. Analysis of lighting performance of inner spaces is based on lighting curves obtained from characterization of daylighting systems of these spaces. A computation tool was made in Excel-Visual Basic to simulate the behaviour of artificial lighting system considering artificial control system, user behaviour and solar condition. Also, this tool allows to estimate the electrical energy consumption of the lighting system for a day, a month and a year.

  13. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  14. The new 2.5L L4 gasoline engine for LEXUS IS300h. The renewed engine series for FR hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Fumihisa; Mashiki, Zenichiro; Yamanari, Kenji [Toyota Motor Corporation, Aichi (Japan)

    2013-08-01

    To ensure future sustainable mobility, vehicles have to face crucial problems such as energy security, global warming and air quality. To address these problems, TOYOTA introduced in 1997 the TOYOTA Hybrid System (THS) and has continuously improved its technology, globally contributing to the environmental improvement by its expansion into many markets in the world. TOYOTA presented the renewed 4 Cylinder Engine Series for FF vehicles at this symposium last year. This year, Toyota presents the result of its continuous development for FR Hybrid Vehicles, especially for D and E segment vehicles. Toyota not only improved thermal efficiency and reduced CO{sub 2} but also achieved high power output. In 2012, TOYOTA launched 3.5L V6 engine for LEXUS-GS (2GR-FXE engine), as first engine of this new engine series. In 2013, TOYOTA will launch 2.5L-L4 engine for LEXUS-IS (2AR-FSE engine), as the leading engine of this series. Toyota developed these new engines, aiming at leadership with regard to fuel economy, clean exhaust gas and high reliability. Toyota carried out modifications, taking into account usage of Hybrid System. With targeting highest levels of environmental performance, Toyota improved the vehicle driving performances like acceleration response by the combination of enhanced engine power output and newly developed Hybrid System. One of the biggest feature of this series is new generation D-4S system, including two injectors (for Direct injection and Port injection) for each cylinder, high fuel pressure (greater than 18MPa) and high fuel flow rate. The new generation D-4S system helps achieving high performance and good thermal efficiency. Furthermore, Toyota added on Cooled EGR system to 2AR-FSE engine, contributing to lower the fuel consumption, especially in highway driving. The very low friction technology and the well proven Atkinson Cycle are also key features of this engine series. Thanks to the above features, the new engine series achieves high

  15. The new Nissan FF Hybrid + new 4-cylinder 2.5L supercharged engine. A new approach to powersource evolution

    Energy Technology Data Exchange (ETDEWEB)

    Minakawa, Shunichi; Onoyama, Taiichi; Ishizuka, Takashi [Nissan Motor Co., Ltd., Kanagawa (Japan)

    2013-08-01

    In 2013, Nissan is going to launch a technology combination of 1-Motor 2-Clutch Parallel Hybrid system and 4-cylinder 2.5L supercharged engine for Infiniti QX60 HYBRID and new Nissan Pathfinder HYBRID. This Hybrid system has been developed to have three key advantages: (1) Significant improvement in fuel economy even when Highway driving, (2) Better response and more direct feeling, (3) Lightweight system and low-cost. To achieve these objectives, Nissan fitted a 1-Motor 2-Clutch Parallel system onto a new generation CVT without Torque Converter, combined with downsized 4 cylinder 2.5L supercharged Engine, which provides better fuel economy and V6 3.5-liter class driving performance. Nissan has developed the following proprietary technologies to realize the development of this Hybrid system: - High output and compact Li-ion battery, - Innovative high speed and precise motor and clutch control. Additionally, new technologies are added to both Engine and CVT. Engine: New 4-lobes Roots supercharger with precise electrical boost control. CVT: Chain driven, high efficiency and low friction with wide cover ratio. In this paper Nissan will introduce an outline of the system, key breakthrough technologies and how low fuel economy comparable with the compact car class, has been achieved and demonstrated. (orig.)

  16. Energy Management of a Hybrid-Power Gas Engine-Driven Heat Pump

    Directory of Open Access Journals (Sweden)

    Qingkun Meng

    2015-10-01

    Full Text Available The hybrid-power gas engine-driven heat pump (HPGHP combines hybrid power technology with a gas engine heat pump. The engine in the power system is capable of operating constantly with high thermal efficiency and low emissions during different operating modes. In this paper, the mathematical models of various components is established, including the engine thermal efficiency map and the motor efficiency map. The comprehensive charging/discharging efficiency model and energy management optimization strategy model which is proposed to maximize the efficiency of instantaneous HPGHP system are established. Then, different charging/discharging torque limits are obtained. Finally, a novel gas engine economical zone control strategy which combined with the SOC of battery in real time is put forward. The main operating parameters of HPGHP system under energy management are simulated by Matlab/Simulink and validated by experimental data, such as engine and motor operating torque, fuel consumption rate and comprehensive efficiency, etc. The results show that during 3600 s’ run-time, the SOC value of battery packs varies between 0.58 and 0.705, the fuel consumption rate reaches minimum values of approximately 291.3 g/(kW h when the compressor speed is nearly 1550 rpm in mode D, the engine thermal efficiency and comprehensive efficiency reach maximum values of approximately 0.2727 and 0.2648 when the compressor speed is 1575 rpm and 1475 rpm, respectively, in mode D. In general, the motor efficiency can be maintained above 0.85 in either mode.

  17. Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation

    International Nuclear Information System (INIS)

    Basbous, Tammam; Younes, Rafic; Ilinca, Adrian; Perron, Jean

    2012-01-01

    In this paper, we are studying an innovative solution to reduce fuel consumption and production cost for electricity production by Diesel generators. The solution is particularly suitable for remote areas where the cost of energy is very high not only because of inherent cost of technology but also due to transportation costs. It has significant environmental benefits as the use of fossil fuels for electricity generation is a significant source of GHG (Greenhouse Gas) emissions. The use of hybrid systems that combine renewable sources, especially wind, and Diesel generators, reduces fuel consumption and operation cost and has environmental benefits. Adding a storage element to the hybrid system increases the penetration level of the renewable sources, that is the percentage of renewable energy in the overall production, and further improves fuel savings. In a previous work, we demonstrated that CAES (Compressed Air Energy Storage) has numerous advantages for hybrid wind-diesel systems due to its low cost, high power density and reliability. The pneumatic hybridization of the Diesel engine consists to introduce the CAES through the admission valve. We have proven that we can improve the combustion efficiency and therefore the fuel consumption by optimizing Air/Fuel ratio thanks to the CAES assistance. As a continuation of these previous analyses, we studied the effect of the intake pressure and temperature and the exhaust pressure on the thermodynamic cycle of the diesel engine and determined the values of these parameters that will optimize fuel consumption. -- Highlights: ► Fuel economy analysis of a simple pneumatic hybridization of the Diesel engine using stored compressed air. ► Thermodynamic analysis of the pneumatic hybridization of diesel engines for hybrid wind-diesel energy systems. ► Analysis of intake pressure and temperature of compressed air and exhaust pressure on pressure/temperature during Diesel thermodynamic cycle. ► Direct admission of

  18. Performance assessment of a Multi-fuel Hybrid Engine for Future Aircraft

    NARCIS (Netherlands)

    Yin, F.; Gangoli Rao, A.

    2016-01-01

    This paper presents performance assessment of the proposed hybrid engine concept using Liquid Natural Gas (LNG) and kerosene. The multi-fuel hybrid engine is a new engine concept integrated with contra rotating fans, sequential dual combustion chambers to facilitate “Energy Mix” in aviation and a

  19. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  20. Quantum state engineering in hybrid open quantum systems

    OpenAIRE

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2015-01-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state disp...

  1. Systems for hybrid cars

    Science.gov (United States)

    Bitsche, Otmar; Gutmann, Guenter

    Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.

  2. Control system for a hybrid powertrain system

    Science.gov (United States)

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  3. The Making of Green Engineers Sustainable Development and the Hybrid Imagination

    DEFF Research Database (Denmark)

    Jamison, Andrew

    This book discusses the ways in which engineering educators are responding to the challenges that confront their profession. On the one hand, there is an overarching sustainability challenge: the need for engineers to relate to the problems brought to light in the debates about environmental...... the emergence of new fields of "technosciences" that mix science and technology in new combinations. In the book, the author discusses and exemplifies three contending response strategies on the part of engineers and engineering educators: a commercial strategy that links scientists and engineers into networks...... or systems of innovation; an academic strategy that reasserts the traditional values of science and engineering; and an integrative strategy that aims to combine scientific knowledge and engineering skills with cultural understanding and social responsibility by fostering what the author terms a "hybrid...

  4. A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Fernando Sánchez Lasheras

    2015-03-01

    Full Text Available Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS technique with the principal component analysis (PCA, dendrograms and classification and regression trees (CARTs. Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.. Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.

  5. DC Linked Hybrid Generation System with an Energy Storage Device including a Photo-Voltaic Generation and a Gas Engine Cogeneration for Residential Houses

    Science.gov (United States)

    Lung, Chienru; Miyake, Shota; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi; Momose, Toshinari; Hayakawa, Hideki

    For the past few years, a hybrid generation system including solar panel and gas cogeneration is being used for residential houses. Solar panels can generate electronic power at daytime; meanwhile, it cannot generate electronic power at night time. But the power consumption of residential houses usually peaks in the evening. The gas engine cogeneration system can generate electronic power without such a restriction, and it also can generate heat power to warm up house or to produce hot water. In this paper, we propose the solar panel and gas engine co-generation hybrid system with an energy storage device that is combined by dc bus. If a black out occurs, the system still can supply electronic power for special house loads. We propose the control scheme for the system which are related with the charging level of the energy storage device, the voltage of the utility grid which can be applied both grid connected and stand alone operation. Finally, we carried out some experiments to demonstrate the system operation and calculation for loss estimation.

  6. Design and implementation of a hybrid electric motorcycle management system

    International Nuclear Information System (INIS)

    Hsu, Yuan-Yong; Lu, Shao-Yuan

    2010-01-01

    This paper presents a successful design and implement of a shunt-winding hybrid electric motorcycle management system which utilizes an electronic control unit (ECU) to integrate two major subsystems together, one being the traditional system of 125 c.c. internal combustion engine and the other an electric power motor. The hybrid electric motorcycle is assembled together robustly by these two major subsystems and eventually leads to successful road tests. The hybrid power system thus implemented can recharge its own batteries with electricity provided by the electrical recharge system and thus increasing the cruising mileages largely. The testing results obtained by using the proposed experimental platform indicate that lead-acid cells can boost their state of charge (SOC) by approximately 4% when it is operated under the hybrid mode for four driving cycles (about 1600 s) with the recharger on in a standard ECE-40 testing procedure. The results of road tests also clearly show that the pollutant emissions of the engine can be reduced at a lower speed or idling condition, and the problem of insufficient cruising range for electric motorcycles can also be greatly enhanced.

  7. Experimental studies of the air hybrid engine charging operation

    OpenAIRE

    Zhao, H; Ma, T; Lee, CY

    2014-01-01

    Over the last few years, theoretical and modelling studies have been carried out on the feasibility and potential of novel mild air hybrid engine concepts based on production components. These mild air hybrid concepts are able to convert vehicle brake energy into pneumatic energy in the form of compressed air stored in the air tank. The compressed air can then be used to crank-start the engine by either injecting and expanding in the cylinder or driving a production air starter. Thus, the reg...

  8. Development of hybrid system for mass productive passenger car; Joyoshayo ryosangata hybrid system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Abe, S; Sasaki, S; Matsui, H; Kubo, K [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The Toyota Hybrid System has two power sources which engage depending on driving conditions. An improved efficiency gasoline engine provides the main power to drive the wheels, as in conventional automobiles. Drive power can also be supplied by an electric motor, which derives its electricity from a battery and a Generator. Fuel efficiency is further boosted by other measures, such as automatically cutting the engine when the vehicle is at a stop and regenerating the energy accumulate during deceleration. Compared with conventional vehicles with a 1.5-liter engine running in 10 {center_dot} 15 mode, the CO2 emissions are reduced by half. Moreover, with the use of a motor to reduce engine load during acceleration, HC, CO, and NOx emissions are cut significantly low levels. 13 figs.

  9. Paraffin-based hybrid rocket engines applications: A review and a market perspective

    Science.gov (United States)

    Mazzetti, Alessandro; Merotto, Laura; Pinarello, Giordano

    2016-09-01

    Hybrid propulsion technology for aerospace applications has received growing attention in recent years due to its important advantages over competitive solutions. Hybrid rocket engines have a great potential for several aeronautics and aerospace applications because of their safety, reliability, low cost and high performance. As a consequence, this propulsion technology is feasible for a number of innovative missions, including space tourism. On the other hand, hybrid rocket propulsion's main drawback, i.e. the difficulty in reaching high regression rate values using standard fuels, has so far limited the maturity level of this technology. The complex physico-chemical processes involved in hybrid rocket engines combustion are of major importance for engine performance prediction and control. Therefore, further investigation is ongoing in order to achieve a more complete understanding of such phenomena. It is well known that one of the most promising solutions for overcoming hybrid rocket engines performance limits is the use of liquefying fuels. Such fuels can lead to notably increased solid fuel regression rate due to the so-called "entrainment phenomenon". Among liquefying fuels, paraffin-based formulations have great potentials as solid fuels due to their low cost, availability (as they can be derived from industrial waste), low environmental impact and high performance. Despite the vast amount of literature available on this subject, a precise focus on market potential of paraffins for hybrid propulsion aerospace applications is lacking. In this work a review of hybrid rocket engines state of the art was performed, together with a detailed analysis of the possible applications of such a technology. A market study was carried out in order to define the near-future foreseeable development needs for hybrid technology application to the aforementioned missions. Paraffin-based fuels are taken into account as the most promising segment for market development

  10. Control system and method for a hybrid electric vehicle

    Science.gov (United States)

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  11. Advanced Vortex Hybrid Rocket Engine (AVHRE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  12. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Sambit [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore); Cho-Hong, James Goh [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore); Siew-Lok, Toh [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore)

    2007-09-15

    Fibre-based scaffolds have been widely used for tendon and ligament tissue engineering. Knitted scaffolds have been proved to favour collagenous matrix deposition which is crucial for tendon/ligament reconstruction. However, such scaffolds have the limitation of being dependent on a gel system for cell seeding, which is unstable in a dynamic environment such as the knee joint. This study developed three types of hybrid scaffolds, based on knitted biodegradable polyester scaffolds, aiming to improve mechanical properties and cell attachment and proliferation on the scaffolds. The hybrid scaffolds were created by coating the knitted scaffolds with a thin film of poly ({epsilon}-caprolactone) (group I), poly (D, L-lactide-co-glycolide) nanofibres (group II) and type 1 collagen (group III). Woven scaffolds were also fabricated and compared with the various hybrid scaffolds in terms of their mechanical properties during in vitro degradation and cell attachment and growth. This study demonstrated that the coating techniques could modulate the mechanical properties and facilitate cell attachment and proliferation in the hybrid scaffold, which could be applied with promise in tissue engineering of tendons/ligaments.

  13. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering

    International Nuclear Information System (INIS)

    Sahoo, Sambit; Cho-Hong, James Goh; Siew-Lok, Toh

    2007-01-01

    Fibre-based scaffolds have been widely used for tendon and ligament tissue engineering. Knitted scaffolds have been proved to favour collagenous matrix deposition which is crucial for tendon/ligament reconstruction. However, such scaffolds have the limitation of being dependent on a gel system for cell seeding, which is unstable in a dynamic environment such as the knee joint. This study developed three types of hybrid scaffolds, based on knitted biodegradable polyester scaffolds, aiming to improve mechanical properties and cell attachment and proliferation on the scaffolds. The hybrid scaffolds were created by coating the knitted scaffolds with a thin film of poly (ε-caprolactone) (group I), poly (D, L-lactide-co-glycolide) nanofibres (group II) and type 1 collagen (group III). Woven scaffolds were also fabricated and compared with the various hybrid scaffolds in terms of their mechanical properties during in vitro degradation and cell attachment and growth. This study demonstrated that the coating techniques could modulate the mechanical properties and facilitate cell attachment and proliferation in the hybrid scaffold, which could be applied with promise in tissue engineering of tendons/ligaments

  14. Advanced Vortex Hybrid Rocket Engine (AVHRE), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  15. Control of internal combustion engines and hybrid engines; Regelung von Verbrennungsmotoren und Hybridantrieben

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, R. [TU Darmstadt (Germany). Forschungsgruppe Regelungstechnik und Prozessautomatisierung

    2007-07-15

    In the development of internal combustion engines, there are increasingly rigid specifications for further reduction of consumption, exhaust and noise emissions, better specific performance, lower weight, and good driving characteristics. The contributions in this special issue provide an insight into the many aspects of internal combustion engine and hybrid engine control. The editors of at journal took care to select interesting papers presented at the 3. VDI/VDE-GMA conference AUTOREG 2006. They show how control and mechatronics support the high demands on functionality in motor car engineering. (orig.)

  16. Analysis and evaluation of hybrid scooter transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    Sheu, Kuen-Bao [Department of Vehicle Engineering, National Formosa University, 64 Wunhua Road, Huwei, Yuenlin 63208 (China)

    2007-12-15

    This paper presents a new design concept of transmissions for the hybrid scooters. These transmissions consist of a one-degree-of-freedom planetary gear train and a two-degree-of-freedom planetary gear train to from a split power system and to combine the power of two power sources, a gasoline engine and an electric motor. In order to maximize the performance and reduce emissions, the transmissions can provide a hybrid scooter to run five operating modes: electric motor mode; engine mode; engine/charging mode; power mode, and regenerative braking mode. The main advantages of the transmissions proposed in this paper include the use of only one electric motor/generator, need not use clutch/brake for the shift of the operating modes, and high efficiency. The kinematics, power flow, and mechanical efficiency analyzes are performed; and according to these results, the evaluation of transmission power performances are accomplished. (author)

  17. Hybrid production planning system in make-to-order company - case study

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available This paper presents hybrid production planning and shop floor control system in make-to-order manufacturing of complex products. It presents the general idea of multi-hybrid system and selected practical aspects of its creation and its implementation. The construction of this system is based on the planning and executive levels and main aspects of its integration and its support tools. The research was carried out in HCP S.A. Poznan (Diesel Engines and Generating Sets Factory. HCP S.A. Poznan is the producer of high-power marine engines. The lead-time of the final product manufacturing is between 9 months and 1 year, and takes about 40.000 hours per one engine. The main problems of this production system are high share of the work in progress and long lead-time, which, as a result, causes many expenses. The flow of material streams is extremely complex and represents "A-plant" class, according to V-A-T classification, including significant internal constraints ("bottlenecks".

  18. Advanced engineering materials and thick film hybrid circuit technology

    International Nuclear Information System (INIS)

    Faisal, S.; Aslam, M.; Mehmood, K.

    2006-01-01

    The use of Thick Film hybrid Technology to manufacture electronic circuits and passive components continues to grow at rapid rate. Thick Film Technology can be viewed as a means of packaging active devices, spanning the gap between monolithic integrated circuit chips and printed circuit boards with attached active and passive components. An advancement in engineering materials has moved from a formulating art to a base of greater understanding of relationship of material chemistry to the details of electrical and mechanical performance. This amazing advancement in the field of engineering materials has brought us up to a magnificent standard that we are able to manufacture small size, low cost and sophisticated electronic circuits of Military, Satellite systems, Robotics, Medical and Telecommunications. (author)

  19. Analysis of hybrid systems: An ounce of realism can save an infinity of states

    DEFF Research Database (Denmark)

    Fränzle, Martin

    1999-01-01

    Hybrid automata have been introduced in both control engineering and computer science as a formal model for the dynamics of hybrid discrete-continuous systems. In the case of so-called linear hybrid automata this formalization supports semi-decision procedures for state reachability, yet no decis...

  20. Thermal simulation of a cooling system of hybrid commercial vehicles; Thermalsimulation eine Hybrid-LKW-Kuehlsystems

    Energy Technology Data Exchange (ETDEWEB)

    Stroh, Christoph; Schnoerch, Stefan; Rathberger, Christian [Magna Powertrain Engineering Center Steyr GmbH und Co. KG, St. Valentin (Austria)

    2012-11-01

    In the past few years hybrid vehicles have been in the center of automotive engineering efforts, in particular in the field of passenger cars. But hybrid powertrains will also be important for commercial trucks. This focus on hybrid vehicles leads to high demands on thermal management since the additional components in a hybrid vehicle need appropriate cooling or even heating. In the given paper the simulation of a complete cooling system of a hybrid commercial vehicle will be explained. For this virtual examination the commercial 1D thermal management software KULI will be used, a co-simulation with several programs will not be done deliberately. Yet all aspects which are relevant for a global assessment of the thermal management are considered. The main focus is put on the investigation of appropriate concepts for the fluid circuits, including low and high temperature circuits, electric water pumps, etc. Moreover, also a refrigerant circuit with a chiller for active battery cooling will be used, the appropriate control strategy is implemented as well. For simulating transient profiles a simple driving simulation model is included, using road profile, ambient conditions, and various vehicle parameters as input. In addition an engine model is included which enables the investigation of fuel consumption potentials. This simulation model shows how the thermal management of a hybrid vehicle can be investigated with a single program and with reasonable effort. (orig.)

  1. Engineering and physics considerations for a linear theta-pinch hybrid reactor (LTPHR)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1976-01-01

    A fusion-fission hybrid reactor based on pulsed, high-β, linear theta-pinch magnetic confinement is considered. A preliminary design which incorporates key physics, engineering and economic considerations is presented. An extensive presentation of the system energy balance is made, and this energy balance is evaluated parametrically. The feasibility of end-loss reduction is addressed

  2. Optimal Control of Engine Warmup in Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    van Reeven Vital

    2016-01-01

    Full Text Available An Internal Combustion Engine (ICE under cold conditions experiences increased friction losses due to a high viscosity of the lubricant. With the additional control freedom present in hybrid electric vehicles, the losses during warmup can be minimized and fuel can be saved. In this paper, firstly, a control-oriented model of the ICE, describing the warmup behavior, is developed and validated on measured vehicle data. Secondly, the two-state, non-autonomous fuel optimization, for a parallel hybrid electric vehicle with stop-start functionality, is solved using optimal control theory. The principal behavior of the Lagrange multipliers is explicitly derived, including the discontinuities (jumps that are caused by the constraints on the lubricant temperature and the energy in the battery system. The minimization of the Hamiltonian for this two-state problem is also explicitly solved, resulting in a computationally efficient algorithm. The optimal controller shows the fuel benefit, as a function of the initial temperature, for a long-haul truck simulated on the FTP-75.

  3. Optimization of the stand for test of hybrid rocket engines of solid fuel

    Directory of Open Access Journals (Sweden)

    Zolotorev Nikolay

    2017-01-01

    Full Text Available In the paper the laboratory experimental stand of the hybrid rocket engine of solid fuel to study ballistic parameters of the engine at burning of high-energy materials in flow of hot gas is presented. Mixture of air with nitrogen with a specified content of active oxygen is used as a gaseous oxidizer. The experimental stand has modular design and consists of system of gas supply, system of heating of gas, system for monitoring gas parameters, to which a load cell with a model engine was connected. The modular design of the stand allows to change its configuration under specific objective. This experimental stand allows to conduct a wide range of the pilot studies at interaction of a hot stream of gas with samples high-energy materials.

  4. Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pranil J.; Singh, Anirudh [Division of Physics, School of Engineering and Physics, Faculty of Science, Technology and Environment, University of the South Pacific, 325 Fletcher Road, Suva (Fiji); Khurma, Jagjit [Division of Chemistry, School of Biological, Chemical and Environmental Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Suva (Fiji)

    2010-09-15

    In this study, hybrid fuels consisting of coconut oil, aqueous ethanol and a surfactant (butan-1-ol) were prepared and tested as a fuel in a direct injection diesel engine. After determining fuel properties such as the density, viscosity and gross calorific values of these fuels, they were used to run a diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel. The experimental results show that the efficiency of the hybrid fuels is comparable to that of diesel. As the viscosity of the hybrid fuels decreased and approached that of diesel, the efficiency increased progressively towards that of diesel. The exhaust emissions were lower than those for diesel, except carbon monoxide emissions, which increased. Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly with regard to their emissions characteristics. (author)

  5. Chemical-text hybrid search engines.

    Science.gov (United States)

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.

  6. Hybrid Macro-Micro Fluidics System for a Chip-Based Biosensor

    National Research Council Canada - National Science Library

    Tamanaha, C. R; Whitman, L. J; Colton, R.J

    2002-01-01

    We describe the engineering of a hybrid fluidics platform for a chip-based biosensor system that combines high-performance microfluidics components with powerful, yet compact, millimeter-scale pump and valve actuators...

  7. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  8. Performance assessment of hybrid power generation systems: Economic and environmental impacts

    International Nuclear Information System (INIS)

    Al-Sharafi, Abdullah; Yilbas, Bekir S.; Sahin, Ahmet Z.; Ayar, T.

    2017-01-01

    Highlights: • A double-step optimization tool for hybrid power generation systems is introduced. • Economical aspects and the impact of the system on the environment are considered. • A hybrid system comprises PV array-wind turbine-battery-diesel engine is considered. • Real time analysis of the system for full year simulation is carried out. • System optimum configuration at point where total performance index is maximized. - Abstract: This article aims to introduce a double-step performance assessment tool for the hybrid power generation systems. As a case study, a hybrid system comprising PV array, wind-turbine, battery bank and diesel engine is incorporated in hourly based simulations to meet power demand of a residence unit at Dhahran area, Kingdom of Saudi Arabia. Different indicators related to economical and environmental performance assessments of the hybrid system have been considered. In the economic related assessment case, cost of electricity, energy excess percentage, and operating life cycle indicators have been considered and combined to develop the first overall performance index. Renewable contribution, renewable source availability and environmental impact indicators have been considered for the environmental assessment case and they are combined in the second performance index. For either economical or environmental cases, the optimum configuration of the system is achieved by maximizing the first and second overall performance indicators. This innovative optimization tools gives the designer the freedom to assign suitable weights associated with economical aspect, environmental impact, governmental regulations and social impact, for the first and second overall performance indicators, and combine them in the total performance index. The optimum system configuration is at the point where the total performance index is maximized.

  9. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  10. Hybrid rocket engine, theoretical model and experiment

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  11. Performance assessment of a multi-fuel hybrid engine for future aircraft

    NARCIS (Netherlands)

    Yin, F.; Gangoli Rao, A.; Bhat, Abhishek; Chen, Min

    2018-01-01

    This paper presents the performance assessment of a novel turbofan engine using two energy sources: Liquid Natural Gas (LNG) and kerosene, called Multi-Fuel Hybrid Engine (MFHE). The MFHE is a new engine concept consisting of several novel features, such as a contra-rotating fan to sustain

  12. SFC Optimization for Aero Engine Based on Hybrid GA-SQP Method

    Science.gov (United States)

    Li, Jie; Fan, Ding; Sreeram, Victor

    2013-12-01

    This study focuses on on-line specific fuel consumption (SFC) optimization of aero engines. For solving this optimization problem, a nonlinear pneumatic and thermodynamics model of the aero engine is built and a hybrid optimization technique which is formed by combining the genetic algorithm (GA) and the sequential quadratic programming (SQP) is presented. The ability of standard GA and standard SQP in solving this type of problem is investigated. It has been found that, although the SQP is fast, very little SFC reductions can be obtained. The GA is able to solve the problem well but a lot of computational time is needed. The presented hybrid GA-SQP gives a good SFC optimization effect and saves 76.6% computational time when compared to the standard GA. It has been shown that the hybrid GA-SQP is a more effective and higher real-time method for SFC on-line optimization of the aero engine.

  13. Co-Simulation of Hybrid Systems with SpaceEx and Uppaal

    DEFF Research Database (Denmark)

    Bogomolov, Sergiy; Greitschus, Marius; Jensen, Peter Gjøl

    2015-01-01

    The Functional Mock-up Interface (FMI) is an industry standard which enables co-simulation of complex heterogeneous systems using multiple simulation engines. In this paper, we show how to use FMI in order to co-simulate hybrid systems modeled in the model checkers SPACEEX and UPPAAL. We show how...

  14. Simulation of hybrid renewable microgeneration systems for variable electricity prices

    International Nuclear Information System (INIS)

    Brandoni, C.; Renzi, M.; Caresana, F.; Polonara, F.

    2014-01-01

    This paper addresses a hybrid renewable system that consists of a micro-Combined Cooling Heat and Power (CCHP) unit and a solar energy conversion device. In addition to a traditional PV system, a High Concentrator Photovoltaic (HCPV) device, the design of which is suitable for building integration application, was also modelled and embedded in the hybrid system. The work identifies the optimal management strategies for the hybrid renewable system in an effort to minimise the primary energy usage, the carbon dioxide emissions and the operational costs for variable electricity prices that result from the day-ahead electricity market. An “ad hoc” model describes the performance of the HCPV module, PV and Internal Combustion Engine, whilst the other units were simulated based on their main characteristic parameters. The developed algorithm was applied to three different building typologies. The results indicate that the best configuration is the hybrid renewable system with PV, which can provide a yearly primary energy reduction of between 20% and 30% compared to separate production. The hybrid renewable system with HCPV becomes competitive with the PV technology when the level of solar radiation is high. - Highlights: • The paper addresses a hybrid renewable system that consists of a micro-CCHP unit and a solar energy conversion device. • Both PV and High Concentrator Photovoltaic (HCPV) systems have been modelled and embedded in the hybrid system. • The work identifies the optimal management strategies for variable electricity prices. • Hybrid renewable systems provide a yearly primary energy reduction of between 20% and 30% compared to separate production. • When the level of solar radiation is high, HCPV becomes competitive with the PV technology

  15. Engineering of a polymer layered bio-hybrid heart valve scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S., E-mail: jani84@gmail.com [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Kumary, T.V., E-mail: tvkumary@yahoo.com [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Bhuvaneshwar, G.S., E-mail: gs.bhuvnesh@gmail.com [Trivitron Innovation Centre, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, TN (India); Natarajan, T.S., E-mail: tsniit@gmail.com [Conducting Polymer laboratory, Department of Physics, Indian Institute of Technology, Madras, Chennai 600036, TN (India); Verma, R.S., E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India)

    2015-06-01

    Current treatment strategy for end stage valve disease involves either valvular repair or replacement with homograft/mechanical/bioprosthetic valves. In cases of recurrent stenosis/ regurgitation, valve replacement is preferred choice of treatment over valvular repair. Currently available mechanical valves primarily provide durability whereas bioprosthetic valves have superior tissue compatibility but both lack remodelling and regenerative properties making their utility limited in paediatric patients. With advances in tissue engineering, attempts have been made to fabricate valves with regenerative potential using various polymers, decellularized tissues and hybrid scaffolds. To engineer an ideal heart valve, decellularized bovine pericardium extracellular matrix (DBPECM) is an attractive biocompatible scaffold but has weak mechanical properties and rapid degradation. However, DBPECM can be modified with synthetic polymers to enhance its mechanical properties. In this study, we developed a Bio-Hybrid scaffold with non-cross linked DBPECM in its native structure coated with a layer of Polycaprolactone-Chitosan (PCL-CH) nanofibers that displayed superior mechanical properties. Surface and functional studies demonstrated integration of PCL-CH to the DBPECM with enhanced bio and hemocompatibility. This engineered Bio-Hybrid scaffold exhibited most of the physical, biochemical and functional properties of the native valve that makes it an ideal scaffold for fabrication of cardiac valve with regenerative potential. - Highlights: • A Bio-Hybrid scaffold was fabricated with PCL-CH blend and DBPECM. • PCL-CH functionally interacted with decellularized matrix without cross linking. • Modified scaffold exhibited mechanical properties similar to native heart valve. • Supported better fibroblast and endothelial cell adhesion and proliferation. • The developed scaffold can be utilized for tissue engineering of heart valve.

  16. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    Science.gov (United States)

    Taylor, Brian R.; Yoo, Seung Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  17. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  18. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Xu Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao Weixin; Yoo, James J; Atala, Anthony

    2013-01-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  19. Transcription Activator-Like Effectors (TALEs) Hybrid Nucleases for Genome Engineering Application

    KAUST Repository

    Wibowo, Anjar

    2011-06-06

    Gene targeting is a powerful genome engineering tool that can be used for a variety of biotechnological applications. Genomic double-strand DNA breaks generated by engineered site-specific nucleases can stimulate gene targeting. Hybrid nucleases are composed of DNA binding module and DNA cleavage module. Zinc Finger Nucleases were used to generate double-strand DNA breaks but it suffers from failures and lack of reproducibility. The transcription activator–like effectors (TALEs) from plant pathogenic Xanthomonas contain a unique type of DNA-binding domain that bind specific DNA targets. The purpose of this study is to generate novel sequence specific nucleases by fusing a de novo engineered Hax3 TALE-based DNA binding domain to a FokI cleavage domain. Our data show that the de novo engineered TALE nuclease can bind to its target sequence and create double-strand DNA breaks in vitro. We also show that the de novo engineered TALE nuclease is capable of generating double-strand DNA breaks in its target sequence in vivo, when transiently expressed in Nicotiana benthamiana leaves. In conclusion, our data demonstrate that TALE-based hybrid nucleases can be tailored to bind a user-selected DNA sequence and generate site-specific genomic double-strand DNA breaks. TALE-based hybrid nucleases hold much promise as powerful molecular tools for gene targeting applications.

  20. 1978 source book for fusion--fission hybrid systems. Executive summary

    International Nuclear Information System (INIS)

    Crowley, J.H.; Pavlenco, G.F.; Kaminski, R.S.

    1978-12-01

    The 1978 Source Book for Fusion--Fission Hybrid Systems was prepared by United Engineers and Constructors Inc. for the U.S. Department of Energy and the Electric Power Research Institute. It reviews the current status of fusion--fission hybrid reactors, and presents the prevailing views of members of the fusion community on the RD and D timetable required for the development and commercialization of fusion--fission hybrids. The results presented are based on a review of related references as well as interviews with recognized experts in the field. Contributors from the academic and industrial communities are listed

  1. Lower hybrid heating system for an ignition tokamak

    International Nuclear Information System (INIS)

    Brooks, J.; Harkness, S.; Jung, J.; Misra, B.; Moretti, A.; Norem, J.; Stevens, H.

    1978-01-01

    We have attempted to design a complete Lower Hybrid Resonance Heating System (LHRH) that could be used for TFTR, TNS, EPR, or a reactor. In addition to plasma physics constraints, we have considered those imposed by neutron radiation, surface heating of waveguides, sputtering, multipactoring, vacuum systems, materials, window design, engineering, maintenance and assembly. The system uses a Lallia--Brambilla grill which is fed by a number of waveguides entering the reactor by means of a labyrinth

  2. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Nandakumar, A.; Barradas, A.M.C.; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP),

  3. Linear engine development for series hybrid electric vehicles

    Science.gov (United States)

    Toth-Nagy, Csaba

    This dissertation argues that diminishing oil reserves, concern over global climate change, and desire to improve ambient air quality all demand the development of environment-friendly personal transportation. In certain applications, series hybrid electric vehicles offer an attractive solution to reducing fuel consumption and emissions. Furthermore, linear engines are emerging as a powerplant suited to series HEV applications. In this dissertation, a linear engine/alternator was considered as the auxiliary power unit of a range extender series hybrid electric vehicle. A prototype linear engine/alternator was developed, constructed and tested at West Virginia University. The engine was a 2-stroke, 2-cylinder, dual piston, direct injection, diesel engine. Experiment on the engine was performed to study its behavior. The study variables included mass of the translator, amount of fuel injected, injection timing, load, and stroke with operating frequency and mechanical efficiency as the basis of comparison. The linear engine was analyzed in detail and a simple simulation model was constructed to compare the trends of simulation with the experimental data and to expand on the area where the experimental data were lacking. The simulation was based on a simple and analytical model, rather than a detailed and intensely numerical one. The experimental and theoretical data showed similar trends. Increasing translator mass decreased the operating frequency and increased compression ratio. Larger mass and increased compression ratio improved the ability of the engine to sustain operation and the engine was able to idle on less fuel injected into the cylinder. Increasing the stroke length caused the operating frequency to drop. Increasing fueling or decreasing the load resulted in increased operating frequency. This projects the possibility of using the operating frequency as an input for feedback control of the engine. Injection timing was varied to investigate two different

  4. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  5. Experimental study into a hybrid PCCI/CI concept for next-generation heavy-duty diesel engines

    NARCIS (Netherlands)

    Doosje, E.; Willems, F.P.T.; Baert, R.S.G.; Dijk, M.D. van

    2012-01-01

    This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load

  6. Hybrid rocket engine research program at Ryerson University

    Energy Technology Data Exchange (ETDEWEB)

    Karpynczyk, J.; Greatrix, D.R. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Aerospace Engineering

    2007-07-01

    Hybrid rocket engines (HREs) are a combination of solid and liquid propellant rocket engine designs. A solid fuel grain is located in the main combustion chamber and nozzle aft, while a stored liquid or gaseous oxidizer source supplies the required oxygen content through a throttle valve, for combustion downstream in the main chamber. HREs have drawn significant interest in certain flight applications, as they can be advantageous in terms of cost, ease and safety in storage, controllability in flight, and availability of propellant constituents. Key factors that will lead to further practical usage of HREs for flight applications are their predictability and reproducibility of operational performance. This paper presented information on studies being conducted at Ryerson University aimed at analyzing and testing the performance of HREs. It discussed and illustrated the conventional HRE and analyzed engine performance considerations such as the fuel regression rate, mass flux about the fuel surface, burning rate, and zero transformation parameter. Other factors relating to HRE performance that were presented included induced forward and aft oxidizer flow swirl effects as a means for augmenting the fuel regression rate, stoichiometric grain length issues, and feed system stability. Last, the paper presented a simplified schematic diagram of a proposed thrust/test stand for HRE test firings. 2 refs., 3 figs.

  7. Study of hydrogen engine for a hybrid electric vehicle. 1; Hybrid denki jidoshayo suiso engine ni kansuru kenkyu. 1

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, T.; Numata, T. Hiruma, M.; Yamane, K.; Nakajima, Y.; Furuhama, S. [Musashi Institute of Technology, Tokyo (Japan); Takagi, Y. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1998-10-15

    Study was made on application of a hydrogen engine to series hybrid electric vehicle (SHEV). Power of 20kW (for steady driving of a vehicle of 1t in total weight on flat road surface at 100km/h), and NOx emission concentration equivalent to that of EZEV (equivalent zero emission vehicle) were used as target performance. One of the merits of using a hydrogen engine for HEV is that conventional high-reliability gasoline engines can be used as hydrogen engines only by a bit of modification. A modified conventional 4-cylinder 4-cycle gasoline engine was used for this study. Hydrogen gas was continuously supplied through an intake manifold for premixed combustion by spark ignition. Brake thermal efficiency was improved from 30.5% to 35.5% by use of a high compression ratio and reduction of friction loss. NOx emission concentration could be controlled within 10ppm by ultra-lean combustion even at excess air ratios over 2.5. Both high efficiency and low emission were achieved at the same time around 3000rpm in engine revolution. 4 refs., 12 figs., 1 tab.

  8. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Saravanan, U [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Arthi, N [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Bhuvaneshwar, G S [Department of Engineering Design, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Kumary, T V [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Rajan, S [Madras Medical Mission, Institute of Cardio-Vascular Diseases, Mogappair, Chennai, Tamil Nadu 600037 (India); Verma, R S, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India)

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44{sup +}, αSMA{sup +}, Vimentin{sup +} and CD105{sup −} human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. - Highlights: • We report detailed biological and mechanical investigations of a Bio-Hybrid scaffold. • Optimized polymer thickness yielded desired biological and mechanical properties. • Bio-Hybrid scaffold revealed hVIC proliferation with dense ECM deposition. • Biaxial testing indicated that Bio-Hybrid scaffolds are mechanically stronger than native valves. • Bio-Hybrid scaffold is a promising material for autologous valve tissue engineering.

  9. Novel bio-synthetic hybrid materials and coculture systems for musculoskeletal tissue engineering

    Science.gov (United States)

    Lee, Hyeseung Janice

    Tissue Engineering is a truly exciting field of this age, trying to regenerate and repair impaired tissues. Unlike the old artificial implants, tissue engineering aims at making a long-term functional biological replacement. One strategy for such tissue engineering requires the following three components: cells, scaffolds, and soluble factors. Cells are cultured in a three-dimensional (3D) scaffold with medium containing various soluble factors. Once a tissue is developed in vitro, then it is implanted in vivo. The overall goal of this thesis was to develop novel bio-synthetic hybrid scaffolds and coculture system for musculoskeletal tissue engineering. The most abundant cartilage extracellular matrix (ECM) components are collagen and glycosaminoglycan (GAG), which are the natural scaffold for chondrocytes. As two different peptides, collagen mimetic peptide (CMP) and hyaluronic acid binding peptide (HABPep) were previously shown to bind to collagen and hyaluronic acid (HA) of GAG, respectively, it was hypothesized that immobilizing CMP and HABP on 3D scaffold would results in an interaction between ECM components and synthetic scaffolds via peptide-ECM bindings. CMP or HABPep-conjugated photopolymerizable poly(ethylene oxide) diacrylate (PEODA) hydrogels were synthesized and shown to retain encapsulated collagen or HA, respectively. This result supported that conjugated CMP and HABPep can interact with collagen and HA, respectively, and can serve as biological linkers in 3D synthetic hydrogels. When chondrocytes or mesenchymal stem cells (MSCs) were seeded, cells in CMP-conjugated scaffolds produced significantly more amount of type II collagen and GAG, compared to those in control scaffolds. Moreover, MSCs cultured in CMP-conjugated scaffolds exhibited lower level of hypertrophic markers, cbfa-1 and type X collagen. These results demonstrated that enhanced interaction between collagen and scaffold via CMP improves chondrogenesis of chondrocytes and MSCs and

  10. Evaluation of hybrid power system alternatives: a case study

    International Nuclear Information System (INIS)

    Rosenthal, Andrew L.

    1999-01-01

    Pursuant to executive and statutory policies, the National Park Service (NPS) has been evaluating the use of photovoltaic (PV) hybrid power systems, for many of its remote, off-grid areas. This paper reports the results of a detailed technical and economic evaluation for one such area: the Needles District of Canyonlands National Park. The study evaluates the presented power systems and five alternative power generation configurations, four of which utilise PV. Projections are provided for the generator run-time and fuel use associated with each configuration as well as all initial and future costs. Included in the study are specific recommendations for energy efficiency improvements at the site. Results show that the generation systems presently in use, two full-time diesel generators, has the lowest conventional 20-year life cycle costs (LCC) of the six systems evaluated. However, when emissions costs are included (per NPS guidelines), several of the PV hybrid alternatives attain a lower LCC than the diesel-only systems. General discussion of the effects of initial versus future costs of PV hybrids as they compare with engine generator system is presented. (Author)

  11. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  12. New hybrid systems

    International Nuclear Information System (INIS)

    Bernardin, B.

    2001-01-01

    New hybrid systems are made up of a subcritical core, a spallation target and a proton accelerator. The neutrons that are produced in the target by the flux of protons are necessary to maintain the chain reaction of fission. Some parameters that are important for a classical nuclear reactor like doppler coefficient or delayed neutron fraction do not matter in a hybrid system. In a PWR-type reactor or in a fast reactor the concentration of actinides has a bad impact on these 2 parameters, so it is justified to study hybrid systems as actinide transmuters. The hybrid system, because of its external source of neutrons can put aside an important reactivity margin. This reactivity margin can be used to design safer nuclear reactors (particularly in some situations of reactivity accidents) or to irradiate fuel elements containing high concentrations of minor actinides that could not be allowed in a classical reactor. This article reviews various ways of integrating hybrid systems in a population of already existing nuclear reactors in order to manage quantities of plutonium, of minor actinides or of long-life fission products. (A.C.)

  13. Engineering hybrid Co-picene structures with variable spin coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chunsheng [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shan, Huan; Li, Bin, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Zhao, Aidi, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Wang, Bing [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-04-25

    We report on the in situ engineering of hybrid Co-picene magnetic structures with variable spin coupling using a low-temperature scanning tunneling microscope. Single picene molecules adsorbed on Au(111) are manipulated to accommodate individual Co atoms one by one, forming stable artificial hybrid structures with magnetism introduced by the Co atoms. By monitoring the evolution of the Kondo effect at each site of Co atom, we found that the picene molecule plays an important role in tuning the spin coupling between individual Co atoms, which is confirmed by theoretical calculations based on the density-functional theory. Our findings indicate that the hybrid metal-molecule structures with variable spin coupling on surfaces can be artificially constructed in a controlled manner.

  14. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    Science.gov (United States)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  15. Biocombinatorial Engineering of Fungal PKS-NRPS Hybrids for Production of Novel Synthetic Natural Products

    DEFF Research Database (Denmark)

    Nielsen, Maria Lund

    encoding a PKS-NRPS hybrid responsible for the production of a medically relevant compound in Talaromyces atroroseus. To the best of my knowledge, this study represents the first example of reverse engineering of a Talaromyces species. In the fourth study (chapter 5), I used the CRISPR-Cas9 system...... structure optimization. Within the last decade, an alternative approach for expanding natural product chemodiversity has been applied. This strategy, known as combinatorial biosynthesis, involves the re-engineering of biosynthetic pathways and ultimately the rational engineering of new natural product...... analogs. This field, however, has proved very challenging and many engineering efforts have resulted in enzymatic loss-of-function or reduced yields. Thus, the future success in combinatorial biosynthetic studies requires a thorough understanding of the structure and function of biosynthetic enzymes...

  16. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  17. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  18. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    Science.gov (United States)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid

  19. Investigation of Dual-Vortical-Flow Hybrid Rocket Engine without Flame Holding Mechanism

    Directory of Open Access Journals (Sweden)

    A. Lai

    2018-01-01

    Full Text Available A 250 kgf thrust hybrid rocket engine was designed, tested, and verified in this work. Due to the injection and flow pattern of this engine, this engine was named dual-vortical-flow engine. This propulsion system uses N2O as oxidizer and HDPE as fuel. This engine was numerically investigated using a CFD tool that can handle reacting flow with finite-rate chemistry and coupled with the real-fluid model. The engine was further verified via a hot-fire test for 12 s. The ground Isp of the engine was 232 s and 221 s for numerical and hot-fire tests, respectively. An oscillation frequency with an order of 100 Hz was observed in both numerical and hot-fire tests with less than 5% of pressure oscillation. Swirling pattern on the fuel surface was also observed in both numerical and hot-fire test, which proves that this swirling dual-vortical-flow engine works exactly as designed. The averaged regression rate of the fuel surface was found to be 0.6~0.8 mm/s at the surface of disk walls and 1.5~1.7 mm/s at the surface of central core of the fuel grain.

  20. Nanoengineered Plasmonic Hybrid Systems for Bio-nanotechnology

    Science.gov (United States)

    Leong, Kirsty

    Plasmonic hybrid systems are fabricated using a combination of lithography and layer-by-layer directed self-assembly approaches to serve as highly sensitive nanosensing devices. This layer-by-layer directed self-assembly approach is utilized as a hybrid methodology to control the organization of quantum dots (QDs), nanoparticles, and biomolecules onto inorganic nanostructures with site-specific attachment and functionality. Here, surface plasmon-enhanced nanoarrays are fabricated where the photoluminescence of quantum dots and conjugated polymer nanoarrays are studied. This study was performed by tuning the localized surface plasmon resonance and the distance between the emitter and the metal surface using genetically engineered polypeptides as binding agents and biotin-streptavidin binding as linker molecules. In addition, these nanoarrays were also chemically modified to support the immobilization and label-free detection of DNA using surface enhanced Raman scattering. The surface of the nanoarrays was chemically modified using an acridine containing molecule which can act as an intercalating agent for DNA. The self-assembled monolayer (SAM) showed the ability to immobilize and intercalate DNA onto the surface. This SAM system using surface enhanced Raman scattering (SERS) serves as a highly sensitive methodology for the immobilization and label-free detection of DNA applicable into a wide range of bio-diagnostic platforms. Other micropatterned arrays were also fabricated using a combination of soft lithography and surface engineering. Selective single cell patterning and adhesion was achieved through chemical modifications and surface engineering of poly(dimethylsiloxane) surface. The surface of each microwell was functionally engineered with a SAM which contained an aldehyde terminated fused-ring aromatic thiolated molecule. Cells were found to be attracted and adherent to the chemically modified microwells. By combining soft lithography and surface engineering

  1. The ATPG Attack for Reverse Engineering of Combinational Hybrid Custom-Programmable Circuits

    Science.gov (United States)

    2017-03-23

    Introduction The widely practiced horizontal integrated circuit supply chain exposes a design to various types of attacks including the reverse engineering ...STT_CMOS designs for reverse- engineering prevention, DAC 2016. [5] M. E. Massad and et. al. Integrated circuit (IC) decamouflaging: reverse...The ATPG Attack for Reverse Engineering of Combinational Hybrid Custom-Programmable Circuits Raza Shafiq Hamid Mahmoodi Houman Homayoun Hassan

  2. Annular tidal regenerator engine for nuclear circulatory support systems

    International Nuclear Information System (INIS)

    Hagen, K.G.; Ruggles, A.E.; Fam, S.S.; Torti, V.A.

    1975-01-01

    In order to simplify the configuration of the tidal regenerator engine nuclear-powered circulatory support system, thereby drastically reducing its size and improving the intrinsic reliability, the engine has been redesigned. This redesign focuses on allowing power to be extracted at the low temperature end of the engine utilizing a piston-cylinder arrangement wherein all of the necessary heat transfer processes occur in the annular gap between the piston and cylinder. In all other respects the engine retains its basic characteristics as a hybrid between a Stirling engine and a Rankine engine. A significant advantage of the new arrangement is the ability to raise the superheat temperature limit from 650 0 F to over 900 0 F. This has yielded an increase in engine efficiency from 10 percent to 14 percent, and further increases are anticipated by utilizing an expansion and/or a binary version of the engine. The implantable system volume has been reduced by a factor of three and orientation insensitivity with respect to gravity has been demonstrated. Many system components have already demonstrated endurances of several thousand hours

  3. Medical imaging education in biomedical engineering curriculum: courseware development and application through a hybrid teaching model.

    Science.gov (United States)

    Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice

    2012-01-01

    Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings.

  4. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  5. Numerical investigations of hybrid rocket engines

    Science.gov (United States)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.

    2018-03-01

    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  6. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  7. Performance and energy management of a novel full hybrid electric powertrain system

    International Nuclear Information System (INIS)

    Chung, Cheng-Ta; Hung, Yi-Hsuan

    2015-01-01

    This study compared the performance and energy management between a novel full hybrid electric powertrain and a traditional power-split hybrid system. The developed planetary gearset and dual clutch configuration provides five operation modes. Equations for the torque and speed of power sources for the planetary gearset and dual clutch system and the Toyota Hybrid System are firstly derived. By giving vehicle performance of gradability, maximal speeds in hybrid and pure electric modes, the power sources of the 210 kg target vehicle are: a 125 cc engine and two 1.8 kW motor and generator. The optimal tank-to-wheel efficiencies, ratios of circulating power, and operation points at specific vehicle speeds and out loads are calculated. Simulation results show that the dual-motor electric vehicle mode offers superior performance regarding electric drive; the low capacity of the battery is conducive to reducing manufacturing and maintenance costs; the tank-to-wheel efficiency is mainly operated above 20% while the power split electronic-continuously-variable-transmission mode is the major operation mode, and a maximum of 17% fuel economy improvement is achieved compared with the Toyota Hybrid System in most of the vehicle speed ranges. The outstanding performance warrants further real-system development, especially regarding the implementation in plug-in and sport hybrid powertrain designs. - Highlights: • An innovative power split hybrid powertrain was designed. • Dual-motor electric-vehicle mode highlighted for plug-in function. • Power circulation ratios and five driving modes were analyzed. • Global search method utilized for optimal energy management. • Maximal 17+% fuel improvement compared to Toyota Hybrid System

  8. Preparation of hybrid biomaterials for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Vilma Conceição Costa

    2007-03-01

    Full Text Available Tissue engineering has evolved from the use of biomaterials for bone substitution that fulfill the clinical demands of biocompatibility, biodegradability, non-immunogeneity, structural strength and porosity. Porous scaffolds have been developed in many forms and materials, but few reached the need of adequate physical, biological and mechanical properties. In the present paper we report the preparation of hybrid porous polyvinyl alcohol (PVA/bioactive glass through the sol-gel route, using partially and fully hydrolyzed polyvinyl alcohol, and perform structural characterization. Hybrids containing PVA and bioactive glass with composition 58SiO2-33CaO-9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass sol-gel precursor solution. Sol-gel solution was prepared from mixing tetraethoxysilane (TEOS, triethylphosphate (TEP, and calcium chloride as chemical precursors. The hybrid composites obtained after aging and drying at low temperature were chemically and morphologically characterized through infrared spectroscopy and scanning electron microscopy. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioglass composition ratios affect the synthesis procedure. Synthesis parameters must be very well combined in order to allow foaming and gelation. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm.

  9. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  10. Resilin-like polypeptide-poly(ethylene gylcol) hybrid hydrogels for mechanically-demanding tissue engineering applications

    Science.gov (United States)

    McGann, Christopher Leland

    Technological progress in the life sciences and engineering has combined with important insights in the fields of biology and material science to make possible the development of biological substitutes which aim to restore function to damaged tissue. Numerous biomimetic hydrogels have been developed with the purpose of harnessing the regenerative capacity of cells and tissue through the rational deployment of biological signals. Aided by recombinant DNA technology and protein engineering methods, a new class of hydrogel precursor, the biosynthetic protein polymer, has demonstrated great promise towards the development of highly functional tissue engineering materials. In particular, protein polymers based upon resilin, a natural protein elastomer, have demonstrated outstanding mechanical properties that would have great value in soft tissue applications. This dissertation introduces hybrid hydrogels composed of recombinant resilin-like polypeptides (RLPs) cross-linked with multi-arm PEG macromers. Two different chemical strategies were employed to form RLP-PEG hydrogels: one utilized a Michael-type addition reaction between the thiols of cysteine residues present within the RLP and vinyl sulfone moieties functionalized on a multi-arm PEG macromer; the second system cross-links a norbornene-functionalized RLP with a thiol-functionalized multi-arm PEG macromer via a photoinitiated thiol-ene step polymerization. Oscillatory rheology and tensile testing confirmed the formation of elastic, resilient hydrogels in the RLP-PEG system cross-linked via Michael-type addition. These hydrogels supported the encapsulation and culture of both human aortic adventitial fibroblasts and human mesenchymal stem cells. Additionally, these RLP-PEG hydrogels exhibited phase separation behavior during cross-linking that led to the formation of a heterogeneous microstructure. Degradation could be triggered through incubation with matrix metalloproteinase. Photocross-linking was conferred to

  11. Study on Drive System of Hybrid Tree Harvester

    Directory of Open Access Journals (Sweden)

    Shen Rong-feng

    2017-01-01

    Full Text Available Hybrid tree harvester with a 60 kW diesel engine combined with a battery pile could be a “green” forest harvesting and transportation system. With the new design, the diesel engine maintains a constant engine speed, keeping fuel consumption low while charging the batteries that drive the forwarder. As an additional energy saving method, the electric motors work as generators to charge the battery pile when the vehicle moves downhill. The vehicle is equipped with six large wheels providing high clearance over uneven terrain while reducing ground pressure. Each wheel is driven via a hub gear by its own alternating current motor, and each of the three wheel pairs can be steered independently. The combination of the diesel engine and six electric motors provides plenty of power for heavy lifting and pulling. The main component parameters of the drive system are calculated and optimized with a set of dynamics and simulated with AVL Cruise software. The results provide practical insights for the fuel tree harvester and are helpful to reduce the structure and size of the tree harvester. Advantage Environment provides information about existing and future products designed to reduce environmental impacts.

  12. An Engineered Kinetic Amplification Mechanism for Single Nucleotide Variant Discrimination by DNA Hybridization Probes.

    Science.gov (United States)

    Chen, Sherry Xi; Seelig, Georg

    2016-04-20

    Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recognizing single nucleotide variants (SNVs). Specifically, we build a detection system that combines discrimination by competition with DNA strand displacement-based catalytic amplification. We show, both mathematically and experimentally, that the single nucleotide selectivity of such a system in binding to single-stranded DNA and RNA is quadratically better than discrimination due to competitive hybridization alone. As an additional benefit the integrated circuit inherits the property of amplification and provides at least 10-fold better sensitivity than standard hybridization probes. Moreover, we demonstrate how the detection mechanism can be tuned such that the detection reaction is agnostic to the position of the SNV within the target sequence. in contrast, prior strand displacement-based probes designed for kinetic discrimination are highly sensitive to position effects. We apply our system to reliably discriminate between different members of the let-7 microRNA family that differ in only a single base position. Our results demonstrate the power of systematic reaction network design to quantitatively improve biotechnology.

  13. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications

    International Nuclear Information System (INIS)

    Karuppuswamy, Priyadharsini; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Laiva, Ashang Luwang; Sridhar, Sreepathy; Ramakrishna, Seeram

    2014-01-01

    Highlights: • Functionalized hybrid polymer mats fabricated for tissue engineering. • Hybrid polymer mats showed high surface area, high porosity and good wettability. • Incorporation of natural polymers modified the properties of nanofiber mats more biologically favorable for biomedical applications. - Abstract: Nanotechnology being one of the most promising technologies today shows an extremely huge potential in the field of tissue engineering to mimic the porous topography of natural extracellular matrix (ECM). Natural polymers are incorporated into the synthetic polymers to fabricate functionalized hybrid nanofibrous scaffolds, which improve cell and tissue compatibility. The present study identified the biopolymers – aloe vera, silk fibroin and curcumin incorporated into polycaprolactone (PCL) as suitable substrates for tissue engineering. Different combinations of PCL with natural polymers – PCL/aloe vera, PCL/silk fibroin, PCL/aloe vera/silk fibroin, PCL/aloe vera/silk fibroin/curcumin were electrospun into nanofibrous scaffolds. The fabricated two dimensional nanofibrous scaffolds showed high surface area, appropriate mechanical properties, hydrophilicity and porosity, required for the regeneration of diseased tissues. The nanofibrous scaffolds were characterized by Scanning electron microscope (SEM), porometry, Instron tensile tester, VCA optima contact angle measurement and FTIR to analyze the fiber diameter and morphology, porosity and pore size distribution, mechanical strength, wettability, chemical bonds and functional groups, respectively. The average fiber diameter of obtained fibers ranged from 250 nm to 350 nm and the tensile strength of PCL scaffolds at 4.49 MPa increased upto 8.3 MPa for PCL/silk fibroin scaffolds. Hydrophobicity of PCL decreased with the incorporation of natural polymers, especially for PCL/aloe vera scaffolds. The properties of as-spun nanofiber scaffolds showed their potential as promising scaffold materials in

  14. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Karuppuswamy, Priyadharsini [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore); Department Physics and Nanotechnology, SRM University, Kattankulathur, Chennai (India); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Venugopal, Jayarama Reddy, E-mail: nnijrv@nus.edu.sg [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore); Navaneethan, Balchandar [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore); Department Physics and Nanotechnology, SRM University, Kattankulathur, Chennai (India); Laiva, Ashang Luwang; Sridhar, Sreepathy; Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore)

    2014-12-15

    Highlights: • Functionalized hybrid polymer mats fabricated for tissue engineering. • Hybrid polymer mats showed high surface area, high porosity and good wettability. • Incorporation of natural polymers modified the properties of nanofiber mats more biologically favorable for biomedical applications. - Abstract: Nanotechnology being one of the most promising technologies today shows an extremely huge potential in the field of tissue engineering to mimic the porous topography of natural extracellular matrix (ECM). Natural polymers are incorporated into the synthetic polymers to fabricate functionalized hybrid nanofibrous scaffolds, which improve cell and tissue compatibility. The present study identified the biopolymers – aloe vera, silk fibroin and curcumin incorporated into polycaprolactone (PCL) as suitable substrates for tissue engineering. Different combinations of PCL with natural polymers – PCL/aloe vera, PCL/silk fibroin, PCL/aloe vera/silk fibroin, PCL/aloe vera/silk fibroin/curcumin were electrospun into nanofibrous scaffolds. The fabricated two dimensional nanofibrous scaffolds showed high surface area, appropriate mechanical properties, hydrophilicity and porosity, required for the regeneration of diseased tissues. The nanofibrous scaffolds were characterized by Scanning electron microscope (SEM), porometry, Instron tensile tester, VCA optima contact angle measurement and FTIR to analyze the fiber diameter and morphology, porosity and pore size distribution, mechanical strength, wettability, chemical bonds and functional groups, respectively. The average fiber diameter of obtained fibers ranged from 250 nm to 350 nm and the tensile strength of PCL scaffolds at 4.49 MPa increased upto 8.3 MPa for PCL/silk fibroin scaffolds. Hydrophobicity of PCL decreased with the incorporation of natural polymers, especially for PCL/aloe vera scaffolds. The properties of as-spun nanofiber scaffolds showed their potential as promising scaffold materials in

  15. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  16. Optimal Lunar Landing Trajectory Design for Hybrid Engine

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Cho

    2015-01-01

    Full Text Available The lunar landing stage is usually divided into two parts: deorbit burn and powered descent phases. The optimal lunar landing problem is likely to be transformed to the trajectory design problem on the powered descent phase by using continuous thrusters. The optimal lunar landing trajectories in general have variety in shape, and the lunar lander frequently increases its altitude at the initial time to obtain enough time to reduce the horizontal velocity. Due to the increment in the altitude, the lunar lander requires more fuel for lunar landing missions. In this work, a hybrid engine for the lunar landing mission is introduced, and an optimal lunar landing strategy for the hybrid engine is suggested. For this approach, it is assumed that the lunar lander retrofired the impulsive thruster to reduce the horizontal velocity rapidly at the initiated time on the powered descent phase. Then, the lunar lander reduced the total velocity and altitude for the lunar landing by using the continuous thruster. In contradistinction to other formal optimal lunar landing problems, the initial horizontal velocity and mass are not fixed at the start time. The initial free optimal control theory is applied, and the optimal initial value and lunar landing trajectory are obtained by simulation studies.

  17. Hybrid power filter for advanced power quality in industrial systems

    Czech Academy of Sciences Publication Activity Database

    Švec, J.; Müller, Z.; Kasembe, A. G.; Tlustý, J.; Valouch, Viktor

    2013-01-01

    Roč. 103, october 2013 (2013), s. 157-167 ISSN 0378-7796 R&D Projects: GA AV ČR IAA200760703 Institutional research plan: CEZ:AV0Z20570509 Institutional support: RVO:61388998 Keywords : hybrid power filter * power quality * industrial system Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.595, year: 2013 http://www.sciencedirect.com/science/article/pii/S0378779613001417

  18. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  19. A novel male sterility-fertility restoration system in plants for hybrid seed production.

    Science.gov (United States)

    Singh, Surendra Pratap; Singh, Sudhir P; Pandey, Tripti; Singh, Ram Rakshpal; Sawant, Samir V

    2015-06-15

    Hybrid seeds are used for stimulated crop production, as they harness heterosis. The achievement of complete male-sterility in the female-parent and the restored-fertility in F1-hybrids are the major bottlenecks in the commercial hybrid seed production. Here, we report a male sterility-fertility restoration system by engineering the in most nutritive anther wall layer tapetum of female and male parents. In the female parent, high-level, and stringent expression of Arabidopsis autophagy-related gene BECLIN1 was achieved in the tapetum, which altered the tapetal degeneration program, leading to male sterility. This works on our previously demonstrated expression cassette based on functional complementation of TATA-box mutant (TGTA) promoter and TATA-binding protein mutant3 (TBPm3), with modification by conjugating Long Hypocotyle in Far-Red1 fragment (HFR1(NT131)) with TBPm3 (HFR1(NT131)-TBPm3) to exercise regulatory control over it. In the male parent, tapetum-specific Constitutive photo-morphogenesis1 (COP1) was expressed. The F1 obtained by crossing these engineered parents showed decreased BECLIN1 expression, which was further completely abolished when COP1-mutant (COP1(L105A)) was used as a male parent, leading to normal tapetal development and restored fertility. The system works on COP1-HFR1 interaction and COP1-mediated degradation of TBPm3 pool (HFR1(NT131)-TBPm3). The system can be deployed for hybrid seed production in agricultural crops.

  20. Modeling of lighting behaviour of a hybrid lighting system in inner spaces of Building of Electrical Engineering

    Science.gov (United States)

    Amado, L.; Osma, G.; Villamizar, R.

    2016-07-01

    This paper presents the modelling of lighting behaviour of a hybrid lighting system - HLS in inner spaces for tropical climate. HLS aims to mitigate the problem of high electricity consumption used by artificial lighting in buildings. These systems integrate intelligently the daylight and artificial light through control strategies. However, selection of these strategies usually depends on expertise of designer and of available budget. In order to improve the selection process of the control strategies, this paper analyses the Electrical Engineering Building (EEB) case, initially modelling of lighting behaviour is established for the HLS of a classroom and an office. This allows estimating the illuminance level of the mixed lighting in the space, and energy consumption by artificial light according to different lighting control techniques, a control strategy based on occupancy and a combination of them. The model considers the concept of Daylight Factor (DF) for the estimating of daylight illuminance on the work plane for tropical climatic conditions. The validation of the model was carried out by comparing the measured and model-estimated indoor illuminances.

  1. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  2. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Pankajakshan, Divya; Krishnan, Lissy K [Thrombosis Research Unit, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012 (India); Krishnan V, Kalliyana, E-mail: lissykk@sctimst.ac.i [Division of Polymer Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012 (India)

    2010-12-15

    Porous and pliable conduits made of biodegradable polymeric scaffolds offer great potential for the development of blood vessel substitutes but they generally lack signals for cell proliferation, survival and maintenance of a normal phenotype. In this study we have prepared and evaluated porous poly({epsilon}-caprolactone) (PCL) integrated with fibrin composite (FC) to get a biomimetic hybrid scaffold (FC PCL) with the biological properties of fibrin, fibronectin (FN), gelatin, growth factors and glycosaminoglycans. Reduced platelet adhesion on a human umbilical vein endothelial cell-seeded hybrid scaffold as compared to bare PCL or FC PCL was observed, which suggests the non-thrombogenic nature of the tissue-engineered scaffold. Analysis of real-time polymerase chain reaction (RT-PCR) after 5 days of endothelial cell (EC) culture on a hybrid scaffold indicated that the prothrombotic von Willebrand factor and plasminogen activator inhibitor (PAI) were quiescent and stable. Meanwhile, dynamic expressions of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase indicated the desired cell phenotype on the scaffold. On the hybrid scaffold, shear stress could induce enhanced nitric oxide release, which implicates vaso-responsiveness of EC grown on the tissue-engineered construct. Significant upregulation of mRNA for extracellular matrix (ECM) proteins, collagen IV and elastin, in EC was detected by RT-PCR after growing them on the hybrid scaffold and FC-coated tissue culture polystyrene (FC TCPS) but not on FN-coated TCPS. The results indicate that the FC PCL hybrid scaffold can accomplish a remodeled ECM and non-thrombogenic EC phenotype, and can be further investigated as a scaffold for cardiovascular tissue engineering. (communication)

  4. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering

    International Nuclear Information System (INIS)

    Pankajakshan, Divya; Krishnan, Lissy K; Krishnan V, Kalliyana

    2010-01-01

    Porous and pliable conduits made of biodegradable polymeric scaffolds offer great potential for the development of blood vessel substitutes but they generally lack signals for cell proliferation, survival and maintenance of a normal phenotype. In this study we have prepared and evaluated porous poly(ε-caprolactone) (PCL) integrated with fibrin composite (FC) to get a biomimetic hybrid scaffold (FC PCL) with the biological properties of fibrin, fibronectin (FN), gelatin, growth factors and glycosaminoglycans. Reduced platelet adhesion on a human umbilical vein endothelial cell-seeded hybrid scaffold as compared to bare PCL or FC PCL was observed, which suggests the non-thrombogenic nature of the tissue-engineered scaffold. Analysis of real-time polymerase chain reaction (RT-PCR) after 5 days of endothelial cell (EC) culture on a hybrid scaffold indicated that the prothrombotic von Willebrand factor and plasminogen activator inhibitor (PAI) were quiescent and stable. Meanwhile, dynamic expressions of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase indicated the desired cell phenotype on the scaffold. On the hybrid scaffold, shear stress could induce enhanced nitric oxide release, which implicates vaso-responsiveness of EC grown on the tissue-engineered construct. Significant upregulation of mRNA for extracellular matrix (ECM) proteins, collagen IV and elastin, in EC was detected by RT-PCR after growing them on the hybrid scaffold and FC-coated tissue culture polystyrene (FC TCPS) but not on FN-coated TCPS. The results indicate that the FC PCL hybrid scaffold can accomplish a remodeled ECM and non-thrombogenic EC phenotype, and can be further investigated as a scaffold for cardiovascular tissue engineering. (communication)

  5. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  6. The Role of the Military Construction Engineers in the Hybrid War

    Science.gov (United States)

    2015-06-12

    an increase in the need for infrastructure. Military construction engineers were responsible for the NIKE construction program, storage sites for...has minimized the significance of geographical and political boundaries. Because of these facts, the NATO Bi-Strategic Command has assessed Hybrid

  7. Hybrid system concepts

    International Nuclear Information System (INIS)

    Landeyro, P.A.

    1995-01-01

    Hybrid systems studied for fissile material production, were reconsidered for minor actinide and long-lived fission product destruction as alternative to the traditional final disposal of nuclear waste. Now there are attempts to extend the use of the concepts developed for minor actinide incineration to plutonium burning. The most promising hybrid system concept considers fuel and target both as liquids. From the results obtained, the possibility to adopt composite targets seems the most promising solution, but still there remains the problem of Pu production, not acceptable in a burning system. This kind of targets can be mainly used for fissile material production, while for accelerator driven burners it is most convenient to use a liquid lead target. The most suitable solvent is heavy water for minor actinide annihilation in the blanket of a hybrid system. Due to the criticality conditions and the necessity of electric energy production, the blanket using plutonium dissolved in molten salts is the most convenient one. (author)

  8. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    Science.gov (United States)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid

  9. METHODOLOGY OF THE HYBRID PROPULSION SYSTEM (DMP & DEP FOR TRIMARAN TYPE FAST PATROL BOAT

    Directory of Open Access Journals (Sweden)

    Aulia Widyandari

    2012-04-01

    Full Text Available There are lot of research done to develop a patrol boat, from the modification of hull model until propulsion system equipment. For example the model ship type AMV (Advanced Marine Vehicle was developed starting from the Catamaran, Trimaran and  Pentamaran model. Everything is aimed at obtaining the ship design that has the speed and stability. In addition to achieving high-speed vessel must be equipped with propulsion (Main Power is great, that means the main engine dimensions, auxiliary equipments and fuel tanks is too large. Many Limitations of space on the ship's engine room trimaran vessel is the main obstacle in designing propulsion system. Beside that Patrol boat should have many missions speed, so propulsion system should be designed at that conditions.   Hybrid propulsion is a combination of Diesel Mechanical Propulsion (DMP with Diesel Electric Propulsion (DEP. DMP system is connected directly to the propeller shaft (or through a reduction-gear. DMP has provide more efficiency rate of 95%. While DEP is only able to provide efficiency by 85% - 89% is slightly lower than DMP, but the DEP offers many advantages such as simplicity and suitability in the rotational speed settings, control systems, engine power production Redundancy, Flexibility in the design of equipments layout in engine rooms, noise, vibration and fuel consumption efficiency which affects the lower pollution.   Design of Hybrid Propulsion system can be satisfied and achieved the Power requirements and optimally at all speed condition of patrol boat. Therefore the author made using modeling Maxsurf-11.12 software and carried out various optimization of the choice of main engine, propeller and system conditions for fast patrol boat cruise. 

  10. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    Science.gov (United States)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  11. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering.

    Science.gov (United States)

    Jakus, Adam E; Shah, Ramille N

    2017-01-01

    With the emergence of three-dimensional (3D)-printing (3DP) as a vital tool in tissue engineering and medicine, there is an ever growing need to develop new biomaterials that can be 3D-printed and also emulate the compositional, structural, and functional complexities of human tissues and organs. In this work, we probe the 3D-printable biomaterials spectrum by combining two recently established functional 3D-printable particle-laden biomaterial inks: one that contains hydroxyapatite microspheres (hyperelastic bone, HB) and another that contains graphene nanoflakes (3D-graphene, 3DG). We demonstrate that not only can these distinct, osteogenic, and neurogenic inks be co-3D-printed to create complex, multimaterial constructs, but that composite inks of HB and 3DG can also be synthesized. Specifically, the printability, microstructural, mechanical, electrical, and biological properties of a hybrid material comprised of 1:1 HA:graphene by volume is investigated. The resulting HB-3DG hybrid exhibits mixed characteristics of the two distinct systems, while maintaining 3D-printability, electrical conductivity, and flexibility. In vitro assessment of HB-3DG using mesenchymal stem cells demonstrates the hybrid material supports cell viability and proliferation, as well as significantly upregulates both osteogenic and neurogenic gene expression over 14 days. This work ultimately demonstrates a significant step forward towards being able to 3D-print graded, multicompositional, and multifunctional constructs from hybrid inks for complex composite tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 274-283, 2017. © 2016 Wiley Periodicals, Inc.

  12. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  13. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  14. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    Science.gov (United States)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control

  15. Characterization of the emissions impacts of hybrid excavators with a portable emissions measurement system (PEMS)-based methodology.

    Science.gov (United States)

    Cao, Tanfeng; Russell, Robert L; Durbin, Thomas D; Cocker, David R; Burnette, Andrew; Calavita, Joseph; Maldonado, Hector; Johnson, Kent C

    2018-04-13

    Hybrid engine technology is a potentially important strategy for reduction of tailpipe greenhouse gas (GHG) emissions and other pollutants that is now being implemented for off-road construction equipment. The goal of this study was to evaluate the emissions and fuel consumption impacts of electric-hybrid excavators using a Portable Emissions Measurement System (PEMS)-based methodology. In this study, three hybrid and four conventional excavators were studied for both real world activity patterns and tailpipe emissions. Activity data was obtained using engine control module (ECM) and global positioning system (GPS) logged data, coupled with interviews, historical records, and video. This activity data was used to develop a test cycle with seven modes representing different types of excavator work. Emissions data were collected over this test cycle using a PEMS. The results indicated the HB215 hybrid excavator provided a significant reduction in tailpipe carbon dioxide (CO 2 ) emissions (from -13 to -26%), but increased diesel particulate matter (PM) (+26 to +27%) when compared to a similar model conventional excavator over the same duty cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Site systems engineering: Systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-05-03

    The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

  17. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian

    2017-11-01

    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  18. Hybrid system by Mercedes-Benz for the M-class; Hybridsystem fuer die M-Klasse von Mercedes-Benz

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Michael; Ruhl, Thomas [Daimler AG, Sindelfingen (Germany). M-Klasse Hybrid; Armstrong, Neil; Nietfeld, Franz [Daimler AG, Troy, MI (United States); Schenk, Juergen [Daimler AG, Sindelfingen (Germany). Elektrofahrzeuge; Lueckert, Peter [Daimler AG, Stuttgart (Germany). Ottomotoren; Goedecke, Tobias [Daimler AG, Stuttgart (Germany). Abt. Transmission Development AHS

    2009-09-15

    The ML 450 Hybrid is the first Mercedes-Benz full hybrid vehicle, promising significant fuel consumption and emission reductions while retaining superb driving characteristics. The main feature of the 'AHS-C two-mode hybrid system', used here for the first time, is its great efficiency both in inner city 'stop and go- traffic and on fast long-distance journeys at increasing engine loads and higher speed ranges. The ML 450 Hybrid is, therefore, a central element of the Mercedes-Benz strategy for achieving sustainable mobility. (orig.)

  19. Bio-hybrid micro/nanodevices powered by flagellar motor: challenges and strategies

    Directory of Open Access Journals (Sweden)

    Jin-Woo eKim

    2015-07-01

    Full Text Available Molecular motors, which are precision-engineered by nature, offer exciting possibilities for bio-hybrid engineered systems. They could enable real applications ranging from micro/nano fluidics, to biosensing, to medical diagnoses. This review describes the fundamental biological insights and fascinating potentials of these remarkable sensing and actuation machines, in particular bacterial flagellar motors, as well as their engineering perspectives with regard to applications in bio-engineered hybrid systems and nanobiotechnology.

  20. Develop of a quantum electromechanical hybrid system

    Science.gov (United States)

    Hao, Yu; Rouxinol, Francisco; Brito, Frederico; Caldeira, Amir; Irish, Elinor; Lahaye, Matthew

    In this poster, we will show our results from measurements of a hybrid quantum system composed of a superconducting transmon qubit-coupled and ultra-high frequency nano-mechanical resonator, embedded in a superconducting cavity. The transmon is capacitively coupled to a 3.4GHz nanoresonator and a T-filter-biased high-Q transmission line cavity. Single-tone and two-tone transmission spectroscopy measurements are used to probe the interactions between the cavity, qubit and mechanical resonator. These measurements are in good agreement with numerical simulations based upon a master equation for the tripartite system including dissipation. The results indicate that this system may be developed to serve as a platform for more advanced measurements with nanoresonators, including quantum state measurement, the exploration of nanoresonator quantum noise, and reservoir engineering.

  1. Small-Signal Analysis of Autonomous Hybrid Distributed Generation Systems in Presence of Ultracapacitor and Tie-Line Operation

    Science.gov (United States)

    Ray, Prakash K.; Mohanty, Soumya R.; Kishor, Nand

    2010-07-01

    This paper presents small-signal analysis of isolated as well as interconnected autonomous hybrid distributed generation system for sudden variation in load demand, wind speed and solar radiation. The hybrid systems comprise of different renewable energy resources such as wind, photovoltaic (PV) fuel cell (FC) and diesel engine generator (DEG) along with the energy storage devices such as flywheel energy storage system (FESS) and battery energy storage system (BESS). Further ultracapacitors (UC) as an alternative energy storage element and interconnection of hybrid systems through tie-line is incorporated into the system for improved performance. A comparative assessment of deviation of frequency profile for different hybrid systems in the presence of different storage system combinations is carried out graphically as well as in terms of the performance index (PI), ie integral square error (ISE). Both qualitative and quantitative analysis reflects the improvements of the deviation in frequency profiles in the presence of the ultracapacitors (UC) as compared to other energy storage elements.

  2. Stochastic Reachability Analysis of Hybrid Systems

    CERN Document Server

    Bujorianu, Luminita Manuela

    2012-01-01

    Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...

  3. Analysis of a diesel-electric hybrid urban bus system

    Science.gov (United States)

    Marr, W. W.; Sekar, R. R.; Ahlheim, M. C.

    A hybrid bus powered by a diesel engine and a battery pack was analyzed over an idealized bus-driving cycle in Chicago. Three hybrid configurations, two parallel and one series, were evaluated. The results indicate that the fuel economy of a hybrid bus, taking into account the regenerative braking, is comparable with that of a conventional diesel bus. Life-cycle costs are slightly higher because of the added weight and cost of the battery.

  4. Developing a Blended Type Course of Introduction to Hybrid Vehicles

    OpenAIRE

    Na Zhu

    2016-01-01

    An innovative course of introduction to hybrid vehicles is developed for both associate and bachelor degree programs for engineering technology with automotive/mechanical concentration. The hybrid vehicle course content includes several topics, such as the rational of pure electric vehicle and hybrid vehicle, hybrid vehicle propulsion systems, fundamentals of motor/generator systems, fundamentals of battery and energy management system, and introduction to various configurations of hybrid veh...

  5. A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations

    International Nuclear Information System (INIS)

    Samsun, Remzi Can; Krupp, Carsten; Baltzer, Sidney; Gnörich, Bruno; Peters, Ralf; Stolten, Detlef

    2016-01-01

    Highlights: • A battery-fuel cell hybrid auxiliary power unit for heavy duty vehicles is reported. • Comparison of direct and indirect hybrids using representative load profiles. • Evaluation based on validated fuel cell system and battery models. • Indirect hybrid with constant fuel cell load yields 29.3% hybrid system efficiency. • Fuel cell should be pre-heated using waste heat from the diesel engine during drive. - Abstract: The idling operation of engines in heavy duty vehicles to cover electricity demand during layovers entails significant fuel consumption and corresponding emissions. Indeed, this mode of operation is highly inefficient and a noteworthy contributor to the transportation sector’s aggregate carbon dioxide emissions. Here, a potential solution to this wasteful practice is outlined in the form of a hybrid battery-fuel cell system for application as an auxiliary power unit for trucks. Drawing on experimentally-validated fuel cell and battery models, several possible hybrid concepts are evaluated and direct and indirect hybrid configurations analyzed using a representative load profile. The results indicate that a direct hybrid configuration is only applicable if the load demand profile does not deviate strongly from the assumed profile. Operation of an indirect hybrid with a constant fuel cell load yields the greatest hybrid system efficiency, at 29.3%, while battery size could be reduced by 87% if the fuel cell is operated at the highest dynamics. Maximum efficiency in truck applications can be achieved by pre-heating the system prior to operation using exhaust heat from the motor, which increased system efficiency from 25.3% to 28.1%, including start-up. These findings confirm that hybrid systems could offer enormous fuel savings and constitute a sizeable step on the path toward energy-efficient and environmentally-friendly heavy duty vehicles that does not necessitate a fuel switch.

  6. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  7. A Frequency Control Approach for Hybrid Power System Using Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-01-01

    Full Text Available A hybrid power system uses many wind turbine generators (WTG and solar photovoltaics (PV in isolated small areas. However, the output power of these renewable sources is not constant and can diverge quickly, which has a serious effect on system frequency and the continuity of demand supply. In order to solve this problem, this paper presents a new frequency control scheme for a hybrid power system to ensure supplying a high-quality power in isolated areas. The proposed power system consists of a WTG, PV, aqua-electrolyzer (AE, fuel cell (FC, battery energy storage system (BESS, flywheel (FW and diesel engine generator (DEG. Furthermore, plug-in hybrid electric vehicles (EVs are implemented at the customer side. A full-order observer is utilized to estimate the supply error. Then, the estimated supply error is considered in a frequency domain. The high-frequency component is reduced by BESS and FW; while the low-frequency component of supply error is mitigated using FC, EV and DEG. Two PI controllers are implemented in the proposed system to control the system frequency and reduce the supply error. The epsilon multi-objective genetic algorithm ( ε -MOGA is applied to optimize the controllers’ parameters. The performance of the proposed control scheme is compared with that of recent well-established techniques, such as a PID controller tuned by the quasi-oppositional harmony search algorithm (QOHSA. The effectiveness and robustness of the hybrid power system are investigated under various operating conditions.

  8. Optimized efficiency of all-electric ships by dc hybrid power systems

    Science.gov (United States)

    Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.

    2014-06-01

    Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.

  9. Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines

    Directory of Open Access Journals (Sweden)

    Dario Pastrone

    2012-01-01

    Full Text Available Hybrid rocket engines are promising propulsion systems which present appealing features such as safety, low cost, and environmental friendliness. On the other hand, certain issues hamper the development hoped for. The present paper discusses approaches addressing improvements to one of the most important among these issues: low fuel regression rate. To highlight the consequence of such an issue and to better understand the concepts proposed, fundamentals are summarized. Two approaches are presented (multiport grain and high mixture ratio which aim at reducing negative effects without enhancing regression rate. Furthermore, fuel material changes and nonconventional geometries of grain and/or injector are presented as methods to increase fuel regression rate. Although most of these approaches are still at the laboratory or concept scale, many of them are promising.

  10. Configurations of hybrid-electric cars propulsion systems

    OpenAIRE

    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce

    2011-01-01

    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  11. Interface engineering in inorganic hybrid structures towards improved photocatalysis (Conference Presentation)

    Science.gov (United States)

    Xiong, Yujie

    2016-10-01

    Designing new photocatalytic materials for improving photoconversion efficiency is a promising route to alleviate the steadily worsening environmental issues and energy crisis. Despite the invention of a large number of catalytic materials with well-defined structures, their overall efficiency in photocatalysis is still quite limited as the three key steps - light harvesting, charge generation and separation, and charge transfer to surface for redox reactions - have not been substantially improved. To improve each step in the complex process, there is a major trend to develop materials based on inorganic hybrid structures. In this case, interface engineering holds the promise for boosting the overall efficiency, given the key roles of interface structures in charge and energy transfer. In this talk, I will demonstrate several different approaches to designing inorganic hybrid structures with improved photocatalytic performance via interface engineering. The typical demonstrations include semiconductor-plasmonics systems for broad-spectrum light harvesting, metal-semiconductor interfaces for improved charge separation, semiconductor-MOF (metal-organic framework) configurations for activated surface reactions. It is anticipated that this series of works open a new window to rationally designing inorganic hybrid materials for photo-induced applications. References: (1) Bai, S.; Yang, L.; Wang, C.; Lin, Y.; Lu, J.; Jiang, J. and Xiong, Y.*, Angew. Chem. Int. Ed. 54, 14810-14814 (2015). (2) Bai, S.; Jiang, J.; Zhang, Q. and Xiong, Y.*, Chem. Soc. Rev. 44, 2893-2939 (2015). (3) Bai, S.; Li, X.; Kong, Q.; Long, R.; Wang, C.; Jiang, J. and Xiong, Y.*, Adv. Mater. 27, 3444-3452 (2015). (4) Bai, S.; Ge, J.; Wang, L.; Gong, M.; Deng, M.; Kong, Q.; Song, L.; Jiang, J.;* Zhang, Q.;* Luo, Y.; Xie, Y. and Xiong, Y.*, Adv. Mater. 26, 5689-5695 (2014). (5) Li, R.; Hu, J.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H. L.; Jiang, J.;* Zhang, Q.;* Xie, Y. and Xiong, Y.*, Adv. Mater

  12. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  13. Numerical Model of a Hybrid Damping System Composed of a Buckling Restrained Brace with a Magneto Rheological Damper

    Directory of Open Access Journals (Sweden)

    Filip-Vacarescu Norin

    2016-03-01

    Full Text Available This paper discusses the concept of a hybrid damper made from a combination of two dissipative devices. A passive hysteretic device like steel Buckling Restrained Brace (BRB can be combined with a magneto-rheological (MR Fluid Damper in order to obtain a hybrid dissipative system. This system can work either as a semi-active system, if the control unit is available, or as a passive system, tuned for working according to performance based seismic engineering (PBSE scale of reference parameters (i.e. interstory drift.

  14. Supermarket Refrigeration System - Benchmark for Hybrid System Control

    DEFF Research Database (Denmark)

    Sloth, Lars Finn; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    This paper presents a supermarket refrigeration system as a benchmark for development of new ideas and a comparison of methods for hybrid systems' modeling and control. The benchmark features switch dynamics and discrete valued input making it a hybrid system, furthermore the outputs are subjected...

  15. Agent-based autonomous systems and abstraction engines: Theory meets practice

    OpenAIRE

    Dennis, L.A.; Aitken, J.M.; Collenette, J.; Cucco, E.; Kamali, M.; McAree, O.; Shaukat, A.; Atkinson, K.; Gao, Y.; Veres, S.M.; Fisher, M.

    2016-01-01

    We report on experiences in the development of hybrid autonomous systems where high-level decisions are made by a rational agent. This rational agent interacts with other sub-systems via an abstraction engine. We describe three systems we have developed using the EASS BDI agent programming language and framework which supports this architecture. As a result of these experiences we recommend changes to the theoretical operational semantics that underpins the EASS framework and present a fourth...

  16. Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle

    Science.gov (United States)

    Xiangyang, Xu; Siqi, Zhao; Peng, Dong

    2017-12-01

    A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.

  17. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  18. Synthesis of new aluminum nano hybrid composite liner for energy saving in diesel engines

    International Nuclear Information System (INIS)

    Tiruvenkadam, N.; Thyla, P.R.; Senthilkumar, M.; Bharathiraja, M.; Murugesan, A.

    2015-01-01

    Highlights: • Nano hybrid composite cylinder liner (NL) was developed to replace cast iron liner. • NL improved engine performance, combustion and reduced emissions except NO x . • Teardown analysis provides the suitability of NL for diesel engine. • The developed aluminum NL saved 43.75% of weight than cast iron cylinder liner. - Abstract: This work aims to replace the conventional cast iron cylinder liner (CL) in diesel engine by introducing lightweight aluminum (Al) 6061 nano hybrid composite cylinder liner (NL) by analyzing the performance, combustion, and emission characteristics of an engine. NL was fabricated by bottom pouring stir casting technique with nano- and micro-reinforcement materials. Experimental results proved that the use of NL increased brake thermal efficiency, in-cylinder pressure, heat release rate, and reduced carbon monoxide, hydrocarbon, and smoke emission in comparison with CL. However, oxides of nitrogen slightly increased with the use of the new liner. No differences in wear or other issues were noted during the engine teardown after 1 year of operation and 2000 h of running. Thus, NL has been recommended to replace the CL to save the energy and to reap environmental benefits

  19. Investigation of a Novel Coaxial Power-Split Hybrid Powertrain for Mining Trucks

    Directory of Open Access Journals (Sweden)

    Weiwei Yang

    2018-01-01

    Full Text Available Due to the different working conditions and specification requirements of mining trucks when compared to commercial passenger vehicles, better fuel efficiency of mining trucks could lead to more significant economic benefits. Therefore, investigating a hybrid transmission system becomes essential. A coaxial power-split hybrid powertrain system for mining trucks is presented in this paper. The system is characterized as comprising an engine, a generator (MG1, a motor (MC2, two sets of planetary gears, and a clutch (CL1. There are six primary operation modes for the hybrid system including the electric motor mode, the engine mode, the hybrid electric mode, the hybrid and assist mode, the regenerative mode, and the stationary charging mode. The mathematical model of the coaxial power-split hybrid system is established according to the requirements of vehicle dynamic performance and fuel economy performance in a given driving cycle. A hybrid vehicle model based on a rule-based control strategy is established to evaluate the fuel economy. Compared with the Toyota Hybrid System (THS and the conventional mechanical vehicle system using a diesel engine, the simulation results based on an enterprise project indicate that the proposed hybrid system can enhance the vehicle’s fuel economy by 8.21% and 22.45%, respectively, during the given mining driving cycle. The simulation results can be used as a reference to study the feasibility of the proposed coaxial hybrid system whose full potential needs to be further investigated by adopting non-causal control strategies.

  20. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  1. Parametric systems analysis for ICF hybrid reactors

    International Nuclear Information System (INIS)

    Berwald, D.H.; Maniscalco, J.A.; Chapin, D.L.

    1981-01-01

    Parametric design and systems analysis for inertial confinement fusion-fission hybrids are presented. These results were generated as part of the Electric Power Research Institute (EPRI) sponsored Feasibility Assessment of Fusion-Fission Hybrids, using an Inertial Confinement Fusion (ICF) hybrid power plant design code developed in conjunction with the feasibility assessment. The SYMECON systems analysis code, developed by Westinghouse, was used to generate economic results for symbiotic electricity generation systems consisting of the hybrid and its client Light Water Reactors (LWRs). These results explore the entire fusion parameter space for uranium fast fission blanket hybrids, thorium fast fission blanket hybrids, and thorium suppressed fission blanket types are discussed, and system sensitivities to design uncertainties are explored

  2. Constructing decidable hybrid systems with velocity bounds

    NARCIS (Netherlands)

    Belta, C.; Habets, L.C.G.J.M.

    2004-01-01

    In this paper, the question of bi-similarity between hybrid systems and their discrete quotients is studied from a new point of view. We consider two classes of hybrid systems: piecewise affine hybrid systems on simplices and piecewise multi-affine systems on multi-dimensional rectangles. Given a

  3. Dueco Plug-In Hybrid Engines

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Eidler

    2011-09-30

    Dueco, a final stage manufacture of utility trucks, was awarded a congressionally directed cost shared contract to develop, test, validate, and deploy several PHEV utility trucks. Odyne will be the primary subcontractor responsible for all aspects of the hybrid system including its design and installation on a truck chassis. Key objectives in this program include developing a better understanding of the storage device and system capability; improve aspects of the existing design, optimization of system and power train components, and prototype evaluation. This two year project will culminate in the delivery of at least five vehicles for field evaluation.

  4. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    Science.gov (United States)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  5. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  6. U.S. Army Hybrid Propulsion System R&D Overview ATA/Technology & Maintenance Council 2011 Fall Meeting, Hybrid Powertrain Task Force Session

    Science.gov (United States)

    2011-09-19

    and CVTS – HHO Technology – Start-Stop & Idle Stop Accessories – Pulse Jet Air Cleaner Ultra – Hybrid Energy Module (HEM) for Electric and Hybrid...The engine will meet 2010 EPA emission requirements – Hybrid drive powertrain; a 160 Horsepower (Hp) electric machine used for propulsion and

  7. A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis

    Science.gov (United States)

    Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang

    2016-09-01

    A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.

  8. Mathematical Modelling of a Hybrid Micro-Cogeneration Group Based on a Four Stroke Diesel Engine

    Directory of Open Access Journals (Sweden)

    Apostol Valentin

    2014-06-01

    Full Text Available The paper presents a part of the work conducted in the first stage of a Research Grant called ”Hybrid micro-cogeneration group of high efficiency equipped with an electronically assisted ORC” acronym GRUCOHYB. The hybrid micro-cogeneration group is equipped with a four stroke Diesel engine having a maximum power of 40 kW. A mathematical model of the internal combustion engine is presented. The mathematical model is developed based on the Laws of Thermodynamics and takes into account the real, irreversible processes. Based on the mathematical model a computation program was developed. The results obtained were compared with those provided by the Diesel engine manufacturer. Results show a very high correlation between the manufacturer’s data and the simulation results for an engine running at 100% load. Future developments could involve using an exergetic analysis to show the ability of the ORC to generate electricity from recovered heat

  9. A PEMFC hybrid electric vehicle real time control system

    Science.gov (United States)

    Sun, Hongqiao

    In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.

  10. Structural Control Systems Implemented in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Cristian Pastia

    2005-01-01

    Full Text Available Over the past three decades, a great interest has been generated by the use of protection systems to mitigate the effects of dynamic environmental hazards on civil engineering structures, such as earthquakes and strong wind. These control systems develop controllable forces to add or dissipate energy in a structure, or both, due to specific devices integrated with sensors, controllers and real – time process to operate. The paper includes the advantages of these technologies consisting of the following sections: 1 represents an introduction, 2 deals with passive control system, 3 regards some control techniques, 4 concerns hybrid control techniques, 5 contains semi – active control techniques, and 6 is dedicated to general conclusions.

  11. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  12. Fault tree construction of hybrid system requirements using qualitative formal method

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Cha, Sung-Deok

    2005-01-01

    When specifying requirements for software controlling hybrid systems and conducting safety analysis, engineers experience that requirements are often known only in qualitative terms and that existing fault tree analysis techniques provide little guidance on formulating and evaluating potential failure modes. In this paper, we propose Causal Requirements Safety Analysis (CRSA) as a technique to qualitatively evaluate causal relationship between software faults and physical hazards. This technique, extending qualitative formal method process and utilizing information captured in the state trajectory, provides specific guidelines on how to identify failure modes and relationship among them. Using a simplified electrical power system as an example, we describe step-by-step procedures of conducting CRSA. Our experience of applying CRSA to perform fault tree analysis on requirements for the Wolsong nuclear power plant shutdown system indicates that CRSA is an effective technique in assisting safety engineers

  13. CLASSIFICATION OF NEURAL NETWORK FOR TECHNICAL CONDITION OF TURBOFAN ENGINES BASED ON HYBRID ALGORITHM

    Directory of Open Access Journals (Sweden)

    Valentin Potapov

    2016-12-01

    Full Text Available Purpose: This work presents a method of diagnosing the technical condition of turbofan engines using hybrid neural network algorithm based on software developed for the analysis of data obtained in the aircraft life. Methods: allows the engine diagnostics with deep recognition to the structural assembly in the presence of single structural damage components of the engine running and the multifaceted damage. Results: of the optimization of neural network structure to solve the problems of evaluating technical state of the bypass turbofan engine, when used with genetic algorithms.

  14. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hui; Yang Lifu; Junqing Jing; Yanling Luo [Jiangsu Xuzhou Construction Machinery Research Institute, Jiangsu (China)

    2011-01-15

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range. (author)

  15. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    International Nuclear Information System (INIS)

    Sun Hui; Yang Lifu; Jing Junqing; Luo Yanling

    2011-01-01

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range.

  16. Sustainability assessment of a hybrid energy system

    International Nuclear Information System (INIS)

    Afgan, Nain H.; Carvalho, Maria G.

    2008-01-01

    A hybrid energy system in the form of the Object structure is the pattern for the structure of options in the evaluation of a hybrid system. The Object structure is defined as: Hybrid Energy System {[production (solar, wind, biomass, natural gas)] [utilization(electricity, heat, hydrogen)]}. In the evaluation of hybrid energy systems only several options are selected to demonstrate the sustainability assessment method application in the promotion of the specific quality of the hybrid energy system. In this analysis the following options are taken into a consideration: 1.Solar photo-voltaic power plant (PV PP), wind turbine power plant (WTPP) biomass thermal power plant (ThSTPP) for electricity, heat and hydrogen production. 2.Solar PV PP and wind power plant (WPP) for electricity and hydrogen production. 3.Biomass thermal steam turbine power plant (BThSTPP) and WPP for heat and hydrogen production. 4.Combined cycle gas turbine power plant for electricity and hydrogen production. 5.Cogeneration of electricity and water by the hybrid system. The sustainability assessment method is used for the evaluation of quality of the selected hybrid systems. In this evaluation the following indicators are used: economic indicator, environment indicator and social indicator

  17. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  18. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Current status of rocket developments in universities -development of a small hybrid rocket with a swirling oxidizer flow type engine

    OpenAIRE

    Yuasa, Saburo; Kitagawa, Koki

    2005-01-01

    To develop an experimental small hybrid rocket with a swirling gaseous oxygen flow type engine, we made a flight model engine. Burning tests of the engine showed that a maximum thrust of 692 N and a specific impulse of 263 s (at sea level) were achieved. We designed a small hybrid rocket with this engine. The rocket measured 1.8 m in length and 15.4 kg in mass. To confirm the flight stability of the rocket, wind tunnel tests using a 112-scale model of the rocket and simulations of the flight ...

  20. An investigation of an uninterruptible power supply (UPS) based on supercapacitor and liquid nitrogen hybridization system

    International Nuclear Information System (INIS)

    Zhang, Xinjing; Xue, Haobai; Xu, Yujie; Chen, Haisheng; Tan, Chunqing

    2014-01-01

    Highlights: • A hybrid UPS based on supercapacitor and liquid nitrogen engine is proposed. • The dynamic modelling of the hybrid UPS system is conducted. • The dynamic working performance is obtained and analysed based on the simulation. • The hybrid UPS enjoys environmental benignity, long life and easy maintenance. • It is a highly possible solution to replace conventional UPS systems. - Abstract: An uninterruptible power supply (UPS) system based on supercapacitor and liquid nitrogen (LN 2 ) hybridization is first introduced in this paper. Of the newly designed UPS, the supercapacitor reacts instantaneously once the main supply fails, and it also starts the LN 2 power system to produce continuing electricity for the customer. This hybrid UPS system is of environment cleanness, long life time, easy maintenaince, etc. A 10 kW model is analyzed in this study. A two-stage nitrogen expander is designed with the rated speed of 900 rpm as the long time power generation device of the LN 2 cycle. The UPS starting process calculation is carried out. The results reveal that commercial supercapacitors could fulfill this request. This UPS could be a competent choice for the UPS application. Further discussion indicates the LN 2 power system could be used widely from UPS to low carbon vehicles

  1. Solar central receiver hybrid power system. Phase I study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-11-01

    A management plan is presented for implementation during the Solar Central Receiver Hybrid Power System - Phase I study project. The project plan and the management controls that will be used to assure technically adequate, timely and cost effective performance of the work required to prepare the designated end products are described. Bechtel in-house controls and those to be used in directing the subcontractors are described. Phase I of the project consists of tradeoff studies, parametric analyses, and engineering studies leading to conceptual definition and evaluation of a commercial hybrid power system that has the potential for supplying economically competitive electric power to a utility grid in the 1985-1990 time frame. The scope also includes the preparation of a development plan for the resolution of technical uncertainties and the preparation of plans and a proposal for Phase II of the program. The technical approach will be based on a central receiver solar energy collection scheme which supplies thermal energy to a combined cycle, generating system, consisting of a gas turbine cycle combined with a steam bottoming cycle by means of a heat recovery steam generator.

  2. A hybrid bio-jetting approach for directly engineering living cells

    International Nuclear Information System (INIS)

    Kwok, Albert; Irvine, Scott; Arumuganathar, Sumathy; Jayasinghe, Suwan N; McEwan, Jean R

    2008-01-01

    This paper reports developments on a hybrid cell-engineering protocol coupling both bio-electrosprays and aerodynamically assisted bio-jets for process-handling living cells. The current work demonstrates the ability to couple these two cell-jetting protocols for handling a wide range of cells for deposition. The post-treated cells are assessed for their viability by way of flow cytometry, which illustrates a significant population of viable cells post-treatment in comparison to those controls. This work is the first example of coupling these two protocols for the process handling of living cells. The hybrid protocol demonstrates the achievement of stable cone jetting of a cellular suspension in the single-needle configuration which was previously unachieved with single-needle bio-electrosprays. Furthermore the living cells explored in these investigations expressed GFP, thus demonstrating the ability to couple gene therapy with this hybrid protocol. Hence, this approach could one day be explored for building biologically viable tissues incorporating a therapeutic payload for combating a range of cellular/tissue-based pathologies

  3. Detection and Elimination of a Potential Fire in Engine and Battery Compartments of Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Macam S. Dattathreya

    2012-01-01

    Full Text Available This paper presents a novel fuzzy deterministic noncontroller type (FDNCT system and an FDNCT inference algorithm (FIA. The FDNCT uses fuzzy inputs and produces a deterministic non-fuzzy output. The FDNCT is an extension and alternative for the existing fuzzy singleton inference algorithm. The research described in this paper applies FDNCT to build an architecture for an intelligent system to detect and to eliminate potential fires in the engine and battery compartments of a hybrid electric vehicle. The fuzzy inputs consist of sensor data from the engine and battery compartments, namely, temperature, moisture, and voltage and current of the battery. The system synthesizes the data and detects potential fires, takes actions for eliminating the hazard, and notifies the passengers about the potential fire using an audible alarm. This paper also presents the computer simulation results of the comparison between the FIA and singleton inference algorithms for detecting potential fires and determining the actions for eliminating them.

  4. Proportional-integral controller based small-signal analysis of hybrid distributed generation systems

    International Nuclear Information System (INIS)

    Ray, Prakash K.; Mohanty, Soumya R.; Kishor, Nand

    2011-01-01

    Research highlights: → We aim to minimize the deviation of frequency in an integrated energy resources like offshore wind, photovoltaic (PV), fuel cell (FC) and diesel engine generator (DEG) along with the energy storage elements like flywheel energy storage system (FESS) and battery energy storage system (BESS). → Further ultracapacitor (UC) as an alternative energy storage element and proportional-integral (PI) controller is addressed in order to achieve improvements in the deviation of frequency profiles. → A comparative assessment of frequency deviation for different hybrid systems is also carried out in the presence of high voltage direct current (HVDC) link and high voltage alternating current (HVAC) line. → In the study both qualitative and quantitative analysis reflects the improvements in frequency deviation profiles with use of ultracapacitor (UC) as energy storage element. -- Abstract: The large band variation in the wind speed and unpredictable solar radiation causes remarkable fluctuations of output power in offshore wind and photovoltaic system respectively, which leads to large deviation in the system frequency. In this context, to minimize the deviation in frequency, this paper presents integration of different energy resources like offshore wind, photovoltaic (PV), fuel cell (FC) and diesel engine generator (DEG) along with the energy storage elements like flywheel energy storage system (FESS) and battery energy storage system (BESS). Further ultracapacitor (UC) as an alternative energy storage element and proportional-integral (PI) controller is addressed in order to achieve improvements in the deviation of frequency profiles. A comparative assessment of frequency deviation for different hybrid systems is also carried out in the presence of high-voltage direct current (HVDC) link and high-voltage alternating current (HVAC) line. Frequency deviation for different isolated hybrid systems are presented graphically as well as in terms of

  5. Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization

    International Nuclear Information System (INIS)

    Chen, Syuan-Yi; Hung, Yi-Hsuan; Wu, Chien-Hsun; Huang, Siang-Ting

    2015-01-01

    Highlights: • Online sub-optimal energy management using IPSO. • A second-order HEV model with 5 major segments was built. • IPSO with equivalent-fuel fitness function using 5 particles. • Engine, rule-based control, PSO, IPSO and ECMS are compared. • Max. 31+% fuel economy and 56+% energy consumption improved. - Abstract: This study developed an online suboptimal energy management system by using improved particle swarm optimization (IPSO) for engine/motor hybrid electric vehicles. The vehicle was modeled on the basis of second-order dynamics, and featured five major segments: a battery, a spark ignition engine, a lithium battery, transmission and vehicle dynamics, and a driver model. To manage the power distribution of dual power sources, the IPSO was equipped with three inputs (rotational speed, battery state-of-charge, and demanded torque) and one output (power split ratio). Five steps were developed for IPSO: (1) initialization; (2) determination of the fitness function; (3) selection and memorization; (4) modification of position and velocity; and (5) a stopping rule. Equivalent fuel consumption by the engine and motor was used as the fitness function with five particles, and the IPSO-based vehicle control unit was completed and integrated with the vehicle simulator. To quantify the energy improvement of IPSO, a four-mode rule-based control (system ready, motor only, engine only, and hybrid modes) was designed according to the engine efficiency and rotational speed. A three-loop Equivalent Consumption Minimization Strategy (ECMS) was coded as the best case. The simulation results revealed that IPSO searches the optimal solution more efficiently than conventional PSO does. In two standard driving cycles, ECE and FTP, the improvements in the equivalent fuel consumption and energy consumption compared to baseline were (24.25%, 45.27%) and (31.85%, 56.41%), respectively, for the IPSO. The CO_2 emission for all five cases (pure engine, rule-based, PSO

  6. Functional Abstraction of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Blom, Henk A.P.; Hermanns, H.

    2006-01-01

    The verification problem for stochastic hybrid systems is quite difficult. One method to verify these systems is stochastic reachability analysis. Concepts of abstractions for stochastic hybrid systems are needed to ease the stochastic reachability analysis. In this paper, we set up different ways

  7. New hybrid systems: strategy and research programs

    International Nuclear Information System (INIS)

    Thomas, J.B.

    2001-01-01

    This short article gives a status of research and experimental programs concerning new hybrid systems. A hybrid system is made up of a subcritical core, a spallation target and of a particle accelerator that delivers a proton beam. The main asset of hybrid systems is to provide a large reactivity margin that would be very valuable to transmute actinide nuclei efficiently. As a consequence hybrid systems could be considered as actinide burner reactors integrated to a large population of classical nuclear reactors dedicated to electricity production. (A.C.)

  8. Software Development Technologies for Reactive, Real-Time, and Hybrid Systems

    Science.gov (United States)

    Manna, Zohar

    1996-01-01

    The research is directed towards the design and implementation of a comprehensive deductive environment for the development of high-assurance systems, especially reactive (concurrent, real-time, and hybrid) systems. Reactive systems maintain an ongoing interaction with their environment, and are among the most difficult to design and verify. The project aims to provide engineers with a wide variety of tools within a single, general, formal framework in which the tools will be most effective. The entire development process is considered, including the construction, transformation, validation, verification, debugging, and maintenance of computer systems. The goal is to automate the process as much as possible and reduce the errors that pervade hardware and software development.

  9. Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas

    International Nuclear Information System (INIS)

    Ibrahim, H.; Younes, R.; Ilinca, A.; Dimitrova, M.; Perron, J.

    2010-01-01

    Remote areas around the world predominantly rely on diesel-powered generators for their electricity supply, a relatively expensive and inefficient technology that is responsible for the emission of 1.2 million tons of greenhouse gas (GHG) annually, only in Canada . Wind-diesel hybrid systems (WDS) with various penetration rates have been experimented to reduce diesel consumption of the generators. After having experimented wind-diesel hybrid systems (WDS) that used various penetration rates, we turned our focus to that the re-engineering of existing diesel power plants can be achieved most efficiently, in terms of cost and diesel consumption, through the introduction of high penetration wind systems combined with compressed air energy storage (CAES). This article compares the available technical alternatives to supercharge the diesel that was used in this high penetration wind-diesel system with compressed air storage (WDCAS), in order to identify the one that optimizes its cost and performances. The technical characteristics and performances of the best candidate technology are subsequently assessed at different working regimes in order to evaluate the varying effects on the system. Finally, a specific WDCAS system with diesel engine downsizing is explored. This proposed design, that requires the repowering of existing facilities, leads to heightened diesel power output, increased engine lifetime and efficiency and to the reduction of fuel consumption and GHG emissions, in addition to savings on maintenance and replacement cost.

  10. Hybrid Simulation of Composite Structures

    DEFF Research Database (Denmark)

    Høgh, Jacob Herold

    experiment. The technique has primarily been used within earthquake engineering but many other fields of engineering have utilized the method with benefit. However, these previous efforts have focused on structures with a simple boundary between the numerical and physical substructure i.e. few degrees...... the transfer system and the control and monitoring techniques in the shared boundary is therefore a key issue in this type of hybrid simulation. During the research, hybrid simulation platforms have been programmed capable of running on different time scales with advanced control and monitoring techniques...

  11. Comments On Clock Models In Hybrid Automata And Hybrid Control Systems

    Directory of Open Access Journals (Sweden)

    Virginia Ecaterina OLTEAN

    2001-12-01

    Full Text Available Hybrid systems have received a lot of attention in the past decade and a number of different models have been proposed in order to establish mathematical framework that is able to handle both continuous and discrete aspects. This contribution is focused on two models: hybrid automata and hybrid control systems with continuous-discrete interface and the importance of clock models is emphasized. Simple and relevant examples, some taken from the literature, accompany the presentation.

  12. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  13. Design optimisation of a flywheel hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kok, D.B.

    1999-11-04

    This thesis describes the design optimisation of a flywheel hybrid vehicle with respect to fuel consumption and exhaust gas emissions. The driveline of this passenger car uses two power sources: a small spark ignition internal combustion engine with three-way catalyst, and a highspeed flywheel system for kinetic energy storage. A custom-made continuously variable transmission (CVT) with so-called i{sup 2} control transports energy between these power sources and the vehicle wheels. The driveline includes auxiliary systems for hydraulic, vacuum and electric purposes. In this fully mechanical driveline, parasitic energy losses determine the vehicle's fuel saving potential to a large extent. Practicable energy loss models have been derived to quantify friction losses in bearings, gearwheels, the CVT, clutches and dynamic seals. In addition, the aerodynamic drag in the flywheel system and power consumption of auxiliaries are charted. With the energy loss models available, a calculation procedure is introduced to optimise the flywheel as a subsystem in which the rotor geometry, the safety containment, and the vacuum system are designed for minimum energy use within the context of automotive applications. A first prototype of the flywheel system was tested experimentally and subsequently redesigned to improve rotordynamics and safety aspects. Coast-down experiments with the improved version show that the energy losses have been lowered significantly. The use of a kinetic energy storage device enables the uncoupling of vehicle wheel power and engine power. Therefore, the engine can be smaller and it can be chosen to operate in its region of best efficiency in start-stop mode. On a test-rig, the measured engine fuel consumption was reduced with more than 30 percent when the engine is intermittently restarted with the aid of the flywheel system. Although the start-stop mode proves to be advantageous for fuel consumption, exhaust gas emissions increase temporarily

  14. Systems Engineering Leadership Development: Advancing Systems Engineering Excellence

    Science.gov (United States)

    Hall, Phil; Whitfield, Susan

    2011-01-01

    This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

  15. Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors

    International Nuclear Information System (INIS)

    Ouyang, Minggao; Zhang, Weilin; Wang, Enhua; Yang, Fuyuan; Li, Jianqiu; Li, Zhongyan; Yu, Ping; Ye, Xiao

    2015-01-01

    Highlights: • Four different types of hybrid powertrain for heavy-duty vehicles are reviewed. • A novel coaxial power-split hybrid powertrain is proposed and models are developed. • Performance characteristics are analyzed and compared to a conventional powertrain. • Fuel saving potential is evaluated and explained using energy efficiency method. - Abstract: Energy conservation is a very important task for the automotive industry. The use of hybrid electric vehicles can improve energy efficiency, thus reducing fuel consumption and carbon emissions. In this research, the performance characteristics of a novel coaxial power-split hybrid powertrain for a transit bus are presented. The power sources are a combination of a compressed natural gas (CNG) engine and supercapacitors. A mathematical model for the coaxial power-split hybrid powertrain is established. Subsequently, an analysis program is developed based on Matlab and Advisor. The parameters are specified using experimental data. Afterwards, a rule-based control strategy is designed and optimized from the viewpoint of energy efficiency. Later, the system performance is evaluated using the Chinese Transit Bus City Driving Cycle and compared to a conventional powertrain. The results indicate that the proposed coaxial power-split hybrid powertrain can fulfill the requirements of the transit bus and enhance the energy efficiency dramatically. Moreover, the average energy efficiency of the supercapacitors was found to be above 97% over the entire driving cycle. Using supercapacitors as energy storage devices for the coaxial power-split hybrid powertrain can effectively recover the kinetic energy during regenerative braking and is a good solution for transit buses that require frequent acceleration and deceleration.

  16. Hybrid spread spectrum radio system

    Science.gov (United States)

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  17. A Causal and Real-Time Capable Power Management Algorithm for Off-Highway Hybrid Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Johannes Schalk

    2016-12-01

    Full Text Available Hybrid propulsion systems allow for a reduction of fuel consumption and pollutant emissions of future off-highway applications. A challenging aspect of a hybridization is the larger number of system components that further increases both the complexity and the diversification of such systems. Hence, beside a standardization on the hardware side for off-highway systems, a high flexibility and modularity of the control schemes is required to employ them in as many different applications as possible. In this paper, a causal optimization-based power management algorithm is introduced to control the power split between engine and electric machine in a hybrid powertrain. The algorithm optimizes the power split to achieve the maximum power supply efficiency and, thereby, considers the energy cost for maintaining the battery charge. Furthermore, the power management provides an optional function to control the battery state of charge in such a way that a target value is attained. In a simulation case study, the potential and the benefits of the proposed power management for the hybrid powertrain—aiming at a reduction of the fuel consumption of a DMU (diesel multiple unit train operated on a representative track—will be shown.

  18. A comparative study and analysis of an optimized control strategy for the toyota hybrid system

    NARCIS (Netherlands)

    Hofman, Theo; Purnot, Thijs

    2009-01-01

    The Toyota Prius equipped with the Toyota Hybrid System (THS) II vehicle uses a combination of a combustion engine and two electric machines in order to increase the efficiency and the fuel economy. The Energy Management Strategy (EMS) of the THS II is analyzed using measurement data collected with

  19. What will be eventually true of polymomial hybrid automata

    DEFF Research Database (Denmark)

    Fränzle, Martin

    2001-01-01

    Hybrid automata have been introduced in both control engineering and computer science as a formal model for the dynamics of hybrid discrete-continuous systems. While computability issues concerning safety properties have been extensively studied, liveness properties have remained largely uninvest......Hybrid automata have been introduced in both control engineering and computer science as a formal model for the dynamics of hybrid discrete-continuous systems. While computability issues concerning safety properties have been extensively studied, liveness properties have remained largely...... uninvestigated. In this article, we investigate decidability of state recurrence and of progress properties. First, we show that state recurrence and progress are in general undecidable for polynomial hybrid automata. Then, we demonstrate that they are closely related for hybrid automata subject to a simple...... model of noise, even though these automata are infinite-state systems. Based on this, we augment a semi-decision procedure for recurrence with a semi-decision method for length-boundedness of paths in such a way that we obtain an automatic verification method for progress properties of linear...

  20. Systems engineering simplified

    CERN Document Server

    Cloutier, Robert; Bone, Mary Alice

    2015-01-01

    IntroductionOverviewDiscussion of Common TerminologyThe Case for Systems EngineeringA Brief History of Systems EngineeringSystem ExamplesSummaryThe System Life CycleManaging System Development-The Vee ModelSystem ProductionSystem Utilization and SupportSystem Retirement and DisposalOther Systems Engineering Development ModelsSpiral ModelAgile Model for Systems EngineeringSystem of InterestAbstraction and DecompositionIntegrationDeveloping and Managing RequirementsCyclone Requiremen

  1. Functionally graded scaffolds for the engineering of interface tissues using hybrid twin screw extrusion/electrospinning technology

    Science.gov (United States)

    Erisken, Cevat

    Tissue engineering is the application of the principles of engineering and life sciences for the development of biological alternatives for improvement or regeneration of native tissues. Native tissues are complex structures with functions and properties changing spatially and temporally, and engineering of such structures requires functionally graded scaffolds with composition and properties changing systematically along various directions. Utilization of a new hybrid technology integrating the controlled feeding, compounding, dispersion, deaeration, and pressurization capabilities of extrusion process with electrospinning allows incorporation of liquids and solid particles/nanoparticles into polymeric fibers/nanofibers for fabrication of functionally graded non-woven meshes to be used as scaffolds in engineering of tissues. The capabilities of the hybrid technology were demonstrated with a series of scaffold fabrication and cell culturing studies along with characterization of biomechanical properties. In the first study, the hybrid technology was employed to generate concentration gradations of beta-tricalcium phosphate (beta-TCP) nanoparticles in a polycaprolactone (PCL) binder, between two surfaces of nanofibrous scaffolds. These scaffolds were seeded with pre-osteoblastic cell line (MC3T3-E1) to attempt to engineer cartilage-bone interface, and after four weeks, the tissue constructs revealed formation of continuous gradations in extracellular matrix akin to cartilage-bone interface in terms of distributions of mineral concentrations and biomechanical properties. In a second demonstration of the hybrid technology, graded differentiation of stem cells was attempted by using insulin, a known stimulator of chondrogenic differentiation, and beta-glycerol phosphate (beta-GP), for mineralization. Concentrations of insulin and beta-GP in PCL were controlled to monotonically increase and decrease, respectively, along the length of scaffolds, which were then seeded

  2. Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine

    Science.gov (United States)

    Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua

    2013-02-01

    SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.

  3. Hybridization of powertrain and downsizing of IC engine - A way to reduce fuel consumption and pollutant emissions - Part 1

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz

    2007-01-01

    The aim of this two part paper is to present the results of extensive simulation and analytical analysis of the energy conversion efficiency in parallel hybrid powertrains. The simulation approach is based on an accurate and fast forward facing simulation model of a parallel hybrid powertrain and a conventional internal combustion engine powertrain. The model of the ICE is based on a verified dynamic model that provides sufficiently small time steps to model adequately the dynamics of electric systems during transient test cycles. Models of the electrical devices enable computation of the instantaneous energy consumption, production and storage as well as computation of the instantaneous energy losses and component efficiencies. Moreover, the paper offers an analytical approach based on the energy balance in order to analyze and predict the energy conversion efficiency of hybrid powertrains. The analysis covers a broad range of parallel hybrid powertrain configurations from mild to full hybrids. Combined simulation and analytical analysis enables deep insight into the energy conversion phenomena in hybrid powertrains. The paper reveals the conditions and influences that lead to improved fuel economy of hybrid powertrains with the emphasis on determining the optimum hybridization ratio. The theoretical background, simulation program and brief analysis of one test cycle are presented in Part 1, whereas the extensive analysis and parametric study is presented in the companion paper, Part 2

  4. Process algebras for hybrid systems : comparison and development

    NARCIS (Netherlands)

    Khadim, U.

    2008-01-01

    Our research is about formal speci¯cation and analysis of hybrid systems. The formalism used is process algebra. Hybrid systems are systems that exhibit both discrete and continuous behaviour. An example of a hybrid system is a digital controller controlling a physical device such as present in

  5. FEASIBILITY STUDY AND OPTIMIZATION OF AN HYBRID SYSTEM (EOLIAN- PHOTOVOLTAIC - DIESEL WITH PROVISION OF ELECTRIC ENERGY COMPLETELY INDEPENDENT

    Directory of Open Access Journals (Sweden)

    D. Saheb-Koussa

    2015-08-01

    Full Text Available      In engineering, simulation is an effective and economical, commonly used to make preliminary or comparative studies, both during development (design and normal operation of systems. Currently, several simulation tools, using HOMER, are used in academia. Thus, in this work, we present the principle of feasibility study and optimization of a stand alone hybrid system (wind-photovoltaic-diesel. Furthermore, we determined the price per kWh of electricity supplied by the stand alone hybrid system, which amounts to $ 1417 / kWh. The site considered in this study represents the Adrar site located in the south west Algeria. Thus, we have inferred from this work as part of a configuration of the stand alone hybrid system obviously depends on available energy resources and constraints. On the other hand we have highlighted the role of the renewable energy uses in reducing emissions of greenhouse gas (CO2 rate = 16086 kg / year for a system using only the generator diesel and is 599 kg / year for the stand alone hybrid system studied.

  6. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...

  7. Engineering Elegant Systems: Postulates, Principles, and Hypotheses of Systems Engineering

    Science.gov (United States)

    Watson, Michael D.

    2018-01-01

    Definition: System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system; Elegant System - A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation. Primary Focus: System Design and Integration: Identify system couplings and interactions; Identify system uncertainties and sensitivities; Identify emergent properties; Manage the effectiveness of the system. Engineering Discipline Integration: Manage flow of information for system development and/or operations; Maintain system activities within budget and schedule. Supporting Activities: Process application and execution.

  8. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  9. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  10. Performance estimation of photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Zhang, Jin; Xuan, Yimin; Yang, Lili

    2014-01-01

    A theoretical model for evaluating the efficiency of concentrating PV–TE (photovoltaic–thermoelectric) hybrid system is developed in this paper. Hybrid systems with different photovoltaic cells are studied, including crystalline silicon photovoltaic cell, silicon thin-film photovoltaic cell, polymer photovoltaic cell and copper indium gallium selenide photovoltaic cell. The influence of temperature on the efficiency of photovoltaic cell has been taken into account based on the semiconductor equations, which reveals different efficiency temperature characteristic of polymer photovoltaic cells. It is demonstrated that the polycrystalline silicon thin-film photovoltaic cell is suitable for concentrating PV–TE hybrid system through optimization of the convection heat transfer coefficient and concentrating ratio. The polymer photovoltaic cell is proved to be suitable for non-concentrating PV–TE hybrid system. - Highlights: • Performances of four types of photovoltaic–thermoelectric hybrid systems are studied. • Temperature is one of dominant factors of affecting the conversion efficiency of PV–TE systems. • One can select a proper PV–TE assembly system according to given operating conditions

  11. Advancing Systems Engineering Excellence: The Marshall Systems Engineering Leadership Development Program

    Science.gov (United States)

    Hall, Philip; Whitfield, Susan

    2011-01-01

    As NASA undertakes increasingly complex projects, the need for expert systems engineers and leaders in systems engineering is becoming more pronounced. As a result of this issue, the Agency has undertaken an initiative to develop more systems engineering leaders through its Systems Engineering Leadership Development Program; however, the NASA Office of the Chief Engineer has also called on the field Centers to develop mechanisms to strengthen their expertise in systems engineering locally. In response to this call, Marshall Space Flight Center (MSFC) has developed a comprehensive development program for aspiring systems engineers and systems engineering leaders. This presentation will summarize the two-level program, which consists of a combination of training courses and on-the-job, developmental training assignments at the Center to help develop stronger expertise in systems engineering and technical leadership. In addition, it will focus on the success the program has had in its pilot year. The program hosted a formal kickoff event for Level I on October 13, 2009. The first class includes 42 participants from across MSFC and Michoud Assembly Facility (MAF). A formal call for Level II is forthcoming. With the new Agency focus on research and development of new technologies, having a strong pool of well-trained systems engineers is becoming increasingly more critical. Programs such as the Marshall Systems Engineering Leadership Development Program, as well as those developed at other Centers, help ensure that there is an upcoming generation of trained systems engineers and systems engineering leaders to meet future design challenges.

  12. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  13. Kaner biodiesel production through hybrid reactor and its performance testing on a CI engine at different compression ratios

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2017-06-01

    Full Text Available The present study deals with development of a hybrid reactor for biodiesel production based on the combined hydrodynamic cavitation and mechanical stirring processes. Biodiesel were produced using Kaner Seed Oil (KSO. The experimental results show that hybrid reactor produces 95% biodiesel yield within 45 min for 0.75% of catalyst and 6:1 M ratio which is significantly higher as compared to mechanical stirring or hydrodynamic cavitation alone. Thus biodiesel production process in hybrid reactor is cheap (high yield, efficient (time saving and environmentally friendly (lower% of catalyst. Performance study on engine shows that an increase in compression ratios (from 16 to 18 improves the engine performance using biodiesel blends as compared to petroleum diesel.

  14. QM/MM hybrid calculation of biological macromolecules using a new interface program connecting QM and MM engines

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Yohsuke; Tateno, Masaru [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba Science City, Ibaraki 305-8571 (Japan); Ohta, Takehiro [Center for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba Science City, Ibaraki 305-8577 (Japan)], E-mail: tateno@ccs.tsukuba.ac.jp

    2009-02-11

    An interface program connecting a quantum mechanics (QM) calculation engine, GAMESS, and a molecular mechanics (MM) calculation engine, AMBER, has been developed for QM/MM hybrid calculations. A protein-DNA complex is used as a test system to investigate the following two types of QM/MM schemes. In a 'subtractive' scheme, electrostatic interactions between QM/MM regions are truncated in QM calculations; in an 'additive' scheme, long-range electrostatic interactions within a cut-off distance from QM regions are introduced into one-electron integration terms of a QM Hamiltonian. In these calculations, 338 atoms are assigned as QM atoms using Hartree-Fock (HF)/density functional theory (DFT) hybrid all-electron calculations. By comparing the results of the additive and subtractive schemes, it is found that electronic structures are perturbed significantly by the introduction of MM partial charges surrounding QM regions, suggesting that biological processes occurring in functional sites are modulated by the surrounding structures. This also indicates that the effects of long-range electrostatic interactions involved in the QM Hamiltonian are crucial for accurate descriptions of electronic structures of biological macromolecules.

  15. Hybrid battery/supercapacitor energy storage system for the electric vehicles

    Science.gov (United States)

    Kouchachvili, Lia; Yaïci, Wahiba; Entchev, Evgueniy

    2018-01-01

    Electric vehicles (EVs) have recently attracted considerable attention and so did the development of the battery technologies. Although the battery technology has been significantly advanced, the available batteries do not entirely meet the energy demands of the EV power consumption. One of the key issues is non-monotonic consumption of energy accompanied by frequent changes during the battery discharging process. This is very harmful to the electrochemical process of the battery. A practical solution is to couple the battery with a supercapacitor, which is basically an electrochemical cell with a similar architecture, but with a higher rate capability and better cyclability. In this design, the supercapacitor can provide the excess energy required while the battery fails to do so. In addition to the battery and supercapacitor as the individual units, designing the architecture of the corresponding hybrid system from an electrical engineering point of view is of utmost importance. The present manuscript reviews the recent works devoted to the application of various battery/supercapacitor hybrid systems in EVs.

  16. Hybrid integrated biological-solid-state system powered with adenosine triphosphate

    Science.gov (United States)

    Roseman, Jared M.; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K.; Shepard, Kenneth L.

    2015-12-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm-2) are able to sustain a short-circuit current of 32.6 pA mm-2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm-2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  17. Simplifying and upscaling water resources systems models that combine natural and engineered components

    Science.gov (United States)

    McIntyre, N.; Keir, G.

    2014-12-01

    Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.

  18. Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability

    International Nuclear Information System (INIS)

    García Nieto, P.J.; García-Gonzalo, E.; Sánchez Lasheras, F.; Cos Juez, F.J. de

    2015-01-01

    The present paper describes a hybrid PSO–SVM-based model for the prediction of the remaining useful life of aircraft engines. The proposed hybrid model combines support vector machines (SVMs), which have been successfully adopted for regression problems, with the particle swarm optimization (PSO) technique. This optimization technique involves kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not been yet widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid PSO–SVM-based model from the remaining measured parameters (input variables) for aircraft engines with success. A coefficient of determination equal to 0.9034 was obtained when this hybrid PSO–RBF–SVM-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. One of the main advantages of this predictive model is that it does not require information about the previous operation states of the engine. Finally, the main conclusions of this study are exposed. - Highlights: • A hybrid PSO–SVM-based model is built as a predictive model of the RUL values for aircraft engines. • The remaining physical–chemical variables in this process are studied in depth. • The obtained regression accuracy of our method is about 95%. • The results show that PSO–SVM-based model can assist in the diagnosis of the RUL values with accuracy

  19. 16th International Conference on Hybrid Intelligent Systems and the 8th World Congress on Nature and Biologically Inspired Computing

    CERN Document Server

    Haqiq, Abdelkrim; Alimi, Adel; Mezzour, Ghita; Rokbani, Nizar; Muda, Azah

    2017-01-01

    This book presents the latest research in hybrid intelligent systems. It includes 57 carefully selected papers from the 16th International Conference on Hybrid Intelligent Systems (HIS 2016) and the 8th World Congress on Nature and Biologically Inspired Computing (NaBIC 2016), held on November 21–23, 2016 in Marrakech, Morocco. HIS - NaBIC 2016 was jointly organized by the Machine Intelligence Research Labs (MIR Labs), USA; Hassan 1st University, Settat, Morocco and University of Sfax, Tunisia. Hybridization of intelligent systems is a promising research field in modern artificial/computational intelligence and is concerned with the development of the next generation of intelligent systems. The conference’s main aim is to inspire further exploration of the intriguing potential of hybrid intelligent systems and bio-inspired computing. As such, the book is a valuable resource for practicing engineers /scientists and researchers working in the field of computational intelligence and artificial intelligence.

  20. Development of an Integrated Cooling System Controller for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2017-01-01

    Full Text Available A hybrid electrical bus employs both a turbo diesel engine and an electric motor to drive the vehicle in different speed-torque scenarios. The cooling system for such a vehicle is particularly power costing because it needs to dissipate heat from not only the engine, but also the intercooler and the motor. An electronic control unit (ECU has been designed with a single chip computer, temperature sensors, DC motor drive circuit, and optimized control algorithm to manage the speeds of several fans for efficient cooling using a nonlinear fan speed adjustment strategy. Experiments suggested that the continuous operating performance of the ECU is robust and capable of saving 15% of the total electricity comparing with ordinary fan speed control method.

  1. Linker Flexibility Facilitates Module Exchange in Fungal Hybrid PKS-NRPS Engineering

    DEFF Research Database (Denmark)

    Nielsen, Maria Lund; Petersen, Thomas Isbrandt; Petersen, Lene Maj

    2016-01-01

    Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) each give rise to a vast array of complex bioactive molecules with further complexity added by the existence of natural PKS-NRPS fusions. Rational genetic engineering for the production of natural product derivatives....... We succeeded in the construction of a functional cross-species chimeric PKS-NRPS expressed in Aspergillus nidulans. Module swapping of the two PKS-NRPS natural hybrids CcsA from Aspergillus clavatus involved in the biosynthesis of cytochalasin E and related Syn2 from rice plant pathogen Magnaporthe...... oryzae lead to production of novel hybrid products, demonstrating that the rational re-design of these fungal natural product enzymes is feasible. We also report the structure of four novel pseudo pre-cytochalasin intermediates, niduclavin and niduporthin along with the chimeric compounds niduchimaeralin...

  2. Cardiovascular system simulation in biomedical engineering education.

    Science.gov (United States)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  3. High thermal efficiency and low emission performance of a methanol reformed gas fueled engine for hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K.; Nakajima, Y.; Shudo, T.; Hiruma, M. [Musahi Inst. of Tech., Tokyo (Japan); Komatsu, H.; Takagi, Y. [Nissan Motor Co., Ltd., Yokosuka (Japan)

    2000-07-01

    An internal combustion engine (ICE) operation was carried out experimentally by using the mixture of air and fuel simulating the reformed gas as the fuel. It has been found that the engine can expectedly attain ultra-low emission and high thermal efficiency, namely 35% brake thermal efficiency in the basis of the low heat value of the theoretically reformed gas or 42% in the basis of the low heat value of methanol. By using the result for the estimation of the total thermal efficiency at the end of the motor output shaft of a hybrid electric vehicle, it has been found that the total thermal efficiency of the reformed gas engine system is 34% in case of a 120% energy increment and 33% in case of a 116% energy increment with a little higher NOx emission of 60 ppm while the counterpart of the fuel cell system is 34%. When the emission level for EZEV is required, the total thermal efficiency falls to 32% in case of a 120% energy increment and 31% in case of a 116% energy increment. From the points of the reliability proved by the long history, higher specific power and low cost, the internal combustion engine system with the thermal efficiency almost equal to that of the fuel cell (FC) system is further more practical when methanol is used as the fuel. (orig.)

  4. A fully adaptive hybrid optimization of aircraft engine blades

    Science.gov (United States)

    Dumas, L.; Druez, B.; Lecerf, N.

    2009-10-01

    A new fully adaptive hybrid optimization method (AHM) has been developed and applied to an industrial problem in the field of the aircraft engine industry. The adaptivity of the coupling between a global search by a population-based method (Genetic Algorithms or Evolution Strategies) and the local search by a descent method has been particularly emphasized. On various analytical test cases, the AHM method overperforms the original global search method in terms of computational time and accuracy. The results obtained on the industrial case have also confirmed the interest of AHM for the design of new and original solutions in an affordable time.

  5. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  6. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.

    Science.gov (United States)

    Kharaziha, Mahshid; Shin, Su Ryon; Nikkhah, Mehdi; Topkaya, Seda Nur; Masoumi, Nafiseh; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-08-01

    In the past few years, a considerable amount of effort has been devoted toward the development of biomimetic scaffolds for cardiac tissue engineering. However, most of the previous scaffolds have been electrically insulating or lacked the structural and mechanical robustness to engineer cardiac tissue constructs with suitable electrophysiological functions. Here, we developed tough and flexible hybrid scaffolds with enhanced electrical properties composed of carbon nanotubes (CNTs) embedded aligned poly(glycerol sebacate):gelatin (PG) electrospun nanofibers. Incorporation of varying concentrations of CNTs from 0 to 1.5% within the PG nanofibrous scaffolds (CNT-PG scaffolds) notably enhanced fiber alignment and improved the electrical conductivity and toughness of the scaffolds while maintaining the viability, retention, alignment, and contractile activities of cardiomyocytes (CMs) seeded on the scaffolds. The resulting CNT-PG scaffolds resulted in stronger spontaneous and synchronous beating behavior (3.5-fold lower excitation threshold and 2.8-fold higher maximum capture rate) compared to those cultured on PG scaffold. Overall, our findings demonstrated that aligned CNT-PG scaffold exhibited superior mechanical properties with enhanced CM beating properties. It is envisioned that the proposed hybrid scaffolds can be useful for generating cardiac tissue constructs with improved organization and maturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Performance and efficiency of a hydraulic hybrid powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Karbaschian, Mohammad Ali [Duisburg-Essen Univ. (Germany). Faculty of Engineering

    2012-11-01

    Hydraulic hybrid powertrains are considered to be a promising technology to save energy and reduce emission in specific automotive fields because of their high power density, components lifetime, and long lasting experience in industries compared to electric hybrid powertrains. Within the first part of the paper, a very brief literature survey on hydraulic hybrid vehicle systems (HHVS) and the related dynamical behaviour is given. No specific activities to improve the efficiency of these systems were detected. Related literature with respect to optimization mainly deals with the management of the system's energy flows trying to control the engine operation point and the high pressure in the system. In the second part, a small simulation study is presented. Therefore, hybrid systems are generally assumed as a Multi-Input-Multi-Output (MIMO) system. The effect of key variables (i.e. accumulator size and pressure, pump/motor displacement and efficiency, valve dynamics) on the system is discussed. The results show that the volume displacement of pump and motor, the performance of the engine, and the state of charge of the accumulator are the most important parameters to specify the efficiency and performance of the hydraulic hybrid powertrain. Additionally, a hybrid hydraulic powertrain with an adjustable state of charge accumulator is compared with one whose state of charge is constant. The result shows the improvement of braking performance and fuel savings. The goal is to optimize the parameters of the system based on the simultaneous consideration of the three (or more) variables for a given load profile with respect to given objectives. (orig.)

  8. Solar engine system

    International Nuclear Information System (INIS)

    Tan, K.K.; Bahrom Sanugi; Chen, L.C.; Chong, K.K.; Jasmy Yunus; Kannan, K.S.; Lim, B.H.; Noriah Bidin; Omar Aliman; Sahar Salehan; Sheikh Ab Rezan Sheikh A H; Tam, C.M.; Chen, Y.T.

    2001-01-01

    This paper reports the revolutionary solar engine system in Universiti Teknologi Malaysia (UTM). The solar engine is a single cylinder stirling engine driven by solar thermal energy. A first prototype solar engine has been built and demonstrated. A new-concept non-imaging focusing heliostat and a recently invented optical receiver are used in the demonstration. Second generation of prototype solar engine is described briefly. In this paper, the solar engine system development is reported. Measurement for the first prototype engine speed, temperature and specifications are presented. The benefits and potential applications for the future solar engine system, especially for the electricity generating aspect are discussed. (Author)

  9. Engineering of complex systems: The impact of systems engineering at NASA

    Science.gov (United States)

    Kludze, Ave-Klutse Kodzo Paaku

    The "true" impact or value of systems engineering to an organization unfortunately appears not to have been well-studied and understood. The principles of systems engineering are highly encouraged by NASA at all levels, and most practitioners, both internal and external to NASA, intuitively "believe" it adds some value to the development of complex systems by producing them faster, better and cheaper. This research, in trying to fill a gap that exists in the systems engineering literature, analyzes data collected within NASA and other sources external to NASA (INCOSE) for comparisons. Analyses involving a number of case studies performed on selected NASA projects are presented to draw attention to the impact systems engineering had or could have had on these projects. This research clearly shows that systems engineering does add value to projects within and outside NASA. The research results further demonstrate that systems engineering has been beneficial not only to NASA but also to organizations within which INCOSE members work. It was determined, however, that systems engineering does not operate in a vacuum and may not always guarantee success through mere application. During this research, it was discovered that the lack of or inadequate application of systems engineering in the development of complex systems may result in cost overruns, poor technical performance, project delays, and in some cases unmitigated risk with disastrous consequences including the loss of life and property. How much is saved (in terms of cost, schedule) or improved (in terms of technical performance) as a result of its implementation may never be known precisely, but by indirectly measuring its value or impact on a project, percentages of project budget spent on systems engineering activities and any schedule reductions or performance enhancements realized could be determined. According to this research, systems engineering is not a waste of time and resources; in most cases, it is

  10. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  11. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks

    KAUST Repository

    Mahfouz, Magdy M.

    2011-01-24

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions, and inactivation. Zinc finger nucleases have been used to generate DSBs and subsequently, for genome editing but with low efficiency and reproducibility. The transcription activator-like family of type III effectors (TALEs) contains a central domain of tandem repeats that could be engineered to bind specific DNA targets. Here, we report the generation of a Hax3-based hybrid TALE nuclease with a user-selected DNA binding specificity. We show that the engineered TALE nuclease can bind to its target sequence in vitro and that the homodimeric TALE nuclease can cleave double-stranded DNA in vitro if the DNA binding sites have the proper spacing and orientation. Transient expression assays in tobacco leaves suggest that the hybrid nuclease creates DSB in its target sequence, which is subsequently repaired by nonhomologous end-joining repair. Taken together, our data show the feasibility of engineering TALE-based hybrid nucleases capable of generating site-specific DSBs and the great potential for site-specific genome modification in plants and eukaryotes in general.

  12. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  13. Wind Solar Hybrid System Rectifier Stage Topology Simulation

    OpenAIRE

    Anup M. Gakare; Subhash Kamdi

    2014-01-01

    This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of...

  14. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  15. System dynamics an introduction for mechanical engineers

    CERN Document Server

    Seeler, Karl A

    2014-01-01

    This essential textbook takes the student from the initial steps in modeling a dynamic system through development of the mathematical models needed for feedback control.  The generously-illustrated, student-friendly text focuses on fundamental theoretical development rather than the application of commercial software.  Practical details of machine design are included to motivate the non-mathematically inclined student. This book also: Emphasizes the linear graph method for modeling dynamic systems Offers a systematic approach for creating an engineering model, extracting information, and formulating mathematical analyses Adopts a unifying theme of power flow as the dynamic agent that eases analysis of hybrid systems, such as machinery Presents differential equations as dynamic operators and stresses input/output relationships Introduces Mathcad and programming in MATLAB Allows for use of Open Source Computational Software (R or C) Features over 1000 illustrations

  16. A new parallel-type hybrid electric-vehicle

    International Nuclear Information System (INIS)

    David Huang, K.; Tzeng, S.-C.

    2004-01-01

    This new system promises an internal-combustion engine that always maintains optimal operating conditions. The system comprises two parts: (1) an internal-combustion power-distribution device and (2) an integrated design involving the engine and electronic motor. The internal-combustion power-distribution device provides an engine capable of constantly operating in an optimal fashion, minimizing emissions and maximizing thermal-efficiency. The electric motor can generate extra power. Notably, the integrated torque design comprises three helical gears. This design can release the power of the engine or electric motor separately, or can integrate these two different powers into a hybridized power system

  17. Systems Engineering Analysis

    Directory of Open Access Journals (Sweden)

    Alexei Serna M.

    2013-07-01

    Full Text Available The challenges proposed by the development of the new computer systems demand new guidance related to engineer´s education, because they will solve these problems. In the XXI century, system engineers must be able to integrate a number of topics and knowledge disciplines that complement that traditionally has been known as Computer Systems Engineering. We have enough software development engineers, today we need professional engineers for software integration, leaders and system architects that make the most of the technological development for the benefit of society, leaders that integrate sciences to the solutions they build and propose. In this article the current situation of Computer Systems Engineering is analyzed and is presented a theory proposing the need for modifying the approach Universities have given to these careers, to achieve the education of leader engineers according to the needs of this century.

  18. Improving of Hybrid Rocket Engine on the Basis of Optimizing Design Fuel Grain

    Science.gov (United States)

    Oriekov, K. M.; Ushkin, M. P.

    2015-09-01

    This article examines the processes intrachamber in hybrid rocket engine (HRE) and the comparative assessment of the use of solid rocket motors (SRM) and HRE for meteorological rockets with a mass of payload of the 364 kg. Results of the research showed the possibility of a significant increase in the ballistic effectiveness of meteorological rocket.

  19. NASA systems engineering handbook

    Science.gov (United States)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  20. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  1. Test and development of a solar-hybrid vehicle prototype and turbo-compressor model for automotive engines

    OpenAIRE

    Naddeo, Massimo

    2016-01-01

    2014 - 2015 In last decade, Hybrid Electric Vehicles (HEV) have emerged as real alternatives to engine-driven vehicles, in order to reduce fuel consumption and emissions.... [edited by author] XIV n.s.

  2. Hybrid macro-micro fluidics system for a chip-based biosensor

    Science.gov (United States)

    Tamanaha, C. R.; Whitman, L. J.; Colton, R. J.

    2002-03-01

    We describe the engineering of a hybrid fluidics platform for a chip-based biosensor system that combines high-performance microfluidics components with powerful, yet compact, millimeter-scale pump and valve actuators. The microfluidics system includes channels, valveless diffuser-based pumps, and pinch-valves that are cast into a poly(dimethylsiloxane) (PDMS) membrane and packaged along with the sensor chip into a palm-sized plastic cartridge. The microfluidics are driven by pump and valve actuators contained in an external unit (with a volume ~30 cm3) that interfaces kinematically with the PDMS microelements on the cartridge. The pump actuator is a simple-lever, flexure-hinge displacement amplifier that increases the motion of a piezoelectric stack. The valve actuators are an array of cantilevers operated by shape memory alloy wires. All components can be fabricated without the need for complex lithography or micromachining, and can be used with fluids containing micron-sized particulates. Prototypes have been modeled and tested to ensure the delivery of microliter volumes of fluid and the even dispersion of reagents over the chip sensing elements. With this hybrid approach to the fluidics system, the biochemical assay benefits from the many advantages of microfluidics yet we avoid the complexity and unknown reliability of immature microactuator technologies.

  3. Components and systems for hybrid- and electromobiles; Komponenten und Systeme fuer Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Immle, Michael; Burgmayr, Thomas [Panasonic Electric Works Europe AG, Holzkirchen (Germany)

    2010-07-01

    On the Hybrid and Electric Vehicle sector Panasonic Electric Works is working among others on electro-mechanical products, such as contactors for battery disconnection or battery charging, on semi-conductor relays for battery monitoring and on complex systems as battery disconnect units. This paper will show experience on the hybrid vehicle sector. Further on different switching components and their usage will be introduced. As a main topic battery disconnected units will be discussed. Based on an actual example basic development items and system features will be touched and important development stages will be shown. As a general topic a future view on vehicles and batteries, as well as on charging systems and infrastructural necessities will be introduced. (orig.)

  4. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  5. Dynamic behavior of the mechanical systems from the structure of a hybrid automobile

    Science.gov (United States)

    Dinel, Popa; Irina, Tudor; Nicolae-Doru, Stănescu

    2017-10-01

    In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.

  6. Hybrid integrated biological-solid-state system powered with adenosine triphosphate.

    Science.gov (United States)

    Roseman, Jared M; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K; Shepard, Kenneth L

    2015-12-07

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na(+)/K(+) adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 10(6) mm(-2)) are able to sustain a short-circuit current of 32.6 pA mm(-2) and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm(-2) from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  7. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  8. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    Science.gov (United States)

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  9. Conceptual Design and Optimal Power Control Strategy for AN Eco-Friendly Hybrid Vehicle

    Science.gov (United States)

    Nasiri, N. Mir; Chieng, Frederick T. A.

    2011-06-01

    This paper presents a new concept for a hybrid vehicle using a torque and speed splitting technique. It is implemented by the newly developed controller in combination with a two degree of freedom epicyclic gear transmission. This approach enables optimization of the power split between the less powerful electrical motor and more powerful engine while driving a car load. The power split is fundamentally a dual-energy integration mechanism as it is implemented by using the epicyclic gear transmission that has two inputs and one output for a proper power distribution. The developed power split control system manages the operation of both the inputs to have a known output with the condition of maintaining optimum operating efficiency of the internal combustion engine and electrical motor. This system has a huge potential as it is possible to integrate all the features of hybrid vehicle known to-date such as the regenerative braking system, series hybrid, parallel hybrid, series/parallel hybrid, and even complex hybrid (bidirectional). By using the new power split system it is possible to further reduce fuel consumption and increase overall efficiency.

  10. Optimization of Renewable Energy Hybrid System for Grid Connected Application

    Directory of Open Access Journals (Sweden)

    Mustaqimah Mustaqimah

    2012-10-01

    Full Text Available ABSTRACT. Hybrid energy systems are pollution free, takes low cost and less gestation period, user and social friendly. Such systems are important sources of energy for shops, schools, and clinics in village communities especially in remote areas. Hybrid systems can provide electricity at a comparatively economic price in many remote areas. This paper presents a method to jointly determine the sizing and operation control of hybrid energy systems. The model, PV wind hydro and biomass hybrid system connects to grid. The system configuration of the hybrid is derived based on a theoretical domestic load at a typical location and local solar radiation, wind and water flow rate data and biomass availability. The hybrid energy system is proposed for 10 of teacher’s houses of Industrial Training Institute, Mersing. It is predicted 10 kW load consumption per house. The hybrid energy system consists of wind, solar, biomass, hydro, and grid power. Approximately energy consumption is 860 kWh/day with a 105 kW peak demand load. The proposed hybrid renewable consists of solar photovoltaic (PV panels, wind turbine, hydro turbine and biomass. Battery and inverter are included as part of back-up and storage system. It provides the economic sensitivity of hybridization and the economic and environmental benefits of using a blend of technologies. It also presents the trade off that is involved in optimizing a hybrid energy system to harness and utilize the available renewable energy resources efficiently.

  11. Solar-Diesel Hybrid Power System Optimization and Experimental Validation

    Science.gov (United States)

    Jacobus, Headley Stewart

    As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.

  12. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  13. Lifetime prognostics of hybrid backup power system

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Swierczynski, Maciej Jozef; Munk-Nielsen, Stig

    2017-01-01

    Modern telecommunication power supplies are based on renewable solutions, e.g. fuel cell/battery hybrid systems, for immediate and prolonged load support during grid faults. The high demand for power continuity increases the emphasis on power supply reliability and availability which raises...... the need for monitoring the system condition for timely maintenance and prevention of downtime. Although present on component level, no current literature addresses the condition monitoring from the perspective of a fuel cell/battery hybrid system such as the telecommunication power supply. This paper...... components: fuel cell, battery, and converters, is given. Finally, the paper presents a discussion on the available monitoring techniques from a commercial hybrid system point view....

  14. Development of the New Light-Duty Hybrid Truck

    OpenAIRE

    Yamaguchi, Koichi

    2008-01-01

    Hino Motors, Ltd., developed the new light-duty hybrid truck whose traction motor, inverter, and traction battery were completely redesigned for maximizing output and efficiency. It also succeeds in balancing low fuel economy and low exhaust emissions by utilizing a combination of a new hybrid system control with a specially developed diesel engine.

  15. Limit Cycle Analysis in a Class of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Antonio Favela-Contreras

    2016-01-01

    Full Text Available Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework.

  16. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  17. Developing a Blended Type Course of Introduction to Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Na Zhu

    2016-02-01

    Full Text Available An innovative course of introduction to hybrid vehicles is developed for both associate and bachelor degree programs for engineering technology with automotive/mechanical concentration. The hybrid vehicle course content includes several topics, such as the rational of pure electric vehicle and hybrid vehicle, hybrid vehicle propulsion systems, fundamentals of motor/generator systems, fundamentals of battery and energy management system, and introduction to various configurations of hybrid vehicle systems available in market and under development. Hybrid vehicle technology is a new area and developed rapidly in the field of automotive and mechanical engineering. Students need not only the fundamentals and concepts from college, but also the ability to keep up with the latest technology after their graduation. Therefore, a blended course type is employed to help students have a better understanding of the fundamentals of hybrid vehicle and developing their self-studying ability. Topics in the course have three steps of learning. Firstly, on-ground lecture is given in class, where the instructor explains basic knowledge, such as principles, equations, and design rules.  In this way, the students will have enough background knowledge and be able to conduct further self-reading and research work. Secondly, students are required to go to university’s desire to learn (D2L online system and finish the online part of the topic. In the D2L system, students will find a quiz and its supporting materials. Thirdly, students come back to the on-ground lecture and discuss the quiz in groups with instructor. After the discussion, the instructor gives students a conclusion of the topic and moves forward to the next topic. A computer simulation class is also given to help student better understand the operation strategies of the hybrid vehicle systems and have a trial of design of hybrid vehicle.

  18. Dynamics and control of hybrid mechanical systems

    NARCIS (Netherlands)

    Leonov, G.A.; Nijmeijer, H.; Pogromski, A.Y.; Fradkov, A.L.

    2010-01-01

    The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and

  19. Modular component kit for hybrid drive systems; Modularer Komponentenbaukasten fuer Hybride Antriebssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Riegger, Peter; Schalk, Johannes; Schmalzing, Claus-Oliver [MTU Friedrichshafen GmbH, Friedrichshafen (Germany). Bereich Forschung Technologieentwicklung

    2013-10-15

    By hybrid drives, fuel consumption in off-road applications can be significantly reduced. However, the additional power train components and degrees of freedom required in the design of hybridised systems involve an increase in system variants. To keep the number of variants as low as possible whilst simultaneously ensuring that hybrid drives can serve as wide a spectrum of applications as possible, MTU has developed a modular system of components. This makes it possible to use customer requirements as a basis for creating innovative drive systems for the widest range of applications. (orig.)

  20. The 1975 NASA/ASEE summer faculty fellowship research program. [research in the areas of aerospace engineering, aerospace systems, and information systems

    Science.gov (United States)

    1975-01-01

    A research program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA engineers and scientists, and to enrich the research activities of the participants' institutions. Abstracts of reports submitted at the end of the program are presented. Topics investigated include multispectral photography, logic circuits, gravitation theories, information systems, fracture mechanics, holographic interferometry, surface acoustic wave technology, ion beams in the upper atmosphere, and hybrid microcircuits.

  1. Hybrid attacks on model-based social recommender systems

    Science.gov (United States)

    Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao

    2017-10-01

    With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.

  2. Design of digital load torque observer in hybrid electric vehicle

    Science.gov (United States)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  3. Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Bindu P., E-mail: bindumelekkuttu@gmail.com; Gangadharan, Dhanya; Mohan, Neethu; Sumathi, Babitha; Nair, Prabha D., E-mail: pdnair49@gmail.com

    2015-07-01

    Scaffolds that can provide the requisite biological cues for the fast regeneration of bone are highly relevant to the advances in tissue engineering and regenerative medicine. In the present article, we report the fabrication of a chitosan–gelatin–siloxane scaffold bearing interpolymer-siloxane Schiff base linkage, through a single-step dialdehyde cross-linking and freeze-drying method using 3-aminopropyltriethoxysilane as the siloxane precursor. Swelling of the scaffolds in phosphate buffered saline indicates enhancement with increase in siloxane concentration, whereas compressive moduli of the wet scaffolds reveal inverse dependence, owing to the presence of siloxane, rich in silanol groups. It is suggested that through the strategy of dialdehyde cross-linking, a limiting siloxane loading of 20 wt.% into a chitosan-gelatin matrix should be considered ideal for bone tissue engineering, because the scaffold made with 30 wt.% siloxane loading degrades by 48 wt.%, in 21 days. The hybrid scaffolds bearing Schiff base linkage between the polymer and siloxane, unlike the stable linkages in earlier reports, are expected to give a faster release of siloxanes and enhancement in osteogenesis. This is verified by the in vitro evaluation of the hybrid scaffolds using rabbit adipose mesenchymal stem cells, which revealed osteogenic cell-clusters on a polymer-siloxane scaffold, enhanced alkaline phosphatase activity and the expression of bone-specific genes, whereas the control scaffold without siloxane supported more of cell-proliferation than differentiation. A siloxane concentration dependent enhancement in osteogenic differentiation is also observed. - Highlights: • A hybrid scaffold bearing interpolymer-siloxane Schiff base linkage • A limiting siloxane loading of 20 wt.% into chitosan–gelatin matrix • A siloxane concentration dependent enhancement in osteogenic differentiation.

  4. Application of Hybrid Dynamical Theory to the Cardiovascular System

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2014-10-14

    In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.

  5. Systems engineering research

    OpenAIRE

    Sahraoui , Abd-El-Kader; Buede , Dennis ,; Sage , Andrew ,

    2008-01-01

    International audience; In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that ar...

  6. Assume-Guarantee Abstraction Refinement Meets Hybrid Systems

    Science.gov (United States)

    Bogomolov, Sergiy; Frehse, Goran; Greitschus, Marius; Grosu, Radu; Pasareanu, Corina S.; Podelski, Andreas; Strump, Thomas

    2014-01-01

    Compositional verification techniques in the assume- guarantee style have been successfully applied to transition systems to efficiently reduce the search space by leveraging the compositional nature of the systems under consideration. We adapt these techniques to the domain of hybrid systems with affine dynamics. To build assumptions we introduce an abstraction based on location merging. We integrate the assume-guarantee style analysis with automatic abstraction refinement. We have implemented our approach in the symbolic hybrid model checker SpaceEx. The evaluation shows its practical potential. To the best of our knowledge, this is the first work combining assume-guarantee reasoning with automatic abstraction-refinement in the context of hybrid automata.

  7. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  8. Development of a power train for the hybrid automobile - the Civic IMA

    Energy Technology Data Exchange (ETDEWEB)

    Matsuki, Masato; Sato, Toshiyuki; Wakashiro, Teruo; Kaku, Toshiaki; Kamiyama, Toshihiro; Kanda, Masahiro [Tochigi R and D Center (Japan); Brachmann, T. [Tochigi Offenbach R und D Center (Germany)

    2003-07-01

    The Civic Hybrid was developed as a compact passenger hybrid car that achieves both low fuel consumption and cleaner operation from the viewpoints of preserving the global environment and conserving resources. The engine has been improved for Hybrid applications, which were added to the base i-DSI, 4-cylinder, 1.3-liter SOHC, 2-ignition plugs/cylinder engine mounted in the Honda 'Jazz'. In addition, the cylinder idling system has been adopted to increase the regenerated energy during deceleration. The hybrid system is based on the Honda IMA system, and the maximum regenerative torque has been increased by approximately 30% by improving the magnetic circuits of an ultra-thin DC brushless motor and adopting a new rotor manufacturing method. Fuel economy is improved by a new hybrid power train, thus achieving low fuel consumption of 4.9 1/100 km in the European UDC+EUCD combined mode by at the same time meeting EURO IV standards. The power control unit, which is the IMA system control unit, was downsized and located behind the rear seat, thus ensuring comparable trunk capacity to the base vehicle of the Civic 4-Door. Hybrid vehicles have a lot to offer. This paper introduces evolutionary developments of Hybrid vehicles within the Honda Motor Company. (orig.)

  9. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2006-01-01

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 o C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 o C)

  10. Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Jooyoung Park

    2015-05-01

    Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.

  11. Analysis and design of hybrid control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malmborg, J.

    1998-05-01

    Different aspects of hybrid control systems are treated: analysis, simulation, design and implementation. A systematic methodology using extended Lyapunov theory for design of hybrid systems is developed. The methodology is based on conventional control designs in separate regions together with a switching strategy. Dynamics are not well defined if the control design methods lead to fast mode switching. The dynamics depend on the salient features of the implementation of the mode switches. A theorem for the stability of second order switching together with the resulting dynamics is derived. The dynamics on an intersection of two sliding sets are defined for two relays working on different time scales. The current simulation packages have problems modeling and simulating hybrid systems. It is shown how fast mode switches can be found before or during simulation. The necessary analysis work is a very small overhead for a modern simulation tool. To get some experience from practical problems with hybrid control the switching strategy is implemented in two different software environments. In one of them a time-optimal controller is added to an existing PID controller on a commercial control system. Successful experiments with this hybrid controller shows the practical use of the method 78 refs, 51 figs, 2 tabs

  12. Towards Modelling of Hybrid Systems

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2006-01-01

    system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...

  13. Analysis of a Hybrid Mechanical Regenerative Braking System

    Directory of Open Access Journals (Sweden)

    Toh Xiang Wen Matthew

    2018-01-01

    Full Text Available Regenerative braking systems for conventional vehicles are gaining attention as fossil fuels continue to be depleted. The major forms of regenerative braking systems include electrical and mechanical systems, with the former being more widely adopted at present. However mechanical systems are still feasible, including the possible hybrid systems of two mechanical energy recovery systems. A literature study was made to compare the various mechanical energy recovery systems. These systems were compared based on their advantages and disadvantages with regards to energy storage, usage, and maintenance. Based on the comparison, the most promising concept appeared to be one that combined the flywheel and the pneumatic energy recovery systems. A CAD model of this hybrid system was produced to better visualise the design. This was followed by analytical modelling of the energy recovery systems. The analysis indicated that the angular velocity had an extremely significant impact on the power loss and energy efficiency. The results showed that the hybrid system can provide better efficiency but only when operating within certain parameters. Future work is required to further improve the efficiency of this hybrid system.

  14. Systems engineering for very large systems

    Science.gov (United States)

    Lewkowicz, Paul E.

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  15. Engine systems and methods of operating an engine

    Science.gov (United States)

    Scotto, Mark Vincent

    2015-08-25

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  16. Engine systems and methods of operating an engine

    Energy Technology Data Exchange (ETDEWEB)

    Scotto, Mark Vincent

    2018-01-23

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  17. Improved Hybrid Opponent System for Professional Military Training

    Directory of Open Access Journals (Sweden)

    Michael Pelosi

    2017-10-01

    Full Text Available Described herein is a general-purpose software engineering architecture for autonomous, computer controlled opponent implementation in modern maneuver warfare simulation and training. The implementation has been developed, refined, and tested in the user crucible for several years. The approach represents a hybrid application of various well-known AI techniques, including domain modeling, agent modeling, and object-oriented programming. Inspired by computer chess approaches, the methodology combines this theoretical foundation with a hybrid and scalable portfolio of additional techniques. The result remains simple enough to be maintainable, comprehensible for the code writers as well as the end-users, and robust enough to handle a wide spectrum of possible mission scenarios and circumstances without modification.

  18. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  19. Event tree analysis for the system of hybrid reactor

    International Nuclear Information System (INIS)

    Yang Yongwei; Qiu Lijian

    1993-01-01

    The application of probabilistic risk assessment for fusion-fission hybrid reactor is introduced. A hybrid reactor system has been analysed using event trees. According to the character of the conceptual design of Hefei Fusion-fission Experimental Hybrid Breeding Reactor, the probabilities of the event tree series induced by 4 typical initiating events were calculated. The results showed that the conceptual design is safe and reasonable. through this paper, the safety character of hybrid reactor system has been understood more deeply. Some suggestions valuable to safety design for hybrid reactor have been proposed

  20. Development of Premacy Hydrogen RE Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Wakayama, N. [Mazda Motor Corporation, Hiroshima (Japan)

    2010-07-01

    Hydrogen powered ICE (internal combustion engine) vehicles can play an important role as an automotive power source in the future, because of its higher reliability and cost performance than those of fuel cell vehicles. Combined with hydrogen, Mazda's unique rotary engine (RE) has merits such as a prevention of hydrogen pre-ignition. Mazda has been developing hydrogen vehicles with the hydrogen RE from the early 1990s. Premacy (Mazda5) Hydrogen RE Hybrid was developed and launched in 2009, following RX-8 Hydrogen RE delivered in 2006. A series hybrid system was adopted in Premacy Hydrogen RE Hybrid. A traction motor switches its windings while the vehicle is moving. This switching technology allows the motor to be small and high-efficient. The lithium-ion high voltage battery, which has excellent input-output characteristics, was installed. These features extend the hydrogen fuel driving range to 200 km and obtain excellent acceleration performance. The hydrogen RE can be also operated by gasoline (Dual Fuel System). The additional gasoline operation makes hydrogen vehicles possible to drive in non-hydrogen station area. With approval from the Japanese Ministry of Land Infrastructure and Transport, Mazda Premacy Hydrogen RE Hybrid was delivered successfully to the Japanese market in the form of leasing. (orig.)

  1. Systems Engineering Workshops | Wind | NREL

    Science.gov (United States)

    Workshops Systems Engineering Workshops The Wind Energy Systems Engineering Workshop is a biennial topics relevant to systems engineering and the wind industry. The presentations and agendas are available for all of the Systems Engineering Workshops: The 1st NREL Wind Energy Systems Engineering Workshop

  2. Evolvement of transgenic male-sterility and fertility-restoration system in rice for production of hybrid varieties.

    Science.gov (United States)

    Rao, Gundra Sivakrishna; Deveshwar, Priyanka; Sharma, Malini; Kapoor, Sanjay; Rao, Khareedu Venkateswara

    2018-01-01

    We have developed a unique male-sterility and fertility-restoration system in rice by combining Brassica napus cysteine-protease gene (BnCysP1) with anther-specific P12 promoter of rice for facilitating production of hybrid varieties. In diverse crop plants, male-sterility has been exploited as a useful approach for production of hybrid varieties to harness the benefits of hybrid vigour. The promoter region of Os12bglu38 gene of rice has been isolated from the developing panicles and was designated as P12. The promoter was fused with gusA reporter gene and was expressed in Arabidopsis and rice systems. Transgenic plants exhibited GUS activity in tapetal cells and pollen of the developing anthers indicating anther/pollen-specific expression of the promoter. For engineering nuclear male sterility, the coding region of Brassica napus cysteine protease1 (BnCysP1) was isolated from developing seeds and fused to P12 promoter. Transgenic rice plants obtained with P12-BnCysP1 failed to produce functional pollen grains. The F 1 seeds obtained from BnCysP1 male-sterile plants and untransformed controls showed 1:1 (tolerant:sensitive) ratio when germinated on the MS medium supplemented with phosphinothricin (5 mg/l), confirming that the male sterility has been successfully engineered in rice. For male fertility restoration, transgenic rice plants carrying BnCysP1Si silencing system were developed. The pollination of BnCysP1 male-sterile (female-fertile) plants with BnCysP1Si pollen resulted in normal grain filling. The F 1 seeds of BnCysP1 × BnCysP1Si when germinated on the MS basal medium containing PPT (5 mg/l) and hygromycin (70 mg/l) exhibited 1:1 (tolerant:sensitive) ratio and the tolerant plants invariably showed normal grain filling. The overall results clearly suggest that the customized male-sterility & fertility-restoration system can be exploited for quality hybrid seed production in various crops.

  3. Real-Time Energy Management Control for Hybrid Electric Powertrains

    Directory of Open Access Journals (Sweden)

    Mohamed Zaher

    2013-01-01

    Full Text Available This paper focuses on embedded control of a hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real-time energy management strategy. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in the opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, the motion is driven by gravitational force, or load driven. There are three main concepts for energy storing devices in hybrid vehicles: electric, hydraulic, and mechanical (flywheel. The real-time control challenge is to balance the system power demands from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle. In the worst-case scenario, only the engine is used and the hybrid system is completely disabled. A rule-based control algorithm is developed and is tuned for different work cycles and could be linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the work machine and its position via GPS and maps both of them to the gains.

  4. Control system and method for a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  5. The estimation of energy efficiency for hybrid refrigeration system

    International Nuclear Information System (INIS)

    Gazda, Wiesław; Kozioł, Joachim

    2013-01-01

    Highlights: ► We present the experimental setup and the model of the hybrid cooling system. ► We examine impact of the operating parameters of the hybrid cooling system on the energy efficiency indicators. ► A comparison of the final and the primary energy use for a combination of the cooling systems is carried out. ► We explain the relationship between the COP and PER values for the analysed cooling systems. -- Abstract: The concept of the air blast-cryogenic freezing method (ABCF) is based on an innovative hybrid refrigeration system with one common cooling space. The hybrid cooling system consists of a vapor compression refrigeration system and a cryogenic refrigeration system. The prototype experimental setup for this method on the laboratory scale is discussed. The application of the results of experimental investigations and the theoretical–empirical model makes it possible to calculate the cooling capacity as well as the final and primary energy use in the hybrid system. The energetic analysis has been carried out for the operating modes of the refrigerating systems for the required temperatures inside the cooling chamber of −5 °C, −10 °C and −15 °C. For the estimation of the energy efficiency the coefficient of performance COP and the primary energy ratio PER for the hybrid refrigeration system are proposed. A comparison of these coefficients for the vapor compression refrigeration and the cryogenic refrigeration system has also been presented.

  6. Effect of gear shift and engine start losses on control strategies for hybrid electric vehicles

    NARCIS (Netherlands)

    Ngo, V.; Hofman, T.; Steinbuch, M.; Serrarens, A.

    2012-01-01

    In this paper, energetic loss models in the events of shifting gear and starting engine in a parallel Hybrid Electric Vehicle equipped with an Automated Manual Transmission (AMT) will be introduced. The optimal control algorithm for the start-stop, power split and gear shift problem based on Dynamic

  7. A hybrid reconfigurable solar and wind energy system

    Science.gov (United States)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  8. Feasibility study on the introduction of hybrid buses; Hybrid bus donyu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this research is to design pilot projects for introducing hybrid buses into the public transportation sector. This research also covers contents regarding hybrid buses with a trolley-collector motor and a diesel engine, to identify technical and economical problems and to analyze cost beneficiation using hybrid buses. The trolley parallel hybrid system has been employed for the feasibility study. This system has abundant operation results in Europe and the USA. Its battery is small or is not necessary, and the maintenance cost is also low. As a result of the feasibility study, reduction effects of CO2 emission were found out. When the CO2 generation at the power plant is not counted, the reduction effect was estimated to be 32% compared with the CO2 emission from diesel buses. When the CO2 generation at the power plant is considered, it was estimated to be 18%. The cost beneficiation was investigated for the cases of the transportations using trolley system surrounding a medium-scale terminal among large-scale housing development, tourist resort, and stations. The annual income is estimated to be larger than the annual payment in each case. It was found that the hybrid bus is economically established. 17 refs., 48 figs., 41 tabs.

  9. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    Science.gov (United States)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  10. Weighted hybrid technique for recommender system

    Science.gov (United States)

    Suriati, S.; Dwiastuti, Meisyarah; Tulus, T.

    2017-12-01

    Recommender system becomes very popular and has important role in an information system or webpages nowadays. A recommender system tries to make a prediction of which item a user may like based on his activity on the system. There are some familiar techniques to build a recommender system, such as content-based filtering and collaborative filtering. Content-based filtering does not involve opinions from human to make the prediction, while collaborative filtering does, so collaborative filtering can predict more accurately. However, collaborative filtering cannot give prediction to items which have never been rated by any user. In order to cover the drawbacks of each approach with the advantages of other approach, both approaches can be combined with an approach known as hybrid technique. Hybrid technique used in this work is weighted technique in which the prediction score is combination linear of scores gained by techniques that are combined.The purpose of this work is to show how an approach of weighted hybrid technique combining content-based filtering and item-based collaborative filtering can work in a movie recommender system and to show the performance comparison when both approachare combined and when each approach works alone. There are three experiments done in this work, combining both techniques with different parameters. The result shows that the weighted hybrid technique that is done in this work does not really boost the performance up, but it helps to give prediction score for unrated movies that are impossible to be recommended by only using collaborative filtering.

  11. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  12. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  13. Introducing Model-Based System Engineering Transforming System Engineering through Model-Based Systems Engineering

    Science.gov (United States)

    2014-03-31

    Web  Presentation...Software  .....................................................  20   Figure  6.  Published   Web  Page  from  Data  Collection...the  term  Model  Based  Engineering  (MBE),  Model  Driven  Engineering  ( MDE ),  or  Model-­‐Based  Systems  

  14. Hybrid particle swarm optimization algorithm and its application in nuclear engineering

    International Nuclear Information System (INIS)

    Liu, C.Y.; Yan, C.Q.; Wang, J.J.

    2014-01-01

    Highlights: • We propose a hybrid particle swarm optimization algorithm (HPSO). • Modified Nelder–Mead simplex search method is applied in HPSO. • The algorithm has a high search precision and rapidly calculation speed. • HPSO can be used in the nuclear engineering optimization design problems. - Abstract: A hybrid particle swarm optimization algorithm with a feasibility-based rule for solving constrained optimization problems has been developed in this research. Firstly, the global optimal solution zone can be obtained through particle swarm optimization process, and then the refined search of the global optimal solution will be achieved through the modified Nelder–Mead simplex algorithm. Simulations based on two well-studied benchmark problems demonstrate the proposed algorithm will be an efficient alternative to solving constrained optimization problems. The vertical electrical heating pressurizer is one of the key components in reactor coolant system. The mathematical model of pressurizer has been established in steady state. The optimization design of pressurizer weight has been carried out through HPSO algorithm. The results show the pressurizer weight can be reduced by 16.92%. The thermal efficiencies of conventional PWR nuclear power plants are about 31–35% so far, which are much lower than fossil fueled plants based in a steam cycle as PWR. The thermal equilibrium mathematic model for nuclear power plant secondary loop has been established. An optimization case study has been conducted to improve the efficiency of the nuclear power plant with the proposed algorithm. The results show the thermal efficiency is improved by 0.5%

  15. Development and experimental testing of a hybrid Stirling engine-adsorption chiller auxiliary power unit for heavy trucks

    International Nuclear Information System (INIS)

    Flannery, Barry; Lattin, Robert; Finckh, Oliver; Berresheim, Harald; Monaghan, Rory F.D.

    2017-01-01

    Highlights: • Free-piston Stirling engine for truck APU. • Waste heat driven adsorption chiller for cab air conditioning. • Reduced-order model comparing proposed system to existing technology. • Experimental test data from prototype test rig. - Abstract: This paper identifies the key technical requirements for a heavy truck auxiliary power unit (APU) and explores a potential alternative technology for use in a next-generation APU which could eliminate key problems related to emissions, noise and maintenance experienced today by conventional diesel engine-vapour compression APUs. The potential performance of a novel hybrid Stirling engine-adsorption chiller concept is investigated and benchmarked against the incumbent technology using a reduced-order model based on experimental data. Experimental results from a Stirling-adsorption system (SAS) prototype test rig are also presented which highlight system integration dynamics and overall performance. The adsorption chiller achieved an average COP of 0.42 ± 0.06 and 2.3 ± 0.1 kW_t of cooling capacity at the baseline test condition. The prototype SAS test rig demonstrates that there appear to be no major technology barriers remaining that would prevent adoption of the SAS concept in a next-generation APU. Such a system could offer a reduction of exhaust emissions, greenhouse gases (GHG), ozone-depleting substances, noise, low maintenance and the potential for fuel flexibility and higher reliability. Preliminary modelling results indicate that the proposed system could offer superior overall electrical and cooling efficiencies compared to incumbent APUs and demonstrate a payback period of 4.6 years.

  16. Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2017-02-01

    Full Text Available Free-piston linear generators (FPLGs have attractive application prospects for hybrid electric vehicles (HEVs owing to their high-efficiency, low-emissions and multi-fuel flexibility. In order to achieve long-term stable operation, the hybrid system design and full-cycle operation strategy are essential factors that should be considered. A 25 kW FPLG consisting of an internal combustion engine (ICE, a linear electric machine (LEM and a gas spring (GS is designed. To improve the power density and generating efficiency, the LEM is assembled with two modular flat-type double-sided PM LEM units, which sandwich a common moving-magnet plate supported by a middle keel beam and bilateral slide guide rails to enhance the stiffness of the moving plate. For the convenience of operation processes analysis, the coupling hybrid system is modeled mathematically and a full cycle simulation model is established. Top-level systemic control strategies including the starting, stable operating, fault recovering and stopping strategies are analyzed and discussed. The analysis results validate that the system can run stably and robustly with the proposed full cycle operation strategy. The effective electric output power can reach 26.36 kW with an overall system efficiency of 36.32%.

  17. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  18. Hybrid Intrusion Detection System for DDoS Attacks

    Directory of Open Access Journals (Sweden)

    Özge Cepheli

    2016-01-01

    Full Text Available Distributed denial-of-service (DDoS attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS, for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.

  19. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor II of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  20. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While, the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor 2 of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  1. Hybrid rocket propulsion systems for outer planet exploration missions

    Science.gov (United States)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  2. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  3. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  4. Free-piston engine linear generator for hybrid vehicles modeling study

    Science.gov (United States)

    Callahan, T. J.; Ingram, S. K.

    1995-05-01

    Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.

  5. Hybrid-electric propulsion for automotive and aviation applications

    OpenAIRE

    Friedrich, C; Robertson, Paul Andrew

    2014-01-01

    In parallel with the automotive industry, hybrid-electric propulsion is becoming a viable alternative propulsion technology for the aviation sector and reveals potential advantages including fuel savings, lower pollution, and reduced noise emission. Hybrid-electric propulsion systems can take advantage of the synergy between two technologies by utilizing both internal combustion engines and electric motors together, each operating at their respective optimum conditions...

  6. Performance analysis of a photovoltaic-thermochemical hybrid system prototype

    International Nuclear Information System (INIS)

    Li, Wenjia; Ling, Yunyi; Liu, Xiangxin; Hao, Yong

    2017-01-01

    Highlights: •A modular photovoltaic-thermochemical hybrid system prototype is proposed. •Net solar-electric efficiency up to 41% is achievable. •Stable solar power supply is achievable via convenient energy storage. •The modular design facilitates the scalability of the hybrid system. -- Abstract: A solar photovoltaic (PV) thermochemical hybrid system consisting of a point-focus Fresnel concentrator, a PV cell and a methanol thermochemical reactor is proposed. In particular, a reactor capable of operating under high solar concentration is designed, manufactured and tested. Studies on both kinetic and thermodynamic characteristics of the reactor and the system are performed. Analysis of numerical and experimental results shows that with cascaded solar energy utilization and synergy among different forms of energy, the hybrid system has the advantages of high net solar-electric efficiency (up to 41%), stable solar energy power supply, solar energy storage (via syngas) and flexibility in application scale. The hybrid system proposed in this work provides a potential solution to some key challenges of current solar energy utilization technologies.

  7. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    Science.gov (United States)

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is

  8. Systems Engineering

    OpenAIRE

    Vaughan, William W.

    2016-01-01

    The term “systems engineering” when entered into the Google search page, produces a significant number of results, evidence that systems engineering is recognized as being important for the success of essentially all products. Since most readers of this item will be rather well versed in documents concerning systems engineering, I have elected to share some of the points made on this subject in a document developed by the European Cooperation for Space Standardization (ECSS), a component of t...

  9. Hybrid magnets at Tohoku University

    International Nuclear Information System (INIS)

    Muto, Yoshio; Nakagawa, Yasuaki; Noto, Koshichi; Hoshi, Akira; Miura, Shigeto; Watanabe, Kazuo; Kido, Giyuu

    1984-01-01

    The High Field Laboratory for Superconducting Materials was established in April 1981 at Tohoku University in order to provide research facilities for the development of superconducting materials suitable for superconducting magnets for the plasma confinement in fusion reactors. Main facilities of this laboratory are three hybrid magnets up to 30 Tesla dc magnetic fields with inner bores from 32 to 52mm in diameter. The magnets consist of superconducting outer solenoids and water-cooled inner ones with a maximum steady power dissipation of 8 MW. The design and construction of these three hybrid magnets have finished in last three years, and two of them (HM-3;20T, 32 mm bore and HM-2; 23T, 52 mm bore) have already opened to scientists and engineers in the superconductivity and other fields. The rated field of the third hybrid magnet (HM-1) is 31 (or 29) Tesla in a bore of 32 (or 52) mm in diameter. By this hybrid system we have succeeded to produce 29.3 Tesla on April 21, 1984. Detailed descriptions are presented on the superconducting magnets, power supplies and cooling systems for them, water-cooled magnets, dc-high power source and water-cooled system for them, the monitoring and control system for the hybrid magnets including a super-minicomputer system, a hard-wired interlock system for the safety of human beings and machines, and so on. The fourth hybrid magnet system which aims at 35 Tesla as the next phase is also discussed. (author)

  10. Real Time Energy Management Control Strategies for Hybrid Powertrains

    Science.gov (United States)

    Zaher, Mohamed Hegazi Mohamed

    In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.

  11. Model Reduction of Hybrid Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    gramians. Generalized gramians are the solutions to the observability and controllability Lyapunov inequalities. In the first framework the projection matrices are found based on the common generalized gramians. This framework preserves the stability of the original switched system for all switching...... is guaranteed to be preserved for arbitrary switching signal. To compute the common generalized gramians linear matrix inequalities (LMI’s) need to be solved. These LMI’s are not always feasible. In order to solve the problem of conservatism, the second framework is presented. In this method the projection......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...

  12. The under-critical reactors physics for the hybrid systems; La physique des reacteurs sous-critiques des systemes hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Schapira, J P [Institut de Physique Nucleaire, IN2P3/CNRS 91 - Orsay (France); Vergnes, J [Electricite de France, EDF, Direction des Etudes et Recherches, 75 - Paris (France); Zaetta, A [CEA/Saclay, Direction des Reacteurs Nucleaires, DRN, 91 - Gif-sur-Yvette (France); and others

    1998-03-12

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  13. HyLTL: a temporal logic for model checking hybrid systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2013-08-01

    Full Text Available The model-checking problem for hybrid systems is a well known challenge in the scientific community. Most of the existing approaches and tools are limited to safety properties only, or operates by transforming the hybrid system to be verified into a discrete one, thus loosing information on the continuous dynamics of the system. In this paper we present a logic for specifying complex properties of hybrid systems called HyLTL, and we show how it is possible to solve the model checking problem by translating the formula into an equivalent hybrid automaton. In this way the problem is reduced to a reachability problem on hybrid automata that can be solved by using existing tools.

  14. Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering.

    Science.gov (United States)

    Lee, Junghoon; Han, A-Reum; Yu, Hojeong; Shin, Tae Joo; Yang, Changduk; Oh, Joon Hak

    2013-06-26

    Ambipolar polymer semiconductors are highly suited for use in flexible, printable, and large-area electronics as they exhibit both n-type (electron-transporting) and p-type (hole-transporting) operations within a single layer. This allows for cost-effective fabrication of complementary circuits with high noise immunity and operational stability. Currently, the performance of ambipolar polymer semiconductors lags behind that of their unipolar counterparts. Here, we report on the side-chain engineering of conjugated, alternating electron donor-acceptor (D-A) polymers using diketopyrrolopyrrole-selenophene copolymers with hybrid siloxane-solubilizing groups (PTDPPSe-Si) to enhance ambipolar performance. The alkyl spacer length of the hybrid side chains was systematically tuned to boost ambipolar performance. The optimized three-dimensional (3-D) charge transport of PTDPPSe-Si with pentyl spacers yielded unprecedentedly high hole and electron mobilities of 8.84 and 4.34 cm(2) V(-1) s(-1), respectively. These results provide guidelines for the molecular design of semiconducting polymers with hybrid side chains.

  15. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit.

    Science.gov (United States)

    Chakrabarti, B; Lastras-Montaño, M A; Adam, G; Prezioso, M; Hoskins, B; Payvand, M; Madhavan, A; Ghofrani, A; Theogarajan, L; Cheng, K-T; Strukov, D B

    2017-02-14

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore's law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + "Molecular") architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.

  16. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  17. Hybrid quantum systems of ions and atoms

    OpenAIRE

    Sias, Carlo; Köhl, Michael

    2014-01-01

    In this chapter we review the progress in experiments with hybrid systems of trapped ions and ultracold neutral atoms. We give a theoretical overview over the atom-ion interactions in the cold regime and give a summary of the most important experimental results. We conclude with an overview of remaining open challenges and possible applications in hybrid quantum systems of ions and neutral atoms.

  18. Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this Monitored Retrievable Storage (MRS) Project Systems Engineering Management Plan (SEMP) is to define and establish the MRS Project Systems Engineering process that implements the approved policy and requirements of the Office of Civilian Radioactive Waste Management (OCRWM) for the US Department of Energy (DOE). This plan is Volume 5 of the MRS Project Management Plan (PMP). This plan provides the framework for implementation of systems engineering on the MRS Project consistent with DOE Order 4700.1, the OCRWM Program Management System Manual (PMSM), and the OCRWM Systems Engineering Management Plan (SEMP)

  19. NASA Systems Engineering Handbook

    Science.gov (United States)

    Hirshorn, Steven R.; Voss, Linda D.; Bromley, Linda K.

    2017-01-01

    The update of this handbook continues the methodology of the previous revision: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. This approach provides the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering processes and to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. Material used for updating this handbook has been drawn from many sources, including NPRs, Center systems engineering handbooks and processes, other Agency best practices, and external systems engineering textbooks and guides. This handbook consists of six chapters: (1) an introduction, (2) a systems engineering fundamentals discussion, (3) the NASA program project life cycles, (4) systems engineering processes to get from a concept to a design, (5) systems engineering processes to get from a design to a final product, and (6) crosscutting management processes in systems engineering. The chapters are supplemented by appendices that provide outlines, examples, and further information to illustrate topics in the chapters. The handbook makes extensive use of boxes and figures to define, refine, illustrate, and extend concepts in the chapters.

  20. Inference in hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio

    2009-01-01

    Since the 1980s, Bayesian networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability techniques (like fault trees and reliability block diagrams). However, limitations in the BNs' calculation engine have prevented BNs from becoming equally popular for domains containing mixtures of both discrete and continuous variables (the so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the last decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability.

  1. Evolutionary design of discrete controllers for hybrid mechatronic systems

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  2. Breeding of a xylose-fermenting hybrid strain by mating genetically engineered haploid strains derived from industrial Saccharomyces cerevisiae.

    Science.gov (United States)

    Inoue, Hiroyuki; Hashimoto, Seitaro; Matsushika, Akinori; Watanabe, Seiya; Sawayama, Shigeki

    2014-12-01

    The industrial Saccharomyces cerevisiae IR-2 is a promising host strain to genetically engineer xylose-utilizing yeasts for ethanol fermentation from lignocellulosic hydrolysates. Two IR-2-based haploid strains were selected based upon the rate of xylulose fermentation, and hybrids were obtained by mating recombinant haploid strains harboring heterogeneous xylose dehydrogenase (XDH) (wild-type NAD(+)-dependent XDH or engineered NADP(+)-dependent XDH, ARSdR), xylose reductase (XR) and xylulose kinase (XK) genes. ARSdR in the hybrids selected for growth rates on yeast extract-peptone-dextrose (YPD) agar and YP-xylose agar plates typically had a higher activity than NAD(+)-dependent XDH. Furthermore, the xylose-fermenting performance of the hybrid strain SE12 with the same level of heterogeneous XDH activity was similar to that of a recombinant strain of IR-2 harboring a single set of genes, XR/ARSdR/XK. These results suggest not only that the recombinant haploid strains retain the appropriate genetic background of IR-2 for ethanol production from xylose but also that ARSdR is preferable for xylose fermentation.

  3. Resource Efficiency Assessment—Comparing a Plug-In Hybrid with a Conventional Combustion Engine

    Directory of Open Access Journals (Sweden)

    Martin Henßler

    2016-01-01

    Full Text Available The strong economic growth in recent years has led to an intensive use of natural resources, which causes environmental stress as well as restrictions on the availability of resources. Therefore, a more efficient use of resources is necessary as an important contribution to sustainable development. The ESSENZ method presented in this article comprehensively assesses a product’s resource efficiency by going beyond existing approaches and considering the pollution of the environment as well as the physical and socio-economic availability of resources. This paper contains a short description of the ESSENZ methodology as well as a case study of the Mercedes-Benz C-Class (W 205—comparing the conventional C 250 (petrol engine with the C 350 e Plug-In Hybrid (electric motor and petrol engine. By applying the ESSENZ method it can be shown that the use of more and different materials for the Plug-In-Hybrid influences the dimensions physical and socio-economic availability significantly. However, for environmental impacts, especially climate change and summer smog, clear advantages of the C 350 e occur due to lower demand of fossil energy carriers. As shown within the case study, the when applying the ESSENZ method a comprehensive evaluation of the used materials and fossil energy carriers can be achieved.

  4. Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems

    Science.gov (United States)

    Arend, David J.; Tillman, Gregory; O'Brien, Walter F.

    2012-01-01

    The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.

  5. Formal Description of Hybrid Systems

    DEFF Research Database (Denmark)

    Zhou, Chaochen; Ji, Wang; Ravn, Anders P.

    1996-01-01

    A language to describe hybrid systems, i.e. networks of communicating discrete and continuous processes, is proposed. A semantics of the language is given in Extended Duration Calculus, a real-time interval logic with a proof system that allows reasoning in mathematical analysis about continuous ...

  6. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.

    Science.gov (United States)

    Ando, Noriyasu; Kanzaki, Ryohei

    2017-09-01

    The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Multiuser hybrid switched-selection diversity systems

    KAUST Repository

    Shaqfeh, Mohammad

    2011-09-01

    A new multiuser scheduling scheme is proposed and analyzed in this paper. The proposed system combines features of conventional full-feedback selection-based diversity systems and reduced-feedback switch-based diversity systems. The new hybrid system provides flexibility in trading-off the channel information feedback overhead with the prospected multiuser diversity gains. The users are clustered into groups, and the users\\' groups are ordered into a sequence. Per-group feedback thresholds are used and optimized to maximize the system overall achievable rate. The proposed hybrid system applies switched diversity criterion to choose one of the groups, and a selection criterion to decide the user to be scheduled from the chosen group. Numerical results demonstrate that the system capacity increases as the number of users per group increases, but at the cost of more required feedback messages. © 2011 IEEE.

  8. Optomechanical systems engineering

    CERN Document Server

    Kasunic, Keith J

    2015-01-01

    Covers the fundamental principles behind optomechanical design This book emphasizes a practical, systems-level overview of optomechanical engineering, showing throughout how the requirements on the optical system flow down to those on the optomechanical design. The author begins with an overview of optical engineering, including optical fundamentals as well as the fabrication and alignment of optical components such as lenses and mirrors. The concepts of optomechanical engineering are then applied to the design of optical systems, including the structural design of mechanical and optical co

  9. Systems engineering and integration as a foundation for mission engineering

    OpenAIRE

    Beam, David F.

    2015-01-01

    Approved for public release; distribution is unlimited This paper investigates the emerging term mission engineering through the framework of systems engineering and systems integration. Systems engineering concepts, processes, and methodologies are extrapolated for use in conjunction with a systems integration, life-cycle based framework to effect mission engineering. The specific systems engineering concepts of measures of effectiveness, performance and suitability are recommended as fou...

  10. Model predictive control of hybrid systems : stability and robustness

    NARCIS (Netherlands)

    Lazar, M.

    2006-01-01

    This thesis considers the stabilization and the robust stabilization of certain classes of hybrid systems using model predictive control. Hybrid systems represent a broad class of dynamical systems in which discrete behavior (usually described by a finite state machine) and continuous behavior

  11. Probabilistic modelling and analysis of stand-alone hybrid power systems

    International Nuclear Information System (INIS)

    Lujano-Rojas, Juan M.; Dufo-López, Rodolfo; Bernal-Agustín, José L.

    2013-01-01

    As a part of the Hybrid Intelligent Algorithm, a model based on an ANN (artificial neural network) has been proposed in this paper to represent hybrid system behaviour considering the uncertainty related to wind speed and solar radiation, battery bank lifetime, and fuel prices. The Hybrid Intelligent Algorithm suggests a combination of probabilistic analysis based on a Monte Carlo simulation approach and artificial neural network training embedded in a genetic algorithm optimisation model. The installation of a typical hybrid system was analysed. Probabilistic analysis was used to generate an input–output dataset of 519 samples that was later used to train the ANNs to reduce the computational effort required. The generalisation ability of the ANNs was measured in terms of RMSE (Root Mean Square Error), MBE (Mean Bias Error), MAE (Mean Absolute Error), and R-squared estimators using another data group of 200 samples. The results obtained from the estimation of the expected energy not supplied, the probability of a determined reliability level, and the estimation of expected value of net present cost show that the presented model is able to represent the main characteristics of a typical hybrid power system under uncertain operating conditions. - Highlights: • This paper presents a probabilistic model for stand-alone hybrid power system. • The model considers the main sources of uncertainty related to renewable resources. • The Hybrid Intelligent Algorithm has been applied to represent hybrid system behaviour. • The installation of a typical hybrid system was analysed. • The results obtained from the study case validate the presented model

  12. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  13. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  14. Analysis of Synchronization for Coupled Hybrid Systems

    DEFF Research Database (Denmark)

    Li, Zheng; Wisniewski, Rafal

    2006-01-01

    In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...... of control strategies. This paper combines topology and section mapping theories together to show a new way of analyzing hybrid systems...

  15. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  16. The systems engineering overview and process (from the Systems Engineering Management Guide, 1990)

    Science.gov (United States)

    1993-01-01

    The past several decades have seen the rise of large, highly interactive systems that are on the forward edge of technology. As a result of this growth and the increased usage of digital systems (computers and software), the concept of systems engineering has gained increasing attention. Some of this attention is no doubt due to large program failures which possibly could have been avoided, or at least mitigated, through the use of systems engineering principles. The complexity of modern day weapon systems requires conscious application of systems engineering concepts to ensure producible, operable and supportable systems that satisfy mission requirements. Although many authors have traced the roots of systems engineering to earlier dates, the initial formalization of the systems engineering process for military development began to surface in the mid-1950s on the ballistic missile programs. These early ballistic missile development programs marked the emergence of engineering discipline 'specialists' which has since continued to grow. Each of these specialties not only has a need to take data from the overall development process, but also to supply data, in the form of requirements and analysis results, to the process. A number of technical instructions, military standards and specifications, and manuals were developed as a result of these development programs. In particular, MILSTD-499 was issued in 1969 to assist both government and contractor personnel in defining the systems engineering effort in support of defense acquisition programs. This standard was updated to MIL-STD499A in 1974, and formed the foundation for current application of systems engineering principles to military development programs.

  17. Development of a hybrid pneumatic-power vehicle

    International Nuclear Information System (INIS)

    Huang, K. David; Tzeng, S.-C.

    2005-01-01

    Many complex technologies have been developed and applied to improve the energy efficiency and exhaust emission of an engine under different driving conditions. The overall thermal efficiency of an internal-combustion engine, however, can be maintained at only about 20-30%, with aggravated problems in the design and development, such as overall difficulty, excessive time consumption or excessively high cost. For electric cars, there is still no major technological breakthrough for the rapid recharging of a large capacity battery and detection of remaining power in it. Although all currently available hybrid-power engines are able to lower the amount of exhaust emissions and the fuel consumption of the engine, they are still unable to achieve a stable and optimal running condition immediately after ignition; hence the engine's thermal-efficiency remains low. To solve the aforementioned problems, an innovative concept - a hybrid pneumatic power-system (HPPS), which stores 'flow work' instead of storing electrochemical energy of the battery - is introduced. This innovative power system not only ensures that the internal-combustion ensures optimally but also recycles the exhaust flow to propel the vehicle. The optimization of the internal-combustion and recycling of the exhaust energy can increase the vehicle's efficiency from an original 15% to 33%, an overall increase of 18%

  18. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  19. Hydrogen atom as a quantum-classical hybrid system

    International Nuclear Information System (INIS)

    Zhan, Fei; Wu, Biao

    2013-01-01

    Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

  20. DIAGNOSIS WINDOWS PROBLEMS BASED ON HYBRID INTELLIGENCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    SAFWAN O. HASOON

    2013-10-01

    Full Text Available This paper describes the artificial intelligence technologies by integrating Radial Basis Function networks with expert systems to construct a robust hybrid system. The purpose of building the hybrid system is to give recommendations to repair the operating system (Windows problems and troubleshoot the problems that can be repaired. The neural network has unique characteristics which it can complete the uncompleted data, the expert system can't deal with data that is incomplete, but using the neural network individually has some disadvantages which it can't give explanations and recommendations to the problems. The expert system has the ability to explain and give recommendations by using the rules and the human expert in some conditions. Therefore, we have combined the two technologies. The paper will explain the integration methods between the two technologies and which method is suitable to be used in the proposed hybrid system.

  1. A Game-Theoretic approach to Fault Diagnosis of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2011-06-01

    Full Text Available Physical systems can fail. For this reason the problem of identifying and reacting to faults has received a large attention in the control and computer science communities. In this paper we study the fault diagnosis problem for hybrid systems from a game-theoretical point of view. A hybrid system is a system mixing continuous and discrete behaviours that cannot be faithfully modeled neither by using a formalism with continuous dynamics only nor by a formalism including only discrete dynamics. We use the well known framework of hybrid automata for modeling hybrid systems, and we define a Fault Diagnosis Game on them, using two players: the environment and the diagnoser. The environment controls the evolution of the system and chooses whether and when a fault occurs. The diagnoser observes the external behaviour of the system and announces whether a fault has occurred or not. Existence of a winning strategy for the diagnoser implies that faults can be detected correctly, while computing such a winning strategy corresponds to implement a diagnoser for the system. We will show how to determine the existence of a winning strategy, and how to compute it, for some decidable classes of hybrid automata like o-minimal hybrid automata.

  2. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  3. Hybrid Experiential-Heuristic Cognitive Radio Engine Architecture and Implementation

    Directory of Open Access Journals (Sweden)

    Ashwin Amanna

    2012-01-01

    Full Text Available The concept of cognitive radio (CR focuses on devices that can sense their environment, adapt configuration parameters, and learn from past behaviors. Architectures tend towards simplified decision-making algorithms inspired by human cognition. Initial works defined cognitive engines (CEs founded on heuristics, such as genetic algorithms (GAs, and case-based reasoning (CBR experiential learning algorithms. This hybrid architecture enables both long-term learning, faster decisions based on past experience, and capability to still adapt to new environments. This paper details an autonomous implementation of a hybrid CBR-GA CE architecture on a universal serial radio peripheral (USRP software-defined radio focused on link adaptation. Details include overall process flow, case base structure/retrieval method, estimation approach within the GA, and hardware-software lessons learned. Unique solutions to realizing the concept include mechanisms for combining vector distance and past fitness into an aggregate quantification of similarity. Over-the-air performance under several interference conditions is measured using signal-to-noise ratio, packet error rate, spectral efficiency, and throughput as observable metrics. Results indicate that the CE is successfully able to autonomously change transmit power, modulation/coding, and packet size to maintain the link while a non-cognitive approach loses connectivity. Solutions to existing shortcomings are proposed for improving case-base searching and performance estimation methods.

  4. Evaluation of a Compact Hybrid Brain-Computer Interface System

    Directory of Open Access Journals (Sweden)

    Jaeyoung Shin

    2017-01-01

    Full Text Available We realized a compact hybrid brain-computer interface (BCI system by integrating a portable near-infrared spectroscopy (NIRS device with an economical electroencephalography (EEG system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA and baseline (BL tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  5. Hybrid Chaos Synchronization of Four-Scroll Systems via Active Control

    Science.gov (United States)

    Karthikeyan, Rajagopal; Sundarapandian, Vaidyanathan

    2014-03-01

    This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.

  6. Simulation and Analysis of the Hybrid Operating Mode in ITER

    International Nuclear Information System (INIS)

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-01-01

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER

  7. Transforming Systems Engineering through Model-Centric Engineering

    Science.gov (United States)

    2018-02-28

    Contract No. HQ0034-13-D-0004 Research Tasks: 48, 118, 141, 157, 170 Report No. SERC-2018-TR-103 Transforming Systems Engineering through...Model-Centric Engineering Technical Report SERC-2018-TR-103 February 28, 2018 Principal Investigator Dr. Mark Blackburn, Stevens Institute of...Systems Engineering Research Center This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the

  8. Analisa Penerapan Sistem Hybrid Pada Kapal KPC-28 Dengan Kombinasi Diesel Engine dan Motor Listrik Yang Disuplai Dengan Batterai

    Directory of Open Access Journals (Sweden)

    Tangguh Tangguh Bimantoro

    2014-03-01

    Full Text Available Teknologi Hybrid System Vessel akhir-akhir ini sedang menjadi bahasan yang sering dibicarakan di dunia pendidikan dan teknologi permesinan. Teknologi Hybrid System Vessel yang dimaksud adalah kapal yang berjalan dengan dua sumber tenaga, mesin yang bekerja dengan sumber tenaga bahan bakar dan motor listrik yang bekerja dengan sumber tenaga listrik. Oleh karena adanya permasalahan tersebut maka dikembangkanlah konsep system hybrid pada kapal.Hybrid ini mengacu teknologi pada mobil hybrid yang sudah dikembangkan sekarang, tujuan dari hybrid ini adalah sebagai penghematan BBM dan juga sebagai pereduksi emisi di system permesinan kapal.Penelitian ini menggunakan simulasi dengan software Maxsurf, kemudian dilakukan dengan metode perhitungan manual yang nantinya digunakan untuk menentukan jumlah batterai yang dibutuhkan pada penggerak motor induksi. Hasil dari penelitian ini berupa desain  Hybrid System kapal KPC – 28, serta hasil analisa Hybrid System di kapal apakah memberikan effisiensi bahan bakar yang cukup hemat dengan tanpa menggunakan Hybrid System pada mesin kapal tersebut.

  9. Review of the Optimal Design on a Hybrid Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Wu Yuan-Kang

    2016-01-01

    Full Text Available Hybrid renewable energy systems, combining various kinds of technologies, have shown relatively high capabilities to solve reliability problems and have reduced cost challenges. The use of hybrid electricity generation/storage technologies is reasonable to overcome related shortcomings. While the hybrid renewable energy system is attractive, its design, specifically the determination of the size of PV, wind, and diesel power generators and the size of energy storage system in each power station, is very challenging. Therefore, this paper will focus on the system planning and operation of hybrid generation systems, and several corresponding topics and papers by using intelligent computing methods will be reviewed. They include typical case studies, modeling and system simulation, control and management, reliability and economic studies, and optimal design on a reliable hybrid generation system.

  10. Feasibility Study and Optimization of An Hybrid System (Eolian ...

    African Journals Online (AJOL)

    Feasibility Study and Optimization of An Hybrid System (Eolian- Photovoltaic - Diesel) With Provision of Electric Energy Completely Independent. ... reducing emissions of greenhouse gas (CO2 rate = 16086 kg / year for a system using only the generator diesel and is 599 kg / year for the stand alone hybrid system studied).

  11. NASA Workshop on Hybrid (Mixed-Actuator) Spacecraft Attitude Control

    Science.gov (United States)

    Dennehy, Cornelius J.; Kunz, Nans

    2014-01-01

    At the request of the Science Mission Directorate Chief Engineer, the NASA Technical Fellow for Guidance, Navigation & Control assembled and facilitated a workshop on Spacecraft Hybrid Attitude Control. This multi-Center, academic, and industry workshop, sponsored by the NASA Engineering and Safety Center (NESC), was held in April 2013 to unite nationwide experts to present and discuss the various innovative solutions, techniques, and lessons learned regarding the development and implementation of the various hybrid attitude control system solutions investigated or implemented. This report attempts to document these key lessons learned with the 16 findings and 9 NESC recommendations.

  12. Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems

    International Nuclear Information System (INIS)

    Turati, Pietro; Pedroni, Nicola; Zio, Enrico

    2016-01-01

    The efficient estimation of system reliability characteristics is of paramount importance for many engineering applications. Real world system reliability modeling calls for the capability of treating systems that are: i) dynamic, ii) complex, iii) hybrid and iv) highly reliable. Advanced Monte Carlo (MC) methods offer a way to solve these types of problems, which are feasible according to the potentially high computational costs. In this paper, the REpetitive Simulation Trials After Reaching Thresholds (RESTART) method is employed, extending it to hybrid systems for the first time (to the authors’ knowledge). The estimation accuracy and precision of RESTART highly depend on the choice of the Importance Function (IF) indicating how close the system is to failure: in this respect, proper IFs are here originally proposed to improve the performance of RESTART for the analysis of hybrid systems. The resulting overall simulation approach is applied to estimate the probability of failure of the control system of a liquid hold-up tank and of a pump-valve subsystem subject to degradation induced by fatigue. The results are compared to those obtained by standard MC simulation and by RESTART with classical IFs available in the literature. The comparison shows the improvement in the performance obtained by our approach. - Highlights: • We consider the issue of estimating small failure probabilities in dynamic systems. • We employ the RESTART method to estimate the failure probabilities. • New Importance Functions (IFs) are introduced to increase the method performance. • We adopt two dynamic, hybrid, highly reliable systems as case studies. • A comparison with literature IFs proves the effectiveness of the new IFs.

  13. USING OF NON-CONVENTIONAL FUELS IN HYBRID VEHICLE DRIVES

    Directory of Open Access Journals (Sweden)

    Dalibor Barta

    2016-12-01

    Full Text Available Electric or hybrid vehicles are becoming increasingly common on roads. While electric vehicles are still more or less intended for city traffic, hybrid vehicles allow normal use due to wider driving range. The use of internal combustion engines in hybrid drives is still an inspiration to find the way to reduce the produc-tion of emissions. Numbers of alternative energy resources were studied as a substitution of conventional fuels for hybrid vehicles drives worldwide. The paper deals with the possibility of using alternative fuels as CNG, LPG and LNG in combination with hybrid drive of a midibus with the capacity of 20 passengers. Various aspects and techniques of hybrid vehicles from energy management system, propulsion system and using of various alternative fuels are explored in this paper. Other related fields of hybrid vehicles such as changes of vehicle weight or influence of electric energy sources on the total vehicle emission production are also included.

  14. Hybrid photovoltaic-diesel-battery systems for remote energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Gabler, H.; Kiefer, K.; Preiser, K.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1997-12-31

    Photovoltaic solar generators combined with diesel engines and battery energy storage are powering isolated mountain lodges, information centres in nature parks, isolated farms or dwellings all over Europe. A total of 300000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaics, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilisation of the electric energy produced by the PV generator. (orig.) 8 refs.

  15. Study of a SOFC-PEM hybrid system

    International Nuclear Information System (INIS)

    Fillman, B.; Bjornbom, P.; Sylwan, C.

    2004-01-01

    'Full text:' In the present project a system study of a SOFC-PEM hybrid system is in progress. Positive synergy effects are expected when combining a SOFC system with a PEM system. By combining the advantages of each fuel cell type it is promising that the hybrid system has higher overall efficiency than a SOFC-only system or a reformer-PEM system. A SOFC stack produces electricity and a reformate gas that can be further processed to hydrogen by the shift reaction. The produced hydrogen can be used by PEM stack in order to produce further electricity. In the PEM system case the complex fuel reformer processing could be eliminated. The simulations were performed with the flowsheeting simulation software Aspen Plus. (author)

  16. A Structural Model Decomposition Framework for Hybrid Systems Diagnosis

    Science.gov (United States)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2015-01-01

    Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.

  17. Analytical solution to energy management guaranteeing battery life for hybrid trucks

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; van den Bosch, P.P.J.; Huisman, R.G.M.

    2016-01-01

    This paper considers a parallel hybrid electric truck where the tractive force delivered to the wheels can be provided by a conventional internal combustion engine (ICE) and/or a motor generator (MG). This hybrid truck is equipped with a clutch system that is capable of decoupling the ICE and the MG

  18. Energy Efficient Hydraulic Hybrid Drives

    OpenAIRE

    Rydberg, Karl-Erik

    2009-01-01

    Energy efficiency of propulsion systems for cars, trucks and construction machineries has become one of the most important topics in today’s mobile system design, mainly because of increased fuel costs and new regulations about engine emissions, which is needed to save the environment. To meet the increased requirements on higher efficiency and better functionality, components and systems have been developed over the years. For the last ten years the development of hybrid systems can be divid...

  19. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    Directory of Open Access Journals (Sweden)

    C. Shashidhar

    2012-02-01

    Full Text Available Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC to AC, electrical lighting loads, electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. The proposed hybrid solar-wind power generating system can be extensively used to illustrate electrical concepts in hands-on laboratories and also for demonstrations in the Industrial Technology curriculum. This paper describes an analysis of local PV-wind hybrid systems for supplying electricity to a private house, farmhouse or small company with electrical power depending on the site needs. The major system components, work principle and specific working condition are presented.

  20. Specification of real-time automation systems with HybridUML; Spezifikation von Echtzeit-Automatisierungssystemen mit HybridUML

    Energy Technology Data Exchange (ETDEWEB)

    Berkenkoetter, K.; Bisanz, S.; Hannemann, U.; Peleska, J. [Univ. Bremen (Germany)

    2004-07-01

    Complex automation systems require specification formalisms supporting the description of real-time requirements with respect to both discrete and time-continuous observables. For this purpose, the authors have designed the HybridUML specification language. Discrete events, communication, and variable assignments are specified by state machines, timers, and invariant conditions. The time-continuous aspects of system behaviour are described by associating differential equations or time-dependent algebraic conditions with system states. The complexity of large systems is controlled by decomposing the specification into parallel components and hierarchical state machines. Instead of inventing a new language syntax, HybridUML is represented as a profile of the Unified Modeling Language UML 2.0. This allows to re-use the syntactic framework of well-accepted graphical UML constructs and development support provided by various UML case tools. The profile is associated with a precise language semantics linking unambiguous meaning to all HybridUML specifications. As a consequence, HybridUML specifications can be compiled into executable code which is suitable for execution in hard realtime on multi-processor computers. This serves both for the development of automation systems and for specification-based testing in real-time. This paper contains an introduction to HybridUML which is illustrated by an example from the field of automated train control. (orig.)

  1. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, M.; Ravn, Anders Peter; Sere, K.

    2003-01-01

    In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time......-derivatives in modelling continuous-time dynamics. The generalized differential action has an intuitively appealing predicate transformer semantics, which we show to be both conjunctive and monotonic. In addition, we show that differential actions blend smoothly with conventional actions in action systems, even under...... parallel composition. Moreover, as the strength of the action system formalism is the support for stepwise development by refinement, we investigate refinement involving a differential action. We show that, due to the predicate transformer semantics, standard action refinement techniques apply also...

  2. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  3. Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature

    Science.gov (United States)

    This review focus on environmental implications and applications of engineered magnetite (Fe3O4) nanoparticles (MNPs) as a single phase or a component of a hybrid nanocomposite that take advantages of their superparamagnetism and high surface area. MNPs are synthesized via co-pre...

  4. Modelling and Verifying Communication Failure of Hybrid Systems in HCSP

    DEFF Research Database (Denmark)

    Wang, Shuling; Nielson, Flemming; Nielson, Hanne Riis

    2016-01-01

    Hybrid systems are dynamic systems with interacting discrete computation and continuous physical processes. They have become ubiquitous in our daily life, e.g. automotive, aerospace and medical systems, and in particular, many of them are safety-critical. For a safety-critical hybrid system......, in the presence of communication failure, the expected control from the controller will get lost and as a consequence the physical process cannot behave as expected. In this paper, we mainly consider the communication failure caused by the non-engagement of one party in communication action, i.......e. the communication itself fails to occur. To address this issue, this paper proposes a formal framework by extending HCSP, a formal modeling language for hybrid systems, for modeling and verifying hybrid systems in the absence of receiving messages due to communication failure. We present two inference systems...

  5. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  6. Car makers: the hybrid car stirs up competition; Constructeurs automobiles: la voiture hybride attise la concurrence

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, P.Y.; Dumas, A.

    2006-03-15

    The success of clean vehicles has favored the hybrid technology. Toyota has drawn away from its competitors which today have to make up their leeway. Hybridization has the advantage to be able to be adapted to any energy source type. It has been adapted to gasoline engines first, but it is gaining diesel engines and trucks too. However, the over-cost of this technology remains today the main drawback of hybrid vehicles. (J.S.)

  7. San Juanico Hybrid System Technical and Institutional Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Newcomb, C.; Yewdall, Z.

    2004-07-01

    San Juanico is a fishing village of approximately 120 homes in the Municipality of Comondu, Baja California. In April, 1999, a hybrid power system was installed in San Juanico to provide 24-hour power, which was not previously available. Before the installation of the hybrid power system, a field study was conducted to characterize the electrical usage and institutional and social framework of San Juanico. One year after the installation of the hybrid power system a''post-electrification'' study was performed to document the changes that had occurred after the installation. In December of 2003, NREL visited the site to conduct a technical assessment of the system.

  8. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  9. Integrated energy and advanced thermal management system for hybrid electric vehicles

    NARCIS (Netherlands)

    Wei, C.

    2017-01-01

    Hybrid electric vehicles (HEVs) featuring a fuel source engine and an energy storage source battery play an important role in improving fuel efficiency compared with its conventional counterparts. In view of the drawbacks of the existing research neglecting the thermal aspects when it comes to

  10. Systems Engineering as a tool; Verktoeyet Systems Engineering : struktur fra start til maal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Randi

    2002-07-01

    Systems engineering integrates all types of specialists and disciplines into teams that try to create a structured development process from concept via production to operation. The idea is that by using systems engineering, projects can be completed efficiently and successfully. It is important that the individual participant in a project understands that he or she works within a system and that there is a need for skill, comprehensiveness and communication. Systems engineering comprises system design, computer aided design, cybernetics and mecatronics. The article describes the use of systems engineering in a student project in which a heat pump will be used to utilize the energy potential of ground water primarily to heat the visitors' area in a mine museum in Kongsberg, Norway.

  11. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  12. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new

  13. COOPERATIVE MODE OF ELECTRIC MOTOR AND INTERNAL COMBUSTION ENGINE OPERATION IN THE CONVERSION HYBRID CAR

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-12-01

    Full Text Available In the given article the authors proposed a method to control the car, which is converted into a hybrid one. The electric motor and combustion engine operate alternately in the car. They proposed a device for implementing this method and a circuit design for the device in question. They also calculated the dynamics of the vehicle under the joint acceleration.

  14. Enhanced Electric Power Transmission by Hybrid Compensation Technique

    International Nuclear Information System (INIS)

    Palanichamy, C; Kiu, G Q

    2015-01-01

    In today's competitive environment, new power system engineers are likely to contribute immediately to the task, without years of seasoning via on-the-job training, mentoring, and rotation assignments. At the same time it is becoming obligatory to train power system engineering graduates for an increasingly quality-minded corporate environment. In order to achieve this, there is a need to make available better-quality tools for educating and training power system engineering students and in-service system engineers too. As a result of the swift advances in computer hardware and software, many windows-based computer software packages were developed for the purpose of educating and training. In line with those packages, a simulation package called Hybrid Series-Shunt Compensators (HSSC) has been developed and presented in this paper for educational purposes. (paper)

  15. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  16. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  17. Performance evaluation of stand alone hybrid PV-wind generator

    International Nuclear Information System (INIS)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-01-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand

  18. Systems Engineering Awareness

    Science.gov (United States)

    Lucero, John

    2016-01-01

    The presentation will provide an overview of the fundamentals and principles of Systems Engineering (SE). This includes understanding the processes that are used to assist the engineer in a successful design, build and implementation of solutions. The context of this presentation will be to describe the involvement of SE throughout the life-cycle of a project from cradle to grave. Due to the ever growing number of complex technical problems facing our world, a Systems Engineering approach is desirable for many reasons. The interdisciplinary technical structure of current systems, technical processes representing System Design, Technical Management and Product Realization are instrumental in the development and integration of new technologies into mainstream applications. This tutorial will demonstrate the application of SE tools to these types of problems..

  19. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  20. Engineering Review Information System

    Science.gov (United States)

    Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)

    2015-01-01

    A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.

  1. Local analysis of hybrid systems on polyhedral sets with state-dependent switching

    Directory of Open Access Journals (Sweden)

    Leth John

    2014-06-01

    Full Text Available This paper deals with stability analysis of hybrid systems. Various stability concepts related to hybrid systems are introduced. The paper advocates a local analysis. It involves the equivalence relation generated by reset maps of a hybrid system. To establish a tangible method for stability analysis, we introduce the notion of a chart, which locally reduces the complexity of the hybrid system. In a chart, a hybrid system is particularly simple and can be analyzed with the use of methods borrowed from the theory of differential inclusions. Thus, the main contribution of this paper is to show how stability of a hybrid system can be reduced to a specialization of the well established stability theory of differential inclusions. A number of examples illustrate the concepts introduced in the paper.

  2. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  3. Manufacturing at Nanoscale: Top-Down, Bottom-up and System Engineering

    International Nuclear Information System (INIS)

    Zhang Xiang; Sun Cheng; Fang, Nicholas

    2004-01-01

    The current nano-technology revolution is facing several major challenges: to manufacture nanodevices below 20 nm, to fabricate three-dimensional complex nano-structures, and to heterogeneously integrate multiple functionalities. To tackle these grand challenges, the Center for Scalable and Integrated NAno-Manufacturing (SINAM), a NSF Nanoscale Science and Engineering Center, set its goal to establish a new manufacturing paradigm that integrates an array of new nano-manufacturing technologies, including the plasmonic imaging lithography and ultramolding imprint lithography aiming toward critical resolution of 1-10 nm and the hybrid top-down and bottom-up technologies to achieve massively parallel integration of heterogeneous nanoscale components into higher-order structures and devices. Furthermore, SINAM will develop system engineering strategies to scale-up the nano-manufacturing technologies. SINAMs integrated research and education platform will shed light to a broad range of potential applications in computing, telecommunication, photonics, biotechnology, health care, and national security

  4. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    Science.gov (United States)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  5. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions

    International Nuclear Information System (INIS)

    Lau, K.Y.; Yousof, M.F.M.; Arshad, S.N.M.; Anwari, M.; Yatim, A.H.M.

    2010-01-01

    Standalone diesel generating system utilized in remote areas has long been practiced in Malaysia. Due to highly fluctuating diesel price, such a system is seemed to be uneconomical, especially in the long run if the supply of electricity for rural areas solely depends on such diesel generating system. This paper would analyze the potential use of hybrid photovoltaic (PV)/diesel energy system in remote locations. National Renewable Energy Laboratory's (NREL) HOMER software was used to perform the techno-economic feasibility of hybrid PV/diesel energy system. The investigation demonstrated the impact of PV penetration and battery storage on energy production, cost of energy and number of operational hours of diesel generators for the given hybrid configurations. Emphasis has also been placed on percentage fuel savings and reduction in carbon emissions of different hybrid systems. At the end of this paper, suitability of utilizing hybrid PV/diesel energy system over standalone diesel system would be discussed mainly based on different solar irradiances and diesel prices. (author)

  6. A novel reliability evaluation method for large engineering systems

    Directory of Open Access Journals (Sweden)

    Reda Farag

    2016-06-01

    Full Text Available A novel reliability evaluation method for large nonlinear engineering systems excited by dynamic loading applied in time domain is presented. For this class of problems, the performance functions are expected to be function of time and implicit in nature. Available first- or second-order reliability method (FORM/SORM will be challenging to estimate reliability of such systems. Because of its inefficiency, the classical Monte Carlo simulation (MCS method also cannot be used for large nonlinear dynamic systems. In the proposed approach, only tens instead of hundreds or thousands of deterministic evaluations at intelligently selected points are used to extract the reliability information. A hybrid approach, consisting of the stochastic finite element method (SFEM developed by the author and his research team using FORM, response surface method (RSM, an interpolation scheme, and advanced factorial schemes, is proposed. The method is clarified with the help of several numerical examples.

  7. Modelling dependable systems using hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter

    2008-01-01

    A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems

  8. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    Science.gov (United States)

    Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Yilmaz, Ertan [Albany, NY; Lacy, Benjamin [Greer, SC; Zuo, Baifang [Simpsonville, SC; York, William David [Greer, SC

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  9. Preliminary engineering design and cost of Advanced Compressed-Air Storage (ACAS) A-5 hybrid

    Science.gov (United States)

    Sosnowicz, E. J.; Blackman, J.; Woodhull, A. S.; Zaugg, P.

    1981-08-01

    The advanced compressed air energy (ACAS) plant investiated operates on a partial adiabatic, partial fuel fired cycle. Only a limited advancement in state-of-the-art technology is projected for this hybrid arrangement. The A-5 hybrid systems stores the heat of compression from the low pressure and intermediate pressure compressors in a thermal energy store (TES). The heat collected in the TES is available for preheating the air from the storage cavern prior to its entering the low pressure turbine combustor. This reduces the amount of fuel consumed during power generation. The fuel heat rate for the hybrid cycle is 2660 Btu/kWh as compared to approximately 4000 Btu/kWh for a conventional CAES plant. A virtual stand-off between the hybrid plant and a conventional CAES plant at 235 mills/kWh in 1990 dollars is shown. With a lower cost and increased fuel cost projections, the hybrid system operating cost is less than that for a conventional CAES plant.

  10. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    Energy Technology Data Exchange (ETDEWEB)

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

  11. Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Yin, Ershuai; Li, Qiang; Xuan, Yimin

    2017-01-01

    Highlights: • A detailed thermal resistance analysis of the PV-TE hybrid system is proposed. • c-Si PV and p-Si PV cells are proved to be inapplicable for the PV-TE hybrid system. • Some criteria for selecting coupling devices and optimal design are obtained. • A detailed process of designing the practical PV-TE hybrid system is provided. - Abstract: The thermal resistance theory is introduced into the theoretical model of the photovoltaic-thermoelectric (PV-TE) hybrid system. A detailed thermal resistance analysis is proposed to optimize the design of the coupled system in terms of optimal total conversion efficiency. Systems using four types of photovoltaic cells are investigated, including monocrystalline silicon photovoltaic cell, polycrystalline silicon photovoltaic cell, amorphous silicon photovoltaic cell and polymer photovoltaic cell. Three cooling methods, including natural cooling, forced air cooling and water cooling, are compared, which demonstrates a significant superiority of water cooling for the concentrating photovoltaic-thermoelectric hybrid system. Influences of the optical concentrating ratio and velocity of water are studied together and the optimal values are revealed. The impacts of the thermal resistances of the contact surface, TE generator and the upper heat loss thermal resistance on the property of the coupled system are investigated, respectively. The results indicate that amorphous silicon PV cell and polymer PV cell are more appropriate for the concentrating hybrid system. Enlarging the thermal resistance of the thermoelectric generator can significantly increase the performance of the coupled system using amorphous silicon PV cell or polymer PV cell.

  12. A Bioactive Hydrogel and 3D Printed Polycaprolactone System for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ivan Hernandez

    2017-07-01

    Full Text Available In this study, a hybrid system consisting of 3D printed polycaprolactone (PCL filled with hydrogel was developed as an application for reconstruction of long bone defects, which are innately difficult to repair due to large missing segments of bone. A 3D printed gyroid scaffold of PCL allowed a larger amount of hydrogel to be loaded within the scaffolds as compared to 3D printed mesh and honeycomb scaffolds of similar volumes and strut thicknesses. The hydrogel was a mixture of alginate, gelatin, and nano-hydroxyapatite, infiltrated with human mesenchymal stem cells (hMSC to enhance the osteoconductivity and biocompatibility of the system. Adhesion and viability of hMSC in the PCL/hydrogel system confirmed its cytocompatibility. Biomineralization tests in simulated body fluid (SBF showed the nucleation and growth of apatite crystals, which confirmed the bioactivity of the PCL/hydrogel system. Moreover, dissolution studies, in SBF revealed a sustained dissolution of the hydrogel with time. Overall, the present study provides a new approach in bone tissue engineering to repair bone defects with a bioactive hybrid system consisting of a polymeric scaffold, hydrogel, and hMSC.

  13. A Bioactive Hydrogel and 3D Printed Polycaprolactone System for Bone Tissue Engineering.

    Science.gov (United States)

    Hernandez, Ivan; Kumar, Alok; Joddar, Binata

    2017-09-01

    In this study, a hybrid system consisting of 3D printed polycaprolactone (PCL) filled with hydrogel was developed as an application for reconstruction of long bone defects, which are innately difficult to repair due to large missing segments of bone. A 3D printed gyroid scaffold of PCL allowed a larger amount of hydrogel to be loaded within the scaffolds as compared to 3D printed mesh and honeycomb scaffolds of similar volumes and strut thicknesses. The hydrogel was a mixture of alginate, gelatin, and nano-hydroxyapatite, infiltrated with human mesenchymal stem cells (hMSC) to enhance the osteoconductivity and biocompatibility of the system. Adhesion and viability of hMSC in the PCL/hydrogel system confirmed its cytocompatibility. Biomineralization tests in simulated body fluid (SBF) showed the nucleation and growth of apatite crystals, which confirmed the bioactivity of the PCL/hydrogel system. Moreover, dissolution studies, in SBF revealed a sustained dissolution of the hydrogel with time. Overall, the present study provides a new approach in bone tissue engineering to repair bone defects with a bioactive hybrid system consisting of a polymeric scaffold, hydrogel, and hMSC.

  14. Performance assessment of a novel hybrid district energy system

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2012-01-01

    In this paper, a new hybrid system for improving the efficiency of geothermal district heating systems (GDHSs) is proposed. This hybrid system consists of biogas based electricity production and a water-to-water geothermal heat pump unit (GHPU), which uses the waste heat for both heating and domestic hot water purposes. Electricity generated by the biogas plant (BP) is utilized to drive the GDHS's pumps, BP systems and the heat pump units. Both the biogas reactor heating unit and the heat pump unit utilize the waste heat from the GDHS and use the system as a heat source. The feasibility of utilizing a hybrid system in order to increase the overall system (GDHS + BP + GHPU) efficiency is then investigated for possible efficiency improvements. The Edremit GDHS in Turkey, which is selected for investigation in this case study, reinjects 16.8 MW of thermal power into the river at a low temperature; namely at 40 °C. Such a temperature is ideal for mesophilic bacterial growth in the digestion process during biogas production. 1.45 MW of biogas based electricity production potential is obtainable from the waste heat output of the Edremit GDHS. The average overall system efficiencies through the utilization of this kind of hybridized system approach are increased by 7.5% energetically and 13% for exergetically. - Highlights: ► A new hybrid system is proposed for improving the efficiency of geothermal district heating systems (GDHSs). ► The average overall system efficiencies are increased by 7.5% for energy and 13% for exergy, respectively. ► Various energetic and exergetic parameters are studied.

  15. Design and Fabrication of Biodegradable Porous Chitosan/Gelatin/Tricalcium Phosphate Hybrid Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Y. Mohammadi

    2007-08-01

    Full Text Available In this study, based on a biomimetic approach, novel 3D biodegradable porous hybrid scaffolds consisting of chitosan, gelatin, and tricalcium phosphate were developed for bone and cartilage tissue engineering. Macroporous chitosan/ gelatin/β-TCP scaffolds were prepared through the process of freeze-gelation/solid-liquid phase separation. The results showed that the prepared scaffolds are highly porous, with porosities larger than 80%, and have interconnected pores. Biocompatibility studies were successfully performed by in vitro and in vivo assays. Moreover, the attachment, migration, and proliferation of chondrocytes on these unique temporary scaffolds were examined to determine their potentials in tissue engineering applications.

  16. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  17. Neural-network hybrid control for antilock braking systems.

    Science.gov (United States)

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  18. User acceptance of diesel/PV hybrid system in an island community

    International Nuclear Information System (INIS)

    Phuangpornpitak, N.; Kumar, S.

    2011-01-01

    This paper presents the results of a study conducted at a rural (island) community to understand the role of PV hybrid system installed on an island. Until 2004, most islanders had installed diesel generators in their homes to generate electricity, which was directly supplied to appliances or stored in the batteries for later use. A field survey was carried out to study the user satisfaction of the PV hybrid system in the island community. The attitude of islanders to the PV hybrid system was mostly positive. The islanders can use more electricity, the supply of which can meet the demand. A comparison of pollutions before and after installation of the PV hybrid system was made along with the interviews with the users. The data show that the users are highly satisfied with the PV hybrid system which can reduce environmental impact, especially air and noise pollutions. New opportunities as a result of access to electric service include studying and reading at night that were not possible earlier. All the islanders use the PV hybrid system and more importantly, no one found that the system made their life worse as compared to the earlier state of affairs. (author)

  19. Control of hybrid fuel cell/energy storage distributed generation system against voltage sag

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh, Amin; Golkar, Masoud Aliakbar [Electrical Engineering Department, K.N. Toosi University of Technology, Seyedkhandan, Dr. Shariati Ave, P.O. Box 16315-1355, Tehran (Iran)

    2010-06-15

    Fuel cell (FC) and energy storage (ES) based hybrid distributed power generation systems appear to be very promising for satisfying high energy and high power requirements of power quality problems in distributed generation (DG) systems. In this study, design of control strategy for hybrid fuel cell/energy storage distributed power generation system during voltage sag has been presented. The proposed control strategy allows hybrid distributed generation system works properly when a voltage disturbance occurs in distribution system and hybrid system stays connected to the main grid. Hence, modeling, controller design, and simulation study of a hybrid distributed generation system are investigated. The physical model of the fuel cell stack, energy storage and the models of power conditioning units are described. Then the control design methodology for each component of the hybrid system is proposed. Simulation results are given to show the overall system performance including active power control and voltage sag ride-through capability of the hybrid distributed generation system. (author)

  20. CDMA systems capacity engineering

    CERN Document Server

    Kim, Kiseon

    2004-01-01

    This new hands-on resource tackles capacity planning and engineering issues that are crucial to optimizing wireless communication systems performance. Going beyond the system physical level and investigating CDMA system capacity at the service level, this volume is the single-source for engineering and analyzing systems capacity and resources.

  1. Agent-based power sharing scheme for active hybrid power sources

    Science.gov (United States)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  2. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.

    Science.gov (United States)

    El-Kady, Maher F; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F; Chaney, Lindsay; Lech, Andrew T; Kaner, Richard B

    2015-04-07

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm(3). This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive "dry rooms" required for building today's supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems.

  3. Simulation of the fuel consumption benefits of various transmission arrangements and control strategies within a flywheel based mechanical hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Body, William; Brockbank, Chris [Torotrak (Development) Ltd. (United Kingdom)

    2009-07-01

    Flywheel based mechanical hybrid technology is being developed for both motorsport and mainstream automotive applications. One particular road car application project, part funded by the UK Government Technology Strategy Board, is being led by Jaguar Land Rover, managed by Prodrive and using advanced technology from Flybrid Systems, Ford, Ricardo. Torotrak and Xtrac. During the two year programme, the group will develop the new technology and build a demonstrator vehicle equipped with the system. The mechanical system recovers kinetic energy from the vehicle during braking to a high speed rotating flywheel via a variable drive system. When compared to an electric motor / battery arrangement, the mechanical hybrid system offers benefits in cost, weight, package, efficiency and ultimately vehicle fuel consumption. As part of the development and optimisation process in order to specify the road car system, all aspects of the mechanical hybrid system are under investigation by the group. Alongside the required quantity of energy storage and the rates of energy recovery and reapplication, a number of different physical architectures for the system are being analysed. The Torotrak full-toroidal traction drive has been assigned as the variable drive element of the mechanical hybrid system. Multiple configuration options are available including direct drive, epicyclic shunted, range extended CVT and epicyclic shunted IVT arrangements. In addition, the flywheel and variable drive system can be connected to the powertrain in a variety of different locations, from the engine through the powertrain to the wheels. This paper describes the simulation of the mechanical hybrid system with particular focus on the impact on the fuel consumption benefit, over multiple drive cycles, of the variable drive configuration, the location of the variable drive and flywheel system and the control strategy options. (orig.)

  4. Voith hybrid systems - parallel hybrid for rail vehicles; Voith Hybridsysteme - Parallelhybrid fuer Schienenfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Groezinger, Thomas; Berger, Juergen; Discher, Andreas; Bartosch, Stephan [Voith Turbo GmbH und Co. KG (Germany)

    2010-03-15

    The article presents a variety of ways help to save fuel, reduce noise and minimize harmful emissions for rail vehicles. These ECO components can be used separately or in combination with drive systems for various types of hybrid concepts. For example, via a hydrostatic or electric hybrid system can recuperate and store braking energy and utilize it for powering the vehicle or driving auxiliary systems. Another system converts lost heat from the drive motor into mechanical or electrical energy. With EcoConsult, Voith Turbo also offers a ''toolbox'' comprising software, hardware and consultancy which allows identifying the exact operating conditions and a reliable calculation of the life cycle cost (LCC) for a variety of vehicle categories and operating profiles. (orig.)

  5. Split-gene system for hybrid wheat seed production.

    Science.gov (United States)

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-06-24

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore "linked in repulsion." Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner.

  6. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    Science.gov (United States)

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  7. Transit experience with hydrogen fueled hybrid electric buses

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.B.; Mazaika, D.M. [ISE Corp., Poway, CA (United States)

    2006-07-01

    Mass transit buses are ideal candidates for hydrogen implementation due to their capability of carrying 30 to 60 kg of hydrogen. ISE Corporation is a supplier of hydrogen fueled buses, including the first hybrid electric fuel cell bus which was commercialized in 2002, the hybrid electric fuel cell bus, and the hybrid hydrogen internal combustion engine (HHICE) bus which was commercialized in 2004. The configuration of a HHICE bus was illustrated with reference to its engine, control system, energy storage, generator, drive motor, inverter and accessories. Although these vehicles are expensive, the cost is amortized over a large base of hours used and passengers carried. The buses are operated primarily in urban areas where quiet and clean operation is needed the most. ISE has established a joint venture with Thor industries to develop a series of fuel cell buses equipped with a 60 kW PEM fuel cell. A schematic illustrating the energy flow in HHICE bus was also presented. It was shown that regenerative braking recovers the energy of motion. When using regenerative braking, most of the braking energy is saved in the battery. ISE drive systems convert 30 per cent or more of the bus energy to electrical energy to be used in later acceleration. Reduced fuel consumption also reduces the vehicle emissions. Testing of HHICE buses in both summer and winter operating conditions have shown that the range needs to be improved along with engine component reliability and durability. Fuel supply is also a major issue. A comparison with a fuel cell hybrid system was also presented. In the United States, more than 100,000 miles have been logged for the use of hydrogen hybrid buses, fuel cell buses and HHICE buses. The HHICE bus offers low capital cost, familiar technologies, but some NOx. CAT absorber technology offers the possibility of near zero emission capability. The fuel cell bus was found to be more fuel efficient, and can travel nearly twice as far per unit energy as

  8. Outage Performance of Hybrid FSO/RF System with Low-Complexity Power Adaptation

    KAUST Repository

    Rakia, Tamer

    2016-02-26

    Hybrid free-space optical (FSO) / radio-frequency (RF) systems have emerged as a promising solution for high data- rate wireless communication systems. We consider truncated channel inversion based power adaptation strategy for coherent and non- coherent hybrid FSO/RF systems, employing an adaptive combining scheme. Specifically, we activate the RF link along with the FSO link when FSO link quality is unacceptable, and adaptively set RF transmission power to ensure constant combined signal-to-noise ratio at receiver terminal. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are derived. Numerical examples show that, the hybrid FSO/RF systems with power adaptation achieve considerable outage performance improvement over conventional hybrid FSO/RF systems without power adaptation. © 2015 IEEE.

  9. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  10. Future market hybride drive systems. Case study on behalf of the Federal Office for Environment Protection in the context of the research project Innovative Environmental policy in important action fields; Zukunftsmarkt Hybride Antriebstechnik. Fallstudie im Auftrag des Umweltbundesamtes im Rahmen des Forschungsprojektes Innovative Umweltpolitik in wichtigen Handlungsfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Claus [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany)

    2007-12-15

    Hybrid electric vehicles allow driving quietly and locally emission-free because the internal combustion engine is run in a more favorable load range, while the highly efficient electric motor supports at low speeds and in acceleration phases. Further reductions in fuel consumption are achieved by down sizing the combustion engine and by recuperating brake energy back into the battery. However, the actual environmental and energy advantage strongly depends on driving styles and driving cycles. The technology dynamics of hybrid propulsion systems appears more intensive than the dynamics of its core components: combustion engine, electric motors and energy storage technology. Due to its higher price and the more expensive maintenance the destination countries of the technology are most likely located in North America, Europe, Japan, Australia and the metropolises of South America and Southeast Asia. However, estimates of future market potential widely diverge. With regard to technology, Japan, the United States, France and Sweden are the most important competitors for Germany. European producers, however, are completely dependent on imports and lag sufficient technology competence in key areas, namely in the field of battery technology. Due to specific preconditions and national incentive systems, the competing countries are on different stages of the development processes. Important is the disapproval of diesel for cars in Japan and the USA but also tax incentives and special conditions for hybrid cars, e. g. the Congestion Charge in London. Although Japan appears as the technology leader in the field of hybrid electric vehicles, Germany holds 40 % and the EU 27 60 % of the worldwide patent applications of hybrid propulsion systems and their components. These figures indicate a nameable technological and economic potential of Europe, and especially of Germany, in the field of hybrid propulsion technology, which are the result of the productive and internationally

  11. Tank waste remediation system systems engineering management plan

    International Nuclear Information System (INIS)

    Peck, L.G.

    1998-01-01

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance

  12. Plant Characteristics af a Multi-Fuel Sofc-Stirling Hybrid Configuration

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A novel hybrid system ( kWe) for an average family house including heating is proposed. The system investigated, contains of a Solid Oxide Fuel Cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle is fed to the bottoming Stirling engine wherein additional power...... efficiency compared with the stand alone Stirling engine or SOFC plant. For the SOFC and Stirling combined configuration, the overall power production has increased by about 10% compared to the stand alone SOFC plant. System efficiencies of about 60% are achieved which is remarkable for such small plant...

  13. Event-triggered hybrid control based on multi-Agent systems for Microgrids

    DEFF Research Database (Denmark)

    Dou, Chun-xia; Liu, Bin; Guerrero, Josep M.

    2014-01-01

    This paper is focused on a multi-agent system based event-triggered hybrid control for intelligently restructuring the operating mode of an microgrid (MG) to ensure the energy supply with high security, stability and cost effectiveness. Due to the microgrid is composed of different types...... of distributed energy resources, thus it is typical hybrid dynamic network. Considering the complex hybrid behaviors, a hierarchical decentralized coordinated control scheme is firstly constructed based on multi-agent sys-tem, then, the hybrid model of the microgrid is built by using differential hybrid Petri...

  14. Lower hybrid wave current ramp-up and plasma equilibrium

    International Nuclear Information System (INIS)

    Gong Xueyu

    1996-01-01

    Questions on lower hybrid driven current and plasma equilibrium are studied. With the induced electric field taken into account, a system of self-consistent equations is obtained. This theory has been applied to some moments of the current ramp-up phase for the Tokamak Engineering Test Breeder (TETB) to study the lower hybrid current drive and MHD equilibrium. So, better electron current and safety factor profiles are obtained

  15. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  16. Joint Adaptive Modulation and Combining for Hybrid FSO/RF Systems

    KAUST Repository

    Rakia, Tamer

    2015-11-12

    In this paper, we present and analyze a new transmission scheme for hybrid FSO/RF communication system based on joint adaptive modulation and adaptive combining. Specifically, the data rate on the FSO link is adjusted in discrete manner according to the FSO link\\'s instantaneous received signal-to-noise-ratio (SNR). If the FSO link\\'s quality is too poor to maintain the target bit-error-rate, the system activates the RF link along with the FSO link. When the RF link is activated, simultaneous transmission of the same modulated data takes place on both links, where the received signals from both links are combined using maximal ratio combining scheme. In this case, the data rate of the system is adjusted according to the instantaneous combined SNRs. Novel analytical expression for the cumulative distribution function (CDF) of the received SNR for the proposed adaptive hybrid system is obtained. This CDF expression is used to study the spectral and outage performances of the proposed adaptive hybrid FSO/RF system. Numerical examples are presented to compare the performance of the proposed adaptive hybrid FSO/RF system with that of switch-over hybrid FSO/RF and FSO-only systems employing the same adaptive modulation schemes. © 2015 IEEE.

  17. Convective Heat Transfer in a Pneumatic Hybrid Engine Échange de chaleur convectif dans un moteur hybride pneumatique

    Directory of Open Access Journals (Sweden)

    Brejaud P.

    2011-09-01

    Full Text Available Several previous studies have proven that pneumatic hybridization of an internal combustion engine is a technically viable and cost-efficient alternative to electric hybridization. Because the heat transfer process remains a first order factor while the engine operates in a motored or pneumatic mode without combustion, an accurate instantaneous heat transfer model is required in order to predict the in-cylinder pressure. This study shows that the original Woschni model is not suitable for describing the shape of the measured instantaneous heat flux versus crank angle while the engine operates in a motored pneumatic mode, because of the extinction of tumble motion near Top Dead Center (TDC. A modified form of the Woschni model is therefore proposed here that better describes the instantaneous heat flux during compression and expansion strokes, applicable to pneumatic and motored with fuel cut-off modes. First, the new constant parameter model is identified from experimental measurements performed in various motored mode conditions. Next, the pneumatic supercharged mode without combustion (ignition not performed is investigated with the new model using the same identification values as for the motored mode. This study shows that the modified model remains fully applicable to the supercharged mode, despite of a certainly modified in-cylinder aerodynamic structure created by the opening of the charging valve under a high pressure ratio. Plusieurs études ont déjà montré que le concept d’hybride pneumatique est une alternative techniquement et économiquement viable à l’hybridation électrique. Malgré l’absence de combustion lors d’un fonctionnement en mode entraîné ou pneumatique, les échanges de chaleurs convectifs restent un facteur de premier ordre sur un bilan énergétique. Il faut donc disposer d’un modèle précis d’échange de chaleur instantané afin de prévoir la pression instantanée dans un cylindre du moteur. Cette

  18. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  19. Systems Engineering 2010 Workshop | Wind | NREL

    Science.gov (United States)

    0 Workshop Systems Engineering 2010 Workshop The 1st NREL Wind Energy Systems Engineering Workshop of the system engineering model. In the middle of the model is optimization, metric tracking &M model, capital cost model, and balance of station. Systems engineering represents a holistic

  20. Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system

    International Nuclear Information System (INIS)

    Hong, Chih-Ming; Ou, Ting-Chia; Lu, Kai-Hung

    2013-01-01

    A hybrid power control system is proposed in the paper, consisting of solar power, wind power, and a diesel-engine. To achieve a fast and stable response for the real power control, an intelligent controller was proposed, which consists of the Wilcoxon (radial basis function network) RBFN and the improved (Elman neural network) ENN for (maximum power point tracking) MPPT. The pitch angle control of wind power uses improved ENN controller, and the output is fed to the wind turbine to achieve the MPPT. The solar array is integrated with an RBFN control algorithm to track the maximum power. MATLAB (MATrix LABoratory)/Simulink was used to build the dynamic model and simulate the solar and diesel-wind hybrid power system. - Highlights: ► To achieve a fast and stable response for the real power control. ► The pitch control of wind power uses improved ENN (Elman neural network) controller to achieve the MPPT (maximum power point tracking). ► The RBFN (radial basis function network) can quickly and accurately track the maximum power output for PV (photovoltaic) array. ► MATLAB was used to build the dynamic model and simulate the hybrid power system. ► This method can reach the desired performance even under different load conditions

  1. Hybrid Ventilation with Innovative Heat Recovery—A System Analysis

    Directory of Open Access Journals (Sweden)

    Bengt Hellström

    2013-02-01

    Full Text Available One of the most important factors when low energy houses are built is to have good heat recovery on the ventilation system. However, standard ventilation units use a considerable amount of electricity. This article discusses the consequences on a system level of using hybrid ventilation with heat recovery. The simulation program TRNSYS was used in order to investigate a ventilation system with heat recovery. The system also includes a ground source storage and waste water heat recovery system. The result of the analysis shows that the annual energy gain from ground source storage is limited. However, this is partly a consequence of the fact that the well functioning hybrid ventilation system leaves little room for improvements. The analysis shows that the hybrid ventilation system has potential to be an attractive solution for low energy buildings with a very low need for electrical energy.

  2. ENGINEERING OF UNIVERSITY INTELLIGENT LEARNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Vasiliy M. Trembach

    2016-01-01

    Full Text Available In the article issues of engineering intelligent tutoring systems of University with adaptation are considered. The article also dwells on some modern approaches to engineering of information systems. It shows the role of engineering e-learning devices (systems in system engineering. The article describes the basic principles of system engineering and these principles are expanded regarding to intelligent information systems. The structure of intelligent learning systems with adaptation of the individual learning environments based on services is represented in the article.

  3. Strontium-rich injectable hybrid system for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Nuno, E-mail: nsmneves@gmail.com [Instituto de Investigação e Inovação em Saúde, Universidade do Porto (Portugal); INEB — Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); FMUP — Faculdade de Medicina da Universidade do Porto, Departamento de Cirurgia, Serviço de Ortopedia, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Campos, Bruno B. [FCUP — Faculdade de Ciências da Universidade do Porto, Centro de Investigação em Química, Departamento de Química e Bioquímica, Rua do Campo Alegre 1021/1055, 4169-007 Porto (Portugal); Almeida, Isabel F.; Costa, Paulo C. [FFUP — Faculdade de Farmácia da Universidade do Porto, Laboratório de Tecnologia Farmacêutica, Departamento de Ciências do Medicamento, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto (Portugal); Cabral, Abel Trigo [FMUP — Faculdade de Medicina da Universidade do Porto, Departamento de Cirurgia, Serviço de Ortopedia, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); and others

    2016-02-01

    Current challenges in the development of scaffolds for bone regeneration include the engineering of materials that can withstand normal dynamic physiological mechanical stresses exerted on the bone and provide a matrix capable of supporting cell migration and tissue ingrowth. The objective of the present work was to develop and characterize a hybrid polymer–ceramic injectable system that consists of an alginate matrix crosslinked in situ in the presence of strontium (Sr), incorporating a ceramic reinforcement in the form of Sr-rich microspheres. The incorporation of Sr in the microspheres and in the vehicle relies on the growing evidence that Sr has beneficial effects in bone remodeling and in the treatment of osteopenic disorders and osteoporosis. Sr-rich porous hydroxyapatite microspheres with a uniform size and a mean diameter of 555 μm were prepared, and their compression strength and friability tested. A 3.5% (w/v) ultrapure sodium alginate solution was used as the vehicle and its in situ gelation was promoted by the addition of calcium (Ca) or Sr carbonate and Glucone-δ-lactone. Gelation times varied with temperature and crosslinking agent, being slower for Sr than for Ca, but adequate for injection in both cases. Injectability was evaluated using a device employed in vertebroplasty surgical procedures, coupled to a texture analyzer in compression mode. Compositions with 35% w of microspheres presented the best compromise between injectability and compression strength of the system, the force required to extrude it being lower than 100 N. Micro CT analysis revealed a homogeneous distribution of the microspheres inside the vehicle, and a mean inter-microspheres space of 220 μm. DMA results showed that elastic behavior of the hybrid is dominant over the viscous one and that the higher storage modulus was obtained for the 3.5%Alg–35%Sr-HAp-Sr formulation. - Highlights: • We developed a Sr rich viscoelastic hybrid system (alginate matrix crosslinked in

  4. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  5. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering.

    Science.gov (United States)

    Naghashzargar, Elham; Farè, Silvia; Catto, Valentina; Bertoldi, Serena; Semnani, Dariush; Karbasi, Saeed; Tanzi, Maria Cristina

    2015-07-04

    A novel biodegradable nano/micro hybrid structure was obtained by electrospinning P3HB or PCL nanofibers onto a twisted silk fibroin (SF) structure, with the aim of fabricating a suitable scaffold for tendon and ligament tissue engineering. The electrospinning (ES) processing parameters for P3HB and PCL were optimized on 2D samples, and applied to produce two different nano/micro hybrid constructs (SF/ES-PCL and SF/ES-P3HB).Morphological, chemico-physical and mechanical properties of the novel hybrid scaffolds were evaluated by SEM, ATR FT-IR, DSC, tensile and thermodynamic mechanical tests. The results demonstrated that the nanofibers were tightly wrapped around the silk filaments, and the crystallinity of the SF twisted yarns was not influenced by the presence of the electrospun polymers. The slightly higher mechanical properties of the hybrid constructs confirmed an increase of internal forces due to the interaction between nano and micro components. Cell culture tests with L929 fibroblasts, in the presence of the sample eluates or in direct contact with the hybrid structures, showed no cytotoxic effects and a good level of cytocompatibility of the nano/micro hybrid structures in term of cell viability, particularly at day 1. Cell viability onto the nano/micro hybrid structures decreased from the first to the third day of culture when compared with the control culture plastic, but appeared to be higher when compared with the uncoated SF yarns. Although additional in vitro and in vivo tests are needed, the original fabrication method here described appears promising for scaffolds suitable for tendon and ligament tissue engineering.

  6. An Energy Management System of a Fuel Cell/Battery Hybrid Boat

    Directory of Open Access Journals (Sweden)

    Jingang Han

    2014-04-01

    Full Text Available All-electric ships are now a standard offering for energy/propulsion systems in boats. In this context, integrating fuel cells (FCs as power sources in hybrid energy systems can be an interesting solution because of their high efficiency and low emission. The energy management strategy for different power sources has a great influence on the fuel consumption, dynamic performance and service life of these power sources. This paper presents a hybrid FC/battery power system for a low power boat. The hybrid system consists of the association of a proton exchange membrane fuel cell (PEMFC and battery bank. The mathematical models for the components of the hybrid system are presented. These models are implemented in Matlab/Simulink environment. Simulations allow analyzing the dynamic performance and power allocation according to a typical driving cycle. In this system, an efficient energy management system (EMS based on operation states is proposed. This EMS strategy determines the operating point of each component of the system in order to maximize the system efficiency. Simulation results validate the adequacy of the hybrid power system and the proposed EMS for real ship driving cycles.

  7. Poly(N-isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering.

    Science.gov (United States)

    Mellati, Amir; Kiamahalleh, Meisam Valizadeh; Madani, S Hadi; Dai, Sheng; Bi, Jingxiu; Jin, Bo; Zhang, Hu

    2016-11-01

    Providing a controllable and definable three-dimensional (3D) microenvironment for chondrogenic differentiation of mesenchymal stem cells (MSCs) remains a great challenge for cartilage tissue engineering. In this work, poly(N-isopropylacrylamide) (PNIPAAm) polymers with the degrees of polymerization of 100 and 400 (NI100 and NI400) were prepared and the polymer solutions were introduced into the preprepared chitosan porous scaffolds (CS) to form hybrids (CSNI100 and CSNI400, respectively). SEM images indicated that the PNIPAAm gel partially occupied chitosan pores while the interconnected porous structure of chitosan was preserved. MSCs were incorporated within the hybrid and cell proliferation and chondrogenic differentiation were monitored. After 7-day incubation of the cell-laden constructs in a growth medium, the cell viability in CSNI100 and CSNI400 were 54 and 108% higher than that in CS alone, respectively. Glycosaminoglycan and total collagen contents increased 2.6- and 2.5-fold after 28-day culture of cell-laden CSNI400 in the chondrogenic medium. These results suggest that the hybrid structure composed of the chitosan porous scaffold and the well-defined PNIPAAm hydrogel, in particular CSNI400, is suitable for 3D stem cell culture and cartilage tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2764-2774, 2016. © 2016 Wiley Periodicals, Inc.

  8. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-01-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  9. Energy savings potential of a hybrid desiccant dehumidification air conditioning system in Beirut

    International Nuclear Information System (INIS)

    Ghali, Kamel

    2008-01-01

    In this work, the transient performance of a hybrid desiccant vapor compression air conditioning system is numerically simulated for the ambient conditions of Beirut. The main feature of this hybrid system is that the regenerative heat needed by the desiccant wheel is partly supplied by the condenser dissipated heat while the rest is supplied by an auxiliary gas heater. The hybrid air conditioning system of the present study replaces a 23 kW vapor compression unit for a typical office in Beirut characterized by a high latent load. The vapor compression subsystem size in the hybrid air conditioning system is reduced to 15 kW at the peak load when the regeneration temperature was fixed at 75 deg. C. Also the sensible heat ratio of the combined hybrid system increased from 0.47 to 0.73. Based on hour by hour simulation studies for a wide range of recorded ambient conditions of Beirut city, this paper predicts the annual energy consumption of the hybrid system in comparison with the conventional vapor compression system for the entire cooling season. The annual running costs savings for the hybrid system is 418.39 USD for a gas cost price of 0.141 USD/kg. The pay back period of the hybrid system is less than five years when the initial cost of the hybrid air conditioning system priced an additional 1712.00 USD. Hence, for a 20-year life cycle, the life cycle savings of the hybrid air conditioning system are 4295.19 USD

  10. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  11. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  12. Quantum technologies with hybrid systems.

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  13. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  14. Manifold absolute pressure estimation using neural network with hybrid training algorithm.

    Directory of Open Access Journals (Sweden)

    Mohd Taufiq Muslim

    Full Text Available In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM algorithm, Bayesian Regularization (BR algorithm and Particle Swarm Optimization (PSO algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS. The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.

  15. Manifold absolute pressure estimation using neural network with hybrid training algorithm.

    Science.gov (United States)

    Muslim, Mohd Taufiq; Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli

    2017-01-01

    In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.

  16. Hybrid context aware recommender systems

    Science.gov (United States)

    Jain, Rajshree; Tyagi, Jaya; Singh, Sandeep Kumar; Alam, Taj

    2017-10-01

    Recommender systems and context awareness is currently a vital field of research. Most hybrid recommendation systems implement content based and collaborative filtering techniques whereas this work combines context and collaborative filtering. The paper presents a hybrid context aware recommender system for books and movies that gives recommendations based on the user context as well as user or item similarity. It also addresses the issue of dimensionality reduction using weighted pre filtering based on dynamically entered user context and preference of context. This unique step helps to reduce the size of dataset for collaborative filtering. Bias subtracted collaborative filtering is used so as to consider the relative rating of a particular user and not the absolute values. Cosine similarity is used as a metric to determine the similarity between users or items. The unknown ratings are calculated and evaluated using MSE (Mean Squared Error) in test and train datasets. The overall process of recommendation has helped to personalize recommendations and give more accurate results with reduced complexity in collaborative filtering.

  17. Compact Hybrid Automotive Propulsion System

    Science.gov (United States)

    Lupo, G.

    1986-01-01

    Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.

  18. Optimal Photovoltaic System Sizing of a Hybrid Diesel/PV System

    Directory of Open Access Journals (Sweden)

    Ahmed Belhamadia

    2017-03-01

    Full Text Available This paper presents a cost analysis study of a hybrid diesel and Photovoltaic (PV system in Kuala Terengganu, Malaysia. It first presents the climate conditions of the city followed by the load profile of a 2MVA network; the system was evaluated as a standalone system. Diesel generator rating was considered such that it follows ISO 8528. The maximum size of the PV system was selected such that its penetration would not exceed 25%. Several sizes were considered but the 400kWp system was found to be the most cost efficient. Cost estimation was done using Hybrid Optimization Model for Electric Renewable (HOMER. Based on the simulation results, the climate conditions and the NEC 960, the numbers of the maximum and minimum series modules were suggested as well as the maximum number of the parallel strings.

  19. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage

    Science.gov (United States)

    El-Kady, Maher F.; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F.; Chaney, Lindsay; Lech, Andrew T.; Kaner, Richard B.

    2015-01-01

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm3. This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive “dry rooms” required for building today’s supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542

  20. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    International Nuclear Information System (INIS)

    Xu Yuhua; Zhou Wuneng; Fang Jianan

    2009-01-01

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  1. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  2. Requirements analysis notebook for the flight data systems definition in the Real-Time Systems Engineering Laboratory (RSEL)

    Science.gov (United States)

    Wray, Richard B.

    1991-01-01

    A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.

  3. Requirements analysis notebook for the flight data systems definition in the Real-Time Systems Engineering Laboratory (RSEL)

    Science.gov (United States)

    Wray, Richard B.

    1991-12-01

    A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.

  4. The near-term hybrid vehicle program, phase 1

    Science.gov (United States)

    1979-01-01

    Performance specifications were determined for a hybrid vehicle designed to achieve the greatest reduction in fuel consumption. Based on the results of systems level studies, a baseline vehicle was constructed with the following basic paramaters: a heat engine power peak of 53 kW (VW gasoline engine); a traction motor power peak of 30 kW (Siemens 1GV1, separately excited); a heat engine fraction of 0.64; a vehicle curb weight of 2080 kg; a lead acid battery (35 kg weight); and a battery weight fraction of 0.17. The heat engine and the traction motor are coupled together with their combined output driving a 3 speed automatic transmission with lockup torque converter. The heat engine is equipped withe a clutch which allows it to be decoupled from the system.

  5. Integrating system safety into the basic systems engineering process

    Science.gov (United States)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  6. Stochastic hybrid systems with renewal transitions

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.

    2010-01-01

    We consider Stochastic Hybrid Systems (SHSs) for which the lengths of times that the system stays in each mode are independent random variables with given distributions. We propose an analysis framework based on a set of Volterra renewal-type equations, which allows us to compute any statistical

  7. Biosolar energy generation and harvesting from biomolecule-copolymer hybrid systems

    Science.gov (United States)

    Chu, Bong-Chieh Benjamin

    Alternative energy sources have become an increasingly important topic as energy needs outpace supply. Furthermore, as the world moves into the digital age of portable electronics, highly efficient and lightweight energy sources will need to be developed. Current technology, such as lithium ion batteries, provide enough power to run portable electronics for hours or days, but can still allow for improvement in their power density (W/kg). Utilizing energy-transducing membrane proteins, which are by nature highly efficient, it is possible to engineer biological-based energy sources with energy densities far greater than any solid-state systems. Furthermore, solar powered membrane proteins have the added benefit of a virtually unlimited supply of energy. This work has developed protein-polymer hybrid films and nanoscale vesicles for a variety of applications from fuel-cell technology to biological-based photovoltaics. Bacteriorhodopsin (BR), a light-activated proton pump, and Cytochrome C Oxidase (COX), a protein involved in the electron transport chain in mitochondria, were reconstituted into biomimetic triblock copolymer membranes. Block copolymer membranes mimic the amphiphilic nature of a natural lipid bilayer but exhibit greater mechanical stability due to UV-polymerizable endgroups. In BR/COX functionalized nanovesicles, proton gradients generated by the light-activated proton pumping of BR are used to drive COX in reverse to generate electrons, providing a hybrid biologically-active polymer to convert solar energy to chemical energy, and finally to electrical energy. This work has found protein activity in planar membranes through the photoelectric current generation by BR and the proton pumping activity of BR-functionalized polymer membranes deposited onto proton exchange membranes, as well as the coupled functionality of BR and COX through current generation in cyclic voltammetry and direct current measurements. Current switching between light and dark

  8. 15th International conference on Hybrid Intelligent Systems

    CERN Document Server

    Han, Sang; Al-Sharhan, Salah; Liu, Hongbo

    2016-01-01

    This book is devoted to the hybridization of intelligent systems which is a promising research field of modern computational intelligence concerned with the development of the next generation of intelligent systems. This Volume contains the papers presented in the Fifteenth International conference on Hybrid Intelligent Systems (HIS 2015) held in Seoul, South Korea during November 16-18, 2015. The 26 papers presented in this Volume were carefully reviewed and selected from 90 paper submissions. The Volume will be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  9. Sizing PV-wind hybrid energy system for lighting

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2012-09-01

    Full Text Available Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the design of the systems, along with expected load profile. A hybrid power model is also developed for battery operation according to the power balance between generators and loads used in the software, to anticipate performances for the different systems according to the different weather conditions. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Using proposed procedure, a 1.2 kWp PV-wind hybrid system was designed for Izmir, and simulated and measured results are presented.

  10. Public perception related to a hydrogen hybrid internal combustion engine transit bus demonstration and hydrogen fuel

    International Nuclear Information System (INIS)

    Hickson, Allister; Phillips, Al; Morales, Gene

    2007-01-01

    Hydrogen has been widely considered as a potentially viable alternative to fossil fuels for use in transportation. In addition to price competitiveness with fossil fuels, a key to its adoption will be public perceptions of hydrogen technologies and hydrogen fuel. This paper examines public perceptions of riders of a hydrogen hybrid internal combustion engine bus and hydrogen as a fuel source

  11. Hybrid Type II fuzzy system & data mining approach for surface finish

    Directory of Open Access Journals (Sweden)

    Tzu-Liang (Bill Tseng

    2015-07-01

    Full Text Available In this study, a new methodology in predicting a system output has been investigated by applying a data mining technique and a hybrid type II fuzzy system in CNC turning operations. The purpose was to generate a supplemental control function under the dynamic machining environment, where unforeseeable changes may occur frequently. Two different types of membership functions were developed for the fuzzy logic systems and also by combining the two types, a hybrid system was generated. Genetic algorithm was used for fuzzy adaptation in the control system. Fuzzy rules are automatically modified in the process of genetic algorithm training. The computational results showed that the hybrid system with a genetic adaptation generated a far better accuracy. The hybrid fuzzy system with genetic algorithm training demonstrated more effective prediction capability and a strong potential for the implementation into existing control functions.

  12. A Review of Hybrid Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Setare Amiri

    2013-01-01

    Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.

  13. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  14. Harmonic Resonance Damping with a Hybrid Compensation System in Power Systems with Dispersed Generation

    DEFF Research Database (Denmark)

    Chen, Zhe; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    A hybrid compensation system consisting of an active filter and a group of distributed passive filters has been studied previously. The passive filters are used for each distorting load or Dispersed Generation (DG) unit to remove major harmonics and provide reactive power compensation. The active...... filter is connected in parallel with the distributed passive filters and loads/DGs to correct the system unbalance and remove the remaining harmonic components. The effectiveness of the presented compensation system has also been demonstrated. This paper studies the performance of the hybrid compensation...... demonstrated that the harmonic resonance can be damped effectively. The hybrid filter system is an effective compensation system for dispersed generation systems. In the compensation system, the passive filters are mainly responsible for main harmonic and reactive power compensation of each individual load/ DG...

  15. Recommendation systems in software engineering

    CERN Document Server

    Robillard, Martin P; Walker, Robert J; Zimmermann, Thomas

    2014-01-01

    With the growth of public and private data stores and the emergence of off-the-shelf data-mining technology, recommendation systems have emerged that specifically address the unique challenges of navigating and interpreting software engineering data.This book collects, structures and formalizes knowledge on recommendation systems in software engineering. It adopts a pragmatic approach with an explicit focus on system design, implementation, and evaluation. The book is divided into three parts: "Part I - Techniques" introduces basics for building recommenders in software engineering, including techniques for collecting and processing software engineering data, but also for presenting recommendations to users as part of their workflow.?"Part II - Evaluation" summarizes methods and experimental designs for evaluating recommendations in software engineering.?"Part III - Applications" describes needs, issues and solution concepts involved in entire recommendation systems for specific software engineering tasks, fo...

  16. Generator voltage stabilisation for series-hybrid electric vehicles.

    Science.gov (United States)

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  17. Generalised Computability and Applications to Hybrid Systems

    DEFF Research Database (Denmark)

    Korovina, Margarita V.; Kudinov, Oleg V.

    2001-01-01

    We investigate the concept of generalised computability of operators and functionals defined on the set of continuous functions, firstly introduced in [9]. By working in the reals, with equality and without equality, we study properties of generalised computable operators and functionals. Also we...... propose an interesting application to formalisation of hybrid systems. We obtain some class of hybrid systems, which trajectories are computable in the sense of computable analysis. This research was supported in part by the RFBR (grants N 99-01-00485, N 00-01- 00810) and by the Siberian Branch of RAS (a...... grant for young researchers, 2000)...

  18. Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated. Simulations of the proposed system were conducted using different fuels, which should facilitate the use of a variety of fuels depending on availability. Here, the results for natural gas (NG), ammonia, di-methyl ether (DME), methanol and ethanol are presented and analyzed. The system behavior is further investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes. Additionally, heat is also produced to heat the family home when necessary. - Highlights: • Integrating a solid oxide fuel with a Stirling engine • Design of multi-fuel hybrid plants • Plants running on alternative fuels; natural gas, methanol, ethanol, DME and ammonia • Thermodynamic analysis of hybrid SOFC–Stirling engine plants

  19. Analysis of hybrid energy systems for application in southern Ghana

    International Nuclear Information System (INIS)

    Adaramola, Muyiwa S.; Agelin-Chaab, Martin; Paul, Samuel S.

    2014-01-01

    Highlights: • The option of using hybrid energy for electricity in remote areas of Ghana is examined. • The cost of electricity produced by the hybrid system is found to be $0.281/kW h. • The levelized cost of electricity increase by 9% when the PV price is increased from $3000/kW to $7500/kW. - Abstract: Due to advances in renewable energy technologies and increase in oil price, hybrid renewable energy systems are becoming increasingly attractive for power generation applications in remote areas. This paper presents an economic analysis of the feasibility of utilizing a hybrid energy system consisting of solar, wind and diesel generators for application in remote areas of southern Ghana using levelized cost of electricity (LCOE) and net present cost of the system. The annual daily average solar global radiation at the selected site is 5.4 kW h/m 2 /day and the annual mean wind speed is 5.11 m/s. The National Renewable Energy Laboratory’s Hybrid Optimization Model for Electric Renewable (HOMER) software was employed to carry out the present study. Both wind data and the actual load data have been used in the simulation model. It was found that a PV array of 80 kW, a 100 kW wind turbine, two generators with combined capacity of 100 kW, a 60 kW converter/inverter and a 60 Surrette 4KS25P battery produced a mix of 791.1 MW h of electricity annually. The cost of electricity for this hybrid system is found to be $0.281/kW h. Sensitivity analysis on the effect of changes in wind speed, solar global radiation and diesel price on the optimal energy was investigated and the impact of solar PV price on the LCOE for a selected hybrid energy system was also presented

  20. Hybrid electronic/optical synchronized chaos communication system.

    Science.gov (United States)

    Toomey, J P; Kane, D M; Davidović, A; Huntington, E H

    2009-04-27

    A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.

  1. A Simple Hybrid Synchronization for a Class of Chaotic Financial Systems

    Directory of Open Access Journals (Sweden)

    Jiming Zheng

    2017-01-01

    Full Text Available It is an important to achieve the hybrid synchronization of the chaotic financial system. Chaos synchronization is equivalent to the error system which is asymptotically stable. The hybrid synchronization for a class of finance chaotic systems is discussed. First, a simple single variable controller is obtained to synchronize two identical chaotic financial systems with different initial conditions. Second, a novel algorithm is proposed to determine the variables of the master system that should antisynchronize with corresponding variables of the slave system and use this algorithm to determine the corresponding variables in the chaotic financial systems. The hybrid synchronization of the chaotic financial systems is realized by a simple controller. At the same time, different controllers can implement the chaotic financial system hybrid synchronization. In comparison with the existing results, the obtained controllers in this paper are simpler than those of the existing results. Finally, numerical simulations show the effectiveness of the proposed results.

  2. Hybrid Control System for Greater Resilience Using Multiple Isolation and Building Connection

    Directory of Open Access Journals (Sweden)

    Masaki Taniguchi

    2016-10-01

    Full Text Available An innovative hybrid control building system of multiple isolation and connection is proposed and investigated using both time-history and input energy responses for various types of ground motions together with transfer functions. It is concerned that the seismic displacement response at the base-isolation layer of the existing base-isolated buildings may extremely increase under long-period and long-duration ground motions which are getting great attention recently. In order to enhance the seismic performance of those base-isolated buildings, a novel hybrid system of multiple isolation and building-connection is proposed and compared with other structural systems such as an independent multiple isolation system, a hybrid system of base-isolation and building-connection. Furthermore, the robustness of seismic responses of the proposed hybrid system for various types of ground motion is discussed through the comparison of various structural systems including non-hybrid systems. Finally the optimal connection damper location is investigated using a sensitivity-type optimization approach.

  3. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    Science.gov (United States)

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  4. PV Horizon : Proceedings of the Workshop on Photovoltaic Hybrid Systems. CD ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of this workshop was to share information on current photovoltaic (PV) and hybrid system technology, and to present information on international experience and trends in research and development. It brought together 70 experts from Canada, the United States, several European countries, Japan and Australia. Currently, PV hybrid systems are used for stand-alone projects in telecommunication applications, remote housing, and leisure lodges. The applications for these sectors are well known and the technology is cost effective. Other applications are for micro-grid applications such as small remote islands, village power and tourist resorts. The costs for these types of applications can also be effective as long as the power demand is relatively low. A keynote presentation which highlighted the current application of PV hybrid systems, was followed by three sessions dealing with international experience with hybrid systems, the research and development opportunities for hybrid systems, and visual presentations on a range of subjects dealing with PV hybrid systems, their components, system integration, standards, guidelines, and control system issues. It was noted that the future for renewables looks bright, particularly for developing countries. Their use will also reduce the environmental footprint of remote power solutions. refs., tabs., figs.

  5. Modelling and analysis of real-time and hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, A

    1994-09-29

    This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.

  6. Systems engineering: A problem of perception

    Energy Technology Data Exchange (ETDEWEB)

    Senglaub, M.

    1995-08-01

    The characterization of systems engineering as a discipline, process, procedure or a set of heuristics will have an impact on the implementation strategy, the training methodology, and operational environment. The systems engineering upgrade activities in the New Mexico Weapons Development Center and a search of systems engineering related information provides evidence of a degree of ambiguity in this characterization of systems engineering. A case is made in this article for systems engineering being the engineering discipline applied to the science of complexity. Implications of this characterization and some generic issues are delineated with the goal of providing an enterprise with a starting point for developing its business environment.

  7. Optimizing the efficiency of a diesel engine for a hybrid wind-diesel experimental validation; Optimisation de l'efficacite du moteur diesel pour un systeme hybride eolien-diesel-validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, H.; Dimitrova, M. [TechnoCentre Eolien, Murdochville, PQ (Canada); Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada); Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada)

    2010-07-01

    This study examined the feasibility of using a wind-diesel compressed air storage system in large-scale gas turbines at remote sites where a good wind resource is available. Studies have shown that the system can increase the wind energy penetration rate, particularly when combined with a turbo diesel engine. The system increases the power and performance of the diesel engine and reduces fuel consumption and emissions of greenhouse gases greenhouse gases (GHG). This study included a comparison of different technical solutions for the compressed air energy storage system, and described the one that optimized the performance and cost of the overall system. The optimal solution allowed the turbocharger to operate independently of the engine due to the energy provided by the compressed air in the air turbine. Optimization required maximizing the compressor power as an objective function. The energy balance of the engine itself had to be taken into account, along with the turbo charging system. 12 refs., 2 tabs., 16 figs.

  8. Bright future of photovoltaic-hybrid systems as main option for electricity generation in remote communities

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, Ahmad [Solar Energy Applications Research Group (Australia)

    2000-07-01

    The most common power option for remotely located communities, facilities, schools, etc., is the engine generator powered by diesel fuel. Over the past 15 years, many remote communities with limited and costly site access for maintenance and fuel delivery have had their engine-based power systems modified to photovoltaic hybrid power systems. As a result, hybrid power systems with photovoltaic as the main generator are becoming the preferred power option. The reasons for this change are simple: the engine-based power systems require regular oil and filter changes (in average after 150 hrs of operation); the maintenance cost is relatively high; the cost of travel to and from the site to perform maintenance is restricted during certain time of the year and can be more expensive than the actual maintenance itself. Photovoltaic generators are gradually replacing the diesel generators and thus are becoming the primary source in remote communities. As electricity is required for 24 hours of operation and photovoltaic are not able to generate power for 24 h, batteries are added to the system as storage units, and the diesel generators are used as a back-up power supply. The objective of this paper is to present the results obtained from a study which has been carried out on a PV-hybrid power system from the desired performance point of view. [Spanish] La opcion mas comun de energia para las comunidades, instalaciones, escuelas, etc. localizadas en lugares remotos, es el generador que utiliza diesel como combustible. En los ultimos 15 anos, muchas comunidades remotas con acceso limitado y costoso para el mantenimiento y la entrega de combustible han modificado sus sistemas de energia basados en motores por sistemas de energia hibridos fotovoltaicos. Como resultado, los sistemas hibridos de energia con generadores fotovoltaicos como principal generador se estan convirtiendo en la opcion preferida de generacion de electricidad. Las razones para este cambio son simples: los

  9. Design and management of energy-efficient hybrid electrical energy storage systems

    CERN Document Server

    Kim, Younghyun

    2014-01-01

    This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an act

  10. Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Karbasi, Saeed; Fekrat, Farnoosh; Semnani, Daryoush; Razavi, Shahnaz; Zargar, Elham Naghash

    2016-01-01

    One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering.

  11. The rural areas electrification with a hybrid photovoltaic systems

    International Nuclear Information System (INIS)

    Kocev, Kiril I.; Dimitrov, Dimitar; Tudzharov, Gjorgji

    2001-01-01

    Depending on a daily load demand, distance from the utility grid and the available solar energy, the rural villages electrification with a hybrid photovoltaic (PV) system can be a cheaper solution than the classic electrification, by connecting them to the utility grid. Besides PV generator, the considered hybrid system is consisted of a battery and a diesel gen set. For the concrete case - rural village with estimated daily load demand of 15.5 kWh/day, with the computer program PVFORM, which is modified for such hybrid system, were simulated a few hundreds PV systems, with different sizes of the PV generator and of the battery capacity. Analyzing the obtained results, it can be foreseen the influence of the component size on the system functionality. From the mass of possible system combinations, it is chosen one that has 42 % lower initial investment, than the initial investment for connection of the village to the utility grid. (Original)

  12. Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-08-01

    This factsheet describes a project that developed and demonstrated a new hybrid system for industrial wastewater treatment that synergistically combines a forward osmosis system with a membrane distillation technology and is powered by waste heat.

  13. Stochastic linear hybrid systems: Modeling, estimation, and application

    Science.gov (United States)

    Seah, Chze Eng

    Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS

  14. Transforming Systems Engineering through Model Centric Engineering

    Science.gov (United States)

    2017-08-08

    Contract No. HQ0034-13-D-0004 Report No. SERC-2017-TR-110 Date: August 8, 2017 Transforming Systems Engineering through Model-Centric... Engineering Technical Report SERC-2017-TR-110 Update: August 8, 2017 Principal Investigator: Mark Blackburn, Stevens Institute of Technology Co...Evangelista Sponsor: U.S. Army Armament Research, Development and Engineering Center (ARDEC), Office of the Deputy Assistant Secretary of Defense for

  15. Information technology security system engineering methodology

    Science.gov (United States)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  16. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  17. Systems engineering management plan

    International Nuclear Information System (INIS)

    Conner, C.W.

    1985-10-01

    The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe the systems engineering procedures to be implemented at the Program level and the minimum requirements for systems engineering at the Program-element level. The Program level corresponds to the Director, OCRWM, or to the organizations within OCRWM to which the Director delegates responsibility for the development of the System and for coordinating and integrating the activities at the Program-element level. The Office of Policy and Outreach (OPO) and the Office of Resource Management (ORM) support the Director at the Program level. The Program-element level corresponds to the organizations within OCRWM (i.e., the Office of Geologic Repositories (OGR) and the Office of Storage and Transportation Systems (OSTS)) with overall responsibility for developing the System elements - that is, the mined geologic disposal system (MGDS), monitored retrievable storage (MRS) (if approved by Congress), and the transportation system

  18. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection

    Directory of Open Access Journals (Sweden)

    M. Kasagi

    2016-02-01

    Full Text Available A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  19. An insight on advantage of hybrid sun–wind-tracking over sun-tracking PV system

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Banybayat, Meisam; Tagheie, Yaghoub; Valeh-e-Sheyda, Peyvand

    2015-01-01

    Graphical abstract: Real photograph of hybrid sun–wind-tracking system. - Highlights: • Novel hybrid sun–wind-tracking system proposed to enhance PV cell performance. • The wind tracker can cool down the PV cell as sun-tracking system work. • The hybrid tracker achieved 7.4% increase in energy gain over the sun tracker. • The overall daily output energy gain was increased by 49.83% by using this system. - Abstract: This paper introduces the design and application of a novel hybrid sun–wind-tracking system. This hybrid system employs cooling effect of wind, besides the advantages of tracking sun for enhancing power output from examined hybrid photovoltaic cell. The principal experiment focuses on comparison between dual-axes sun-tracking and hybrid sun–wind-tracking photovoltaic (PV) panels. The deductions based on the research tests confirm that the overall daily output energy gain was increased by 49.83% compared with that of a fixed system. Moreover, an overall increase of about 7.4% in the output power was found for the hybrid sun–wind-tracking over the two-axis sun tracking system.

  20. Safety Verification for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Zhang, Lijun; She, Zhikun; Ratschan, Stefan

    2010-01-01

    The interplay of random phenomena and continuous real-time control deserves increased attention for instance in wireless sensing and control applications. Safety verification for such systems thus needs to consider probabilistic variations of systems with hybrid dynamics. In safety verification o...... on a number of case studies, tackled using a prototypical implementation....