WorldWideScience

Sample records for engineering geological investigation

  1. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  2. Engineering Geological Conditions of the Ignalina NPP Region

    International Nuclear Information System (INIS)

    Buceviciute, S.

    1996-01-01

    During engineering geological mapping, the upper part (to 15-20 m depths) of the lithosphere was investigated at the Ignalina Nuclear Power Plant (INPP) for physical rock characteristics and recent exogenic geological processes and phenomena. The final result of engineering geological mapping was the division of the area into engineering geological regions. In this case five engineering geological regions have been distinguished. The Fig. shows a scheme of engineering geological regionalization of the area and the typical sections of the engineering geological regions. The sections show genesis, age, soil type, thickness of stratigraphic genetical complex for the rocks occurring in the zone of active effect of engineering buildings, as well as the conical strength and density of the distinguished soils. 1 fig., 1 tab

  3. Engineering Geological Investigation of Slow Moving Landslide in Jahiyang Village, Salawu, Tasikmalaya Regency

    Directory of Open Access Journals (Sweden)

    Dwi Sarah

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i1.133An understanding of landslide mechanism is imperative to determine the appropriate mitigation method. The slow moving landslide (creeping which occurred in Kampung Salawangi, Jahiyang Village, Salawu Subregency, Tasikmalaya had caused economical and environmental losses due to the frequent active movement particularly following rainfall events. Engineering geological investigation and slope stability analysis were carried out in the studied area in order to elucidate the mechanism of the landslide. The engineering geological investigation consists of local topographical mapping, geotechnical drillings, hand borings, cone penetration, and laboratory tests. The slope stability assessment of the recent landslide was conducted by a finite element method. The results of engineering geological data analysis show that the studied area is composed of residual soils of soft to firm sandy silt and loose to compact silty sand and base rock of fresh to weathered volcanic breccias with groundwater level varying between 3 - 16 m. The engineering properties of the residual soils indicate that the sandy silt is of high plasticity and the shear strength properties of the sandy silt and silty sand show low value with effective cohesion of 6.0 - 21.74 kPa and effective friction angle of 12.00 - 25.980. The assessment of slope stability shows that the stability of the studied area is largely influenced by the rise of groundwater level marked by the decrease of safety factor and increase of slope displacement.

  4. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  5. ENGINEERING GEOLOGY PROPERTIES OF 'KONJSKO' TUNNEL

    Directory of Open Access Journals (Sweden)

    Ivan Grabovac

    2004-12-01

    Full Text Available Investigation works for the design of the Konjsko Tunnel with two pipes, part of the Split-Zagreb Motorway, provided relevant data on rock mass and soil properties for construction of the prognose engineering-geological longitudinal sections. West tunnel portals are situated in tectonically deformed and partly dynamically metamorphosed Eocene flysch marls, while east ones are located in Senonian limestones. There is an overthrust contact between flysch marls and limestones. With the beginning of the excavations, rock mass characteristics were regularly registered after each blasting and actual longitudinal engineering-geological cross-sections were constructed as well as cross-sections of the excavation face. There were some differences between prognosticated and registered sections since it was infeasible to accurately determine the dip of the overthrust plane that was at shallow depth below the tunnel grade line and also due to the occurrence of transversal faults that intersected the overthrust. Data collected before and during the tunnel construction complemented the knowledge on geological structure of the surroundings and physical-mechanical characteristics of strata (the paper is published in Croatian.

  6. Engineering geology and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, E M

    1979-01-01

    A classification is made of the anthropogenic processes in the environment into global, local, universally distributed, zonal, regional, and essentially local processes. Engineering geology is defined as the principal science concerned with the study of the geological medium which in turn involves the study of fossil fuel geology. 22 references.

  7. Popularizing Geological Education among Civil Engineering Students

    Science.gov (United States)

    Chen, Xiang-jun; Zhou, Ying

    2012-01-01

    The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…

  8. An engineering geological investigation of ground subsidence above the Huntly East Mine

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, P.I.

    1987-10-01

    Ground subsidence above the Huntly East Mine at the N.Z.E.D. Hostel has affected an area of approximately seven hectares with measured settlements of over 800mm. Extensive damage was suffered by most buildings and services of the hostel complex To determine the cause(s) and mechanism(s) of the subsidence, site and laboratory investigations were undertaken. Site investigations included core and wash drilling, geophysical borehole logging, dutch cone penetrometer soundings plus piezometer installation and monitoring. Laboratory investigations included one dimensional consolidation and permeability testing, SEM fabric studies, XRD and chemical tests for clay mineralogy, and determinations of Atterberg Limits and grain size distributions. The mine overburden geology at the site consists of a 35 to 60m thick sequence of mudstones and coal seams of the Te Kuiti Group (Eocene to Oligocene), and overlain by a 50 to 70m thick succession of saturated sands, silts and gravels of the Tauranga Group (Pliocene to Holocene). Within the Tauranga Group three aquifers are present. The engineering geological model considered most likely to explain the subsidence is mine roof collapse causing void migration to near the top of the Te Kuiti Group sequence resulting in drainage and depressurising of aquifers at the base of the Tauranga Group. Aquifer depressurisation is considered likely to cause consolidation within both the aquifer and aquitards associated with it. Back-analyses of the dewatering consolidation model in terms of both magnitude and rates of settlement are consistent with observed values. A finite difference numerical analysis was developed for estimations of settlement rates. 98 refs., 67 figs., 12 tabs.

  9. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  10. Airborne remote sensors applied to engineering geology and civil works design investigations

    Science.gov (United States)

    Gelnett, R. H.

    1975-01-01

    The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.

  11. Selective Guide to Literature on Engineering Geology. Engineering Literature Guides, Number 7.

    Science.gov (United States)

    Mullen, Cecilia P., Comp.

    This guide has been prepared for use by the undergraduate or graduate student in engineering geology. Because of the broad scope of the field, the major disciplines of soil mechanics, rock mechanics, and foundations are primarily emphasized. This document is a survey of information sources in engineering geology and is intended to identify those…

  12. The geological and material investigation programme

    International Nuclear Information System (INIS)

    Joshi, A.V.

    1982-01-01

    The radioactive waste disposal problem is an interdisciplinary problem. The geological formation cannot be considered on its own, but must also be considered in connection with the engineering design of the disposal facility. Engineering design including the encapsulation of the glass in a 15 cm thick steel cylinder and a minimum 40 year cooling time ensures low temperatures in the salt-steel interface. Even if large quantities of carnallite were found 3.5 m away from the sides of the borehole, the temperature at 2500 m depth after taking into account temperature increase from radioactive waste will not release crystal water from the carnallite. Anhydrite layers, which may be found in the neighbourhood of Erslev 2 and at the depths contemplated for radioactive waste disposal, will not be continous, but only in the form of blocks of limited lengths. They cannot therefore form a passage to a water bearing aquifer. The volume of salt necessary for waste disposal - including a 200 m safety barrier - is less than 2 km 3 . The Mors dome with a salt volume of about 264 km 3 provides a very substantial safety margin. The geological investigations have fulfilled the purpose of the present phase of investigations and show the Mors salt dome to be a suitable dome for disposal of high-level radioactive waste. (EG)

  13. Geology, geophysics and engineering: a case for synergism

    Energy Technology Data Exchange (ETDEWEB)

    Gretener, P.E.

    1984-06-01

    This article uses the example of artificial well fracturing to show how geologists, geophysicists and engineers can benefit from establishing an interdisciplinary dialogue. The term ''Ultimate Recovery'' is shown to be equally applicable to oil production and hard rock mining. While geology and geophysics schools gear their curricula toward the exploration for natural resources, engineers consider exploitation as their exclusive domain. It is proposed that geologists and geophysicists close ranks with the engineers and abolish the current state of separation which is being perpetuated by both sides. It is shown how geological considerations have helped to unravel the process of artificial well stimulation, while well stimulation in turn has provided valuable insights into the present stress conditions in various geological provinces.

  14. Range of engineering-geological properties for some carbonate rock complexes for Balkan peninsula

    International Nuclear Information System (INIS)

    Jovanovski, Milorad; Shpago, Azra; Peshevski, Igor

    2010-01-01

    The Carbonate Rock masses are a geological media with extremely complex states and properties, which has a certain influences on the mechanical and hydraulic behavior during construction and exploitation of engineering structures. Practical aspects of the problem analysis arise from the fact that the areas of Bosnia and Herzegovina, Macedonia and the entire Balkans is characterized by presence of wide areas covered with carbonate complexes, where large number of complex engineering structures have been, or shall be constructed in the future. In this context, their engineering-geological modeling is still a practical and scientific challenge. The analysis of engineering- geological properties is one of the main steps in forming of analytical and geotechnical models for complex rock structures. This article gives a data about the range for these properties, according to the results from an extensive investigation program. Some original correlations and testing results are given and they are compared with some published relations from the world. (Author)

  15. Geology and engineering geology of roads in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2004-07-01

    Full Text Available zone of the Limpopo Belt, South Africa, South African Journal of Geology, Vol 101 (3), pp 201-214. [3] Partridge, T. 1975. Some geomorphic factors influencing the formation and engineering properties of soil materials in South Africa. Proc 5th... land. 2003. Pretoria: Council for Geosciences and South African Institute of Engineering and Environmental Geologists. [23] Varnes, DJ. 1978. Slope movement types and processes. In: Landslides: analysis and control. Edited by RL Schuster and RJ...

  16. Environmental aspects of engineering geological mapping in the United States

    Science.gov (United States)

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  17. Study on geological environment in the Tono area. An approach to surface-based investigation

    International Nuclear Information System (INIS)

    2002-12-01

    Mizunami Underground Research (MIU) Project has aimed at preparation of basis of investigation, analysis and evaluation of geology of deep underground and basis of engineering technologies of ultra deep underground. This report stated an approach and information of surface-based investigation for ground water flow system and MIU Project by the following contents, 1) objects and preconditions, 2) information of geological environment for analysis of material transition and design of borehole, 3) modeling, 4) tests and investigations and 5) concept of investigation. The reference data consists of results of studies such as the geological construction model, topography, geologic map, structural map, linear structure and estimated fault, permeability, underground stream characteristics, the quality of underground water and rock mechanics. (S.Y.)

  18. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  19. An Engineering Foundation Investigation using the Geoelectric ...

    African Journals Online (AJOL)

    The geoelectric method – Schlumberger vertical electrical sounding (VES) technique – was utilised in the geophysical investigation of an engineering site in Ode-Aye Southwestern Nigeria. The aim of the study was to determine the existence of competent and incompetent geologic layers and the depth at which they occur.

  20. The efficiency of the use of penetration nuclear logging in hydrogeology and engineering geology

    International Nuclear Information System (INIS)

    Ferronsky, V.I.

    1992-01-01

    The latest developments in equipment and techniques for nuclear and combined non-nuclear logging in friable unconsolidated deposits, including marine bottom sediments are described. The effectiveness of these techniques in hydrogeological and engineering geological investigations is discussed. (Author)

  1. Development of teaching modules for geology and engineering coursework using terrestrial LiDAR scanning systems

    Science.gov (United States)

    Yarbrough, L. D.; Katzenstein, K.

    2012-12-01

    Exposing students to active and local examples of physical geologic processes is beneficial to the learning process. Students typically respond with interest to examples that use state-of-the-art technologies to investigate local or regional phenomena. For lower cognitive level of learning (e.g. knowledge, comprehension, and application), the use of "close-to-home" examples ensures that students better understand concepts. By providing these examples, the students may already have a familiarity or can easily visit the location. Furthermore, these local and regional examples help students to offer quickly other examples of similar phenomena. Investigation of these examples using normal photographic techniques, as well as a more sophisticated 3-D Light Detection And Ranging (LiDAR) (AKA Terrestrial Laser Scanning or TLS) system, allows students to gain a better understanding of the scale and the mechanics of the geologic processes and hazards. The systems are used for research, teaching and outreach efforts and depending on departmental policies can be accessible to students are various learning levels. TLS systems can yield scans at sub-centimeter resolution and contain surface reflectance of targets. These systems can serve a number of learning goals that are essential for training geoscientists and engineers. While querying the data to answer geotechnical or geomorphologic related questions, students will develop skills using large, spatial databases. The upper cognitive level of learning (e.g. analysis, synthesis, and evaluation) is also promoted by using a subset of the data and correlating the physical geologic process of stream bank erosion and rock slope failures with mathematical and computer models using the scanned data. Students use the examples and laboratory exercises to help build their engineering judgment skills with Earth materials. The students learn not only applications of math and engineering science but also the economic and social implication

  2. Horonobe Underground Research Laboratory project synthesis of phase I investigation 2001-2005. Volume 'Geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Tanai, Kenji; Nishimura, Mayuka; Kobayashi, Yasushi; Hiramoto, Masayuki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Wakasugi, Keiichiro; Nakano, Katsushi; Seo, Toshihiro; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Kurikami, Hiroshi; Kunimaru, Takanori; Ishii, Eiichi; Ota, Kunio; Hama, Katsuhiro; Takeuchi, Ryuji

    2007-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project (HOR), of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in HOR as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  3. Design studies on the engineered barrier system and on the in-situ experiments under the conditions of geological environment in Horonobe

    International Nuclear Information System (INIS)

    Kurihara, Yuji; Yui, Mikazu; Tanai, Kenji

    2004-04-01

    Following studies have been done in this papers in order to apply the technologies based on H12 report to the actual geological conditions of Horonobe underground research laboratory. 1) Reconsidering the process of repository design, the design process charts of a repository were presented. In the H12 report, the design process of the engineering barrier system was followed by the facility design process. In this paper, the both processes were placed in parallel position. 2) The relation between geological conditions and the performance of engineering barrier systems and the specifications of engineering barrier systems was arranged and the geological information needed for design of engineering barrier were selected. 3) The appropriate form of geological information as input-data for design were showed and the procedure for setting input-data was presented. 4) Based on the state of geological investigations at Horonobe, mechanical input-data were arranged for the design of the in-situ experiments on engineered barrier system at HORONOBE. 5) The stability of the hall for the in-situ experiments was studied by numerical analysis and the results indicated that there are difference in stability between the depth of 500 m and 570 m. (author)

  4. ENGINEERING GEOLOGICAL CHARACTERISTICS OF THE ROAD SOLIN - KLIS (DALMATIA, CROATIA

    Directory of Open Access Journals (Sweden)

    Slobodan Šestanović

    1993-12-01

    Full Text Available The research, that has been done both on the »intact« terrain and on the opened cuts and discontinuities, and which has been carried on in the basic caves of the object, as well as in the tunnels; has verified the engineering geological and basic tectonic characteristics of Senonian limestones, Eocene flysch, the Promina breccias and breccia-conglomerates, as well as Oligocene poorly sorted breccias, on the route of semi-highway Solin-Klis (Dalmatia, Croatia. The lab analyses, of the great number of the rock samples, have brought out the parametres of their basic physical and mechanical features within a particular engineering geological unit. The results, thus obtained, have been compared to the qualities of the rock structure block as a whole, and had been previously evaluated by applying RMR-classification of the rocks, and the results of the measured velocities of the longitudinal waves. It has been pointed out that similar procedure may be applied in the publication of General Engineering Geological Map of the Republic of Croatia (the paper is published in Croatian.

  5. Conceptual design of the virtual engineering system for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    2000-02-01

    The role of Virtual Engineering System for High Level Radioactive Waste Geological Disposal (hereafter the VES) is to accumulate and unify the results of research and development which JNC had been carried out for the completion of the second progress report on a computer system. The purpose and functions of VES with considering the long-term plan for geological disposal in Japan was studied. The analysis between geological environment assessment, safety performance assessment, and engineering technology had not been integrated mutually in the conventional study. The iterative analysis performed by VES makes it possible to analyze natural barrier and engineering barrier more quantitatively for obtaining safety margin and rationalization of the design of a waste repository. We have examined the system functions to achieve the above purpose of VES. Next, conceptual design for codes, databases, and utilities that consist of VES were performed by examining their purpose and functions. The conceptual design of geological environment assessment system, safety performance assessment system, waste repository element database, economical assessment system, investigation support system, quality assurance system, and visualization system are preformed. The whole system configuration, examination of suitable configuration of hardware and software, examination of system implementation, the confirmation of parallel calculation technology, the conceptual design of platform, the development of demonstration program of platform are performed. Based upon studies stated above, the VES development plan including prototype development during the period of selection of the site candidate was studied. The concept of VES was build based on the examination stated above. (author)

  6. Horonobe Underground Research Laboratory project. Synthesis of phase 1 investigation 2001-2005, Volume 'geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Ota, Kunio; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Hama, Katsuhiro; Kunimaru, Takanori; Takeuchi, Ryuji; Tanai, Kenji; Kurikami, Hiroshi; Wakasugi, Keiichiro; Ishii, Eiichi

    2011-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project, of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the project as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  7. Engineering geological mapping in Wallonia (Belgium) : present state and recent computerized approach

    Science.gov (United States)

    Delvoie, S.; Radu, J.-P.; Ruthy, I.; Charlier, R.

    2012-04-01

    An engineering geological map can be defined as a geological map with a generalized representation of all the components of a geological environment which are strongly required for spatial planning, design, construction and maintenance of civil engineering buildings. In Wallonia (Belgium) 24 engineering geological maps have been developed between the 70s and the 90s at 1/5,000 or 1/10,000 scale covering some areas of the most industrialized and urbanized cities (Liège, Charleroi and Mons). They were based on soil and subsoil data point (boring, drilling, penetration test, geophysical test, outcrop…). Some displayed data present the depth (with isoheights) or the thickness (with isopachs) of the different subsoil layers up to about 50 m depth. Information about geomechanical properties of each subsoil layer, useful for engineers and urban planners, is also synthesized. However, these maps were built up only on paper and progressively needed to be updated with new soil and subsoil data. The Public Service of Wallonia and the University of Liège have recently initiated a study to evaluate the feasibility to develop engineering geological mapping with a computerized approach. Numerous and various data (about soil and subsoil) are stored into a georelational database (the geotechnical database - using Access, Microsoft®). All the data are geographically referenced. The database is linked to a GIS project (using ArcGIS, ESRI®). Both the database and GIS project consist of a powerful tool for spatial data management and analysis. This approach involves a methodology using interpolation methods to update the previous maps and to extent the coverage to new areas. The location (x, y, z) of each subsoil layer is then computed from data point. The geomechanical data of these layers are synthesized in an explanatory booklet joined to maps.

  8. Landslides and engineering geology of the Seattle, Washington, area

    Science.gov (United States)

    Baum, Rex L.; Godt, Jonathan W.; Highland, Lynn M.

    2008-01-01

    This volume brings together case studies and summary papers describing the application of state-of-the-art engineering geologic methods to landslide hazard analysis for the Seattle, Washington, area. An introductory chapter provides a thorough description of the Quaternary and bedrock geology of Seattle. Nine additional chapters review the history of landslide mapping in Seattle, present case studies of individual landslides, describe the results of spatial assessments of landslide hazard, discuss hydrologic controls on landsliding, and outline an early warning system for rainfall-induced landslides.

  9. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  10. Assessment of NPP safety taking into account seismic and engineering-geological factors

    International Nuclear Information System (INIS)

    Yakovlev, E.A.

    1990-01-01

    Consideration is given to the problem of probabilistic analysis of NPP safety with account of risk of destructive effect of earthquakes and the danger of accidental geological processes (diapirism, karst etc.) under NPP operation. It is shown that account of seismic and engineering-geological (engineering-seismological) risk factors in probabilistic analysis of safety enables to perform anticipatory analysis of behaviour of principle plant objects and to improve safety of their operation by revealing the most unstable elements of geotechnical system forming the main contribution to the total NPP risk

  11. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  12. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  13. Engineering-Geological Data Model - The First Step to Build National Polish Standard for Multilevel Information Management

    Science.gov (United States)

    Ryżyński, Grzegorz; Nałęcz, Tomasz

    2016-10-01

    The efficient geological data management in Poland is necessary to support multilevel decision processes for government and local authorities in case of spatial planning, mineral resources and groundwater supply and the rational use of subsurface. Vast amount of geological information gathered in the digital archives and databases of Polish Geological Survey (PGS) is a basic resource for multi-scale national subsurface management. Data integration is the key factor to allow development of GIS and web tools for decision makers, however the main barrier for efficient geological information management is the heterogeneity of data in the resources of the Polish Geological Survey. Engineering-geological database is the first PGS thematic domain applied in the whole data integration plan. The solutions developed within this area will facilitate creation of procedures and standards for multilevel data management in PGS. Twenty years of experience in delivering digital engineering-geological mapping in 1:10 000 scale and archival geotechnical reports acquisition and digitisation allowed gathering of more than 300 thousands engineering-geological boreholes database as well as set of 10 thematic spatial layers (including foundation conditions map, depth to the first groundwater level, bedrock level, geohazards). Historically, the desktop approach was the source form of the geological-engineering data storage, resulting in multiple non-correlated interbase datasets. The need for creation of domain data model emerged and an object-oriented modelling (UML) scheme has been developed. The aim of the aforementioned development was to merge all datasets in one centralised Oracle server and prepare the unified spatial data structure for efficient web presentation and applications development. The presented approach will be the milestone toward creation of the Polish national standard for engineering-geological information management. The paper presents the approach and methodology

  14. Investigation of the long term stability and corrosion resistance of engineering barriers

    International Nuclear Information System (INIS)

    Aoyama, Eri; Tachikawa, Hirokazu; Shimizu, Akihiko

    2005-03-01

    The Japan Nuclear Cycle Development Institute submitted 'Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan' to the Japanese government. This report contains investigations of the long term behavior of alteration of bentonite, and of the corrosion life time of overpack on the basis of experimental data and past research, assuming the ranging geological environment of Japan. However some subjects, such as the behavior of the bentonite and overpack under high pH conditions and the behavior of the engineering barrier with change of near-field environmental condition with time for promoting reliability have still been left. To take into account these conditions, expert committees composed of clay science and metal corrosion science experts were established in the Nuclear Safety Research Association and past research outcomes and the theory of safety assessment were investigated from the view points of long term stability and corrosion resistance of engineering barrier. (author)

  15. Improving female participation in professional engineering geology to bring new perspectives to ethics in the geosciences.

    Science.gov (United States)

    Pereira, Dolores

    2014-09-11

    Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students "leak out" at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students' preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain). It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man's world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students' education and future careers.

  16. Improving Female Participation in Professional Engineering Geology to Bring New Perspectives to Ethics in the Geosciences

    Directory of Open Access Journals (Sweden)

    Dolores Pereira

    2014-09-01

    Full Text Available Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students “leak out” at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students’ preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain. It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man’s world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students’ education and future careers.

  17. Mining and engineering aspects and variants for the underground construction of a deep geological repository for radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Milchev, M.; Michailov, B.; Nanovska, E.; Harizanov, A.

    2003-01-01

    The aim of the present report is to investigate and to describe systematically the foreign experience, scientific and technical achievements and stages of development concerning the mining and engineering aspects and variants for underground construction of a deep geological repository for radioactive waste (RAW) and spent nuclear fuel (SNF). The ideal solution in managing the problems with harmful wastes seems to be either to remove them permanently from Earth (which is related with high risks and high costs) or to transform long-lived radionuclides to short-lived radionuclides using nuclear transmutation processes in a reactor or a particle accelerator. The latter is also a complex and immensely costly process and it can only reduce the quantities of some long-lived radionuclides, which can be then disposed in a geological repository. At present, the deep geological disposal remains the only solution for solving the problem with the hazard of storing radioactive wastes. The report submits a brief description and systematization of the performed investigations, accompanied by analysis of the scientific and technical level on world scale. The analysis is related with the particular geological conditions and the existing scientific studies available so far in Bulgaria. The main conclusions are that the complex scientific-technical and engineering problems related with the construction of a deep geological repository for RAW and SNF require long-term scientific investigations and preliminary complex works and it is high time to launch them in Bulgaria. (authors)

  18. Geological, geophysical investigations and seismotectonic analysis with reference to selection of site for nuclear power plants: a review

    International Nuclear Information System (INIS)

    Chaki, Anjan

    2014-01-01

    Geological, geophysical investigations and seismotectonic analysis play a major role in qualifying a proposed site for establishment of nuclear power plants. In an area, it is important to understand the aspects such as regional and local geology, geomorphology, tectonic settings, presence of active faults/capable faults, earthquake history and earthquake proneness, neotectonic activity, slope instability, subsidence, liquefaction, seismically induced flooding, tsunami and geohydrological conditions. Geological investigations comprise use of remote sensing and ground validation followed by geological mapping, identification of faults, near surface geological studies for foundation conditions, stratigraphic drilling, palaeoseismology, studies on engineering properties of rock and soil. Geophysical investigations provide insight into subsurface geology including concealed faults, elastic constants and hydrological conditions. Radon emanometry is a valuable tool in the initial stage to decipher subsurface active weak zones/fault lines. Seismotectonic analysis identifies the provinces of tectonic significance and their earthquake potential, thereby designating lineaments of consequence leading to their evaluation. This, in turn, determines the design basis earthquake parameter for the estimation of vibratory ground motion. This article provides certain measures to evaluate the suitability of the sites for the establishment of nuclear power plants in terms of geological, geophysical investigations and seismotectonic status. Atomic Minerals Directorate for Exploration and Research (AMD) had carried out seismotectonic analysis of the area around Kaiga, Narora, Kalpakkam, Kakrapar, Tarapur, Kudankulam and Rawatbhata Nuclear Power Projects, which were either in operation or under expansion and construction. Such analysis was extended to a number of proposed sites for establishing nuclear power plants in West Bengal, Bihar, Orissa, Andhra Pradesh, Gujrat, Madhya Pradesh

  19. The use of scientific and technical results from underground research laboratory investigations for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-09-01

    The objective of the report is to provide information on the use of results obtained from underground research laboratory investigations for the development of a deep geological repository system for long lived and/or high level radioactive waste including spent fuel. Specifically, it should provide Member States that intend to start development of a geological disposal system with an overview of existing facilities and of the sorts and quality of results that have already been acquired. The report is structured into six main themes: rock characterization methodologies and testing; assessment of the geological barrier; assessment of the engineered barrier system; respository construction techniques; demonstration of repository operations; confidence building and international co-operation

  20. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  1. Evaluation of geological documents available for provisional safety analyses of potential sites for nuclear waste repositories - Are additional geological investigations needed?

    International Nuclear Information System (INIS)

    2010-10-01

    The procedure for selecting repository sites for all categories of radioactive waste in Switzerland is defined in the conceptual part of the Sectoral Plan for Deep Geological Repositories, which foresees a selection of sites in three stages. In Stage I, Nagra proposed geological siting regions based on criteria relating to safety and engineering feasibility. The Swiss Government (the Federal Council) is expected to decide on the siting proposals in 2011. The objective of Stage 2 is to prepare proposals for the location of the surface facilities within the planning perimeters defined by the Federal Council in its decision on Stage 1 and to identify potential sites. Nagra also has to carry out a provisional safety analysis for each site and a safety-based comparison of the sites. Based on this, and taking into account the results of the socio-economic-ecological impact studies, Nagra then has to propose at least two sites for each repository type to be carried through to Stage 3. The proposed sites will then be investigated in more detail in Stage 3 to ensure that the selection of the sites for the General Licence Applications is well founded. In order to realise the objectives of the upcoming Stage 2, the state of knowledge of the geological conditions at the sites has to be sufficient to perform the provisional safety analyses. Therefore, in preparation for Stage 2, the conceptual part of the Sectoral Plan requires Nagra to clarify the need for additional investigations aimed at providing input for the provisional safety analyses. The purpose of the present report is to document Nagra's technical-scientific assessment of this need. The focus is on evaluating the geological information based on processes and parameters that are relevant for safety and engineering feasibility. In evaluating the state of knowledge the key question is whether additional information could lead to a different decision regarding the selection of the sites to be carried through to Stage 3

  2. Assessment of Environmental Factors of Geology on Waste and Engineering Barriers for Waste Storage Near Surface

    International Nuclear Information System (INIS)

    Arimuladi SP

    2007-01-01

    Geological environment factors include features and processes occurring within that spatial and temporal (post-closure) domain whose principal effect is to determine the evolution of the physical, chemical, biological and human conditions of the domain that are relevant to estimating the release and migration of radionuclide and consequent exposure to man. Hardness of radioactive waste and engineer barrier can be decrease by environmental factors. Disposal system domain geological environment factors is a category in the International FEP list and is divided into sub-categories. There are 13 sub-factors of geological environment, 12 sub-factors influence hardness of radioactive waste and engineer barrier, thermal processes and conditions in geosphere can be excluded. (author)

  3. Investigation and technical reviews of the long term stability and corrosion resistance of engineering barriers

    International Nuclear Information System (INIS)

    Tachikawa, Hirokazu

    2004-03-01

    The Japan Nuclear Fuel Cycle Development Institute submitted 'Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan' to the Japanese government. This report contains investigations of the long term behavior of alteration of bentonite, and of the corrosion life time of overpack on the basis of experimental data and past research, assuming the ranging geological environment of Japan. However some subjects, such as the behavior of the bentonite and overpack under high pH conditions and the behavior of the engineering barrier with change of near-field environmental condition with time for promoting reliability have still been left. To take into account these conditions, expert committees composed of clay science and metal corrosion science experts were established in the Nuclear Safety Research Association and past research outcomes and the theory of safety assessment were investigated and technically reviewed from the view points of long term stability and corrosion resistance of engineering buffer materials. (author)

  4. Study on the Geological Structure around KURT Using a Deep Borehole Investigation

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2010-01-01

    To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area

  5. Engineering geologic conditions at the sinkhole entrance to Logan Cave, Benton County, Arkansas

    Science.gov (United States)

    Schulz, William H.; McKenna, Jonathan P.

    2004-01-01

    Logan Cave, located in Benton County, Arkansas, is inhabited by several endangered and threatened species. The cave and surrounding area was designated a National Wildlife Refuge under the control of the U.S. Fish and Wildlife Service (USFWS) in 1989. Cave researchers access the cave through a steep-sided sinkhole entrance, which also is one of the two access points used by endangered bats. There is evidence of instability of one of the entrance slopes that has raised concerns that the entrance could close if slope failure was to occur. At the request of USFWS, we performed an engineering geologic investigation of the sinkhole to evaluate stability of this slope, which is comprised of soil, and other mechanisms of sediment transport into the cave entrance. The investigation included engineering geologic mapping, sampling and laboratory testing of subsurface geologic materials, and slope-stability analysis. We found that the sinkhole slope that extends into the entrance of the cave is comprised of sandy and gravelly soil to the depths explored (6.4 meters). This soil likely was deposited as alluvium within a previous, larger sinkhole. Based on properties of the alluvium, geometry of the slope, and results of finite-element slope-stability analyses, we conclude that the slope is marginally stable. Future failures of the slope probably would be relatively thin and small, thus several would be required to completely close the cave entrance. However, sediment is accumulating within the cave entrance due to foot traffic of those accessing the cave, surface-water erosion and transport, and shallow slope failures from the other sinkhole slopes. We conclude that the entrance will be closed by sediment in the future, similar to another entrance that we identified that completely closed in the past. Several measures could be taken to reduce the potential for closure of the cave entrance, including periodic sediment removal, installation of materials that reduce erosion by

  6. Study on systemizing technology on investigation and analysis of deep underground geological environment. Japanese fiscal year, 2007 (Contract research)

    International Nuclear Information System (INIS)

    Kojima, Keiji; Ohnishi, Yuzo; Aoki, Kenji; Watanabe, Kunio; Nishigaki, Makoto; Tosaka, Hiroyuki; Shimada, Jun; Tochiyama, Osamu; Yoshida, Hidekazu; Ogata, Nobuhisa; Nishio, Kazuhisa

    2009-03-01

    In this year, the following studies were carried out with the aim of systemizing the technology on the investigation and analysis to understand the deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R and D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis for the investigation and analysis of deep underground geological environment. The results obtained from the studies are as follows: Regarding (1), the specific investigations, measurements and numerical and chemical analyses were performed particularly for research subjects: 1) engineering technology and 2) geological environment. Based on the results on (1), 3) tasks of collaboration research on intermediate area between the research fields, including the safety assessment field, were selected. Also redefinition of the NFC (Near Field Concept) were discussed. Regarding (2), based on the extracted tasks of JAEA (Japan Atomic Energy Agency) research project, the study was implemented considering previous R and D results and detailed research at the research field was carried out. This study contributed to the R and D development for its practical application. Concurrently, information exchange and discussion on the 2nd phase (the Construction Phase) of the MIU (Mizunami Underground Research Laboratory) research program were often held. (author)

  7. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California

    Science.gov (United States)

    Bedrosian, P.A.; Burton, B.L.; Powers, M.H.; Minsley, B.J.; Phillips, J.D.; Hunter, L.E.

    2012-01-01

    A recent evaluation of Martis Creek Dam highlighted the potential for dam failure due to either seepage or an earthquake on nearby faults. In 1972, the U.S. Army Corps of Engineers constructed this earthen dam, located within the Truckee Basin to the north of Lake Tahoe, CA for water storage and flood control. Past attempts to raise the level of the Martis Creek Reservoir to its design level have been aborted due to seepage at locations downstream, along the west dam abutment, and at the base of the spillway. In response to these concerns, the U.S. Geological Survey has undertaken a comprehensive suite of geophysical investigations aimed at understanding the interplay between geologic structure, seepage patterns, and reservoir and groundwater levels. This paper concerns the geologic structure surrounding Martis Creek Dam and emphasizes the importance of a regional-scale understanding to the interpretation of engineering-scale geophysical data. Our studies reveal a thick package of sedimentary deposits interbedded with Plio-Pleistocene volcanic flows; both the deposits and the flows are covered by glacial outwash. Magnetic field data, seismic tomography models, and seismic reflections are used to determine the distribution and chronology of the volcanic flows. Previous estimates of depth to basement (or the thickness of the interbedded deposits) was 100 m. Magnetotelluric soundings suggest that electrically resistive bedrock may be up to 2500 m deep. Both the Polaris Fault, identified outside of the study area using airborne LiDAR, and the previously unnamed Martis Creek Fault, have been mapped through the dam area using ground and airborne geophysics. Finally, as determined by direct-current resistivity imaging, time-domain electromagnetic sounding, and seismic refraction, the paleotopography of the interface between the sedimentary deposits and the overlying glacial outwash plays a principal role both in controlling groundwater flow and in the distribution of the

  8. Historical rock collection of the Commission for the Geological Map of Spainpreserved in the Madrid School of Civil Engineering

    International Nuclear Information System (INIS)

    Sanz Pérez, E.; Pérez Ruy-Díaz, J.A.; Menéndez-Pidal de Navascués, I.; Sanz Ojeda, P.; Pascual-Arribas, C.

    2017-01-01

    The collection of 200 rocks prepared by the Commission for the Geological Map of Spain for the Madrid School of Civil Engineering, without known author and dated between 1898 and 1907, is one of the collections sent by the Commission to meet the specific needs of engineering institutes, and in which have survived 200 explanatory index cards accompanying each of the specimens. The collection is national in scope and is designed with a clear teaching purpose focused on civil engineering students. Its main feature is to teach the historical geology of Spain summarized in a collection of representative rocks from the Spanish territory classified by geological periods. So that, by knowing the most common rocks that appear in the synthetic stratigraphic column of Spain, this could provide for uses for coeval type of rocks, such as building materials or as foundations. Petrologic classifications and the division of geological periods are used according to these times. The index cards, where many observations about uses of civil engineering rocks are made, endeavor to identify rocks as samples with one’s own eyes and at scale of outcrop in the field, within the regional stratigraphic context. [es

  9. Geosciences research: development of techniques and instruments for investigation geological environments

    International Nuclear Information System (INIS)

    1993-01-01

    In order to understand the geological environment in Japan, new investigation techniques have been developed. These include: 1) Geological techniques for fracture characterization, 2) Nondestructive investigation techniques for detailed geological structure, 3) Instruments for hydraulic characterization, 4) Instruments for hydrochemical characterization. Results so far obtained are: 1) Fractures can be classified by their patterns, 2) The applicability and limitations of conventional geophysical methods were defined, 3) Instruments for measuring very low permeability were successfully developed, 4) Instruments for sampling formation water without changing in-situ conditions were developed. (author)

  10. Construction of the Geological Model around KURT area based on the surface investigations

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Koh, Yong Kwon; Kim, Kyung Su; Choi, Jong Won

    2009-01-01

    To characterize the geological features in the study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing several geological investigations such as geophysical surveys and borehole drillings since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep boreholes, which have 500 m depth inside the left research module of the KURT and 1,000 m depth outside the KURT, were drilled to confirm and validate the results from a geological model. The objective of this research was to investigate hydrogeological conditions using a 3-D geological model around the KURT. The geological analysis from the surface and borehole investigations determined four important geological elements including subsurface weathered zone, low-angled fractures zone, fracture zones and bedrock for the geological model. In addition, the geometries of these elements were also calculated for the three-dimensional model. The results from 3-D geological model in this study will be beneficial to understand hydrogeological environment in the study area as an important part of high-level radioactive waste disposal technology.

  11. Zoning method for environmental engineering geological patterns in underground coal mining areas.

    Science.gov (United States)

    Liu, Shiliang; Li, Wenping; Wang, Qiqing

    2018-09-01

    Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Seismic and geologic investigations of the Sandia Livermore Laboratory site

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This report describes results of a seismic and geologic investigation in the vicinity of Sandia Laboratories property and Sandia's Tritium Building at Livermore, California. The investigation was done to define any seismically capable faults in the immediate area and to obtain necessary information to support estimates of future possible or probable ground motions. The work included a variety of geophysical measurements, trenching, seismologic studies, geologic examination, and evaluation of possible ground surface rupture at the site. Ground motions due to the maximum potential earthquake are estimated, and probability of exceedance for various levels of peak ground acceleration is calculated. Descriptions of the various calculations and investigative techniques used and the data obtained are presented. Information obtained from other sources relevant to subsurface geology and faulting is also given. Correlation and evaluation of the various lines of evidence and conclusions regarding the seismic hazard to the Tritium Building are included

  13. New results concerning geophysical and geological-engineering data. Case study Telega, Romania

    Science.gov (United States)

    Maftei, Raluca-Mihaela; Rusu, Emil; Cristea, Paul; Manj, Valeriu; Avram, Ovidiu; Tudor, Elena; Porumbescu, Constantina; Ciurean, Roxana

    2010-05-01

    New results concerning geophysical and geological-engineering data. Case study Telega, Romania R.Maftei, E.Rusu, P.Cristea, V.Manj, R.Ciurean, O.Avram, E.Tudor, C.Porumbescu Geological Institute of Romania, Geohazard, Bucharest, Romania (mafteir@yahoo.com) Geophysical tests The geoelectric investigation (October-November 2009) outlines horizontally the sliding area, and vertically the elements of the landslide surface - position, depth, shape, and the bedrock's relief. The quantitative interpretation of the resistivity geoelectrical vertical tests, and the correlation with the geological structure identified 3 sliding surfaces, from which only the upper one (2-6m depth) was known before the stability works. There were localized the rainfall waters circulation and accumulation zones, areas with high sliding risk. Same results were obtained in sliding zones, been localized the principal elements of the landslides, with practical implications in land instability and estimation of the evolution of the destructive phenomena mechanisms. With this study we try to quantify the complex relationship between the natural factors that generate the terrain instability phenomena and the intensity of the socio-economic effects, at a regional and local scale, by correlating the engineering geology information and geophysical data. Recent seismic research program (September 2009) conceived for "La Butoi" landslide, Telega locality, aims to a specific monitoring of the dynamic deformations, more active in the central part of the landslide, with reference to the shallow seismic refraction information obtained in the 2004 - 2005 period. The investigations were performed on a seismic lines network, and two seismic boundaries, in the shallow seismic section, were exhibited. As a result, one can observe the curvature tendency of the first arrivals sin-phase for the end-off shot devices, setting off the velocity increasing regime with depth; relative high variations and irregularities of

  14. Near-field geologic environment as an effective barrier against radionuclide transport

    International Nuclear Information System (INIS)

    Umeki, H.; Sakuma, H.; Ishiguro, K.; Hatanaka, K.; Naito, M.

    1993-01-01

    A generic performance assessment of the geologic disposal system of HLW in Japan has been carried out by the Power Reactor and Nuclear Fuel Development Corporation (PNC) in accordance with the overall HLW management program defined by the Japanese Atomic Energy Commission. A massive engineered barrier system, consisting of vitrified waste, carbon-steel overpack and thick bentonite buffer, is introduced to ensure a long-term performance of the disposal system considering a wide range of geologic environment. A major part of the total performance of the disposal system is borne by the engineered barrier system given a geologic environment that assures and complements the performance of such engineered barrier system. The performance of the natural barrier system coupled with the strong engineered barrier system was investigated by sensitivity analyses. Two types of conceptual model were considered for the analysis to describe radionuclide transport in geologic media and the range of relevant parameters was given by taking the variation of the geologic environment in Japan into account. The results show that the degree of retardation of radionuclide transport chosen in the geologic media varies significantly depending on the parameter values chosen. However, it is indicated that there are realistic combinations of those geologic parameter values which could provide a sufficient degree of retardation within a range of only a few tens of meters from the engineered barrier system. The relative importance of the near-field geologic environment is also discussed

  15. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    International Nuclear Information System (INIS)

    Gupalo, T.; Milovidov, V.; Prokopoca, O.; Jardine, L.

    2002-01-01

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide suficient information to make an estimate of the suitability of locating a radioactive waste (RW) underground isolation facility at the Nizhnekansky granitoid massif.

  16. Application of GIS in hydrogeology and engineering geology

    Directory of Open Access Journals (Sweden)

    Lucia Mihalová

    2007-06-01

    Full Text Available Hydrogeology as a specific science discipline has a multi spectral interest focused to officiating sources in drink water and utilization water and also in area aimed for pure mineral water sources. Although engineering geology works exercise with piece of knowledge, geosciences are focused to territorial planning, investment construction and protection environment. Application of GIS in appointed problems purvey possibility quality, quick and high special analysis appointed problems and take advantage all accessible quality and quantity related information of water focused to hydrogeology, as to occurrence varied basement soil, appropriate for building activity, possibly appointed for protection. Solution of this probleme is on first name terms definite interest area, as to adjudication sources focused economic significance state.

  17. Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations

    Science.gov (United States)

    Ruffell, Alastair; McKinley, Jennifer

    2005-03-01

    One hundred years ago Georg Popp became the first scientist to present in court a case where the geological makeup of soils was used to secure a criminal conviction. Subsequently there have been significant advances in the theory and practice of forensic geoscience: many of them subsequent to the seminal publication of "Forensic Geology" by Murray and Tedrow [Murray, R., Tedrow, J.C.F. 1975 (republished 1986). Forensic Geology: Earth Sciences and Criminal Investigation. Rutgers University Press, New York, 240 pp.]. Our review places historical development in the modern context of how the allied disciplines of geology (mineralogy, sedimentology, microscopy), geophysics, soil science, microbiology, anthropology and geomorphology have been used as tool to aid forensic (domestic, serious, terrorist and international) crime investigations. The latter half of this paper uses the concept of scales of investigation, from large-scale landforms through to microscopic particles as a method of categorising the large number of geoscience applications to criminal investigation. Forensic geoscience has traditionally used established non-forensic techniques: 100 years after Popp's seminal work, research into forensic geoscience is beginning to lead, as opposed to follow other scientific disciplines.

  18. Geologic and geotechnical investigation of the Windsor Park subdivision North Las Vegas, Nevada

    International Nuclear Information System (INIS)

    Linnert, L.M.; Werle, J.L.; Stilley, A.N.; Olsen, B.L.

    1994-01-01

    The Windsor Park subdivision in North Las Vegas, Nevada has received widespread attention for damage to the homes and infrastructure from fissures, land subsidence and adverse soil conditions. Between March and July, 1992, Converse Consultants Southwest, Inc. conducted a geologic and geotechnical investigation for the Windsor Park Revitalization Project. The purpose of the work was to investigate the probable factors contributing to the reported damage and distress in the area, evaluate the potential for future damage, and assess the feasibility of possible mitigation and repair. The site is constructed on the juncture of at least two subsidence-related fault scarps, and earth fissures have been extensively mapped in the Windsor Park and surrounding area. A total of twenty-one trenches and fifteen borings were located within the subdivision and around the perimeter to observe subsurface geologic features and to collect samples for laboratory testing. The primary causes of damage within the development were found to be (1) earth fissuring and (2) expansive clays. The risk of future damage to structures at the Windsor Park site was also evaluated. A high potential for fissuring was found at the site, and future structural distress in the area will likely be similar to past damage. Although engineering upgrades will reduce the risk posed by underlying expansive clays, they cannot totally eliminate the risk from fissuring. 10 refs., 8 figs., 1 tab

  19. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  20. Development of In situ Geological Investigation and Test Equipment in KURT

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Yong Kweon; Kim, Kyung Su; Park, Kyung Woo; Koh, Yong Kweon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    For establishment of the advanced infrastructures of KURT, geological investigation and in situ test equipment were installed. The optical sensor technique could be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc. The micro-seismic monitoring system is able to predict the location and timing of fracturing of rock mass and rock fall around an underground openings as well as analysis on safety of various kinds of engineering structures such as nuclear facilities and other structures. The straddle packer system for hydro-testing in a deep borehole will lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project

  1. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  2. Site investigation SFR. Bedrock geology

    International Nuclear Information System (INIS)

    Curtis, Philip; Markstroem, Ingemar; Petersson, Jesper; Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan

    2011-12-01

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of the

  3. Site investigation SFR. Bedrock geology

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Philip; Markstroem, Ingemar (Golder Associates AB (Sweden)); Petersson, Jesper (Vattenfall Power Consultant AB (Sweden)); Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan (GeoVista AB (Sweden))

    2011-12-15

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of

  4. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic

  5. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    Science.gov (United States)

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  6. Geological aspects of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories

  7. Forsmark site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  8. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, Carl-Henric (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  9. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    International Nuclear Information System (INIS)

    Wahlgren, Carl-Henric

    2010-09-01

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  10. Forsmark site investigation. Bedrock geology - overview and excursion guide

    International Nuclear Information System (INIS)

    Stephens, Michael B.

    2010-09-01

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  11. Geological-geotechnical investigation for large horizontal directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Pedro R.R.; Rocha, Ronaldo; Avesani Neto, Jose Orlando; Placido, Rafael R.; Ignatius, Scandar G.; Galli, Vicente Luiz [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo (IPT), Sao Paulo, SP (Brazil); Amaral, Claudio S. [Centro de Pesquisa Leopoldo A. Miguez de Melo (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Use of Horizontal Directional Drilling - HDD for large diameter (OD>20 inches) pipeline installation started in the second half of the seventies. Since then the method became the preferred alternative for situations in which it is necessary an underground pipeline but there are concerns about digging trenches. Crossings of roadways, water bodies and environmental sensitive areas are typical examples of its application. Technical and economic feasibility of HDD depends significantly on the properties of the materials that will be drilled. Lack of information about these materials can lead to several problems as: schedule delays, cost elevation, pipeline damage, unforeseen environmental impacts and even the failure of the entire operation. Ground investigation campaigns for HDD should define a consistent geological-geotechnical model, which must include determination of behaviour parameters for soil and rock masses that will be drilled. Thus it is proposed an investigation in tree stages: review of available geological-geotechnical information, site reconnaissance, and field survey. (author)

  12. Environmental geology of Nampo, Puyo, Sochon, Hamyol

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Han, Dae Suk; Kim, Yoon Jong; Yu, Il Hyun; Lee, Bong Joo; Jeong, Gyo Cheol; Kim, Kyeong Su [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    An environmental geology map at a scale of 1:100,000 was produced to provide information on land use potential within the area of over 1,300 km{sup 2} consisting of Nampo, Puyo , Sochon and Hamyol. Land use potentiality was quantitatively assigned in accordance with the environmental geologic index(EI) derived from such factors as landslide frequency, engineering geological unit, topography and density of lineament length, being classified into 4 units. Also produced was a landslide susceptibility map at the same scale as the above map, showing five different grades of susceptibility based on hazard index(HI). Besides the above mentioned mapping, an investigation on the soils, rocks and natural aggregates throughout the study area was undertaken to assess their utilization potential as construction materials. Also carried out were the analysis of erosion and sedimentation in/around the Keum river, a geotechnical engineering investigation on the reclaimed tidal zone south of the Taechon beach, and the stability analysis of the cut slopes along the national roads. All the results of the investigations and analyses are presented in the paper. It is expected that the maps and accompanying information could be utilized in formulating regional land-use planning for variable projects. (author). 51 refs., 60 figs., 62 tabs., 3 maps.

  13. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  14. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  15. Overview of Nagra's geological investigation programme in Northern Switzerland

    International Nuclear Information System (INIS)

    Thury, M.; Diebold, P.

    1987-01-01

    For the assessment of the feasibility and safety of a repository for high level radioactive waste, Nagra (National Cooperative for the Storage of Radioactive Waste) has started in 1980 in central Northern Switzerland an extensive geological investigation program. This overall program contains four field investigation programs and several programs for synthesis work. By the end of 1985, six deep drillings have been completed. The deepest borehole reached 2482 m. All in all, more than 8000 m of cores have been taken and analyzed in detail. In the boreholes, extensive hydrogeological tests have been carried out. Within the regional geophysical investigation program gravimetric, aeromagnetic and magnetotelluric, refraction seismic and reflection seismic surveys have been carried out. Vibroseis lines of 400 km length have been measured. Within the regional hydrogeological program, water samples of more than 100 springs and wells with hydrochemically or thermally abnormal waters have been analyzed in detail for their chemical and isotopic composition. Within the neotectonic program, geomorphologic, tectonic, geodetic and seismic studies and measurements have been carried out. In 1983, a microearthquake survey network was installed. All these data were analyzed in several synthetic programs: Structural geology, hydrochemistry, hydrodynamic modelling and long term stability scenarios. The Nagra program continues. As next, a deep borehole in the Canton of Schaffhausen is planned. Meanwhile all data are analyzed in detail and the understanding of the regional and local geology, geochemistry and hydrogeology of northern Switzerland is improved and refined. (author) 32 refs., 8 figs

  16. Geological and geotechnical investigations for nuclear power plants sites

    International Nuclear Information System (INIS)

    Alves, P.R.R.

    1984-09-01

    This dissertation presents a general methodology for the tasks of geological and geotechnical investigations, to be performed in the proposed sites for construction of nuclear Power Plants. In this work, items dealing with the standards applied to licensing of Nuclear Power Plants, with the selection process of sites and identification of geological and geotechnical parameters needed for the regional and local characterization of the area being studied, were incorporated. This dissertation also provides an aid to the writing of Technical Reports, which are part of the documentation an owner of a Nuclear Power Plant needs to submit to the Comissao Nacional de Energia Nuclear, to fulfill the nuclear installation licensing requirements. Moreover, this work can contribute to the planning of field and laboratory studies, needed to determine the parameters of the area under investigation, for the siting of Nuclear Power Plants. (Author) [pt

  17. An engineering geological appraisal of the Chamshir dam foundation using DMR classification and kinematic analysis, southwest of Iran

    Directory of Open Access Journals (Sweden)

    Torabi Kaveh Mehdi

    2011-12-01

    Full Text Available This paper describes the results of engineering geological  investigations and rock mechanics studies carried out at the proposed Chamshir dam site. It is proposed that a 155 m high solid concrete gravity-arc dam be built across the Zuhreh River to the southeast of the city of Gachsaran in south-western Iran. The dam and its associated structures are mainly located on the Mishan formation. Analysis consisted of rock mass classification and a kinematic
    analysis of the dam foundation's rock masses. The studies were carried out in the field and the laboratory. The field studies included geological mapping, intensive discontinuity surveying, core drilling and sampling for laboratory testing. Rock mass classifications were made in line with RMR and DMR classification for the dam foundation. Dam foundation analysis regarding stability using DMR classification and kinematic analysis indicated that the left abutment's rock foundation (area 2 was unstable for planar, wedge and toppling failure modes.

  18. An investigation of the suitability of the Chalk River site to host a geologic waste management facility for CRL's low and intermediate level wastes

    International Nuclear Information System (INIS)

    Thompson, P.; Baumgartner, P.; Chan, T.; Kitson, C.; Kozak, E.; Man, A.; Martino, J.; Stroes-Gascoyne, S.; Beaton, D.; Sharp, K.; Thivierge, R.

    2011-01-01

    Atomic Energy of Canada Limited (AECL) is investigating the suitability of the Chalk River Laboratories (CRL) site for hosting a Geologic Waste Management Facility (GWMF) as part of the Nuclear Legacy Liabilities Program (NLLP) funded through Natural Resources Canada (NRCan). The GWMF is envisioned to be an underground engineered-geological repository consisting of shafts, access tunnels and emplacement caverns located at a nominal depth of 500 to 1000 m in the bedrock at the CRL site. A 5-year-long pre-project study was started in 2006 to assess the feasibility of the bedrock at the CRL site to host a GWMF. The pre-project feasibility study began with a review of various previous geological investigations performed in the bedrock at the CRL site. The 2006-2010 pre-project feasibility study involved exploring the geoscience and engineering characteristics of the bedrock to depths of over one kilometre at the CRL site through surface investigations and the drilling and testing of seven new deep characterization boreholes into the CRL bedrock. The collected information and interpretations were used to construct three-dimensional (3D) deterministic computer models of the geology of the bedrock at the CRL site and surrounding area and of the associated groundwater-flow regime. In order to technically assess the suitability of the CRL site, the GWMF feasibility study has conservatively assumed that all of the legacy and forecast Low and Intermediate Level Waste (LILW) at CRL would report to it. The 3D deterministic models were used within a preliminary performance and safety assessment model to assess the long-term safety of a hypothetical GWMF at the CRL site on the basis of future radionuclide and toxic substance releases. Other items important to a preliminary performance and safety assessment include an inventory of CRL's radioactive wastes and other contaminants that could be placed in the GWMF, the creation of the engineered waste emplacement rooms and

  19. 939 Department of Geology and Mineral Science

    African Journals Online (AJOL)

    USER

    2015-11-12

    Nov 12, 2015 ... Department of Geology and Mineral Sciences, University of Ilorin, Ilorin, Nigeria P.M.B. 1515, Ilorin, Nigeria. 2. Department of Petroleum Engineering and Geosciences, Petroleum Training Institute, P.M.B.. 20, Effurun, Delta State, Nigeria. Abstract. Hydrochemical investigation of thirty groundwater samples ...

  20. Relationship of engineering geology to conceptual repository design in the Gibson Dome area, Utah

    International Nuclear Information System (INIS)

    Helgerson, R.; Henderson, N.

    1984-01-01

    The Paradox Basin in Southeastern Utah is being investigated as a potential site for development of a high-level nuclear waste repository. Geologic considerations are key areas of concern and influence repository design from a number of aspects: depth to the host rock, thickness of the host rock, and hydrologic conditions surrounding the proposed repository are of primary concern. Surface and subsurface investigations have provided data on these key geologic factors for input to the repository design. A repository design concept, based on the surface and subsurface geologic investigations conducted at Gibson Dome, was synthesized to provide needed information on technical feasibility and cost for repository siting decision purposes. Significant features of the surface and subsurface repository facilities are presented. 5 references, 4 figures

  1. Typical Applications of Airborne LIDAR Technolagy in Geological Investigation

    Science.gov (United States)

    Zheng, X.; Xiao, C.

    2018-05-01

    The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  2. TYPICAL APPLICATIONS OF AIRBORNE LIDAR TECHNOLAGY IN GEOLOGICAL INVESTIGATION

    Directory of Open Access Journals (Sweden)

    X. Zheng

    2018-05-01

    Full Text Available The technology of airborne light detection and ranging (LiDAR, also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  3. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Van Hart, Dirk (GRAM, Inc.)

    2003-06-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

  4. Niagara Falls Storage Site, Lewiston, New York: geologic report

    International Nuclear Information System (INIS)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area

  5. Niagara Falls Storage Site, Lewiston, New York: geologic report

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  6. Predicting long-term performance of engineered geologic carbon dioxide storage systems to inform decisions amidst uncertainty

    Science.gov (United States)

    Pawar, R.

    2016-12-01

    Risk assessment and risk management of engineered geologic CO2 storage systems is an area of active investigation. The potential geologic CO2 storage systems currently under consideration are inherently heterogeneous and have limited to no characterization data. Effective risk management decisions to ensure safe, long-term CO2 storage requires assessing and quantifying risks while taking into account the uncertainties in a storage site's characteristics. The key decisions are typically related to definition of area of review, effective monitoring strategy and monitoring duration, potential of leakage and associated impacts, etc. A quantitative methodology for predicting a sequestration site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale geologic storage projects where projects will require quantitative assessments of potential long-term liabilities. An integrated assessment modeling (IAM) paradigm which treats a geologic CO2 storage site as a system made up of various linked subsystems can be used to predict long-term performance. The subsystems include storage reservoir, seals, potential leakage pathways (such as wellbores, natural fractures/faults) and receptors (such as shallow groundwater aquifers). CO2 movement within each of the subsystems and resulting interactions are captured through reduced order models (ROMs). The ROMs capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. The computational efficiency allows for performing Monte Carlo simulations necessary for quantitative probabilistic risk assessment. We have used the IAM to predict long-term performance of geologic CO2 sequestration systems and to answer questions related to probability of leakage of CO2 through wellbores, impact of CO2/brine leakage into shallow aquifer, etc. Answers to such questions are critical in making key risk management

  7. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [Georgia Tech Research Corporation, Atlanta, GA (United States); Santamarina, J. Carlos [King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2017-12-30

    Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate natural hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.

  8. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements

  9. Geological disposal: security and R and D. Security of 'second draft for R and D of geological disposal'

    International Nuclear Information System (INIS)

    Shiotsuki, Masao; Miyahara, Kaname

    2003-01-01

    The second draft for R and D of geological disposal (second draft) was arranged in 1999. The idea of security of geological disposal in the second draft is explained. The evaluation results of the uncertainty analysis and an example of evaluation of the effect of separation nuclear transmutation on the geological disposal are shown. The construction of strong engineered barrier is a basic idea of geological disposal system. Three processes such as isolation, engineering countermeasures and safety evaluation are carried out for the security of geological disposal. The security of geological environment for a long time of 12 sites in Japan was studied by data. Provability of production and enforcement of engineered barrier were confirmed by trial of over pack, tests and the present and future technologies developed. By using the conditions of reference case in the second draft, the evaluation results of dose effects in the two cases: 1) 90 to 99% Cs and Sr removed from HLW (High Level radioactive Waste) and 2) high stripping ratio of actinium series are explained. (S.Y.)

  10. Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee [Montana State Univ., Bozeman, MT (United States); Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Barnhart, Elliot [Montana State Univ., Bozeman, MT (United States); Lageson, David [Montana State Univ., Bozeman, MT (United States); Nall, Anita [Montana State Univ., Bozeman, MT (United States); Dobeck, Laura [Montana State Univ., Bozeman, MT (United States); Repasky, Kevin [Montana State Univ., Bozeman, MT (United States); Shaw, Joseph [Montana State Univ., Bozeman, MT (United States); Nugent, Paul [Montana State Univ., Bozeman, MT (United States); Johnson, Jennifer [Montana State Univ., Bozeman, MT (United States); Hogan, Justin [Montana State Univ., Bozeman, MT (United States); Codd, Sarah [Montana State Univ., Bozeman, MT (United States); Bray, Joshua [Montana State Univ., Bozeman, MT (United States); Prather, Cody [Montana State Univ., Bozeman, MT (United States); McGrail, B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oldenburg, Curtis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wagoner, Jeff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pawar, Rajesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-12-19

    The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop.

  11. Electrical Resistivity Models in Geological Formations in the Southern Area of the East of Cuba

    Directory of Open Access Journals (Sweden)

    José Antonio García-Gutiérrez

    2017-04-01

    Full Text Available The purpose of this study is to develop electrical resistivity models in geological formations of greater interest for geological engineering in the southern area of the East of Cuba. A procedure for the generalization of the geo-electrical database was prepared to generate the referred geo-electrical models. A total of 38 works with 895 vertical electrical surveys, of which 317 (35.4% located near (parametrical drills. Three models for the Paso Real formation and one for the Capdevila, the most distributed in the region under investigation were defined. The surface quartz sands from the municipality of Sandino were identified to have higher electrical resistivity averages (1241 Ω•m, while they do not exceed 86 Ω•m in the lower horizons to resolve basic tasks of the geological engineering investigations. The assessment of the cover clayey sandy soils was satisfactory in both geological formations while the determination of the water table depth was unfavorable. The remaining tasks varied between relatively favorable to unfavorable according to the geological formations.

  12. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 2. Engineering technology for geological disposal

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the deep geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, part 2 of the progress report, concerns engineering aspect with reference to Japanese geological disposal plan, according to which the vitrified HLW will be disposed of into a deep, stable rock mass with thick containers and surrounding buffer materials at the depth of several hundred meters. It discusses on multi-barrier systems consisting of a series of engineered and natural barriers that will isolate radioactive nuclides effectively and retard their migrations to the biosphere environment. Performance of repository components, including specifications of containers for vitrified HLW and their overpacks under design as well as buffer material such as Japanese bentonite to be placed in between are described referring also to such possible problems as corrosion arising from the supposed system. It also presents plans and designs for underground disposal facilities, and the presumed management of the underground facilities. (Ohno, S.)

  13. Conceptual design of the Virtual Engineering System for High Level Radioactive Waste Geological Disposal

    International Nuclear Information System (INIS)

    1999-06-01

    The Virtual Engineering System for the High Level Radioactive Waste Geological Disposal (hereafter the VE) adopts such computer science technologies as advanced numerical simulation technology with special emphasis upon computer graphics, massive parallel computing, high speed networking, knowledge engineering, database technology to virtually construct the natural and the part of social environment of disposal site in syberspace to realize the disposal OS as its final target. The principle of tile VE is to provide for a firm business standpoint after The 2000 Report by JNC and supply decision support system which promotes various evaluations needed to be done from the year of 2000 to the licensing application for disposal to the government. The VE conceptual design was performed in the year of 1998. The functions of the VE are derived from the analysis of work scope of implementing organization in each step of geological waste disposal: the VE functions need the safety performance assessment, individual process analysis, facility designing, cost evaluation, site surveillance, research and development, public acceptance. Then the above functions are materialized by integrating such individual system as geology database, groundwater database, safety performance assessment system, coupled phenomena analysis system, decision support system, cost evaluation system, and public acceptance system. The integration method of the systems was studied. The concept of the integration of simulators has also been studied from the view point of CAPASA program. Parallel computing, networking, and computer graphic for high speed massive scientific calculation were studied in detail as the element technology to achieve the VE. Based on studies stated above, the concept of the waste disposal project and subjects that arise from 1999 to licensing application are decided. (author)

  14. ENGINEERING-GEOLOGICAL CHARACTERISTICS OF THE LANDSLIDE MLIJA AND THEIR IMPACT ON ENGINEERING STRUCTURES (OMIŠ, SOUTHERN CROATIA

    Directory of Open Access Journals (Sweden)

    Slobodan Šestanović

    1998-12-01

    Full Text Available In order to design the by-pass road of the city of Omiš which will partially he founded on the landslide Mlija and for the safety of foundations of houses, detail subsurface exploration especially engineering-geological surveys, geophysical surveys, boring and laboratory tests of the sliding material were conducted. Obtained results are presented in this paper. Due to numerous damages of roads, walls and houses built in the area of Mlija and Borak, the possibility of construction in the area was discussed and the foundation method proposed. In order to obtain an overview of circumstances, constant monitoring of variations of the water table level and velocity of the moving material has been proposed.

  15. Grimsel test site. Research on safe geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2010-07-01

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  16. Grimsel test site. Research on safe geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  17. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activities and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities wihtin the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  18. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activitie and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities within the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  19. Forecasting the changes in engineering-geological properties of loess rocks by a penetration-logging method

    International Nuclear Information System (INIS)

    Saparov, A.

    1977-01-01

    Changes of volume weight, volume numidity, side friction and head resistance of loess rocks are considered. It is established, that the most perspective methods for forecasting engineering-geological properties of loess rocks are the methods of radioactivity logging and static probing. The quantitative determinations of physical and mechanical properties are made using the data of the following geophysical methods: gamma-gamma logging, neutron logging and gamma logging

  20. Geology along topographic profile for near-surface test facility

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-01-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in the Columbia River Basalt. A portion of the geological work conducted in support of the Engineering Design Unit to evaluate the west end of Gable Mountain as a site for in situ testing of the thermomechanical behavior of basalt is reported. The surficial geology of the west end of Gable Mountain was mapped in a reconnaissance fashion at a scale of 1:62,500 to identify geologic features which could affect siting of the proposed facilities. A detailed study of the geological conditions was conducted along a traverse across the most probable site for the proposed project

  1. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and

  2. Site investigation - equipment for geological, geophysical, hydrogeological and hydrochemical characterization

    International Nuclear Information System (INIS)

    Almen, K.E.; Fridh, B.; Johansson, B.E.; Sehlstedt, M.

    1986-11-01

    The investigations are performed within a site investigation program. In total about 60,000 m of cored 56 mm boreholes have been drilled and investigated at eight study sites. A summarized description of the main investigation methods is included. Instruments for geophysical investigations contains equipment for ground measurements as well as for borehole logging. The Geophysical investigations including the borehole radar measurements, are indirect methods for the geological and hydrogeological characterization of the rock formation. Great effort has been laid on the development of hydrogeological instruments for hydraulic tests and groundwater head measurements. In order to obtain hydrochemical investigations with high quality, a complete system for sampling and analysis of ground water has been developed. (orig./PW)

  3. Status and development of deep geological repository in Slovak republic from geological point of view

    Directory of Open Access Journals (Sweden)

    Jozef Franzen

    2007-01-01

    Full Text Available During the operation of Slovak NPPs, production of approximately 2,300 metric tons of spent fuel expressed as heavy metal (18,654 spent fuel assemblies is expected. In addition, about 5000 metric tons of radioactive waste unfit for near surface repository at Mochovce and destined for a deep geological disposal. The safe and long-term solution of back-end fuel cycle is so highly required.One of the most favorable solutions is Deep Geological Repository (DGR. The site for a DGR, along with repository design and the engineered barrier system must ensure long-term safety of the disposal system.A preliminary set of site-selection criteria for a DGR was proposed in Slovakia, based on worldwide experience and consistent with IAEA recommendations. Main groups of criteria are: 1 geological and tectonic stability of prospective sites; 2 appropriate characteristics of host rock (lithological homogeneity, suitable hydrogeological and geochemical conditions, favourable geotechnical setting, absence of mineral resources, etc.; 3 conflict of interests (natural resources, natural and cultural heritage, protected resources of thermal waters, etc..Based on the previous geological investigations, three distinct areas (five localities were determined as the most prospective sites for construction of a DGR so far. Three of them are built by granitoids rock (Tribeč Mts., Veporske vrchy Mts. and Stolicke vrchy Mts., other consist of sedimentary rock formations (Cerova vrchovina Upland and Rimavska kotlina Basin. Objective for the next investigation stage is to perform more detailed geological characterization of the prospective sites.

  4. Analysis on the use of engineered barriers for geologic isolation of spent fuel in a reference salt site repository

    International Nuclear Information System (INIS)

    Cloninger, M.O.; Cole, C.R.; Washburn, J.F.

    1980-12-01

    A perspective on the potential durability and effectiveness requirements for the waste form, container and other engineered barriers for geologic disposal of spent nuclear fuel has been developed. This perspective is based on calculated potential doses to individuals who may be exposed to radioactivity released from a repository via a groundwater transport pathway. These potential dose commitments were calculated with an integrated geosphere transport and bioshpere transport model. A sensitivity analysis was accomplished by varying four important system parameters, namely the waste radionuclide release rate from the repository, the delay prior to groundwater contact with the waste (leach initiation), aquifer flow velocity and flow path length. The nuclide retarding capacity of the geologic media, a major determinant of the isolation effectiveness, was not varied as a parameter but was held constant for a particular reference site. This analysis is limited to looking only at engineered barriers whose net effect is either to delay groundwater contact with the waste form or to limit the rate of release of radionuclides into the groundwater once contact has occurred. The analysis considers only leach incident scenarios, including a water well intrusion into the groundwater near a repository, but does not consider other human intrusion events or catastrophic events. The analysis has so far been applied to a reference salt site repository system and conclusions are presented.Basically, in nearly all cases, the regional geology is the most effective barrier to release of radionuclides to the biosphere; however, for long-lived isotopes of carbon, technetium and iodine, which were poorly sorbed on the geologic media, the geology is not very effective once a leach incident is initiated

  5. A Geology Sampling System for Small Bodies

    Science.gov (United States)

    Naids, Adam J.; Hood, Anthony D.; Abell, Paul; Graff, Trevor; Buffington, Jesse

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are being discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a small body. Currently, the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  6. A Geology Sampling System for Microgravity Bodies

    Science.gov (United States)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  7. Horonobe Underground Research Laboratory Project. Plans for surface-based investigations. Phase 1

    International Nuclear Information System (INIS)

    Goto, Junichi; Hama, Katsuhiro

    2003-10-01

    The Horonobe Underground Research Laboratory Project is an investigation project which is planned over 20 years. The investigations are conducted in the three phases: investigations from surface (Phase 1), investigations during construction of the underground facility (Phase 2) and investigations using the facility (Phase 3). Taking into account the results from 'H12: Project of Establish the Scientific and Technical Basis for HLW Disposal in Japan - Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan-' (JNC, 2000), research and development goals for the Horonobe URL project were re-defined as follows; a) Development of investigation technologies for the geological environment, b) Development of monitoring technologies for the geological environment, c) Study on the long-term stability of the geological environment, d) Development of the basis for engineering technologies in deep underground, e) Verification of technologies for engineered barriers, f) Development of detailed designing technologies of the repositories, and g) Improvement of safety assessment methodologies. Investigations for the goals a) to d) and e) to g) are conducted in the 'Geoscientific Research' and 'Research and Development on Geological Disposal', respectively. In Phase 1, a 'laboratory construction area' of a few kilometers square is selected based on the results from early stage investigations. Subsequent investigations are concentrated in the selected area and its periphery. Acquisition of data by surface-based investigations, modeling of the geological environment and predictions of changes in the geological environment caused by the construction of the underground facility, are conducted in a) Development of investigation technologies for the geological environment. Development and installation of monitoring equipments and data acquisition prior to the construction of the underground facility fall under b) Development of monitoring technologies

  8. Geological Site Descriptive Model. A strategy for the model development during site investigations

    Energy Technology Data Exchange (ETDEWEB)

    Munier, Raymond; Stenberg, Leif [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Stanfors, Roy [Roy Stanfors Consulting, Lund (Sweden); Milnes, Allan Geoffrey [GEA Consulting, Uppsala (Sweden); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Triumf, Carl-Axel [Geovista, Luleaa (Sweden)

    2003-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is at present conducting site investigations as a preliminary to building an underground nuclear waste disposal facility in Sweden. This report presents a methodology for constructing, visualising and presenting 3-dimensional geological models, based on data from the site investigations. The methodology integrates with the overall work-flow of the site investigations, from the collection of raw data to the complete site description, as proposed in several earlier technical reports. Further, it is specifically designed for interaction with SICADA - SKB's Site Characterisation Database - and RVS - SKB's Rock Visualisation System. This report is one in a series of strategy documents intended to demonstrate how modelling is to be performed within each discipline. However, it also has a wider purpose, since the geological site descriptive model provides the basic geometrical framework for all the other disciplines. Hence, the wider aim is to present a practical and clear methodology for the analysis and interpretation of input data for use in the construction of the geology-based 3D geometrical model. In addition to the various aspects of modelling described above, the methodology presented here should therefore also provide: guidelines and directives on how systematic interpretation and integration of geo-scientific data from the different investigation methods should be carried out; guidelines on how different geometries should be created in the geological models; guidelines on how the assignment of parameters to the different geological units in RVS should be accomplished; guidelines on the handling of uncertainty at different points in the interpretation process. In addition, it should clarify the relation between the geological model and other models used in the processes of site characterisation, repository layout and safety analysis. In particular, integration and transparency should be

  9. Geological Site Descriptive Model. A strategy for the model development during site investigations

    International Nuclear Information System (INIS)

    Munier, Raymond; Stenberg, Leif; Stanfors, Roy; Milnes, Allan Geoffrey; Hermanson, Jan; Triumf, Carl-Axel

    2003-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is at present conducting site investigations as a preliminary to building an underground nuclear waste disposal facility in Sweden. This report presents a methodology for constructing, visualising and presenting 3-dimensional geological models, based on data from the site investigations. The methodology integrates with the overall work-flow of the site investigations, from the collection of raw data to the complete site description, as proposed in several earlier technical reports. Further, it is specifically designed for interaction with SICADA - SKB's Site Characterisation Database - and RVS - SKB's Rock Visualisation System. This report is one in a series of strategy documents intended to demonstrate how modelling is to be performed within each discipline. However, it also has a wider purpose, since the geological site descriptive model provides the basic geometrical framework for all the other disciplines. Hence, the wider aim is to present a practical and clear methodology for the analysis and interpretation of input data for use in the construction of the geology-based 3D geometrical model. In addition to the various aspects of modelling described above, the methodology presented here should therefore also provide: guidelines and directives on how systematic interpretation and integration of geo-scientific data from the different investigation methods should be carried out; guidelines on how different geometries should be created in the geological models; guidelines on how the assignment of parameters to the different geological units in RVS should be accomplished; guidelines on the handling of uncertainty at different points in the interpretation process. In addition, it should clarify the relation between the geological model and other models used in the processes of site characterisation, repository layout and safety analysis. In particular, integration and transparency should be promoted. The

  10. Geological and hydrological investigations at Sidi Kreir Site, west of Alexandria, Egypt

    International Nuclear Information System (INIS)

    El-Shazly, E.M.; Shehata, W.M.; Somaida, M.A.

    1978-01-01

    Sidi-Kreir site lies along the Mediterranean Sea coast at km 30 to km 33 westwards from the center of the city of Alexandria. The studied site covers approximately 10 km 2 from the Mediterranean Sea northward to Mallehet (Lake) Maryut southward. This study includes the results of geological investigation of the site both structurally and stratigraphically, and the groundwater conditions, in relation to the erection of a nuclear power station in the site. The surface geology has been mapped using aerial photographs on scale of 1:20,000. Twenty-five drillholes were core-drilled in order to outline the subsurface geology and to observe the groundwater fluctuations. Selected core samples and soil samples were tested geologically in thin sections, physically and mechanically. Water samples were also collected and tested for total dissolved solids and specific weight. Groundwater level fluctuations were observed for a period of one year in 75 wells and drillholes. Furthermore three pumping tests were conducted to estimate the hydraulic properties of the freshwater aquifer. These properties were also calculated using the core samples data

  11. Geological-Hydrological Site Evaluation for NPP Planning

    Energy Technology Data Exchange (ETDEWEB)

    Faust, Brigitte; Mini, Paolo [Nordostsschweizerische Kraftwerke AG NOK, Parkstrasse 23, 5401 Baden (Switzerland)

    2008-07-01

    NOK is investigating the potential replacement of the current NPP in Beznau. In order to meet the requirements with respect to a general licence application, geological, seismological, and geotechnical engineering, but also hydrological boundary conditions have been defined. These conditions define the nature of necessary investigations to obtain the geological, seismic, geotechnical and hydrological data themselves forming the basis to determine the site suitability. Viability has to be provided that a NPP can be built and operated at the proposed site without compromising public health, safety and environment. The collected data are also the basis for the design of all safety relevant structures, systems, and components. For example, the latter have to withstand the effects of natural phenomena such as earthquakes and human induced impact such as airplane crash without loosing their capability to perform the assigned safety functions. (authors)

  12. Geological-Hydrological Site Evaluation for NPP Planning

    International Nuclear Information System (INIS)

    Faust, Brigitte; Mini, Paolo

    2008-01-01

    NOK is investigating the potential replacement of the current NPP in Beznau. In order to meet the requirements with respect to a general licence application, geological, seismological, and geotechnical engineering, but also hydrological boundary conditions have been defined. These conditions define the nature of necessary investigations to obtain the geological, seismic, geotechnical and hydrological data themselves forming the basis to determine the site suitability. Viability has to be provided that a NPP can be built and operated at the proposed site without compromising public health, safety and environment. The collected data are also the basis for the design of all safety relevant structures, systems, and components. For example, the latter have to withstand the effects of natural phenomena such as earthquakes and human induced impact such as airplane crash without loosing their capability to perform the assigned safety functions. (authors)

  13. Modeling of irradiated graphite {sup 14}C transfer through engineered barriers of a generic geological repository in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Poskas, Povilas; Grigaliuniene, Dalia, E-mail: Dalia.Grigaliuniene@lei.lt; Narkuniene, Asta; Kilda, Raimondas; Justinavicius, Darius

    2016-11-01

    There are two RBMK-1500 type graphite moderated reactors at the Ignalina nuclear power plant in Lithuania, and they are under decommissioning now. The graphite cannot be disposed of in a near surface repository, because of large amounts of {sup 14}C. Therefore, disposal of the graphite in a geological repository is a reasonable solution. This study presents evaluation of the {sup 14}C transfer by the groundwater pathway into the geosphere from the irradiated graphite in a generic geological repository in crystalline rocks and demonstration of the role of the different components of the engineered barrier system by performing local sensitivity analysis. The speciation of the released {sup 14}C into organic and inorganic compounds as well as the most recent information on {sup 14}C source term was taken into account. Two alternatives were considered in the analysis: disposal of graphite in containers with encapsulant and without it. It was evaluated that the maximal fractional flux of inorganic {sup 14}C into the geosphere can vary from 10{sup −} {sup 11} y{sup −} {sup 1} (for non-encapsulated graphite) to 10{sup −} {sup 12} y{sup −} {sup 1} (for encapsulated graphite) while of organic {sup 14}C it was about 10{sup −} {sup 3} y{sup −} {sup 1} of its inventory. Such difference demonstrates that investigations on the {sup 14}C inventory and chemical form in which it is released are especially important. The parameter with the highest influence on the maximal flux into the geosphere for inorganic {sup 14}C transfer was the sorption coefficient in the backfill and for organic {sup 14}C transfer – the backfill hydraulic conductivity. - Highlights: • Graphite moderated nuclear reactors are being decommissioned. • We studied interaction of disposed material with surrounding environment. • Specifically {sup 14}C transfer through engineered barriers of a geological repository. • Organic {sup 14}C flux to geosphere is considerably higher than inorganic

  14. Safety assessment of HLW geological disposal system

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2006-01-01

    In accordance with the Japanese nuclear program, the liquid waste with a high level of radioactivity arising from reprocessing is solidified in a stable glass matrix (vitrification) in stainless steel fabrication containers. The vitrified waste is referred to as high-level radioactive waste (HLW), and is characterized by very high initial radioactivity which, even though it decreases with time, presents a potential long-term risk. It is therefore necessary to thoroughly manage HLW from human and his environment. After vitrification, HLW is stored for a period of 30 to 50 years to allow cooling, and finally disposed of in a stable geological environment at depths greater than 300 m below surface. The deep underground environment, in general, is considered to be stable over geological timescales compared with surface environment. By selecting an appropriate disposal site, therefore, it is considered to be feasible to isolate the waste in the repository from man and his environment until such time as radioactivity levels have decayed to insignificance. The concept of geological disposal in Japan is similar to that in other countries, being based on a multibarrier system which combines the natural geological environment with engineered barriers. It should be noted that geological disposal concept is based on a passive safety system that does not require any institutional control for assuring long term environmental safety. To demonstrate feasibility of safe HLW repository concept in Japan, following technical steps are essential. Selection of a geological environment which is sufficiently stable for disposal (site selection). Design and installation of the engineered barrier system in a stable geological environment (engineering measures). Confirmation of the safety of the constructed geological disposal system (safety assessment). For site selection, particular consideration is given to the long-term stability of the geological environment taking into account the fact

  15. The Influence of Engineering-Geological Conditions on the Construction of the Radioactive Waste Dump

    Directory of Open Access Journals (Sweden)

    Jozef Kuzma

    2007-01-01

    Full Text Available A secure stability and reliable serviceability of the radioactive dump is a difficult engineering problem. Due to the difficult geological formations determined mainly by a high compressibility, the low shear strength of soils, and the high ground water level, or a high upward hydrostatic pressure these demands will increase. An influence of the required reliability and the lifespan on the structure of these specific objects is considerable. In this contribution, we are trying to contribute to the problem of solving these difficulties and complicated problems.

  16. Geological disposal of high-level radioactive waste and geological environment in Japan

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko; Seo, Toshihiro; Yshida, Hidekazu

    2001-01-01

    The geological environment has two main functions in terms of ensuring the safety of geological disposal of high-level radioactive waste. One relates to the fundamental long-term stability of the site and the other to the properties of the host rock formations and groundwaters which facilitate the emplacement of the engineered barrier system and act as a natural barrier. In this connection, the feasibility of selecting a geological environment in Japan which is appropriate for geological disposal was discussed, based on findings obtained from case studies and field measurements. Considering long-term stability of the site, it is important to understand the effects and spatial distributions of the natural phenomena such as fault movement, volcanic activity, uplift/denudation and climatic/sea-level changes. Fault movement and volcanic activity are relatively localized phenomena, and can be avoided by considering only areas that are sufficiently remote from existing volcanoes and major active faults for these phenomena to have a negligible probability of causing significant effects. Uplift/denudation and climatic/sea-level changes are gradual phenomena and are more ubiquitous. It is, nevertheless, possible to estimate future trends by extrapolating the past changes into the future, and then to identify areas that may not be affected significantly by such phenomena. Considering the properties of the host rocks and groundwaters, it can be understood, from the presently available data, that deep groundwater in Japan generally flows slowly and its chemistry is in a reduced state. The data also suggest that deep rock masses, where the ground temperature is acceptably low and the rock pressure is almost homogeneous, are widely located throughout Japan. Based on the examination of the geological environment in Japan, it is possible to discuss the requirements for the geological environment to be considered and the investigations to be performed during the site selection

  17. Geological and geophysical investigations at Sierra del Medio massif - Argentine

    International Nuclear Information System (INIS)

    Perucca, J.C.; Llambias, E.; Puigdomenech, H.H.; Cebrelli, E.; Castro, C.E.; Grassi, I.; Salinas, L.I.

    1987-01-01

    Geological investigations were performed at Sierra del Medio (Chubut Province), a mountainous massif of about 25 km by 8 km of migmatic origin, which emerges from a depressed tectonic trench or graben called Pampa de Gastre. The most ancient rocks belong to biotitic and anphibolic schist that passed almost entirely to tonalitoid migmatites with a second process producing granitic rocks. Boreholes were drilled on the basis of conclusions from Landsat satellites imagery and aerial photographic sets, folowed by field work on geological, petrographic, geophysical and hydrogeological features at surface, structural interpretation supported by geostatistical computations. Two sets of boreholes were drilled to investigate subsurface rock behaviour al 300 m depth and 800 m depth respectively, beginning at peripheral places and ending at the central part or selected site. Basic purposes of boreholes were to define structural and petrographic features of the rock massif by a good comprehension of master joints and faulting distribution with its belts of alteration mylonitization or brecciation, mechanical properties of samples, chemical composition and varitions, petrographic facies and mineralogy. Boreholes provided data to investigate joints, faults and dikes as general discontinuities for hydraulic research like permeability or effective hydraulic conductivity, and their geostatistical modelling. Boreholes are also being prepared for geophysical logging from which logthermal ones have already been completed. (Author) [es

  18. Use of space applications for geologic research

    Energy Technology Data Exchange (ETDEWEB)

    Presnukhin, V I

    1981-01-01

    Overview of literature published in USSR during 1969-1977 shows broad potential and effectiveness for using satellite imaging of earth in the geologic sciences: geomorphology, tectonics, engineering geology, and searh for useful ore and minerals.

  19. Development and management of the knowledge base for the geological disposal technology. Annual report 2006

    International Nuclear Information System (INIS)

    Umeda, Koji; Oyama, Takuya; Kurosawa, Hideki; Semba, Takeshi; Takeuchi, Shinji; Tajikara, Masayoshi; Tsuruta, Tadahiko; Yasue, Ken-ichi; Ohi, Takao; Oda, Chie; Kamei, Gento; Kobayashi, Yasushi; Sasaki, Yasuo; Sawada, Atsushi; Taniguchi, Naoki; Tanai, Kenji; Naito, Morimasa; Nakayama, Masashi; Kuno, Yoshio; Fujita, Tomoo; Honda, Akira; Mihara, Morihiro; Miyahara, Kaname; Osawa, Hideaki; Fujishima, Atsushi; Kuji, Masayoshi; Saito, Haruo; Sanada, Hiroyuki; Niizato, Tadafumi; Funaki, Hironori; Maekawa, Keisuke; Fujiwara, Kenso

    2007-12-01

    To increase technical reliability in geological disposal technology of high-level radioactive waste, JAEA have been conducting R and D activities in the fields in the repository engineering, performance assessment (PA) of the geological disposal system, and geoscientific study. In the field of R and D on the repository engineering, laboratory experimental studies at Tokai Research Center are carried out by engineering-scale and non-radiogenic experiments. The studies on performance assessment include more realistic model development with extensive computer analyses and acquisition of basic data concerning the chemical properties and migration behavior of radionuclides under geological disposal conditions. The information obtained from the Underground Research Laboratories (URLs) is used to provide a realistic condition of geological environments for these studies. The R and D studies are also carried out for TRU waste. A particular JAEA R and D activity is to promote the projects of two Underground Research Laboratories (URLs): one at Mizunami city, in crystalline rock and the other at Horonobe town, in sedimentary rock. In the present stage (2nd R and D phase) of the URL projects, the investigation are being carried out during the excavation of shafts and drifts. Data obtained from the investigations will serve to verify and refine the results from the surface-based investigations and characterize the evolution of the geological environment during drift excavation. The research on natural processes, such as fault and volcanic activities, is also conducted to provide better understanding of long-term stability on the geological environment. JAEA has initiated a project to develop the next generation of novel knowledge management system (KMS) to develop and manage the technical knowledge base for supporting implementers and regulators. This knowledge base includes all technical achievements by the JAEA as well as know-how and experience which have been accumulated

  20. Experimental social engineering : investigation and prevention

    NARCIS (Netherlands)

    Bullee, Jan-Willem

    2017-01-01

    Social engineering is the usage of social manipulation and psychological tricks to make the targets assist offenders in their attack. This practice manifests itself in e.g. phishing emails or cold call telephone scams. The aim of the thesis was to investigate the understanding of social engineering

  1. Study plan for research on long-term stability of geological environments in FY2009

    International Nuclear Information System (INIS)

    Yasue, Ken-ichi; Hanamuro, Takahiro; Kokubu, Yoko; Ishimaru, Tsuneari; Umeda, Koji

    2009-09-01

    The Japanese islands lie in a region of the Circum-Pacific orogenic belt characterized by active tectonics such as volcanism and earthquakes. The concept of geological disposal of HLW in Japan is based on a multi-barrier system which consists of the engineered barrier in the stable geological environments and the natural barrier. The natural phenomena which potentially affect the geological environments in tectonically active Japan are volcanism, faulting, uplift, denudation, climatic change, and sea-level change. Investigation technologies to evaluate their long-term stability of the geological environments have been developed. In fiscal year 2009, we continue researches to develop technologies for detecting latent geotectonic events in preliminary investigation. With regard to modelling technology, we plan to develop prediction models for evaluating the changes of geological environment (e.g., thermal, hydraulic, mechanical, and geochemical conditions) for long term. In addition to these, the development of dating techniques prerequisite for these studies is also carried out. (author)

  2. Seismic Microzonation of Breginjski Kot (NW Slovenia) Based on Detailed Engineering Geological Mapping

    Science.gov (United States)

    2013-01-01

    Breginjski kot is among the most endangered seismic zones in Slovenia with the seismic hazard assessed to intensity IX MSK and the design ground acceleration of 0.250 g, both for 500-year return period. The most destructive was the 1976 Friuli Mw = 6.4 earthquake which had maximum intensity VIII-IX. Since the previous microzonation of the area was based solely on the basic geological map and did not include supplementary field research, we have performed a new soil classification of the area. First, a detailed engineering geological mapping in scale 1 : 5.000 was conducted. Mapped units were described in detail and some of them interpreted anew. Stiff sites are composed of hard to medium-hard rocks which were subjected to erosion mainly evoked by glacial and postglacial age. At that time a prominent topography was formed and different types of sediments were deposited in valleys by mass flows. A distinction between sediments and weathered rocks, their exact position, and thickness are of significant importance for microzonation. On the basis of geological mapping, a soil classification was carried out according to the Medvedev method (intensity increments) and the Eurocode 8 standard (soil factors) and two microzonation maps were prepared. The bulk of the studied area is covered by soft sediments and nine out of ten settlements are situated on them. The microzonation clearly points out the dependence of damage distribution in the case of 1976 Friuli earthquake to local site effects. PMID:24453884

  3. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983

    Science.gov (United States)

    Plescia, J. B.

    1984-01-01

    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  4. A drill-hole geodatabase as a tool to investigate geological hazard in Napoli Urban Area

    Science.gov (United States)

    Albericoa, I.; Lirer, L.; Petrosino, P.

    2003-04-01

    Geological investigations in urban areas are complicated by the absence of good outcrops and field exposures, as a result of the density of civil buildings and railway and road network. On the other side, in urban areas geological investigation represents a basic tool to decisional support for the management of present private buildings and public works and for the planning of new ones. This is much more true in urban areas very exposed to geological hazard (volcanic, hydrogeological, seismic) where the high exposed value greatly rises the risk. The methodology to deal with the geological hazard in urban areas here presented is the reconstruction of buried geological formations deduced by drill-holes stratigraphy.The test area is represented by the whole municipality of Napoli city, that proves very apt to the investigation of the hazard in urban areas since it stands over an active volcanic area, comprised between the Campi Flegrei volcanic field and the Somma-Vesuvio district, that both gave explosive and effusive activity through the last centuries. Besides, the extension of the main part of the city constrained between the coastline and the belt of volcanic hills together with the presence of loose material due to pyroclastic activity makes the alluvional events an other hazardous phenomenon for the city. The performed up datable drill-holes geodata-base for the city of Napoli at present contains the record of about 800 holes stratigraphy, collected through the main public and private bodies, reflecting the drill-holes surveys made along the last 50 years before constructing the main railways, roads and aqueduct network. Drill-holes data have been interpreted and can now be read under various viewpoints (geological, lithological, volcanological); the present work presents the first results of the geological hazard investigation. The investigation of buried stratigraphy in the eastern area allows to identify the presence of pyroclastic flow deposits from Somma

  5. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  6. Investigation of remote sensing geology in the northern Anxi area of Gansu Province

    International Nuclear Information System (INIS)

    Dai Wenhan

    1993-07-01

    The study of 1 : 50,000 remote sensing geology survey and prognosis of gold (uranium) mineralization in the area of northern Anxi of Gansu province has been completed. The synthetical remote sensing and multi-source information compounding technologies, such as land-satellites TM and MSS images, airborne color infrared photography and infrared ray scanning digital images, are used in the study. On the basis of information enhancement and extraction of remote-sensing images, using the theory of remote sensing to explore mineral deposits and the field investigations, many achievements have been reached, such as applications of synthetical remote sensing technology, fundamental study of geology, prognosis of gold (uranium) minerals and 1 : 50,000 remote-geologic mapping. 21 mineral resource maps and geologic maps are obtained. Nearly one thousand of altered rock zones are interpreted and found. 71 new gold anomaly hydrothermal alteration zones and 23 gold mineralized places are discovered (maximum Au 71 x 10 -6 ). 17 minerogeneration prospective areas, 67 gold-ore searching targets and favorable areas of uranium mineralization are identified. It gives important materials for searching new mines

  7. Subsurface Investigations Program at the radioactive waste management complex of the Idaho National Engineering Laboratory. Annual progress report, FY-1985

    International Nuclear Information System (INIS)

    Hubbell, J.M.; Hull, L.C.; Humphrey, T.G.; Russell, B.F.; Pittman, J.R.; Cannon, K.M.

    1985-12-01

    This report describes work conducted in FY-85 in support of the Subsurface Investigation Program at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. The work is part of a continuing effort to define and predict radionuclide migration from buried waste. The Subsurface Investigation Program is a cooperative study conducted by EG and G Idaho and the US Geological Survey, INEL Office. EG and G is responsible for the shallow drilling, solution chemistry, and net downward flux portions of this program, while the US Geological Survey is responsible for the weighing lysimeters and test trench. Data collection was initiated by drilling, sampling, and instrumenting shallow wells, continuing the installation of test trenches, and modifying the two weighing lysimeters. Twenty-one shallow auger holes were around the Radioactive Waste Management Complex (RWMC) to evaluate radionuclide content in the surficial sediments, to determine the geologic and hydrologic characteristics of the surficial sediments, and to provide as monitoring sites for moisture in these sediments. Eighteen porous cup lysimeters were installed in 12 auger holes to collect soil water samples from the surficial sediments. Fourteen auger holes were instrumented with tensiometers, gypsum blocks and/or psychrometers at various depths throughout the RWMC. Readings from these instruments are taken on a monthly basis

  8. Experimental methodology to study radionuclide sorption and migration in geological formations and engineered barriers of waste repositories

    International Nuclear Information System (INIS)

    Rojo Sanz, H.

    2010-01-01

    In Spain, the waste management options include either the possibility of a final storage in a deep geological repository (DGR) or the centralized temporal surface disposal (CTS). DGRs are based in a multi-barrier concept with the geological barrier and including the vitrified waste, the metal containers and engineered barriers such as compacted bentonite and cement-based materials. On the other hand, CTS mainly considers concrete and cement to confine the metal canisters containing the waste. Radionuclide migration will mainly take place by the existence of chemical concentration gradients being thus diffusion the main transport mechanism or by the existence of hydraulic gradients due to the existence of water-conductive fractures. Radionuclide sorption/retention on the materials composing the natural and engineered barriers is the fundamental process controlling contaminant migration. The evaluation of sorption parameters and the understanding of the different mechanisms leading to radionuclide retention are very important issues. The study of diffusion processes is very relevant as well. This paper describes the main experimental methodologies applied to analyse radionuclide transport in the different barriers of radioactive repositories. Particularly we focused on obtaining of retention parameters as distribution coefficients, kd, or retardation factors, Rf, and diffusion coefficients of radionuclides. (Author) 6 refs.

  9. Engineering geological mapping of Dar es Salaam city, Tanzania ...

    African Journals Online (AJOL)

    Two basic maps were prepared, namely, geomorphological and geological map depicts the spatial extent of the Neogene geological formations. Three distinct sandstone terraces could be distinguished in Dar es Salaam region at 0-15 m and 30 – 40 m above sea level. The terraces comprised sandstones fringed by coral ...

  10. Seismological and geological investigation for earthquake hazard in the Greater Accra Metropolitan Area

    International Nuclear Information System (INIS)

    Doku, M. S.

    2013-07-01

    A seismological and geological investigation for earthquake hazard in the Greater Accra Metropolitan Area was undertaken. The research was aimed at employing a methematical model to estimate the seismic stress for the study area by generating a complete, unified and harmonized earthquake catalogue spanning 1615 to 2012. Seismic events were souced from Leydecker, G. and P. Amponsah, (1986), Ambraseys and Adams, (1986), Amponsah (2008), Geological Survey Department, Accra, Ghana, Amponsah (2002), National Earthquake Information Service, United States Geological Survey, Denver, Colorado 80225, USA, the International Seismological Centre and the National Data Centre of the Ghana Atomic Energy Commission. Events occurring in the study area were used to create and Epicentral Intensity Map and a seismicity map of the study area after interpolation of missing seismic magnitudes. The least square method and the maximum likelihood estimation method were employed to evaluate b-values of 0.6 and 0.9 respectively for the study area. A thematic map of epicentral intensity superimposed on the geology of the study area was also developed to help understand the relationship between the virtually fractured, jointed and sheared geology and the seismic events. The results obtained are indicative of the fact that the stress level of GAMA has a telling effect on its seismicity and also the events are prevalents at fractured, jointed and sheared zones. (au)

  11. Development of an engineering design process and associated systems and procedures for a UK geological disposal facility - 59160

    International Nuclear Information System (INIS)

    Rendell, Philip; Breen, Brendan; Clark, Alastair; Reece, Steve; O'Grady, Henry

    2012-01-01

    In the United Kingdom the Nuclear Decommissioning Authority (NDA) has been charged with implementing Government policy for the long-term management of higher activity radioactive waste. The UK Government is leading a site selection process based on voluntarism and partnership with local communities interested in hosting such a facility and as set out in the 'Managing Radioactive Waste Safely' White Paper (2008). The NDA has set up the Radioactive Waste Management Directorate (RWMD) as the body responsible for planning, building and operating a geological disposal facility (GDF). RWMD will develop into a separately regulated Site Licence Company (SLC) responsible for the construction, operation and closure of the facility. RWMD will be the Design Authority for the GDF; requiring a formal process to ensure that the knowledge and integrity of the design is maintained. In 2010 RWMD published 'Geological Disposal - Steps towards implementation' which described the preparatory work that it is undertaking in planning the future work programme, and the phases of work needed to deliver the programme. RWMD has now developed a process for the design of the GDF to support this work. The engineering design process follows a staged approach, encompassing options development, requirements definition, and conceptual and detailed designs. Each stage finishes with a 'stage gate' comprising a technical review and a specific set of engineering deliverables. The process is intended to facilitate the development of the most appropriate design of GDF, and to support the higher level needs of both the project and the community engagement programmes. The process incorporates elements of good practices derived from other work programmes; including process mapping, issues and requirements management, and progressive design assurance. A set of design principles have been established, and supporting design guidance notes are being produced. In addition a requirements management system is being

  12. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description. Appendix I. Engineering drawings

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    The engineering plans for a test facility to monitor radionuclide transport in water through partially saturated geological media are included. Drawings for the experimental set-up excavation plan and details, lysimeter, pad, access caisson, and caisson details are presented

  13. LPG as a Fuel for Diesel Engines-Experimental Investigations

    Science.gov (United States)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  14. Geology knowledge application in civil engineering realization: Gas Pipeline

    International Nuclear Information System (INIS)

    Techera, J.

    2001-01-01

    The Company manager for the building project of south gas pipeline contracted technical services to National Direction of Geology and Mining DINAMIGE for study the geology.It studied Colonia-Montevideo stretch s and then Colonia-Porto Alegre stretch s of gas pipeline.The main purpose was determine the physical and mechanics earthly characteristic for in a future to bury the gas pipe

  15. Technical summary of geological, hydrological, and engineering studies at the Slick Rock Uranium Mill Tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1990-12-01

    The purpose of this document is to provide the Colorado Department of Health (CDH) with a summary of the technical aspects of the proposed remedial action for the Slick Rock tailings near Slick Rock, Colorado. The technical issues summarized in this document are the geology and groundwater at the Burro Canyon disposal site and preliminary engineering considerations for the disposal cell

  16. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  17. Engineering geology model of the Crater Lake outlet, Mt. Ruapehu, New Zealand, to inform rim breakout hazard

    Science.gov (United States)

    Cook, Stefan C. W.; Kennedy, Ben M.; Villeneuve, Marlène C.

    2018-01-01

    Mt. Ruapehu, in the central North Island of New Zealand, hosts a hot acidic Crater Lake over the active volcanic vent with a surface elevation of c. 2530 m.a.s.l. Volcanic activity and other montane processes have previously resulted in catastrophic releases of some or all of the c. 10 Mm3 of water retained in the lake, creating serious hazards downstream. A major lahar in March 2007 exposed a 10 m high face representative of the rock units impounding the lake, providing an opportunity to conduct both field and laboratory analysis to characterise the rock mass conditions at the outlet to assess the stability of the outlet area. This paper presents an engineering geology model of Crater Lake outlet. Our model shows three andesitic geological units at the outlet, each with different geological histories and physical and mechanical properties, which impact its stability. Geotechnical methods used to characterise the outlet include laboratory testing of the strength, stiffness, porosity and unit weight, and field-based rock mass characterisation using the geological strength index (GSI) and rock mass rating (RMR). Field observations, geomorphology mapping, historic and contemporary photographs, and laboratory results are combined to create cross sections that provide key information for establishing the engineering geology model. The units are recognised in what is informally termed the Crater Lake Formation: i) The upper surface layer is a c. 2 m thick sub-horizontal dark grey lava unit (Armoured Lava Ledge) with sub-horizontal cooling joints spaced at 0.2 m to 2.0 m intervals. The intact rock has a porosity range of 15-27%, density range of 1723-2101 kg/m3, GSI range of 45-75, and unconfined compressive strength (UCS) range of 19-48 MPa. ii) Below this, and outcropping down the majority of the outlet waterfall is a poorly sorted breccia unit composed of block and matrix material (Lava Breccia). The blocks range from 0.1 m to 0.8 m in diameter with an average porosity

  18. Geophysical and geological investigations of subsurface reservoirs : case studies of Spitsbergen, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Baelum, Karoline

    2011-07-01

    The thesis gives a description of the subsurface and outcrop geology at a number of localities on Svalbard through a selection of various geophysical and geological methods. The localities represent a series of geological settings of varying scale, from near surface paleokarst and glacial environments to large scale geological features such as fault zones, grabens and dolerite intrusions. The geophysical and geological methods deployed likewise represent both detailed small scale investigations such as Lidar, radar and geoelectric investigations on and near the surface, and seismic investigations covering larger areas to a depth of several kilometers. The overall aim for all the studies has been to better understand reservoir and cap rock/ice systems in a barren arctic desert characterized by a frozen ground that challenges common geophysical methods. The investigations undertaken in connection with this thesis cover several areas The first part addresses the Billefjorden fault zone (BFZ) with its eastern hanging wall classic rift-basin. This fault zone can be traced for more than 200 km as a lineament that runs almost the entire length of Spitsbergen, from Wijdefjorden in the north to Storfjorden in the south. The seismic data along with surface observations and Lidar scans illustrate the long and complicated history of the BFZ and associated basin, from the initial formation via linkage of reverse faults in the Devonian, through Carboniferous reactivation as a normal fault with adjacent rift-basin in an extensional tectonic regime, to finally Tertiary contraction seen as fault reactivation and basin inversion in connection with the formation of the west-coast fold and thrust-belt. Especially the development of the Carboniferous rift-basin is of interest. An integrated study by seismic and georadar mapping, and Lidar data interpretation combined with outcrop analysis of faults and sedimentary succession, have shed new, detailed information on the good sandstone

  19. Monitoring of the land and geological environment condition in the Eupatorijska arroyo in Dnipropetrovsk

    Directory of Open Access Journals (Sweden)

    Bogachenko L.D.

    2015-09-01

    Full Text Available The article analyzes the condition of the land and the geological environment in the Eupatorijska arroyo, engineering-geological estimation of the territory of the arroyo is carried out, negative engineering-geological processes and phenomena are defined. It was found that due to the negative technogenic impact in conjunction with natural and climatic factors, the slopes under study can be considered as those under the risk of landslides and therefore are in need of engineering protection.

  20. Self-sealing of Fractures in Argillaceous Formations in the Context of Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2010-01-01

    Disposal of high-level radioactive waste and spent nuclear fuel in engineered facilities, or repositories, located deep underground in suitable geological formations is being developed worldwide as the reference solution to protect humans and the environment both now and in the future. Assessing the long-term safety of geological disposal requires developing a comprehensive understanding of the geological environment. The transport pathways are key to this understanding. Of particular interest are fractures in the host rock, which may be either naturally occurring or induced, for example, during the construction of engineered portions of a repository. Such fractures could provide pathways for migration of contaminants. In argillaceous (clay) formations, there is evidence that, over time, fractures can become less conductive and eventually hydraulically insignificant. This process is commonly termed 'self-sealing'. The capacity for self-sealing relates directly to the function of clay host rocks as migration barriers and, consequently, to the safety of deep repositories in those geological settings. This report - conducted under the auspices of the NEA Clay Club - reviews the evidence and mechanisms for self-sealing properties of clays and evaluates their relevance to geological disposal. Results from laboratory tests, field investigations and geological analogues are considered. The evidence shows that, for many types of argillaceous formations, the understanding of self-sealing has progressed to a level that could justify its inclusion in performance assessments for geological repositories. (authors)

  1. Russian geological education in the world market (the case of Russian State Geological Prospecting University

    Directory of Open Access Journals (Sweden)

    Vasily Ivanovich Lisov

    2016-12-01

    Full Text Available Higher geological education in Russia and in MSGPI-RSGPU specific. It - engineering. The mineral deposits determine the development of the global industry and foreign trade. Growing global demand for the profession of geologists and mining engineers. Training of foreign students in Russia has its own geopolitical and economic importance. In Russia a strong resource-based economy. It attracts students from developing countries. MGRI-RSGPU is the leading universities training specialists for mining. The article presents data about the University and types of education. Shown scientific and educational problems in higher education. This article discusses the prospects for the promotion of Russian higher geological education at the world market of educational services. The increasing role of new scientific and technological achievements in mining, enhanced environmental as well as staff requirements is revealed. Given that the leading schools in the mining industry, in addition to Russia, are formed in Canada, Germany, USA, Australia, Great Britain, many developing countries rich in natural resources, have begun to form their own national centers for training in this area. Under such competitive conditions Russian geological education maintains its own niche. Recognition of this is the active participation of Russian universities in the creation and development of the World Forum of sustainable development of mineral universities (WFURS, described in the article. The main factors of competitiveness that led to leading positions of Russian State Geological Prospecting University in system of the Russian geological education are described. Particular attention is paid to the international activities of Russian higher educational institutions including Geological Prospecting University. The basic statistics (both in the context of the country, and in the field of foreign undergraduate and graduate students enrolled at this university is provided. The

  2. Verification study on technology for site investigation for geological disposal. Confirmation of the applicability of survey methods through establishing site descriptive models in accordance with stepwise investigation approach

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Hamada, Takaomi; Yoshimura, Kimitaka

    2014-01-01

    The Yokosuka Demonstration and Validation Project, which uses the Yokosuka Central Research Institute of Electric Power Industry (CRIEPI) site, a Neogene sedimentary and coastal environment, has been conducted since the 2006 fiscal year as a cooperative research project between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project were to examine and refine the basic methodology of the investigation and assessment in accordance with the conditions of geological environment at each stage of investigations from the surface (Preliminary Investigation and the first half of Detailed Investigation conducted by NUMO) for high level radioactive waste geological disposal. Within investigation technologies at these early stages, a borehole survey is an important means of directly obtaining various properties of the deep geological environment. On the other hand, surface geophysical prospecting data provide information about the geological and resistivity structures at depth for planning borehole surveys. During the 2006-2009 fiscal years, a series of on-site surveys and tests, including borehole surveys of YDP-1 (depth: 350 m) and YDP-2 (depth: 500 m), were conducted in this test site. Furthermore, seismic surveys (including seismic reflection method) and electromagnetic surveys (including magnetotelluric method) were conducted within the expanded CRIEPI site in the 2010 fiscal year to obtain information about the geological structure, and the resistivity structure reflecting the distribution of the salt water/fresh water boundary, respectively, to a depth of over several hundred meters. The validity of existing survey and testing methods for stepwise investigations (from surface to borehole surveys) for obtaining properties of the geological environment (in various conditions relating to differences in the properties of the Miura and the Hayama Groups at this site) was confirmed through establishing site descriptive models based on

  3. Proceedings of the eighth thematic conference on geologic remote sensing

    International Nuclear Information System (INIS)

    Balmer, M.L.; Lange, F.F.; Levi, C.G.

    1991-01-01

    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems

  4. Experience in selection and characterization of sites for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1997-12-01

    An important matter in the development of a geological repository for disposal radioactive waste is the selection of a site that has characteristics that are favorable for isolation. A number of Member States have had national programmes under way for several decades to investigate sites to gather the geological information needed to design and construct a safe repository. The purpose of this report is to document this experience and to summarize what has been learned about the site selection and investigation process. It is hoped it will be of interest to scientists and engineers working in national disposal programmes by providing them information and key references regarding the disposal programmes in other countries. It may also be of interest to members of the public and to decision makers wanting an overview of the worldwide status of programmes to select and characterize geological disposal sites for radioactive waste

  5. Investigating the Language of Engineering Education

    Science.gov (United States)

    Variawa, Chirag

    A significant part of professional communication development in engineering is the ability to learn and understand technical vocabulary. Mastering such vocabulary is often a desired learning outcome of engineering education. In promoting this goal, this research investigates the development of a tool that creates wordlists of characteristic discipline-specific vocabulary for a given course. These wordlists explicitly highlight requisite vocabulary learning and, when used as a teaching aid, can promote greater accessibility in the learning environment. Literature, including work in higher education, diversity and language learning, suggest that designing accessible learning environments can increase the quality of instruction and learning for all students. Studying the student/instructor interface using the framework of Universal Instructional Design identified vocabulary learning as an invisible barrier in engineering education. A preliminary investigation of this barrier suggested that students have difficulty assessing their understanding of technical vocabulary. Subsequently, computing word frequency on engineering course material was investigated as an approach for characterizing this barrier. However, it was concluded that a more nuanced method was necessary. This research program was built on previous work in the fields of linguistics and computer science, and lead to the design of an algorithm. The developed algorithm is based on a statistical technique called, Term Frequency-Inverse Document Frequency. Comparator sets of documents are used to hierarchically identify characteristic terms on a target document, such as course materials from a previous term of study. The approach draws on a standardized artifact of the engineering learning environment as its dataset; a repository of 2254 engineering final exams from the University of Toronto, to process the target material. After producing wordlists for ten courses, with the goal of highlighting characteristic

  6. Waste isolation in geologic formations in the USA

    International Nuclear Information System (INIS)

    Zerby, C.D.; McClain, W.C.

    1976-01-01

    The ERDA program for the establishment of terminal storage facilities for commercial radioactive wastes in deep geologic formations was recently reorganized as the National Waste Terminal Storage (NWTS) program. General plans for implementing this expanded program call for geologic investigations and feasibility confirmation studies at multiple geographic locations, leading to pilot plant construction and operation with possible future conversion into a Federal Repository. The pilot plant operations will be experimental facilities having limited capacity to store actual waste in a readily retrievable configuration. The first two pilot plants are planned to start operations simultaneously in the mid-1980's. Geologic investigations are now in progress or planned in study areas of the interior basins of the Gulf Coast Salt Dome Province, in the Salina Salt basin and in the Paradox Basin in an effort to identify acceptable locations for these initial facilities. Subsequent pilot plants will be located in other formations. Preliminary geologic evaluations have been initiated in the Paleozoic shales and limestones, Triassic shale basins along the east coast, Mesozoic shales of the Gulf Coast and northern high plains and certain crystalline igneous rocks. Most of the required engineering testing of disposal in salt formations has been completed in previous programs. However, the establishment of pilot plants in the other rock types will require a sequence of in situ testing designed to develop the information necessary to both demonstrate the feasibility of waste disposal in that particular formation and provide the data for facility designs

  7. Fracture analysis for engineering geological utilization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H I; Choi, P Y; Hong, S H; Chi, K H; Kim, J Y; Lee, S R; Lee, S G; Park, D W; Han, J G [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The problem of geological hazards (earthquakes) and water or thermal resources urges us to understand the regional tectonic setting or recent tectonics. The Uisong Subbasin is located in one of the seismicity zones in Korea. Because the reactivity of the Gaeum Fault System is an important problem focussing on these faults, we studied their whole extension and timing of faulting in terms of tectonics. Fault tectonic analysis is so effective as to easily reconstruct the tectonic sequence and each stress state at each site, eventually in a region. One can get insights for faulting timing in terms of the restored tectonic sequence, and discriminating the active faults or the faults active in the last (present) tectonics. Examining the filling materials in tension gashes, one can get raw knowledge regarding the thermal states at each site. For this study, we first analyzed the topographic textures (lineament, drainage and circular structures) on the relief map produced based on the topographic maps of 1:100,000 scale. Through investigations of susceptible area along the faults, their existence and movement modes were studied, and we can get information about movement history and whole extension of the faults belonging to the WNW-ESE trending Gaeum Fault System. In order to reconstruct the tectonic sequence, we measured fault slip data, tension gashes and dikes, from which fault populations were classified and stress (and thermal) states were determined. Seven compressional tectonic events and six extensional events were reconstructed. Because coaxial events partially coexisted, we bundled these events in one, finally we get seven tectonic events. Determining the types of minerals filling the tension gashes, we suggested the possibility of investigation of geothermal resources with less efforts. (author). 162 refs., 14 tabs., 51 figs.

  8. Geological data acquisition for site characterisation at Olkiluoto: a framework for the phase of underground investigations

    International Nuclear Information System (INIS)

    Milnes, A.G.; Aaltonen, I.; Kemppainen, K.; Mattila, J.; Wikstroem, L.; Front, K.; Kaerki, A.; Gehoer, S.; Paulamaeki, S.; Paananen, M.; Ahokas, T.

    2007-05-01

    'Geological data acquisition' is a general term for the collection of observations and measurements by direct observation of exposed bedrock in the field (i.e. in natural outcrops and trenches, in drillholes, and in tunnels and other underground excavations). Only field-based data acquisition is included in this report: laboratory-based investigations will be continued, based on the field data and sampling, and all the data will be subject to discipline-specific processing, as the project proceeds. The ultimate aim of geological data acquisition is to provide the necessary data base for geological models of the bedrock of the Olkiluoto site, in connection with the construction of an underground rock characterisation facility, ONKALO, and a repository for spent nuclear fuel, at about 500m depth. Geological data acquisition plays a central role in site characterisation and modelling, and is intended to provide a solid platform on which the other disciplines (rock mechanics, hydrogeology, seismic risk assessment, etc.) can base their investigations. Based on consideration of a series of guidelines (e.g. modelling scale, source of data, level of investigation, national and international experience, special conditions at Olkiluoto, need for process understanding), a project-oriented 'framework' has been developed as a background to the different projects within the geological data acquisition programme. Each project will require its own system of data acquisition (methodology, spreadsheets, protocols, etc.), as described in the corresponding reports; the present report concentrates on the general principles which lie behind the different methodologies and data sheets. These principles are treated under three main headings: characterization of intact rock, characterization of deformation zone intersections, and characterization of individual fractures. Geological mapping of natural outcrops and trenches at Olkiluoto, and lithological logging of more than 40 rock cores

  9. Monitored Geologic Repository Project Description Document

    International Nuclear Information System (INIS)

    Curry, P.

    2000-01-01

    The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (CRWMS M and O 2000b) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) engineering design basis in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The engineering design basis documented in the PDD is to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the engineering design basis from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the engineering design basis captured in the SDDs and the design requirements captured in U.S. Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M and O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 2-1, the MGR Architecture (Section 4.1),the Engineering Design Bases (Section 5), and the Controlled Project Assumptions (Section 6)

  10. Monitored Geologic Repository Concept of Operations

    International Nuclear Information System (INIS)

    Curry, P.M.

    1999-01-01

    This updated document provides the top level guidance for development of the individual systems for the MGR which will be further developed in the System Description Documents. This document will serve as guidance for the development of functional interface and operational requirements. However, the data and engineering values presented in Monitored Geologic Repository Concept of Operations are provided as estimates or summaries of the current design. The original analyses or supporting documents must be utilized if the data or engineering values are used for design inputs. The concepts presented will be utilized as inputs for the development of operational concepts for the individual systems. It is recognized that the references listed may contain existing data or data which are to be verified. However, the data and engineering values presented will not impact the concepts presented in this technical document. As such, the data and engineering values are not being tracked as To Be Verified data. This revision was created to incorporate changes resulting from Enhanced Design Alternative II and Revision 3, DCN 01, of the Monitored Geologic Repository Requirements (YMP 1999)

  11. Key radionuclides and parameters that determine performance of geologic repositories for high-level radioactive wastes

    International Nuclear Information System (INIS)

    Joonhong Ahn; Atsuyuki Suzuki

    1993-01-01

    This paper presents results of a mathematical analysis for performance of the engineered barriers of high-level radioactive waste repositories. The main body of the mathematical model developed in this study is mass transport of actinides in a bentonite region. In an analysis of actinide transport, radioactive decay chain and effects of low solubilities must be taken into account. In many previous models for mass transport in engineered barriers including radioactive decay chain, however, boundary conditions at the interface between the waste form and the bentonite region cannot be determined flexibly. In some models, solubility-limited boundary condition is assumed for all the members in a chain. In order to investigate what are key radionuclides and parameters that control performance of engineered barriers of a geologic repository, we must evaluate mass transport with the source boundary condition determined by a detailed analysis on mass transfer at the boundary. In this study, we developed a mathematical model, which can determine whether the inner boundary condition is solubility-limited or congruent release, based on a mathematical analysis for mass transfer at the glass dissolution location, and how long the solubility-limited boundary condition applies. Based on the mathematical model, we point out radionuclides and parameters that have primary influences on the performance of a repository, and investigate a reasonable strategy for coupling geologic disposal and partitioning of those key radionuclides from the standpoint of reducing hazard of geologic disposal. (authors). 4 tabs., 2 figs., 8 refs

  12. Proceedings of the 7. Symposium on geology from southeastern Brazil

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents papers on the following subjects: regional geology of the proterozoic and fanerozoic, metallic and non metallic resources, tectoni-sedimentary evolution of the eastern margin Brazil basins and petroleum geology applied to the Santos, Campos and Espirito Santo basins, engineering and environmental geologies, ornamental rocks/building materials/mineral waters/industrial ores

  13. Mining and geologic site investigation of Minas de Corrales region

    International Nuclear Information System (INIS)

    Arrighetti, R.; Pena, S.; Rossi, P.; Vaz Chavez, N.

    1981-01-01

    The present geologic article integrates the Mining inventory Program that was carried out in our country, with the participation of the 8.R.G.M. (France) and the Institute Geologic of the Uruguay. The main area which the work was developed it was object of gold exploration and exploitation from ends of the passed century. It was located in the region of Cunapiru-Vichadero (Rivera province), which it was still called from a geologic point of view, The Crystalline Island .

  14. The geological model calibration - Learnings from integration of reservoir geology and field performance - Example from the upper carboniferous reservoirs of the Southern North Sea

    NARCIS (Netherlands)

    Moscariello, A.; Hoof, T.B. van; Kunakbayeva, G.; Veen, J.H. ten; Belt, F. van den; Twerda, A.; Peters, L.; Davis, P.; Williams, H.

    2013-01-01

    The Geological Model Calibration - Learnings from Integration of Reservoir Geology and Field Performance: example from the Upper Carboniferous Reservoirs of the Southern North Sea. Copyright © (2012) by the European Association of Geoscientists & Engineers All rights reserved.

  15. Horonobe Underground Research Laboratory project. Investigation program for the 2008 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sanada, Hiroyuki; Yamaguchi, Takehiro; Sugita, Yutaka

    2008-09-01

    As part of the research and development program on geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to intermediate depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2008 fiscal year (2008/2009), the 4th year of the Phase 2 investigations. In the 2008 fiscal year, investigations in geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for long-term monitoring of the geological environment', 'development of engineering techniques for use in the deep underground environment' and studies on the long-term stability of the geological environment', are continuously carried out. Investigations in 'research and development on geological disposal technology', including 'improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies', are also continuously carried out

  16. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  17. Geologic Mapping Investigations of Alba Mons, Mars

    Science.gov (United States)

    Crown, D. A.; Berman, D. C.; Scheidt, S. P.; Hauber, E.

    2018-06-01

    Geologic mapping of the summit region and western flank of Alba Mons at 1:1M-scale is revealing sequences of volcanic, tectonic, impact, and degradation processes that have formed and modified the northernmost of the Tharsis volcanoes.

  18. M.E.S.A, not Just a Seat at the Table: a Chicano Geology Student's Experience with Investigative Field Research

    Science.gov (United States)

    Ponce-Zepeda, M. M.

    2011-12-01

    The MESA (math, engineering, science achievement) program in California engages educationally disadvantaged students, primarily minority groups, providing the opportunity to excel in math and science and graduate with math-based degrees. MESA at East Los Angeles Community College selected me, a returning 24 year-old Chicano student, for the SCEC (Southern California Earthquake Center) summer internship at Utah State University (USU). The project coordinators assigned me to a group with three other undergraduate geology students from across the continent and from a variety of socioeconomic backgrounds to investigate geothermal systems in the Salton Trough and northern Utah. The peer-driven field work transformed student to investigator by forcing each participant to be responsible for the success of the entire group. In this environment, I rose to expectations along with my fellow interns managing a detailed field notebook, sampling, planning routes, level logger maintenance, and x-ray diffractometer analysis interpretation, among other things. Mentorship from and challenges proposed by the USU project advisor further built on this scaffolding of field experience. First hand fieldwork provides a battery of beneficial skills that many undergraduate geology students, especially at the two- year college level, rarely get an opportunity to participate in. The advantage of including non-traditional students from two- year colleges allows for a dynamic research network nationwide. Key sample collection by the East Los Angeles College (ELAC) Geology Club, a student- run club at an inner city community college, facilitated ongoing examination by collecting mud samples from gryphons and mudpots in the Salton Trough and testing temperature, pH levels, electrical conductivity, and total dissolved solids in the field. The samples were sent back to students at USU for further analysis. This collaborative effort is symbiotic as sharing the sampling responsibility allowed USU to

  19. The use of desk studies, remote sensing and surface geological and geophysical techniques in site investigations

    International Nuclear Information System (INIS)

    Mather, J.D.

    1984-02-01

    The geoscientific investigations required to characterise a site for the underground disposal of radioactive wastes involve a wide range of techniques and expertise. Individual national investigations need to be planned with the specific geological environment and waste form in mind. However, in any investigation there should be a planned sequence of operations leading through desk studies and surface investigations to the more expensive and sophisticated sub-surface investigations involving borehole drilling and the construction of in situ test facilities. Desk studies are an important and largely underestimated component of site investigations. Most developed countries have archives of topographical, geological and environmental data within government agencies, universities, research institutes and learned societies. Industry is another valuable source but here confidentiality can be a problem. However, in developing countries and in some regions of developed countries the amount of basic data, which needs to be collected over many decades, will not be as extensive. In such regions remote sensing offers a rapid method of examining large areas regardless of land access, vegetation or geological setting, rapidly and at relatively low cost. It can also be used to examine features, such as discontinuity patterns, over relatively small areas in support of intensive ground investigations. Examples will be given of how remote sensing has materially contributed to site characterisation in a number of countries, particularly those such as Sweden, Canada and the United Kingdom where the major effort has concentrated on crystalline rocks. The main role of desk studies and surface investigations is to provide basic data for the planning and execution of more detailed subsurface investigations. However, such studies act as a valuable screening mechanism and if they are carried out correctly can enable adverse characteristics of a site to be identified at an early stage before

  20. Outstanding diversity of heritage features in large geological bodies: The Gachsaran Formation in southwest Iran

    Science.gov (United States)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-09-01

    The ideas of geological heritage and geological diversity have become very popular in the modern science. These are usually applied to geological domains or countries, provinces, districts, etc. Additionally, it appears to be sensible to assess heritage value of geological bodies. The review of the available knowledge and the field investigation of the Gachsaran Formation (lower Miocene) in southwest Iran permit to assign its features and the relevant phenomena to as much as 10 geological heritage types, namely stratigraphical, sedimentary, palaeontological, palaeogeographical, geomorphological, hydrogeological, engineering, structural, economical, and geohistorical types. The outstanding diversity of the features of this formation determines its high heritage value and the national rank. The geological heritage of the Gachsaran Formation is important to scientists, educators, and tourists. The Papoon and Abolhaiat sections of this formation are potential geological heritage sites, although these do not represent all above-mentioned types. The large territory, where the Gachsaran Formation outcrop, has a significant geoconservation and geotourism potential, and further inventory of geosites on this territory is necessary. Similar studies of geological bodies in North Africa and the Middle East can facilitate better understanding of the geological heritage of this vast territory.

  1. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2001-09-14

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been

  2. Integrated path towards geological storage

    International Nuclear Information System (INIS)

    Bouchard, R.; Delaytermoz, A.

    2004-01-01

    Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these

  3. Problems and approach to geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Kitayama, Kazumi; Yamazaki, Haruo; Ijiri, Yuji; Haga, Kazuko; Sakamaki, Masanori; Kishi, Kiyoshi

    2006-01-01

    This feature articles described a concept and technical problems of geological disposal of high-level radioactive waste in the civil engineering. It consists of six papers such as the present statues and subjects of geological disposal by KITAYAMA Kazumi, the diastrophism, igneous activity, and upheaval and erosion by YAMAZAKI Haruo, the groundwater flow and evaluation of nuclear transfer by IJIRI Yuji, evaluation of alteration of cement materials in the ultra-long period by HAGA Kazuko, The Mizunami Underground Research Laboratory in course of construction by SAKAMAKI Masanori, and interview of the ninetieth president of JSCE (Japan Society of Civil Engineers), he places his hope on JSCE and civil engineers by KISHI Kiyoshi. (S.Y.)

  4. Applied geophysics for civil engineering and mining engineering. 2. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Militzer, H.; Schoen, J.; Stoetzner, U.

    1986-01-01

    In the process of geological and geotechnical prospecting for the exploration and exploitation of deposits, as well as for engineering structures, the knowledge contributed by geophysics is of significance in order to ensure an objective assessment of geological and geotechnical conditions of a given site, and to promote economic efficiency in the field of civil engineering and mining. For this reason, engineering and mining geophysics has become an important special subject field. The present second edition of the textbook offers enhanced information about practical applications of available methods and measuring techniques, and about the information to be obtained by civil and mining engineers from the geophysical science. The material has been arranged with a view to practice, facilitating an overview over potential applications and efficiencies as well as limits of geophysical methods. The methods are also explained in terms of suitability for the various steps of civil engineering or mining geological activities and studies. A major extension of the first edition's material consists of the chapter on basic principles and aspects of well geophysics for shallow well drilling. (orig./HP) [de

  5. Geophysical and geological investigations of the Boda area

    Energy Technology Data Exchange (ETDEWEB)

    Waenstedt, S. [Geosigma AB, Uppsala (Sweden)

    2000-04-15

    The studies conducted in the Boda area exhibit the presence of a severely fractured rock mass with occasional caves. The Boda area appears to be intersected by a few significant zones, obvious from a study of the topography but do appear in some of the geophysical investigations as well. The structures in the area have quite efficiently isolated the rock plint where the caves are located. It is not possible from these investigations, however, to draw far-reaching conclusions about the age and genesis of the zones or about their continuation towards depth. The geological investigation shows, apart from the caves, no unusual features. The rock types in the investigated area correspond with rock types found elsewhere in the region. The area is highly unsuitable for geophysical surface investigations. Part of the area consists of scattered and quite large blocks that constitute obstacles when making measurements in the area. Since there is little or no soil between the blocks some measurements (e.g. resistivity) are not possible to carry out. Furthermore, the scattered blocks cause unwanted reflections and other difficulties that deteriorate the quality of the geophysical data. The radar measurements with two different frequencies show an interesting result of importance not only to this investigation. The lower frequency appears to penetrate through the rocky overburden and is able to detect the soil-rock interface. The higher frequency is severely disturbed by the overburden but caves show much more clearly in this data. The fractured rock around Boda appears to be a shallow feature, since the radar measurements show a quite significant feature throughout most of the profiles, which appears to be the upper boundary of the bedrock. There are, however, some occasional strong reflectors below the interface between fractured and competent rock.

  6. Geophysical and geological investigations of the Boda area

    International Nuclear Information System (INIS)

    Waenstedt, S.

    2000-04-01

    The studies conducted in the Boda area exhibit the presence of a severely fractured rock mass with occasional caves. The Boda area appears to be intersected by a few significant zones, obvious from a study of the topography but do appear in some of the geophysical investigations as well. The structures in the area have quite efficiently isolated the rock plint where the caves are located. It is not possible from these investigations, however, to draw far-reaching conclusions about the age and genesis of the zones or about their continuation towards depth. The geological investigation shows, apart from the caves, no unusual features. The rock types in the investigated area correspond with rock types found elsewhere in the region. The area is highly unsuitable for geophysical surface investigations. Part of the area consists of scattered and quite large blocks that constitute obstacles when making measurements in the area. Since there is little or no soil between the blocks some measurements (e.g. resistivity) are not possible to carry out. Furthermore, the scattered blocks cause unwanted reflections and other difficulties that deteriorate the quality of the geophysical data. The radar measurements with two different frequencies show an interesting result of importance not only to this investigation. The lower frequency appears to penetrate through the rocky overburden and is able to detect the soil-rock interface. The higher frequency is severely disturbed by the overburden but caves show much more clearly in this data. The fractured rock around Boda appears to be a shallow feature, since the radar measurements show a quite significant feature throughout most of the profiles, which appears to be the upper boundary of the bedrock. There are, however, some occasional strong reflectors below the interface between fractured and competent rock

  7. Investigating the Use of a Digital Library in an Inquiry-Based Undergraduate Geology Course

    Science.gov (United States)

    Apedoe, Xornam S.

    2007-01-01

    This paper reports the findings of a qualitative research study designed to investigate the opportunities and obstacles presented by a digital library for supporting teaching and learning in an inquiry-based undergraduate geology course. Data for this study included classroom observations and field-notes of classroom practices, questionnaires, and…

  8. Principal provisions of engineering and geological survey methodology in designing and construction of underground laboratory as a part of facility of RW underground isolation

    International Nuclear Information System (INIS)

    Prokopova, O.A.

    2006-01-01

    The most critical moment is the choice of a site for radioactive waste geological repository. Here the role of engineering and geological prospecting as a basis for the construction of a facility for underground isolation appears especially important; it is followed by finding a suitable area and subsequent allocation of the site and facility construction sites. The decision on the selection of construction site for the underground repository is taken by the principle 'descent from the general to the particular', which is a continuous process with the observance of stages in research for the design and exploration work. Each stage of research is typified by specific scale and methods of geological and geophysical studies and scientific research to be fulfilled in scopes sufficient for solution of basic problems for the designing. (author)

  9. Salts in soil and water within the arid climate zone. Effects on engineering geology, exemplified from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jergman, K.

    1981-01-01

    In the arid climate zone, where the potential evaporation is much higher than the precipitation, soil and water generally are enriched by salts. In this research project it has been pointed out how salts affect engineering geology in different ways. The extensive study of the Al Khafji area in Saudi Arabia has shown that salts have affected soil and water so that - the crust hardness has increased due to a development of duricrust. The strength of the upper part of the crust is similar to weak rock. - the coastal terrace area moves vertically - groundwater affects the salinization of the soil profile A general description of the effect of salts on engineering geology can be summarized as below: The precipitated salts affect the profile so that 1.Stability changes. 2.Swelling alternatively contraction can occur due to variations of the water content. 3.Vegetation growth becomes difficult or impossible. 4.Excavation work is difficult. 5.Aggregate sources are affected. 6.Concrete corrosion is caused. 7.There is demand for proper field and laboratory tests and for special design criteria.The occurance of salts in the water causes due special conditions that 1.The soil profile is enriched by salts 2. The plants are damaged. 3.Concrete corrosion is developed. 4.The water is not suitable for drinking or irrigation purposes. 5. The density increases to such an extent that it effects the direction of the groundwater flow.

  10. Staff technical position on investigations to identify fault displacement hazards and seismic hazards at a geologic repository

    International Nuclear Information System (INIS)

    McConnell, K.I.; Blackford, M.E.; Ibrahim, A.K.

    1992-07-01

    The purpose of this Staff Technical Position (STP) is to provide guidance to the US Department of Energy (DOE) on acceptable geologic repository investigations that can be used to identify fault displacement hazards and seismic hazards. ne staff considers that the approach this STP takes to investigations of fault displacement and seismic phenomena is appropriate for the collection of sufficient data for input to analyses of fault displacement hazards and seismic hazards, both for the preclosure and postclosure performance periods. However, detailed analyses of fault displacement and seismic data, such as those required for comprehensive assessments of repository performance, may identify the need for additional investigations. Section 2.0 of this STP describes the 10 CFR Part 60 requirements that form the basis for investigations to describe fault displacement hazards and seismic hazards at a geologic repository. Technical position statements and corresponding discussions are presented in Sections 3.0 and 4.0, respectively. Technical position topics in this STP are categorized thusly: (1) investigation considerations, (2) investigations for fault-displacement hazards, and (3) investigations for seismic hazards

  11. Prediction of long term stability for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasaki, Takeshi; Morikawa, Seiji; Koide, Hitoshi; Kono, Itoshi

    1998-01-01

    On geological disposal of radioactive wastes, study on prediction of diastrophism has been paid many attentions, and then long term future prediction ranging from some thousands to some tends thousands years may be necessary for some target nuclides. As there are various methods in the future prediction, it is essential to use a computational dynamic procedure to conduct a quantitative prediction. However, it causes an obstacle to advancement of the prediction method that informations on deep underground have a lot of uncertain elements because of their few and indirect data. In this paper, a long term prediction procedure of diastrophism relating to geological disposal of radioactive wastes with low level but isolation terms required to some thousands years was investigated and each one example was shown on flow of the investigation and its modeling method by using the finite element method. It seems to be a key to upgrade accuracy of future diastrophism prediction how an earth fault can be analyzed. And, as the diastrophism is a long term and complex phenomenon and its prediction has many uncertain elements, it is important to judge comprehensively results of its numerical analysis geologically and on rock engineering. (G.K.)

  12. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  13. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  14. Development of JNC geological disposal technical information integration system for geological environment field

    International Nuclear Information System (INIS)

    Tsuchiya, Makoto; Ueta, Shinzo; Ohashi, Toyo

    2004-02-01

    Enormous data on geology, geological structure, hydrology, geochemistry and rock properties should be obtained by various investigation/study in the geological disposal study. Therefore, 'JNC Geological Disposal Technical Information Integration System for Geological Environment Field' was developed in order to manage these data systematically and to support/promote the use of these data for the investigators concerned. The system is equipped with data base to store the information of the works and the background information of the assumptions built up in the works on each stage of data flow ('instigative', → 'data sampling' → interpretation' → conceptualization/modeling/simulation' → 'output') in the geological disposal study. In this system the data flow is shown as 'plan' composed of task' and 'work' to be done in the geological disposal study. It is possible to input the data to the database and to refer data from the database by using GUI that shows the data flow as 'plan'. The system was installed to the server computer possessed by JNC and the system utilities were checked on both the server computer and client computer also possessed by JNC. (author)

  15. Geological hazards investigation - relative slope stability map

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dae Suk; Kim, Won Young; Yu, Il Hyon; Kim, Kyeong Su; Lee, Sa Ro; Choi, Young Sup [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The Republic of Korea is a mountainous country; the mountains occupy about three quarters of her land area, an increasing urban development being taken place along the mountainside. For the reason, planners as well as developers and others must realize that some of the urban areas may be threaten by geologic hazards such as landslides and accelerated soil and rock creeps. For the purpose of environmental land-use planning, a mapping project on relative slope-stability was established in 1996. The selected area encompasses about 5,900 km{sup 2} including the topographic maps of Ulsan, Yongchon, Kyongju, Pulguksa, and Kampo, all at a scale of 1:50,000. Many disturbed and undisturbed soil samples, which were collected from the ares of the landslides and unstable slopes, were tested for their physical properties and shear strength. They were classified as GC, SP, SC, SM, SP-SM, SC-SM, CL, ML, and MH according to the Unified Soil Classification System, their liquid limit and plasticity index ranging from 25.3% to as high as 81.3% and from 4.1% to 41.5%, respectively. X-ray analysis revealed that many of the soils contained a certain amount of montmorillonite. Based on the available information as well as both field and laboratory investigation, it was found out that the most common types of slope failures in the study area were both debris and mud flows induced by the heavy rainfalls during the period of rainy season; the flows mostly occurred in the colluvial deposits at the middle and foot of mountains. Thus the deposits generally appear to be the most unstable slope forming materials in the study area. Produced for the study area were six different maps consisting of slope classification map, soil classification map, lineament density map, landslide distribution map, zonal map of rainfall, and geology map, most of them being stored as data base. Using the first four maps and GIS, two sheets of relative slope-stability maps were constructed, each at a scale of 1

  16. A bibliography of planetary geology principal investigators and their associates, 1981 - 1982

    Science.gov (United States)

    Plescia, J. B. (Compiler)

    1982-01-01

    Over 800 publications submitted by researchers supported through NASA's Planetary Geology Program are cited and an author/editor index is provided. Entries are listed under the following subjects: (1) general interest topics; (2) solar system, comets, asteroids, and small bodies; (3) geologic mapping, geomorphology, and stratigraphy; (4) structure, tectonics, geologic and geophysical evolution; (5) impact craters: morphology, density, and geologic studies; (6) volcanism; (7) fluvial, mass wasting, and periglacial processes; (8) Eolian studies; (9) regolith, volatile, atmosphere, and climate; (10) remote sensing, radar, and photometry; and (11) cartography, photogrammetry, geodesy, and altimetry.

  17. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    Science.gov (United States)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  18. Survey contents and their significance to the preliminary investigation areas for the HLW geological disposal. In the case of identification and assessment of active faults in the survey area

    International Nuclear Information System (INIS)

    Yamazaki, Haruo

    2004-01-01

    Geological environment has cumulatively received diverse crustal movements having various time and spatial scales in the long earth history. For the HLW disposal, the geological stability around the investigation site should be examined and assessed in each individual time and spatial scale. Along the northern margin of Izu Peninsula where the highest rate of crustal movement is observed in Japan, the change of extensive stress field affected to local tectonics had taken for several hundred thousand years at the collision of Izu block in early Pleistocene. Therefore, there is little potential of sudden occurrence of new disturbance in the evaluation period of a hundred thousand years. The active fault survey in the preliminary investigation areas should indispensably reexamine the existence of the faults because of the low reliability of previously published active fault maps. Engineering answer should be requested for the accommodation to small fault and fractures in the host rocks. Although there is little potential for the occurrence of a new active fault in the non-faulted region, it is necessary to check the potential of new fracture occurrence in the stress concentrated region using the distribution of coulomb failure stress change. (author)

  19. Preliminary analysis of engineered barrieer performances in geological disposal of high level waste

    International Nuclear Information System (INIS)

    Ohe, Toshiaki; Maki, Yasuo; Tanaka, Hiroshi; Kawanishi, Motoi.

    1988-01-01

    This report represents preliminary results of safety analysis of a engineered barrier system in geological disposal of high level radioactive waste. Three well-known computer codes; ORIGEN 2, TRUMP, and SWIFT were used in the simulation. Main conceptual design of the repository was almost identical to that of SKB in Sweden and NAGRA in Switzerland; the engineered barrier conasists glass solidified waste, steel overpack, and compacted bentonite. Two different underground formations are considered; granite and neogene sedimentary rock, which are typically found in Japan. We first determined the repository configuration, particularly the space between disposal pitts. The ORIGEN 2 was used to estimate heat generation in the waste glass reprocessed at 4 years after removal from PWR. Then, temperature distribution was calculated by the TRUMP. The results of two or three dimensional calculation indicated that the pit interval should be kept more than 5 m in the case of granite formation at 500 m depth, according to the temperature criteria in the bentonite layer ( 90 Sr, 241 Am, 239 Pu, and 237 Np were chosen in one or two dimensional calculations. For both cases of steady release and instanteneous release, the maximum concentration in the pore water at the boundary between bentonite and surrounding rock had the following order; 237 Np> 239 Pu> 90 Sr> 241 Am. Sensitivity analysis showed that the order mainly due to the different adsorption characteristics of the nuclides in bentonite layer. (author)

  20. Geological, engineering and economic study of a portion of the Lloydminster Sparky pool, Lloydminster, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, A I; Adams, K C

    1977-05-01

    A tidal-bar model for the deposition of the Sparky Sandstone at Lloydminster is presented and is related to the geology of a portion of the Lloydminster Sparky pool. An engineering and economic evaluation to determine the feasibility of redeveloping this suspended pool is undertaken. This study indicates that installation of a water-injection scheme immediately following a short production evaluation is economically viable. Economics of a tertiary thermal scheme for the pool are presented, on the assumption that present technological problems such as production of high-viscosity emulsions and sand have been overcome. Indications are that the incentive for further research into the solution of these problems is significant. Installation of thermal recovery schemes in this pool can be expected to increase recoverable reserves by 15,000,000 bbl.

  1. Macro- and micro- geodynamic of Terebliya-Riksk geodetic man-caused polygon of Ukrainian Carpathians influenced by specificities of structure-geological and hydro-geological conditions

    Science.gov (United States)

    Kulchyzkyy, A.; Serebryannyy, Y.; Tretyak, K.; Trevogo, I.; Zadoroznnyy, V.

    2009-04-01

    Terebliya-Riksk diversion power station is located on two levels ( with difference of 180m ) of south mountainside of Ukrainian Carpathians and separate parts of this power station lie inside rock. Therefore influential parameters of it's stability are geological, tectonic and hydrogeological conditions in complex. Monitoring of intensity and nature of displacements of flow ( pressure) pipe and other objects of power station with geoditic methods indicates that fluctuations of water-level in reservoir caused bouth by natural and artificial efects are of great influence on objects mentioned. Based on geodetical high-precision observations made by LeicaTPS 1201 robotic total station short-periodic components of fundamental vibrations which result in their destructive deformation were determined. Mathematical apparatus ( which uses function of Fourie series and theory of cinematic coefficients ) for displacements determinations of pressure pipe was disigned. Complex of engineering-geological surveys gave an opportunity to define the origin of macro- and micro- geodynamics movements of Terebliya-Riksk diversion power station region. Engineering-geological conditions which influence on power station structure most of all were determined as following : small foldings and cleavage areas appearances, also fluctuations of level of underground water (refered to hydrogeological conditions). Periodic micro-displacemets appearances ( which operate on reducing-stretching scheme) fixed on power station structure are turned to be in direct relation on to what exend reservoir is filled up. Permanent macro- displacements appearances ( which operates in north-west direction ) fixed on pressure pipe are the result sum of residual micro-displacements caused by return periodic movements and are determined by structure-geological, engineering-geological and tectonic conditions.

  2. Geological and geophysical investigations in the selection and characterization of the disposal site for high-level nuclear waste in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Paulamaki, S.; Paananen, M.; Kuivamaki, A. [Geological Survey of Finland, Espoo (Finland); Wikstrom, L. [Posiva Oy, Olkiluoto (Finland)], e-mail: seppo.paulamaki@gtk.fi

    2011-07-01

    Two power companies, Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy, are preparing for the final disposal of spent nuclear fuel deep in the Finnish bedrock. In the initial phase of the site selection process in the late 1970s and early 1980s, the Geological Survey of Finland (GTK) examined the general bedrock factors that would have to be taken into account in connection with final disposal with reference to the international guidelines adapted to Finnish conditions. On the basis of extensive basic research data, it was concluded that it is possible to find a potential disposal site that fulfils the geological safety criteria. In the subsequent site selection survey covering the whole of Finland, carried out by GTK in 1983-1985, 101 potential investigation areas were discovered. Eventually, five areas were selected by TVO for preliminary site investigations: Romuvaara and Veitsivaara in the Archaean basement complex, Kivetty and Syyry in the Proterozoic granitoid area, and Olkiluoto (TVO's NPP site) in the Proterozoic migmatite area. The preliminary site investigations at the selected sites in 1987-1992 comprised deep drillings together with geological, geophysical, hydrogeological and hydrogeochemical investigations. A conceptual geological bedrock model was constructed for each site, including lithology, fracturing, fracture zones and hydrogeological conditions. On the basis of preliminary site investigations, TVO selected Romuvaara, Kivetty and Olkiluoto for detailed site investigations to be carried out during 1993-2000. After the feasibility studies, the island of Haestholmen, where Fortum's Loviisa nuclear power plant is located, was added to the list of potential disposal sites. In the detailed site investigations, additional data on bedrock were gathered, the previous conceptual geological, hydrogeological and hydrogeochemical models were complemented, the rock mechanical properties of the bedrock were examined, and the constructability

  3. Geological and geophysical investigations in the selection and characterization of the disposal site for high-level nuclear waste in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Paulamaki, S; Paananen, M; Kuivamaki, A [Geological Survey of Finland, Espoo (Finland); Wikstrom, L. [Posiva Oy, Olkiluoto (Finland)], e-mail: seppo.paulamaki@gtk.fi

    2011-07-01

    Two power companies, Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy, are preparing for the final disposal of spent nuclear fuel deep in the Finnish bedrock. In the initial phase of the site selection process in the late 1970s and early 1980s, the Geological Survey of Finland (GTK) examined the general bedrock factors that would have to be taken into account in connection with final disposal with reference to the international guidelines adapted to Finnish conditions. On the basis of extensive basic research data, it was concluded that it is possible to find a potential disposal site that fulfils the geological safety criteria. In the subsequent site selection survey covering the whole of Finland, carried out by GTK in 1983-1985, 101 potential investigation areas were discovered. Eventually, five areas were selected by TVO for preliminary site investigations: Romuvaara and Veitsivaara in the Archaean basement complex, Kivetty and Syyry in the Proterozoic granitoid area, and Olkiluoto (TVO's NPP site) in the Proterozoic migmatite area. The preliminary site investigations at the selected sites in 1987-1992 comprised deep drillings together with geological, geophysical, hydrogeological and hydrogeochemical investigations. A conceptual geological bedrock model was constructed for each site, including lithology, fracturing, fracture zones and hydrogeological conditions. On the basis of preliminary site investigations, TVO selected Romuvaara, Kivetty and Olkiluoto for detailed site investigations to be carried out during 1993-2000. After the feasibility studies, the island of Haestholmen, where Fortum's Loviisa nuclear power plant is located, was added to the list of potential disposal sites. In the detailed site investigations, additional data on bedrock were gathered, the previous conceptual geological, hydrogeological and hydrogeochemical models were complemented, the rock mechanical properties of the bedrock were examined, and the constructability and the

  4. Investigation of the relationship between ground and engineering ...

    Indian Academy of Sciences (India)

    In order to investigate possible ground motion amplification in earthquake resistant building design, relationship between the ground and engineering bedrock must be ensured. In order to provide this relation, structure, basic characteristics, and thickness of the ground are investigated. In this context, calculating ground ...

  5. Proposals of geological sites for L/ILW and HLW repositories. Geological background. Text volume

    International Nuclear Information System (INIS)

    2008-01-01

    On April 2008, the Swiss Federal Council approved the conceptual part of the Sectoral Plan for Deep Geological Repositories. The Plan sets out the details of the site selection procedure for geological repositories for low- and intermediate-level waste (L/ILW) and high-level waste (HLW). It specifies that selection of geological siting regions and sites for repositories in Switzerland will be conducted in three stages, the first one (the subject of this report) being the definition of geological siting regions within which the repository projects will be elaborated in more detail in the later stages of the Sectoral Plan. The geoscientific background is based on the one hand on an evaluation of the geological investigations previously carried out by Nagra on deep geological disposal of HLW and L/ILW in Switzerland (investigation programmes in the crystalline basement and Opalinus Clay in Northern Switzerland, investigations of L/ILW sites in the Alps, research in rock laboratories in crystalline rock and clay); on the other hand, new geoscientific studies have also been carried out in connection with the site selection process. Formulation of the siting proposals is conducted in five steps: A) In a first step, the waste inventory is allocated to the L/ILW and HLW repositories; B) The second step involves defining the barrier and safety concepts for the two repositories. With a view to evaluating the geological siting possibilities, quantitative and qualitative guidelines and requirements on the geology are derived on the basis of these concepts. These relate to the time period to be considered, the space requirements for the repository, the properties of the host rock (depth, thickness, lateral extent, hydraulic conductivity), long-term stability, reliability of geological findings and engineering suitability; C) In the third step, the large-scale geological-tectonic situation is assessed and large-scale areas that remain under consideration are defined. For the L

  6. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  7. Deep geological disposal of radioactive waste - An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland)

    2015-07-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted.

  8. Deep geological disposal of radioactive waste - An international perspective

    International Nuclear Information System (INIS)

    Gautschi, A.

    2015-01-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted

  9. EXPERIMENTAL INVESTIGATION OF AN AIR CHARGED LOW POWERED STIRLING ENGINE

    Directory of Open Access Journals (Sweden)

    Can ÇINAR

    2004-01-01

    Full Text Available In this study, an air charged, low powered manufactured ? type Stirling engine was investigated experimentally. Tests were conducted at 800, 900 and 1000 °C hot source temperatures, 1, 1.5, 2, 2.5, 3, 3.5 bars air charge pressure. The variation of engine power depending on the charge pressure and hot source temperature for two different heat transfer area was investigated experimentally. Maximum output power was obtained at 1000 °C and 3 bars charge pressure as 58 W at 441 rpm. Engine speed was reached at 846 rpm without load.

  10. Microbial investigations of deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, V.; Sergeant, C.; Vesvres, M.H.; Joulian, C.; Coulon, S.; Le Marrec, C.; Garrido, F.

    2010-01-01

    Document available in extended abstract form only. Deep sedimentary rocks are now considered to contain a significant part of the total bacterial population, but are microbiologically unexplored. The drilling down to the base of the Triassic (1980 meters deep) in the geological formations of the eastern Paris Basin performed by ANDRA (EST433) in 2008 provides us a good opportunity to explore the deep biosphere. We conditioned and sub-sampled on the coring site, in as aseptic conditions as possible, the nine cores: two in the Callovo-Oxfordian clay, two in the Dogger, five in the Triassic compartments. In addition to storage at atmospheric pressure, a portion of the five Triassic samples was placed in a 190 bars pressurized bars chamber to investigate the influence of the conservation pressure factor on the found microflora. In parallel, in order to evaluate a potential bacterial contamination of the core by the drilling fluids, samples of mud just before each sample drilling were taken and analysed. The microbial exploration we started can be divided in two parts: - A cultural approach in different culture media for six metabolic groups to try to find microbial cells still viable. This type of experiment is difficult because of the small proportion of cultivable species, especially in these extreme environmental samples. - A molecular approach by direct extraction of genomic DNA from the geological samples to explore a larger biodiversity. Here, the limits are the difficulties to extract DNA from these low biomass containing rocks. The five Triassic samples were partly crushed in powder and inoculated in the six culture media with four NaCl concentrations, because this type of rock is known as saline or hyper-saline, and incubated at three temperatures: 30 deg. C, 55 deg. C under agitation and 70 deg. C. First results will be presented. The direct extraction of DNA needs a complete method optimisation to adapt existent procedures (using commercial kit and classical

  11. Sorption of radionuclides on geological samples from the Bradwell, Elstow, Fulbeck and Killingholme site investigations

    International Nuclear Information System (INIS)

    Berry, J.A.; Coates, H.A.; Green, A.; Littleboy, A.K.

    1988-06-01

    The sorption of chloride, caesium, calcium, nickel and americium on geological samples collected during the site investigations at Bradwell, Elstow, Fulbeck and Killingholme has been studied. Through-diffusion and batch sorption techniques were used and experiments were designed to give a direct comparison between the sorptive behaviour of material from each site. (author)

  12. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    Science.gov (United States)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion

  13. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  14. Analysis of the processes defining radionuclide migration from deep geological repositories in porous medium

    International Nuclear Information System (INIS)

    Brazauskaite, A.; Poskas, P.

    2004-01-01

    Due to the danger of exposure arising from long-lived radionuclides to humans and environment, spent nuclear fuel (SNF) and high level waste (HLW) are not allowed to be disposed of in near surface repositories. There exists an international consensus that such high level and long-lived radioactive wastes are best disposed of in geological repositories using a system of engineered and natural barriers. At present, the geological repository of SNF and HLW has not been realized yet in any country but there is a lot of experience in the assessment of radionuclide migration from deep repositories, investigations of different processes related to the safety of a disposal system. The aim of this study was to analyze the processes related to the radionuclide migration from deep geological repositories in porous medium such as SNF matrix dissolution, release mechanism of radionuclides from SNF matrix, radionuclide solubility, sorption, diffusive, advective transport of radionuclides from the canister and through the engineered and natural barriers. It has been indicated that SNF matrix dissolution, radionuclide solubility and sorption are sensitive to ambient conditions prevailing in the repository. The approaches that could be used for modeling the radionuclide migration from deep repositories in porous medium are also presented. (author)

  15. Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Ajin C. Sajeevan

    2013-01-01

    Full Text Available Cerium oxide being a rare earth metal with dual valance state existence has exceptional catalytic activity due to its oxygen buffering capability, especially in the nanosized form. Hence when used as an additive in the diesel fuel it leads to simultaneous reduction and oxidation of nitrogen dioxide and hydrocarbon emissions, respectively, from diesel engine. The present work investigates the effect of cerium oxide nanoparticles on performance and emissions of diesel engine. Cerium oxide nanoparticles were synthesized by chemical method and techniques such as TEM, EDS, and XRD have been used for the characterization. Cerium oxide was mixed in diesel by means of standard ultrasonic shaker to obtain stable suspension, in a two-step process. The influence of nanoparticles on various physicochemical properties of diesel fuel has also been investigated through extensive experimentation by means of ASTM standard testing methods. Load test was done in the diesel engine to investigate the effect of nanoparticles on the efficiency and the emissions from the engine. Comparisons of fuel properties with and without additives are also presented.

  16. Investigational research on eco-smart engines; Eco-smart engine no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper investigated the trend of research on eco-smart engines into which optimization function of engine performance, high environmental-adaptability, etc. are integrated. The investigation was made in Japan and abroad on technologies of combustion, structure/material, control, design/analysis, systematization, etc. In case of Japan, specifications were established for three types of engines, subsonic, supersonic and hypersonic aircraft, and the research subjects to fulfil the specifications were extracted. In case of the U.S. and Europe, the survey was made of combustion, materials, noise, design concept, control, etc. Important subjects are selected in priority order. Namely, for the enhancement of efficiency, the following were taken up: three-dimensional fiber-reinforced large-size light-weight structure application technology, heat-resistant advanced-material structure damage-tolerant design technology, pseudo-vesicular structure transpiration cooling technology, etc. For the reduction of NOx emission, the paper took up technologies of environmentally optimization combustion, AI combustion control, and non-cooling combustor liner application. For the noise reduction, technologies of new inclination hole orientation noise absorbing structure material application, super noise control, and innovative CFD utilization low noise aerodynamics. Moreover, the results of fiscal 1997 were outlined to indicate the research in the next fiscal year. 14 figs., 10 tabs.

  17. The Mizunami underground research laboratory in Japan - programme for study of the deep geological environment

    International Nuclear Information System (INIS)

    Sakuma, Hideki; Sugihara, Kozo; Koide, Kaoru; Mikake, Shinichiro

    1998-01-01

    This paper is an overview of the PNC's Mizunami Underground Research Laboratory project in Mizunami City, central Japan. The Mizunami Underground Research Laboratory now will succeed the Kamaishi Mine as the main facility for the geoscientific study of the crystalline environment. The site will never be considered as a site for a repository. The surface-based investigations, planned to continue for some 5 years commenced in the autumn 1997. The construction of the facility to the depth of 1000 m is currently planned to: Develop comprehensive investigation techniques for geological environment; Acquire data on the deep geological environment and to; Develop a range of engineering techniques for deep underground application. Besides PNC research, the facility will also be used to promote deeper understanding of earthquakes, to perform experiments under micro-gravity conditions etc. The geology of the site is shortly as follows: The sedimentary overburden some 20 - 100 m in thickness is of age 2 - 20 million years. The basement granite is approx. 70 million years. A reverse fault is crosscutting the site. The identified fault offers interesting possibilities for important research. Part of the work during the surface-based investigations, is to drill and test deep boreholes to a planned depth up to 2000 m. Based on the investigations, predictions will be made what geological environment will be encountered during the Construction Phase. Also the effect of construction will be predicted. Methodology for evaluation of predictions will be established

  18. Geological evolution of clay sediments: the petroleum exploration vision

    International Nuclear Information System (INIS)

    Schneider, F.

    2004-01-01

    The radioactive waste isolation capacity assessment for a clay sediment host rock is link: (1) to the understanding of their present state properties and 3-D repartition (from basin evolution, including sedimentary and diagenetic process); and (2) to the prediction of their future evolution during the next million years. For petroleum exploration, basin modelling aims at reconstructing the accumulation of hydrocarbons at basin scale, and at geological timescale, taking into account the effects of kinematics displacements, sedimentation, erosion, compaction, temperatures history, overpressures and fluids flows (water and hydrocarbons). Furthermore, explorationists wish to address overpressure reconstruction in order to estimate the risks of drilling. Clay sediments are of interest for petroleum exploration because source rocks and seal are generally composed of them. Nevertheless, in spite of their occurrence in nature their evolution at geological timescale is not well understood. And, most of the knowledge has been achieved by those working in the realms of soils mechanics and civil engineering until the present geological investigations for long term radioactive waste repositories. Application of this knowledge to clay sediment is considered to be valid within the first hundreds of meters at the top of the sedimentary pile, according to a repository depth. This paper is dedicated to the sedimentary rocks behaviour at geological timescale. This behaviour is characterised by: (1) the deposition of the sediment; (2) the loading path at geological timescale; (3) the constitutive law which includes the consolidation process and the rupture criteria; and (4) the parameters evolution related to consolidation. (author)

  19. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    International Nuclear Information System (INIS)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives

  20. Description of geological data in SKBs database GEOTAB

    International Nuclear Information System (INIS)

    Stark, T.

    1988-01-01

    Measurements for the characterization of geological, geophysical, hydrogeological and hydrochemical condition have been performed since 1977 in specific site investigation as well as for geoscientific projects. The database comprises four main groups of data volumes. These are: geological data, geophysical data, hydrogeological data, and hydrochemical data. In the database, background information from the investigations and results are stored on-line on the VAX 750, while raw data are either stored on-line or on magnetic tapes. This report deals with geological data and describes the dataflow from the measurements at the sites to the result tables in the database. All of the geological investigations were carried out by the Swedish Geological Survey, and since July 1982 by Swedish Geological Co, SGAB. The geological investigations have been divided into three categories, and each category is stored separately in the database. The are: surface factures, core mapping, and chemical analyses. At SGU/SGAB the geological data were stored on-line on-line on a PRIME 750 mini computer, on microcomputer floppy disks or in filed paper protocols. During 1987 the data files were transferred from SGAB to datafiles on the VAX computer. In the report the data flow of each of the three geological information categories are described separately. (L.E.)

  1. Industry and Academic Consortium for Computer Based Subsurface Geology Laboratory

    Science.gov (United States)

    Brown, A. L.; Nunn, J. A.; Sears, S. O.

    2008-12-01

    Twenty two licenses for Petrel Software acquired through a grant from Schlumberger are being used to redesign the laboratory portion of Subsurface Geology at Louisiana State University. The course redesign is a cooperative effort between LSU's Geology and Geophysics and Petroleum Engineering Departments and Schlumberger's Technical Training Division. In spring 2008, two laboratory sections were taught with 22 students in each section. The class contained geology majors, petroleum engineering majors, and geology graduate students. Limited enrollments and 3 hour labs make it possible to incorporate hands-on visualization, animation, manipulation of data and images, and access to geological data available online. 24/7 access to the laboratory and step by step instructions for Petrel exercises strongly promoted peer instruction and individual learning. Goals of the course redesign include: enhancing visualization of earth materials; strengthening student's ability to acquire, manage, and interpret multifaceted geological information; fostering critical thinking, the scientific method; improving student communication skills; providing cross training between geologists and engineers and increasing the quantity, quality, and diversity of students pursuing Earth Science and Petroleum Engineering careers. IT resources available in the laboratory provide students with sophisticated visualization tools, allowing them to switch between 2-D and 3-D reconstructions more seamlessly, and enabling them to manipulate larger integrated data-sets, thus permitting more time for critical thinking and hypothesis testing. IT resources also enable faculty and students to simultaneously work with the software to visually interrogate a 3D data set and immediately test hypothesis formulated in class. Preliminary evaluation of class results indicate that students found MS-Windows based Petrel easy to learn. By the end of the semester, students were able to not only map horizons and faults

  2. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  3. Presumption of the distribution of the geological structure based on the geological survey and the topographic data in and around the Horonobe area

    International Nuclear Information System (INIS)

    Sakai, Toshihiro; Matsuoka, Toshiyuki

    2015-06-01

    The Horonobe Underground Research Laboratory (URL) Project, a comprehensive research project investigating the deep underground environment in sedimentary rock, is being pursued by the Japan Atomic Energy Agency (JAEA) at Horonobe-cho in Northern Hokkaido, Japan. One of the main goals of the URL project is to establish techniques for investigation, analysis and assessment of the deep geological environment. JAEA constructed the geologic map and the database of geological mapping in Horonobe-cho in 2005 based on the existing literatures and 1/200,000 geologic maps published by Geological Survey of Japan, and then updated the geologic map in 2007 based on the results of various investigations which were conducted around the URL as the surface based investigation phase of the URL project. On the other hand, there are many geological survey data which are derived from natural resources (petroleum, natural gas and coal, etc.) exploration in and around Horonobe-cho. In this report, we update the geologic map and the database of the geological mapping based on these geological survey and topographical analysis data in and around the Horonobe area, and construct a digital geologic map and a digital database of geological mapping as GIS. These data can be expected to improve the precision of modeling and analyzing of geological environment including its long-term evaluation. The digital data is attached on CD-ROM. (J.P.N.)

  4. Research on geological disposal

    International Nuclear Information System (INIS)

    Uchida, Masahiro

    2011-01-01

    The aims of this research are to develop criteria for reviewing acceptability of the adequacy of the result of Preliminary and Detailed Investigations submitted by the implementor, and to establish a basic policy to secure safety for safety review. In FY 2010, 13 geology/climate related events for development of acceptance criteria for reviewing the adequacy of the result of Preliminary and Detailed Investigations were extracted. And the accuracy of geophysical exploration methods necessary for the Preliminary Investigation was evaluated. Regarding the research for safety review, we developed an idea of safety concept of Japanese geological disposal, and analyzed basic safety functions to secure safety. In order to verify the groundwater flow evaluation methods developed in regulatory research, the hydrological and geochemical data at Horonobe, northern Hokkaido were obtained, and simulated result of regional groundwater flow were compared with measured data. And we developed the safety scenario of geology/climate related events categorized by geological and geomorphological properties. Also we created a system to check the quality of research results in Japan and other countries in order to utilize for safety regulation, and developed a database system to compile them. (author)

  5. Verification study on technology for preliminary investigation for HLW geological disposal. Part 2. Verification of surface geophysical prospecting through establishing site descriptive models

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Goto, Keiichiro; Yoshimura, Kimitaka; Muramoto, Shigenori

    2012-01-01

    The Yokosuka demonstration and validation project using Yokosuka CRIEPI site has been conducted since FY 2006 as a cooperative research between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project are to examine and to refine the basic methodology of the investigation and assessment of properties of geological environment in the stage of Preliminary Investigation for HLW geological disposal. Within Preliminary Investigation technologies, surface geophysical prospecting is an important means of obtaining information from deep geological environment for planning borehole surveys. In FY 2010, both seismic prospecting (seismic reflection and vertical seismic profiling methods) for obtaining information about geological structure and electromagnetic prospecting (magneto-telluric and time domain electromagnetic methods) for obtaining information about resistivity structure reflecting the distribution of salt water/fresh water boundary to a depth of over several hundred meters were conducted in the Yokosuka CRIEPI site. Through these surveys, the contribution of geophysical prospecting methods in the surface survey stage to improving the reliability of site descriptive models was confirmed. (author)

  6. Geological studies in Alaska by the U.S. Geological Survey, 1999

    Science.gov (United States)

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    The collection of nine papers that follow continue the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. The series presents new and sometimes preliminary findings that are of interest to earth scientists in academia, government, and industry; to land and resource managers; and to the general public. Reports presented in Geologic Studies in Alaska cover a broad spectrum of topics from various parts of the State (fig. 1), serving to emphasize the diversity of USGS efforts to meet the Nation's needs for earth-science information in Alaska.

  7. Discussion of quantitative assessment index system of suitability of the site for geological disposal repository of high-level radioactive waste

    International Nuclear Information System (INIS)

    Su Rui; Wang Ju

    2014-01-01

    Site selection and suitability assessment of site are one of important tasks of research and development of geological disposal engineering for high-level radioactive waste (HLW). Quantitative assessment of suitability of the site is based on the scientific, reasonable and operational index system. The discussion of index screening of quantitative assessment of suitability of the site is conducted. Principle of index screening is presented and index systems are established for different stages of site selection, including planning stage of site selection, region or area investigation stage, site characterization and site confirmation stage. But the considerations are taken of the complexity of site selection of geological disposal engineering for HLW and itself development of quantitative assessment method, so improvement of the index systems presented above is needed in the further. (authors)

  8. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2004-02-25

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on

  9. Geology at Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper

  10. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Attachment 2, Geology report

    International Nuclear Information System (INIS)

    1991-12-01

    Detailed investigations of geologic, geomorphic, and seismic conditions at the Bodo Canyon disposal site were conducted. The purpose of these investigations was basic site characterization and identification of potential geologic hazards that could affect long-term site stability. Subsequent engineering studies, such as analyses of hydrologic and liquefaction hazards, used the data developed in these studies. The geomorphic analysis was employed in the design of effective erosion protection. Studies of the regional and local seismotectonic setting, which included a detailed search for possible capable faults within a 65 kilometer radius of the site, provided the basis for seismic design parameters. The scope of work performed included the following: Compilation and analysis of previous published and unpublished geologic literature and maps; Review of historical and instrumental earthquake data; Review of site-specific subsurface geologic data, including lithologic and geophysical logs of exploratory boreholes advanced in the site area; Photogeologic interpretations of existing conventional aerial photographs; and, Ground reconnaissance and mapping of the site region

  11. Plans for characterization of the potential geologic repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dobson, D.C.; Blanchard, M.B.; Voegele, M.D.; Younker, J.L.

    1990-01-01

    Site investigations in the vicinity of the potential repository site at Yucca Mountain, Nevada, have occurred for many years. Although information from previous site investigations was adequate to support preliminary evaluations by the US Department of Energy (DOE) in the Environmental Assessment and to develop conceptual repository and waste package designs, this information is insufficient to proceed to the advanced designs and performance assessments required for the license application to the US Nuclear Regulatory Commission (NRC). Therefore, intensive site characterization is planned, as described in the December 1988 Site Characterization Plan (SCP). The data acquisition activities described in the SCP are focused on obtaining information to allow evaluations of the natural and engineered barriers considered potentially relevant to repository performance. The site data base must be adequate to allow predictions of the range of expected variation in geologic conditions over the next 10,000 years, as well as predictions of the probabilities for catastrophic geologic events that could affect repository performance. 4 refs., 4 figs

  12. Constantly operating geoinformation system for geoenvironment as a tool for pre-project investigations in city infrastructure development (on the example of moscow

    Directory of Open Access Journals (Sweden)

    Belyaev Valeriy L’vovich

    2016-02-01

    Full Text Available The concept of a geoinformation system for urban geoenvironment is concerned. Geological data is necessary for the sustainable development of city infrastructure. The municipal departments should use geological and environmental information for perspective planning, selecting the location for important infrastructure objects, solving ecologycal problems, and in decision making. The concept includes a preliminary list of system’s users, their informational needs, main functionalities, methodical approaches to the system design and development. Geological data must contain source documents from geological archives “as is” and geodata based on its interpretation for various tasks. These data must be checked carefully and updated with new engineering-geological investigations. Geoinformation system must integrate various geological, engineering-geological, hydrogeological, and environmental data. Sophisticated procedures must be provided to check complicated logical dependences in the system database and to analyze contradictions between source documents. 3D modeling is an adequate language for presenting geological data, therefore, the considered system must include 3D models of various scales. In the suggested concept 3D modeling is considered as a tool for investigations, not only for presentations. The end users should have possibilities to get results of their queries in various formats: tables, geological and thematic maps, geological cross-sections, 2D and 3D grids as source data for mathematical modeling, etc. In conclusion, the paper briefly describes IEG RAS activities in GIS technologies for geological cartography and 3D modeling.

  13. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lowman, Idaho: Attachment 2, Geology report

    International Nuclear Information System (INIS)

    1991-09-01

    Detailed investigations of geologic, geomorphic, and seismic conditions at the Lowman site in central Idaho were conducted by the Technical Assistance Contractor. The purpose of these investigations was basic site characterization and the identification of potential geologic hazards that could affect long-term site stability. Subsequent engineering studies (e.g., analyses of the hydrologic regime and liquefaction potential) use this data . The geomorphic analysis is employed in the design of effective erosion protection. Studies of the regional and local seismotectonic setting, which included a detailed search for possible capable faults within a 65-km (40-mile) radius of the site, provided the basis for estimating seismic design parameters

  14. Grand Bank seabed and shallow subsurface geology in relation to subsea engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, G.V.; King, E.L. [Natural Resources Canada, Dartmouth, NS (Canada). Geological Survey of Canada

    2005-07-01

    An overview of the surficial and subseabed geology of the northeastern section of the Newfoundland Grand Banks was presented with particular reference to the Jeanne d'Arc Basin. The stratigraphy of the upper 100 metres below seafloor has been interpreted from high-resolution seismic reflection data, surficial sediment samples and geotechnical borehole data. This paper described the character and strength properties of nearby seabed sediments and addressed the issue of seabed scour by icebergs, which is the main process threatening subsea facilities. Other potential geohazards such as shallow gas, buried channels and sediment mobility are not considered to be major barriers to offshore development in the Jeanne d'Arc Basin. However, drifting icebergs with large drafts often impact the seabed, producing either linear furrows or circular pits. The constraints to subsea design and construction were identified. It was noted that regional geological characterization is needed to help select the location for offshore platforms as well as routes for excavating trenches for subsea installations for offshore hydrocarbon development. Updated regional surficial and near-seabed stratigraphy is needed to predict foundation conditions beyond ground truth from isolated geotechnical borehole investigations. This paper described the Grand Banks regional setting, regional geology, near-surface sediment in the northeastern Grand Banks, and Quaternary sediments in the northeastern Grand Banks with reference to the Grand Banks Drift, Adolphus Sand, and the Grand Banks Sand and Gravel Formation. Risk assessments have shown that well heads and manifolds should be installed below the seabed in order to avoid damage by seabed-scouring icebergs and that the design scour depth should be re-examined for future subsea development. It was suggested that more emphasis on gathering multibeam bathymetric data and repetitive mapping of the seabed will better define scour risk. 57 refs., 3

  15. Global Journal of Engineering Research

    African Journals Online (AJOL)

    The Global Journal of Engineering Research is aimed at promoting research in all areas of Engineering Research including Mechanical, Civil, Electrical, Chemical, Electronics, Geological etc. Visit the Global Journal Series website here: http://www.globaljournalseries.com/ ...

  16. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  17. Experimental and numerical investigation of sprays in two stroke diesel Engines

    DEFF Research Database (Denmark)

    Dam, Bjarke Skovgård

    2007-01-01

    . The latter is the subject of this dissertation. The theory and experimental findings on diesel sprays are investigated, including e.g. spray parameters and droplet break up. It is found that no complete theory is yet present and large challenges lie ahead. Generally, there is fairly good consensus on which......The control of the injected spray is important when optimizing performance and reducing emissions from diesel engines. The research community has conducted extensive research especially on smaller four stroke engines, but so far only little has been done on sprays in large two stroke engines...... have different scales and other designs than those used in the literature, so extending results from the literature will require experiments on this particular type of setup. Numerical investigations of diesel sprays are performed using the Eulerian/Lagrangian engine CFD code Kiva. In agreement...

  18. Geologic aspects of seismic hazards assessment at the Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Smith, R.P.; Hackett, W.R.; Rodgers, D.W.

    1989-01-01

    The Idaho National Engineering Laboratory (INEL), located on the northwestern side of the Eastern Snake River Plain (ESRP), lies in an area influenced by two distinct geologic provinces. The ESRP province is a northeast-trending zone of late Tertiary and Quaternary volcanism which transects the northwest-trending, block-fault mountain ranges of the Basin and Range province. An understanding of the interaction of these two provinces is important for realistic geologic hazards assessment. Of particular importance for seismic hazards analysis is the relationship of volcanic rift zones on the ESRP to basin-and-range faults north of the plain. The Arco Rift Zone, a 20-km-long belt of deformation and volcanism on the plain just west of the INEL, is colinear with the basin-and-range Lost River fault. Recent field studies have demonstrated that Arco Rift Zone deformation is typical of that induced by dike injection in other volcanic rift zones. The deformation is characterized by a predominance of dilational fissuring with less extensive development of faults and grabens. Cumulative vertical displacements over the past 0.6 Ma are an order of magnitude lower than those associated with the Arco Segment of the Lost River fault to the northwest. The evidence suggests that the northeast-directed extension that produces the block fault mountains of the Basin and Range is expressed by dike injection and volcanic rift zone development in the ESRP. Seismicity associated with dike injection during rift zone development is typically of low magnitude and would represent only minor hazard compared to that associated with the block faulting. Since the ESRP responds to extension in a manner distinct from basin-and-range faulting, it is not appropriate to consider the volcanic rift zones as extensions of basin-and-range faults for seismic hazard analysis

  19. Reversibility and retrievability in geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-01-01

    Reversibility of decisions is an important consideration in the step-wise decision-making process that is foreseen for engineered geologic disposal of radioactive waste. The implications of favouring retrievability of the waste within disposal strategies and the methods to implement it are also being considered by NEA Member countries. This report reviews the concepts of reversibility and retrievability as they may apply to the planning and development of engineered geologic repositories. The concepts span technical, policy and ethical issues, and it is important that a broad understanding is developed of their value and implications. Furthermore, improved comprehension and communication of these issues will clarify the value of flexible, step-wise decision making in repository development programmes and may help to generate a climate conducive to the further progress of such programmes. (author)

  20. Investigation of Water-spray Cooling of Turbine Blades in a Turbojet Engine

    Science.gov (United States)

    Freche, John C; Stelpflug, William J

    1953-01-01

    An analytical and experimental investigation was made with a J33-A-9 engine to determine the effectiveness of spray cooling as a means of increasing thrust by permitting engine operation at inlet-gas temperatures and speeds above rated. With the assumption of adequate spray cooling at a coolant-to-gas flow ratio of 3 percent, calculations for the sea-level static condition indicated a thrust may be achieved by engine operation at an inlet-gas temperature of 2000 degrees F and an overspeed of 10 percent. Of the water-injection configurations investigated experimentally, those located in the inner ring of the stator diaphragm provided the best cooling at rated engine speed.

  1. Bathymetric terrain model of the Atlantic margin for marine geological investigations

    Science.gov (United States)

    Andrews, Brian D.; Chaytor, Jason D.; ten Brink, Uri S.; Brothers, Daniel S.; Gardner, James V.; Lobecker, Elizabeth A.; Calder, Brian R.

    2016-01-01

    A bathymetric terrain model of the Atlantic margin covering almost 725,000 square kilometers of seafloor from the New England Seamounts in the north to the Blake Basin in the south is compiled from existing multibeam bathymetric data for marine geological investigations. Although other terrain models of the same area are extant, they are produced from either satellite-derived bathymetry at coarse resolution (ETOPO1), or use older bathymetric data collected by using a combination of single beam and multibeam sonars (Coastal Relief Model). The new multibeam data used to produce this terrain model have been edited by using hydrographic data processing software to maximize the quality, usability, and cartographic presentation of the combined 100-meter resolution grid. The final grid provides the largest high-resolution, seamless terrain model of the Atlantic margin..

  2. Quaternary Geologic Map of the Lake of the Woods 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Sado, Edward V.; Fullerton, David S.; Goebel, Joseph E.; Ringrose, Susan M.; Edited and Integrated by Fullerton, David S.

    1995-01-01

    The Quaternary Geologic Map of the Lake of the Woods 4 deg x 6 deg Quadrangle, United States and Canada, was mapped as part of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420, NM-15). The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the Minnesota Geological Survey, the Manitoba Department of Energy and Mines, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and

  3. Suggestions to authors of the reports of the United States Geological Survey

    Science.gov (United States)

    ,

    1958-01-01

    Knowledge acquired by the Geological Survey through programs of research and investigations has no value to the public if it remains in office files or in the minds of the scientists and engineers who did the work. The full discharge of the Survey's responsibilities is attained only by making its acquired knowledge available promptly and effectively to all people who will find it of interest and use. And, to insure effectiveness, reports must be not only accurate but so clearly and simply written that they are easy to read and understand.

  4. The Taavinunnanen gabbro massif. A compilation of results from geological, geophysical and hydrogeological investigations

    International Nuclear Information System (INIS)

    Gentzschein, B.; Tullborg, E.L.

    1985-01-01

    The gabbro massif at Taavinunnanen, northern Sweden, is one of the study sites which has been investigated by the Swedish Nuclear Fuel and Waste Management Co (SKB) in order to study different geological environments within the scope of the long-range program for final disposal of spent nuclear fuel. A 700 metres long borehole was drilled within the gabbro. Regional geophysics, geological mapping, petrographical studies, mineralogical studies of rock-forming materials and of fracture fillings as well as hydrogeological tests were carried out. The gabbro shows primary differentiation. Thus, the composition varies from gabbroic to ultrabasic. The gabbro body is intersected by severeal granite dikes. These dikes exhibit a higher hydraulic conductivity and a higher fracture frequency than the gabbro. Comparison of hydraulic conductivity and fracture frequency in the gabbro itself indicates a high degree of sealing of the fractures mainly caused by smectites. Calcite is almost lacking down to a depth of 75 metres, indicating a relatively rapid transport of surface waters down to this depth. With 27 refs. (author)

  5. Deep geological disposal research in Argentina

    International Nuclear Information System (INIS)

    Ninci Martinez, Carlos A.; Ferreyra, Raul E.; Vullien, Alicia R.; Elena, Oscar; Lopez, Luis E.; Maloberti, Alejandro; Nievas, Humberto O.; Reyes, Nancy C.; Zarco, Juan J.; Bevilacqua, Arturo M.; Maset, Elvira R.; Jolivet, Luis A.

    2001-01-01

    Argentina shall require a deep geological repository for the final disposal of radioactive wastes, mainly high-level waste (HLW) and spent nuclear fuel produced at two nuclear power plants and two research reactors. In the period 1980-1990 the first part of feasibility studies and a basic engineering project for a radioactive high level waste repository were performed. From the geological point of view it was based on the study of granitic rocks. The area of Sierra del Medio, Province of Chubut, was selected to carry out detailed geological, geophysical and hydrogeological studies. Nevertheless, by the end of the eighties the project was socially rejected and CNEA decided to stop it at the beginning of the nineties. That decision was strongly linked with the little attention paid to social communication issues. Government authorities were under a strong pressure from social groups which demanded the interruption of the project, due to lack of information and the fear it generated. The lesson learned was: social communication activities shall be carried out very carefully in order to advance in the final disposal of HLW at deep geological repositories (author)

  6. Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data

    Science.gov (United States)

    Knepper, D. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most of the geologic information in ERTS-1 imagery can be extracted from bulk processed black and white transparencies by a skilled interpreter using standard photogeologic techniques. In central and western Colorado, the detectability of lithologic contacts on ERTS-1 imagery is closely related to the time of year the imagery was acquired. Geologic structures are the most readily extractable type of geologic information contained in ERTS images. Major tectonic features and associated minor structures can be rapidly mapped, allowing the geologic setting of a large region to be quickly accessed. Trends of geologic structures in younger sedimentary appear to strongly parallel linear trends in older metamorphic and igneous basement terrain. Linears and color anomalies mapped from ERTS imagery are closely related to loci of known mineralization in the Colorado mineral belt.

  7. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs

  8. Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2005-01-01

    More than 2000 hours of gas engine operation with producer gas from biomass as fuel has been conducted on the gasification CHP demonstration and research plant, named “Viking” at the Technical University of Denmark. The gas engine is an integrated part of the entire gasification plant. The excess...... operates with varying excess of air due to variation in gas composition and thus stoichiometry, and a second where the excess of air in the exhaust gas is fixed and the flow rate of produced gas from the gasifier is varying. The interaction between the gas engine and the gasification system has been...... investigated. The engine and the plant are equipped with continuously data acquisition that monitors the operation including the composition of the producer gas and the flow. Producer gas properties and contaminations have been investigated. No detectable tar or particle content was observed...

  9. Geologic drivers of late ordovician faunal change in laurentia: investigating links between tectonics, speciation, and biotic invasions.

    Directory of Open Access Journals (Sweden)

    David F Wright

    Full Text Available Geologic process, including tectonics and global climate change, profoundly impact the evolution of life because they have the propensity to facilitate episodes of biogeographic differentiation and influence patterns of speciation. We investigate causal links between a dramatic faunal turnover and two dominant geologic processes operating within Laurentia during the Late Ordovician: the Taconian Orogeny and GICE related global cooling. We utilize a novel approach for elucidating the relationship between biotic and geologic changes using a time-stratigraphic, species-level evolutionary framework for articulated brachiopods from North America. Phylogenetic biogeographic analyses indicate a fundamental shift in speciation mode-from a vicariance to dispersal dominated macroevolutionary regime-across the boundary between the Sandbian to Katian Stages. This boundary also corresponds to the onset of renewed intensification of tectonic activity and mountain building, the development of an upwelling zone that introduced cool, nutrient-rich waters into the epieric seas of eastern Laurentia, and the GICE isotopic excursion. The synchronicity of these dramatic geologic, oceanographic, and macroevolutionary changes supports the influence of geologic events on biological evolution. Together, the renewed tectonic activity and oceanographic changes facilitated fundamental changes in habitat structure in eastern North America that reduced opportunities for isolation and vicariance. They also facilitated regional biotic dispersal of taxa that led to the subsequent establishment of extrabasinal (=invasive species and may have led to a suppression of speciation within Laurentian faunas. Phylogenetic biogeographic analysis further indicates that the Richmondian Invasion was a multidirectional regional invasion event that involved taxa immigrating into the Cincinnati region from basins located near the continental margins and within the continental interior.

  10. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Attachment 2, Geology report. Revised final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    Detailed investigations of geologic, geomorphic, and seismic conditions at the Bodo Canyon disposal site were conducted. The purpose of these investigations was basic site characterization and identification of potential geologic hazards that could affect long-term site stability. Subsequent engineering studies, such as analyses of hydrologic and liquefaction hazards, used the data developed in these studies. The geomorphic analysis was employed in the design of effective erosion protection. Studies of the regional and local seismotectonic setting, which included a detailed search for possible capable faults within a 65 kilometer radius of the site, provided the basis for seismic design parameters. The scope of work performed included the following: Compilation and analysis of previous published and unpublished geologic literature and maps; Review of historical and instrumental earthquake data; Review of site-specific subsurface geologic data, including lithologic and geophysical logs of exploratory boreholes advanced in the site area; Photogeologic interpretations of existing conventional aerial photographs; and, Ground reconnaissance and mapping of the site region.

  11. Information collection and analysis of geological characterization and evaluation technology and application to geological characterization study

    International Nuclear Information System (INIS)

    Kawamura, Hideki; Noda, Masaru; Nishikawa, Naohito; Sato, Shoko; Tanaka, Tatsuya

    2003-03-01

    Tono Geoscience Center (TGC) of Japan Nuclear Cycle Development Institute has been conducting the Regional Groundwater Investigation and Mizunami Underground Laboratory (MIU) Project in order to develop investigation technologies and evaluation methods of geological environment. At present, towards the next progress reporting on research and development for geological disposal of HLW in Japan, based on the existing research and development results, the projects which are conducted by TGC are required for promoting smoothly and efficiently with regard to the current Japanese HLW program. According to such situation, for planning of the geological environment investigation and research at TGC and the next progress reporting, this study has investigated and summarizes overseas environmental impact assessments for final disposal, overseas site characterization and site selection, and overseas research plan of underground research laboratories. Based on the results of investigation, some technologies which have possibility to be applied to the MIU Project have been studied. Also overseas quality assurance programs have been investigated, and examples of the application of their concepts to MIU project have been considered. (author)

  12. Experimental investigations of LPG use at the automotive diesel engine

    Directory of Open Access Journals (Sweden)

    Nutu Cristian

    2017-01-01

    Full Text Available The liquefied petroleum gas has a great potential to improve energetically and pollution performance of compression ignition engines due to its good combustion properties. This paper presents results of the researches carried on a car compression ignition engine with a 1.5 dm3 displacement, fuelled with diesel fuel and liquefied petroleum gas by diesel-gas method at the operating regimens of 70% and 55% engine load, engine speed of 2000 rpm and for substitute ratios between (6–19%. A specific objective of this paper is to establish a correlation between the optimum adjustments and the substitute ratio of the diesel fuel with liquefied petroleum gas for the investigated regimens to limit the maximum pressure and smoke level, knock and rough engine functioning and having regard to decrease the fuel consumption and the level of the pollutant emissions.

  13. Investigating impact of motor oil quality on vehicles engine induced noise level

    Directory of Open Access Journals (Sweden)

    I. Arefian

    2015-09-01

    Full Text Available Introduction: Vehicle engine id one of the main sources of noise which its level is influenced by various parameters. The aim of this study was to investigate the impact of motor oils quality before and after oil change on the variability of vehicle engine induced noise level. In this study it is tried to follow-up the efficacy of motor oil quality on engines sound level. Material and Method: First, engine noise of 94 vehicles were recorded for 30 seconds before and after oil change and all the vehicles technical information including mileage, type of motor oil, and type of vehicle were registered. Following, the recorded noises were calibrated in semi-anechoic chamber and the sound pressure levels were measured with A and C-weighting network and main octav bands, using a sound level meters. The obtained results analyzed using SPSS software version 17. Results: The effects of motor oil quality on different noise levels of engines were determined and a significant reduction in noise level of vehicles engine was observed. Investigation of the relationship between mileage and motor oil quality on various engines sound level manifested that vehicles with mileage ranged 100000-150000 miles had significant reduction in their sound pressure levels in comparison with other vehicles. Conclusion: The results revealed that engine oil is among factors reducing the vehicle engine induced noise level. Moreover, the engine oil type and the vehicle mileage are key variables which determine the impact of engine oil quality on reduction of the sound level of vehicles engine.

  14. Regional Geology Web Map Application Development: Javascript v2.0

    International Nuclear Information System (INIS)

    Russell, Glenn

    2017-01-01

    This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to the SFSWT program.

  15. Regional Geology Web Map Application Development: Javascript v2.0

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Glenn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-19

    This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to the SFSWT program.

  16. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1988-10-01

    This report provides a summary of progress for the project ''Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)'' for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987.) Quaternary Tectonics, Geochemical, Mineral Deposits, Vulcanic Geology, Seismology, Tectonics, Neotectonics, Remote Sensing, Geotechnical Assessments, Geotechnical Rock Mass Assessments, Basinal Studies, and Strong Ground Motion

  17. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1995-01-01

    This report provides a summary of progress for the project open-quotes Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).close quotes A similar report was previously provided for the period of 1 October 1993 to 30 September 1994. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks which are listed below. Task 1: Quaternary Tectonics Task 3: Mineral Deposits, Volcanic Geology Task 4: Seismology Task 5: Tectonics Task 8: Basinal Studies

  18. Vision and framework for technical and management support to facilitate foreign spent fuel storage and geologic disposal in Russia

    International Nuclear Information System (INIS)

    Halsey, W.G.; Jardine, L.J.; Smith, C.F.

    1999-01-01

    This 'Technical and Management Support' program would facilitate the transfer of spent fuel from commercial power plants in Taiwan to a storage and geologic repository site near Krasnoyarsk, Russia. This program resolves issues of disposition of Taiwan spent fuel (including US origin fuel) and provides revenue for Russia to develop an integrated spent fuel storage and radioactive waste management system including a geologic repository. LLNL has ongoing contracts and collaborations with all the principal parties and is uniquely positioned to facilitate the development of such a program. A three-phase approach over 20 years is proposed: namely, an initial feasibility investigation followed by an engineering development phase, and then implementation

  19. New safety concept for geological disposal in Japan - -16339

    International Nuclear Information System (INIS)

    Kitayama, Kazumi

    2009-01-01

    This paper describes a new safety concept for the Japanese geological disposal program, which is a development of the conventional multi-barrier system concept. The Japanese government established the 'Nuclear Waste Management Organization of Japan' (NUMO) as an implementation body in 2000 based on the 'Final disposal act' following the publication of the 'H-12 Report', which confirmed the scientific and engineering feasibility of HLW geological disposal in Japan. Since then, NUMO has undertaken further technical developments aimed at achieving safe and efficient implementation of final disposal. The safety concept developed in the 'H-12 Report' provides sufficient safety on the basis of site-generic considerations. However, it is considered to be over-conservative and therefore does not represent the most probable performance of the engineered or natural barriers. Recently, concrete measures have been proposed requiring the safety case to be presented in terms of a realistic assessment of the most probable performance. This approach takes into account the safety functions of both engineered and natural barriers as well as the long-term static geochemical equilibrium. In particular, the evolution of the safety performance of engineered and natural barriers can be efficiently augmented by the realistic long-term geochemical equilibrium. (author)

  20. Systems engineering management plan

    International Nuclear Information System (INIS)

    Conner, C.W.

    1985-10-01

    The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe the systems engineering procedures to be implemented at the Program level and the minimum requirements for systems engineering at the Program-element level. The Program level corresponds to the Director, OCRWM, or to the organizations within OCRWM to which the Director delegates responsibility for the development of the System and for coordinating and integrating the activities at the Program-element level. The Office of Policy and Outreach (OPO) and the Office of Resource Management (ORM) support the Director at the Program level. The Program-element level corresponds to the organizations within OCRWM (i.e., the Office of Geologic Repositories (OGR) and the Office of Storage and Transportation Systems (OSTS)) with overall responsibility for developing the System elements - that is, the mined geologic disposal system (MGDS), monitored retrievable storage (MRS) (if approved by Congress), and the transportation system

  1. Civil engineering challenge with nuclear waste

    International Nuclear Information System (INIS)

    Day, D.

    1985-01-01

    The civil engineer can help to solve the problems in disposing of nuclear waste in a deep geologic formation. The site for a nuclear waste repository must be carefully selected so that the geology provides the natural barrier between the waste and the accessible environment specified by the NRC and the EPA. This engineer is familiar with the needed structure and conditions of the host and surrounding rocks, and also the hydraulic mechanisms for limiting the migration of water in the rocks. To dispose of the nuclear waste underground requires stable and long-lasting shafts and tunnels such as civil engineers have designed and constructed for many other uses. The planning, design and construction of the ground surface facilities for a nuclear waste repository involves civil engineering in many ways. The transporation of heavy, metal shielded casks requires special attention to the system of highways and railroads accessing the repository. Structures for handling the shipping casks and transferring the waste onsite and into the deep geologic formation need special considerations. The structures must provide the NRC required containment, including hot cells for remote handling. Therefore, structural design strives for buildings, ventilation structures, shaft headframes, etc., to be earthquake and tornado-proof. These important design bases and considerations for the civil engineer working on a nuclear waste repository are discussed in this paper

  2. Reversibility and retrievability in geologic disposal of radioactive waste. A new Nea report

    International Nuclear Information System (INIS)

    Brown, P.A.; Pascatore, C.; Sumerling, T.

    2001-01-01

    Radioactive waste needs to be managed responsibly to ensure public safety and the protection of the environment, as well as security from unauthorized interference, now and in the future. One of the most challenging tasks is the management of long-lived radioactive waste that must be isolated from the human environment for many thousands, or even hundreds of thousands, of years. There is a consensus among the engaged technical community that engineered geologic disposal provides a safe and ethical method for the long term management of such waste. This method is also cited in the national policies of several countries as either a promising or appropriate method for dealing with long-lived radioactive waste. Engineered geologic disposal means emplacement of waste in repositories constructed deep underground in suitable geologic media. Thus the waste is contained, and safety assured by passive barriers with multiple safety functions, so that there is no need for any further actions by future generations. Primary principles of the engineered geologic disposal concept are that waste will only be emplaced in a repository when there is high confidence in the ultimate long-term safety, and that the long-term safety must not rely on actions following the closure of the repository. This does not mean, however, that actions cannot be taken. Most repository development programmes include the possibility of post-closure activities for security and monitoring purposes. (authors)

  3. Clays in natural and engineered barriers for radioactive waste confinement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Andra organised an International Symposium on the use of Natural and Engineered Clay-based Barriers for the Containment of Radioactive Waste hold at the Congress Centre of Tours, France, in March 2005. The symposium provided an opportunity to take stock of the potential properties of the clay-based materials present in engineered or natural barriers in order to meet the containment specifications of a deep geological repository for radioactive waste. It was intended for specialists working in the various disciplines involved with clays and clay based minerals, as well as scientists from agencies and organisations dealing with investigations on the disposal of high-level and long-lived radioactive waste. The themes of the Symposium included geology, geochemistry, transfers of materials, alteration processes, geomechanics, as well as the recent developments regarding the characterisation of clays, as well as experiments in surface and underground laboratories. The symposium consisted of plenary sessions, parallel specialized sessions and poster sessions. (author)

  4. Nurture of human resources for geological repository program

    International Nuclear Information System (INIS)

    Fujiwara, A.

    2004-01-01

    The Japanese geological repository program entered the implementing stage in 2002. At the implementing stage of the program, different sectors need various human resources to conduct their functions. This paper discusses a suitable framework of nurture of the human resources to progress the geological repository program. The discussion is based on considering of specific characters involved in the program and of the multidisciplinary knowledge related to geological disposal. Considering the specific characters of the project, two types of the human resources need to be nurtured. First type is the core persons with the highest knowledge on geological disposal. They are expected to communicate with the various stakeholders and pass down the whole knowledge of the project to the next generation. Another is to conduct the project as the managers, the engineers and the workers. The former human resources can be developed through the broad practice and experience in each sector. The latter human resources can be effectively developed by training of the fundamental knowledge on geological disposal at training centers as well as by conventional on-the-job training. The sectors involved in the program need to take their own roles in the nurture of these human resources. (author)

  5. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 1. Geological environment of Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 1 of the progress report, describes first in detail the role of geological environment in high-level radioactive wastes disposal, the features of Japanese geological environment, and programs to proceed the investigation in geological environment. The following chapter summarizes scientific basis for possible existence of stable geological environment, stable for a long period needed for the HLW disposal in Japan including such natural phenomena as volcano and faults. The results of the investigation of the characteristics of bed-rocks and groundwater are presented. These are important for multiple barrier system construction of deep geological disposal. The report furthermore describes the present status of technical and methodological progress in investigating geological environment and finally on the results of natural analog study in Tono uranium deposits area. (Ohno, S.)

  6. The Aespoe Hard Rock Laboratory: Final evaluation of the hydrogeochemical pre-investigations in relation to existing geologic and hydraulic conditions

    International Nuclear Information System (INIS)

    Smellie, J.; Laaksoharju, M.

    1992-11-01

    The Swedish Nuclear Fuel and Management Company (SKB) is currently excavating the access tunnel to an underground experimental laboratory, the Aespoe Hard Rock Laboratory, planned to be located some 500 m below the island of Aespoe which is located in the Simpevarp area, southeast Sweden. The construction of an underground laboratory forms part of the overall SKB strategy to test, not only the construction techniques for deep excavation, but also the various methods and protocols required to obtain a three-dimensional model of the geology and groundwater flow and chemistry, within a fractured crystalline bedrock similar to that envisaged for the final disposal of spent fuel. Aespoe was chosen because it geologically represents a variety of typical crystalline bedrock environments. The hydrogeochemical activities described and interpreted in this report form part of the initial pre-investigation phase (from the surface to around 1000 metres depth) aimed at siting the laboratory, describing the natural hydrogeological and hydrogeochemical conditions in the bedrock and predicting the changes that will occur during excavation and construction of the laboratory. Hydrogeochemical interpretation has therefore been closely integrated with the hydrogeological investigations and other disciplines of major influence, in particular, bedrock geology and geochemistry and fracture mineralogy and chemistry. A large section of this report has been devoted to the detailed investigation of each individual zone hydraulically selected, tested and sampled for hydrogeochemical characterization. The data have been used to describe the chemistry and origin of the Aespoe groundwaters, models have been developed to illustrate groundwater mixing and standard geochemical modelling approaches have been employed to understand rock/water interaction processes. An attempt has been made to integrate the hydrogeochemical information with known geological and hydrogeological parameters to construct a

  7. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    to the Canary Islands and Japan. The Great Britain Sasakawa Foundation, provided additional funding to support the recent visit to Japan, which enabled visits to Mount Fuji as well as investigating structural geology in Kobe and Tokyo. "The opportunity to visit Japan really broadened my understanding of geology and sharing that experience with fellow students helped me to reinforce my knowledge of the subject." Jack, geology student, Age 18.

  8. ELECTRICAL TECHNIQUES FOR ENGINEERING APPLICATIONS.

    Science.gov (United States)

    Bisdorf, Robert J.

    1985-01-01

    Surface electrical geophysical methods have been used in such engineering applications as locating and delineating shallow gravel deposits, depth to bedrock, faults, clay zones, and other geological phenomena. Other engineering applications include determining water quality, tracing ground water contaminant plumes and locating dam seepages. Various methods and electrode arrays are employed to solve particular geological problems. The sensitivity of a particular method or electrode array depends upon the physics on which the method is based, the array geometry, the electrical contrast between the target and host materials, and the depth to the target. Each of the available electrical methods has its own particular advantages and applications which the paper discusses.

  9. Geological investigations for the South African nuclear waste repository facility

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Levin, M.; Andersen, N.J.B.; Brynard, H.J.; Toens, P.D.

    1984-02-01

    The selection of the Vaalputs site on the arid Bushmanland Plateau in the northwestern Cape of the Republic of South Africa for the disposal of low-level radioactive waste was based on a national screening phase program involving socio-economic and geological criteria. Regional geohydrological studies over an area of 27,000 km 2 and a detailed study over 1,300 km 2 indicated that in general the groundwater is saline and that Vaalputs and environs was the most favourable area. The groundwater table lies between 30 and 45 m below the surface, with 14 C ages between 2,500 and 9,000 years old in the immediate vicinity. The geology of Vaalputs consists of Proterozoic granites, gneisses, metasediments, and noritoids of the 1,050 Ma Namaqualand Metamorphic Complex. Upper cretaceous kimberlitic and basaltic intrusions occur locally. Overlying these basement rocks surficial upper Tertiary to Recent argillaceous sediments occur in the Vaalputs basin. The sediments consist of aeolian sand, calcrete, fluvial sandy to gritty clay, white kaolinised clay and very weathered basement rocks. It is in these rocks that the low-level waste trenches will be located. Extensive airborne geophysical surveys, such as aeromagnetics, INPUT, and infrared thermal line scanning, were undertaken to assist in the evaluation of the regional and local subsurface geology. Ground geophysical surveys included refraction seismics, electromagnetics, magnetics, borehole radiometrics and resistivity. Geohydrological modelling of the unsaturated and saturated zones is in progress

  10. Study on the development of geological environmental model

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Ueta, Shinzo; Saito, Shigeyuki; Kawamura, Yuji; Tomiyama, Shingo; Ohashi, Toyo

    2002-03-01

    The safety performance assessment was carried out in potential geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process form the data production to analysis in the three fields, and to systemize the knowledge base that unifies the information flow hierarchically. The purpose of the research is to support the development of the unified analysis system for geological disposal. The development technology for geological environmental model studied for the second progress report by JNC are organized and examined for the purpose of developing database system with considering the suitability for the deep underground research facility. The geological environmental investigation technology and building methodology for geological structure and hydro geological structure models are organized and systemized. Furthermore, the quality assurance methods in building geological environment models are examined. Information which is used and stored in the unified analysis system are examined to design database structure of the system based on the organized methodology for building geological environmental model. The graphic processing function for data stored in the unified database are examined. furthermore, future research subjects for the development of detail models for geological disposal are surveyed to organize safety performance system. (author)

  11. NATO Advanced Research Workshop on Chemical Instabilities : Applications in Chemistry, Engineering, Geology, and Materials Science

    CERN Document Server

    Baras, F

    1984-01-01

    On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex­ xon Corporation. The present Volume includes most of the material of the in­ vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num­ ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and...

  12. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    International Nuclear Information System (INIS)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository

  13. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository.

  14. Evolution of waste-package design at the potential U.S. geologic repository

    International Nuclear Information System (INIS)

    Benton, H.; Harkins, B.

    2000-01-01

    This paper describes the evolution of the waste-package design at the potential geologic repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. Because the potential repository is the first of its kind, the design of its components must be flexible and capable of evolving in response to continuing scientific study, development efforts, and changes to performance criteria. The team of scientists and engineers at the Yucca Mountain Project has utilized a systematic, scientific approach to design the potential geologic nuclear-waste repository. As a result of continuing development efforts, the design has incorporated a growing base of scientific and engineering information to ensure that regulatory and performance requirements are met. (authors)

  15. A proposed descriptive methodology for environmental geologic (envirogeologic) site characterization

    International Nuclear Information System (INIS)

    Schwarz, D.L.; Snyder, W.S.

    1994-01-01

    We propose a descriptive methodology for use in environmental geologic (envirogeologic) site characterization. The method uses traditional sedimentologic descriptions augmented by environmental data needs, and facies analysis. Most other environmental methodologies for soil and sediment characterization use soil engineering and engineering geology techniques that classify by texture and engineering properties. This technique is inadequate for envirogeologic characterization of sediments. In part, this inadequacy is due to differences in the grain-size between the Unified soil Classification and the Udden-Wentworth scales. Use of the soil grain-size classification could easily cause confusion when attempting to relate descriptions based on this classification to our basic understanding of sedimentary depositional systems. The proposed envirogeologic method uses descriptive parameters to characterize a sediment sample, suggests specific tests on samples for adequate characterization, and provides a guidelines for subsurface facies analysis, based on data retrieved from shallow boreholes, that will allow better predictive models to be developed. This methodology should allow for both a more complete site assessment, and provide sufficient data for selection of the appropriate remediation technology, including bioremediation. 50 refs

  16. Geologic and engineering dimensions of nuclear waste storage

    International Nuclear Information System (INIS)

    Hoskins, E.R.; Russell, J.E.

    1983-01-01

    Nuclear waste characteristics, existing and projected quantities of radioactive materials that need to be stored, various disposal or storage strategies or alternatives, geologic media under consideration, and repository construction techniques and problems are discussed. The best alternative at this time is containment in mined caverns, deep underground. There are still uncertainties in site selection criteria, in the design of underground openings, and in the prediction of both cultural and natural hazards and their effects on the repository over a 1000-year or longer time frame. It is possible to minimize the negative effects by careful site selection, although this involves more than just technical issues

  17. Working program for deep borehole investigations. HDB-6,7,8, borehole

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Takahashi, Kazuharu; Ishii, Eiichi; Takeuchi, Ryuji; Sasaki, Manabu; Kunimaru, Takanori; Eki, Nobuhiro; Matsui, Hiroya

    2003-08-01

    In the Horonobe Underground Research Laboratory project, a wide range of geoscientific research and development activities are planned to be performed in three phases, Surface-based Investigations (Phase I), Construction (Phase II) and Operations (Phase III), over period of 20 years. Surface-based investigations have been conducted since 2000. Main goals of the Horonobe project are; To establish comprehensive techniques for investigating the geological environment, and To develop a range of engineering techniques for deep underground applications. The specific goals of the surface-based investigations are, To construct geological models of the geological environment based on the surface-based investigations and develop an understanding of the deep geological environment (undisturbed, initial conditions) before excavation of the shaft and experimental drifts To formulate detailed design and plans for the construction of the shaft and experimental drifts, and To plan scientific investigations during the construction phase. Field investigations during the surface-based investigations phase are planned for completion by the end of 2005, with excavation of the main shaft, Phase 2 construction, planned to start in 2005. The diameter of the main shafts has provisionally been set at 6.5 meters and the proposed depth is 500 meters. Details of the geometry and depth of specific underground facilities, including the main shaft, the ventilation shaft and the drifts, will be defined using data on the geological environment obtained during the surface-based investigation phase. As part of the surface-based investigations, geological, geophysical, hydrogeological, hydrochemical and rock mechanical investigations were carried out. Deep borehole investigations started in 2000 in order to characterize the sedimentary rocks. Taking into account the status of the investigations as of April 2003 and the remaining time (i.e., three year) for the surface-based investigations, an

  18. Investigations and research in Nevada by the Water Resources Division, U.S. Geological Survey, 1982

    Science.gov (United States)

    Katzer, Terry; Moosburner, Otto; Nichols, W.D.

    1984-01-01

    The Water Resources Division, U.S. Geological Survey, is charged with (1) maintaining a hydrologic network in Nevada that provides information on the status of the State 's water resources and (2) engaging in technical water-resources investigations that have a high degree of transferability. To meet these broad objectives, 26 projects were active during fiscal year 1982, in cooperation with 36 Federal, State, and local agencies. Total funds were $3,319,455, of which State and local cooperative funding amounted to $741,500 and Federal funding (comprised of Geological Survey Federal and cooperative program plus funds from six other Federal agencies) amounted to $2,577,955 for the fiscal year. Projects other than continuing programs for collection of hydrologic data included the following topics of study: geothermal resources, areal ground-water resources and ground-water modeling, waste disposal , paleohydrology, acid mine drainage, the unsaturated zone, stream and reservoir sedimentation, river-quality modeling, flood hazards, and remote sensing in hydrology. In total, 26 reports and symposium abstracts were published or in press during fiscal year 1982. (USGS)

  19. Geological And Geotechnical Investigations Of Axum Dam Site Tigray Northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Leulalem

    2015-08-01

    Full Text Available Geological and geotechnical study was conducted in concrete gravity dam which is planned to be constructed in the Maychew River 40 km south of Axum town for the purpose of water supply for the town. The objectives of this research were to map geology of the area to characterize geological defects within and around dam site to evaluate the water tightness of the dam site and to determine the bearing capacity of the dam foundation. The research involved review of different literatures lithological and structural mapping characterizing rock masses by using different rock mass classification methods interpretation of subsurface data geophysical core drilled data test pit data etc.. Results of the study indicate that the area is underlain by Quaternary sediments metasedimentary and metavolcanic rocks. The Quaternary sediments are characterized by low permeability low plasticity and are poorly graded nature. Metasedimentary rocks are found covering the right abutment of the dam whereas at reservoir area it is found intercalating with metavolcanic rocks. These rocks are moderately jointed and sheared with faulting and folding noticed due to these they have a relatively high permeability. Metavolcanic rocks which are found covering the left abutment are strong less permeable and fractured. Most of discontinuities such as fractures bedding and foliation in the study area are oriented E-W NNW-SSE and NNE-SSW. The VES tomography and drilled core result revealed that the potential problems seepageleakage could occur due to presence of faults joints karstified black limestone lithological variations groundwater depth and topography at right abutment. Differential settlements may also occur because empirically estimated moduli of deformation Ed of rock masses indicate that for right abutment much less than left abutment and different geological defects across the dam axis. To minimize these problems contact grouting and consolidation grouting are recommended

  20. Geological and engineering analysis of residual soil for forewarning landslide from highland area in northern Thailand

    Science.gov (United States)

    Thongkhao, Thanakrit; Phantuwongraj, Sumet; Choowong, Montri; Thitimakorn, Thanop; Charusiri, Punya

    2015-11-01

    One devastating landslide event in northern Thailand occurred in 2006 at Ban Nong Pla village, Chiang Klang highland of Nan province after, a massive amount of residual soil moved from upstream to downstream, via creek tributaries, into a main stream after five days of unusual heavy rainfall. In this paper, the geological and engineering properties of residual soil derived fromsedimentary rocks were analyzed and integrated. Geological mapping, electrical resistivity survey and test pits were carried out along three transect lines together with systematic collection of undisturbed and disturbed residual soil samples. As a result, the average moisture content in soil is 24.83% with average specific gravity of 2.68,whereas the liquid limit is 44.93%, plastic limit is 29.35% and plastic index is 15.58%. The cohesion of soil ranges between 0.096- 1.196 ksc and the angle of internal friction is between 11.51 and 35.78 degrees. This suggests that the toughness properties of soil change when moisture content increases. Results from electrical resistivity survey reveal that soil thicknesses above the bedrock along three transects range from 2 to 9 m. The soil shear strength reach the rate of high decreases in the range of 72 to 95.6% for residual soil from shale, siltstone and sandstone, respectively. Strength of soil decreaseswhen the moisture content in soil increases. Shear strength also decreases when the moisture content changes. Therefore, the natural soil slope in the study area will be stable when the moisture content in soil level is equal to one, but when the moisture content between soil particle increases, strength of soil will decrease resulting in soil strength decreasing.

  1. Geological setting of the Olkiluoto investigation site, Eurajoki, SW Finland. Excursion guidebook

    International Nuclear Information System (INIS)

    Paulamaeki, S.

    2009-08-01

    Olkiluoto is an island of ca. 10 km 2 in area on the coast of the Botnian Bay and separated from the mainland by a narrow strait. The Olkiluoto nuclear power plant, with two reactors in operation and a third one under construction, and the underground repository for low and intermediate waste are located in the western part of the island. The repository for spent fuel will be constructed in the central part of the island at a depth of between 400 and 600 m. The suitability of Olkiluoto as a location for a spent fuel repository has been investigated over a period of 20 years by means of extensive ground- and air-based methods and shallow and deep drillings. In a regional context, Olkiluoto is located within a bedrock area, covering approximately 800 million years of geological history of the Precambrian Fennoscandian Shield. The oldest part of the bedrock consists of supracrustal, metasedimentary and metavolcanic rocks deformed and metamorphosed during the Palaeoproterozoic Svecofennian orogeny ca. 1900-1800 million years ago. They are mostly migmatised, high-grade metamorphic mica gneisses, containing cordierite, sillimanite or garnet porphyroblasts. Plutonic rocks consisting of trondhjemites, tonalites, granodiorites, coarse-grained granites and pegmatites intrude the supracrustal rocks. The Mesoproterozoic anorogenic Laitila rapakivi batholith, dated at 1583 ±3 Ma, is located in the central part of the region. The Eurajoki rapakivi stock, located 5 km east of Olkiluoto, is a satellite massif to the Laitila batholiths. After the rapakivi magmatism the geological evolution of the area continued with the deposition of the Satakunta sandstone. The upper parts of the sandstone were deposited ca. 1400-1300 Ma ago, but the development of the sedimentation basin (graben) may have begun already during the rifting period, ca. 1650 Ma ago, associated with the intrusion of the rapakivi magma. The sandstone and older rocks are cut by olivine diabase dykes and sills 1270

  2. Current status of geoscientific studies being conducted by Japan Nuclear Cycle Development Institute in regard to geological disposal of high-level radioactive waste. Pt. 2. Horonobe Underground Research Center

    International Nuclear Information System (INIS)

    Eki, Nobuhiro; Yamazaki, Shinichi

    2004-01-01

    Japan Nuclear Cycle Development Institute (JNC) has been conducting two Underground Research Laboratory (URL) Projects. 'The Long-term Program for Research, Development and Utilization of Atomic Energy (Atomic Energy Commission, 2000)' states their technical and social importance for the Japan's program for the Geological Disposal (GD) of HLW and shows an expectation of earlier execution of the projects. One of the URL projects is Neogene argillaceous sedimentary formation hosted Horonobe URL Project. The aims of the Horonobe URL project are; Presenting concrete geological environment as an example of sedimentary formation, Confirming reliability of technologies for geological disposal of High-Level Radioactive Waste (HLW) by applying them to actual geological condition of sedimentary formation, Providing opportunities to experience the actual deep underground circumstance for the general public. The project is composed of six subjects; 1) development of site characterization methodology, 2) development of monitoring techniques, 3) development of engineering techniques for underground development, 4) neotectonic characterization of the area, 5) development of engineering techniques for designing, construction and operation of a repository, 6) development of safety assessment methodology. The project consists of three phases: investigations form the surface (Phase 1), investigations during construction of the underground facility (Phase 2) and researches using the facility (Phase 3). The total duration is about 20 years. From 2000, surface-based site investigations are going on. In course of the investigations, a series of geophysical surveys has been employed. Along with the town-wide investigation, an area for site-scale investigation was selected, a land for facilities construction was acquired in the area and the land preparation has started in 2003. Geological information gave more detailed and concrete figure of URL, which is composed of three shafts down to

  3. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-01-01

    Roč. 15, č. 1 (2017), s. 486-493 E-ISSN 2391-5471 R&D Projects: GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:68145535 ; RVO:67985530 Keywords : deep geological repository * earthquake * seismicity * neo-deterministic analysis * probabilistic seismic hazard assessment Subject RIV: DC - Siesmology, Volcanology, Earth Structure; DC - Siesmology, Volcanology, Earth Structure (GFU-E) OBOR OECD: Environmental and geological engineering, geotechnics; Environmental and geological engineering, geotechnics (GFU-E) Impact factor: 0.745, year: 2016 https://www.degruyter.com/downloadpdf/j/phys.2017.15.issue-1/phys-2017-0055/phys-2017-0055.pdf

  4. Water resources investigations: A section in Thirty-third biennial report of the State Engineer to the governor of Utah: 1960-1962

    Science.gov (United States)

    ,

    1962-01-01

    The Geological Survey is authorized by Congress to cooperate with the States and other local governmental units in water-resources investigations on a 50-50 financial basis. Principal cooperation for Utah is through the office of the Utah State Engineer. Other State offices, such as the State Road Commission, Water and Power Board, Fish and Game Department, and Oil and Gas Conservation Commission have assisted financially. Counties, cities, education institutions, and water users’ organizations also have cooperated for many years. The need for water information applies to all levels of government. It is, therefore, advantageous for the Federal Government, State governments, and other political subdivisions to share in the expense to the extent possible consistent with their common interests and responsibilities. The formal cooperative program in Utah began in 1909, and has been continuous since that date.

  5. Investigation of optical coherence tomography as an imaging modality in tissue engineering

    International Nuclear Information System (INIS)

    Yang Ying; Dubois, Arnaud; Qin Xiangpei; Li Jian; Haj, Alicia El; Wang, Ruikang K

    2006-01-01

    Monitoring cell profiles in 3D porous scaffolds presents a major challenge in tissue engineering. In this study, we investigate optical coherence tomography (OCT) as an imaging modality to monitor non-invasively both structures and cells in engineered tissue constructs. We employ time-domain OCT to visualize macro-structural morphology, and whole-field optical coherence microscopy to delineate the morphology of cells and constructs in a developing in vitro engineered bone tissue. The results show great potential for the use of OCT in non-invasive monitoring of cellular activities in 3D developing engineered tissues

  6. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  7. The geology of Piz Pian Grand

    International Nuclear Information System (INIS)

    Huber, M.; Staeuble, J.

    1987-01-01

    Nagra has identified four potential sites for a repository for low- and intermediate-level waste. Exploration work is already underway at Oberbauenstock (UR) and Piz Pian Grand (GR). As part of the investigations in the Piz Pian Grand area, geological surface mapping was carried out between 1984 and 1987. Since the data obtained is still being evaluated, it would be premature to draw any interpretative conclusions at this stage. On the other hand, some of the most significant observations of this work can be summarised here. As a first step, the geological framework in which these investigations are to be seen should be defined. Observations will then be made on the rock content (lithology) and geometric structure (structural geology) of the area. (author) 6 figs

  8. Evaluation and analysis of geological condition of in-situ fragmentation leaching uranium

    International Nuclear Information System (INIS)

    Yang Jianming; Tan Kaixuan; Huang Xiaonai

    2003-01-01

    The ore geological condition, hydrogeological condition, engineering geological condition and technological mineralogical character of in-situ fragmentation leaching uranium are analyzed, and it is considered that the implementation of in-situ fragmentation leaching uranium technology is decided by different geological factor. Previously prospecting and geological condition evaluation of uranium ore is based on traditional mining method. If in-situ fragmentation leaching uranium method is adopted, one must re-evaluate previously prospected deposits before they are mined, or one must evaluate new prospecting deposits according to geological conditions of in-situ fragmentation leaching uranium method. The feasibility evaluation method of uranium deposit by in-situ fragmentation leaching uranium put forward by B. N. Mociniets is introducd, and it is considered that B. N. Mociniets method has guidable significance for geological condition evaluation before uranium deposits are mined. A feasibility study is done by applying B. N. Mociniets method to a uranium deposit. (authors)

  9. Exploring the "what if?" in geology through a RESTful open-source framework for cloud-based simulation and analysis

    Science.gov (United States)

    Klump, Jens; Robertson, Jess

    2016-04-01

    combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions. Faults happen in real world networks. Future work will investigate the effect of failure on dynamic sensor networks and the impact on the predictive capability of machine learning algorithms.

  10. Geologic map of Big Bend National Park, Texas

    Science.gov (United States)

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  11. Global Journal of Engineering Research: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. The Global Journal of Engineering Research is aimed at promoting research in all areas of Engineering Research including Mechanical, Civil, Electrical, Chemical, Electronics, Geological etc. Section Policies. Articles. Checked Open Submissions, Checked Indexed, Checked Peer Reviewed. Publication ...

  12. Non-Markovian Investigation of an Autonomous Quantum Heat Engine

    Science.gov (United States)

    Goyal, Ketan

    A systematic study of a quantum heat engine is presented in this thesis. In particular, we study heat conduction through a two-two level composite system, which is then connected to a photon cavity to extract work, forming an autonomous quantum heat engine. The question as to what extent quantum effects such as quantum coherence and correlations impact thermodynamic properties of such a system is addressed. The investigated heat engine has been previously studied using the popular Born-Markovian quantum master equation under weak internal coupling approximation. However, we show that the used approach is quite limited in addressing such problems as it is incapable of correctly accounting for the quantum effects. By using a non-Markovian approach involving hierarchical equations of motion, we show that quantum coherence and correlations between system and environments play a significant role in energy transfer processes of heat conduction and work.

  13. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  14. The geological thought process: A help in developing business instincts

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S.A. [Dean Witter Reynolds, New York, NY (United States)

    1995-09-01

    Since the beginning of modern-day geology it has been understood that the present is the key to the past. However, when attempting to apply current geological models one discovers that there are no exact look-alikes. Thus, the geological discipline inherently accepts modifications, omissions, and relatively large margins of error compared with engineering. Geologists are comfortable in a world of non-unique solutions. Thus the experience in working with numerous geological settings is extremely critical in selecting the most reasonable geological interpretations, often by using a composite of specific models. One can not simply replace a dynamic geologist`s life-time of experiences and geologic instinct with simply a book-smart young upstart. Petroleum corporations accept geologic risk and manage it by drilling numerous wells in various geological provenances. Oil corporations have attempted to quantify and manage risk by using Monte Carlo simulations, thus invoking a formal discipline of risk. The acceptance of risk, results in an asset allocation approach to investing. Asset allocators attempt to reduce volatility and risk, inherently understanding that in any specific time interval anything can happen. Dollar cost averaging significantly reduces market risk over time, however it requires discipline and commitment. The single most important ingredient to a successful investing plan is to assign a reasonable holding period. Historically, a majority of the investment community demands instant gratification causing unneeded anxiety and failure. As in geology nothing can replace experience.

  15. The geologic evolution of the planet Mars

    International Nuclear Information System (INIS)

    Masson, P.

    1982-01-01

    A brief summary of our knowledge on the Martian geology is presented here based on the results published by the members of Mariner 9 and Viking Orbiter Imaging Teams, the NASA Planetary Geology Principal Investigators and the scientists involved in the Mars Data Analysis Program. A special emphasis is given to the geologic evolution (volcanism and tectonism) related to our knowledge on the internal structure of the planet

  16. Comparison of 3-D geological and geophysical investigation methods in boreholes KI-KR1 at Aeaenekoski Kivetty site and RO-KR3 at Kuhmo Romuvaara site

    International Nuclear Information System (INIS)

    Labbas, K.

    1997-01-01

    The study is a part of the radioactive waste disposal investigations in Finland with the aim to compare three-dimensional geological and geophysical methods providing information on geologic fractures. Compared and described are the methods: core analysis, borehole television, dipmeter, borehole televiewer and differential flow measurements. (35 refs.)

  17. Directions of the US Geological Survey Landslide Hazards Reduction Program

    Science.gov (United States)

    Wieczorek, G.F.

    1993-01-01

    The US Geological Survey (USGS) Landslide Hazards Reduction Program includes studies of landslide process and prediction, landslide susceptibility and risk mapping, landslide recurrence and slope evolution, and research application and technology transfer. Studies of landslide processes have been recently conducted in Virginia, Utah, California, Alaska, and Hawaii, Landslide susceptibility maps provide a very important tool for landslide hazard reduction. The effects of engineering-geologic characteristics of rocks, seismic activity, short and long-term climatic change on landslide recurrence are under study. Detailed measurement of movement and deformation has begun on some active landslides. -from Author

  18. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  19. Arizona Geology Trip - February 25-28, 2008

    Science.gov (United States)

    Thomas, Gretchen A.; Ross, Amy J.

    2008-01-01

    A variety of hardware developers, crew, mission planners, and headquarters personnel traveled to Gila Bend, Arizona, in February 2008 for a CxP Lunar Surface Systems Team geology experience. Participating in this field trip were the CxP Space Suit System (EC5) leads: Thomas (PLSS) and Ross (PGS), who presented the activities and findings learned from being in the field during this KC. As for the design of a new spacesuit system, this allowed the engineers to understand the demands this type of activity will have on NASA's hardware, systems, and planning efforts. The engineers also experienced the methods and tools required for lunar surface activity.

  20. Argon in hornblende, biotite and muscovite in geologic cooling - Ar-40/Ar-39-investigations

    International Nuclear Information System (INIS)

    Rittman, K.L.

    1984-01-01

    The results of the Ar-40/Ar-39 studies are discussed under the aspect of whether the age data of the minerals indicate a cooling process. The author hopes that isotope dating of minerals with different closing temperatures will describe the temperature/time history of an area in the temperature range of 600 to 200 0 C. The findings are analyzed under three aspects: How much do they contribute to the initial methodological question, what do they contribute to the regional geology of the areas investigated, and in what respects do they extent the present knowledge of the geochronological analysis, i.e. its techniques and interpretation. (orig.) [de

  1. Geologic investigations of drill hole sloughing problems, Nevada Test Site

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.; Davies, W.J.; Gonzales, J.L.; Hawkins, W.L.

    1983-01-01

    Severe sloughing zones encountered while drilling large diameter emplacement holes in Yucca Flat, Nevada Test Site, have been identified, correlated and predicted through detailed geologic investigations. In central and southeastern Area 7 and in northern Area 3, the unstable zones are a very fine-grained, well-sorted, unconsolidated sand deposit, probably eolian in origin, which will readily flow into large diameter drill holes. Other areas exhibit hole erosion related to poor induration or extensive zeolitization of the Tertiary tuff units which are very friable and porous. By examining drill hole samples, geophysical logs, caliper logs and drilling histories, these problem zones can be characterized, correlated and then projected into nearby sites. Maps have been generated to show the depth, thickness and areal extent of these strata. In some cases, they are local and have a lenticular geometry, while in others they are quite extensive. The ability to predict such features can enhance the quality of the hole construction and completion operations to avoid costly delays and the loss of valuable testing real estate. The control of hole enlargements will also eliminate related containment concerns, such as stemming uncertainties

  2. Comparative study of geological, hydrological, and geophysical borehole investigations

    International Nuclear Information System (INIS)

    Magnusson, K.A.; Duran, O.

    1984-09-01

    The understanding of the permeability of the bedrock can be improved by supplementing the results of the water injection tests with information from core mapping, TB-inspection and borehole geophysics. The comparison between different borehole investigations encompasses core mapping, TV-inspection and various geophysical bore hole measurements. The study includes data from two different study areas, namely Kraakemaala and Finnsjoen. In these two areas, extensive geological, hydrological and geophysical investigation have been carried out. The fractures and microfractures in crystalline rock constitute the main transport paths for both groundwater and electric currents. They will therefore govern both the permeability and the resistivity of the rock. In order to get a better understanding of the influence of fractures on permeability and resistivity, a detailed comparison has been made between the hydraulic conductivity, respectively, and the character of fractures in the core and the borehole wall. The fractures show very large variations in hydraulic conductivity. Microfractures and most of the thin fractures have no measurable hydraulic conductivity (in this case -9 m s -1 ), while test sections which contain a single isloated fracture can have no measurable, to rather high hydraulic conductivities (> 10 -7 m s -1 ). Wide fracture zones often have hydraulic conductivities which vary from very low (less than 2 x 10 -9 m s -1 ) to high values (10 -5 m s -1 ). This indicates that the hydraulic conductivity is governed by a few discrete fractures. The resistivity shows a continous variation in the range 1,000- 100,000 ohm-m and a relatively poor correlation with hydraulic conductivities. The observed difference is considered to the effect of restriction of water flow on a few channels, while electric surface condition, i.e. current transport through thin water films, makes current transport possible through fractures with very small aperatures. (Author)

  3. U.S. Geological Survey programs and investigations related to soil and water conservation

    Science.gov (United States)

    Osterkamp, W.R.; Gray, J.R.

    2001-01-01

    The U.S. Geological Survey has a rich tradition of collecting hydrologic data, especially for fluxes of water and suspended sediment, that provide a foundation for studies of soil and water conservation. Applied and basic research has included investigations of the effects of land use on rangelands, croplands, and forests; hazards mapping; derivation of flood and drought frequency, and other statistics related to streamflow and reservoir storage; development and application of models of rainfall-runoff relations, chemical quality, and sediment movement; and studies of the interactive processes of overland and channel flow with vegetation. Networks of streamgaging stations and (or) sampling sites within numerous drainage basins are yielding information that extends databases and enhances the ability to use those data for interpretive studies.

  4. Advanced Stirling Radioisotope Generator Engineering Unit 2 Anomaly Investigation

    Science.gov (United States)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2018-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically heated Stirling radioisotope generator built to date. NASA Glenn Research Center completed the assembly of the ASRG EU2 in September 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's Advanced Stirling Convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's (LM's) Engineering Development Unit (EDU) 4 controller. After just 179 hr of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hr later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from Glenn, Sunpower, and LM conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  5. Natural analog study of engineered protective barriers at the Hanford Site

    International Nuclear Information System (INIS)

    Bjornstad, B.N.; Teel, S.S.

    1993-09-01

    The purpose of this study is to evaluate surficial sedimentary deposits formed in the Pasco Basin over the geologic past as analogs for engineered protective barriers. Evidence for likely changes to be expected in an engineered barrier are preserved in geologically recent deposits. Although the design life of the engineered bonier is only 1,000 years, soils and sediments of this age are uncommon in the Pasco Basin. The evidence of and probability for the following natural processes that could adversely affect the long-term stability of an engineered protective barrier reviewed in this report are deflation by wind, soil compaction, soil eluviation/illuviation, bioturbation, and cryoturbation

  6. Experimental investigations of the hydrogen addition effects on diesel engine performance

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  7. Urea-SCR Temperature Investigation for NOx Control of Diesel Engine

    Directory of Open Access Journals (Sweden)

    Asif Muhammad

    2015-01-01

    Full Text Available SCR (selective catalytic reduction system is continuously being analyzed by many researchers worldwide on various concerns due to the stringent nitrogen oxides (NOx emissions legislation for heavy-duty diesel engines. Urea-SCR includes AdBlue as urea source, which subsequently decomposes to NH3 (ammonia being the reducing agent. Reaction temperature is a key factor for the performance of urea-SCR system, as urea decomposition rate is sensitive to a specific temperature range. This particular study was directed to investigate the temperature of the SCR system in diesel engine with the objective to confirm that whether the appropriate temperature is attained for occurrence of urea based catalytic reduction or otherwise and how the system performs on the prescribed temperature range. Diesel engine fitted with urea-SCR exhaust system has been operated on European standard cycle for emission testing to monitor the temperature and corresponding nitrogen oxides (NOx values on specified points. Moreover, mathematical expressions for approximation of reaction temperature are also proposed which are derived by applying energy conservation principal and gas laws. Results of the investigation have shown that during the whole testing cycle system temperature has remained in the range where urea-SCR can take place with best optimum rate and the system performance on account of NOx reduction was exemplary as excellent NOx conversion rate is achieved. It has also been confirmed that selective catalytic reduction (SCR is the best suitable technology for automotive engine-out NOx control.

  8. Civil Engineering Optimisation Tool for the Study of CERN's Future Circular Colliders

    OpenAIRE

    Cook, Charlie; Goddard, Brennan; Lebrun, Philippe; Osborne, John; Robert, Youri; Sturzaker, C; Sykes, M; Loo, Y; Brasser, J; Trunk, R

    2015-01-01

    The feasibility of Future Circular Colliders (FCC), possible successors to the Large Hadron Collider (LHC), is currently under investigation at CERN. This paper describes how CERN’s civil engineering team are utilising an interactive tool containing a 3D geological model of the Geneva basin. This tool will be used to investigate the optimal position of the proposed 80km-100km tunnel. The benefits of using digital modelling during the feasibility stage are discussed and some early results of t...

  9. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  10. Engineering geological and hydrogeological invstigations for storage of medium and low-activity nuclear waste at Cernavoda, Romania. Soil stabilisation using the CONSOLID system; Ingenieurgeologische und hydrogeologische Untersuchungen zur Lagerung mittel- und schwachradioaktiver Abfaelle in Cernavoda Rumaenien. Baugrundstabilisierung mit dem CONSOLID-System

    Energy Technology Data Exchange (ETDEWEB)

    Giurgea, V.; Merkler, G.P.; Hoetzl, H.; Hannich, D. [Karlsruhe Univ. (T.H.) (Germany). Lehrstuhl fuer Angewandte Geologie

    1998-12-31

    In Cernavoda/Romania investigations and planning from a low and middle radioactive waste disposal site have been carried out. A multitude of hydrogeological, geological, engineering geological criteria`s and constructional security measures were examined with respect to the strict regulations for such a waste site. This studies and measures are shortly analyzed and discussed in this paper. In accordance with the selection criteria for such a hazardous waste site, several laboratory and `in situ` tests, soil-mechanic studies, numerical modeling and foundation tests for soil stabilization with the CONSOLID-System are presented. (orig.) [Deutsch] Zur Einhaltung der strengen Vorgaben, die bei einem Deponiestandort fuer mittel- und schwachradioaktive Abfaelle gestellt werden, sind in Cernavoda/Rumaenien eine Vielzahl von hydrogeologischen und ingenieurgeologischen Untersuchungen sowie bautechnischen Sicherungsmassnahmen vorgesehen, die im Rahmen dieser Publikation kurz analysiert und diskutiert werden. Im Zusammenhang mit den geologischen und hydrogeologischen Auswahlkriterien des Standortes werden eine Reihe von Labor- und `in situ` Untersuchungen, Modellrechnungen sowie Baugrundstabilisierungsmassnahmen mit dem CONSOLID-System vorgestellt. (orig.)

  11. Rock engineering applications, 1991

    International Nuclear Information System (INIS)

    Franklin, J.A.; Dusseault, M.B.

    1991-01-01

    This book demonstrates how to apply the theories and principles of rock engineering to actual engineering and construction tasks. It features insights on geology for mining and tunnelling applications. It is practical resource that focuses on the latest technological innovation and examines up-to-date procedures used by engineers for coping with complex rock conditions. The authors also discuss question related to underground space, from design approaches to underground housing and storage. And they cover the monitoring of storage caverns for liquid and gaseous products or toxic and radioactive wastes

  12. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    International Nuclear Information System (INIS)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-01-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation or neutrino oscillation by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5 percent respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock

  13. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    International Nuclear Information System (INIS)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-01-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation--or neutrino oscillation--by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5% respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock mechanical

  14. Site selection and design basis of the National Disposal Facility for LILW. Geological and engineering barriers

    International Nuclear Information System (INIS)

    Boyanov, S.

    2010-01-01

    Content of the presentation: Site selection; Characteristics of the “Radiana” site (location, geological structure, physical and mechanical properties, hydro-geological conditions); Design basis of the Disposal Facility; Migration analysis; Safety assessment approach

  15. 1st European Biomedical Engineering Conference for Young Investigators

    CERN Document Server

    2015-01-01

     This volume presents the proceedings of the first European Biomedical Engineering Conference for Young Investigators ENCY2015. It was in Budapest, from 28th to 30th May, 2015. The papers were assembled under the motto "Understanding complex living systems” and cover the topics sensors, image processing, bioinformatics, biomechanics, and modeling.

  16. Investigation into the impact of privatizing civil engineering operations in Louisiana DOTD.

    Science.gov (United States)

    2013-06-01

    The purpose of this study is to investigate the impact of privatizing all civil engineering operations in : the Louisiana Department of Transportation and Development (DOTD). It was investigated by : conducting a national and international literature...

  17. Synthetic Study on the Geological and Hydrogeological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2011-01-01

    To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area

  18. Site Investigation for Detection of KIJANG Reactor Core Center

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae-Hyun; Kim, Jun Yeon; Kim, Jeeyoung [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    It was planned for the end of March 2017 and extended to April 2018 according to the government budget adjustment. The KJRR project is intended for filling the self-sufficiency of RI demand including Mo-99, increasing the NTD capacity and developing technologies related to the research reactor. In project, site investigation is the first activity that defines seismologic and related geologic aspects of the site. Site investigation was carried out from Oct. 2012 to Jan. 2014 and this study is intended to describe detail procedures in locating the reactor core center. The location of the reactor core center was determined by collectively reviewing not only geological information but also information from architects engineering. EL 50m was selected as ground level by levering construction cost. Four recommended locations (R-1a - R-1d) are displayed for the reactor core center. R-1a was found optimal in consideration of medium rock contour, portion of medium rock covering reactor buildings, construction cost, physical protection and electrical resistivity. It is noted that engineering properties of the medium rock is TCR/RQD 100/53, elastic modulus 7,710 - 8,720MPa, permeability coefficient 2.92E-06cm/s, and S-wave velocity 1,380m/s, sound for foundations of reactor buildings.

  19. Technical development for geological disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Sugino, Hiroyuki; Kawakami, Susumu; Yamanaka, Yumiko

    1997-01-01

    Technical developments for geological disposal of high-level radioactive wastes materials research and design technique for engineered barriers (overpack and buffer material) were studied to evaluate more reliable disposal systems for high-level radioactive wastes. A lifetime prediction model for the maximum corrosion depth of carbon steel was developed. A preferable alloys evaluation method for crevice corrosion was established for titanium. Swelling pressure and water permeability of bentonite as a buffer material was measured, and coupled hydro-thermo-mechanical analysis code for bentonite was also studied. The CIP (cold isostatic pressing) method for monolithically formed buffer material was tested. A concept study on operation equipment for the disposal site was performed. Activities of microorganisms involved in underground performance were investigated. (author)

  20. Overview of the regional geology of the Paradox Basin Study Region

    International Nuclear Information System (INIS)

    1983-03-01

    The Geologic Project Manager for the Paradox Basin Salt Region (PBSR), Woodward-Clyde Consultants, has conducted geologic studies to characterize the region and evaluate selected geologic formations as potential repositories for the storage and disposal of nuclear waste. Evaluations have been made from the standpoint of engineering feasibility, safety, public health, and resource conflicts. The Regulatory Project Manager for the PBSR, Bechtel National, Inc., has performed environmental characterizations to ensure that data on ecological, socioeconomic, and other environmental factors required by the National Environmental Policy Act of 1969 are considered. This report characterizes, at a regional overview level of detail, the Paradox Basin Study Region Geology. Information sources include the published literature, field trip guidebooks, open file data of the US Geological Survey (USGC) and Utah Geologic and Mineral Survey, university theses, Geo-Ref Computer Search, and various unpublished sources of subsurface data such as well logs. Existing information has been synthesized and characterized. No field work was conducted as part of this study. Where possible, attempts were made to evaluate the data. All results of this study are subject to change as more data become available

  1. Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Simona Silvia; Tornatore, Cinzia; Machitto, Luca; Valentino, Gerardo; Corcione, Felice Esposito [Istituto Motori-CNR, Naples (Italy)

    2012-07-01

    Fuel blend of alcohol and conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline in a port fuel-injection, spark ignition engine was investigated. The experiments were realized in a single cylinder ported fuel injection SI engine with an external boosting device. The optical accessible engine was equipped with the head of commercial SI turbocharged engine with the same geometrical specifications (bore, stroke, compression ratio) as the research engine. The effect on the spark ignition combustion process of 20% and 40% of n-butanol blended in volume with pure gasoline was investigated through cycle resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Fuel injections both in closed valve and open valve conditions were considered. Comparisons between the parameters related to the flame luminosity and the pressure signals were performed. Butanol blends allowed working in more advanced spark timing without knocking occurrence. The duration of injection for Butanol blends was increased to obtain stoichiometric mixture. In open valve injection condition, the fuel deposits on intake manifold and piston surfaces decreased, allowing a reduction in fuel consumption. BU40 granted the performance levels of gasoline and in open valve injection allowed to minimize the abnormal combustion effects including the emission of ultrafine carbonaceous particles at the exhaust. In-cylinder investigations were correlated to engine out emissions. (orig.)

  2. Geological Prediction Ahead of Tunnel Face in the Limestone Formation Tunnel using Multi-Modal Geophysical Surveys

    Science.gov (United States)

    Zaki, N. F. M.; Ismail, M. A. M.; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    Tunnel construction in typical karst topography face the risk which unknown geological condition such as abundant rainwater, ground water and cavities. Construction of tunnel in karst limestone frequently lead to potentially over-break of rock formation and cause failure to affected area. Physical character of limestone which consists large cavity prone to sudden failure and become worsen due to misinterpretation of rock quality by engineer and geologists during analysis stage and improper method adopted in construction stage. Consideration for execution of laboratory and field testing in rock limestone should be well planned and arranged in tunnel construction project. Several tests including Ground Penetration Radar (GPR) and geological face mapping were studied in this research to investigate the performances of limestone rock in tunnel construction, measured in term of rock mass quality that used for risk assessment. The objective of this study is to focus on the prediction of geological condition ahead of tunnel face using short range method (GPR) and verified by geological face mapping method to determine the consistency of actual geological condition on site. Q-Value as the main indicator for rock mass classification was obtained from geological face mapping method. The scope of this study is covering for tunnelling construction along 756 meters in karst limestone area which located at Timah Tasoh Tunnel, Bukit Tebing Tinggi, Perlis. For this case study, 15% of GPR results was identified as inaccurate for rock mass classification in which certain chainage along this tunnel with 34 out of 224 data from GPR was identified as incompatible with actual face mapping.

  3. Long-term characteristics of geological conditions in Japan. Pt. 1. Fundamental concept for future's prediction of geological conditions and the subjects

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiro; Chigira, Masahiro.

    1997-01-01

    It is very important to evaluate the long-term stability of geological conditions such as volcanic activity, uplift-subsidence, earthquakes, faulting and sea level change when the long-term safety performance of HLW geological disposal is investigated. We proposed the extrapolation method using the geological date obtained in the geologic time of the last 500 ka to predict the future's tectonic movements in Japan. Furthermore, we extract geological conditions that would affect the long-term safety of HLW geological disposal with regard to direct and indirect radionuclide release scenarios. As a result, it was concluded that volcanic activity and tectonic movements including faulting and uplift-subsidence, should be considered and their surveying system and evaluating method should be developed. (author)

  4. Investigation of the cooling film distribution in liquid rocket engine

    Directory of Open Access Journals (Sweden)

    Luís Antonio Silva

    2011-05-01

    Full Text Available This study presents the results of the investigation of a cooling method widely used in the combustion chambers, which is called cooling film, and it is applied to a liquid rocket engine that uses as propellants liquid oxygen and kerosene. Starting from an engine cooling, whose film is formed through the fuel spray guns positioned on the periphery of the injection system, the film was experimentally examined, it is formed by liquid that seeped through the inner wall of the combustion chamber. The parameter used for validation and refinement of the theoretical penetration of the film was cooling, as this parameter is of paramount importance to obtain an efficient thermal protection inside the combustion chamber. Cold tests confirmed a penetrating cold enough cooling of the film for the length of the combustion chamber of the studied engine.

  5. Selected water-resources activities of the U.S. Geological Survey in New England in 2017

    Science.gov (United States)

    Weiskel, Peter K.

    2017-06-22

    The New England Water Science Center of the U.S. Geological Survey (USGS) is headquartered in Pembroke, New Hampshire, with offices in East Hartford, Connecticut; Augusta, Maine; Northborough, Massachusetts; and Montpelier, Vermont. The areas of expertise covered by the water science center’s staff of 130 include aquatic biology, chemistry, geographic information systems, geology, hydrologic sciences and engineering, and water use.

  6. Assessment of heterogeneous geological environment using geostatistical techniques

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Shiogama, Yukihiro; Atsumi, Hiroyuki; Abe, Yasunori; Furuichi, Mitsuaki

    2003-02-01

    'Geoscientific' research at Tono are developing site investigation and assessment techniques in geological environment. One of their important themes is to establish rational methodology to reduce uncertainties associated with the understanding of geological environment, which often exhibits significant heterogeneity. Purpose of this study is to identify and evaluate uncertainties associated with the understanding of geological environment. Because it is useful to guide designing effective site investigation techniques to reduce the uncertainty. For this, a methodology of the uncertainty analysis concerning the heterogeneous geological environment has been developed. In this report the methodology has also been tested through an exercise attempted in Tono area to demonstrate its applicability. This report summarizes as follows: 1) The exercise shows that the methodology considered 'variability' and 'ignorance' can demonstrate its applicability at three-dimensional case. 2) The exercise shows that the methodology can identity and evaluate uncertainties concerning ground water flow associated with performance assessment. 3) Based on sensitivity analyses, it is possible for the methodology to support designs of the following stage investigations to reduce the uncertainties efficiently. (author)

  7. 3D geological and hydrogeological modeling as design tools for the Conawapa generating station

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J.; Sharif, S.; Smith, B. [KGS Group, Winnipeg, MB (Canada); Cook, G.N.; Osiowy, B.J. [Manitoba Hydro, Winnipeg, MB (Canada)

    2008-07-01

    Following the project's suspension in the early 1990s, part of Manitoba Hydro's recommitment study involved digital modeling of geological and hydrogeological data for the foundation design and analysis of the proposed Conawapa generating station in northern Manitoba. Three-dimensional geological and hydrogeological models have been developed to consolidate and improve the designer's ability to understand all of the information, and to assist in developing engineering alternatives which will improve the overall confidence of the design. The tools are also being leveraged for use in environmental studies. This paper provided an overview of the Conawapa site and 3-dimensional modeling goals. It described the geology and hydrogeology of the Conawapa site as well as the bedrock structure and Karst development. The paper also presented the central concepts of 3-dimensional modeling studies, including the flow of information from database to modeling software platforms. The construction of the Conawapa geological model was also presented, with particular reference to an overview of the MVS software; mesh design; and model buildup logic. The construction of the Conawapa hydrogeological model was discussed in terms of the finite element code FEFLOW software; conceptual model design; and initial observations of Conawapa groundwater flow modeling. It was concluded that recent advancement and application of 3-dimensional geological visualization software to engineering and environmental projects, including at the future Conawapa site using MVS and FEFLOW, have shown that complicated geological data can be organized, displayed, and analysed in a systematic way, to improve site visualization, understanding, and data relationships. 19 refs., 9 figs.

  8. Mizunami Underground Research Laboratory project. A project on research stage of investigating prediction from ground surface. Project report at fiscal year of 2000 to 2004

    International Nuclear Information System (INIS)

    2000-04-01

    This was a detailed plan after fiscal year 2000 on the first stage of the Research stage at investigating prediction from ground surface' in three researches carried out at the Mizunami Underground Research Laboratory (MIU) according to the 'Basic plan on research of underground science at MIU', based on progress of investigation and research before fiscal year 1999. This project contains following three items as its general targets; establishment of general investigating techniques for geological environment, collection of informations on deep underground environment, and development on foundation of engineering technology at super-deep underground. And, targets at investigating prediction stage from ground surface contain acquisition of geological environment data through investigations from ground surface to predict changes of the environment accompanied with underground geological environment and construction of experimental tunnel, to determine evaluating method on prediction results, and to determine plannings of an investigating stage accompanied with excavation of the tunnel by carrying out detail design of the tunnel. Here were introduced about results and problems on the investigation of the first phase, the integration of investigating results, and the investigation and researches on geology/geological structure, hydrology and geochemistry of groundwater, mechanical properties of rocks, and the mass transfer. (G.K.)

  9. FY 1998 annual report on the survey on overseas geological structures. Project for exchanging engineers (coal mining technology area) (Vietnam); 1998 nendo kaigai chishitsu kozo nado chosaa. Gijutsusha koryu jigyo (tanko gijutsu bun'ya) (Vietnam)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The project for exchanging engineers has been implemented, in order to improve production and managemental techniques of coal mining engineers in the Asia-Pacific region, promote smooth and efficient projects for surveying overseas geological structures, and facilitate stable supply of overseas coal to Japan. The FY 1998 project was concentrated on Vietnam, to which Japanese coal mining engineers were sent, and from which production management engineers were invited to Japan as trainees. The Japanese engineers sent to Vietnam educated the underground coal mining techniques. The Vietnamese management engineers invited were trained for, e.g., production management techniques (e.g., those for workplaces and organizations) in the Japanese mines, administrative management techniques, and techniques to improve safety and productivity in the mines. Coal Energy Center and Taiheiyo Mining's Kushiro Mine provided training facilities. (NEDO)

  10. Experimental investigation on a Common Rail Diesel engine partially fuelled by syngas

    International Nuclear Information System (INIS)

    Rinaldini, Carlo Alberto; Allesina, Giulio; Pedrazzi, Simone; Mattarelli, Enrico; Savioli, Tommaso; Morselli, Nicolò; Puglia, Marco; Tartarini, Paolo

    2017-01-01

    Highlights: • A current automotive Diesel engine is tested running on both Diesel fuel and syngas. • The syngas HHV is about 5 MJ/Nm"3, allowing a 60% of Diesel substitution. • The engine brake efficiency is slightly increased running on syngas at high load. • In-cylinder pressure do not change very much even if Diesel fuel is strongly reduced. - Abstract: The high efficiency, reliability and flexibility of modern passenger car Diesel engines makes these power units quite attractive for steady power plants totally or partially running on fuels derived from biomass, in particular on syngas. The engine cost, which is obviously higher than that of current industrial engines, may not be a big obstacle, provided that the re-engineering work is limited and that performance and efficiency are enhanced. The goal of this work is to explore the potential of a current automotive turbocharged Diesel engine running on both Diesel fuel and syngas, by means of a comprehensive experimental investigation focused on the combustion process. The engine is operated at the most typical speed employed in steady power plants (3000 rpm), considering three different loads (50–100–300 Nm/16–31–94 kW). For each operating condition, the syngas rate is progressively increased until it provides a maximum heating power of 85 kW, while contemporarily reducing the amount of injected Diesel oil. Maximum care is applied to guarantee a constant quality of the syngas flow throughout the tests, as well as to maintain the same engine control parameters, in particular the boost pressure. It is found that in-cylinder pressure traces do not change very much, even when drastically reducing the amount of Diesel fuel: this is a very encouraging result, because it demonstrates that there is no need to radically modify the standard stock engine design. Another promising outcome is the slight but consistent enhancement of the engine brake efficiency: the use of syngas not only reduces the

  11. Investigations of leakage mechanisms and its influences on a micro swing engine considering rarefaction effects

    International Nuclear Information System (INIS)

    Zhou, Xiong; Zhang, Zhenyu; Kong, Wenjun; Du, Ning

    2016-01-01

    Highlights: • Mechanisms of the leakage flow in different flow regimes have been studied. • The leakage flow regime and patterns in the micro swing engine are presented. • Slip on the walls has a larger effect on leakage flow with decreasing the gap. • Rarefaction effects on the engine performance have been investigated. - Abstract: Considering rarefaction effects, this paper investigated mechanisms of the clearance leakage and its influences on a micro swing engine for the micro power generation by employing three different flow models named as discrete velocity direction (DVD) model, Navier-Stokes equations with slip boundary conditions (NS-slip) and no-slip boundary conditions (NS-no slip). Using the DVD model, this paper firstly studied leakage mechanisms of a micro Couette-Poisueille flow. Factors which control the leakage in different regimes were obtained. Furthermore, the system-level predictions of the clearance leakage in the micro swing engine have been conducted by solving the Navier-Stokes equations. The leakage flow regime, patterns and characteristics were presented. Results by NS-slip and NS-no slip were compared to study the rarefaction effects. Finally, investigations of the engine size and the gap height on the engine performance have been conducted. The significance of the leakage in different engine size regimes was presented, and the results show that rarefaction effects affect the indicated thermal efficiency greatly with the decrease of the engine size scale.

  12. Results from Marine geological investigations outside Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer (Geological Survey of Sweden (Sweden))

    2011-08-15

    A detailed marine geological survey was conducted in a 10 km2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  13. Results from Marine geological investigations outside Forsmark

    International Nuclear Information System (INIS)

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer

    2011-08-01

    A detailed marine geological survey was conducted in a 10 km 2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  14. An Experimental Investigation of Ethanol-Diesel Blends on Performance and Exhaust Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Tarkan Sandalcı

    2014-08-01

    Full Text Available Ethanol is a promising alternative fuel, due to its renewable biobased origin. Also, it has lower carbon content than diesel fuel and it is oxygenated. For this reason, ethanol is providing remarkable potential to reduce particulate emulsions in compression-ignition engines. In this study, performance of ethanol-diesel blends has been investigated experimentally. Tested fuels were mineral diesel fuel (E0D100, 15% (v/v ethanol/diesel fuel blend (E15D85, and 30% (v/v ethanol/diesel fuel blend (E30D70. Firstly, the solubility of ethanol and diesel was experienced. Engine tests were carried out to reveal the performance and emissions of the engine fuelled with the blends. Full load operating conditions at various engine speeds were investigated. Engine brake torque, brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and finally exhaust emissions were measured. Performance of the tested engine decreased substantially while improvement on smoke and gaseous emissions makes ethanol blend favorable.

  15. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  16. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  17. Quaternary Geologic Map of the Regina 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Fullerton, David S.; Christiansen, Earl A.; Schreiner, Bryan T.; Colton, Roger B.; Clayton, Lee; Bush, Charles A.; Fullerton, David S.

    2007-01-01

    For scientific purposes, the map differentiates Quaternary surficial deposits and materials on the basis of clast lithology or composition, matrix texture or particle size, structure, genesis, stratigraphic relations, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the 'Description of Map Units'. Deposits of some constructional landforms, such as end moraines, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, fluvial, and lacustrine deposits that are mapped may be terraced. Differentiation of sequences of fluvial and glaciofluvial deposits at this scale is not possible. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use planning, or land-management projects can be derived and from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.

  18. Geological problems in radioactive waste isolation - second worldwide review

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996

  19. Geological problems in radioactive waste isolation - second worldwide review

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A. [ed.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  20. Study on synthesis of geological environment at Horonobe area. A technical review

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Shiogama, Yukihiro; Atsumi, Hiroyuki; Abe, Yasunori; Furuichi, Mitsuaki

    2003-03-01

    The objective of the Horonobe Under Ground Research Project includes enhancing reliability of disposal techniques and safety assessment methods which are based on data on deep underground geological environment obtained by surface explorations and models for geological environment developed using those data. In this study, through development of conceptual models of geological environment based on those data, the flows from data collection to modeling, which have been conducted independently for each geological environment of geology/geological structure, hydrogeology, geochemistry of groundwater and rock mechanics, were synthesized, and a systematic approach including processes from investigation of geological environment to its modeling was established, which is expected to ensure objectivity and traceability of the design and safety assessment of a disposal system. This study is also a part of a program that includes an iterative process in which geological models would be developed and revised repeatedly through the Horonobe Under Ground Research Project and development of geological environment investigation techniques. The results of the study are summarized as follows: (1) Models based on current knowledge were developed; conceptual geology/geological structural model, conceptual hydrogeological model, conceptual geochemical model of groundwater, and conceptual rock mechanical model, (2) Information of data flow and interpretation in the modeling process were synthesized into an data flow which includes knowledge on historical geology and palaeogeology in addition to four models shown above in terms of safety assessment, and (3) Based on modeling processes and syntheses of data flow shown above, tasks that should be considered were organized and suggestions of investigation program were provided for the next phase. (author)

  1. New Age of 3D Geological Modelling or Complexity is not an Issue Anymore

    Science.gov (United States)

    Mitrofanov, Aleksandr

    2017-04-01

    Geological model has a significant value in almost all types of researches related to regional mapping, geodynamics and especially to structural and resource geology of mineral deposits. Well-developed geological model must take into account all vital features of modelling object without over-simplification and also should adequately represent the interpretation of the geologist. In recent years with the gradual exhaustion deposits with relatively simple morphology geologists from all over the world are faced with the necessity of building the representative models for more and more structurally complex objects. Meanwhile, the amount of tools used for that has not significantly changed in the last two-three decades. The most widespread method of wireframe geological modelling now was developed in 1990s and is fully based on engineering design set of instruments (so-called CAD). Strings and polygons representing the section-based interpretation are being used as an intermediate step in the process of wireframes generation. Despite of significant time required for this type of modelling, it still can provide sufficient results for simple and medium-complexity geological objects. However, with the increasing complexity more and more vital features of the deposit are being sacrificed because of fundamental inability (or much greater time required for modelling) of CAD-based explicit techniques to develop the wireframes of the appropriate complexity. At the same time alternative technology which is not based on sectional approach and which uses the fundamentally different mathematical algorithms is being actively developed in the variety of other disciplines: medicine, advanced industrial design, game and cinema industry. In the recent years this implicit technology started to being developed for geological modelling purpose and nowadays it is represented by very powerful set of tools that has been integrated in almost all major commercial software packages. Implicit

  2. Sorption heat engines: simple inanimate negative entropy generators

    OpenAIRE

    Muller, Anthonie W. J.; Schulze-Makuch, Dirk

    2005-01-01

    The name 'sorption heat engines' is proposed for simple negative entropy generators that are driven by thermal cycling and work on alternating adsorption and desorption. These generators are in general not explicitly recognized as heat engines. Their mechanism is applicable to the fields of engineering, physics, chemistry, geology, and biology, in particular the origin of life. Four kinds of sorption heat engines are distinguished depending on the occurrence of changes in the adsorbent or ads...

  3. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigation (NNWSI). Progress report, 30 September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report dated 30 September 1994 provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI){close_quotes}. This progress report was preceded by the progress report for the year from 1 October 1992 to 30 September 1993. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. Investigation of Dual-Vortical-Flow Hybrid Rocket Engine without Flame Holding Mechanism

    Directory of Open Access Journals (Sweden)

    A. Lai

    2018-01-01

    Full Text Available A 250 kgf thrust hybrid rocket engine was designed, tested, and verified in this work. Due to the injection and flow pattern of this engine, this engine was named dual-vortical-flow engine. This propulsion system uses N2O as oxidizer and HDPE as fuel. This engine was numerically investigated using a CFD tool that can handle reacting flow with finite-rate chemistry and coupled with the real-fluid model. The engine was further verified via a hot-fire test for 12 s. The ground Isp of the engine was 232 s and 221 s for numerical and hot-fire tests, respectively. An oscillation frequency with an order of 100 Hz was observed in both numerical and hot-fire tests with less than 5% of pressure oscillation. Swirling pattern on the fuel surface was also observed in both numerical and hot-fire test, which proves that this swirling dual-vortical-flow engine works exactly as designed. The averaged regression rate of the fuel surface was found to be 0.6~0.8 mm/s at the surface of disk walls and 1.5~1.7 mm/s at the surface of central core of the fuel grain.

  5. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  6. Investigation concerning geologic storage of radioactive waste in the Netherlands

    International Nuclear Information System (INIS)

    1986-01-01

    The first stage of the research program concerning geological storage of radioactive waste in the Netherlands encloses desk studies for the preparation of a selection out of a number of locations for closer field examination, and of a choice of the most proper storage technique (mines, deep boreholes, caverns). This report is the first of two intermediate reports concerning the state of affairs of this first stage. 10 refs.; 6 figs

  7. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  8. Water-resources investigations of the U.S. Geological Survey in New Mexico; fiscal year 1981

    Science.gov (United States)

    White, Robert R.; Wells, J.G.

    1983-01-01

    The Water Resources Division of the U.S. Geological Survey investigates the occurrence, quantity, quality, distribution, and movement of the Nation 's surface and underground waters, and coordinates Federal water data acquisition activities. During fiscal year 1981, the New Mexico District had 40 active projects, released 19 reports, and answered hundreds of requests of water-related information. Investigations included the following: (1) chemical quality of surface water in New Mexico; (2) chemical quality of groundwater in New Mexico; (3) sediment transport in New Mexico streams; (4) surface water supply; (5) surface water diversions for irrigation; (6) streamflow characteristics; (7) effect of urban development on storm runoff; (8) inundation from floods; (9) effects of groundwater pumping; (10) long-term monitoring of groundwater levels; (11) groundwater and surface water relationships; (12) consumptive use by phreatophytes; (13) hydrologic impacts of energy development; and (14) groundwater supplies. (Lantz-PTT)

  9. An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine

    International Nuclear Information System (INIS)

    How, H.G.; Masjuki, H.H.; Kalam, M.A.; Teoh, Y.H.

    2014-01-01

    An experimental investigation on engine performance, emissions, combustion and vibration characteristics with coconut biodiesel fuels was conducted in a high-pressure common-rail diesel engine under five different load operations (0.17, 0.34, 0.52, 0.69 and 0.86 MPa). The test fuels included a conventional diesel fuel and four different fuel blends of coconut biodiesel (B10, B20, B30 and B50). The results showed that biodiesel blended fuels have significant influences on the BSFC (brake specific fuel consumption) and BSEC (brake specific energy consumption) at all engine loads. In general, the use of coconut biodiesel blends resulted in a reduction of BSCO (brake specific carbon monoxide) and smoke emissions regardless of the load conditions. A large reduction of 52.4% in smoke opacity was found at engine load of 0.86 MPa engine load with B50. For combustion characteristics, a slightly shorter ignition delay and longer combustion duration were found with the use of biodiesel blends under all loading operations. It was found that generally the biodiesel blends produced lower peak heat release rate than baseline diesel. The vibration results showed that the largest reduction of 13.7% in RMS (root mean square) of acceleration was obtained with B50 at engine load of 0.86 MPa with respect to the baseline diesel. - Highlights: • The performance, emissions and combustion characteristics of biodiesel were studied. • A tangible increase in BSFC was observed at all engine loads with coconut biodiesel. • A slightly shorter ignition delay was found with the use of biodiesel blends. • The vibrations for coconut biodiesel blends in diesel engine were investigated. • B50 achieved the largest reduction in RMS of acceleration at 0.86 MPa engine load

  10. Constructing a Geology Ontology Using a Relational Database

    Science.gov (United States)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances

  11. Engineering Geological Properties of Oil-Contaminated Granitic and Meta sedimentary Soils

    International Nuclear Information System (INIS)

    Zulfahmi Ali Rahman; Umar Hamzah; Noorulakma Ahmad

    2011-01-01

    Hydrocarbon is a light-non aqueous phase liquid or known as LNAPL. It poses environmental hazard if accidentally spilled out into the soil and water systems as a result of its insoluble nature in water. LNAPL component infiltrates into soil through pore spaces and afloat at the top of groundwater level. Some of this hydrocarbon would trap and clog within the voids, difficult to remove and costly to clean. The occurrence of hydrocarbon in the soil definitely degraded the behaviour of soils in terms of engineering properties. This study aimed to investigate the engineering properties of oil-contaminated soil for two different residual soils originally developed from in-situ weathering of granitic and meta sedimentary rocks. The physical characterisations of the soil were determined including particle size distribution, specific gravity test and x-ray diffraction (XRD). The engineering parameters for the contaminated and uncontaminated soils were Atterberg limits, compaction and soil shear strength (UU tests). The amounts of hydrocarbon added to soil were varied at 0 %, 4 %, 8 %, 12 % and 16 % of dried weight of soil samples. The results from the particle size distribution analysis showed that residual soil from granitic rock comprises of 38 % sand, 33 % silt and 4 % clay while meta sedimentary soil consists of 4 % sand, 43 % silt dan 29 % clay. The mean values of specific gravity for the granitic and meta sedimentary soils were 2.56 and 2.61, respectively. The types of minerals present in granitic soil sample were quartz, kaolinite and gibbsite while meta sedimentary soil consists of quartz and kaolinite. The Atterberg limits value decreased as a result of increasing amount of added hydrocarbon into the soil. A similar behavior was observed with the values of maximum dry density and optimum water content with increasing hydrocarbon content. The overall unconsolidated undrained shear strength, C u showed a decreasing trend with the increase in hydrocarbon content

  12. Geological Hypothesis Testing and Investigations of Coupling with Transient Electromagnetics (TEM)

    Science.gov (United States)

    Adams, A. C.; Moeller, M. M.; Snyder, E.; Workman, E. J.; Urquhart, S.; Bedrosian, P.; Pellerin, L.

    2014-12-01

    Transient electromagnetic (TEM) data were acquired in Borrego Canyon within the Santo Domingo Basin of the Rio Grande Rift, central New Mexico, during the 2014 Summer of Applied Geophysical Experience (SAGE) field program. TEM surveys were carried out in several regions both to investigate geologic structure and to illustrate the effects of coupling to anthropogenic structures. To determine an optimal survey configuration, 50, 100 and 200 m square transmitter loops were deployed; estimates of depth-of-investigation and logistical considerations determined that 50 m loops were sufficient for production-style measurements. A resistive (100s of ohm-m) layer was identified at a depth of 25-75 m at several locations, and interpreted as dismembered parts of one or more concealed volcanic flows, an interpretation consistent with Tertiary volcanic flows that cap the Santa Anna Mesa immediately to the south. TEM soundings were also made across an inferred fault to investigate whether fault offset is accompanied by lateral changes in electrical resistivity. Soundings within several hundred meters of the inferred fault strand were identical, indicating no resistivity contrast across the fault, and possibly an absence of recent activity. An old windmill and water tank, long-abandoned, offered an excellent laboratory to study the effect of coupling to metallic anthropogenic structures. The character of the measured data strongly suggests the water tank is in electrical contact with the earth (galvanic coupling), and an induced response was persistent to more than 1 second after current turn-off. Coupling effects could be identified at least 150 meters from the tank. Understanding the mechanism behind such coupling and the ability to identify coupled data are critical skills, as one-dimensional modeling of data is affected by such coupling producing artificial conductive layers at depth.

  13. Outreach to Inspire Girls in Geology: A Recipe for Success (Invited)

    Science.gov (United States)

    Kekelis, L.

    2010-12-01

    Geology and engineering careers can seem very abstract to a young girl, especially to a girl who has no role model in technical fields. Many girls want to make the world a better place but don’t see how their interests connect with geology or engineering. Role models and field trips to worksites are instrumental in encouraging girls to consider careers in geoscience and engineering. The opportunities to see real-world applications of technology and meet with role models who work in technical fields are extremely impactful and can have a strong influence on a girl’s career path. Together we need to do a better job of communicating what geoscience and engineering have to offer girls and what girls have to offer these fields. This presentation will provide practical tips to help combat stereotypes, 2) share resources for outreach at one-day special events, summer camps, visits to the classroom and field trips to corporate sites and college campuses, and 3) highlight strategies for groups to work collaboratively in outreach. This presentation will help those currently involved in outreach who want to improve on existing efforts, along with those who have never done outreach and are interested in getting started. Techbridge will share a “recipe for success” for planning and hosting role model visits to the classroom and field trips. A case study of outreach by Chevron with Techbridge girls will be shared including the pre-event planning that made this event a success. Activities that make geology fun and friendly to girls and tips for dispelling stereotypes about careers in geology and engineering will also be shared. Participants will be invited to ask questions and share on topics of interest, such as “Challenges with outreach,” “How to get involved without burning out,” and “How to show your manager or organization that outreach is worth the effort.” We will also promote a candid discussion of the challenges that can arise along with way and how

  14. Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine

    International Nuclear Information System (INIS)

    Arabaci, Emre; İçingür, Yakup; Solmaz, Hamit; Uyumaz, Ahmet; Yilmaz, Emre

    2015-01-01

    Highlights: • Exhaust gas temperature and specific fuel consumption decreased with six stroke engine. • Thermal efficiency increased with water injection. • NO emissions decreased with water injection as the temperature decreased at the end of cycle. • Injection timing should be advanced with the increase of engine speed. • HC and CO emissions decrease until 3000 rpm engine speed. - Abstract: In this study, the effects of water injection quantity and injection timing were investigated on engine performance and exhaust emissions in a six-stroke engine. For this purpose, a single cylinder, four-stroke gasoline engine was converted to six-stroke engine modifying a new cam mechanism and adapting the water injection system. The experiments were conducted at stoichometric air/fuel ratio (λ = 1) between 2250 and 3500 rpm engine speed at full load with liquid petroleum gas. Water injection was performed at three different stages as before top dead center, top dead center and after top dead center at constant injection duration and four different injection pressure 25, 50, 75 and 100 bar. The test results showed that exhaust gas temperature and specific fuel consumption decreased by about 7% and 9% respectively. In contrast, fuel consumption and power output increased 2% and 10% respectively with water injection. Thermal efficiency increased by about 8.72% with water injection. CO and HC emissions decreased 21.97% and 18.23% until 3000 rpm respectively. NO emissions decreased with water injection as the temperature decreased at the end of cycle. As a result, it was seen that engine performance improved when suitable injection timing and injected water quantity were selected due to effect of exhaust heat recovery with water injection

  15. The application of nuclear geophysics method to evaluate the geological environment of nuclear waste repository

    International Nuclear Information System (INIS)

    Fang, Fang; Xiaoqin, Wang; Kuanliang, Li; Xinsheng, Hou; Jingliang, Zhu; Binxin, Hu

    2002-01-01

    'Cleanly land should be given back ground.' This is a task while nuclear engineering have to be retired. We applied the nuclear geophysics methods and combined with geology, hydrology, geochemistry, and other methods, to evaluate the environment of nuclear waste repository. It is the important work to renovate environment and prepare technology before ex-service of the nuclear engineering

  16. Geologic Map of the State of Hawai`i

    Science.gov (United States)

    Sherrod, David R.; Sinton, John M.; Watkins, Sarah E.; Brunt, Kelly M.

    2007-01-01

    1983 and the Universal Transverse Mercator system projection to zone 4. 'This digital statewide map allows engineers, consultants, and scientists from many different fields to take advantage of the geologic database,' said John Sinton, a geology professor at the University of Hawai`i, whose new mapping of the Wai`anae Range (West O`ahu) appears on the map. Indeed, when a testing version was first made available, most requests came from biologists, archaeologists, and soil scientists interested in applying the map's GIS database to their ongoing investigations. Another area newly depicted on the map, in addition to the Wai`anae Range, is Haleakala volcano, East Maui. So too for the active lava flows of Kilauea volcano, Island of Hawai`i, where the landscape has continued to evolve in the ten years since publication of the Big Island's revised geologic map. For the other islands, much of the map is compiled from mapping published in the 1930-1960s. This reliance stems partly from shortage of funding to undertake entirely new mapping but is warranted by the exemplary mapping of those early experts. The boundaries of all map units are digitized to show correctly on modern topographic maps.

  17. Quality of engineering surveysas a factor of natural-technogenic systems formation

    Directory of Open Access Journals (Sweden)

    Kashperyuk Pavel Ivanovich

    2014-01-01

    Full Text Available Construction in urban areas is often related to reusing previously developed sites, which requires solving additional tasks both by builders and surveyors additional. The tasks are related to the evaluation of already changed natural (geological environment of this area and its further investigation in connection with the proposed creation of a new natural-technogenic system (NTS. This article presents some examples of the influence of engineering survey quality on adopting extraordinary project solutions excluding the negative impact on NTS formation in the process of construction and operation of facilities in Moscow. In particular it is stated that the lack of control in the process of land works and transfer from the platform of water-bearing communications may ultimately lead to a different change in the strength and deformation properties of soil at the base of structures, and in some cases to geoecological disfuncion of the newly created NTS due to adverse geological processes development. The author draws attention to the complexity and responsibility of engineering geological surveys in the areas of developing powerful (>10 m strata of bulk soils. The article considers some aspects of the influence of the temperature regime of soils in the foundation structures active zone on heat and moisture transfer in these soils, their condition and deformation properties in city area. A particular example of the construction of a high-rise building in Moscow has shown that the presence of heat-bearing communications within 3—10 m from the earth's surface may increase the annual average temperature of the strata up to 30 degrees and more, thus, dismantling such communications leads to different changes in the established temperature regime and conditions of clay soils. It is noted that the forecast of the change in basic physical and mechanical properties of the base soil in urban conditions is not possible without thermometric work during

  18. Using active learning strategies to investigate student learning and attitudes in a large enrollment, introductory geology course

    Science.gov (United States)

    Berry, Stacy Jane

    There has been an increased emphasis for college instruction to incorporate more active and collaborative involvement of students in the learning process. These views have been asserted by The Association of American Colleges (AAC), the National Science Foundation (NSF), and The National Research Counsel (NRC), which are advocating for the modification of traditional instructional techniques to allow students the opportunity to be more cooperative (Task Group on General Education, 1988). This has guided educators and facilitators into shifting teaching paradigms from a teacher centered to a more student-centered curriculum. The present study investigated achievement outcomes and attitudes of learners in a large enrollment (n ~ 200), introductory geology course using a student centered learning cycle format of instruction versus another similar section that used a traditional lecture format. Although the course is a recruiting class for majors, over 95% of the students that enroll are non-majors. Measurements of academic evaluation were through four unit exams, classroom communication systems, weekly web-based homework, in-class activities, and a thematic collaborative poster/paper project and presentation. The qualitative methods to investigate the effectiveness of the teaching design included: direct observation, self-reporting about learning, and open-ended interviews. By disaggregating emerging data, we tried to concentrate on patterns and causal relationships between achievement performance and attitudes regarding learning geology. Statistical analyses revealed positive relationships between student engagement in supplemental activities and achievement mean scores within and between the two sections. Completing weekly online homework had the most robust relationship with overall achievement performance. Contrary to expectations, a thematic group project only led to modest gains in achievement performance, although the social and professional gains could be

  19. An experimental investigation on engine performance and emissions of a supercharged H{sub 2}-diesel dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Murari Mohon [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi [Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo (Japan)

    2010-01-15

    This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen and ignited by a pilot amount of diesel fuel in dual-fuel mode. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with charge dilution. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first with hydrogen-operation condition up to the maximum possible fuel-air equivalence ratio of 0.3. A maximum IMEP of 908 kPa and a thermal efficiency of about 42% were obtained. Equivalence ratio could not be further increased due to knocking of the engine. The emission of CO was only about 5 ppm, and that of HC was about 15 ppm. However, the NOx emissions were high, 100-200 ppm or more. The charge dilution by N{sub 2} was then performed to obtain lower NOx emissions. The 100% reduction of NOx was achieved. Due to the dilution by N{sub 2} gas, higher amount of energy could be supplied from hydrogen without knocking, and about 13% higher IMEP was produced than without charge dilution. (author)

  20. Elements of earthquake engineering and structural dynamics. 2. ed.

    International Nuclear Information System (INIS)

    Filiatrault, A.

    2002-01-01

    This book is written for practising engineers, senior undergraduate and junior structural-engineering students, and university educators. Its main goal is to provide basic knowledge to structural engineers who have no previous knowledge about earthquake engineering and structural dynamics. Earthquake engineering is a multidisciplinary science. This book is not limited to structural analysis and design. The basics of other relevant topics (such as geology, seismology, and geotechnical engineering) are also covered to ensure that structural engineers can interact efficiently with other specialists during a construction project in a seismic zone

  1. Managing geological uncertainty in CO2-EOR reservoir assessments

    Science.gov (United States)

    Welkenhuysen, Kris; Piessens, Kris

    2014-05-01

    Recently the European Parliament has agreed that an atlas for the storage potential of CO2 is of high importance to have a successful commercial introduction of CCS (CO2 capture and geological storage) technology in Europe. CO2-enhanced oil recovery (CO2-EOR) is often proposed as a promising business case for CCS, and likely has a high potential in the North Sea region. Traditional economic assessments for CO2-EOR largely neglect the geological reality of reservoir uncertainties because these are difficult to introduce realistically in such calculations. There is indeed a gap between the outcome of a reservoir simulation and the input values for e.g. cost-benefit evaluations, especially where it concerns uncertainty. The approach outlined here is to turn the procedure around, and to start from which geological data is typically (or minimally) requested for an economic assessment. Thereafter it is evaluated how this data can realistically be provided by geologists and reservoir engineers. For the storage of CO2 these parameters are total and yearly CO2 injection capacity, and containment or potential on leakage. Specifically for the EOR operation, two additional parameters can be defined: the EOR ratio, or the ratio of recovered oil over injected CO2, and the CO2 recycling ratio of CO2 that is reproduced after breakthrough at the production well. A critical but typically estimated parameter for CO2-EOR projects is the EOR ratio, taken in this brief outline as an example. The EOR ratio depends mainly on local geology (e.g. injection per well), field design (e.g. number of wells), and time. Costs related to engineering can be estimated fairly good, given some uncertainty range. The problem is usually to reliably estimate the geological parameters that define the EOR ratio. Reliable data is only available from (onshore) CO2-EOR projects in the US. Published studies for the North Sea generally refer to these data in a simplified form, without uncertainty ranges, and are

  2. Introduction to environmental engineering

    Science.gov (United States)

    Šalić, Anita; Zelić, Bruno

    2018-02-01

    Nowadays we can easily say that environmental engineering is truly an interdisciplinary science. Combining biology, ecology, geology, geography, mathematics, chemistry, agronomy, medicine, economy, etc. environmental engineering strives to use environmental understanding and advancements in technology to serve mankind by decreasing production of environmental hazards and the effects of those hazards already present in the soil, water, and air. Major activities of environmental engineer involve water supply, waste water and solid management, air and noise pollution control, environmental sustainability, environmental impact assessment, climate changes, etc. And all this with only one main goal - to prevent or reduce undesirable impacts of human activities on the environment. To ensure we all have tomorrow.

  3. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  4. Quaternary Geologic Map of the Lake Nipigon 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Sado, Edward V.; Fullerton, David S.; Farrand, William R.; Edited and Integrated by Fullerton, David S.

    1994-01-01

    The Quaternary Geologic Map of the Lake Nipigon 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the University of Michigan, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the map unit descriptions. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of

  5. Investigation of background radiation levels and geologic unit profiles in Durango, Colorado

    International Nuclear Information System (INIS)

    Triplett, G.H.; Foutz, W.L.; Lesperance, L.R.

    1989-11-01

    As part of the Uranium Mill Tailings Remedial Action (UMTRA) Project, Oak Ridge National Laboratory (ORNL) has performed radiological surveys on 435 vicinity properties (VPs) in the Durango area. This study was undertaken to establish the background radiation levels and geologic unit profiles in the Durango VP area. During the months of May through June, 1986, extensive radiometric measurements and surface soil samples were collected in the Durango VP area by personnel from ORNL's Grand Junction Office. A majority of the Durango VP surveys were conducted at sites underlain by Quaternary alluvium, older Quaternary gravels, and Cretaceous Lewis and Mancos shales. These four geologic units were selected to be evaluated. The data indicated no formation anomalies and established regional background radiation levels. Durango background radionuclide concentrations in surface soil were determined to be 20.3 ± 3.4 pCi/g for 40 K, 1.6 ± 0.5 pCi/g for 226 Ra, and 1.2 ± 0.3 pCi/g for 232 Th. The Durango background gamma exposure rate was found to be 16.5 ± 1.3 μR/h. Average gamma spectral count rate measurements for 40 K, 226 Ra and 232 Th were determined to be 553, 150, and 98 counts per minute (cpm), respectively. Geologic unit profiles and Durango background radiation measurements are presented and compared with other areas. 19 refs., 15 figs., 5 tabs

  6. Technical know-how relevant to planning of borehole investigation for fault characterization

    Science.gov (United States)

    Mizuno, T.; Takeuchi, R.; Tsuruta, T.; Matsuoka, T.; Kunimaru, T.; Saegusa, H.

    2011-12-01

    As part of the national R&D program for geological disposal of high-level radioactive waste (HLW), the broad scientific study of the deep geological environment, JAEA has established the Mizunami Underground Research Laboratory (MIU) in Central Japan as a generic underground research laboratory (URL) facility. The MIU Project focuses on the crystalline rocks. In the case of fractured rock, a fault is one of the major discontinuity structures which control the groundwater flow conditions. It is important to estimate geological, hydrogeological, hydrochemical and rock mechanical characteristics of faults, and then to evaluate its role in the engineering design of repository and the assessment of long-term safety of HLW disposal. Therefore, investigations for fault characterization have been performed to estimate its characteristics and to evaluate existing conceptual and/or numerical models of the geological environment in the MIU project. Investigations related to faults have been conducted based on the conventional concept that a fault consists of a "fault core (FC)" characterized by distribution of the faulted rocks and a "fractured zone (FZ)" along FC. With the progress of investigations, furthermore, it is clear that there is also a case in which an "altered zone (AZ)" characterized by alteration of host rocks to clay minerals can be developed around the FC. Intensity of alteration in AZ generally decreases with distance from the FC, and AZ transits to FZ. Therefore, the investigation program focusing on properties of AZ is required for revising the existing conceptual and/or numerical models of geological environment. In this study, procedures for planning of fault characterizations have been summarized based on the technical know-how learnt through the MIU Project for the development of Knowledge Management System performed by JAEA under a contract with the Ministry of Economy, Trade and Industry as part of its R&D supporting program for developing geological

  7. The part played by applied geology in nuclear power plant site studies

    International Nuclear Information System (INIS)

    Giafferi, J.L.

    1994-01-01

    Site-related geological problems are one of the constraints affecting the environment of nuclear power plants. The natural features (soil and subsoil) at the nuclear power plant site affect numerous factors in the design, construction and operation of the civil engineering structures. The site geological criteria are not solely restricted to the soil as a static support for the structures. Earth tremors in France are of moderate intensity but the likelihood of their occurrence must nevertheless be taken into account for each site. Studies must concern the geological and seismic features of the region as well as the soil and subsoil configurations and composition in the immediate vicinity of the site in order to determine the physical characteristics of the earthquakes so that the safety of the plant can be guaranteed; in many cases, water tables have also to be taken into consideration. Geologic survey techniques are discussed. 13 figs., 7 refs

  8. Preliminary report on the environmnetal geology of the Islamabad-Rawalpindi area, Pakistan

    International Nuclear Information System (INIS)

    Williams, V.S.; Sheikh, I.; Pasha, M.K.; Khan, K.S.A.; Reza, Q.

    1994-01-01

    Islamabad, the capital of Pakistan, is a planned city constructed since about 1960 at the foot of the Margala hills just north of the old city of Rawalpindi. Since then, rapid growth of both Islamabad and Rawalpindi to a combined population of about 1.3 million has caused ever increasing demands for natural resources and adverse effects on the environment. To maintain the quality of the capital, municipal authorities need information on the physical environment to guide future development. Environment concerns include (1) availability of building materials, (2) environmental degradation from extraction and processing of building materials, (3) availability of surface and ground water (4) pollution of water by waste disposal, (5) geological hazards, and (6) engineering characteristics of soil ad rock. This preliminary report summarizes information on the environmental geology of the Islamabad-Rawalpindi area. The information has been collected by a cooperative project of the geological Survey of Pakistan and the U.S. Geological Survey, supported by the United States Agency for International Development. (author)

  9. An Investigation of First-Year Engineering Student and Instructor Perspectives of Learning Analytics Approaches

    Science.gov (United States)

    Knight, David B.; Brozina, Cory; Novoselich, Brian

    2016-01-01

    This paper investigates how first-year engineering undergraduates and their instructors describe the potential for learning analytics approaches to contribute to student success. Results of qualitative data collection in a first-year engineering course indicated that both students and instructors\temphasized a preference for learning analytics…

  10. Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization

    International Nuclear Information System (INIS)

    Gheith, R.; Hachem, H.; Aloui, F.; Ben Nasrallah, S.

    2015-01-01

    Highlights: • A Stirling engine was investigated to optimize its operation and its performance. • The porous medium present the highest amount of heat exchanged in a Stirling engine. • The heater characteristics are determinant points to enhance the thermal exchange in Stirling engine. • All operation parameters influence the heater performances. • Thermal and exergy heater efficiencies are sensible to temperature and pressure. - Abstract: The aim of this work is to optimize γ Stirling engine performances with a special care given to the heater. This latter consists of 20 tubes in order to increase the exchange area between the working gas and the hot source. Different parameters were chosen to evaluate numerically and experimentally the heater. The selected four independent parameters are: heating temperature (300–500 °C), initial filling pressure (3–8 bar), cooling water flow rate (0.2–3 l/min) and frequency (2–7 Hz). The amount of energy exchanged in the heater is significantly influenced by the frequency and heating temperature but it is slightly enhanced with the increase in the cooling water flow rate. The thermal and the exergy efficiencies of the heater are very sensible to the temperature and pressure variations.

  11. Investigation on combustion parameters of palm biodiesel operating with a diesel engine

    Directory of Open Access Journals (Sweden)

    M.H.M. Yasin

    2015-12-01

    Full Text Available Biodiesel is a renewable and decomposable fuel which is derived from edible and non-edible oils. It has different properties compared to conventional diesel but can be used directly in diesel engines. Different fuel properties characterise different combustion-phasing parameters such as cyclic variations of Indicated Mean Effective Pressure (IMEP and maximum pressure (Pmax. In this study, cyclic variations of combustion parameters such as IMEP and Pmax were investigated using a multi-cylinder diesel engine operating with conventional diesel and palm biodiesel. The experiments were conducted using different engine loads; 20, 40, and 60% at a constant engine speed of 2500 rpm. The coefficient of variation (COV and standard deviation of parameters were used to evaluate the cyclic variations of the combustion phasing parameters for the test fuels at specific engine test conditions. It was observed that palm biodiesel has lower COV IMEP compared to conventional diesel but is higher in COV Pmax at higher engine loads respectively. In addition, palm biodiesel tends to have a higher recurrence for the frequency distribution for maximum pressure. It can be concluded from the study that the fuel properties of palm biodiesel have influenced most of the combustion parameters.

  12. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  13. Three-dimensional Geological and Geo-mechanical Modelling of Repositories for Nuclear Waste Disposal in Deep Geological Structures

    International Nuclear Information System (INIS)

    Fahland, Sandra; Hofmann, Michael; Bornemann, Otto; Heusermann, Stefan

    2008-01-01

    To prove the suitability and safety of underground structures for the disposal of radioactive waste extensive geo-scientific research and development has been carried out by BGR over the last decades. Basic steps of the safety analysis are the geological modelling of the entire structure including the host rock, the overburden and the repository geometry as well as the geo-mechanical modelling taking into account the 3-D modelling of the underground structure. The geological models are generated using the special-construction openGEO TM code to improve the visualisation an d interpretation of the geological data basis, e.g. borehole, mine, and geophysical data. For the geo-mechanical analysis the new JIFE finite-element code has been used to consider large 3-D structures with complex inelastic material behaviour. To establish the finite-element models needed for stability and integrity calculations, the geological models are simplified with respect to homogenous rock layers with uniform material behaviour. The modelling results are basic values for the evaluation of the stability of the repository mine and the long-term integrity of the geological barrier. As an example of application, the results of geological and geo-mechanical investigations of the Morsleben repository based on 3-D modelling are presented. (authors)

  14. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sassani, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-26

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included in the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.

  15. Changes in engineering-geological conditions in the foundation of the Bratsk hydroelectric powerplant dam during 15 years of operation

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, G K; Savinskaya, M K; Tizdel, R R; Sotnikova, N P

    1978-04-01

    Field observations of the rock foundation beneath the Bratsk Hydropower Dam have been conducted continuously and carefully, beginning during the period of construction. The dam is a concrete gravity dam with expanded seams, 125 m in height and 924 m in length. The head is 106 m. The dam was constructed in 42 column sections which were subsequently cemented together. The anchor of the dam is up to 15 m deep. Two rows of drainage wells 30 m deep and 3 m apart were drilled into the foundation beneath the dam. The observations indicate that the status of the foundation and the stability of the channel and left bank earth dam are quite satisfactory. The changes in engineering and geological conditions that are unavoidable upon construction of a large dam have apparently been completed, and the new conditions in the foundation of the dam have stabilized. The drainage devices are operating normally. However, observations should be continued at full volume.

  16. Geologic and hydrologic records of observation wells, test holes, test wells, supply wells, springs, and surface water stations in the Los Alamos area

    International Nuclear Information System (INIS)

    Purtymun, W.D.

    1995-01-01

    Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment

  17. Study on high-level waste geological disposal metadata model

    International Nuclear Information System (INIS)

    Ding Xiaobin; Wang Changhong; Zhu Hehua; Li Xiaojun

    2008-01-01

    This paper expatiated the concept of metadata and its researches within china and abroad, then explain why start the study on the metadata model of high-level nuclear waste deep geological disposal project. As reference to GML, the author first set up DML under the framework of digital underground space engineering. Based on DML, a standardized metadata employed in high-level nuclear waste deep geological disposal project is presented. Then, a Metadata Model with the utilization of internet is put forward. With the standardized data and CSW services, this model may solve the problem in the data sharing and exchanging of different data form A metadata editor is build up in order to search and maintain metadata based on this model. (authors)

  18. Final report on the surface-based investigation (phase 1) at the Mizunami Underground Laboratory project

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Seno, Yasuhiro; Nakama, Shigeo; Tsuruta, Tadahiko; Amano, Kenji; Takeuchi, Ryuji; Matsuoka, Toshiyuki; Onoe, Hironori; Mizuno, Takashi; Ohyama, Takuya; Hama, Katsuhiro; Sato, Toshinori; Kuji, Masayoshi; Kuroda, Hidetaka; Semba, Takeshi; Uchida, Masahiro; Sugihara, Kozo; Sakamaki, Masanori; Iwatsuki, Teruki

    2007-03-01

    The Mizunami Underground Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency at Mizunami City in Gifu Prefecture, central Japan and its role is defined in 'Framework for Nuclear Energy Policy' by Japan Atomic Energy Commission. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. The overall project goals of the MIU Project from Phase I through to Phase III are: 1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and 2) to develop a range of engineering for deep underground application. During Phase I, the overall project goals were supported by Phase I goals. For the overall project goals 1), the Phase I goals were set to construct models of the geological environment from all surface-based investigation results that describe the geological environment prior to excavation and predict excavation response. For the overall project goals 2), the Phase I goals were set to formulate detailed design concepts and a construction plan for the underground facilities. This report summarizes the Phase I investigation which was completed in March 2005. The authors believe this report will make an important milestone, since this report clarifies how the Phase I goals are achieved and evaluate the future issues thereby direct the research which will be conducted during Phase II. With regard to the overall project goals 1), 'To establish techniques for investigation, analysis and assessment of the deep geological environment,' a step-wise investigation was conducted by iterating investigation, interpretation, and assessment, thereby understanding of geologic environment was progressively and effectively improved with progress of investigation. An optimal procedure from

  19. Interface management for the Mined Geologic Disposal System

    International Nuclear Information System (INIS)

    Ashlock, K.J.

    1998-03-01

    The purpose of this paper is to present the interface management process that is to be used for Mined Geologic Disposal System (MGDS) development. As part of the systems engineering and integration performed on the Yucca Mountain Project (YMP), interface management is critical in the development of the potential MGDS. The application of interface management on the YMP directly addresses integration between physical elements of the MGDS and the organizations responsible for their development

  20. Horonobe Underground Research Laboratory project investigation program for the 2007 fiscal year (Translated document)

    International Nuclear Information System (INIS)

    Matsui, Hiroya; Nakayama, Masashi; Sanada, Hiroyuki; Yamaguchi, Takehiro

    2008-09-01

    As past of the research and development program on the geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to intermediate depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2007 fiscal year (2007/2008), the third year of the Phase 2 investigations. In the 2007 fiscal year, investigations in geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for use in the deep underground environment' and 'studies on the long-term stability of the geological environment', is continuously carried out. Investigations in 'research and development on geological disposal technology', including improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies' are also continuously carried out. Construction of the underground facilities is ongoing at the Ventilation Shaft and the East Shaft

  1. Geological site selection studies in Precambrian crystalline rocks in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.

    1988-01-01

    In general geological investigations made since 1977 the Finnish crystalline bedrock has been determined to be suitable for the final disposal of the spent nuclear fuel. Regional investigations have been mainly based on already existing geological studies. Special attention has been paid on the international geological Finland as the Baltic Shield is stiff and stable and situated far outside the zones of volcanic and seismic activity. The present day crustal movements in Finland are related to landuplift process. Movements and possible faults in the bedrock follow fracture zones which devide the bedrock into mosaiclike blocks. As compared to small scale geological maps the bedrock blocks are often indicated as large granite rock formations which are less broken than the surrounding rocks, though the age of granite formations is at least 1500 millions of years. The large bedrock blocks (20-300 km 2 ) are divided to smaller units by different magnitudes of fractures and these smaller bedrock units (5-20 km 2 ) have been selected for further site selection investigations. At the first stage of investigations 327 suitable regional bedrock blocks have been identified on the basis of Landsat-1 winter and summer mosaics of Finland. After two years of investigations 134 investigation areas were selected inside 61 bedrock blocks and classified to four priority classes, the three first of which were redommended for further investigations. Geological criteries used in classification indicated clear differences between the classes one and three, however all classified areas are situated in large rather homogenous bedrock blocks and more exact three dimensional suitability errors may not be observed until deep bore holes have been made

  2. Description of geological data in SKBs database GEOTAB

    International Nuclear Information System (INIS)

    Sehlstedt, S.; Stark, T.

    1991-01-01

    Since 1977 the Swedish Nuclear Fuel and Waste Management Co, SKB, has been performing a research and development programme for final disposal of spent nuclear fuel. The purpose of the programme is to acquire knowledge and data of radioactive waste. Measurement for the characterisation of geological, geophysical, hydrogeological and hydrochemical conditions are performed in specific site investigations as well as for geoscientific projects. Large data volumes have been produced since the start of the programme, both raw data and results. During the years these data were stored in various formats by the different institutions and companies that performed the investigations. It was therefore decided that all data from the research and development programme should be gathered in a database. The database, called GEOTAB, is a relational database. The database comprises six main groups of data volumes. These are: Background information, geological data, geophysical data, hydrological and meteorological data, hydrochemical data, and tracer tests. This report deals with geological data and described the dataflow from the measurements at the sites to the result tables in the database. The geological investigations have been divided into three categories, and each category is stored separately in the database. They are: Surface fractures, core mapping, and chemical analyses. (authors)

  3. Visualized materials of information on HLW geological disposal for promotion of public understanding

    International Nuclear Information System (INIS)

    Shobu, Nobuhiro; Yoshikawa, Hideki; Kashiwazaki, Hiroshi

    2003-03-01

    Japan Nuclear Cycle Development Institute (JNC) has a few thousands of short term visitors to Geological Isolation Basic Research Facility of Tokai works in every year. From the viewpoint of promotion of the visitor's understanding and also smooth communication between researchers and visitors, the explanation of the technical information on geological disposal should be carried out in more easily understandable methods, as well as conventional tour to the engineering-scale test facility (ENTRY). The images of repository operation, output data of technical calculations regarding geological disposal were visualized. We can use them practically as one of the useful explanation tools to support visitor's understanding. The visualized materials are attached to this report with the DVD-R media, furthermore, background information of each visualized materials was documented. (author)

  4. Developing Connectivist Schemas for Geological and Geomorphological Education

    Science.gov (United States)

    Whalley, B.

    2012-12-01

    Teaching geology is difficult; students need to grasp changes in time over three dimensions. Furthermore, the scales and rates of change in four dimensions may vary over several orders of magnitude. Geological explanations incorporate ideas from physics, chemistry, biology and engineering, lectures and textbooks provide a basic framework but they need to be amplified by laboratories and fieldwork involving active student participation and engagement. Being shown named 'things' is only a start to being able to being able to inculcate geological thinking that requires a wide and focused viewpoints. Kastens and Ishikawa (2006) suggested five aspects of thinking geologically, summarised as: 1. Observing, describing, recording, communicating geologically entities (ie basic cognitive skills) 2. (mentally) manipulating these entities 3. interpreting them via causal relationships 4. predicting other aspects using the basic knowledge (to create new knowledge) 5. using cognitive strategies to develop new ways of interpreting gained knowledge. These steps can be used follow the sequence from 'known' through 'need to know' to using knowledge to gain better geologic explanation, taken as enquiry-based or problem solving modes of education. These follow ideas from Dewey though Sternberg's 'thinking styles' and Siemens' connectivist approaches. Implementation of this basic schema needs to be structured for students in a complex geological world in line with Edelson's (2006) 'learning for' framework. In a geomorphological setting, this has been done by showing students how to interpret a landscape (landform, section etc) practice their skills and thus gain confidence with a tutor at hand. A web-based device, 'Virtorial' provides scenarios for students to practice interpretation (or even be assessed with). A cognitive tool is provided for landscape interpretation by division into the recognition of 'Materials' (rock, sediments etc), Processes (slope, glacial processes etc) and

  5. Studies on engineering technologies in the Mizunami Underground Research Laboratory. FY 2007 (Contract research)

    International Nuclear Information System (INIS)

    Noda, Masaru; Suyama, Yasuhiro; Nobuto, Jun; Ijiri, Yuji; Mikake, Shinichiro; Matsui, Hiroya

    2009-07-01

    The Mizunami Underground Research Laboratory (MIU) of the Japan Atomic Energy Agency is a major site for geoscientific research to advance the scientific and technological basis for geological disposal of high-level radioactive waste in crystalline rock. Studies on relevant engineering technologies in the MIU consist of a) research on design and construction technology for very deep underground applications, and b) research on engineering technology as a basis of geological disposal. In the Second Phase of the MIU project (the construction phase), engineering studies have focused on research into design and construction technologies for deep underground. The main subjects in the study of very deep underground structures consist of the following: 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction'. In the FY 2007 studies, identification and evaluation of the subjects for study of engineering technologies in the construction phase were carried out to optimize future research work. Specific studies included: validation of the existing design methodology based on data obtained during construction; validation of existing and supplementary rock excavation methods for very deep shafts; estimation of rock stability under high differential water pressures, methodology on long-term maintenance of underground excavations and risk management systems for construction of underground structures have been performed. Based on these studies, future research focused on the four subject areas, which are 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction', has been identified. The design methodology in the first phase of the MIU Project (surface-based investigation phase) was verified to

  6. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    Science.gov (United States)

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  7. Seismotectonic investigations for Yucca Mountain high-level waste repository: Rationale for defining scope

    International Nuclear Information System (INIS)

    Gupta, D.C.; Blackford, M.E.

    1990-01-01

    The geologic, seismic, and engineering characteristics of the Yucca Mountain site and its environs need to be investigated in sufficient scope and detail to provide reasonable assurance that they are sufficiently well understood to permit an adequate evaluation of the proposed site for the development of a high-level waste repository. The paper examines the extent of seismotectonic investigations needed for proper evaluation of the geologic setting. At the Yucca Mountain site, a thorough understanding of tectonic phenomena such as seismicity and faulting is critical to the identification of potentially disqualifying conditions. Study of the tectonic movement, stress, or co-tectonic effects that could affect the performance of the waste-handling facilities, waste package, underground openings, shaft and borehole seals, and long-term alteration of geohydrology would be necessary. In addition, the uncertainties involved in evaluating the effect of seismotectonics on the radionuclide transport mechanism need to be thoroughly investigated. 8 refs., 1 fig

  8. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  9. Displays for promotion of public understanding of geological repository concept and the spatial scale

    International Nuclear Information System (INIS)

    Shobu, Nobuhiro; Kashiwazaki, Hiroshi

    2003-05-01

    Japan Nuclear Cycle Development Institutes (JNC) has a few thousands of short term visitors to Geological Isolation Basic Research Facility of Tokai works in every year. From the viewpoint of promotion of the visitor's understanding and also smooth communication between researchers and visitors, the explanation of the technical information on geological disposal should be carried out in more easily understandable methods, as well as conventional tour to the engineering-scale test facility (ENTRY). This paper reports on the background information and the appearance of displays, which were installed at ENTRY, to promote public understanding of geological repository concept and the spatial scale. They have been practically used as one of the explanation tools to support visitor's understanding. (author)

  10. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1988-10-01

    This report provides a summary of progress for the project ''Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)'' for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987). The general Task continued to coordinate project activities to meet general deadlines and responsibilities. The central office provided general secretarial support. The activities that were started during the first project period included expansion of the central copying facilities, growth of the central reprint, map, aerial and photograph collections, and some expansion of personal computer capabilities. The research and review accomplishments are mainly under the following tasks: quaternary tectonics, geochemical, mineral deposits, volcanic geology, seismology, tectonics, neotectonics, remote sensing, geotechnical assessments, geotechnical rock mass assessment, basinal studies, and strong ground motion

  11. Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

  12. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Science.gov (United States)

    2010-01-01

    ... closure. (a) The geologic repository must include multiple barriers, consisting of both natural barriers... in combination with natural barriers, radiological exposures to the reasonably maximally exposed... engineered barrier system must be designed so that, working in combination with natural barriers, releases of...

  13. Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    Science.gov (United States)

    Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.

    2014-01-01

    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.

  14. Association of engineering geologists 32nd annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the 32nd Annual Meeting of the Association of Engineering Geologists. Included are the following articles: Engineering geology---a tool in petroleum exploration ventures font, The soil headspace survey method as an indicator of soil and groundwater contamination by petroleum products, Determination of compressive strength of coal for pillar design hirt

  15. Geological 3D model of the investigation niche in ONKALO, Olkiluoto, southwestern Finland

    Energy Technology Data Exchange (ETDEWEB)

    Koittola, N.

    2014-07-15

    The main goal of this Master of Science Thesis was to create a geological 3D-model of the investigation niche 3 and its surroundings. The model were created for the needs of the rock mechanical back analysis. This study is a part of Posiva's regional studies for characterization of the bedrock. Totally 4 models were created: lithological model, foliation model, fracture model, and physical rock property model. Besides the modeling, there was also made a study of the migmatite structures in the niche. Used geological and geophysical methods were drill core loggings, tunnel mapping, ground penetration radar, mise-a-la-masse and drill hole geophysics. Four rock types exist at the niche area: veined gneiss, pegmatite granite, diatexitic gneiss and quartz gneiss. The lithological units were modeled primary with the drill core loggings, tunnel mapping and ground penetrating radar. The major lithological units followed the main foliation direction (south dipping). So the continuations were fairly easy to model in the walls and roof, where the data was lacking. Foliation and fractures were modeled as discs, with mid-points at the measurement points of the structure. There were two main foliation directions 164/46 and 62/39. Fractures were more scattered but three fracture sets can be separated: 156/34, 270/85 and 342/83. The first set is mainly from the drill core loggings, second and third from tunnel mapping. Used methods in foliation model were drill core loggings, tunnel mapping and drill hole geophysics. In fracture model used data was from drill core loggings, tunnel mapping, mise-a-la-masse measurements and drill core geophysic. Four anomalous zones were detected with the drill hole geophysics. Three of these zones were associated with intensely fractured zones and one was connected to exceptionally high mica content in the gneiss. Rocks of Olkiluoto are divided into gneisses and magmatic rocks in the geological mapping. Actually almost all Olkiluoto

  16. Geological 3D model of the investigation niche in ONKALO, Olkiluoto, southwestern Finland

    International Nuclear Information System (INIS)

    Koittola, N.

    2014-07-01

    The main goal of this Master of Science Thesis was to create a geological 3D-model of the investigation niche 3 and its surroundings. The model were created for the needs of the rock mechanical back analysis. This study is a part of Posiva's regional studies for characterization of the bedrock. Totally 4 models were created: lithological model, foliation model, fracture model, and physical rock property model. Besides the modeling, there was also made a study of the migmatite structures in the niche. Used geological and geophysical methods were drill core loggings, tunnel mapping, ground penetration radar, mise-a-la-masse and drill hole geophysics. Four rock types exist at the niche area: veined gneiss, pegmatite granite, diatexitic gneiss and quartz gneiss. The lithological units were modeled primary with the drill core loggings, tunnel mapping and ground penetrating radar. The major lithological units followed the main foliation direction (south dipping). So the continuations were fairly easy to model in the walls and roof, where the data was lacking. Foliation and fractures were modeled as discs, with mid-points at the measurement points of the structure. There were two main foliation directions 164/46 and 62/39. Fractures were more scattered but three fracture sets can be separated: 156/34, 270/85 and 342/83. The first set is mainly from the drill core loggings, second and third from tunnel mapping. Used methods in foliation model were drill core loggings, tunnel mapping and drill hole geophysics. In fracture model used data was from drill core loggings, tunnel mapping, mise-a-la-masse measurements and drill core geophysic. Four anomalous zones were detected with the drill hole geophysics. Three of these zones were associated with intensely fractured zones and one was connected to exceptionally high mica content in the gneiss. Rocks of Olkiluoto are divided into gneisses and magmatic rocks in the geological mapping. Actually almost all Olkiluoto's rocks are

  17. Numerical investigation on the effects of natural gas and hydrogen blends on engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Morrone, Biagio; Unich, Andrea [Dipartimento di Ingegneria Aerospaziale e Meccanica (DIAM), Seconda Universita degli Studi di Napoli via Roma 29, 81031 Aversa (CE) (Italy)

    2009-05-15

    The use of hydrogen blended with natural gas is a viable alternative to pure fossil fuels because of the expected reduction of the total pollutant emissions and increase of efficiency. These blends offer a valid opportunity for tackling sustainable transportation, in view of the future stringent emission limits for road vehicles. The aim of the present paper is the investigation of the performance of internal combustion engines fuelled by such blends. A numerical investigation on the characteristics of natural gas-hydrogen blends as well as their effect on engine performance is carried out. The activity is focused on the influence of such blends on flame propagation speed. Combustion pattern modelling allows the comparison of engine brake efficiency and power output using different fuels. Results showed that there is an increase in engine efficiency only if Maximum Brake Torque (MBT) spark advance is used for each fuel. Moreover, an economic analysis has been carried out to determine the over cost of hydrogen in such blends, showing percent increments by using these fuels about between 10 and 34%. (author)

  18. Stream-simulation experiments for waste-repository investigations

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1980-01-01

    The potential for radionuclide migration by groundwater flow from a breached-water repository depends on the leaching process and on chemical changes that might occur as the radionuclide moves away from the repository. Therefore, migration involves the interactions of leached species with (1) the waste and canister, (2) the engineered barrier, and (3) the geologic materials surrounding the repository. Rather than attempt to synthesize each species and study it individually, another approach is to integrate all species and interactions using stream-simulation experiments. Interactions identified in these studies can then be investigated in detail in simpler experiments

  19. Bureau of Economic Geology. 1978 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Bureau research programs and projects are designed to address many of the State's major concerns in the areas of geologic, energy, mineral, land, and environmental resouces. Research programs incorporate geologic concepts that will build toward an understanding of a specific resource and its impact on human activities. In addition to resource assessments in uranium, lignite, and geopressured geothermal energy, the Bureau continued research into analysis of governmental policy related to energy. Systemic geologic mapping, coastal studies, basin analysis projects, and investigations in other areas of economic geology further indicate the range of research programs carried forward in 1978. Specifically, research on mineral resources and land resources, coastal studies, hydrogeology, basin studies, geologic mapping, and other research (tektites and meteorites, carboniferous of Texas, depositional environments of the Marble Falls Formation, Central Texas) are reported. The establishment of the Mining and Mineral Resources Research Institute is followed. Contracts and grant support and contract reports are listed. The publications eminating from the Bureau are listed. Services rendered by the Bureau and personnel information are included. (MCW)

  20. An investigation of the acoustic characteristics of a compression ignition engine operating with biodiesel blends

    Science.gov (United States)

    Zhen, D.; Tesfa, B.; Yuan, X.; Wang, R.; Gu, F.; Ball, A. D.

    2012-05-01

    In this paper, an experimental investigation has been carried out on the acoustic characteristics of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The experiment was conducted on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine which runs with biodiesel (B50 and B100) and pure diesel. The signals of acoustic, vibration and in-cylinder pressure were measured during the experiment. To correlate the combustion process and the acoustic characteristics, both phenomena have been investigated. The acoustic analysis resulted in the sound level being increased with increasing of engine loads and speeds as well as the sound characteristics being closely correlated to the combustion process. However, acoustic signals are highly sensitive to the ambient conditions and intrusive background noise. Therefore, the spectral subtraction was employed to minimize the effects of background noise in order to enhance the signal to noise ratio. In addition, the acoustic characteristics of CI engine running with different fuels (biodiesel blends and diesel) was analysed for comparison. The results show that the sound energy level of acoustic signals is slightly higher when the engine fuelled by biodiesel and its blends than that of fuelled by normal diesel. Hence, the acoustic characteristics of the CI engine will have useful information for engine condition monitoring and fuel content estimation.

  1. Experimental investigation of engine emissions with marine gas oil-oxygenate blends

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, Md. Nurun, E-mail: nurun.nabi@ntnu.no [Rajshahi University of Engineering and Technology (Bangladesh); Norwegian University of Science and Technology (NTNU) (Norway); Hustad, Johan Einar, E-mail: johan.e.hustad@ntnu.no [Norwegian University of Science and Technology (NTNU) (Norway)

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions.

  2. Using EVT for Geological Anomaly Design and Its Application in Identifying Anomalies in Mining Areas

    Directory of Open Access Journals (Sweden)

    Feilong Qin

    2016-01-01

    Full Text Available A geological anomaly is the basis of mineral deposit prediction. Through the study of the knowledge and characteristics of geological anomalies, the category of extreme value theory (EVT to which a geological anomaly belongs can be determined. Associating the principle of the EVT and ensuring the methods of the shape parameter and scale parameter for the generalized Pareto distribution (GPD, the methods to select the threshold of the GPD can be studied. This paper designs a new algorithm called the EVT model of geological anomaly. These study data on Cu and Au originate from 26 exploration lines of the Jiguanzui Cu-Au mining area in Hubei, China. The proposed EVT model of the geological anomaly is applied to identify anomalies in the Jiguanzui Cu-Au mining area. The results show that the model can effectively identify the geological anomaly region of Cu and Au. The anomaly region of Cu and Au is consistent with the range of ore bodies of actual engineering exploration. Therefore, the EVT model of the geological anomaly can effectively identify anomalies, and it has a high indicating function with respect to ore prospecting.

  3. Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. FY2015

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Nakayama, Mariko; Kobayashi, Masato

    2016-07-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, 'Geoscientific Research' and 'Research and Development on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal - Hydrological - Mechanical - Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2016. The summarized data of the EBS experiment will be published periodically. A CD-ROM is attached as an appendix. (J.P.N)

  4. Application, advantages and limitations of high-density gravimetric surveys compared with three-dimensional geological modelling in dolomite stability investigations

    OpenAIRE

    Breytenbach, I J; Bosch, P J A

    2011-01-01

    The article discusses the nature of the gravimetric survey as applied and used in dolomite stability investigations on areas underlain by the Chuniespoort Group in South Africa. A short discussion is given on the gravimetric survey procedure along with its uses and alternative methods. Finally, two case studies illustrate the application of the method on a high-density survey grid spacing in comparison with three-dimensional geological modelling based on the lithology and karst weathering hor...

  5. Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, S.

    1993-03-01

    The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO[sub 2] flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

  6. Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, S.

    1993-03-01

    The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO{sub 2} flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

  7. Geology and environmental impact of artisanal gold mining around ...

    African Journals Online (AJOL)

    Geology and effect of artisanal gold mining was investigated in Kataeregi and environ, North-central Nigeria with the aim of determining its host rock and assessing the impact of such activity on the surrounding. Geological field mapping show the area comprise of the Migmatite-Gneiss complex, Schist, Granite and ...

  8. Engineering geological and geophysical investigations for road construction in the municipality of Sisimiut, West Greenland

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Clausen, Helle; Foged, Niels Nielsen

    2007-01-01

    In connection with a road construction project between the towns of Sisimiut and Kangerlussuaq in Central West Greenland, the Arctic Technology Centre has been involved in prospecting and site investigations. This paper presents a selection of results concerning the climatic conditions...... and construction work in order to counter the effects of permafrost degradation and increased active layer thickness....

  9. The development of safeguards for geological repositories

    International Nuclear Information System (INIS)

    Van der Meer, K.

    2009-01-01

    Traditionally, research and development on geological repositories for High Level Waste (HLW) focuses on the short- and long-term safety aspects of the repository. If the repository will also be used for the disposal of spent fuel, safeguards aspects have to be taken into account. Safety and safeguards requirements may be contradictory; the safety of a geological repository is based on the non-intrusion of the geological containment, while safeguards require regular inspections of position and amount of the spent fuel. Examples to reconcile these contradictory requirements are the use of information required for the safety assessment of the geological repository for safeguards purposes and the adaptation of the safeguards approach to use non-intrusive inspection techniques. The principles of an inspection approach for a geological repository are now generally accepted within the IAEA. The practical applicability of the envisaged inspection techniques is still subject to investigation. It is specifically important for the Belgian situation that an inspection technique can be used in clay, the geological medium in which Belgium intends to dispose its HLW and spent fuel. The work reported in this chapter is the result of an international cooperation in the framework of the IAEA, in which SCK-CEN participates

  10. Evaluating Boy Scout Geology Education, A Pilot Study

    Science.gov (United States)

    Hintz, R. S.; Thomson, B.

    2008-12-01

    This study investigated geology knowledge acquisition by Boy Scouts through use of the Boy Scout Geology Merit Handbook. In this study, boys engaged in hands-on interactive learning following the requirements set forth in the Geology Merit Badge Handbook. The purposes of this study were to determine the amount of geology content knowledge engendered in adolescent males through the use of the Geology Merit Badge Handbook published by the Boy Scouts of America; to determine if single sex, activity oriented, free-choice learning programs can be effective in promoting knowledge development in young males; and to determine if boys participating in the Scouting program believed their participation helped them succeed in school. Members of a local Boy Scout Troop between the ages of 11 and 18 were invited to participate in a Geology Merit Badge program. Boys who did not already possess the badge were allowed to self-select participation. The boys' content knowledge of geology, rocks, and minerals was pre- and post-tested. Boys were interviewed about their school and Scouting experiences; whether they believed their Scouting experiences and work in Merit Badges contributed to their success in school. Contributing educational theories included single-sex education, informal education with free-choice learning, learning styles, hands-on activities, and the social cognitive theory concept of self-efficacy. Boys who completed this study seemed to possess a greater knowledge of geology than they obtained in school. If boys who complete the Boy Scout Geology Merit Badge receive additional geological training, their field experiences and knowledge acquired through this learning experience will be beneficial, and a basis for continued scaffolding of geologic knowledge.

  11. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 & 2

    Science.gov (United States)

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  12. Environmental impact assessments and geological repositories: A model process

    International Nuclear Information System (INIS)

    Webster, S.

    2000-01-01

    In a recent study carried out for the European Commission, the scope and application of environmental impact assessment (EIA) legislation and current EIA practice in European Union Member States and applicant countries of Central and Eastern Europe was investigated, specifically in relation to the geological disposal of radioactive waste. This paper reports the study's investigations into a model approach to EIA in the context of geological repositories, including the role of the assessment in the overall decision processes and public involvement. (author)

  13. From creekology to geology: Finding and conserving oil on the Southern Plains, 1859--1930

    Science.gov (United States)

    Frehner, Brian

    This dissertation tells the story of the oil industry's westward migration from Pennsylvania to the Southern Plains states of Kansas, Oklahoma, and Texas and how different environments in these regions influenced prospectors' methods for finding oil. Petroleum engineers, geologists, and businessmen take center stage throughout the narrative, and I emphasize how their biases, values, and interests influenced the kind of knowledge produced. At the heart of this story lay a contest between professional, university-trained engineers and geologists and so-called practical oil men, or "wildcatters," who received their training less formally from surveying the landscape. Although both groups performed field work in their search for oil, I explore how each learned very different information from that activity. Wildcatters met with so much success that the oil industry failed to take geologists seriously for approximately fifty years after 1860 when the Pennsylvania oil boom started, and I argue that the environment played an important role in this contest for authority between oil prospectors who learned their trade through hands-on experience and those who learned it primarily in the classroom. I continue this theme by showing how the environment actively influenced the growing acceptance of geologists as the oil industry migrated west and companies with interests in Kansas, Oklahoma, and Texas began hiring geologists and establishing their own geological research departments. A pioneer in the use of geology, Henry L. Doherty, controlled Cities Service holding company and dispatched an army of geologists who discovered significant oil strikes in these states. Doherty's embrace of university-trained experts led him to advocate conservation of oil on the basis of geological and engineering principles. Practical men in Oklahoma, however, recognized the need for conservation even earlier and succeeded in lobbying their state legislature for laws which proved effective long

  14. Experimental Investigation of Embedded Controlled Diesel Engine

    OpenAIRE

    R.Govindaraju; M.Bharathiraja; Dr. K.Ramani; Dr.K.R.Govindan

    2012-01-01

    Diesel engines are widely used in Automobiles, Agriculture and Power generation sectors in a large scale. The modern techniques have contributed a lot in the saving of fuel in these diesel engines. However, from 1970 onwards the fuel consumption becomes a serious concern because of a manifold increase of automobiles and fast depletion of non renewable sources of energy. Since the fuel injection system plays a major role in the consumption of fuel in diesel engines, various control measures we...

  15. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  16. Geological techniques used in the siting of South Africa's nuclear facilities

    International Nuclear Information System (INIS)

    Andersen, N.J.B.

    1990-01-01

    Nuclear site selection studies begin with an initial screening phase in order to pick regions which could be potentially suitable. When assessing a potential nuclear site from a structural geological point of view, the most important factors are the presence of 'capable faults', the seismicity of the area, and the existence of good foundation rock. A geological evaluation of a potential site involves a literature survey for all existing geological data on the site, geophysical investigations, structural domain analysis and geological mapping

  17. Geohydrologic-engineering geology evaluation of the Selma Group in western Alabama and northeast Mississippi for possible radioactive waste disposal

    International Nuclear Information System (INIS)

    Gonzales, S.

    1975-06-01

    The following topics are discussed: regional stratigraphy, lithologic characteristic-chalk sequences, structural geology settting, earthquakes and historical seismicity, regional geomorphology, recovery of geological resources, and groundwater hydrology

  18. Quantitative geological modeling based on probabilistic integration of geological and geophysical data

    DEFF Research Database (Denmark)

    Gulbrandsen, Mats Lundh

    In order to obtain an adequate geological model of any kind, proper integration of geophysical data, borehole logs and geological expert knowledge is important. Geophysical data provide indirect information about geology, borehole logs provide sparse point wise direct information about geology...... entitled Smart Interpretation is developed. This semi-automatic method learns the relation between a set of data attributes extracted from deterministically inverted airborne electromagnetic data and a set of interpretations of a geological layer that is manually picked by a geological expert...

  19. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2006-01-23

    As part of the Department of Energy's (DOE) initiative on developing new technologies for storage of carbon dioxide in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, The Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the October through December 2005 period of the project. As discussed in the following report, the main field activity was reservoir testing in the Copper Ridge ''B-zone'' in the AEP No.1 well. In addition reservoir simulations were completed to assess feasibility of CO{sub 2} injection for the Mountaineer site. These reservoir testing and computer simulation results suggest that injection potential may be substantially more than anticipated for the Mountaineer site. Work also continued on development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. Overall, the current design feasibility phase project is proceeding according to plans.

  20. The geological heritage of the Kurkur-Dungul area in southern Egypt

    Science.gov (United States)

    Sallam, Emad S.; Ponedelnik, Alena A.; Tiess, Günter; Yashalova, Natalia N.; Ruban, Dmitry A.

    2018-01-01

    The inventory of the geological heritage of Egypt is important for its efficient conservation and usage for the purposes of science, education, and tourism. The field investigations in the Kurkur-Dungul area in southern Egypt have permitted to identify several unique geological features. Their type, rank, relative abundance, and intrinsic diversity, as well as importance of the entire geological heritage of the study area are investigated. Seven geological heritage types are distinguished, namely stratigraphical, sedimentary, palaeogeographical, mineralogical, structural, geomorphological, and economical types. The rank of the features belonging to the listed types ranges from local to global, and the relative abundance and the intrinsic diversity range from low to high. The global rank is established for the sedimentary type, which is determined by the wide distribution of palaeospring tufa deposits. The high relative abundance and intrinsic diversity are established for the geomorphological type. The entire geological heritage of the Kurkur-Dungul area can be employed for diversification of the existing tourism programs offered at the tourist destination of Aswan, as well as for geotourism development. A geopark can be created in the Kurkur-Dungul area for the better exploitation of its geological heritage. The combined development of geological and industrial tourism seems to be possible.

  1. Geological Time, Biological Events and the Learning Transfer Problem

    Science.gov (United States)

    Johnson, Claudia C.; Middendorf, Joan; Rehrey, George; Dalkilic, Mehmet M.; Cassidy, Keely

    2014-01-01

    Comprehension of geologic time does not come easily, especially for students who are studying the earth sciences for the first time. This project investigated the potential success of two teaching interventions that were designed to help non-science majors enrolled in an introductory geology class gain a richer conceptual understanding of the…

  2. The Woman Engineering Academic: An Investigation of Departmental and Institutional Environments. ASHE Annual Meeting Paper.

    Science.gov (United States)

    Benson, Sherron D.

    This study used grounded theory methodology to investigate the institutional and departmental climates of women engineering faculty. Seven female engineering faculty from two universities completed semi-structured interviews that were coded for common themes. All the participants indicated that they had had a natural interest or talent for science…

  3. Geologic and operational summary, COST No. 1 well, Georges Bank area, North Atlantic OCS

    Science.gov (United States)

    Amato, Roger V.; Bebout, John W.

    1980-01-01

    The first Continental Offshore Stratigraphic Test (COST) well on the U.S. North Atlantic Outer Continental Shelf (OCS) was drilled by Ocean Production Company between April 6 and July 26, 1976, and designated the COST No. G-l. Geological and engineering data obtained from this deep well in the Georges Bank Basin were used by the 31 participating companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for Lease Sale 42 held on December 18, 1979.

  4. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  5. Experimental investigations on controlled auto-ignition combustion in a four-stroke gasoline engine

    OpenAIRE

    Oakley, Aaron John

    2001-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The effects of air and exhaust gas dilution on the CAI combustion of a range of fuels including three gasoline compositions, four primary reference fuels, and two alcohols are experimentally investigated using a single cylinder research engine. Two of the three gasolines tested are manufactured from standard gasoline during engine operation by a novel fuel system, designed to improve the per...

  6. Investigation of the effect of engine lubricant oil on remote temperature sensing using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Abou Nada, Fahed, E-mail: Fahed.Abou_Nada@forbrf.lth.se; Aldén, Marcus; Richter, Mattias

    2016-11-15

    Phosphor thermometry, a remote temperature sensing technique, is widely implemented to measure the temperature of different combustion engines components. The presence of engine lubricant can influence the behavior of the applied sensor materials, known as thermographic phosphors, and thus leading to erroneous temperature measurements. The effect of two engine lubricants on decay times originating from six different thermographic phosphors was investigated. The decay time of each thermographic phosphor was investigated as a function of lubricant/phosphor mass ratio. Tests were conducted at temperatures around 293 K and 376 K for both lubricants. The investigations revealed that ZnO:Zn and ZnS:Ag are the only ones that exhibit a change of the decay time as function of the lubricant/phosphor mass ratio. While the remaining thermographic phosphors, namely BaMg{sub 2}Al{sub 16}O{sub 27}:Eu (BAM), Al{sub 2}O{sub 3}-coated BaMg{sub 2}Al{sub 16}O{sub 27}:Eu, La{sub 2}O{sub 2}S:Eu, Mg{sub 3}F{sub 2}GeO{sub 4}:Mn, displayed no sensitivity of their characteristic decay time on to the presence of lubricant on the porous coating. Biases in the calculated temperature are to be expected if the utilized thermographic phosphor displays decay time sensitivity to the existence of the engine lubricant within the sensor. Such distortions are concealed and can occur undetected leading to false temperature readings for the probed engine component.

  7. Engineering geologic and geotechnical analysis of paleoseismic shaking using liquefaction effects: Field examples

    Science.gov (United States)

    Green, R.A.; Obermeier, S.F.; Olson, S.M.

    2005-01-01

    The greatest impediments to the widespread acceptance of back-calculated ground motion characteristics from paleoliquefaction studies typically stem from three uncertainties: (1) the significance of changes in the geotechnical properties of post-liquefied sediments (e.g., "aging" and density changes), (2) the selection of appropriate geotechnical soil indices from individual paleoliquefaction sites, and (3) the methodology for integration of back-calculated results of strength of shaking from individual paleoliquefaction sites into a regional assessment of paleoseismic strength of shaking. Presented herein are two case studies that illustrate the methods outlined by Olson et al. [Engineering Geology, this issue] for addressing these uncertainties. The first case study is for a site near Memphis, Tennessee, wherein cone penetration test data from side-by-side locations, one of liquefaction and the other of no liquefaction, are used to readily discern that the influence of post-liquefaction "aging" and density changes on the measured in situ soil indices is minimal. In the second case study, 12 sites that are at scattered locations in the Wabash Valley and that exhibit paleoliquefaction features are analyzed. The features are first provisionally attributed to the Vincennes Earthquake, which occurred around 6100 years BP, and are used to illustrate our proposed approach for selecting representative soil indices of the liquefied sediments. These indices are used in back-calculating the strength of shaking at the individual sites, the results from which are then incorporated into a regional assessment of the moment magnitude, M, of the Vincennes Earthquake. The regional assessment validated the provisional assumption that the paleoliquefaction features at the scattered sites were induced by the Vincennes Earthquake, in the main, which was determined to have M ??? 7.5. The uncertainties and assumptions used in the assessment are discussed in detail. ?? 2004 Elsevier B

  8. Geology in coal resource utilization

    International Nuclear Information System (INIS)

    Peters, D.C.

    1991-01-01

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base

  9. The geology and hydrogeology of Sellafield: an overview

    International Nuclear Information System (INIS)

    Chaplow, Robert

    1996-01-01

    Nirex is responsible for providing and managing a national facility for solid intermediate-level and low-level radioactive waste. Geological and hydrogeological investigations have been in progress at Sellafield in west Cumbria since 1989 aimed at determining whether or not the site is suitable for such a deep repository. Geological investigations have included the drilling of 20 deep boreholes with over 20 000 metres of drilling, together with almost 2000 line kilometres of seismic surveys and over 8000 line kilometres of airborne geophysical surveys. Hydrogeological testing and groundwater sampling and testing have provided additional information on the ground conditions at the site. (author)

  10. Race, class and gender in engineering education: A quantitative investigation of first year enrollment

    Science.gov (United States)

    Phillips, Canek Moises Luna

    Research explanations for the disparity across both race and gender in engineering education has typically relied on a deficit model, whereby women and people of color lack the requisite knowledge or psychological characteristics that Whites and men have to become engineers in sufficient numbers. Instead of using a deficit model approach to explain gender and race disparity, in the three studies conducted for this dissertation, I approach gender and race disparity as the result of processes of segregation linked to the historic and on-going perpetuation of systemic sources of oppression in the United States. In the first study, I investigate the relationship between the odds ratios of women and men enrolled in first year US engineering programs and institutional characteristics. To do this, I employ linear regression to study data from the American Society of Engineering Education (ASEE) and the National Center for Education Statistics (NCES) to quantify relationships between odds ratios and institutional characteristics. Results of the linear regression models showed significant relationships between the cost of universities and university selectivity and the odds ratios of women choosing engineering. I theorize how the results could be related to the operation of occupational segregation in engineering, particularly how class-based markers have been historically used by women to overcome gender-based segregation in engineering. In the second study, I examine longitudinal patterns of race, gender, and intersectional combinations of race and gender in enrollments of students in first year engineering programs across the United States (US). Using enrollment data from the American Society of Engineering Education and California Post-Secondary Education Commission, I construct measures of segregation to study how trends in the disparity of students by race could be related to increases in public school segregation nationally over the past 25 years. I found that as

  11. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  12. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  13. An investigation into the RCCI engine operation under low load and its achievable operational range at different engine speeds

    International Nuclear Information System (INIS)

    Wang, Yifeng; Zhu, ZhongWen; Yao, Mingfa; Li, Tie; Zhang, Weijing; Zheng, Zunqing

    2016-01-01

    Highlights: • The response of allowable RCCI operating range to engine speed variation is studied. • The RCCI and diesel LTC engine operations at are compared at low engine load. • The potential of expanding RCCI operating range at low engine speed is explored. - Abstract: Reactivity controlled compression ignition (RCCI) is demonstrated as a promising combustion strategy to achieve high efficiency and clean combustion. However, less effort has been devoted to examine the achievable RCCI operational range over a wide range of engine speed. In addition, previous studies have found that superior EGR rate and high diesel/gasoline fuel ratio are required to ease the extension of the low-load operating range of RCCI regime. Even then, relatively high CO and HC (unburned hydrocarbon) emissions and the accompanying fuel con-sum ption penalty still remain a problem to be resolved. Therefore, in this work the potential of diesel-fueled LTC to achieve simultaneously low NOx and soot emissions while maintaining high thermal efficiency at low load (IMEP ≈0.23–0.26 MPa) is investigated and compared with the gasoline/diesel RCCI strategy. The results show that the diesel LTC operation can yield slightly higher soot and NOx emissions (soot: 0.002 g/kW h, NOx: 0.446 g/kW h), but CO and HC emissions as well as the fuel consumption are much lower than the RCCI strategy, implying the diesel LTC regime may be more suitable for low-load operations. In addition, the RCCI operational range at speeds ranging from 900 to 2500 r/min is determined, the results show that the maximum achievable load (IMEP) increases with an increase in speed, and a maximum IMEP of 1.2 MPa can be achieved at an engine speed of 2300 r/min. Ultra-low NOx and soot emissions (soot < 0.003 g/kW h, NOx < 0.4 g/kW h) can be achieved under the maximum loading conditions at each speed investigated. However, high levels of CO and HC emissions still remain a big problem to be solved. The lowest fuel consumption

  14. Thermodynamic and Thermoeconomic investigation of an Integrated Gasification SOFC and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Thermodynamic and thermoeconomic investigation of a small scale Integrated Gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kW have been performed. Woodchips are used as gasification feedstock to produce syngas which......-product and the cost of hot water was found to be 0.0214$/kWh. When compared to other renewable systems at similar scale, it shows that if both SOFC and Stirling engine technology emerges enter commercialization phase, then they can deliver electricity at a cost rate which is competitive with corresponding renewable...

  15. Bitumen/Water Emulsions as Fuels for High-Speed Ci Engines Preliminary Investigations

    DEFF Research Database (Denmark)

    Schramm, Jesper; Sigvardsen, R.; Forman, M.

    2003-01-01

    Mixtures of bitumen and water, are cheap fuel alternatives for combustion engines. There are, however, several problems that have to be solved before these fuels can be applied in high-speed diesel engines. These are: - emulsion break up due to high temperature or high shear stress in the injection...... system - high content of heavy metals - high emissions of particulate matter and PAH This investigation deals with the problem of separation due to high shear stress in the injection system. It is shown that the viscosity of the injected fuel can be used to estimate whether the emulsion has separated...

  16. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigations (NNWSI). Progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-30

    This report dated 30 September 1992 provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI){close_quotes}. This progress report was preceded by the progress report for the year from 1 October 1990 to 30 September 1991. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. Ancient engineering geology projects in China; A canal system in Ganzu province and trenches along the Great Wall in Ningxia Hui Autonomous Region

    Science.gov (United States)

    Wallace, R.E.; Bucknam, R.C.; Hanks, T.C.

    1994-01-01

    Two major construction projects of ancient times in China involved what today would be considered engineering geology. We describe an ancient canal system in Gaotai County, Gansu province that was possibly begun in the Han dynasty (206 BC-220 AD). The canal system heads at the Dasha River and extends northwestward for about 55 km to the City of Camels and Xusanwan village. Four parallel canals are present at the local site we examined. The canals were likely built primarily to transport water but may also have served as defensive military barriers. A second project involves trenches and berms along the north side of the Great Wall, clearly part of the Great Wall defensive system. This site is in Ningxia Autonomous Region near the town of Shizuishan. ?? 1994.

  18. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad; El Amin, Mohamed F.; Sun, Shuyu

    2015-01-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since

  19. Foliation: Geological background, rock mechanics significance, and preliminary investigations at Olkiluoto

    International Nuclear Information System (INIS)

    Milnes, A.G.; Hudson, J.; Wikstroem, L.; Aaltonen, I.

    2006-01-01

    A well developed, pervasive foliation is a characteristic feature of the migmatites and gneisses in the Olkiluoto bedrock, and is expected to have a significant influence on the underground construction, the design and layout and the groundwater flow regime of a deep spent nuclear fuel repository. This Working Report reviews the geological background and rock mechanics significance of foliation, and develops a methodology for the systematic acquisition of foliation data in cored boreholes and in tunnels at the Olkiluoto site, to provide the necessary basis for future geological, rock mechanics and hydrogeological modelling. The first part of the methodology concerns foliation characterisation, and develops a characterisation scheme based on two variables: the foliation type (G = gneissic, B = banded, S = schistose), which is a function of mineral composition and degree of smallscale heterogeneity, and the foliation intensity (1 = low, 2 = intermediate, 3 = high), which is a function of the type and intensity of the deformation by which it was produced (under high-grade metamorphic conditions in the core of the Svecofennian orogenic belt). At the suggested reference scales (1 m length of core, 10 m 2 area of tunnel wall), the most representative foliation type and intensity is assessed using a standard set of core photographs, which are included as an Appendix at the end of the report, providing a systematic description in terms of 9 descriptive types (G1, G2, G3, B1, B2, B3, S1, S2, S3). As a further step, the rock mechanics significance of these types is assessed and a rock mechanics foliation (RMF) number is assigned (RMF 0 = no significance, RMF 1, RMF 2 and RMF 3 = low, intermediate and high significance, respectively). The second part of the methodology concerns the orientations of the foliation within the same 1 m core lengths or 10 m2 wall areas, which have been characterised as above. This combined analysis of foliation character and foliation orientation

  20. Geological and Petrographic Characteristics of Kimberlite Pipes

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2016-12-01

    Full Text Available Studies of the geological structure and petrochemical composition of the Siberian Platform kimberlites indicated complexity, diversity of geological, tectonic, and paleogeographic situations, which must be considered for proper prospecting-exploration for diamonds in each area of investigation. Information about petrochemical composition of potential diatremes, hosting, and overlying sedimentary and magmatic formations is an important prerequisite for prospecting of kimberlite deposits in different geologic-tectonic conditions. The most attention should be paid to typomorphic specific features of primary and secondary minerals of diatremes. Each diamondiferous region is characterized by a certain set of typomorphic associations of kimberlites primary and secondary minerals. The diamonds with ultrabasic association of solid phase inclusions (olivine, chrome-spinel, pyrope, etc. dominate in majority of kimberlite pipes.

  1. Annotated bibliography of the geology of the Columbia Plateau (Columbia River Basalt) and adjacent areas of Oregon

    International Nuclear Information System (INIS)

    Bela, J.

    1979-01-01

    This bibliography containing approximately 2000 entries was prepared by the Oregon Department of Geology and Mineral Industries under Subcontract SA-913 with Rockwell Hanford Operations' Basalt Waste Isolation Program. The objective of the Basalt Waste Isolation Program is to determine the feasibility of storing nuclear waste within the Columbia River Basalt Group. Under the geologic portion of this program, the stratigraphic, structural, tectonic, seismic, and hydrologic aspects of the Columbia Plateau are being examined. Other aspects of the Basalt Waste Isolation Program are concerned with systems integration, engineered barriers, engineering testing, and construction of a near-surface test facility. The area covered in this bibliography comprises that area north of 43 0 30' latitude and east of the Willamette Meridian, which is located just west of Portland. The bibliographic entries are presented in two forms. The first is an alphabetized listing of all articles dealing with the geology of the Columbia Plateau (Columbia River Basalt) and adjacent areas of Oregon. The second form consists of an alphabetized listing of the entries subdivided under fourteen categories

  2. Annotated bibliography of the geology of the Columbia Plateau (Columbia River Basalt) and adjacent areas of Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Bela, J.

    1979-01-01

    This bibliography containing approximately 2000 entries was prepared by the Oregon Department of Geology and Mineral Industries under Subcontract SA-913 with Rockwell Hanford Operations' Basalt Waste Isolation Program. The objective of the Basalt Waste Isolation Program is to determine the feasibility of storing nuclear waste within the Columbia River Basalt Group. Under the geologic portion of this program, the stratigraphic, structural, tectonic, seismic, and hydrologic aspects of the Columbia Plateau are being examined. Other aspects of the Basalt Waste Isolation Program are concerned with systems integration, engineered barriers, engineering testing, and construction of a near-surface test facility. The area covered in this bibliography comprises that area north of 43/sup 0/30' latitude and east of the Willamette Meridian, which is located just west of Portland. The bibliographic entries are presented in two forms. The first is an alphabetized listing of all articles dealing with the geology of the Columbia Plateau (Columbia River Basalt) and adjacent areas of Oregon. The second form consists of an alphabetized listing of the entries subdivided under fourteen categories. (RWR)

  3. Device for investigation of the porosity of geological formations

    International Nuclear Information System (INIS)

    Tittman, J.; Hickman, W.J.

    1978-01-01

    A device for neutron well logging is described in which errors due to caked drilling mud on the walls of the hole are compensated for. This is achieved by using two neutron sources and two detectors. One of the neutron sources emits neutrons with so high energy, about 3 or 4 MeV, that their slowing down length is much greater than the thickness of the drilling mud, while the other emits neutrons with an energy of about 240 KeV (lithium-plutonium) or 25 KeV (antimony - beryllium), ie they have a very high probability of interacting with the material in the drilling mud. The detectors are adjusted to react selectively to neutrons of epithermal energy, and the difference in the signals represents the porosity, or hydrocarbon content of the geological formation. (JIW)

  4. Study on the development of geological environmental model. 2

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Saito, Shigeyuki; Ueta, Shinzo; Ohashi, Toyo; Sasaki, Ryouichi; Tomiyama, Shingo

    2003-02-01

    The safety performance assessment was carried out in imaginary geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process from the data production to analysis in the three fields, and to systematize the knowledge base that unifies the information flow hierarchically. The information flow for geological environment model generation process is examined and modified base on the product of the research of 'Study on the development of geological environment model' that was examined in 2002. The work flow diagrams for geological structure and hydrology are modified, and those for geochemical and rock property are examined from the scratch. Furthermore, database design was examined to build geoclinal environment database (knowledgebase) based on the results of the systemisation of the environment model generation technology. The geoclinal environment database was designed and the prototype system is build to contribute databased design. (author)

  5. Simulation investigation of flow field inside the rotary engine : during intake and compression stroke

    Energy Technology Data Exchange (ETDEWEB)

    Poojitganont, T.; Berg, H.P.; Izweik, H.T. [Brandenburg Univ. of Technology Cottbus, Cottbus (Germany)

    2009-07-01

    As a result of continuously increasing oil prices, automotive industries are looking for alternative power sources for their automobiles. An excellent solution is the hybrid system. However due to the additional weight of its batteries, this causes the total weight of the car to increase. This higher battery weight can be compensated by reducing the weight of the engine. A rotary engine, such as the Wankel rotary engine, has a more attractive power to weight ratio than the normal reciprocating engine. The rotary engine can be treated and evaluated with respect to performance characteristics as a displacement type, four-stroke internal combustion engine, one-cycle similar to the reciprocating engine. For any combustion engine to reach the maximum power output, the mixture formation inside the engine should be considered. The flow phenomenon inside the engine is a key parameter which involves the mixture formation mechanism. This paper investigated the spray characteristic from the injector and the flow phenomena inside the combustion chamber. Its behaviours were studied using computational fluid dynamics simulation. The simulation setup was described in detail, with reference to meshes; initial condition; and boundary condition. Verification of the calculation was also presented. A comparison of the temperature during compression stroke from the analytical calculation and the adiabetic system simulation were also illustrated. Simulation results showed that the speed of the engine provides a proportional effect on the magnitude of air velocity inside the engine, whereas the circulation region can be expanded by increasing the intake pressure during the intake stroke. 9 refs., 1 tab., 13 figs.

  6. Competitive platinum-group-metal (PGM) supply from the Eastern Limb, Bushveld Complex: Geological, mining and mineral economic aspects

    CSIR Research Space (South Africa)

    McGill, JE

    2011-08-01

    Full Text Available -GROUP-METAL (PGM) SUPPLY FROM THE EASTERN LIMB, BUSHVELD COMPLEX: GEOLOGICAL, MINING, AND MINERAL ECONOMIC ASPECTS Dr. Jeannette E. McGill & Prof. Murray W. Hitzman ACKNOWLEDGEMENTS ? COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH (CSIR) ? Centre for Mining... Innovation ? Office of Graduate Studies, Fogarty Endowment ? Mr. VISHNU PILLAY (EXECUTIVE HEAD: JV?S ? Anglo Platinum) ? ACADEMIC ADVISORS Prof. Murray Hitzman (Economic Geology); Dr. Hugh Miller (Mining Engineering); Prof. Rodderick Eggert (Mineral...

  7. On the road to personalised and precision geomedicine: medical geology and a renewed call for interdisciplinarity.

    Science.gov (United States)

    Kamel Boulos, Maged N; Le Blond, Jennifer

    2016-01-28

    Our health depends on where we currently live, as well as on where we have lived in the past and for how long in each place. An individual's place history is particularly relevant in conditions with long latency between exposures and clinical manifestations, as is the case in many types of cancer and chronic conditions. A patient's geographic history should routinely be considered by physicians when diagnosing and treating individual patients. It can provide useful contextual environmental information (and the corresponding health risks) about the patient, and should thus form an essential part of every electronic patient/health record. Medical geology investigations, in their attempt to document the complex relationships between the environment and human health, typically involve a multitude of disciplines and expertise. Arguably, the spatial component is the one factor that ties in all these disciplines together in medical geology studies. In a general sense, epidemiology, statistical genetics, geoscience, geomedical engineering and public and environmental health informatics tend to study data in terms of populations, whereas medicine (including personalised and precision geomedicine, and lifestyle medicine), genetics, genomics, toxicology and biomedical/health informatics more likely work on individuals or some individual mechanism describing disease. This article introduces with examples the core concepts of medical geology and geomedicine. The ultimate goals of prediction, prevention and personalised treatment in the case of geology-dependent disease can only be realised through an intensive multiple-disciplinary approach, where the various relevant disciplines collaborate together and complement each other in additive (multidisciplinary), interactive (interdisciplinary) and holistic (transdisciplinary and cross-disciplinary) manners.

  8. Rock solid: the geology of nuclear waste disposal

    International Nuclear Information System (INIS)

    Reid, Elspeth.

    1990-01-01

    With a number of nuclear submarines and power stations due to be decommissioned in the next decade, stores of radioactive waste, and arguments about storage increase. Whatever the direction taken by the nuclear industry in Britain, the legacy of waste remains for the foreseeable future. Geology is at the heart of the safety argument for nuclear wastes. It is claimed that rocks should act as the main safety barrier, protecting present and future generations from radiation. Rock Solid presents a clear, accessible and up to date account of the geological problems involved in building a nuclear waste repository. The author describes the geology of some of the possible UK repository sites (Sellafield, Dounreay, Altnabreac, Billingham), explains how sites are investigated (including computer models), and finally considers the crucial question: 'would geological containment of radioactive waste actually work?'. (author)

  9. The Folding and Fracturing of Rocks: A milestone publication in Structural Geology research

    Science.gov (United States)

    Lisle, Richard; Bastida, Fernando

    2017-04-01

    In the field of structural geology, the textbook written by John G Ramsay in 1967, reprinted in 2004 and translated into Spanish and Chinese, is the one that has made the greatest research impact. With citations exceeding 4000 (Google Scholar) it far surpasses books by other authors on the subject, with this figure only being approached by his later book Modern Structural Geology (Ramsay and Huber 1983). In this paper we consider the factors that account for the book's success despite the fact that it is a research-level text beyond the comfort zone of most undergraduates. We also take stock of other measures of the book's success; the way it influenced the direction subsequent research effort. We summarize the major advances in structural geology that were prompted by Ramsay's book. Finally we consider the book's legacy. Before the publication of the book in 1967 structural geology had been an activity that had concentrated almost exclusively on geological mapping aimed at establishing the geometrical configuration of rock units. In fact, Ramsay himself has produced beautiful examples of such maps. However, the book made us aware that the geometrical pattern is controlled by the spatial variation of material properties, the boundary conditions, the deformation environment and the temporal variation of stresses. With the arrival of the book Structural Geology came of age as a modern scientific discipline that employed a range of tools such as those of physics, maths and engineering as well as those of geology.

  10. Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations

    Czech Academy of Sciences Publication Activity Database

    Winchester, J. A.; Floyd, P. A.; Crowley, Q. G.; Piasecki, M. A. J.; Lee, M. K.; Pharaoh, T. C.; Williamson, P.; Banka, D.; Verniers, J.; Samuelsson, J.; Bayer, U.; Marotta, A. M.; Lamarche, J.; Franke, W.; Dörr, W.; Valverde-Vaquero, P.; Giese, U.; Vecoli, M.; Thybo, H.; Laigle, M.; Scheck, M.; Maluski, H.; Marheine, D.; Noble, S. R.; Parrish, R. R.; Evans, J.; Timmerman, H.; Gerdes, A.; Guterch, A.; Grad, M.; Cwojdzinski, S.; Cymerman, Z.; Kozdroj, W.; Kryza, R.; Alexandrowski, P.; Mazur, S.; Štědrá, V.; Kotková, J.; Belka, Z.; Patočka, František; Kachlík, V.

    2002-01-01

    Roč. 360, 1-4 (2002), s. 5-21 ISSN 0040-1951 R&D Projects: GA AV ČR IAA3111102 Keywords : Palaeozoic Gondwana margin * Trans-European Suture Zone * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.409, year: 2002

  11. The construction of geological model using an iterative approach (Step 1 and Step 2)

    International Nuclear Information System (INIS)

    Matsuoka, Toshiyuki; Kumazaki, Naoki; Saegusa, Hiromitsu; Sasaki, Keiichi; Endo, Yoshinobu; Amano, Kenji

    2005-03-01

    One of the main goals of the Mizunami Underground Research Laboratory (MIU) Project is to establish appropriate methodologies for reliably investigating and assessing the deep subsurface. This report documents the results of geological modeling of Step 1 and Step 2 using the iterative investigation approach at the site-scale (several 100m to several km in area). For the Step 1 model, existing information (e.g. literature), and results from geological mapping and reflection seismic survey were used. For the Step 2 model, additional information obtained from the geological investigation using existing borehole and the shallow borehole investigation were incorporated. As a result of this study, geological elements that should be represented in the model were defined, and several major faults with trends of NNW, EW and NE trend were identified (or inferred) in the vicinity of the MIU-site. (author)

  12. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    Science.gov (United States)

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  13. Development of Spherical Near Field Model for Geological Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Kim, S. Y.; Lee, K. J.; Chang, S. H.; Lee, K. J.; Chang, S. H.

    2012-01-01

    Modeling for geological radioactive waste repository can be divided into 3 parts. They are near field modeling related to engineered barrier, far field modeling related to natural barrier and biosphere modeling. In order to make the general application for safety assessment of geological waste repository, spherical geometry near field model has been developed. This model can be used quite extensively when users calculate equivalent spherical geometry for specific engineered barrier like equivalent waste radius, equivalent barrier radius and etc. Only diffusion was considered for general purpose but advection part can be updated. Goldsim and Goldsim Radionuclide Transport (RT) module were chosen and used as developing tool for the flexible modeling. Developer can freely make their own model with developer friendly graphic interface by using Goldsim. Furthermore, model with user friendly graphic interface can be developed by using Goldsim Dashboard Authoring module. The model has been validated by comparing the result with that of another model, inserting similar inputs and conditions. The model has been proved to be reasonably operating from the comparison result by validation process. Cylindrical model can be developed as a further work based on the knowledge and experience from this research

  14. Development of Spherical Near Field Model for Geological Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Lee, K. J.; Chang, S. H. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, K. J.; Chang, S. H. [Khalifa Univ. of Science/Technology and Research, Abu Dhabi (United Arab Emirates)

    2012-03-15

    Modeling for geological radioactive waste repository can be divided into 3 parts. They are near field modeling related to engineered barrier, far field modeling related to natural barrier and biosphere modeling. In order to make the general application for safety assessment of geological waste repository, spherical geometry near field model has been developed. This model can be used quite extensively when users calculate equivalent spherical geometry for specific engineered barrier like equivalent waste radius, equivalent barrier radius and etc. Only diffusion was considered for general purpose but advection part can be updated. Goldsim and Goldsim Radionuclide Transport (RT) module were chosen and used as developing tool for the flexible modeling. Developer can freely make their own model with developer friendly graphic interface by using Goldsim. Furthermore, model with user friendly graphic interface can be developed by using Goldsim Dashboard Authoring module. The model has been validated by comparing the result with that of another model, inserting similar inputs and conditions. The model has been proved to be reasonably operating from the comparison result by validation process. Cylindrical model can be developed as a further work based on the knowledge and experience from this research.

  15. The U.S. Geological Survey Geologic Collections Management System (GCMS)—A master catalog and collections management plan for U.S. Geological Survey geologic samples and sample collections

    Science.gov (United States)

    ,

    2015-01-01

    The U.S. Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of earth materials collected by research personnel over the course of its history. In 2006, a Geologic Collections Inventory was conducted within the USGS Geology Discipline to determine the extent and nature of its sample collections, and in 2008, a working group was convened by the USGS National Geologic and Geophysical Data Preservation Program to examine ways in which these collections could be coordinated, cataloged, and made available to researchers both inside and outside the USGS. The charge to this working group was to evaluate the proposition of creating a Geologic Collections Management System (GCMS), a centralized database that would (1) identify all existing USGS geologic collections, regardless of size, (2) create a virtual link among the collections, and (3) provide a way for scientists and other researchers to obtain access to the samples and data in which they are interested. Additionally, the group was instructed to develop criteria for evaluating current collections and to establish an operating plan and set of standard practices for handling, identifying, and managing future sample collections. Policies and procedures promoted by the GCMS would be based on extant best practices established by the National Science Foundation and the Smithsonian Institution. The resulting report—USGS Circular 1410, “The U.S. Geological Survey Geologic Collections Management System (GCMS): A Master Catalog and Collections Management Plan for U.S. Geological Survey Geologic Samples and Sample Collections”—has been developed for sample repositories to be a guide to establishing common practices in the collection, retention, and disposal of geologic research materials throughout the USGS.

  16. Engineering geological zonation of a complex landslide system through seismic ambient noise measurements at the Selmun Promontory (Malta)

    Science.gov (United States)

    Iannucci, Roberto; Martino, Salvatore; Paciello, Antonella; D'Amico, Sebastiano; Galea, Pauline

    2018-05-01

    The cliff slope of the Selmun Promontory, located in the Northern part of the island of Malta (Central Mediterranean Sea) close to the coastline, is involved in a landslide process as exhibited by the large block-size talus at its bottom. The landslide process is related to the geological succession outcropping in the Selmun area, characterized by the overposition of a grained limestone on a plastic clay, that induces a lateral spreading phenomenon associated with detachment and collapse of different-size rock blocks. The landslide process shapes a typical landscape with a stable plateau of stiff limestone bordered by an unstable cliff slope. The ruins of Għajn Ħadid Tower, the first of the 13 watchtowers built in 1658 by the Grand Master Martin de Redin, stand out on the Selmun Promontory. The conservation of this important heritage site, already damaged by an earthquake which struck the Maltese Archipelago on 1856 October 12, is currently threatened by a progressive retreat of the landslide process towards the inland plateau area. During 2015 and 2016, field surveys were carried out to derive an engineering geological model of the Selmun Promontory. After a high-resolution geomechanical survey, the spatial distribution of the joints affecting the limestone was obtained. At the same time, 116 single-station noise measurements were carried out to cover inland and edge of the limestone plateau as well as the slope where the clays outcrop. The obtained 1-hour time histories were analysed through the horizontal to vertical spectral ratio technique, as well as polarization and ellipticity analysis of particle motion to define the local seismic response in zones having different stability conditions, that is, related to the presence of unstable rock blocks characterized by different vibrational modes. The results obtained demonstrate the suitability of passive seismic geophysical techniques for zoning landslide hazard in case of rock slopes and prove the relevance of

  17. Horonobe underground research laboratory project. The plan for the in-situ experiments in Phase 2 and Phase 3 in/around URL

    International Nuclear Information System (INIS)

    Matsui, Hiroya

    2005-09-01

    This report describes for preliminary research plan in Phase 2 and Phase 3 taken into consideration of expected geological environment at location of URL based on the results of the investigations until FY 2003/2004. Duration of construction phase and total cost are considered as important factors for planning as well. The below items are planned for in-situ experiments in Phase 2 and Phase 3 in/around URL are planning. Phase 2. (In-situ experiments for understanding of geological environment) Geological survey at tunnel. Inflow measurement in shafts. Water pressure monitoring and groundwater sampling around shafts during excavation of URL. Investigation for EDZ around shafts. Stress measurement on support. Detail investigations for geological environment around drifts. Excavation disturbance experiment in a drift. Investigation for desaturation zone and REDOX condition around drifts. (Engineered barrier system) In-situ experiment on low-alkali concrete. In-situ experiment for gas migration in engineering barrier system. Phase 3. (In-situ experiments for understanding of geological environment) EDZ experiment for stress interference. Investigation of long-term behavior of EDZ around drifts. Detail investigation on fault/fault zone. Monitoring for the change of geological environment at earthquake. Backfill test in boreholes. (Engineered barrier system) T-H-M-C experiment. In-situ experiment for corrosion of overpack. Investigation of the influence of a concrete to engineering barrier system and geological environment. In-situ experiment for interference between backfill material and geological environment. Backfill test in a drift. (Safety assessment) Tracer tests in engineering barrier system, natural barrier and fault/fault zone. (author)

  18. Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, J W; Irick, D K [Univ. of Tennessee, Knoxville, TN (United States)

    1998-04-01

    The authors have completed a study in which they investigated the use of a rich combustor to aid in cold starting spark-ignition engines fueled with either neat ethanol or neat methanol. The rich combustor burns the alcohol fuel outside the engine under fuel-rich conditions to produce a combustible product stream that is fed to the engine for cold starting. The rich combustor approach significantly extends the cold starting capability of alcohol-fueled engines. A design tool was developed that simulates the operation of the combustor and couples it to an engine/vehicle model. This tool allows the user to determine the fuel requirements of the rich combustor as the vehicle executes a given driving mission. The design tool was used to design and fabricate a rich combustor for use on a 2.8 L automotive engine. The system was tested using a unique cold room that allows the engine to be coupled to an electric dynamometer. The engine was fitted with an aftermarket engine control system that permitted the fuel flow to the rich combustor to be programmed as a function of engine speed and intake manifold pressure. Testing indicated that reliable cold starts were achieved on both neat methanol and neat ethanol at temperatures as low as {minus}20 C. Although starts were experienced at temperatures as low as {minus}30 C, these were erratic. They believe that an important factor at the very low temperatures is the balance between the high mechanical friction of the engine and the low energy density of the combustible mixture fed to the engine from the rich combustor.

  19. ERG [Engineering Review Group] and GRG [Geologic Review Group] review of the horizontal versus vertical modes of waste emplacement at the Deaf Smith County site, Texas

    International Nuclear Information System (INIS)

    Chytrowski, B.R.

    1988-01-01

    The Engineering Review Group (ERG) and Geologic Review Group (GRG) were established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate specific issues in the US Department of Energy's nuclear waste repository program. The December 1985 meeting and the February 1986 meeting dealt with the evaluation of the Fluor Technology, Inc., architect-engineer recommendation of the horizontal mode of waste package emplacement for the Site Characterization Plan Conceptual Design Report (SCP-CDR). The ONWI recommendation regarding horizontal and vertical modes of waste package emplacement and associated studies was reviewed. This report documents the ERG and GRG's comments and recommendations on this subject and ONWI responses to the specific points raised by these groups. The ERG and GRG joint review groups concurred with ONWI recommendations that additional studies are required in order to reach a decision on the method of emplacement to be used. In the opinion of these groups, both methods can be implemented; however, should the decision be reached today the vertical mode would be preferred

  20. GEOLOGICAL INVESTIGATION OF PALAEOTSUNAMIS IN THE SAMOAN ISLANDS: INTERIM REPORT AND RESEARCH DIRECTIONS

    Directory of Open Access Journals (Sweden)

    Tim Davies

    2013-01-01

    Full Text Available The September 29, 2009 Samoa Tsunami provided the opportunity to sample the sediments deposited in the Samoan Islands landscape by the tsunami. Analysing the characteristics of the sediment deposits using an established suite of diagnostic criteria, and assessing how they differ from cyclone deposits enables the identification and dating of similar events in the geologic record. This helps to better understand the long-term frequency and likely magnitude of these events. Here we report on a pilot palaeotsunami field-sampling investigation carried out in 2010 at selected sites on Upolu and Savaii Islands in the Independent State of Samoa, and on Ta’u Island in American Samoa. We present empirical stratigraphic data for the investigated sites, and we demonstrate the existence of high energy marine inundation deposits at some of these sites which were laid down by past tsunamis and/or cyclones. We review and discuss the analytical outcomes, as well as summarise the overarching directions of this research. We propose that there is a need for this study to continue and for such studies to be carried out in other islands in the Pacific. By doing this, we can build on the sparse palaeotsunami database in the region, thereby helping to improve our understanding of the long-term frequency, impact distribution, and likely magnitude of these events. Further, we can start assessing their likely sources and the long-term risk these hazards pose to coastal cities and communities in the Pacific.

  1. Significant achievements in the planetary geology program. Final report

    International Nuclear Information System (INIS)

    Head, J.W.

    1978-12-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include the following: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included

  2. Application of VSP to geological investigation; P ha oyobi S ha VSP wo mochiita shinso chishitsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    Kinugasa, Y [Geological Survey of Japan, Tsukuba (Japan); Feng, S; Sugiyama, T; Ishikawa, K [Chuoh Kaihatsu Corp., Tokyo (Japan)

    1997-05-27

    Discussed in this paper are the P-wave and S-wave zero-offset VSPs carried out utilizing boreholes located in Nada Ward, Kobe City, and Hokudan-cho, Hyogo Prefecture, as part of the deep layer boring survey following Hanshin Earthquake Disaster. This effort aims at the elucidation of P-wave and S-wave velocity structures, high-precision identification of data obtained by the surface reflection method, and collection of basic data for active faults investigation in the future. Among the velocity structures obtained for various layers, the S-wave velocity structures in particular agree with the stratigraphy excellently and may be utilized in seismic analyses to be conducted in the future. Reflection from geological boundaries is received with precision, providing accurate information about correlation between reflection and geological cross sections. The records will be useful in formulating plans for reflection surveys for instance of the boundary between the Osaka group and Kobe group. Generally speaking, reflection coefficients are large when the reflection is from a boundary where difference is great in elastic wave impedance (mainly difference in velocity). In the case of the boundary between the Kobe group and granite in Awaji Island, however, no strong reflection is found despite the great difference in velocity. This is attributed to the complicated, sharp inclination of the basement rock and to its weathering. 4 refs., 8 figs.

  3. A contactless positioning system for monitoring discontinuities in three dimensions with geological and geotechnical applications

    Czech Academy of Sciences Publication Activity Database

    Rinaldi-Montes, N.; Rowberry, Matthew David; Frontera, C.; Baroň, I.; Garcés, G.; Blahůt, Jan; Pérez-López, R.; Pennos, C.; Martí, Xavier

    2017-01-01

    Roč. 88, č. 7 (2017), č. článku 074501. ISSN 0034-6748 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985891 ; RVO:68378271 Keywords : mechanical discontinuities * contactless positioning system * magnetoresistive sensing * geotechnical engineering * structural health monitoring Subject RIV: JB - Sensors, Measurment, Regulation; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Environmental and geological engineering , geotechnics; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 1.515, year: 2016

  4. Investigation of a wet ethanol operated HCCI engine based on first and second law analyses

    International Nuclear Information System (INIS)

    Khaliq, Abdul; Trivedi, Shailesh K.; Dincer, Ibrahim

    2011-01-01

    In this paper, a conceptual wet ethanol operated homogeneous charge compression ignition (HCCI) engine is proposed to shift the energy balance in favor of ethanol. The investigated option, HCCI engine is a relatively new type of engine that has some fundamental differences with respect to other prime movers. Combined first and second law of thermodynamic approach is applied for a HCCI engine operating on wet ethanol and computational analysis is performed to investigate the effects of turbocharger compressor ratio, ambient temperature, and compressor adiabatic efficiency on first law efficiency, second law efficiency, and exergy destruction in each component. First law and second law efficiencies are found to be an increasing function of the turbocharger pressure ratio, while they are found to be a decreasing function of the ambient temperature. The effect of turbocharger pressure ratio on exergy destruction is found to be more significant than compressor efficiency and ambient temperature. Exergy analysis indicates that maximum exergy is destroyed in HCCI engine which represents about 90.09% of the total exergy destruction in the overall system. Around 4.39% exergy is destroyed by the process of heat transfer in fuel vaporizer and heat exchanger. Catalytic converter contributes about 4.08% of the total exergy destruction. This will provide some original information on the role of operating variables and will be quite useful in obtaining the optimum design of ethanol fuelled HCCI engines. - Highlights: → Direct utilization of wet ethanol in HCCI engines shift the energy balance in favor of ethanol. → First and second law efficiencies of wet ethanol operated HCCI engine increases with the increase in the turbocharger pressure ratio and its polytropic efficiency. → Second law analysis provides a suitable ranking among the components of the system in terms of exergy destruction. → Analysis of the results clearly showed that the highest irreversibility sources

  5. Geological status of NWTS repository siting activities in the paradox basin

    International Nuclear Information System (INIS)

    Frazier, N.A.; Conwell, F.R.

    1981-01-01

    Emplacement of waste packages in mined geological repositories is one method being evaluated for isolating high-level nuclear wastes. Granite, dome salt, tuff, basalt and bedded salt are among the rock types being investigated. Described in this paper is the status of geological activities in the Paradox Basin of Utah and Colorado, one region being explored as a part of the National Waste Terminal Storage (NWTS) program to site a geological repository in bedded salt

  6. Research and development of the geological environment data base management system

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko

    1989-10-01

    PNC (Power Reactor and Nuclear Fuel Development Corporation) has been carrying out investigation and research to understand characteristics of the geological environment throughout the country of Japan so as to prepare the fundamental data for evaluation of suitability of the entire geological environment. Being accumulated are a large quantity and variety of data on the geological environment which comprises the geology, lithology, geomechanics, geochemistry, geotectonic conditions and resource potential. It will be necessary hereafter to manage these data efficiently and apply them to comprehensive analysis to assess the framework of the geological environment of Japan. Thus it was decided that a computer aided data management system would be introduced to support extensively the task of experts in charge of investigation and evaluation of the geological environment of Japan. A basic design and a development plan of the system, named Geological Environment Data Base Management System, were made on the basis of task analysis and investigation on current technology of computer graphics which consists of the most important factor of the system development. The method of data management and the specification of functions to be realized were examined. The user-interface is designed in consideration of application of the system to presentation for public acceptance and operation by the unexperienced. The whole system is divided into seven subsystems and the entire program is compiled as an assembly of modules corresponding to each functions so that the system is applicable to partial reforming and functional expansion with the change of requirement to the system or the advance of computer technology in future. Only the input and output data format of each subsystems are standardized and unified to maintain the compatibility in the system. (author)

  7. AN EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF VARIABLE VALVE TIMING ON THE PERFORMANCE IN SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    Ali AKBAŞ

    2001-01-01

    Full Text Available In this study, an alternative prototype has been designed and constructed for variable valve timing systems which are used in spark ignition engines. The effects of intake valve timing and lift changing on engine performance have been investigated without changing the opening duration of the valves. A four stroke, single cylinder, spark ignition engine has been used for these experiments.

  8. Geological investigation of hydrothermal alteration haloes in Toyoha geothermal field, Hakkaido

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, T; Furukawa, Y; Sugawara, K; Nishimura, S; Okabe, K

    1978-01-01

    In Toyoha geothermal field, the altered haloes are located along a tectonic line extending on a NW-SE direction along the Yunosawa River, east of the Toyoha Mine, a well known Neogene epithermal ore deposit. The investigation was carried out to clarify the stage of alteration, based on the altered haloes geologic structure, composition, and size. The Quaternary distribution at the eastern foot of Mt. Yotei was also studied. The field is covered by various kinds of Miocene sediments but the altered haloes are found only in an area covered by the Takinosawa formation and its older formations. Among the Yunosawa, Koyanagizawa and Takinosawa alteration haloes, the Yunosawa is the most important. It is composed of blocky silicified rock extending along a river and surrounding argillaceous rock. The silicified rock is composed primarily of quartz and subordinate alunite and opal, while the argillaceous rock consists chiefly of kaloin and is characterized by the occasional presence of sericite and montmorillinite. Fission-track and /sup 14/C methods were employed to determine the stage of alteration, but the results were unsatisfactory. The sublimation sulfur ore deposits in the Yunosawa and Koyanagizawa areas were comparatively small, but their original depositional features remain intact, indicating that geothermal activity continued until recently. Yunosawa is the most promising area as it is closely related to the tectonic line and also it has extraordinarily high ground temperature determined by a recent heat flow survey. Twenty-three references are provided.

  9. Investigation of geology and hydrology of the upper and middle Verde River watershed of central Arizona: a project of the Arizona Rural Watershed Initiative

    Science.gov (United States)

    Woodhouse, Betsy; Flynn, Marilyn E.; Parker, John T.C.; Hoffmann, John P.

    2002-01-01

    The upper and middle Verde River watershed in west-central Arizona is an area rich in natural beauty and cultural history and is an increasingly popular destination for tourists, recreationists, and permanent residents seeking its temperate climate. The diverse terrain of the region includes broad desert valleys, upland plains, forested mountain ranges, narrow canyons, and riparian areas along perennial stream reaches. The area is predominantly in Yavapai County, which in 1999 was the fastest-growing rural county in the United States (Woods and Poole Economics, Inc., 1999); by 2050, the population is projected to more than double. Such growth will increase demands on water resources. The domestic, industrial, and recreational interests of the population will need to be balanced against protection of riparian, woodland, and other natural areas and their associated wildlife and aquatic habitats. Sound management decisions will be required that are based on an understanding of the interactions between local and regional aquifers, surface-water bodies, and recharge and discharge areas. This understanding must include the influence of climate, geology, topography, and cultural development on those components of the hydrologic system. In 1999, the U.S. Geological Survey (USGS), in cooperation with the Arizona Department of Water Resources (ADWR), initiated a regional investigation of the hydrogeology of the upper and middle Verde River watershed. The project is part of the Rural Watershed Initiative (RWI), a program established by the State of Arizona and managed by the ADWR that addresses water supply issues in rural areas while encouraging participation from stakeholder groups in affected communities. The USGS is performing similar RWI investigations on the Colorado Plateau to the north and in the Mogollon Highlands to the east of the Verde River study area (Parker and Flynn, 2000). The objectives of the RWI investigations are to develop: (1) a single database

  10. Overview of the site selection, geological and engineering problems facing radioactive waste disposal at Sellafield, UK

    International Nuclear Information System (INIS)

    Haszeldine, R.S.; Smythe, D.K.

    1996-01-01

    UK Nirex Ltd is the company charged with finding a suitable site for the disposal of radioactive waste in the United Kingdom. Since 1991, Nirex has concentrated its site investigation work at Longlands Farm which is owned by British Nuclear Fuels Ltd and is near their Sellafield site. Planning permission was sought for the development of an underground Rock Characterisation Facility (RCF) at the site in 1994. A public Planning Inquiry began in September 1995. A wide range of scientific and technical objections were put by expert witnesses against the Nirex Proposal. These witnesses were co-ordinated by three Objecting Organisations - Cumbria County Council, Friends of the Earth and Greenpeace. Their written evidence is presented in this book. The grounds of the objections include: the inadequacy of the methodology adopted by Nirex for site selection and investigation; The unsuitability of the site geology, hydrology and geochemistry; that construction of the RCF would destroy the data essential to deciding site suitability; that the RCF would provide a conduit for the release of radioactivity; a number of features in the Nirex risk assessment that would lead to an underestimation of the potential risks of a repository at this site. (UK)

  11. Engineering rock mass classification of the Olkiluoto investigation site

    Energy Technology Data Exchange (ETDEWEB)

    Aeikaes, K. [ed.; Hagros, A.; Johansson, E. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland)] [and others

    2000-06-01

    Olkiluoto in Eurajoki is being investigated as a possible site for the final disposal of spent nuclear fuel from the Finnish nuclear power plants. The selection of the depth, placement and layout of the repository is affected by the constructability of the bedrock. The constructability, in turn, is influenced by several properties of the host rock, such as its Ethology, the extent of fracturing, its hydrogeological properties and rock engineering characteristics and also by the magnitude and orientation of the in situ stresses and the chemistry of the groundwater. The constructability can be evaluated by the application of a rock classification system in which the properties of the host rock are assessed against common rock engineering judgements associated with underground construction. These judgements are based partly on measurements of in situ stresses and the properties of the bedrock determined from rock samples, but an important aspect is also the practical experience which has been gained during underground excavation in similar conditions and rock types. The aim of the engineering rock mass classification was to determine suitable bedrock volumes for the construction of the repository and has used data from the site characterisation programme carried out at Olkiluoto, which consisted of both surface studies and borehole investigations. The classification specifies three categories of constructability - normal, demanding and very demanding. In addition, rock mass quality has also been classified according to the empirical Q-system to enable a comparison to be made. The rock mass parameters that determine the constructability of the bedrock at Olkiluoto depend primarily on the depth and the Ethology, as well as on whether construction takes place in intact or in fractured rock. The differences in the characteristics of intact rock within a single rock type have been shown to be small. The major lithological unit at Olkiluoto, the mica gneiss, lies in the

  12. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    Science.gov (United States)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  13. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels

    International Nuclear Information System (INIS)

    Hossain, Farhad M.; Nabi, Md. Nurun; Rainey, Thomas J.; Bodisco, Timothy; Rahman, Md. Mostafizur; Suara, Kabir; Rahman, S.M.A.; Van, Thuy Chu; Ristovski, Zoran; Brown, Richard J.

    2017-01-01

    Highlights: • Development of a microalgae HTL surrogate of biocrude fuel using chemical compounds. • Physiochemical properties of surrogate blends were analysed. • Experimentally investigated diesel engine performance and emissions using surrogate fuels. • No significant changes in engine performance were observed with HTL surrogate blends. • Major emissions including PM, PN and CO were reduced significantly with increasing of NOx emission. - Abstract: This paper builds on previous work using surrogate fuel to investigate advanced internal combustion engine fuels. To date, a surrogate fuel of this nature has not been used for microalgae hydrothermal liquefaction (HTL) biocrude. This research used five different chemical groups found in microalgae HTL biocrude to design a surrogate fuel. Those five chemical groups constitute around 65% (by weight) of a microalgae biocrude produced by HTL. Weight percentage of the microalgae HTL biocrude chemical compounds were used to design the surrogate fuel, which was miscible with diesel at all percentages. The engine experiments were conducted on a EURO IIIA turbocharged common-rail direct-injection six-cylinder diesel engine to test engine performance and emissions. Exhaust emissions, including particulate matter and other gaseous emissions, were measured with the surrogate fuel and a reference diesel fuel. Experimental results showed that without significantly deteriorating engine performance, lower particulate mass, particulate number and CO emissions were observed with a penalty in NOx emissions for all surrogate blends compared to those of the reference diesel.

  14. Impact, and its implications for geology

    International Nuclear Information System (INIS)

    Marvin, U.B.

    1988-01-01

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe

  15. Final report on the surface-based investigation phase (phase 1) at the Mizunami Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Matsuoka, Toshiyuki

    2011-03-01

    The Mizunami Underground Research Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency at Mizunami City in Gifu Prefecture, central Japan and its role is defined in 'Framework for Nuclear Energy Policy' by Japan Atomic Energy Commission. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. The overall project goals of the MIU Project from Phase I through to Phase III are: 1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and 2) to develop a range of engineering for deep underground application. During Phase I, the overall project goals were supported by Phase I goals. For the overall project goals 1), the Phase I goals were set to construct models of the geological environment from all surface-based investigation results that describe the geological environment prior to excavation and predict excavation response. For the overall project goals 2), the Phase I goals were set to formulate detailed design concepts and a construction plan for the underground facilities. This report summarizes the Phase I investigation which was completed in March 2005. The authors believe this report will make an important milestone, since this report clarifies how the Phase I goals are achieved and evaluate the future issues thereby direct the research which will be conducted during Phase II. With regard to the overall project goals 1), 'To establish techniques for investigation, analysis and assessment of the deep geological environment,' a step-wise investigation was conducted by iterating investigation, interpretation, and assessment, thereby understanding of geologic environment was progressively and effectively improved with progress of investigation. An optimal

  16. The U.S. Geological Survey's water resources program in New York

    Science.gov (United States)

    Wiltshire, Denise A.

    1983-01-01

    The U.S. Geological Survey performs hydrologic investigations throughout the United States to appraise the Nation's water resources. The Geological Survey began its water-resources investigations in New York in 1895. To meet the objectives of assessing New York's water resources, the Geological Survey (1) monitors the quantity and quality of surface and ground water, (2) conducts investigations of the occurrence, availability, and chemical quality of water in specific areas of the State, (3) develops methods and techniques of data-collection and interpretation, (4) provides scientific guidance to the research community, to Federal, State, and local governments, and to the public, and (5) disseminates data and results of research through reports, maps, news releases, conferences, and workshops. Many of the joint hydrologic investigations are performed by the Geological Survey in cooperation with State, county, and nonprofit organizations. The data collection network in New York includes nearly 200 gaging stations and 250 observation wells; chemical quality of water is measured at 260 sites. Data collected at these sites are published annually and are filed in the WATSTORE computer system. Some of the interpretive studies performed by the Geological Survey in New York include (1) determining the suitability of ground-water reservoirs for public-water supply in urban areas, (2) assessing geohydrologic impacts of leachate from hazardous waste sites on stream and ground-water quality, (3) evaluating the effects of precipitation quality and basin characteristics on streams and lakes, and (4) developing digital models of the hydrology of aquifers to simulate ground-water flow and the interaction between ground water and streams.

  17. Engineering Self-Efficacy Contributing to the Academic Performance of AMAIUB Engineering Students: A Qualitative Investigation

    Science.gov (United States)

    Aleta, Beda T.

    2016-01-01

    This research study aims to determine the factors of engineering skills self- efficacy sources contributing on the academic performance of AMAIUB engineering students. Thus, a better measure of engineering self-efficacy is needed to adequately assess engineering students' beliefs in their capabilities to perform tasks in their engineering…

  18. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  19. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area Nevada Nuclear Waste site investigation (NNWSI). Progress report, October 1, 1992--September 30, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report provides a summary of progress for the project open-quotes Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).close quotes A similar report was previously provided for the period of 1 October 1991 to 30 September 1992. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  20. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area Nevada Nuclear Waste site investigation (NNWSI). Progress report, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-30

    This report provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).{close_quotes} A similar report was previously provided for the period of 1 October 1991 to 30 September 1992. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. Numerical investigation of natural gas direct injection properties and mixture formation in a spark ignition engine

    Directory of Open Access Journals (Sweden)

    Yadollahi Bijan

    2014-01-01

    Full Text Available In this study, a numerical model has been developed in AVL FIRE software to perform investigation of Direct Natural Gas Injection into the cylinder of Spark Ignition Internal Combustion Engines. In this regard two main parts have been taken into consideration, aiming to convert an MPFI gasoline engine to direct injection NG engine. In the first part of study multi-dimensional numerical simulation of transient injection process, mixing and flow field have been performed via three different validation cases in order to assure the numerical model validity of results. Adaption of such a modeling was found to be a challenging task because of required computational effort and numerical instabilities. In all cases present results were found to have excellent agreement with experimental and numerical results from literature. In the second part, using the moving mesh capability the validated model has been applied to methane Injection into the cylinder of a Direct Injection engine. Five different piston head shapes along with two injector types have been taken into consideration in investigations. A centrally mounted injector location has been adapted to all cases. The effects of injection parameters, combustion chamber geometry, injector type and engine RPM have been studied on mixing of air-fuel inside cylinder. Based on the results, suitable geometrical configuration for a NG DI Engine has been discussed.

  2. GeoSciML version 3: A GML application for geologic information

    Science.gov (United States)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred

  3. Nuclear waste and a deep geological disposal facility

    International Nuclear Information System (INIS)

    Vokal, A.; Laciok, A.; Vasa, I.

    2005-01-01

    The paper presents a systematic analysis of the individual areas of research into nuclear waste and deep geological disposal with emphasis on the contribution of Nuclear Research Institute Rez plc to such efforts within international projects, specifically the EURATOM 6th Framework Programme. Research in the area of new advanced fuel cycles with focus on waste minimisation is based on EU's REDIMPACT project. The individual fuel cycles, which are currently studied within the EU, are briefly described. Special attention is paid to fast breeders and accelerator-driven reactor concepts associated with new spent fuel reprocessing technologies. Results obtained so far show that none even of the most advanced fuel cycles, currently under consideration, would eliminate the necessity to have a deep geological repository for a safe storage of residual radioactive waste. As regards deep geological repository barriers, the fact is highlighted that the safety of a repository is assured by complementary engineered and natural barriers. In order to demonstrate the safety of a repository, a deep insight must be gained into any and all of the individual processes that occur inside the repository and thus may affect radioactivity releases beyond the repository boundaries. The final section of the paper describes methods of radioactive waste conditioning for its disposal in a repository. Research into waste matrices used for radionuclide immobilisation is also highlighted. (author)

  4. A new integrated approach to demonstrate the safe disposal of high-level radioactive waste and spent nuclear fuel in a geological repository

    International Nuclear Information System (INIS)

    Mueller-Hoeppe, N.; Krone, J.; Niehues, N.; Raitz von Frentz, R.

    2000-01-01

    Multi-barrier systems are accepted as the basic approach for long term environmental safe isolation of radioactive waste in geological repositories. Assessing the performance of natural and engineered barriers is one of the major difficulties in producing evidence of environmental safety for any radioactive waste disposal facility, due to the enormous complexity of scenarios and uncertainties to be considered. This paper outlines a new methodological approach originally developed basically for a repository in salt, but that can be transferred with minor modifications to any other host rock formation. The approach is based on the integration of following elements: (1) Implementation of a simple method and efficient criteria to assess and prove the tightness of geological and engineered barriers; (2) Using the method of Partial Safety Factors in order to assess barrier performance at certain reasonable level of confidence; (3) Integration of a diverse geochemical barrier in the near field of waste emplacement limiting systematically the radiological consequences from any radionuclide release in safety investigations and (4) Risk based approach for the assessment of radionuclide releases. Indicative calculations performed with extremely conservative assumptions allowed to exclude any radiological health consequences from a HLW repository in salt to a reference person with a safety level of 99,9999% per year. (author)

  5. Digitizing rocks: Standardizing the process of geologic description with workstations

    International Nuclear Information System (INIS)

    Saunders, M.R.; Shields, J.A.; Taylor, M.R.

    1995-01-01

    In the drive to squeeze the most value from every dollar spent on exploration and development, increasing use is being made of stored data through methods that rely on the completeness and accuracy of the database for their usefulness. Although many types of engineering data are available to the process, geologic data, especially those collected at a sufficiently detailed level to show reservoir heterogeneity, are often unavailable to later workers in any useful form. Traditionally, most wellsite geologic data are recorded on worksheets or notebooks, from which summary data are often transferred to computers. The only changes in recent years have been related to the process by which computer-drafted lithology logs have superseded hand-drawn logs; in some exceptions, some of the plotting data may be held in a simple database. These descriptions and analyses, gathered at considerable cost and capable of showing significant petrological detail, are not available to the whole field-development process. The authors set out to tackle these problems of limited usefulness and development a system that would deliver quality geologic data deep into the field of play in a form that was easy to select and integrated with existing models

  6. PREFACE: XVIII International Scientific Symposium in Honour of Academician M. A. Usov: Problems of Geology and Subsurface Development

    Science.gov (United States)

    2014-08-01

    more than 450 of them became explorers of mineral deposits including one Nobel laureate, 50 laureates of the Lenin and State Prizes, more than 250 researchers with DSc and PhD, 15 academicians and corresponding members of the USSR Academy of Sciences and five Heroes of Socialist Labor. Within the scope of the symposium there were 21 panels and workshop, being held over four days. The symposium was unique because it covered all scientific fields of geology and subsurface development: methods of prospecting and exploration for minerals and hydrocarbons, including space geological research and geoinformation systems in geology, as well as the ecological problems and integrated use of mineral resources, land management, natural resource law and economics. The students and young scientists of Russia, foreign and CIS countries participated in the symposium. The investigations presented at the symposium shed light on the latest achievements made by means of modern techniques and original methods of interpretation; the results of experimental studies and computer technologies in geology, oil and gas production and geoecology; the analysis of theoretical and experimental studies on various geological problems and environmental protection. The reports consider the vital issues and the latest achievements of stratigraphy, paleontology, tectonics, historical and regional geology, mineralogy, geochemistry, petrography, lithology, metallogeny, hydrogeology and engineering geology, geophysics, petroleum geology, oil and gas field development and processing of hydrocarbon and mineral resources, geoinformation systems (GIS) in geology, space geological research, oilfield equipment upgrading, modern techniques of mineral exploration, production, transportation and storage of oil and gas, drilling, mining engineering, geoecology, hydrogeoecology, environmental protection engineering, integrated use of mineral resources, land management, mining and natural resources law, and economical

  7. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    Science.gov (United States)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of

  8. Department of Petroleum Engineering and Center for Petroleum and Geosystems Engineering annual report, 1990--1991 academic year

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The Department of Petroleum Engineering at The University of Texas at Austin is one of more than 20 such departments in the United States and more than 40 worldwide. The department has more than 20 faculty members and, as of the fall of 1990, 146 undergraduate and 156 graduate students. During the 1990--91 academic year, undergraduate enrollment is up slightly from the several downturns that began in 1986; graduate enrollment continues to increase, significantly in the number of Ph.D. candidates enrolled. The 1990--91 academic year was one of consolidation of gains. A remote teaching program in the Midland-Odessa area was initiated. During 1991, the Center for Petroleum and Geosystems Engineering (CPGE) continued its large, diversified research activities related to oil, gas and geopressured/geothermal energy production, energy and mineral resources analysis, and added new research projects in other areas such as groundwater remediation. Many of these research projects included interdisciplinary efforts involving faculty, research scientists and graduate students in chemistry, mathematics, geology, geophysics, engineering mechanics, chemical engineering, microbiology and other disciplines. Several projects were undertaken in cooperation with either the Bureau of Economic Geology or the Institute for Geophysics at The University of Texas at Austin. Collaborative research projects with scientists at Brookhaven National Laboratory, Los Alamos National Laboratory, Rice University, and Sandia National Laboratory were also initiated. About 43 companies from seven countries around the world continued to provide the largest portion of research funding to CPGE.

  9. Department of Petroleum Engineering and Center for Petroleum and Geosystems Engineering annual report, 1990--1991 academic year

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The Department of Petroleum Engineering at The University of Texas at Austin is one of more than 20 such departments in the United States and more than 40 worldwide. The department has more than 20 faculty members and, as of the fall of 1990, 146 undergraduate and 156 graduate students. During the 1990--91 academic year, undergraduate enrollment is up slightly from the several downturns that began in 1986; graduate enrollment continues to increase, significantly in the number of Ph.D. candidates enrolled. The 1990--91 academic year was one of consolidation of gains. A remote teaching program in the Midland-Odessa area was initiated. During 1991, the Center for Petroleum and Geosystems Engineering (CPGE) continued its large, diversified research activities related to oil, gas and geopressured/geothermal energy production, energy and mineral resources analysis, and added new research projects in other areas such as groundwater remediation. Many of these research projects included interdisciplinary efforts involving faculty, research scientists and graduate students in chemistry, mathematics, geology, geophysics, engineering mechanics, chemical engineering, microbiology and other disciplines. Several projects were undertaken in cooperation with either the Bureau of Economic Geology or the Institute for Geophysics at The University of Texas at Austin. Collaborative research projects with scientists at Brookhaven National Laboratory, Los Alamos National Laboratory, Rice University, and Sandia National Laboratory were also initiated. About 43 companies from seven countries around the world continued to provide the largest portion of research funding to CPGE.

  10. Advanced Nuclear Fuel Cycle Effects on the Treatment of Uncertainty in the Long-Term Assessment of Geologic Disposal Systems - EBS Input

    International Nuclear Information System (INIS)

    Sutton, M.; Blink, J.A.; Greenberg, H.R.; Sharma, M.

    2012-01-01

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated

  11. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were

  12. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  13. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  14. Diffusive Transport of Sulphide through an Engineering Barrier System in a Deep Geological Repository

    Science.gov (United States)

    Briggs, S. A.; Sleep, B. E.; McKelvie, J. R. M.; Krol, M.

    2015-12-01

    Bentonite is a naturally occurring clay-rich sediment containing montmorillonite, a smectitic clay mineral that has a high cation exchange capacity and swells upon contact with water. Owing to these characteristics, highly compacted bentonite (HCB) is an often included component of engineered barrier systems (EBS) designed to protect used fuel containers (UFCs) in deep geological repositories (DGR) for high-level nuclear waste. The low water activity and high swelling pressure of HCB suppresses microbial activity and the related production of sulphide that could cause microbiologically influenced corrosion (MIC) of UFCs The Canadian Nuclear Waste Management Organization (NWMO) has chosen a UFC that consists of an inner steel core and outer copper coating which is resistant to corrosion. However, under anaerobic conditions, MIC can still contribute to UFC corrosion if sulphides are present in the groundwater. Therefore the EBS consisting of bentonite blocks and pellets has been designed to impede the movement of sulphides to the UFC. In order to examine the effectiveness of the EBS, a 3D numerical model was developed capable of simulating the diffusive transport of sulphide within the NWMO EBS. The model was developed using COMSOL Multiphysics, a finite element software package and is parametric which allows the impact of different repository layouts to be assessed. The developed model was of the entire NWMO placement room, as well as, a stand-alone UFC and included conservative assumptions such as a fully saturated system and a constant concentration boundary condition. The results showed that the highest sulphide flux occurred at the semi-spherical end caps of the UFC. Further studies examined the effect of sulphide hotspots and fractures, representing possible EBS failure mechanisms. The model results highlight that even with conservative assumptions the chosen EBS will effectively protect the UFC from microbiologically influenced corrosion.

  15. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  16. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  17. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    Science.gov (United States)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  18. Study on a monitoring strategy to support decision making for geological repository closure

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Tanabe, Hiromi; Eto, Jiro; Yoshimura, Kimitaka

    2010-01-01

    Japan currently plans to dispose of high-level radioactive wastes (vitrified HLWs) produced from the reprocessing of spent nuclear fuel in deep geological formations, in order to isolate the radioactive wastes from the human environment for tens of thousands of years. Such a geological repository must be designed to ensure operational safety and post-closure safety. Then, following the closure of the geological repository, post-closure safety will be provided by an engineered barrier system (EBS) and a natural barrier system (NBS) without relying on monitoring or institutional control. However, from a technical standpoint, monitoring has been required during backfilling in current studies. Additionally, there has been strong social pressure to continue monitoring during all the phases including post-closure. On the basis of the current situations, a monitoring strategy for geological disposal must be studied to ensure the long term safety of geological disposal. Focusing on decision making for geological repository closure, the authors have created a basic logical structure for the decision making process with the principles for ensuring safety and have developed a monitoring strategy based on the logical structure. The monitoring strategy is founded on three key aspects: the role of monitoring, boundary conditions of monitoring at the time of decision making, and a methodology for monitoring planning. Then, the monitoring strategy becomes a starting point of monitoring planning during site characterization, construction, operation and staged closure, as well as post-closure with institutional control, and of social science studies. (author)

  19. Quaternary Magmatism in the Cascades - Geologic Perspectives

    Science.gov (United States)

    Hildreth, Wes

    2007-01-01

    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  20. Thermal analysis in the near field for geological disposal of high-level radioactive waste. Establishment of the disposal tunnel spacing and waste package pitch on the 2nd progress report for the geological disposal of HLW in Japan

    International Nuclear Information System (INIS)

    Taniguchi, Wataru; Iwasa, Kengo

    1999-11-01

    For the underground facility of the geological disposal of high-level radioactive waste (HLW), the space is needed to set the engineered barrier, and the set engineered barrier and rock-mass of near field are needed to satisfy some conditions or constraints for their performance. One of the conditions above mentioned is thermal condition arising from heat outputs of vitrified waste and initial temperature at the disposal depth. Hence, it is needed that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. Therefore, the design of engineered barrier and underground facility is conducted so that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. One of these design is establishment of the disposal tunnel spacing and waste package pitch. In this report, thermal analysis is conducted to establish the disposal tunnel spacing and waste package pitch to satisfy the constraint temperature in the near field. Also, other conditions or constraints for establishment of the disposal tunnel spacing and waste package pitch are investigated. Then, design of the disposal tunnel spacing and waste package pitch, considering these conditions or constraints, is conducted. For the near field configuration using the results of the design above mentioned, the temperature with time dependency is studied by analysis, and then the temperature variation due to the gaps, that will occur within the engineered barrier and between the engineered barrier and rock mass in setting engineered barrier in the disposal tunnel or pit, is studied. At last, the disposal depth variation is studied to satisfy the temperature constraint in the near field. (author)

  1. Key scientific challenges in geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Wang Ju

    2007-01-01

    The geological disposal of high radioactive waste is a challenging task facing the scientific and technical world. This paper introduces the latest progress of high level radioactive disposal programs in the latest progress of high level radioactive disposal programs in the world, and discusses the following key scientific challenges: (1) precise prediction of the evolution of a repository site; (2) characteristics of deep geological environment; (3) behaviour of deep rock mass, groundwater and engineering material under coupled con-ditions (intermediate to high temperature, geostress, hydraulic, chemical, biological and radiation process, etc); (4) geo-chemical behaviour of transuranic radionuclides with low concentration and its migration with groundwater; and (5) safety assessment of disposal system. Several large-scale research projects and several hot topics related with high-level waste disposal are also introduced. (authors)

  2. An experimental and numerical investigation of the combustion characteristics of a dual fuel engine with a swirl chamber

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Karim, G.A.; Xiao, F.; Sohrabi, A. [Calgary Univ., AB (Canada). Schulich School of Engineering, Mechanical and Manufacturing Dept.

    2007-07-01

    The results of an experimental investigation of the performance of a small bore engine with a swirl chamber when operating as a dual fuel engine with commercial methane as the gaseous fuel were presented in this paper. The experiment involved using a 3-dimensional computational fluid dynamics model to predict the performance of the engine. A detailed chemical kinetics for the gaseous fuel component, consisting primarily of methane and a reduced detailed chemical kinetics for the diesel fuel while considering the turbulent combustion processes an associated performance of a dual fuel engine with a swirl chamber were incorporated in the simulation. The study experimentally and numerically investigated the effects of changes in the quantities of the liquid fuel pilot and gaseous fuels on the combustion processes, engine performance, cyclic variations, and emissions. The paper discussed the experimental approach and results. It also discussed the simulation of the dual fuel engine combustion process. It was concluded that dual fuel combustion was an effective method to burn a gaseous fuel-air mixture with a low energy density. 9 refs., 6 figs.

  3. Engineering Encounters: Engineering Adaptations

    Science.gov (United States)

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  4. Geological investigation of uranium deposits at southwest of Chungju area

    International Nuclear Information System (INIS)

    Kim, J.H.; Park, J.W.; Kim, J.T.; Kim, D.E.; Im, H.C.

    1982-01-01

    A geologic investigation has been carried out at the southwest of Chungju area for the exploration of uranium ore deposit. A trace element geochemistry was supplemented to study the genesis of uranium ore deposit. The uraniferous black slate is interbedded with meta-argillaceous rock formation correlative to the Munjuri formation of Ogcheon group. The uranium rich carbonaceous slate is distributed discontinuously in three places. The discontinuity of the slate is probably due to the deformation of Daebo Orogeny. The grade of the ore bodies is 396-495 ppm U 3 O 8 , Vanadium 1.47-0.48%V 2 O 5 and fixed carbon 18.16-8.54%. The width of outcrop is 10.3m-2.5m. The semiquantitative spectrographic analysis of 4 samples in the above ore zone revealed that the average of minor elements contents are Ba 3025, Be 1.5, Cd 131, Cu53, Co 12, Cr 155, Ga<10, Mo 83, Pb 66, Ni 183, Sr 22, and Zr 196 in ppm. Analysed the 33 major and trace elements in 20 samples including above are samples from drill-cores and trenched rocks from Ogcheon black slate indicates that the uranium has positive correlation with Fe(0.47), Mo (0.45) and Ba(0.38). In the uranium deposits of Ogcheon black slate, we can accept the theory of syngenitic origin where uranium occurs with unusually high content of minor elements in black slate. The elements were introduced at the same time with the mud deposition without significant later addition. Mechanism of emplacement might be fixation of living organisms and absorption of decaying organic matter from sea water. An intensive study is necessary for futher understanding of redistribution and recrystallization of uranium by metamorphism. (Author)

  5. An experimental investigation of Perkins A63544 diesel engine performance using D-Series fuel

    International Nuclear Information System (INIS)

    Hassan-beygi, Seyed Reza; Istan, Vahideh; Ghobadian, Barat; Aboonajmi, Mohammad

    2013-01-01

    Highlights: • The performance of a diesel engine was evaluated using newly developed D-Series fuel. • The specifications of D-Series fuel were in the range of ASTM D-6751-09 standard. • The D-Series fuel did not change the engine power and torque significantly except the D 65 B 25 E 10 fuel blend. • The D-Series fuel blends increased the engine specific fuel consumption compare with neat-diesel fuel. • The D 93 B 5 E 2 fuel blend could be suggested as an appropriate alternative for neat petro-diesel fuel. - Abstract: This paper reports the results of an investigation using a newly developed fuel mixture called ‘D-Series fuel’ on a Perkins A63544 direct injection diesel engine. The biodiesel and bioethanol fuels were added to diesel fuel in a manner that specifications of the formed mixture did not change considerably. The performance of the engine under test was then evaluated without any modification or change in engine components and systems using the D-Series fuel. The obtained data was statistically analyzed using two factors completely randomized design to study the effects of the engine speeds and fuel blend types on the engine power, torque, and specific fuel consumption. The analysis of variance showed that the engine speeds and fuel types had statistically significant effects at 1% probability level (P 65 B 25 E 10 , 65% diesel, 25% biodiesel and 10% bioethanol, blend which decreased the engine power. The engine torque was decreased with increasing the engine speed for all the fuel blends in range of 319–296 N m. The maximum torque reduction was about 25 N m for neat petro-diesel fuel. The engine torque was decreased significantly (P 93 B 5 E 2 fuel blend could be suggested as an appropriate alternative for neat petro-diesel fuel, though the D 86 B 10 E 4 and D 79 B 15 E 6 blends could be also suggested for greater ratios of biodiesel and bioethanol application in D-Series fuel application

  6. Aspects of sismo-tectonic stability in the South-Eastern region of Brazil of interest to geology of engineering

    International Nuclear Information System (INIS)

    Mioto, J.A.; Hasui, Y.

    1982-01-01

    The occurence of earthquakes in Brazil, mainly in the South-eastern region, and its relationship with the geologic features has been discussed by many Authors since the beginning of this Century. It is difficult to define intraplate seismicity and to understand the actual epirogenic displacent, but the definition of the regional stability is important for enginnering purposes and have been considered through seismologic, morphotectonic and geologic criteria. (Author) [pt

  7. Report on investigation in fiscal 2000 on the overall investigation on engineers' lifetime education system; 2000 nendo gijutsusha shogai kyoiku system zentai chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This investigative research is intended to propose means to solve problems in the continuing professional development (CPD) under the situation where the works on international applicability of the engineer qualification are varying fluidly. The research has investigated and studied the preferable forms of the CPD, its operation methods, and systems. The conclusion may be summarized as follows: as the ways the CPD and the engineer qualification should be, the CPD should preferably be implemented by each academic society along the guidelines prepared by the Japan Council for Overall Process of Continuing Capability Development (PDE).; the engineer qualification should be set by the government or a unified certifying organization corresponding to the government, who will establish the basic rules and standards to certify and provide the qualifications uniting all the academic societies; it will be necessary to provide the CPD participants with the supporting measures by which they all feel 'something to live for'; for instance, business entities must be approached so that the qualifications are reflected to personnel management, pay raise, and status promotion as a proof of enhancement in their endowments and capabilities; and with regard to the mutual cooperation between the academic society CPD and the engineer CPD, a cooperative system may be structured by having the Japan Engineering Society conclude an agreement with the Japan Engineers Society. (NEDO)

  8. Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. FY2014

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Nakayama, Mariko; Kobayashi, Masato

    2015-09-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, “Geoscientific Research” and “Research and Development on Geological Disposal Technologies”, and proceeds in three overlapping phases, “Phase I: Surface-based investigations”, “Phase II: Investigations during tunnel excavation” and “Phase III: Investigations in the underground facilities”, over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal – Hydrological – Mechanical – Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2015. The summarized data of the EBS experiment will be published periodically. A CD-ROM is attached as an appendix. (J.P.N)

  9. 10 CFR 72.102 - Geological and seismological characteristics for applications before October 16, 2003 and...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Geological and seismological characteristics for... WASTE Siting Evaluation Factors § 72.102 Geological and seismological characteristics for applications..., sites will be acceptable if the results from onsite foundation and geological investigation, literature...

  10. Geologic and Engineering Characterization of East Ford Field, Reeves County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Shirley P.; Flanders, William A.; Guzman, Jose I.; Zirczy, Helena

    1999-08-16

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. The project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit: it contained an estimated 18.4 million barrels (MMbbl) of original oil in place.

  11. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  12. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    Science.gov (United States)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  13. Data Fusion: A decision analysis tool that quantifies geological and parametric uncertainty

    International Nuclear Information System (INIS)

    Porter, D.W.

    1995-01-01

    Engineering projects such as siting waste facilities and performing remediation are often driven by geological and hydrogeological uncertainties. Geological understanding and hydrogeological parameters such as hydraulic conductivity are needed to achieve reliable engineering design. Information form non-invasive and minimal invasive data sets offers potential for reduction in uncertainty, but a single data type does not usually meet all needs. Data Fusion uses Bayesian statistics to update prior knowledge with information from diverse data sets as the data is acquired. Prior knowledge takes the form of first principles models (e.g., groundwater flow) and spatial continuity models for heterogeneous properties. The variability of heterogeneous properties is modeled in a form motivated by statistical physics as a Markov random field. A computer reconstruction of targets of interest is produced within a quantified statistical uncertainty. The computed uncertainty provides a rational basis for identifying data gaps for assessing data worth to optimize data acquisition. Further, the computed uncertainty provides a way to determine the confidence of achieving adequate safety, margins in engineering design. Beyond design, Data Fusion provides the basis for real time computer monitoring of remediation. Working with the DOE Office of Technology (OTD), the authors have developed and patented a Data Fusion Workstation system that has been used on jobs at the Hanford, Savannah River, Pantex and Fernald DOE sites. Further, applications include an army depot at Letterkenney, PA and commercial industrial sites

  14. Data Fusion: A decision analysis tool that quantifies geological and parametric uncertainty

    International Nuclear Information System (INIS)

    Porter, D.W.

    1996-01-01

    Engineering projects such as siting waste facilities and performing remediation are often driven by geological and hydrogeological uncertainties. Geological understanding and hydrogeological parameters such as hydraulic conductivity are needed to achieve reliable engineering design. Information from non-invasive and minimally invasive data sets offers potential for reduction in uncertainty, but a single data type does not usually meet all needs. Data Fusion uses Bayesian statistics to update prior knowledge with information from diverse data sets as the data is acquired. Prior knowledge takes the form of first principles models (e.g., groundwater flow) and spatial continuity models for heterogeneous properties. The variability of heterogeneous properties is modeled in a form motivated by statistical physics as a Markov random field. A computer reconstruction of targets of interest is produced within a quantified statistical uncertainty. The computed uncertainty provides a rational basis for identifying data gaps for assessing data worth to optimize data acquisition. Further, the computed uncertainty provides a way to determine the confidence of achieving adequate safety margins in engineering design. Beyond design, Data Fusion provides the basis for real time computer monitoring of remediation. Working with the DOE Office of Technology (OTD), the author has developed and patented a Data Fusion Workstation system that has been used on jobs at the Hanford, Savannah River, Pantex and Fernald DOE sites. Further applications include an army depot at Letterkenney, PA and commercial industrial sites

  15. Technical assessment concept of geological aspect to define site NPP prospectus in Indonesia

    International Nuclear Information System (INIS)

    Akhmad Muktaf Haifani

    2013-01-01

    Geological aspects become an important aspect in determining the prospective nuclear power plant site. Geological investigation can be categorized based on the spatial scale of Regional and Local and every stage will have different levels of investigation. Understanding Regional Tectonics and Regional Geology of Indonesia is very important and helps to facilitate the evaluators to review documents. Unification of standard of site conformity assessment in terms tectonic aspect particularly geological stability becomes very necessary in the assessment of the suitability of the proposed licensed document, given the tectonic-forming process in Indonesia is highly variable. Safety criteria is key parameters that must be considered to solve any problems and a proper bridge in determining the site parameters of the proposed by applicants and compliance with any requirement of Regulatory Body. (author)

  16. Geological exploration of Angola from Sumbe to Namibe: A review at the frontier between geology, natural resources and the history of geology

    Science.gov (United States)

    Masse, Pierre; Laurent, Olivier

    2016-01-01

    This paper provides a review of the Geological exploration of the Angola Coast (from Sumbe to Namibe) from pioneer's first geological descriptions and mining inventory to the most recent publications supported by the oil industry. We focus our attention on the following periods: 1875-1890 (Paul Choffat's work, mainly), 1910-1949 (first maps at country scale), 1949-1974 (detailed mapping of the Kwanza-Namibe coastal series), 1975-2000, with the editing of the last version of the Angola geological map at 1:1 million scale and the progressive completion of previous works. Since 2000, there is a renewal in geological fieldwork publications on the area mainly due to the work of university teams. This review paper thus stands at the frontier between geology, natural resources and the history of geology. It shows how geological knowledge has progressed in time, fueled by economic and scientific reasons.

  17. The Geologic and Hydrogeologic Setting of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Swift, P.N.; Corbet, T.F.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is a mined repository constructed by the US Department of Energy for the permanent disposal of transuranic wastes generated since 1970 by activities related to national defense. The WIPP is located 42 km east of Carlsbad, New Mexico, in bedded salt (primarily halite) of the Late Permian (approximately 255 million years old) Salado Formation 655 m below the land surface. Characterization of the site began in the mid-1970s. Construction of the underground disposal facilities began in the early 1980s, and the facility received final certification from the US Environmental Protection Agency in May 1998. Disposal operations are planned to begin following receipt of a final permit from the State of New Mexico and resolution of legal issues. Like other proposed geologic repositories for radioactive waste, the WIPP relies on a combination of engineered and natural barriers to isolate the waste from the biosphere. Engineered barriers at the WIPP, including the seals that will be emplaced in the access shafts when the facility is decommissioned, are discussed in the context of facility design elsewhere in this volume. Physical properties of the natural barriers that contribute to the isolation of radionuclides are discussed here in the context of the physiographic, geologic, and hydrogeologic setting of the site

  18. “Doing the Wrong Things Right” Site Investigations in Soft Soil

    Science.gov (United States)

    Jamilus, M. H.; Lim, A. J. M. S.; Azhar, A. T. S.; Azmi, M. A. M.

    2016-11-01

    Site investigation is a very important process by which geotechnical, geological and other relevant information which might affect the construction or performance of a civil engineering or building project is acquired. However, common practice in site investigations is not always in accordance to the standard that has been defined. Reliability on the information obtained depends upon several factors that involves correct procedures and competent workers and also supervision. Several examples on site investigation methods are discussed in this paper. Explanation on the difference between the site investigation methods used for real practices in the field and how it should be done are discussed in detail. Therefore, it is hoped that site investigation should always be uniquely planned and should be an interactive and flexible process of discovery and changes according to the condition of the soil.

  19. Waste management in the nuclear engineering curriculum

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1989-01-01

    One of the most significant challenges facing the nuclear industry is to successfully close the nuclear fuel cycle and effectively demonstrate to the public that nuclear wastes do not present a health risk. This issue is currently viewed by many as the most important issue affecting public acceptance of nuclear power, and it is imperative that nuclear engineers be able to effectively address the question of nuclear waste from both a generation and disposal standpoint. To address the issue, the area of nuclear waste management has been made one of the fields of specialized study in the Department of Nuclear Engineering Sciences at the University of Florida. The study of radioactive waste management at the University of Florida is designed both for background for the general nuclear engineering student and for those wishing to specialize in it as a multidiscipline study area involving the Departments of Nuclear Engineering Sciences, Environmental Sciences, Material Science and Engineering, Geology, Civil Engineering, and Industrial Engineering

  20. Quantifying uncertainty of geological 3D layer models, constructed with a-priori geological expertise

    NARCIS (Netherlands)

    Gunnink, J.J.; Maljers, D.; Hummelman, J.

    2010-01-01

    Uncertainty quantification of geological models that are constructed with additional geological expert-knowledge is not straightforward. To construct sound geological 3D layer models we use a lot of additional knowledge, with an uncertainty that is hard to quantify. Examples of geological expert