WorldWideScience

Sample records for engineering evaluation tests

  1. Human factors evaluation of the engineering test reactor control room

    International Nuclear Information System (INIS)

    Banks, W.W.; Boone, M.P.

    1981-03-01

    The Reactor and Process Control Rooms at the Engineering Test Reactor were evaluated by a team of human factors engineers using available human factors design criteria. During the evaluation, ETR, equipment and facilities were compared with MIL-STD-1472-B, Human Engineering design Criteria for Military Systems. The focus of recommendations centered on: (a) displays and controls; placing displays and controls in functional groups; (b) establishing a consistent color coding (in compliance with a standard if possible); (c) systematizing annunciator alarms and reducing their number; (d) organizing equipment in functional groups; and (e) modifying labeling and lines of demarcation

  2. Product evaluation of in situ vitrification engineering, Test 4

    International Nuclear Information System (INIS)

    Loehr, C.A.; Weidner, J.R.; Bates, S.O.

    1991-09-01

    This report is one of several that evaluates the In Situ Vitrification (ISV) Engineering-Scale Test 4 (ES-4). This document describes the chemical and physical composition, microstructure, and leaching characteristics of ES-4 product samples; these data provide insight into the expected performance of a vitrified product in an ISV buried waste application similar to that studied in ES-4

  3. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  4. Alternate Material Pallet, 40" x 48", MIL-STD-1660, Engineering Evaluation Tests

    National Research Council Canada - National Science Library

    Dugan, Jeffery

    2003-01-01

    The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJMAC-DEV) conducted Engineering Evaluation Tests to determine if the Alternate Material Pallet manufactured by Hunter Paine Enterprise, Inc...

  5. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    International Nuclear Information System (INIS)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs

  6. Predictive tests to evaluate oxidative potential of engineered nanomaterials

    Science.gov (United States)

    Ghiazza, Mara; Carella, Emanuele; Oliaro-Bosso, Simonetta; Corazzari, Ingrid; Viola, Franca; Fenoglio, Ivana

    2013-04-01

    Oxidative stress constitutes one of the principal injury mechanisms through which particulate toxicants (asbestos, crystalline silica, hard metals) and engineered nanomaterials can induce adverse health effects. ROS may be generated indirectly by activated cells and/or directly at the surface of the material. The occurrence of these processes depends upon the type of material. Many authors have recently demonstrated that metal oxides and carbon-based nanoparticles may influence (increasing or decreasing) the generation of oxygen radicals in a cell environment. Metal oxide, such as iron oxides, crystalline silica, and titanium dioxide are able to generate free radicals via different mechanisms causing an imbalance within oxidant species. The increase of ROS species may lead to inflammatory responses and in some cases to the development of cancer. On the other hand carbon-based nanomaterials, such as fullerene, carbon nanotubes, carbon black as well as cerium dioxide are able to scavenge the free radicals generated acting as antioxidant. The high numbers of new-engineered nanomaterials, which are introduced in the market, are exponentially increasing. Therefore the definition of toxicological strategies is urgently needed. The development of acellular screening tests will make possible the reduction of the number of in vitro and in vivo tests to be performed. An integrated protocol that may be used to predict the oxidant/antioxidant potential of engineered nanoparticles will be here presented.

  7. Predictive tests to evaluate oxidative potential of engineered nanomaterials

    International Nuclear Information System (INIS)

    Ghiazza, Mara; Carella, Emanuele; Corazzari, Ingrid; Fenoglio, Ivana; Oliaro-Bosso, Simonetta; Viola, Franca

    2013-01-01

    Oxidative stress constitutes one of the principal injury mechanisms through which particulate toxicants (asbestos, crystalline silica, hard metals) and engineered nanomaterials can induce adverse health effects. ROS may be generated indirectly by activated cells and/or directly at the surface of the material. The occurrence of these processes depends upon the type of material. Many authors have recently demonstrated that metal oxides and carbon-based nanoparticles may influence (increasing or decreasing) the generation of oxygen radicals in a cell environment. Metal oxide, such as iron oxides, crystalline silica, and titanium dioxide are able to generate free radicals via different mechanisms causing an imbalance within oxidant species. The increase of ROS species may lead to inflammatory responses and in some cases to the development of cancer. On the other hand carbon-based nanomaterials, such as fullerene, carbon nanotubes, carbon black as well as cerium dioxide are able to scavenge the free radicals generated acting as antioxidant. The high numbers of new-engineered nanomaterials, which are introduced in the market, are exponentially increasing. Therefore the definition of toxicological strategies is urgently needed. The development of acellular screening tests will make possible the reduction of the number of in vitro and in vivo tests to be performed. An integrated protocol that may be used to predict the oxidant/antioxidant potential of engineered nanoparticles will be here presented.

  8. Lean mixture engine testing and evaluation program. [for automobile engine pollution and fuel performances

    Science.gov (United States)

    Dowdy, M. W.; Hoehn, F. W.; Griffin, D. C.

    1975-01-01

    Experimental results for fuel consumption and emissions are presented for a 350 CID (5.7 liter) Chevrolet V-8 engine modified for lean operation with gasoline. The lean burn engine achieved peak thermal efficiency at an equivalence ratio of 0.75 and a spark advance of 60 deg BTDC. At this condition the lean burn engine demonstrated a 10% reduction in brake specific fuel consumption compared with the stock engine; however, NOx and hydrocarbon emissions were higher. With the use of spark retard and/or slightly lower equivalence ratios, the NOx emissions performance of the stock engine was matched while showing a 6% reduction in brake specific fuel consumption. Hydrocarbon emissions exceeded the stock values in all cases. Diagnostic data indicate that lean performance in the engine configuration tested is limited by ignition delay, cycle-to-cycle pressure variations, and cylinder-to-cylinder distribution.

  9. Engineering Evaluation/Cost Analysis for Decommissioning of the Engineering Test Reactor Complex

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Culp

    2006-10-01

    Preparation of this Engineering Evaluation/Cost Analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, which establishes the Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA) process as an approach for decommissioning.

  10. Engineering Evaluation/Cost Analysis for Decommissioning of the Engineering Test Reactor Complex

    International Nuclear Information System (INIS)

    A. B. Culp

    2006-01-01

    Preparation of this Engineering Evaluation/Cost Analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, which establishes the Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA) process as an approach for decommissioning

  11. NATO Guidelines on Human Engineering Testing and Evaluation

    Science.gov (United States)

    2001-05-01

    1980s and is known as Manpower, Personnel, and Training Integration (MANPRINT). The objective of this comprehensive management and technical effort is...systems under benign test conditions, using test subjects who are considerably more knowledeable of the system than the eventual users of the system will...Technical Management , Aeronautical Systems Division, Air Force Systems Command. Itoh, Y., Hayashi, Y., Tsukui, L, and Saito, S. (1989). Heart rate

  12. TDmat--Mathematics Diagnosis Evaluation Test for Engineering Sciences Students

    Science.gov (United States)

    Pinto, J. S.; Oliveira, M. P.; Anjo, A. B.; Pais, S. I. Vieira; Isidro, R. O.; Silva, M. H.

    2007-01-01

    Since 1989, the Mathematics Education Project (PmatE--Projecto Matematica Ensino) has developed several strategies to improve the success of students in Mathematics. The most important of these are mathematical games for all grades above primary school. The online evaluation of Mathematics subjects is one of PmatE's goals. The implementation of an…

  13. Liquid Rocket Engine Testing Overview

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  14. Human factors engineering evaluation of the Advanced Test Reactor Control Room

    International Nuclear Information System (INIS)

    Boone, M.P.; Banks, W.W.

    1980-12-01

    The information presented here represents preliminary findings related to an ongoing human engineering evaluation of the Advanced Test Reactor (ATR) Control Room. Although many of the problems examined in this report have been previously noted by ATR operations personnel, the systematic approach used in this investigation produced many new insights. While many violations of Human Engineering military standards (MIL-STD) are noted, and numerous recommendations made, the recommendations should be examined cautiously. The reason for our suggested caution lies in the fact that many ATR operators have well over 10-years experience in operating the controls, meters, etc. Hence, it is assumed adaptation to the existing system is quite developed and the introduction of hardware/control changes, even though the changes enhance the system, may cause short-term (or long-term, depending upon the amount of operator experience and training) adjustment problems for operators adapting to the new controls/meters and physical layout

  15. Liquid Rocket Engine Testing

    Science.gov (United States)

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine TestingEngines and their components are extensively static-tested in development • This

  16. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-19

    {open_quotes}Evaluation Engineering and Development of Advanced Cyclone Processes{close_quotes} is one of the DOE-PETC sponsored advanced coal cleaning projects, which share a number of specific goals. These goals are to produce a 6% ash product, reject 85% of the parent coal`s pyritic sulfur, recover 85% of the parent coal`s Btu value, and provide products that are less than 30% moisture. The process in this project, as the name implies, relies on a cyclone or cyclonic separator to achieve physical beneficiation based on the gravimetric differences between clean coal and its impurities. Just as important as the cyclonic separator, if not more so, is the selection of a parting liquid or medium for use in the separator. Selection of a separating medium is regarded as a significant portion of the project because it has a profound impact on the required unit operations, the performance of the separator, and economics of the process. The choice of medium especially influences selection of media recovery system(s), and the characteristics of clean coal and refuse products. Since medium selection is such an important aspect of the project, portions of the project are dedicated to the study, evaluation, and selection of the most desirable medium. Though separators are an important component, this project initially focused on media study, rather than the separators themselves. In coal processing, discussion of media requires description of the handling and recovery system(s), separation performance, interaction with coal, cost, and health, environmental and safety issues. In order to be effective, a candidate must perform well in all of these categories.

  17. JANNAF "Test and Evaluation Guidelines for Liquid Rocket Engines": Status and Application

    Science.gov (United States)

    Parkinson, Douglas; VanLerberghe, Wayne M.; Rahman, Shamim A.

    2017-01-01

    For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in

  18. Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials

    Science.gov (United States)

    Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant ...

  19. Development of evaluation method of fuel failure fraction during the High Temperature Engineering Test Reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Kazuhiro; Yoshimuta, Shigeharu; Tobita, Tsutomu; Sato, Masashi [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1997-05-01

    The High Temperature Engineering Test Reactor (HTTR) uses coated particles as fuel. During normal operation, short-lived noble gases are mainly released by diffusion from fuel particles with defects in their coating layers (i.e., failed particle). Since noble gases do not plate out on the inner surfaces of primary cooling system, their activities in primary coolant reflect fuel failure fraction in the core. An evaluation method was developed to predict failure fraction of coated fuel particles during normal operation of the HTTR. The method predicts core-average and hot plenum regionwise failure fractions based on the fractional releases, (R/B)s, of noble gases. The (R/B)s are calculated by fission gas concentration measurements in the primary cooling system of the HTTR. Recent fabrication data show that through-coatings failure fraction is extremely low. Then, fractional release from matrix contamination uranium, which is background for accurate evaluation of the fuel failure fraction, should be precisely predicted. This report describes an evaluation method of fuel failure fraction from measurements in the HTTR together with a fission gas release model from fuel compact containing failed particles and matrix contamination uranium. (author)

  20. The engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF. (orig.)

  1. Engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper described the design status of the ETF

  2. Liquid Rocket Engine Testing

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  3. Pistons and engine testing

    CERN Document Server

    GmbH, Mahle

    2012-01-01

    The ever-increasing demands placed on combustion engines are just as great when it comes to this centerpiece - the piston. Achieving less weight or friction, or even greater wear resistance, requires in-depth knowledge of the processes taking place inside the engine, suitable materials, and appropriate design and machining processes for pistons, including the necessary testing measures. It is no longer possible for professionals in automotive engineering to manage without specific know-how of this kind, whether they work in the field of design, development, testing, or maintenance. This techni

  4. Use of an expert system data analysis manager for space shuttle main engine test evaluation

    Science.gov (United States)

    Abernethy, Ken

    1988-01-01

    The ability to articulate, collect, and automate the application of the expertise needed for the analysis of space shuttle main engine (SSME) test data would be of great benefit to NASA liquid rocket engine experts. This paper describes a project whose goal is to build a rule-based expert system which incorporates such expertise. Experiential expertise, collected directly from the experts currently involved in SSME data analysis, is used to build a rule base to identify engine anomalies similar to those analyzed previously. Additionally, an alternate method of expertise capture is being explored. This method would generate rules inductively based on calculations made using a theoretical model of the SSME's operation. The latter rules would be capable of diagnosing anomalies which may not have appeared before, but whose effects can be predicted by the theoretical model.

  5. Design and evaluation of heat utilization systems for the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    2001-08-01

    The primary focus of this CRP was to perform detailed investigation of the high temperature industrial processes that are attainable through incorporation of an HTGR, and for their possible demonstration in the HTTR. The HTGR has the capability to achieve a core outlet temperature approaching 1,000 deg. C in a safe and effective manner. These attributes, coupled with the offer by JAERI to utilize the HTTR, resulted in the initiation of this CRP by the IAEA. High Temperature Engineering Test Reactor (HTTR) utilizes a 30 MW(th) HTGR comprised of 30 fuel columns of hexagonal pin-in-pin graphite block type fuel elements. The fuel consists of UO 2 TRISO coated particles with an enrichment of ∼ 6% wt. Relative to the demonstration of high temperature heat applications, the HTTR will be capable of producing 10 MW(th) of heat at 950 deg. C. However, the thermal power for these applications has the potential to be increased up to 30 MW(th) in the future, which may be required for demonstration of gas turbine system components. The HTTR reached initial criticality in November 1998. Initial operational plans includes a series of rise to power tests followed by tests to demonstrate the safety and operational characteristics of the HTTR. In addition to completion of the HTTR demonstration tests, it was recommended that the R and D be performed within the HTTR project. JAERI is encouraged to publicize the results of the HTTR tests and 'lessons learned' from their experiences including potential capabilities of the HTGR for heat applications. The next priority application was determined to be the generation of electricity through the use of the gas turbine. Application of the Brayton Cycle utilizing high temperature helium from a modular HTGR was chosen for development because of its projected benefits as an economic and efficient means for the production of electricity. Evaluation of the remaining high temperature heat utilization applications chosen for investigation resulted

  6. Pistons and engine testing

    CERN Document Server

    2016-01-01

    The ever-increasing demands placed on combustion engines are just as great when it comes to this centerpiece—the piston. Achieving less weight or friction, or even greater wear resistance, requires in-depth knowledge of the processes taking place inside the engine, suitable materials, and appropriate design and manufacturing processes for pistons, including the necessary testing measures. It is no longer possible for professionals in automotive engineering to manage without specific expertise of this kind, whether they work in the field of design, development, testing, or maintenance. This technical book answers these questions in detail and in a very clear and comprehensible way. In this second, revised edition, every chapter has been revised and expanded. The chapter on “Engine testing”, for example, now include extensive results in the area of friction power loss measurement and lube oil consumption measurement. Contents Piston function, requirements, and types Design guidelines Simulation of the ope...

  7. Evaluation of dynamic testing of as-built civil engineering structures

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-01-01

    This paper summarizes an evaluation of dynamic tests performed on large as-built structures. The objectives and methods (excitation and data analysis) of tests are reviewed. The utility and limitations of dynamic testing in light of actual experience is discussed. Though low-level tests in themselves will not be useful for predicting structural response to strong ground motion, they are useful for verifying linear models and for clarifying physical phenomena related to soil-structure interaction

  8. Space Electronic Test Engineering

    Science.gov (United States)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  9. Small Engine & Accessory Test Area

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Engine and Accessories Test Area (SEATA) facilitates testaircraft starting and auxiliary power systems, small engines and accessories. The SEATA consists...

  10. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER). Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report consists of appendices pertaining to the separating media evaluation (calcium nitrate solution) and testing for an advanced cyclone process. Appendices include: materials safety data, aqueous medium regeneration, pH control strategy, and other notes and data.

  11. Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States)

    2015-12-21

    demonstration of MICP by-products including calcium carbonate (CaCO3) in treated regions of side wall cores. This project successfully integrated mesoscale laboratory experiments at the Center for Biofilm Engineering (CBE) together with simulation modeling conducted at the University of Stuttgart to develop the protocol for conducting the biomineralization sealing test in the field well.

  12. Evaluation Tests of Select Fuel Additives for Potential Use in U.S. Army Corps of Engineers Diesel Engines

    Science.gov (United States)

    2016-07-01

    Feasibility of Using Biodiesel Additives.” The technical monitor was Dr. Todd Bridges (CEERD- EM-D). The work was performed by the Coastal Engineering...analysis, quality assurance and control, and reporting was managed by Southern Research Institute’s Advanced Energy and Transportation Technologies...candidate conditions. The calculations were based on BTU contents found on the GREET Transportation Fuel Cycle Analyses Model (Argone National

  13. Engineered Barrier Test Facility status report, 1984

    International Nuclear Information System (INIS)

    Phillips, S.J.; Adams, M.R.; Gilbert, T.W.; Meinhardt, C.C.; Mitchell, R.M.; Waugh, W.J.

    1985-02-01

    This report provides a general summary of activities completed to date at the Hanford Engineered Barrier Test Facility. This facility is used to test and compare construction practices and performance of alternative designs of engineered barrier cover systems. These cover systems are being evaluated for potential use for isolation and confinement of buried waste disposal structures

  14. Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport. [fuel consumption and engine tests of turbofan engines

    Science.gov (United States)

    Civinskas, K. C.; Kraft, G. A.

    1976-01-01

    The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.

  15. Analytical evaluation on loss of off-side electric power simulation of the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Nakagawa, Shigeaki; Tachibana, Yukio; Takada, Eiji; Kunitomi, Kazuhiko

    2000-03-01

    A rise-to-power test of the high temperature engineering test reactor (HTTR) started on September 28 in 1999 for establishing and upgrading the technological basis for the high temperature gas-cooled reactor (HTGR). A loss of off-site electric power test of the HTTR from the normal operation under 15 and 30 MW thermal power will be carried out in the rise-to-power test. Analytical evaluations on transient behaviors of the reactor and plant during the loss of off-site electric power were conducted. These estimations are proposed as benchmark problems for the IAEA coordinated research program on 'Evaluation of HTGR Performance'. This report describes an event scenario of transient during the loss of off-site electric power, the outline of major components and system, detailed thermal and nuclear data set for these problems and pre-estimation results of the benchmark problems by an analytical code 'ACCORD' for incore and plant dynamics of the HTGR. (author)

  16. Assessing the Value-Added by the Environmental Testing Process with the Aide of Physics/Engineering of Failure Evaluations

    Science.gov (United States)

    Cornford, S.; Gibbel, M.

    1997-01-01

    NASA's Code QT Test Effectiveness Program is funding a series of applied research activities focused on utilizing the principles of physics and engineering of failure and those of engineering economics to assess and improve the value-added by the various validation and verification activities to organizations.

  17. The approaches of safety design and safety evaluation at HTTR (High Temperature Engineering Test Reactor)

    International Nuclear Information System (INIS)

    Iigaki, Kazuhiko; Saikusa, Akio; Sawahata, Hiroaki; Shinozaki, Masayuki; Tochio, Daisuke; Honma, Fumitaka; Tachibana, Yukio; Iyoku, Tatsuo; Kawasaki, Kozo; Baba, Osamu

    2006-06-01

    Gas Cooled Reactor has long history of nuclear development, and High Temperature Gas Cooled Reactor (HTGR) has been expected that it can be supply high temperature energy to chemical industry and to power generation from the points of view of the safety, the efficiency, the environment and the economy. The HTGR design is tried to installed passive safety equipment. The current licensing review guideline was made for a Low Water Reactor (LWR) on safety evaluation therefore if it would be directly utilized in the HTGR it needs the special consideration for the HTGR. This paper describes that investigation result of the safety design and the safety evaluation traditions for the HTGR, comparison the safety design and safety evaluation feature for the HTGT with it's the LWR, and reflection for next HTGR based on HTTR operational experiment. (author)

  18. Tokamak engineering test reactor

    International Nuclear Information System (INIS)

    Conn, R.W.; Jassby, D.L.

    1975-07-01

    The design criteria for a tokamak engineering test reactor can be met by operating in the two-component mode with reacting ion beams, together with a new blanket-shield design based on internal neutron spectrum shaping. A conceptual reactor design achieving a neutron wall loading of about 1 MW/m 2 is presented. The tokamak has a major radius of 3.05 m, the plasma cross-section is noncircular with a 2:1 elongation, and the plasma radius in the midplane is 55 cm. The total wall area is 149 m 2 . The plasma conditions are T/sub e/ approximately T/sub i/ approximately 5 keV, and ntau approximately 8 x 10 12 cm -3 s. The plasma temperature is maintained by injection of 177 MW of 200-keV neutral deuterium beams; the resulting deuterons undergo fusion reactions with the triton-target ions. The D-shaped toroidal field coils are extended out to large major radius (7.0 m), so that the blanket-shield test modules on the outer portion of the torus can be easily removed. The TF coils are superconducting, using a cryogenically stable TiNb design that permits a field at the coil of 80 kG and an axial field of 38 kG. The blanket-shield design for the inner portion of the torus nearest the machine center line utilizes a neutron spectral shifter so that the first structural wall behind the spectral shifter zone can withstand radiation damage for the reactor lifetime. The energy attenuation in this inner blanket is 8 x 10 -6 . If necessary, a tritium breeding ratio of 0.8 can be achieved using liquid lithium cooling in the []outer blanket only. The overall power consumption of the reactor is about 340 MW(e). A neutron wall loading greater than 1 MW/m 2 can be achieved by increasing the maximum magnetic field or the plasma elongation. (auth)

  19. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  20. Solar-Thermal Engine Testing

    Science.gov (United States)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational

  1. Turbine Engine Testing.

    Science.gov (United States)

    1981-01-01

    English climate. (c) Functional Testing Functional testing is a ’catch all’ title for the multitude of tests required to examine and confirm or correct the...rage I I I , I ’s slot envs Atar ONK propulsent les Miraiges IV de la levce A~rientic Strat~giqiie l-vanlaisc, tanilis tilit leg mcters Atar 91K50 sent...moignent. Irtuwi Atar 9 ~K50 est tine version MANv~ du motenr Atar 9K proptilsant le hirdaceur vi1 *c ~Ik (lttur 11 et dest in 5 6qtiiper I ’avion polyvalent

  2. Introduction to nuclear test engineering

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Paquette, D.L.

    1982-01-01

    The basic information in this report is from a vu-graph presentation prepared to acquaint new or prospective employees with the Nuclear Test Engineering Division (NTED). Additional information has been added here to enhance a reader's understanding when reviewing the material after hearing the presentation, or in lieu of attending a presentation

  3. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  4. Test and evaluation of Fern Engineering Company, Incorporated, solar heating and hot water system. [structural design criteria and system effectiveness

    Science.gov (United States)

    1979-01-01

    Tests, test results, examination and evaluation by Underwriters Laboratory, Inc., of a single family solar heating and hot water system consisting of collector, storage, control, transport, and data acquisition are presented. The structural characteristics of the solar flat plate collectors were evaluated according to snow and wind loads indicated in various building codes to determine their suitability for use both Michigan and Pennsylvania where prototype systems were installed. The flame spread classification of the thermal insulation is discussed and the fire tests conducted on components are described. The operation and dielectrics withstand tests of the energy transport module indicate the module is capable of rated air delivery. Tests of the control panel indicate the relay coil temperatures exceed the temperature limits allowed for the insulating materials involved.

  5. Prototype Engineered Barrier System Field Tests

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Beatty, J.; Buscheck, T.A.

    1989-01-01

    This paper presents selected preliminary results obtained during the first 54 days of the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT). The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures for future investigations that will be conducted in the Exploratory Shaft Facilities of the Yucca Mountain Project (YMP). The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures, gas pressures, and rock mass gas-phase humidity. 10 refs., 12 figs

  6. Evaluation of social competencies in chemical engineering: Application and results of the pilot test (academic year 2012-2013

    Directory of Open Access Journals (Sweden)

    Francisco José Suñé Grande

    2015-06-01

    Full Text Available The Escola Tècnica Superior d’Enginyeria Química has a long tradition in the deployment of social competencies in engineering curricula through Integrated Projects (IP carried out in structured teams. Social competencies are taught and practiced during the development of the IPs. We conceptually introduce a methodology for a 360o assessment of the students’ social competencies, as a tool to foster the improvement of their competency levels. In this article we analyze the results of the pilot test where the aforementioned methodology has been implemented in the Bachelor studies of Chemical Engineering. The results indicate that it is possible to objectively obtain the student’s competency level discriminating among different social competencies, as well as among different students in the same team. The application of this tool fosters the development of specific educative actions to help the students with low competency profile, to reach acceptable levels for a successful insertion in the labor market.

  7. Development of a radionuclide short-test for the evaluation of engine oils in respect to cam- and cylinder linear wear by using OM 616 Kombi-Test conditions

    International Nuclear Information System (INIS)

    Volz, J.; Lausch, W.

    1980-05-01

    A survey is given on the studies performed since 1973 on the development of radionuclide short-test procedure, based on the test procedure of the OM 616 Kombi-Test, for the evaluation of engine oils in respect to cam- and cylinder liner wear (deuteron activated Co-56). Out of the results of these studies on experimental short test procedure has been elaborated to evaluate cylinder liner wear. With this experimental procedure some round robin testing has been carried out by three laboratories using a well-known reference oil and two test oils. The results of this round robin test led to further improvements in the test procedure. This improved test procedure has become a suitable screening-test for the development of engine oils in respect to cylinder liner wear. It never can replace the OM 616-Kombi-Test as a whole, but it will complete it. The radionuclide short test gets results quicker and at lower costs than the Kombi-Test, discriminates between hot test and cold-warm test results, and gives results even with correlation to the Kombi-Test by comparison to an approved reference oil. For such screening work, the repeatability of the test is also sufficient. (orig./HP) [de

  8. Altitude Testing of Large Liquid Propellant Engines

    Science.gov (United States)

    Maynard, Bryon T.; Raines, Nickey G.

    2010-01-01

    The National Aeronautics and Space Administration entered a new age on January 14, 2004 with President Bush s announcement of the creation the Vision for Space Exploration that will take mankind back to the Moon and on beyond to Mars. In January, 2006, after two years of hard, dedicated labor, engineers within NASA and its contractor workforce decided that the J2X rocket, based on the heritage of the Apollo J2 engine, would be the new engine for the NASA Constellation Ares upper stage vehicle. This engine and vehicle combination would provide assured access to the International Space Station to replace that role played by the Space Shuttle and additionally, would serve as the Earth Departure Stage, to push the Crew Excursion Vehicle out of Earth Orbit and head it on a path for rendezvous with the Moon. Test as you fly, fly as you test was chosen to be the guiding philosophy and a pre-requisite for the engine design, development, test and evaluation program. An exhaustive survey of national test facility assets proved the required capability to test the J2X engine at high altitude for long durations did not exist so therefore, a high altitude/near space environment testing capability would have to be developed. After several agency concepts the A3 High Altitude Testing Facility proposal was selected by the J2X engine program on March 2, 2007 and later confirmed by a broad panel of NASA senior leadership in May 2007. This facility is to be built at NASA s John C. Stennis Space Center located near Gulfport, Mississippi. 30 plus years of Space Shuttle Main Engine development and flight certification testing makes Stennis uniquely suited to support the Vision For Space Exploration Return to the Moon. Propellant handling infrastructure, engine assembly facilities, a trained and dedicated workforce and a broad and varied technical support base will all ensure that the A3 facility will be built on time to support the schedule needs of the J2X engine and the ultimate flight

  9. Virtual Turbine Engine Test Bench Using MGET Test Device

    Science.gov (United States)

    Kho, Seonghee; Kong, Changduk; Ki, Jayoung

    2015-05-01

    Test device using virtual engine simulator can help reduce the number of engine tests through tests similar to the actual engine tests and repeat the test under the same condition, and thus reduce the engine maintenance and operating costs [1]. Also, as it is possible to easily implement extreme conditions in which it is hard to conduct actual tests, it can prevent engine damages that may happen during the actual engine test under such conditions. In this study, an upgraded MGET test device was developed that can conduct both real and virtual engine test by applying real-time engine model to the existing MGET test device that was developed and has been sold by the Company. This newly developed multi-purpose MGET test device is expected to be used for various educational and research purposes.

  10. A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology.

    Science.gov (United States)

    Casini, Arturo; Chang, Fang-Yuan; Eluere, Raissa; King, Andrew M; Young, Eric M; Dudley, Quentin M; Karim, Ashty; Pratt, Katelin; Bristol, Cassandra; Forget, Anthony; Ghodasara, Amar; Warden-Rothman, Robert; Gan, Rui; Cristofaro, Alexander; Borujeni, Amin Espah; Ryu, Min-Hyung; Li, Jian; Kwon, Yong-Chan; Wang, He; Tatsis, Evangelos; Rodriguez-Lopez, Carlos; O'Connor, Sarah; Medema, Marnix H; Fischbach, Michael A; Jewett, Michael C; Voigt, Christopher; Gordon, D Benjamin

    2018-03-28

    Centralized facilities for genetic engineering, or "biofoundries", offer the potential to design organisms to address emerging needs in medicine, agriculture, industry, and defense. The field has seen rapid advances in technology, but it is difficult to gauge current capabilities or identify gaps across projects. To this end, our foundry was assessed via a timed "pressure test", in which 3 months were given to build organisms to produce 10 molecules unknown to us in advance. By applying a diversity of new approaches, we produced the desired molecule or a closely related one for six out of 10 targets during the performance period and made advances toward production of the others as well. Specifically, we increased the titers of 1-hexadecanol, pyrrolnitrin, and pacidamycin D, found novel routes to the enediyne warhead underlying powerful antimicrobials, established a cell-free system for monoterpene production, produced an intermediate toward vincristine biosynthesis, and encoded 7802 individually retrievable pathways to 540 bisindoles in a DNA pool. Pathways to tetrahydrofuran and barbamide were designed and constructed, but toxicity or analytical tools inhibited further progress. In sum, we constructed 1.2 Mb DNA, built 215 strains spanning five species ( Saccharomyces cerevisiae, Escherichia coli, Streptomyces albidoflavus, Streptomyces coelicolor, and Streptomyces albovinaceus), established two cell-free systems, and performed 690 assays developed in-house for the molecules.

  11. Initial testing of a variable-stroke Stirling engine

    Science.gov (United States)

    Thieme, L. G.

    1985-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.

  12. Engineering test facility design definition

    Science.gov (United States)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  13. Software engineers and nuclear engineers: teaming up to do testing

    International Nuclear Information System (INIS)

    Kelly, D.; Cote, N.; Shepard, T.

    2007-01-01

    The software engineering community has traditionally paid little attention to the specific needs of engineers and scientists who develop their own software. Recently there has been increased recognition that specific software engineering techniques need to be found for this group of developers. In this case study, a software engineering group teamed with a nuclear engineering group to develop a software testing strategy. This work examines the types of testing that proved to be useful and examines what each discipline brings to the table to improve the quality of the software product. (author)

  14. Engine Test Cell Aeroacoustics and Recommendations

    National Research Council Canada - National Science Library

    Tam, Christopher

    2007-01-01

    Ground testing of turbojet engines in test cells necessarily involves very high acoustic amplitudes, often enough and severe enough that testing is interrupted and facility hardware and test articles are damaged...

  15. Using the building energy simulation test (BESTEST) to evaluate CHENATH, the Nationwide House Energy Rating Scheme Simulation Engine

    Energy Technology Data Exchange (ETDEWEB)

    Delsante, A.E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Highett, VIC (Australia). Div. of Building Construction and Engineering

    1995-12-31

    The Nationwide House Energy Rating Scheme (NatHERS) uses a simulation program as its reference tool to evaluate the energy demand of buildings. The Commonwealth Scientific Industrial Research Organisation (CSIRO) developed software called CHENATH, is a significantly enhanced version of the CHEETAH simulation program. As part of the NatHERS development process, it was considered important to subject CHENATH to further testing. Two separate evaluation projects were undertaken. This paper describes one of these projects. CHENATH was compared with a reference set of eight internationally recognized simulation programs using the BESTEST methodology. Annual heating and cooling energy requirements were compared for a specified set of variations on a simple double-glazed building. Annual incident and transmitted solar radiation was also compared, for which CHENATH agreed very well with the reference set. It also agreed well for heating energy, but tended to over-predict cooling energy. This is largely because it controls an environmental temperature rather than the required air temperature. For the same reason CHENATH over-predicted heating and cooling demands. No major discrepancies were found that would suggest bugs in the program. (author). 4 tabs., 10 figs., 4 refs.

  16. Structural evaluation of spent nuclear fuel storage facilities under aircraft crash impact (2). Horizontal impact test onto reduced scale metal cask due to aircraft engine missile

    International Nuclear Information System (INIS)

    Namba, Kosuke; Shirai, Koji; Saegusa, Toshiari

    2009-01-01

    In this study, to confirm the sealing performance of a metal cask subjected to impact force due to possible commercial aircraft crash against a spent fuel storage facility, the horizontal impact test was carried out. In the test, an aircraft engine missile with a speed of 57.3 m/s attacked the reduced scale metal cask containing helium gas, which stands vertically. Then the leak rate and sliding displacement of the lid were measured. The leak rate increased rapidly and reached to 4.0 x 10 -6 Pa·m 3 /sec. After that, the leak rate decreased slowly and converged to 1.0x10 -6 Pa·m 3 /sec after 20 hours from the impact test. The leak rate of a full scale cask was evaluated using that of reduced scale cask obtained by the test. Then the leak rate of the full scale cask was 3.5x10 -5 Pa·m 3 /sec. This result showed that the sealing performance of the full scale metal cask would not be affected immediately by the horizontal impact of the aircraft engine with a speed of 57.3 m/s. (author)

  17. Simulation and material testing of jet engines

    International Nuclear Information System (INIS)

    Tariq, M.M.

    2006-01-01

    The NASA software engine simulator version U 1.7a beta has been used for simulation and material testing of jet engines. Specifications of Modem Jet Engines are stated, and then engine simulator is applied on these specifications. This simulator can simulate turbojet, afterburner, turbofan and ram jet. The material of many components of engine may be varied. Conventional and advanced materials for jet engines can be simulated and tested. These materials can be actively cooled to increase the operating temperature limit. As soon as temperature of any engine component exceeds the temperature limit of material, a warning message flashes across screen. Temperature Limits Exceeded. This flashing message remainst here until necessaryc hangesa re carried out in engine operationp rocedure. Selection Criteria of Engines is stated for piston prop, turboprop, turbofan, turbojet, and turbojet with afterburner and Ramjet. Several standard engines are modeled in Engine Simulator. These engines can. be compared by several engineering specifications. The design, modeling, simulation and testing of engines helps to better understand different types of materials used in jet engines. (author)

  18. Evaluation of Social Competencies in Chemical Engineering: Application and Results of the Pilot Test (Academic Year 2012-2013)

    Science.gov (United States)

    Grande, Francisco José Suñé; Witt, Hans Jörg; Avalos, Josep Bonet

    2015-01-01

    The Escola Tècnica Superior d'Enginyeria Química has a long tradition in the deployment of social competencies in engineering curricula through Integrated Projects (IP) carried out in structured teams. Social competencies are taught and practiced during the development of the IPs. We conceptually introduce a methodology for a 360 degrees…

  19. Advanced Vehicle Testing and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Garetson, Thomas [The Clarity Group, Incorporated, Chicago, IL (United States)

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  20. Itegrated Test and Evaluation of a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removtal System (CDRA), Mechanical Compressor Engineering Development Unit (EDU), and Sabitier Engineering Development Unit (EDU)

    Science.gov (United States)

    Knox, James C.; Campbell, Melissa; Murdoch, Karen; Miller, Lee A.; Jeng, Frank

    2005-01-01

    Currently on the International Space Station s (ISS) U.S. Segment, carbon dioxide (CO2) scrubbed from the cabin by a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal Assembly (CDRA) is vented overboard as a waste product. Likewise, the product hydrogen (H2) that will be generated by the Oxygen Generation Assembly (OGA) planned for installation will also be vented. A flight experiment has been proposed that will take the waste CO2 removed from the cabin, and via the catalytic Sabatier process, reduce it with waste H2 to generate water and methane. The water produced may provide cost and logistics savings for ISS by reducing the amount of water periodically re-supplied to orbit. To make this concept viable, a mechanical piston compressor and accumulator were developed for collecting and storing the CO2 from the CDRA. The compressor, accumulator and Sabatier system would be packaged together as one unit and referred to as the Carbon Dioxide Reduction Assembly (CRA). Testing was required to evaluate the performance of a 4BMS CDRA, compressor, accumulator, and Sabatier performance along with their operating rules when integrated together. This had been numerically modeled and simulated; however, testing was necessary to verify the results from the engineering analyses. Testing also allowed a better understanding of the practical inefficiencies and control issues involved in a fully integrated system versus the theoretical ideals in the model. This paper presents and discusses the results of an integrated engineering development unit test.

  1. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Bess, John D.; Fujimoto, Nozomu

    2014-01-01

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments

  2. Performance Evaluation of an Experimental Turbojet Engine

    Science.gov (United States)

    Ekici, Selcuk; Sohret, Yasin; Coban, Kahraman; Altuntas, Onder; Karakoc, T. Hikmet

    2017-11-01

    An exergy analysis is presented including design parameters and performance assessment, by identifying the losses and efficiency of a gas turbine engine. The aim of this paper is to determine the performance of a small turbojet engine with an exergetic analysis based on test data. Experimental data from testing was collected at full-load of small turbojet engine. The turbojet engine exhaust data contains CO2, CO, CH4, H2, H2O, NO, NO2, N2 and O2 with a relative humidity of 35 % for the ambient air of the performed experiments. The evaluated main components of the turbojet engine are the air compressor, the combustion chamber and the gas turbine. As a result of the thermodynamic analysis, exergy efficiencies (based on product/fuel) of the air compressor, the combustion chamber and the gas turbine are 81.57 %, 50.13 % and 97.81 %, respectively. A major proportion of the total exergy destruction was found for the combustion chamber at 167.33 kW. The exergy destruction rates are 8.20 %, 90.70 % and 1.08 % in the compressor, the combustion chamber and the gas turbine, respectively. The rates of exergy destruction within the system components are compared on the basis of the exergy rate of the fuel provided to the engine. Eventually, the exergy rate of the fuel is calculated to be 4.50 % of unusable due to exergy destruction within the compressor, 49.76 % unusable due to exergy destruction within the combustion chamber and 0.59 % unusable due to exergy destruction within the gas turbine. It can be stated that approximately 55 % of the exergy rate of the fuel provided to the engine can not be used by the engine.

  3. Role of well testing in civil engineering

    International Nuclear Information System (INIS)

    Banks, D.

    1981-01-01

    Purpose of well testing is to derive a value of the permeability of the geologic medium or to measure the velocity or quantity of fluid flow. The types of tests typically employed on civil engineering projects are simple borehole tests, packer or pressure tests in boreholes, permeameter tests, well pumping tests, and in-hole tests using well flow meters or tracer tests. New problem areas which demand new approaches are mentioned

  4. Advanced Turbine Engine Seal Test

    Science.gov (United States)

    1976-07-01

    Transpiration- Cooled Shroud Segments. 67. ATEST Shroud Rub Pin Heights and Mid-Chord Runout . 68. Locations of Nine-Point Runout Check on Shroud Surface...69. ATEST Shroud Leading Edge Runout . 70. ATEST Shroud Trailing Edge Runout . 71. ATEST Shroud Support Posttest Runout . 72. ATEST Shroud Flow Zones...at General Electric on many prior engines with good success. It Involves the use of a grinding wheel in conjunction with a cutting fluid which is

  5. Proficiency tests, Evaluating

    NARCIS (Netherlands)

    Cofino, W.P.; Molenaar, J.; Torfs, P.J.J.F.

    2017-01-01

    Marine monitoring programs provide data that are essential for marine management. The reliability of such data is underpinned by proficiency tests. In the context of Quasimeme, a proficiency testing program for the marine environment, a statistical model has been developed in 2000 to evaluate data

  6. Space Shuttle Main Engine Public Test Firing

    Science.gov (United States)

    2000-01-01

    A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

  7. Prototype Engineered Barrier System Field Test (PEBSFT)

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Buscheck, T.; Carlson, R.; Daily, W.; Lee, K.; Lin, Wunan; Mao, Nai-hsien; Ueng, Tzou-Shin; Wang, H.; Watwood, D.

    1991-08-01

    This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity and attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT

  8. Engineering model cryocooler test results

    International Nuclear Information System (INIS)

    Skimko, M.A.; Stacy, W.D.; McCormick, J.A.

    1992-01-01

    This paper reports that recent testing of diaphragm-defined, Stirling-cycle machines and components has demonstrated cooling performance potential, validated the design code, and confirmed several critical operating characteristics. A breadboard cryocooler was rebuilt and tested from cryogenic to near-ambient cold end temperatures. There was a significant increase in capacity at cryogenic temperatures and the performance results compared will with code predictions at all temperatures. Further testing on a breadboard diaphragm compressor validated the calculated requirement for a minimum axial clearance between diaphragms and mating heads

  9. Prototype Engineered Barrier System Field Tests (PEBSFT)

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Wilder, D.G.

    1991-02-01

    This progress report presents the interpretation of data obtained (up to November 1, 1988) from the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed for the Yucca Mountain Project (YMP) in G-Tunnel within the Nevada Test site. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for the field tests for future investigations that will be conducted in the Exploratory Shaft Facilities, at a potential high-level radioactive waste repository site in Yucca Mountain. The primary objective of the tests is to provide the basis for determining whether tests planned for Yucca Mountain have the potential to be successful. Thirteen chapters discuss the following: mapping the electromagnetic permittivity and attenuation rate of the rock mass; changes in moisture content detected by the neutron logging probe; characterization of the in-situ permeability of the fractured tuff around the heater borehole; electrical resistance heater installed in a 30-cm borehole; relative humidity measurements; the operation, design, construction, calibration, and installation of a microwave circuit that might provide partial pressure information at temperatures in excess of 200 degree C (392 degree F); pressure and temperature measurements in the G-Tunnel; the moisture collection system, which attempts to collect steam that migrates into the heater borehole; The borehole television and borescope surveys that were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes; preliminary scoping calculations of the hydrothermal conditions expected for this prototype test; the Data Acquisition System; and the results of the PEBSFT, preliminary interpretations of these results, and plans for the remainder of the test. Chapters have been indexed separately for inclusion on the data base

  10. Engineered Barrier Testing at the INEEL Engineered Barriers Test Facility: FY-1997 and FY-1998

    International Nuclear Information System (INIS)

    Keck, K. N.; Porro, I.

    1998-01-01

    Engineered barriers of two designs are being tested at the Engineered Barriers Test Facility (EBTF) at the Idaho National Engineering and Environmental Laboratory. This report describes the test facility, barrier designs, and instruments used to monitor the test plots. Wetting tests conducted on the test plots in FY-97 are described and data collected from monitoring the test plots before, during and after the wetting tests are used to evaluate the performance of the covers during FY-97 and FY-98. Replicates of two engineered barrier designs were constructed in the EBTF cells. The first design comprises a thick, vegetated soil cover. The second design incorporates a capillary/biobarrier within the vegtated soil cover. The capillary barrier uses the textural break between an upper, fine textured soil and a lower, coarser-textured gravel layer to inhibit drainage under unsaturated conditions while increasing soil moisture storage in the root zone. Evaporation and transpiration by plants (although the test plots have not yet been vegetated) are used to recycle water stored in the soil back to the atmosphere. A geotextile fabric is used to maintain separation of the soil and gravel layers. A thick layer of cobbles beneath the gravel layer serves as a biobarrier to prevent intrusion of plant roots and burrowing animals into underlying waste (there is no waste in the test plots). Each test plot was instrumented with time domain reflectometry probes and neutron probe access tubes to measure moisture contents, tensiometers, heat dissipation sensors, and thermocouple psychrometers to measure matric potentials, thermocouples to measure soil temperature, and ion-exchange resin beads to monitor tracer movement. Each drainage sump is equipped with a tipping bucket instrument and pressure transducer to measure drainage. Precipitation is measured using a heated rain gauge located at the EBTF. Instrument calibration equation coefficients are presented, and data reduction

  11. Functional evaluation and rehabilitation engineering.

    Science.gov (United States)

    Aliverti, Andrea; Frigo, C; Andreoni, G; Baroni, G; Bonarini, A; Cerveri, P; Crivellini, M; Dellaca, R; Ferrigno, G; Galli, M; Pedrocchi, A; Rodano, R; Santambrogio, G C; Tognola, G; Pedotti, A

    2011-01-01

    Life is complex and all about movement, which allows us to interact with the environment and communicate with each other. The human nervous system is capable of performing a simultaneous and integrated control of 100-150 mechanical degrees of freedom of movement in the body via tensions generated by about 700 muscles. In its widest context, movement is carried out by a sensory motor system comprising multiple sensors (visual,auditory, and proprioceptive),multiple actuators (muscles acting on the skeletal system),and an intermediary processor that can be summarized as a multiple-input–multiple-output nonlinear dynamic time-varying control system. This grand control system is capable of responding with remarkable accuracy,speed, appropriateness,versatility, and adaptability to a wide spectrum of continuous and discrete stimuli and conditions and is certainly orders of magnitude more complex and sophisticated than the most advanced robotic systems currently available. In the last decades,a great deal of research has been carried out in the fields of functional evaluation of human performance and rehabilitation engineering. These fields combine knowledge, concepts, and methods from across many disciplines (e.g., biomechanics,neuroscience, and physiology), with the aim of developing apparatuses and methods fort he measurement and analysis of complex sensory motor performance and the ultimate goal of enhancing the execution of different tasks in both healthy people and persons with reduced capabilities from different causes (injury, disease, amputation,and neural degeneration).

  12. Evaluating Google compute engine with PROOF

    International Nuclear Information System (INIS)

    Ganis, Gerardo; Panitkin, Sergey

    2014-01-01

    The advent of private and commercial cloud platforms has opened the question of evaluating the cost-effectiveness of such solution for computing in High Energy Physics . Google Compute Engine (GCE) is a IaaS product launched by Google as an experimental platform during 2012 and now open to the public market. In this contribution we present the results of a set of CPU-intensive and I/O-intensive tests we have run with PROOF on a GCE resources made available by Google for test purposes. We have run tests on large scale PROOF clusters (up to 1000 workers) to study the overall scalability of coordinated multi-process jobs. We have studied and compared the performance of ephemeral and persistent storage with PROOF-Lite on the single machines and of standard PROOF on the whole cluster. We will discuss our results in perspective, in particular with respect to the typical analysis needs of an LHC experiment.

  13. NASA Indexing Benchmarks: Evaluating Text Search Engines

    Science.gov (United States)

    Esler, Sandra L.; Nelson, Michael L.

    1997-01-01

    The current proliferation of on-line information resources underscores the requirement for the ability to index collections of information and search and retrieve them in a convenient manner. This study develops criteria for analytically comparing the index and search engines and presents results for a number of freely available search engines. A product of this research is a toolkit capable of automatically indexing, searching, and extracting performance statistics from each of the focused search engines. This toolkit is highly configurable and has the ability to run these benchmark tests against other engines as well. Results demonstrate that the tested search engines can be grouped into two levels. Level one engines are efficient on small to medium sized data collections, but show weaknesses when used for collections 100MB or larger. Level two search engines are recommended for data collections up to and beyond 100MB.

  14. High-voltage engineering and testing

    CERN Document Server

    Ryan, Hugh M

    2013-01-01

    This 3rd edition of High Voltage Engineering Testing describes strategic developments in the field and reflects on how they can best be managed. All the key components of high voltage and distribution systems are covered including electric power networks, UHV and HV. Distribution systems including HVDC and power electronic systems are also considered.

  15. Conceptual studies of plasma engineering test facility

    International Nuclear Information System (INIS)

    Hiraoka, Toru; Tazima, Teruhiko; Sugihara, Masayoshi; Kasai, Masao; Shinya, Kichiro

    1979-04-01

    Conceptual studies have been made of a Plasma Engineering Test Facility, which is to be constructed following JT-60 prior to the experimental power reactor. The physical aim of this machine is to examine self-ignition conditions. This machine possesses all essential technologies for reactor plasma, i.e. superconducting magnet, remote maintenance, shielding, blanket test modules, tritium handling. Emphasis in the conceptual studies was on structural consistency of the machine and whether the machine would be constructed practically. (author)

  16. Doublet III construction and engineering test

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Progress during FY-78 on the construction and operation of the Doublet III is reported. Detailed discussions about the installation and testing of various components and subsystems, including the B-coil, E-coil, F-coils and support structure, vacuum vessel, vacuum pumping system, limiter, thermal insulation blanket, control system, B-coil power system, E-coil power system, F-coil power system, and motor-generator, are presented. A brief review of the engineering test operation is given

  17. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  18. Management and Use of Director, Operational Test and Evaluation Funds

    National Research Council Canada - National Science Library

    2000-01-01

    .... The reorganization disestablished the functions of the Director, Test, Systems Engineering, and Evaluation, within the Office of Under Secretary of Defense for Acquisition, Technology, and Logistics...

  19. Engineering Abstractions in Model Checking and Testing

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus

    2009-01-01

    Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and testing is still state of the art in falsification. We show how user-defined abstractions can be integrated into a Java PathFinder setting with tools like AspectJ or Javassist and discuss implications of remaining weaknesses of these tools. We believe that a principled engineering approach to designing...... and implementing abstractions will improve the applicability of model checking in practice....

  20. AJ26 rocket engine testing news briefing

    Science.gov (United States)

    2010-01-01

    NASA's John C. Stennis Space Center Director Gene Goldman (center) stands in front of a 'pathfinder' rocket engine with Orbital Sciences Corp. President and Chief Operating Officer J.R. Thompson (left) and Aerojet President Scott Seymour during a Feb. 24 news briefing at the south Mississippi facility. The leaders appeared together to announce a partnership for testing Aerojet AJ26 rocket engines at Stennis. The engines will be used to power Orbital's Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. During the event, the Stennis partnership with Orbital was cited as an example of the new direction of NASA to work with commercial interests for space travel and transport.

  1. Quality engineering in FFTF irradiation tests

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1980-01-01

    The design and fabrication of an irradiation test for the Fast Flux Test Facility are planned, controlled and documented in accordance with the Department of Energy standards. Tests built by Westinghouse Hanford Company are further controlled and guided by a series of increasingly specific documents, including guidelines for program control, procedures for engineering operations, standard practices and detailed operating procedures. In response to this guidance, a series of five documents is prepared covering each step of the experiment from conception through fabrication and assembly. This paper describes the quality assurance accompanying these five steps

  2. 40 CFR 90.410 - Engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 90.410 Section 90... Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and II engines and 2-mode test cycle for Class I-A, III, IV, and V engines when testing spark-ignition engines...

  3. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    Science.gov (United States)

    Linker, K. L.; Rawlinson, K. S.; Smith, G.

    1991-10-01

    The Department of Energy's Solar Thermal Program has, as one of its program elements, the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc. kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  4. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Culp

    2007-01-26

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  5. Action Memorandum for Decommissioning the Engineering Test Reactor Complex under the Idaho Cleanup Project

    International Nuclear Information System (INIS)

    A. B. Culp

    2007-01-01

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared and released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessel. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface

  6. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F

    Energy Technology Data Exchange (ETDEWEB)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

  7. DEVELOPMENT AND TESTING OF A PRE-PROTOTYPE RAMGEN ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Aaron Koopman

    2003-07-01

    The research and development effort of a new kind of compressor and engine is presented. The superior performance of these two products arises from the superior performance of rotating supersonic shock-wave compression. Several tasks were performed in compliance with the DOE award objectives. A High Risk Technology review was conducted and evaluated by a team of 20 senior engineers and scientists representing various branches of the federal government. The conceptual design of a compression test rig, test rotors, and test cell adaptor was completed. The work conducted lays the foundation for the completed design and testing of the compression test rig, and the design of a supersonic shock-wave compressor matched to a conventional combustor and turbine.

  8. Evaluating a Federated Medical Search Engine

    Science.gov (United States)

    Belden, J.; Williams, J.; Richardson, B.; Schuster, K.

    2014-01-01

    Summary Background Federated medical search engines are health information systems that provide a single access point to different types of information. Their efficiency as clinical decision support tools has been demonstrated through numerous evaluations. Despite their rigor, very few of these studies report holistic evaluations of medical search engines and even fewer base their evaluations on existing evaluation frameworks. Objectives To evaluate a federated medical search engine, MedSocket, for its potential net benefits in an established clinical setting. Methods This study applied the Human, Organization, and Technology (HOT-fit) evaluation framework in order to evaluate MedSocket. The hierarchical structure of the HOT-factors allowed for identification of a combination of efficiency metrics. Human fit was evaluated through user satisfaction and patterns of system use; technology fit was evaluated through the measurements of time-on-task and the accuracy of the found answers; and organization fit was evaluated from the perspective of system fit to the existing organizational structure. Results Evaluations produced mixed results and suggested several opportunities for system improvement. On average, participants were satisfied with MedSocket searches and confident in the accuracy of retrieved answers. However, MedSocket did not meet participants’ expectations in terms of download speed, access to information, and relevance of the search results. These mixed results made it necessary to conclude that in the case of MedSocket, technology fit had a significant influence on the human and organization fit. Hence, improving technological capabilities of the system is critical before its net benefits can become noticeable. Conclusions The HOT-fit evaluation framework was instrumental in tailoring the methodology for conducting a comprehensive evaluation of the search engine. Such multidimensional evaluation of the search engine resulted in recommendations for

  9. 40 CFR 89.410 - Engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 89.410 Section 89... Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...) through (a)(4) of this section. These cycles shall be used to test engines on a dynamometer. (1) The 8...

  10. 40 CFR 1065.405 - Test engine preparation and maintenance.

    Science.gov (United States)

    2010-07-01

    ... has undergone a stabilization step (or in-use operation). If the engine has not already been... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Test engine preparation and...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065...

  11. Fracture evaluation tests

    International Nuclear Information System (INIS)

    Robinson, G.C.

    1991-01-01

    In this report period, efforts have concentrated on defining the requirements for shallow-flaw beam testing. Analyses have been made to envelope the significant parameters for both deep- and shallow-flaw beams for three-point loading; that is, load to initiation of a frangible flaw, load to plastic collapse, LLD, and CMOD. An assessment was made of facilities capable of performing the tests identified by the parametric analyses discussed above. Two testing machines were identified for performing the scoped test series, the first a 550-kip Instron machine assigned to the Pressure Vessel Technology Section located in Building 9204-1 at the Y-12 Plant and the second a 220-kip MTS machine assigned to a mechanical testing group located at the K-25 Site. An existing bend test fixture previously used in the HSST clad plate test series is being modified for use in testing beams under other sponsorship but will be available for shared usage with the HSST shallow-flaw beam testing activities. To prevent the shared usage from having an adverse impact on the logistics of the HSST Program, the decision was made to procure a bend test fixture tailored specifically to serve the shallow flaw beam test series. A specification was prepared and procurement initiated. A survey is in progress for determining sources and costs of displacement-measuring instrumentation from both foreign and domestic sources. It appears that existing direct current displacement transducers available to the HSST Program may be adequate for the LLD measurements. These devices will be employed in the shakedown tests that are planned. A safety and environmental survey assessment for the beam testing conforming to the revised DOE rules has been prepared and approved

  12. 40 CFR 91.410 - Engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 91.410 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.410 Engine test cycle. (a) The 5-mode cycle specified in Table 2 in appendix A to this subpart shall be followed...

  13. Engineering design of vertical test stand cryostat

    International Nuclear Information System (INIS)

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.

    2011-01-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN 2 ) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B and PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface 2 shield has been performed to check the effectiveness of LN 2 cooling and for compliance with ASME piping code allowable stresses.

  14. Optical Methods For Automatic Rating Of Engine Test Components

    Science.gov (United States)

    Pritchard, James R.; Moss, Brian C.

    1989-03-01

    In recent years, increasing commercial and legislative pressure on automotive engine manufacturers, including increased oil drain intervals, cleaner exhaust emissions and high specific power outputs, have led to increasing demands on lubricating oil performance. Lubricant performance is defined by bench engine tests run under closely controlled conditions. After test, engines are dismantled and the parts rated for wear and accumulation of deposit. This rating must be consistently carried out in laboratories throughout the world in order to ensure lubricant quality meeting the specified standards. To this end, rating technicians evaluate components, following closely defined procedures. This process is time consuming, inaccurate and subject to drift, requiring regular recalibration of raters by means of international rating workshops. This paper describes two instruments for automatic rating of engine parts. The first uses a laser to determine the degree of polishing of the engine cylinder bore, caused by the reciprocating action of piston. This instrument has been developed to prototype stage by the NDT Centre at Harwell under contract to Exxon Chemical, and is planned for production within the next twelve months. The second instrument uses red and green filtered light to determine the type, quality and position of deposit formed on the piston surfaces. The latter device has undergone feasibility study, but no prototype exists.

  15. Engineer Research and Development Center's Materials Testing Center (MTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center's Materials Testing Center (MTC) is committed to quality testing and inspection services that are delivered on time and...

  16. GES [Ground Engineering System] test site preparation

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.; Schade, A.R.; Toyoda, K.G.

    1987-10-01

    Activities are under way at Hanford to convert the 309 containment building and its associated service wing to a nuclear test facility for the Ground Engineering System (GES) test. Conceptual design is about 80% complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system, a test article cell and handing system, control and data handling systems, and safety andl auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 25% complete. Cleanout of some 1000 m 3 of equipment from the earlier reactor test in the facility is 85% complete. An Environmental Assessment was prepared and revised to incorporate Department of Energy (DOE) comments. It is now in the DOE approval chain, where a Finding of No Significant Impact is expected. During the next year, definite design will be well advanced, long-lead procurements will be initiated, construction planning will be completed, an operator training plan will be prepared, and the site (preliminary) safety analysis report will be drafted

  17. 14 CFR 33.91 - Engine system and component tests.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected... hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use in...

  18. The SPHINX reactor for engineering tests

    International Nuclear Information System (INIS)

    Adamov, E.O.; Artamkin, K.N.; Bovin, A.P.; Bulkin, Y.M.; Kartashev, E.F.; Korneev, A.A.; Stenbok, I.A.; Terekhov, A.S.; Khmel'Shehikov, V.V.; Cherkashov, Y.M.

    1990-01-01

    A research reactor known as SPHINX is under development in the USSR. The reactor will be used mainly to carry out tests on mock-up power reactor fuel assemblies under close-to-normal parameters in experimental loop channels installed in the core and reflector of the reactor, as well as to test samples of structural materials in ampoule and loop channels. The SPHINX reactor is a channel-type reactor with light-water coolant and moderator. Maximum achievable neutron flux density in the experimental channels (cell composition 50% Fe, 50% H 2 O) is 1.1 X 10 15 neutrons/cm 2 · s for fast neutrons (E > 0.1 MeV) and 1.7 X 10 15 for thermal neutrons at a reactor power of 200 MW. The design concepts used represent a further development of the technical features which have met with approval in the MR and MIR channel-type engineering test reactors currently in use in the USSR. The 'in-pond channel' construction makes the facility flexible and eases the carrying out of experimental work while keeping discharges of radioactivity into the environment to a low level. The reactor and all associated buildings and constructions conform to modern radiation safety and environmental protection requirements

  19. Laboratory Test of Reciprocating Internal Combustion Engines

    Science.gov (United States)

    2016-02-04

    Control Module (ECM) torque horsepower engine speed boost turbocharger throttle injector power curve...13 2.4 Calibration ............................................................................. 14...Control Units (ECU). Originally, diesel engines were naturally aspirated, but most have evolved to include forced induction devices (turbochargers

  20. Human factors engineering evaluation of the UTR-10 Reactor

    International Nuclear Information System (INIS)

    Lahti, D.; Nilius, D.; Heithoff, D.; Roche, G.; Sage, S.

    1982-01-01

    This paper is a description of a student design team's review and evaluation of Iowa State University's University Test Reactor (UTR-10). The review was based on how well the control room of the UTR-10 measured up to selected portions of NUREG-0800, chapter 18, Human Factor Engineering/Standard Review Plan Development. The review was conducted by inspecting the reactor and interviewing reactor operators. The control room workspace, instrumentation controls and other equipment were evaluated from a human factors engineering point of view that takes into account both system demands and operator capabilities. Identification, assessment, and suggestion for control room design modifications that correct inadequate or unsuitable items was made

  1. Design of a fusion engineering test facility

    International Nuclear Information System (INIS)

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m 2 . In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V

  2. 40 CFR 91.409 - Engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... at rated speed and maximum power for 25 to 30 minutes; (iv) Option. For four-stroke engines, where... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine dynamometer test run. 91.409... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.409...

  3. 40 CFR 86.336-79 - Diesel engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79... Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  4. Engineering Evaluation Tests of 16 Gauge vs 14 Gauge Staples IAW MIL-STD-1660, 40MM Cartridge on Wooden Pallet

    National Research Council Canada - National Science Library

    Dugan, Jeffery L

    2008-01-01

    .... Three test units were tested with a load of 2,290 lbs, 2,295 lbs, and 2,295 lbs. The testing accomplished on the test units was the Stacking, Repetitive Shock, Drop, Incline-Impact, Forklifting, and Disassembly Tests. Test Units #1...

  5. From Usability Testing to Clinical Simulations: Bringing Context into the Design and Evaluation of Usable and Safe Health Information Technologies. Contribution of the IMIA Human Factors Engineering for Healthcare Informatics Working Group.

    Science.gov (United States)

    Kushniruk, A; Nohr, C; Jensen, S; Borycki, E M

    2013-01-01

    The objective of this paper is to explore human factors approaches to understanding the use of health information technology (HIT) by extending usability engineering approaches to include analysis of the impact of clinical context through use of clinical simulations. Methods discussed are considered on a continuum from traditional laboratory-based usability testing to clinical simulations. Clinical simulations can be conducted in a simulation laboratory and they can also be conducted in real-world settings. The clinical simulation approach attempts to bring the dimension of clinical context into stronger focus. This involves testing of systems with representative users doing representative tasks, in representative settings/environments. Application of methods where realistic clinical scenarios are used to drive the study of users interacting with systems under realistic conditions and settings can lead to identification of problems and issues with systems that may not be detected using traditional usability engineering methods. In conducting such studies, careful consideration is needed in creating ecologically valid test scenarios. The evidence obtained from such evaluation can be used to improve both the usability and safety of HIT. In addition, recent work has shown that clinical simulations, in particular those conducted in-situ, can lead to considerable benefits when compared to the costs of running such studies. In order to bring context of use into the testing of HIT, clinical simulation, involving observing representative users carrying out tasks in representative settings, holds considerable promise.

  6. AFFTC Instruction 99-1, Test and Evaluation Test Plans

    National Research Council Canada - National Science Library

    Crane, Roger

    2002-01-01

    .... Test Information Sheets (TISs) are actually appendices to test plans and contain sufficient information for use by a flight test engineer to develop flight test cards and for management to discern the overall technical approach being taken...

  7. Information retrieval implementing and evaluating search engines

    CERN Document Server

    Büttcher, Stefan; Cormack, Gordon V

    2016-01-01

    Information retrieval is the foundation for modern search engines. This textbook offers an introduction to the core topics underlying modern search technologies, including algorithms, data structures, indexing, retrieval, and evaluation. The emphasis is on implementation and experimentation; each chapter includes exercises and suggestions for student projects. Wumpus -- a multiuser open-source information retrieval system developed by one of the authors and available online -- provides model implementations and a basis for student work. The modular structure of the book allows instructors to use it in a variety of graduate-level courses, including courses taught from a database systems perspective, traditional information retrieval courses with a focus on IR theory, and courses covering the basics of Web retrieval. In addition to its classroom use, Information Retrieval will be a valuable reference for professionals in computer science, computer engineering, and software engineering.

  8. Processing multilevel secure test and evaluation information

    Science.gov (United States)

    Hurlburt, George; Hildreth, Bradley; Acevedo, Teresa

    1994-07-01

    The Test and Evaluation Community Network (TECNET) is building a Multilevel Secure (MLS) system. This system features simultaneous access to classified and unclassified information and easy access through widely available communications channels. It provides the necessary separation of classification levels, assured through the use of trusted system design techniques, security assessments and evaluations. This system enables cleared T&E users to view and manipulate classified and unclassified information resources either using a single terminal interface or multiple windows in a graphical user interface. TECNET is in direct partnership with the National Security Agency (NSA) to develop and field the MLS TECNET capability in the near term. The centerpiece of this partnership is a state-of-the-art Concurrent Systems Security Engineering (CSSE) process. In developing the MLS TECNET capability, TECNET and NSA are providing members, with various expertise and diverse backgrounds, to participate in the CSSE process. The CSSE process is founded on the concepts of both Systems Engineering and Concurrent Engineering. Systems Engineering is an interdisciplinary approach to evolve and verify an integrated and life cycle balanced set of system product and process solutions that satisfy customer needs (ASD/ENS-MIL STD 499B 1992). Concurrent Engineering is design and development using the simultaneous, applied talents of a diverse group of people with the appropriate skills. Harnessing diverse talents to support CSSE requires active participation by team members in an environment that both respects and encourages diversity.

  9. Off reactor testings. Technological engineering applicative research

    International Nuclear Information System (INIS)

    Doca, Cezar

    2001-01-01

    By the end of year 2000 over 400 nuclear electro-power units were operating world wide, summing up a 350,000 MW total capacity, with a total production of 2,300 TWh, representing 16% of the world's electricity production. Other 36 units, totalizing 28,000 MW, were in construction, while a manifest orientation towards nuclear power development was observed in principal Asian countries like China, India, Japan and Korea. In the same world's trend one find also Romania, the Cernavoda NPP Unit 1 generating electrical energy into the national system beginning with 2 December 1996. Recently, the commercial contract was completed for finishing the Cernavoda NPP Unit 2 and launching it into operation by the end of year 2004. An important role in developing the activity of research and technological engineering, as technical support for manufacturing the CANDU type nuclear fuel and supplying with equipment the Cernavoda units, was played by the Division 7 TAR of the INR Pitesti. Qualification testings were conducted for: - off-reactor CANDU type nuclear fuel; - FARE tools, pressure regulators, explosion proof panels; channel shutting, as well as functional testing for spare pushing facility as a first step in the frame of the qualification tests for the charging/discharging machine (MID) 4 and 5 endings. Testing facilities are described, as well as high pressure hot/cool loops, measuring chains, all of them fulfilling the requirements of quality assurance. The nuclear fuel off-reactor tests were carried out to determine: strength; endurance; impact, pressure fall and wear resistance. For Cernavoda NPP equipment testings were carried out for: the explosion proof panels, pressure regulators, behaviour to vibration and wear of the steam generation tubings, effects of vibration upon different electronic component, channel shutting (for Cernavoda Unit 2), MID operating at 300 and 500 cycles. A number of R and D programs were conducted in the frame of division 7 TAR of INR

  10. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    Science.gov (United States)

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  11. Design of high temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Saito, Shinzo; Tanaka, Toshiyuki; Sudo, Yukio

    1994-09-01

    Construction of High Temperature Engineering Test Reactor (HTTR) is now underway to establish and upgrade basic technologies for HTGRs and to conduct innovative basic research at high temperatures. The HTTR is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal output and outlet coolant temperature of 850degC for rated operation and 950degC for high temperature test operation. It is planned to conduct various irradiation tests for fuels and materials, safety demonstration tests and nuclear heat application tests. JAERI received construction permit of HTTR reactor facility in February 1990 after 22 months of safety review. This report summarizes evaluation of nuclear and thermal-hydraulic characteristics, design outline of major systems and components, and also includes relating R and D result and safety evaluation. Criteria for judgment, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents, computer codes used in safety analysis and evaluation of each event are presented in the safety evaluation. (author)

  12. Two methodologies for physical penetration testing using social engineering

    NARCIS (Netherlands)

    Dimkov, T.; van Cleeff, A.; Pieters, Wolter; Hartel, Pieter H.

    2010-01-01

    Penetration tests on IT systems are sometimes coupled with physical penetration tests and social engineering. In physical penetration tests where social engineering is allowed, the penetration tester directly interacts with the employees. These interactions are usually based on deception and if not

  13. Evaluation of Research in Engineering Science in Norway

    DEFF Research Database (Denmark)

    Van Brussel, Hendrik Van Brussel; Lindberg, Bengt; Cederwall, Klas

    This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway .......This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway ....

  14. Engine testing the design, building, modification and use of powertrain test facilities

    CERN Document Server

    MARTYR, A J

    2012-01-01

    Engine Testing is a unique, well-organized and comprehensive collection of the different aspects of engine and vehicle testing equipment and infrastructure for anyone involved in facility design and management, physical testing and the maintenance, upgrading and trouble shooting of testing equipment. Designed so that its chapters can all stand alone to be read in sequence or out of order as needed, Engine Testing is also an ideal resource for automotive engineers required to perform testing functions whose jobs do not involve engine testing on a regular basis. This recognized standard refer

  15. Testing of the structural evaluation test unit

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Bobbe, J.G.

    1995-01-01

    In the evaluation of the safety of radioactive material transportation it is important to consider the response of Type B packages to environments more severe than that prescribed by the hypothetical accident sequence in Title 10 Part 71 of the Code of Federal Regulations (NRC 1995). The impact event in this sequence is a 9-meter drop onto an essentially unyielding target, resulting in an impact velocity of 13.4 m/s. The behavior of 9 packages when subjected to impacts more severe than this is not well known. It is the purpose of this program to evaluate the structural response of a test package to these environments. Several types of structural response are considered. Of primary importance is the behavior of the package containment boundary, including the bolted closure and 0-rings. Other areas of concern are loss of shielding capability due to lead slump and the deceleration loading of package contents, that may cause damage to them. This type of information is essential for conducting accurate risk assessments on the transportation of radioactive materials. Currently very conservative estimates of the loss of package protection are used in these assessments. This paper will summarize the results of a regulatory impact test and three extra-regulatory impact tests on a sample package

  16. CMOS test and evaluation a physical perspective

    CERN Document Server

    Bhushan, Manjul

    2015-01-01

    This book extends test structure applications described in Microelectronic Test Struc­tures for CMOS Technology (Springer 2011) to digital CMOS product chips. Intended for engineering students and professionals, this book provides a single comprehensive source for evaluating CMOS technology and product test data from a basic knowledge of the physical behavior of the constituent components. Elementary circuits that exhibit key properties of complex CMOS chips are simulated and analyzed, and an integrated view of design, test and characterization is developed. Appropriately designed circuit monitors embedded in the CMOS chip serve to correlate CMOS technology models and circuit design tools to the hardware and also aid in test debug. Impact of silicon process variability, reliability, and power and performance sensitivities to a range of product application conditions are described. Circuit simulations exemplify the methodologies presented, and problems are included at the end of the chapters.

  17. Initial tests of thermoacoustic space power engine

    International Nuclear Information System (INIS)

    Backhaus, S.N.

    2002-01-01

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (Wikg). Thennoacoustic engines at the -1-kW scale have converted high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, thennoacoustic engines are low mass and promise to be highly reliable. Coupling a thennoacoustic engine to a low mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Conversion efficiency data will be presented on a demonstration thennoacoustic engine designed for the 1 00-Watt power range.

  18. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  19. Soil-structure interaction - an engineering evaluation

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1976-01-01

    The two methods of analysis for structure interaction, the impedance and the finite element methods, are reviewed with regard to their present capabilities to address the significant factors of the problem. The objective of the paper is to evaluate if an adequate engineering solution to the problem is provided by either approach. Questions related to the reduction of seismic motions with depth scattering of incident waves, the three-dimensionality of the real problem, soil damping, strain dependency of soil properties and the uncertainties associated with all of the above are discussed in sufficient detail. All conclusions made are based on referenced material. It appears that both methods as presently practised have not yet completely solved the problem, the impedance approach has come closer to addressing the more significant issues. Because of this finding, in addition to its simplicity and low cost, the impedance approach is the perfect engineering method for soil-structure interaction. (Auth.)

  20. Test plan for engineering scale electrostatic enclosure demonstration

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1993-02-01

    This test plan describes experimental details of an engineering-scale electrostatic enclosure demonstration to be performed at the Idaho National Engineering Laboratory in fiscal year (FY)-93. This demonstration will investigate, in the engineering scale, the feasibility of using electrostatic enclosures and devices to control the spread of contaminants during transuranic waste handling operations. Test objectives, detailed experimental procedures, and data quality objectives necessary to perform the FY-93 experiments are included in this plan

  1. Environmental Testing of the NEXT PM1R Ion Engine

    Science.gov (United States)

    Snyder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2007-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The subsystem includes an ion engine, power processing unit, feed system components, and thruster gimbal. The Prototype Model engine PM1 was subjected to qualification-level environmental testing in 2006 to demonstrate compatibility with environments representative of anticipated mission requirements. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. The engine was reworked to address most of these findings, renamed PM1R, and the environmental test sequence was repeated. Thruster functional testing was performed before and after the vibration and thermal-vacuum tests. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 min in each of three axes. Thermal-vacuum testing included three thermal cycles from 120 to 215 C with hot engine re-starts. Thruster performance was nominal throughout the test program, with minor variations in a few engine operating parameters likely caused by facility effects. There were no significant changes in engine performance as characterized by engine operating parameters, ion optics performance measurements, and beam current density measurements, indicating no significant changes to the hardware as a result of the environmental testing. The NEXT PM1R engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. The redesigned cathode heater terminations successfully survived the vibration environments. Based on the results of this test

  2. 40 CFR 89.407 - Engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... supplied to the engine, the fuel temperature, the intake air humidity, and the observed barometric pressure... permitted to precondition the engine at rated speed and maximum horsepower until the oil and water... completion of the test. (3) It is permissible to change filter elements between test modes. (4) A leak check...

  3. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Two, Appendices C, D, and E

    Energy Technology Data Exchange (ETDEWEB)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    These appendices support the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-1371 l/Vol. This volume contains Appendices C-E. Appendix C is a compilation of all recorded data and mathematical calculations made to interpret the data. For the Task 3 and Task 4 work, the spreadsheet column definitions are included immediately before the actual spreadsheet pages and are listed as ''Sample Calculations/Column Definitions'' in the table of contents. Appendix D includes the chronological order in which the experiments were conducted and the final project costs through October 1998. Appendix E is a compilation of the monthly progress reports submitted to INEEL during the course of the project.

  4. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    Science.gov (United States)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  5. Stand for testing the electrical race car engine

    Science.gov (United States)

    Baier, M.; Franiasz, J.; Mierzwa, P.; Wylenzek, D.

    2015-11-01

    An engine test stand created especially for research of electrical race car is described in the paper. The car is an aim of Silesian Greenpower project whose participants build and test electrical vehicles to take part in international races in Great Britain. The engine test stand is used to test and measure the characteristics of vehicles and their engines. It has been designed particularly to test the electric cars engineered by students of Silesian Greenpower project. The article contains a description how the test stand works and shows its versatility in many areas. The paper presents both construction of the test stand, control system and sample results of conducted research. The engine test stand was designed and modified using PLM Siemens NX 8.5. The construction of the test stand is highly modular, which means it can be used both for testing the vehicle itself or for tests without the vehicle. The test stand has its own wheel, motor, powertrain and braking system with second engine. Such solution enables verifying various concepts without changing the construction of the vehicle. The control system and measurement system are realized by enabling National Instruments product myRIO (RIO - Reconfigurable Input/Output). This controller in combination with powerful LabVIEW environment performs as an advanced tool to control torque and speed simultaneously. It is crucial as far as the test stand is equipped in two motors - the one being tested and the braking one. The feedback loop is realized by an optical encoder cooperating with the rotor mounted on the wheel. The results of tests are shown live on the screen both as a chart and as single values. After performing several tests there is a report generated. The engine test stand is widely used during process of the Silesian Greenpower vehicle design. Its versatility enables powertrain testing, wheels and tires tests, thermal analysis and more.

  6. Evolution of a test article handling system for the SP-100 ground engineering system test

    International Nuclear Information System (INIS)

    Shen, E.J.; Schweiger, L.J.; Miller, W.C.; Gluck, R.; Devies, S.M.

    1987-04-01

    A simulated space environment test of a flight prototypic SP-100 reactor, control system, and flight shield will be conducted at the Hanford Engineering Development Laboratory (HEDL). The flight prototypic components and the supporting primary heat removal system are collectively known as the Nuclear Assembly Test Article (TA). The unique configuration and materials of fabrication for the Test Article require a specialized handling facility to support installation, maintenance, and final disposal operations. Westinghouse Hanford Company, the Test Site Operator, working in conjunction with General Electric Company, the Test Article supplier, developed and evaluated several handling concepts resulting in the selection of a reference Test Article Handling System. The development of the reference concept for the handling system is presented

  7. Synchrotron radiation losses in Engineering Test Reactors (ETRs)

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1987-11-01

    In next-generation Engineering Test Reactors (ETRs), one major objective is envisioned to be a long-pulse or steady-state burn using noninductive current drive. At the high temperatures needed for efficient current drive, synchrotron radiation could represent a large power loss, especially if wall reflectivity (R) is very low. Many INTOR-class ETR designs [Fusion Engineering Reactor (FER), Next European Torus (NET), OTR, Tokamak Ignition/Burn Engineering Reactor (TIBER), etc.] call for carbon-covered surfaces for which wall reflectivity is uncertain. Global radiation losses are estimated for these devices using empirical expressions given by Trubnikov (and others). Various operating scenarios are evaluated under the assumption that the plasma performance is limited by either the density limit (typical of the ignition phase) or the beta limit (typical of the current drive phase). For a case with ≥90% wall reflectivity, synchrotron radiation is not a significant contribution to the overall energy balance (the ratio of synchrotron to alpha power is less than 10 to 20%, even at ∼ 30 keV) and thus should not adversely alter performance in these devices. In extreme cases with 0% wall reflectivity, the ratio of synchrotron radiation to alpha power may approach 30 to 60% (depending on the device and limiting operating scenario), adversely affecting the performance characteristics. 12 refs., 7 tabs

  8. Modification and performance evaluation of a mono-valve engine

    Science.gov (United States)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  9. First-ever evening public engine test of a Space Shuttle Main Engine

    Science.gov (United States)

    2001-01-01

    Thousands of people watch the first-ever evening public engine test of a Space Shuttle Main Engine at NASA's John C. Stennis Space Center. The spectacular test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  10. Maintenance proficiency evaluation test bank

    International Nuclear Information System (INIS)

    Maier, Loran

    2003-01-01

    The Maintenance Proficiency Evaluation Test Bank (MPETB) is an Electric Power Research Institute- (EPRJ-) operated, utility-sponsored means of developing, maintaining, and disseminating secure, high-quality written and performance maintenance proficiency tests. EPRTs charter is to ensure that all tests and test items that go into the Test Bank have been validated, screened for reliability, and evaluated to high standards of psychometric excellence. Proficiency tests of maintenance personnel.(mechanics, electricians, and instrumentation and control [I and C] technicians) are most often used to determine if an experienced employee is capable of performing maintenance tasks without further training. Such tests provide objective evidence for decisions to exempt an employee from what, for the employee, is unnecessary training. This leads to considerable savings in training costs and increased productivity because supervisors can assign personnel to tasks at which their competence is proven. The ultimate objective of proficiency evaluation is to ensure that qualified maintenance personnel are available to meet the maintenance requirements of the plant Numerous task-specific MPE tests (both written and performance) have been developed and validated using the EPRI MPE methodology by the utilities participating in the MPETB project A task-specific MPE consists of a multiple-choice written examination and a multi-step performance evaluation that can be used to assess an individual's present knowledge and skill level for a given maintenance task. The MPETB contains MPEs and test items for the mechanical, electrical, and I and C classifications that are readily available to participating utilities. Presently, utilities are placing emphasis on developing MPEs to evaluate outage-related maintenance tasks that demonstrate the competency and qualifications of plant and contractor personnel before the start of outage work. Utilities are also using the MPE methodology and process to

  11. Preliminary site design for the SP-100 ground engineering test

    International Nuclear Information System (INIS)

    Cox, C.M.; Miller, W.C.; Mahaffey, M.K.

    1986-04-01

    In November, 1985, Hanford was selected by the Department of Energy (DOE) as the preferred site for a full-scale test of the integrated nuclear subsystem for SP-100. The Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company, was assigned as the lead contractor for the Test Site. The nuclear subsystem, which includes the reactor and its primary heat transport system, will be provided by the System Developer, another contractor to be selected by DOE in late FY-1986. In addition to reactor operations, test site responsibilities include preparation of the facility plus design, procurement and installation of a vacuum chamber to house the reactor, a secondary heat transport system to dispose of the reactor heat, a facility control system, and postirradiation examination. At the conclusion of the test program, waste disposal and facility decommissioning are required. The test site must also prepare appropriate environmental and safety evaluations. This paper summarizes the preliminary design requirements, the status of design, and plans to achieve full power operation of the test reactor in September, 1990

  12. Definition study for variable cycle engine testbed engine and associated test program

    Science.gov (United States)

    Vdoviak, J. W.

    1978-01-01

    The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.

  13. Planning for Plume Diagnostics for Ground Testing of J-2X Engines at the SSC

    Science.gov (United States)

    SaintCyr, William W.; Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; SaintCyr, William W.

    2010-01-01

    John C. Stennis Space Center (SSC) is the premier test facility for liquid rocket engine development and certification for the National Aeronautics and Space Administration (NASA). Therefore, it is no surprise that the SSC will play the most prominent role in the engine development testing and certification for the J-2X engine. The Pratt & Whitney Rocketdyne J-2X engine has been selected by the Constellation Program to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage in NASA s strategy of risk mitigation for hardware development by building on the Apollo program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. Accordingly, J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development and testing efforts. In order to leverage SSC s successful and innovative expertise in the plume diagnostics for the space shuttle main engine (SSME) health monitoring,1-10 this paper will present a blueprint for plume diagnostics for various proposed ground testing activities for J-2X at SSC. Complete description of the SSC s test facilities, supporting infrastructure, and test facilities is available in Ref. 11. The A-1 Test Stand is currently being prepared for testing the J-2X engine at sea level conditions. The A-2 Test Stand is currently being used for testing the SSME and may also be used for testing the J-2X engine at sea level conditions in the future. Very recently, ground-breaking ceremony for the new A-3 rocket engine test stand took place at SSC on August 23, 2007. A-3 is the first large - scale test stand to be built at the SSC since the A and B stands were constructed in the 1960s. The A-3 Test Stand will be used for testing J-2X engines under vacuum conditions simulating high altitude operation at approximately 30,480 m (100,000 ft

  14. J-2 Engine ready to go into test stand

    Science.gov (United States)

    1965-01-01

    Two technicians watch carefully as cables prepare to lift a J-2 engine into a test stand. The J-2 powered the second stage and the third stage of the Saturn V moon rocket. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  15. F-1 Engine for Saturn V Undergoing a Static Test

    Science.gov (United States)

    1964-01-01

    The flame and exhaust from the test firing of an F-1 engine blast out from the Saturn S-IB Static Test Stand in the east test area of the Marshall Space Flight Center. A Cluster of five F-1 engines, located in the S-IC (first) stage of the Saturn V vehicle, provided over 7,500,000 pounds of thrust to launch the giant rocket. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  16. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    Science.gov (United States)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  17. MANUFACTURING AND TESTING OF A V-TYPE STIRLING ENGINE

    Directory of Open Access Journals (Sweden)

    B. Demir

    2012-01-01

    Full Text Available In this study, a V-type Stirling engine with 163 cc total swept volume was designed and manufactured. Air was used as working fluid. Performance tests were conducted at the range of 1-3 bar charge pressure and within the range of hot source temperature 700-1050 °C. Experimental results are given. Variation of engine power and torque with hot source temperature at various air charge pressure are tested. Also variation of engine torque with engine speed for different air charge pressure are tested. According to experimental analysis, the maximum engine power was obtained as 21.334 W at 1050 ˚C hot source temperature and 1.5 bars charge pressure.

  18. Integrated Test and Evaluation Flight Test 3 Flight Test Plan

    Science.gov (United States)

    Marston, Michael Lawrence

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  19. Uprated OMS Engine Status-Sea Level Testing Results

    Science.gov (United States)

    Bertolino, J. D.; Boyd, W. C.

    1990-01-01

    The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.

  20. Design and test of aircraft engine isolators for reduced interior noise

    Science.gov (United States)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  1. 40 CFR 86.1337-96 - Engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    .... Plug the canister port that is normally connected to the fuel tank. (ii) Prepare the engine... test should be performed. (2) Connect evacuated sample collection bags to the dilute exhaust and... turned off, turn off the engine cooling fan(s) if used, and the CVS blower (or disconnect the exhaust...

  2. Tests Of A Stirling-Engine Power Converter

    Science.gov (United States)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  3. Preliminary engineering specifications for a test demonstration multilayer protective barrier cover system

    International Nuclear Information System (INIS)

    Phillips, S.J.; Gilbert, T.W.; Adams, M.R.

    1985-03-01

    This report presents preliminary engineering specifications for a test protective barrier cover system and support radiohydrology facility to be constructed at the Hanford Protective Barrier Test Facility (PBTF). Construction of this test barrier and related radiohydrology facility is part of a continuing effort to provide construction experience and performance evaluation of alternative barrier designs used for long-term isolation of disposed radioactive waste materials. Design specifications given in this report are tentative, based on interim engineering and computer simulation design efforts. Final definitive design specifications and engineering prints will be produced in FY 1986. 6 refs., 10 figs., 1 tab

  4. Nuclear explosives testing readiness evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Valk, T.C.

    1993-09-01

    This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

  5. Applying the design-build-test paradigm in microbiome engineering.

    Science.gov (United States)

    Pham, Hoang Long; Ho, Chun Loong; Wong, Adison; Lee, Yung Seng; Chang, Matthew Wook

    2017-12-01

    The recently discovered roles of human microbiome in health and diseases have inspired research efforts across many disciplines to engineer microbiome for health benefits. In this review, we highlight recent progress in human microbiome research and how modifications to the microbiome could result in implications to human health. Furthermore, we discuss the application of a 'design-build-test' framework to expedite microbiome engineering efforts by reviewing current literature on three key aspects: design principles to engineer the human microbiome, methods to engineer microbiome with desired functions, and analytical techniques to examine complex microbiome samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Assessment of the quality of test results from selected civil engineering material testing laboratories in Tanzania

    CSIR Research Space (South Africa)

    Mbawala, SJ

    2017-12-01

    Full Text Available Civil and geotechnical engineering material testing laboratories are expected to produce accurate and reliable test results. However, the ability of laboratories to produce accurate and reliable test results depends on many factors, among others...

  7. Distributed Rocket Engine Testing Health Monitoring System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The on-ground and Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) provides a system architecture and software tools for performing diagnostics...

  8. Distributed Rocket Engine Testing Health Monitoring System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging the Phase I achievements of the Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) including its software toolsets and system building...

  9. Test plan for FY-91 alpha CAM evaluation

    International Nuclear Information System (INIS)

    Winberg, M.R.

    1991-03-01

    This report describes the test plan for evaluating the Merlin Gerin, Inc., Edgar alpha continuous air monitor (CAM) and associated analysis system to be conducted by Idaho National Engineering Laboratory (INEL) for the Department of Energy. INEL has evaluated other commercial alpha CAM systems to detect transuranic contaminants during waste handling and retrieval operations. This test plan outlines experimental methods, sampling methods, sampling and analysis techniques, and equipment needed and safety and quality requirements to test the commercial CAM. 8 refs., 3 figs

  10. Engineering testing requirements in FED/INTOR

    International Nuclear Information System (INIS)

    Abdou, M.A.; Nygren, R.E.; Morgan, G.D.; Trachsel, C.A.; Wire, G.; Oppermann, E.; Puigh, R.; Gold, R.E.

    1982-10-01

    The FED/INTOR critical issues activity has addressed three key testing requirements that have the largest impact on the design, operation and cost of FED/INTOR. These are: (1) the total testing time (fluence) during the device lifetime, (2) the minimum number of back-to-back cycles, and (3) the neutron wall load (power density in the first wall/blanket). The testing program activities were structured into three tasks in order to define the benefits, and in some cases, costs and risks of these testing requirements. The three tasks were carried out with wide participation of experts from a number of organizations in the United States. Similar effort was performed by Japan, the European Community and the Soviet Union

  11. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    W.E. Lowry

    2001-01-01

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  12. Evaluation of engineered barriers at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Bhatt, R.N.; Porro, I.

    1998-03-01

    Subsurface Disposal (SDA) of the Radioactive Waste Management Complex serves as the low level waste burial ground at the Idaho National Engineering and Environmental Laboratory (INEEL). The low level wastes are buried in trenches, pits, and soil vaults in surficial sediments. A closure/post-closure plan must be written prior to closure of the SDA. The closure plan for the facility must include a design for an engineered barrier closure cover that will meet all applicable regulatory requirements. This paper describes the approach being followed at the INEEL to choose an appropriate cover design for the SDA closure. Regulatory requirements and performance objectives potentially applicable to closure of the SDA were identified. Technical issues related to SDA closure were identified from a literature search of previous arid site engineered barrier studies and from previous SDA closure cover evaluations. Five engineered barrier conceptual design alternatives were identified: (1) a bio/capillary barrier cover, (2) a thin soil cover, (3) a thick soil cover, (4) a Resource Conservation and Recovery Act cover, and (5) a concrete sealed surface cover. Two of these designs were chosen for in situ hydraulic testing, rather than all five, in order to maximize the amount of information generated relative to projected project costs. Testing of these two cover designs provides data to quantify hydrologic model input parameters and for verification of site specific hydrologic models for long term closure cover performance evaluation and detailed analysis of closure cover alternatives. The specific objectives of the field tests are to determine the water balance for the two covers over several years and to determine cover soil physical and hydraulic properties

  13. Built-In Test Engine For Memory Test

    OpenAIRE

    McEvoy, Paul; Farrell, Ronan

    2004-01-01

    In this paper we will present an on-chip method for testing high performance memory devices, that occupies minimal area and retains full flexibility. This is achieved through microcode test instructions and the associated on-chip state machine. In addition, the proposed methodology will enable at-speed testing of memory devices. The relevancy of this work is placed in context with an introduction to memory testing and the techniques and algorithms generally used today.

  14. Improvement of test methodology for evaluating diesel fuel stability

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, M.; Tartakovsky, L.; Kirzhner, Y.; Zvirin, Y. [Internal Combustion Engines Lab., Haifa (Israel); Luria, D. [Fuel Authority, Tel Aviv (Israel); Weiss, A.; Shuftan, M. [Israel Defence Forces, Tel Aviv (Israel)

    1995-05-01

    The storage stability of diesel fuel has been extensively investigated for many years under laboratory conditions. Although continuous efforts have been made to improve testing techniques, there does not yet exist a generally accepted correlation between laboratory methods (such as chemical analysis of the fuel) and actual diesel engine tests. A testing method was developed by the Technion Internal Combustion Engines Laboratory (TICEL), in order to address this problem. The test procedure was designed to simulate diesel engine operation under field conditions. It is based on running a laboratory-modified single cylinder diesel engine for 50 h under cycling operating conditions. The overall rating of each test is based on individual evaluation of the deposits and residue formation in the fuel filter, nozzle body and needle, piston head, piston rings, exhaust valve, and combustion chamber (six parameters). Two methods for analyzing the test results were used: objective, based on measured data, and subjective, based on visual evaluation results of these deposits by a group of experts. Only the residual level in the fuel filter was evaluated quantitatively by measured results. In order to achieve higher accuracy of the method, the test procedure was improved by introducing the measured results of nozzle fouling as an additional objective evaluating (seventh) parameter. This factor is evaluated on the basis of the change in the air flow rate through the nozzle before and after the complete engine test. Other improvements in the method include the use of the nozzle assembly photograph in the test evaluation, and representation of all seven parameters on a continuous scale instead of the discrete scale used anteriorly, in order to achieve higher accuracy. This paper also contains the results obtained by application of this improved fuel stability test for a diesel fuel stored for a five-year period.

  15. History and Benefits of Engine Level Testing Throughout the Space Shuttle Main Engine Program

    Science.gov (United States)

    VanHooser, Katherine; Kan, Kenneth; Maddux, Lewis; Runkle, Everett

    2010-01-01

    Rocket engine testing is important throughout a program s life and is essential to the overall success of the program. Space Shuttle Main Engine (SSME) testing can be divided into three phases: development, certification, and operational. Development tests are conducted on the basic design and are used to develop safe start and shutdown transients and to demonstrate mainstage operation. This phase helps form the foundation of the program, demands navigation of a very steep learning curve, and yields results that shape the final engine design. Certification testing involves multiple engine samples and more aggressive test profiles that explore the boundaries of the engine to vehicle interface requirements. The hardware being tested may have evolved slightly from that in the development phase. Operational testing is conducted with mature hardware and includes acceptance testing of flight assets, resolving anomalies that occur in flight, continuing to expand the performance envelope, and implementing design upgrades. This paper will examine these phases of testing and their importance to the SSME program. Examples of tests conducted in each phase will also be presented.

  16. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  17. Environmental Testing of the NEXT PM1 Ion Engine

    Science.gov (United States)

    Synder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2008-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The Prototype Model engine PM1 was subjected to qualification-level environmental testing to demonstrate compatibility with environments representative of anticipated mission requirements. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 minutes in each of three axes. Thermal-vacuum testing included a deep cold soak of the engine to temperatures of -168 C and thermal cycling from -120 to 203 C. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. Thruster performance was nominal throughout the test program, with minor variations in some engine operating parameters likely caused by facility effects. In general, the NEXT PM1 engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. After resolution of the findings from this test program the hardware environmental qualification program can proceed with confidence.

  18. Pretreatment Engineering Platform Phase 1 Final Test Report

    International Nuclear Information System (INIS)

    Kurath, Dean E.; Hanson, Brady D.; Minette, Michael J.; Baldwin, David L.; Rapko, Brian M.; Mahoney, Lenna A.; Schonewill, Philip P.; Daniel, Richard C.; Eslinger, Paul W.; Huckaby, James L.; Billing, Justin M.; Sundar, Parameshwaran S.; Josephson, Gary B.; Toth, James J.; Yokuda, Satoru T.; Baer, Ellen B.K.; Barnes, Steven M.; Golovich, Elizabeth C.; Rassat, Scot D.; Brown, Christopher F.; Geeting, John G.H.; Sevigny, Gary J.; Casella, Amanda J.; Bontha, Jagannadha R.; Aaberg, Rosanne L.; Aker, Pamela M.; Guzman-Leong, Consuelo E.; Kimura, Marcia L.; Sundaram, S.K.; Pires, Richard P.; Wells, Beric E.; Bredt, Ofelia P.

    2009-01-01

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes. Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.

  19. Pretreatment Engineering Platform Phase 1 Final Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, Dean E.; Hanson, Brady D.; Minette, Michael J.; Baldwin, David L.; Rapko, Brian M.; Mahoney, Lenna A.; Schonewill, Philip P.; Daniel, Richard C.; Eslinger, Paul W.; Huckaby, James L.; Billing, Justin M.; Sundar, Parameshwaran S.; Josephson, Gary B.; Toth, James J.; Yokuda, Satoru T.; Baer, Ellen BK; Barnes, Steven M.; Golovich, Elizabeth C.; Rassat, Scot D.; Brown, Christopher F.; Geeting, John GH; Sevigny, Gary J.; Casella, Amanda J.; Bontha, Jagannadha R.; Aaberg, Rosanne L.; Aker, Pamela M.; Guzman-Leong, Consuelo E.; Kimura, Marcia L.; Sundaram, S. K.; Pires, Richard P.; Wells, Beric E.; Bredt, Ofelia P.

    2009-12-23

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes.( ) Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.

  20. Experimental Evaluation of the Free Piston Engine - Linear Alternator (FPLA)

    Energy Technology Data Exchange (ETDEWEB)

    Leick, Michael T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moses, Ronald W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design wa developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two - stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators wh ich also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to charge the batteries. The engine - alternator system was designed, assembled and operated over a 2 - year period at Sandia National Laboratories in Livermore, CA. This report primarily contains a description of the as - built system, modifications to the system to enable better performance, and experimental results from start - up, motoring, and hydrogen combus tion tests.

  1. Evaluating the RELM Test Results

    Directory of Open Access Journals (Sweden)

    Michael K. Sachs

    2012-01-01

    Full Text Available We consider implications of the Regional Earthquake Likelihood Models (RELM test results with regard to earthquake forecasting. Prospective forecasts were solicited for M≥4.95 earthquakes in California during the period 2006–2010. During this period 31 earthquakes occurred in the test region with M≥4.95. We consider five forecasts that were submitted for the test. We compare the forecasts utilizing forecast verification methodology developed in the atmospheric sciences, specifically for tornadoes. We utilize a “skill score” based on the forecast scores λfi of occurrence of the test earthquakes. A perfect forecast would have λfi=1, and a random (no skill forecast would have λfi=2.86×10-3. The best forecasts (largest value of λfi for the 31 earthquakes had values of λfi=1.24×10-1 to λfi=5.49×10-3. The best mean forecast for all earthquakes was λ̅f=2.84×10-2. The best forecasts are about an order of magnitude better than random forecasts. We discuss the earthquakes, the forecasts, and alternative methods of evaluation of the performance of RELM forecasts. We also discuss the relative merits of alarm-based versus probability-based forecasts.

  2. Alvar engine. An engine with variable compression ratio. Experiments and tests

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Olof

    1998-09-01

    This report is focused on tests with Variable Compression Ratio (VCR) engines, according to the Alvar engine principle. Variable compression ratio means an engine design where it is possible to change the nominal compression ratio. The purpose is to increase the fuel efficiency at part load by increasing the compression ratio. At maximum load, and maybe supercharging with for example turbocharger, it is not possible to keep a high compression ratio because of the knock phenomena. Knock is a shock wave caused by self-ignition of the fuel-air mix. If knock occurs, the engine will be exposed to a destructive load. Because of the reasons mentioned it would be an advantage if it would be possible to change the compression ratio continuously when the load changes. The Alvar engine provides a solution for variable compression ratio based on well-known engine components. This paper provides information about efficiency and emission characteristics from tests with two Alvar engines. Results from tests with a phase shift mechanism (for automatic compression ratio control) for the Alvar engine are also reviewed Examination paper. 5 refs, 23 figs, 2 tabs, 5 appendices

  3. Spacecraft Testing Programs: Adding Value to the Systems Engineering Process

    Science.gov (United States)

    Britton, Keith J.; Schaible, Dawn M.

    2011-01-01

    Testing has long been recognized as a critical component of spacecraft development activities - yet many major systems failures may have been prevented with more rigorous testing programs. The question is why is more testing not being conducted? Given unlimited resources, more testing would likely be included in a spacecraft development program. Striking the right balance between too much testing and not enough has been a long-term challenge for many industries. The objective of this paper is to discuss some of the barriers, enablers, and best practices for developing and sustaining a strong test program and testing team. This paper will also explore the testing decision factors used by managers; the varying attitudes toward testing; methods to develop strong test engineers; and the influence of behavior, culture and processes on testing programs. KEY WORDS: Risk, Integration and Test, Validation, Verification, Test Program Development

  4. MCO Engineering Test Report Fuel Basket Handling Grapple Acceptance Test

    International Nuclear Information System (INIS)

    CHENAULT, D.M.

    2000-01-01

    Acceptance testing of the production SNF Fuel Basket lift grapples to the required 150 percent maximum lift load is documented herein. The report shows the results affirming the proof test passage. The primary objective of this test was to confirm the load rating of the grapple per applicable requirements of ANSI 14 6 American National Standard For Radioactive Materials Special Lifting Devices for Shipping Containers Weighing 10,000 pounds (4500kg) or More. The above Standard requires a load test of 150% of the design load which must be held for a minimum of 10 minutes followed by a Liquid Penetrant or Magnetic Particle examination of critical areas and welds in accordance with the ANSI/ASME Boiler and Pressure Vessel Code 1989 Section 111 Division 1 section NF 5350

  5. The Design and Testing of a Miniature Turbofan Engine

    Science.gov (United States)

    Cosentino, Gary B.; Murray, James E.

    2009-01-01

    Off-the-shelf jet propulsion in the 50 - 500 lb thrust class sparse. A true twin-spool turbofan in this range does not exist. Adapting an off-the-shelf turboshaft engine is feasible. However the approx.10 Hp SPT5 can t quite make 50 lbs. of thrust. Packaging and integration is challenging, especially the exhaust. Building on our engine using a 25 Hp turboshaft seems promising if the engine becomes available. Test techniques used, though low cost, adequate for the purpose.

  6. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  7. Development of a non-engine fuel injector deposit test for alternative fuels (ENIAK-project)

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Hajo; Pohland vom Schloss, Heide [OWI - Oel Waerme Institut GmbH, Herzogenrath (Germany)

    2013-06-01

    Deposit formation in and on the injectors of diesel engines may lead to injector malfunction, resulting in a loss in power, rough engine operation and poor emission levels. Poor Biodiesel quality, contamination with copper and zinc as well as undesired reactions between (several) additives and biodiesel components are known causes for nozzle fouling. Therefore, good housekeeping when using biodiesel is required, and all additives have to pass a no-harm test concerning injector fouling. The standard fouling tests are two engine tests: The XUD9-test (CEC F-23-01) and the DW-10-test (CEC DF 98-08). The XUD9 is a cost efficient, fast and proven testing method. It uses, however, an obsolete indirect injection diesel engine and cannot reproduce internal diesel injector deposits (IDID). The newer DW10 test is complex, costly and designed for high stress. This reduces the engine life and leads to a fuel consumption of approximately 1,000 1 per test, both contributing to the high costs of the test. The ENIAK-Project is funded by the FNR (''Fachagentur Nachwachsende Rohstoffe'', Agency for Renewable Resources) and conducted in cooperation with AGQM, ASG and ERC. Its main goal is the development, assembly, commissioning, and evaluation of a non-engine fuel injector test. It uses a complete common rail system. The injection takes place in a self-designed reactor instead of an engine, and the fuel is not combusted, but re-condensed and pumped in a circle, leading to a low amount of fuel required. If the test method proves to be as reliable as expected, it can be used as an alternative test method for injector fouling with low requirements regarding infrastructure on the testing site and sample volume. (orig.)

  8. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    Science.gov (United States)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  9. Test report : alternative fuels propulsion durability evaluation

    Science.gov (United States)

    2012-08-28

    This document, prepared by Honeywell Aerospace, Phoenix, AZ (Honeywell), contains the final : test report (public version) for the U.S. Department of Transportation/Federal Aviation : Administration (USDOT/FAA) Alternative Fuels Propulsion Engine Dur...

  10. Thermionic system evaluated test (TSET) facility description

    Science.gov (United States)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  11. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  12. Pre-test evaluation of LLTR Series II Test A-6

    International Nuclear Information System (INIS)

    Knittle, D.

    1980-11-01

    Purpose of this report is to present pre-test predictions of pressure histories for the A6 test to be conducted in the Large Leak Test Facility (LLTF) at the Energy Technology Engineering Center. A6 is part of a test program being conducted to evaluate the effects of leaks produced by a double-ended guillotine rupture of a single tube. A6 will provide data on the CRBR prototypical double rupture disc performance

  13. Boraflex test results and evaluation

    International Nuclear Information System (INIS)

    Lindquist, K.; Kline, D.E.; Haley, T.C.

    1993-02-01

    New data developed, collected, and evaluated to further assess the in-pool performance of the neutron absorber material, Boraflex. The data are from new EPRI test programs, utility surveillance programs, and blackness testing at a number of plants. This new data provides a basis for quantifying the gap phenomenon in full length panels of Boraflex in spent fuel racks; the maximum anticipated gap size, frequency of gap occurrence, and axial distribution of gaps. Methods have been developed to assess the reactivity effects of gaps and Boraflex shrinkage. The analyses presented demonstrates that the reactivity effect of gaps is very small, not much larger than the statistical variations inherent in the calculational method. The data and analyses presented serve to close the issue of gap formation and shrinkage in panels of Boraflex and the effect of such gaps and shrinkage on the reactivity of the fuel/rack configuration. Ongoing EPRI programs to assess the long term performance of Boraflex in spent fuel storage racks are described

  14. Systematic evaluation program review of NRC Safety Topic VI-10.A associated with the electrical, instrumentation and control portions of the testing of reactor trip system and engineered safety features, including response time for the Dresden station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VI-10.A, associated with the electrical, instrumentation, and control portions of the testing of reactor trip systems and engineered safety features including response time for the Dresden II nuclear power plant, using current licensing criteria

  15. Educational digital resource for data analysis of Civil Engineering laboratory tests

    OpenAIRE

    Gustavo Henrique Nalon; Paulo Sergio de Almeida Barbosa; Walcyr Duarte Nascimento

    2018-01-01

    This work aims to implement and evaluate an interactive educational software that helps Civil Engineering students to perform and analyze the calculations related to different Soil Mechanics laboratory tests. This experience consists of an attempt to incorporate information and communication technologies (ICTs) into the engineering teaching-learning process. The content of the program is distributed into three different modules: “Compaction test”, “Consolidation test”, and “Direct shear test”...

  16. Test and evaluation capabilities at NAVELEXCEN Charleston

    Energy Technology Data Exchange (ETDEWEB)

    Stalvey, T.W.; Anderson, G.B.; Hinson, T.L. [Naval Electronic Systems Engineering Center, Charleston, SC (United States)

    1993-12-31

    The Environmental Systems and Instrumentation Engineering Department is located within the Special Programs Directorate of the Naval Electronic Systems Engineering Center (NAVELEXCEN Charleston). This Center is an echelon 4 Command under the Naval Command Control and Ocean Surveillance Center, San Diego (NCCOSC). NCCOSC is an echelon 3 Command under the Space and Warfare Systems Command (SPAWAR) which is located in Washington DC. Radiation Detection, Indication and Computation (RDIAC) equipment life-cycle management for the entire Navy falls under the auspices of the Naval Sea Systems Command (SEA 04R). The RADIAC Program provides centralized management for the execution of research, development, test, evaluation, maintenance, procurement, allowance, and equipment support for all Navy RADIAC instrumentation and assigned special monitoring equipments. RADIAC equipment is used throughout the Navy to support various functions associated with radioactivity, potential contamination, and personnel exposure to sources of ionizing radiation. Common sources in today`s Navy include nuclear reactors, nuclear weapons, industrial radiography, and nuclear medicine. Types of radiation includes gamma, x-ray, alpha, and beta.

  17. R and D needs assessment for the Engineering Test Facility

    International Nuclear Information System (INIS)

    1980-10-01

    The Engineering Test Facility (ETF), planned to be the next major US magnetic fusion device, has its mission (1) to provide the capability for moving into the engineering phase of fusion development and (2) to provide a test-bed for reactor components in a fusion environment. The design, construction, and operation of the ETF requires an increasing emphasis on certain key research and development (R and D) programs in magnetic fusion in order to provide the necessary facility design base. This report identifies these needs and discusses the apparent inadequacies of the presently planned US program to meet them, commensurate with the ETF schedule

  18. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    International Nuclear Information System (INIS)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze

    2010-01-01

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  19. Analysis and test of insulated components for rotary engine

    Science.gov (United States)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  20. Physical and engineering aspects of a fusion engineering test facility based on mirror confinement

    International Nuclear Information System (INIS)

    Kawabe, T.; Hirayama, S.; Hojo, H.; Kozaki, Y.; Yoshikawa, K.

    1986-01-01

    Controlled fusion research has accomplished great progress in the field of confinement of high-density and high-temperature plasmas and breakeven experiments are expected before the end of the 1980s. Many experiments have been proposed as the next step for fusion research. Among them is the study of ignited plasmas and another is the study of fusion engineering. Some of the important studies in fusion engineering are the integrated test in a fusion reactor environment as well as tests of first-wall materials and of the reactor structures, and test for tritium breeding and blanket modules or submodules. An ideal neutron source for the study of fusion engineering is the deuterium-tritium (D-T) fusion plasma itself. A neutron facility based on a D-T-burning plasma consists of all of the components that a real fusion power reactor would have, so eventually the integrated test for fusion reactor engineering can be done as well as the tests for each engineering component

  1. Utilization of fission reactors for fusion engineering testing

    International Nuclear Information System (INIS)

    Deis, G.A.; Miller, L.G.

    1985-01-01

    Fission reactors can be used to conduct some of the fusion nuclear engineering tests identified in the FINESSE study. To further define the advantages and disadvantages of fission testing, the technical and programmatic constraints on this type of testing are discussed here. This paper presents and discusses eight key issues affecting fission utilization. Quantitative comparisons with projected fusion operation are made to determine the technical assets and limitations of fission testing. Capabilities of existing fission reactors are summarized and compared with technical needs. Conclusions are then presented on the areas where fission testing can be most useful

  2. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine tests in auxiliary power unit (APU... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.96 Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which...

  3. Tests of the Daimler D-IVa Engine at a High Altitude Test Bench

    Science.gov (United States)

    Noack, W G

    1920-01-01

    Reports of tests of a Daimler IVa engine at the test-bench at Friedrichshafen, show that the decrease of power of that engine, at high altitudes, was established, and that the manner of its working when air is supplied at a certain pressure was explained. These tests were preparatory to the installation of compressors in giant aircraft for the purpose of maintaining constant power at high altitudes.

  4. Software for Preprocessing Data from Rocket-Engine Tests

    Science.gov (United States)

    Cheng, Chiu-Fu

    2004-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris). EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PV-WAVE based plotting software.

  5. Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter

    Science.gov (United States)

    1993-01-01

    Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.

  6. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  7. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    Science.gov (United States)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  8. Evaluation of the tribological properties of DLC for engine applications

    International Nuclear Information System (INIS)

    Lawes, S D A; Fitzpatrick, M E; Hainsworth, S V

    2007-01-01

    Diamond-like carbon (DLC) coatings are used in automotive engines for decreasing friction and increasing durability. There are many variants of DLC films which provide a wide range of mechanical, physical and tribological properties. The films can be extremely hard (>90 GPa), give low coefficients of friction against a number of counterfaces and exhibit low wear coefficients. The films are often considered to be chemically inert. The properties of DLC films depend to a large degree on the relative proportions of graphitically- (sp 2 ) and diamond-like (sp 3 )-bonded carbon but the inclusion of elements such as hydrogen, nitrogen, silicon, tungsten, titanium, fluorine and sulphur can dramatically change their tribological response. Two different types of DLC, a WC/C amorphous hydrogenated DLC (WC/C a-C : H) coating and an amorphous hydrogenated DLC (a-C : H) have been investigated. The mechanical and tribological properties have been evaluated by nanoindentation, scratch and wear testing and friction testing in an instrumented cam-tappet testing rig. The deformation mechanisms and wear processes have been evaluated by scanning electron and atomic force microscopy. The results show that the harder a-C : H film was more wear resistant than the softer WC/C a-C : H film and performed better in the cam-tappet testing rig

  9. Classification and moral evaluation of uncertainties in engineering modeling.

    Science.gov (United States)

    Murphy, Colleen; Gardoni, Paolo; Harris, Charles E

    2011-09-01

    Engineers must deal with risks and uncertainties as a part of their professional work and, in particular, uncertainties are inherent to engineering models. Models play a central role in engineering. Models often represent an abstract and idealized version of the mathematical properties of a target. Using models, engineers can investigate and acquire understanding of how an object or phenomenon will perform under specified conditions. This paper defines the different stages of the modeling process in engineering, classifies the various sources of uncertainty that arise in each stage, and discusses the categories into which these uncertainties fall. The paper then considers the way uncertainty and modeling are approached in science and the criteria for evaluating scientific hypotheses, in order to highlight the very different criteria appropriate for the development of models and the treatment of the inherent uncertainties in engineering. Finally, the paper puts forward nine guidelines for the treatment of uncertainty in engineering modeling.

  10. Operating experiences since rise-to-power test in high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Watanabe, Shuji; Motegi, Toshihiro; Kawano, Shuichi; Kameyama, Yasuhiko; Sekita, Kenji; Kawasaki, Kozo

    2007-03-01

    The rise-to-power test of the High Temperature Engineering Test Reactor (HTTR) was actually started in April 2000. The rated thermal power of 30MW and the rated reactor outlet coolant temperature of 850degC were achieved in the middle of Dec. 2001. After that, the reactor thermal power of 30MW and the reactor outlet coolant temperature of 950degC were achieved in the final rise-to-power test in April 2004. After receiving the operation licensing at 850degC, the safety demonstration tests have conducted to demonstrate inherent safety features of the HTGRs as well as to obtain the core and plant transient data for validation of safety analysis codes and for establishment of safety design and evaluation technologies. This paper summarizes the HTTR operating experiences for six years from start of the rise-to-power test that are categorized into (1) Operating experiences related to advanced gas-cooled reactor design, (2) Operating experiences for improvement of the performance, (3) Operating experiences due to fail of system and components. (author)

  11. Stennis Holds Last Planned Space Shuttle Engine Test

    Science.gov (United States)

    2009-01-01

    With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

  12. Two methodologies for physical penetration testing using social engineering

    NARCIS (Netherlands)

    Dimkov, T.; Pieters, Wolter; Hartel, Pieter H.

    2009-01-01

    During a penetration test on the physical security of an organization, if social engineering is used, the penetration tester directly interacts with the employees. These interactions are usually based on deception and if not done properly can upset the employees, violate their privacy or damage

  13. Engineering development testing of the GPHS-RTG converter

    International Nuclear Information System (INIS)

    Cockfield, R.D.

    1981-01-01

    The GPHS-RTG will provide electrical power for the Galileo orbiter and for the two spacecraft of the International Solar Polar Mission. The GPHS-RTG consists of two primary assemblies: the General Purpose Heat Source, and the converter. This paper deals only with the converter, and highlights engineering tests that provide support for its design development

  14. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Energy Technology Data Exchange (ETDEWEB)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  15. Waste feed delivery test and evaluation plan

    Energy Technology Data Exchange (ETDEWEB)

    O' TOOLE, S.M.

    1999-09-30

    This plan documents the Waste Feed Delivery Program test and evaluation planning and implementation approach. The purpose of this document is to define and communicate the Waste Feed Delivery Program Test and Evaluation scope, objectives, planning and implementation approach.

  16. Waste feed delivery test and evaluation plan

    International Nuclear Information System (INIS)

    O'TOOLE, S.M.

    1999-01-01

    This plan documents the Waste Feed Delivery Program test and evaluation planning and implementation approach. The purpose of this document is to define and communicate the Waste Feed Delivery Program Test and Evaluation scope, objectives, planning and implementation approach

  17. New engine method for biodiesel cetane number testing

    Directory of Open Access Journals (Sweden)

    Pešić Radivoje B.

    2008-01-01

    Full Text Available Substitution of fossil fuels with fuels that come from part renewable sources has been a subject of many studies and researches in the past decade. Considering the higher cost and limits of production resources, a special attention is focused on raising the energy efficiency of biofuel usage, mainly through optimization of the combustion process. Consequently, in biofuel applications, there is a need for determination of auto-ignition quality expressed by cetane number as a dominant characteristic that influences combustion parameters. The fact that the method for cetane number determination is comparative in nature has led us to try to develop substitute engine method for cetane number determination, by the use of the available laboratory equipment and serial, mono-cylinder engine with direct injection, DMB LDA 450. Description of the method, results of optimization of engine’s working parameters for conduction of the test and method’s Accuracy estimation are given in the paper. The paper also presents the results of domestic biodiesel fuels cetane number testing with the application of described engine method, developed at the Laboratory for internal combustion engines and fuels and lubricants of the Faculty of Mechanical Engineering from Kragujevac, Serbia.

  18. Potential Errors and Test Assessment in Software Product Line Engineering

    Directory of Open Access Journals (Sweden)

    Hartmut Lackner

    2015-04-01

    Full Text Available Software product lines (SPL are a method for the development of variant-rich software systems. Compared to non-variable systems, testing SPLs is extensive due to an increasingly amount of possible products. Different approaches exist for testing SPLs, but there is less research for assessing the quality of these tests by means of error detection capability. Such test assessment is based on error injection into correct version of the system under test. However to our knowledge, potential errors in SPL engineering have never been systematically identified before. This article presents an overview over existing paradigms for specifying software product lines and the errors that can occur during the respective specification processes. For assessment of test quality, we leverage mutation testing techniques to SPL engineering and implement the identified errors as mutation operators. This allows us to run existing tests against defective products for the purpose of test assessment. From the results, we draw conclusions about the error-proneness of the surveyed SPL design paradigms and how quality of SPL tests can be improved.

  19. Evaluation of immunocompatibility of tissue-engineered periosteum

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lin; Wang Shuanke; Xia Yayi; Liu Jia; He Jing; Wang Xin [Orthopaedic Institute of the 2nd Hospital of Lanzhou University, 80 CuiYingMen, ChengGuan District, Lanzhou City, 730030 (China); Zhao Junli, E-mail: bonezl@qq.com [Department of Nephrology, the 2nd Hospital of Lanzhou University, 80 CuiYingMen, ChengGuan District, Lanzhou City, 730030 (China)

    2011-02-15

    Tissue-engineered periosteum (TEP) and 'intramembranous ossification' may be an alternative approach to bone tissue engineering. In the previous study we attained successful bone defect reparation with homemade TEP in an allogenic rabbit model. But its allogenic immunocompatibility remained unknown. In this study TEP was constructed by seeding osteogenically induced mesenchymal stem cells of rabbit onto porcine small intestinal submucosa (SIS). A mixed lymphocyte reaction (MLR) was applied to evaluate the in vitro immunogenicity. The ratio of CD4{sup +}/CD8{sup +} T-lymphocytes was tested kinetically to evaluate the systematic reaction of the TEP allograft, and a histological examination was performed to investigate local inflammation and ectopic osteogenesis. MLR indicated that TEP had a higher in vitro immunostimulation than SIS (p < 0.05). The ratios of CD4{sup +}/CD8{sup +} lymphocytes increased in both TEP and SIS implanted groups in 2 weeks, followed by a decrease to a normal level from 2 to 4 weeks. Histological examination revealed modest lymphocyte infiltration for no more than 2 weeks. Moreover, subcutaneous ectopic ossification was observed in TEP allograft animals (8/12). Our findings imply that TEP has a certain immune reaction for the allograft, but it is not severe enough to impact osteogenesis in the allogenic rabbit model.

  20. JET ENGINE INLET DISTORTION SCREEN AND DESCRIPTOR EVALUATION

    Directory of Open Access Journals (Sweden)

    Jiří Pečinka

    2017-02-01

    Full Text Available Total pressure distortion is one of the three basic flow distortions (total pressure, total temperature and swirl distortion that might appear at the inlet of a gas turbine engine (GTE during operation. Different numerical parameters are used for assessing the total pressure distortion intensity and extent. These summary descriptors are based on the distribution of total pressure in the aerodynamic interface plane. There are two descriptors largely spread around the world, however, three or four others are still in use and can be found in current references. The staff at the University of Defence decided to compare the most common descriptors using basic flow distortion patterns in order to select the most appropriate descriptor for future department research. The most common descriptors were identified based on their prevalence in widely accessible publications. The construction and use of these descriptors are reviewed in the paper. Subsequently, they are applied to radial, angular, and combined distortion patterns of different intensities and with varied mass flow rates. The tests were performed on a specially designed test bench using an electrically driven standalone industrial centrifugal compressor, sucking air through the inlet of a TJ100 small turbojet engine. Distortion screens were placed into the inlet channel to create the desired total pressure distortions. Of the three basic distortions, only the total pressure distortion descriptors were evaluated. However, both total and static pressures were collected using a multi probe rotational measurement system.

  1. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special

  2. The Evaluator Effect in Usability Tests

    DEFF Research Database (Denmark)

    Jacobsen, Niels Ebbe; Hertzum, Morten; John, Bonnie E.

    1998-01-01

    Usability tests are applied in industry to evaluate systems and in research as a yardstick for other usability evaluation methods. However, one potential threat to the reliability of usability tests has been left unaddressed: the evaluator effect. In this study, four evaluators analyzed four vide...

  3. Test/QA plan for the verification testing of diesel exhaust catalysts, particulate filters and engine modification control technologies for highway and nonroad use diesel engines

    Science.gov (United States)

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  4. Present status of high temperature engineering test and research, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    High temperature gas-cooled reactors have excellent features such as the generation of high temperature close to 1000degC, very high inherent safety and high fuel burnup. By the advanced basic research under high temperature irradiation condition, the creation of various new technologies which become the momentum of future technical innovation can be expected. The construction of the high temperature engineering test reactor (HTTR) was decided in 1987, which aims at the thermal output of 30 MW and the coolant temperature at reactor exit of 950degC. The initial criticality is scheduled in 1998. Japan Atomic Energy Research Institute has advanced the high temperature engineering test and research, and plans the safety verifying test of the HTTR, the test of connecting heat utilization plants and so on. In this report, mainly the results obtained for one year from May, 1993 are summarized. The outline of the high temperature engineering test and development of the HTTR technologies are reported. (K.I.)

  5. 40 CFR 1048.301 - When must I test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... engines? 1048.301 Section 1048.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.301 When must I test my production-line engines? (a) If you produce engines...

  6. Engine testing of ceramic cam-roller followers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. [Detroit Diesel Corp., MI (United States)

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  7. Engine testing of ceramic cam-roller followers

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. (Detroit Diesel Corp., MI (United States))

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  8. ECSIN's methodological approach for hazard evaluation of engineered nanomaterials

    Science.gov (United States)

    Bregoli, Lisa; Benetti, Federico; Venturini, Marco; Sabbioni, Enrico

    2013-04-01

    The increasing production volumes and commercialization of engineered nanomaterials (ENM), together with data on their higher biological reactivity when compared to bulk counterpart and ability to cross biological barriers, have caused concerns about their potential impacts on the health and safety of both humans and the environment. A multidisciplinary component of the scientific community has been called to evaluate the real risks associated with the use of products containing ENM, and is today in the process of developing specific definitions and testing strategies for nanomaterials. At ECSIN we are developing an integrated multidisciplinary methodological approach for the evaluation of the biological effects of ENM on the environment and human health. While our testing strategy agrees with the most widely advanced line of work at the European level, the choice of methods and optimization of protocols is made with an extended treatment of details. Our attention to the methodological and technical details is based on the acknowledgment that the innovative characteristics of matter at the nano-size range may influence the existing testing methods in a partially unpredictable manner, an aspect which is frequently recognized at the discussion level but oftentimes disregarded at the laboratory bench level. This work outlines the most important steps of our testing approach. In particular, each step will be briefly discussed in terms of potential technical and methodological pitfalls that we have encountered, and which are often ignored in nanotoxicology research. The final aim is to draw attention to the need of preliminary studies in developing reliable tests, a crucial aspect to confirm the suitability of the chosen analytical and toxicological methods to be used for the specific tested nanoparticle, and to express the idea that in nanotoxicology,"devil is in the detail".

  9. ECSIN's methodological approach for hazard evaluation of engineered nanomaterials

    International Nuclear Information System (INIS)

    Bregoli, Lisa; Benetti, Federico; Venturini, Marco; Sabbioni, Enrico

    2013-01-01

    The increasing production volumes and commercialization of engineered nanomaterials (ENM), together with data on their higher biological reactivity when compared to bulk counterpart and ability to cross biological barriers, have caused concerns about their potential impacts on the health and safety of both humans and the environment. A multidisciplinary component of the scientific community has been called to evaluate the real risks associated with the use of products containing ENM, and is today in the process of developing specific definitions and testing strategies for nanomaterials. At ECSIN we are developing an integrated multidisciplinary methodological approach for the evaluation of the biological effects of ENM on the environment and human health. While our testing strategy agrees with the most widely advanced line of work at the European level, the choice of methods and optimization of protocols is made with an extended treatment of details. Our attention to the methodological and technical details is based on the acknowledgment that the innovative characteristics of matter at the nano-size range may influence the existing testing methods in a partially unpredictable manner, an aspect which is frequently recognized at the discussion level but oftentimes disregarded at the laboratory bench level. This work outlines the most important steps of our testing approach. In particular, each step will be briefly discussed in terms of potential technical and methodological pitfalls that we have encountered, and which are often ignored in nanotoxicology research. The final aim is to draw attention to the need of preliminary studies in developing reliable tests, a crucial aspect to confirm the suitability of the chosen analytical and toxicological methods to be used for the specific tested nanoparticle, and to express the idea that in nanotoxicology,'devil is in the detail'.

  10. A Decision Support Framework for Evaluation of Engineered Nanomaterials

    Science.gov (United States)

    Engineered nanomaterials (ENM) are currently being developed and applied at rates that far exceed our ability to evaluate their potential for environmental or human health risks. The gap between material development and capacity for assessment grows wider every day. Transforma...

  11. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  12. Mechanisms Engineering Test Loop - Phase 1 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kultgen, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Hvasta, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lisowski, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Toter, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Borowski, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report documents the current status of the Mechanisms Engineering Test Loop (METL) as of the end of FY2016. Currently, METL is in Phase I of its design and construction. Once operational, the METL facility will test small to intermediate-scale components and systems in order to develop advanced liquid metal technologies. Testing different components in METL is essential for the future of advanced fast reactors as it will provide invaluable performance data and reduce the risk of failures during plant operation.

  13. Physics and engineering assessments of spherical torus component test facility

    International Nuclear Information System (INIS)

    Peng, Y.-K.M.; Neumeyer, C.A.; Kessel, C.; Rutherford, P.; Mikkelsen, D.; Bell, R.; Menard, J.; Gates, D.; Schmidt, J.; Synakowski, E.; Grisham, L.; Fogarty, P.J.; Strickler, D.J.; Burgess, T.W.; Tsai, J.; Nelson, B.E.; Sabbagh, S.; Mitarai, O.; Cheng, E.T.; El-Guebaly, L.

    2005-01-01

    A broadly based study of the fusion engineering and plasma science conditions of a Component Test Facility (CTF), using the Spherical Torus or Spherical Tokamak (ST) configuration, have been carried out. The chamber systems testing conditions in a CTF are characterized by high fusion neutron fluxes Γ n > 4.4x10 13 n/s/cm 2 , over size scales > 10 5 cm 2 and depth scales > 50 cm, delivering > 3 accumulated displacement per atom (dpa) per year. The desired chamber conditions can be provided by a CTF with R 0 1.2 m, A = 1.5, elongation ∼ 3.2, I p ∼ 9 MA, B T ∼ 2.5 T, producing a driven fusion burn using 36 MW of combined neutral beam and RF power. Relatively robust ST plasma conditions are adequate, which have been shown achievable [4] without active feedback manipulation of the MHD modes. The ST CTF will test the single-turn, copper alloy center leg for the toroidal field coil without an induction solenoid and neutron shielding, and require physics data on solenoid-free plasma current initiation, ramp-up, and sustainment to multiple MA level. A new systems code that combines the key required plasma and engineering science conditions of CTF has been prepared and utilized as part of this study. The results show high potential for a family of lowercost CTF devices to suit a variety of fusion engineering science test missions. (author)

  14. Definition study of a Variable Cycle Experimental Engine (VCEE) and associated test program and test plan

    Science.gov (United States)

    Allan, R. D.

    1978-01-01

    The Definition Study of a Variable Cycle Experimental Engine (VCEE) and Associated Test Program and Test Plan, was initiated to identify the most cost effective program for a follow-on to the AST Test Bed Program. The VCEE Study defined various subscale VCE's based on different available core engine components, and a full scale VCEE utilizing current technology. The cycles were selected, preliminary design accomplished and program plans and engineering costs developed for several program options. In addition to the VCEE program plans and options, a limited effort was applied to identifying programs that could logically be accomplished on the AST Test Bed Program VCE to extend the usefulness of this test hardware. Component programs were provided that could be accomplished prior to the start of a VCEE program.

  15. Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms.

    Science.gov (United States)

    Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L

    2017-07-01

    Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.

  16. Field tests on migration of TRU-nuclide, (2). Migration test for engineered barrier materials in aerated soil

    International Nuclear Information System (INIS)

    Maeda, Toshikatsu; Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    Field tests on migration of radionuclides for engineered barrier materials such as bentonite and cementitious materials were performed. The tests were run under both wet conditions with artificial rainfall and dry conditions with natural rainfall. Laboratory experiments such as batch adsorption tests were also conducted to analyze the result of field test. The results of field tests agreed with the predicted moisture conditions and the migration behaviors observed at the laboratory experiment that is reported so far. For bentonite material, the movements of the tracer were calculated using known information such as the results of batch sorption tests and migration mechanism. Comparing the result of field test and calculations, it is suggested that tracer migration behavior in bentonite material in field can be evaluated quantitatively by the known migration mechanism and the results of laboratory experiments such as batch sorption test. (author)

  17. Test-Driven, Model-Based Systems Engineering

    DEFF Research Database (Denmark)

    Munck, Allan

    Hearing systems have evolved over many years from simple mechanical devices (horns) to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers, batteries, etc. Digital signal processors replaced analog filters to provide better performance end new features. Central....... This thesis concerns methods for identifying, selecting and implementing tools for various aspects of model-based systems engineering. A comprehensive method was proposed that include several novel steps such as techniques for analyzing the gap between requirements and tool capabilities. The method...... was verified with good results in two case studies for selection of a traceability tool (single-tool scenario) and a set of modeling tools (multi-tool scenarios). Models must be subjected to testing to allow engineers to predict functionality and performance of systems. Test-first strategies are known...

  18. Powertrain Test Procedure Development for EPA GHG Certification of Medium- and Heavy-Duty Engines and Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Paul H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deter, Dean D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.

  19. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  20. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    Science.gov (United States)

    Shepherd, Christena C.

    2015-01-01

    On the surface, it appears that AS91001 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK)2 that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness.

  1. Stimulation of a turbofan engine for evaluation of multivariable optimal control concepts. [(computerized simulation)

    Science.gov (United States)

    Seldner, K.

    1976-01-01

    The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.

  2. Engineering testing and technology projects FY 1996 Site Support Program Plan, WBS 6.3.3 and 6.3.8. Revision 1

    International Nuclear Information System (INIS)

    Brown, L.C.

    1995-10-01

    The engineering laboratory services for development, assembly, testing, and evaluation to support the resolution of WHC, Hanford, and DOE complex wide engineering issues for 1996 are presented. Primary customers are: TWRS, spent nuclear fuels, transition projects, liquid effluent program, and other Hanford contractors and programs. Products and services provided include: fabrication and assembly facilities for prototype and test equipment, development testing, proof of principle testing, instrumentation testing, nondestructive examination application development and testing, prototype equipment design and assembly, chemical engineering unit operations testing, engineering test system disposal, and safety issue resolution

  3. Scientific investigation plan for initial engineered barrier system field tests

    International Nuclear Information System (INIS)

    Wunan Lin.

    1993-02-01

    The purpose of this Scientific Investigation Plan (SIP) is to describe tests known as Initial Engineered Barrier System Field Tests (IEBSFT) and identified by Work Breakdown Structure as WBS 1.2.2.2.4. The IEBSFT are precursors to the Engineered Barrier System Field Test (EBSFT), WBS 1.2.2.2.4, to be conducted in the Exploratory Study Facility (ESF) at Yucca Mountain. The EBSFT and IEBSFT are designed to provide information on the interaction between waste packages (simulated by heated containers) and the surrounding rock mass, its vadose water, and infiltrated water. Heater assemblies will be installed in drifts or boreholes openings and heated to measure moisture movement during heat-up and subsequent cool-down of the rock mass. In some of the tests, infiltration of water into the heated rock mass will be studied. Throughout the heating and cooling cycle, instruments installed in the rock will monitor such parameters as temperature, moisture content, concentration of some chemical species, and stress and strain. Rock permeability measurements, rock and fluid (water and gas) sampling, and fracture pattern measurements will also be made before and after the test

  4. Defence Test and Evaluation Roadmap

    Science.gov (United States)

    2008-01-01

    as staff move into new roles in non-T&E organisations. The majority of T&E training is conducted ‘on the job’ and staff turnover (especially with...T&E Issues / Requirements Robotic Combat Systems Determine vulnerability of emerging combat systems to anti- armour robotic systems. Evaluate...Improvised Explosive Devices (IED) Determine capability of armoured & vehicle systems to withstand IED attacks Translate threat scenarios into framework

  5. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  6. Test and Evaluation Management Guide, Fifth Edition

    National Research Council Canada - National Science Library

    Claxton, John D; Cavoli, Christina; Johnson, Collie

    2005-01-01

    This January 2005 update to the Defense Acquisition University's "Test and Evaluation Management Guide" includes updates from the Military Services, Defense Agencies, and other organizations, as well...

  7. Final Physics Report for the Engineering Test Reactor

    International Nuclear Information System (INIS)

    Wolfe, I. B.

    1956-01-01

    This report is a summary of the physics design work performed on the Engineering Test Reactor. The ETR presents computational difficulties not found in other reactors because of the large number of experimental holes in the core. The physics of the ETR depends strongly upon the contents of the in-core experimental facilities. In order to properly evaluate the reactor' taking into account the experiments in the core, multi-region, two-dimensional calculations are required. These calculations require the use of a large computer such as the Remington Rand Univac and are complex and expensive enough to warrant a five-stage program: 1. In the early stages of design, only preliminary two-dimensional calculations were performed .in order to obtain a rough idea of the general behavior of the reactor and its critical mass with tentative experiments in place. 2. A large amount of work was carried out in which the reactor was approximated as one with a uniform homogeneous core. With this model, detailed studies were carried out to investigate the feasibility and to obtain general design data on such points as the design and properties of the gray and black control rods, the design of the beryllium reflector, gamma and neutron heating, the use of burnable poisons, etc. In performing these calculations, use was made of the IBM 650 PROD code obtained from KAPL. 3. With stages 1 and 2 carried out, two-dimensional calculations of the core at start-up conditions were performed on the Univac computer. 4. Detailed two-dimensional calculations of the properties of the ETR with a proposed first set of experiments in place were carried out. 5. A series of nuclear tests were performed at the reactivity measurements facility at the MTR site in order to confirm the validity of the analytical techniques in physics analysis. In performing the two-dimensional Univac calculations, the MUG code developed by KAPL and the Cuthill code developed at the David Taylor Model Basin were utilized. In

  8. Engineer, design construct, test, and evaluate a pressurized fluidized-bed pilot plant using high-sulfur coal for production of electric power: Phase I. Preliminary engineering; Phase II. Final design; Phase III. Construction. Annual report, March 1, 1979-February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The extended test program on the SGT/PFB Technology Unit, previously placed in operation, was completed. Total operating time is 3378 which includes 2681 h burning coal and 1205 h total turbine engine operation. Significant performance and operational milestones, completed during the past year, included: over 2000 h on candidate heat exchanger tube materials at design temperature during which durability of iron-base alloy for PFB heat exchanger tubes was demonstrated; generated electric power with gas turbine operating on PFB coal combustion gas for 1000 h with no appreciable erosion or corrosion of turbine rotor blades and stator vanes; evaluated and improved hot gas cleanup system during which mean particle size of 1.3 Microns and a loading of 0.054 grains/Scf was achieved; and durability of hot/ash solids lock hopper valves for over 1000 h without leakage and stellite coated butterfly gas valve operating successfully for over 900 h in a highly erosive environment was demonstrated. Details of materials evolutions and corrosion rates, component performances and gaseous emission levels are presented.

  9. 40 CFR 90.1204 - Maintenance, aging and testing of engines.

    Science.gov (United States)

    2010-07-01

    ... engines. 90.1204 Section 90.1204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... sample unless that engine experiences catastrophic mechanical failure or safety concerns requiring major... for engines with the amount of service and age of the test engine. (d) After aging each engine to at...

  10. Evaluation, au laboratoire, du pouvoir dispersant d'une huile pour moteurs à essence et relation avec les résultats obtenus dans la séquence VE Laboratory Evaluation of the Dispersive Power of Gazoline Engines Oils and Relation with Sequence Ve Test Results

    Directory of Open Access Journals (Sweden)

    Hipeaux J. C.

    2006-11-01

    200°C, à l'aide de boues provenant d'une huile ayant été préalablement vieillie sur moteur Ford Pinto 2,3 l et d'eau (tableaux 4 et 6, fig. 3. On trace alors la courbe Mérite dispersant résiduel(MDR en fonction du temps d'oxydation (fig. 5 et 12. Cette courbe a la même allure que celle décrite dans la séquence VE (fig. 1. Le tracé des courbes MDR en fonction de la cotation moteur moyenne en boues VE (Average Engine Sludge Deposit (AES permet de discriminer clairement les huiles bonnes ou mauvaises en Séquence VE. À partir de 96 h d'oxydation, dans l'essai OXYDISP (fig. 9 et de 48 h dans l'essai POTDISP (fig. 14, nous sommes en présence de deux familles de produits : les produits qui conservent leur MDR et qui obtiennent un mérite boueségal ou supérieur à 9, dans la Séquence VE et les produits qui perdent leur MDR et qui ont tous des mérites inférieurs à 9 dans la même séquence. Les méthodes OXYDISP et POTDISP permettent également de différencier des huiles de niveaux API différents (niveaux SE, SF et SG (fig. 16 et 17. Evaluating the dispersive power of an oil for gasoline engines is included in international specifications such as the ones issued by the Committee of Common Market Automobile Constructors (CCMC and the American Petroleum Institute (API. This evaluation is the result of lengthy, severe and costly testing in engines on a test bench. These tests are performed in Mercedes M102E (CCMC levels G4 and G5 and Ford Pinto 2. 31 (API levels SG and SH engines. The cost of these tests requires the laboratory use of reliable preselection tests. The more often used test for evaluating the dispersive power of a motor oil is the spottest. It is performed in the presence of pollutants coming from an used Diesel motor oil (Tables 1 and 4, Fig. 2. However, some additive technologies that give good results for this test give poor results during engine testing (Table 2. During the VE Sequence lasting for 288 hr, the oil is subjected to different

  11. Engineering economic evaluations of trash segregation alternatives

    International Nuclear Information System (INIS)

    Collins, H.E.

    1987-01-01

    Health physicists are becoming increasingly involved in the selection of equipment to segregate a contaminated trash from clean trash in the effort to reduce low level waste disposal costs. Although well qualified to evaluate the technical merits of different equipment, health physicists also need to be aware of the elements of economic comparisons of different alternatives that meet all technical requirements

  12. Evaluation of teaching in environmental engineering

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Larsen, Bo Skjold; Bjerg, Poul Løgstrup

    2000-01-01

    This paper describes the effect of changing course content and teaching methodology for an introductory course in Environmental Processes. Student evaluations were used both to monitor the effect of the changes, as well as to change the course structure and the didactics. The result of the change...

  13. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  14. Public views evening engine test of a Space Shuttle Main Engine

    Science.gov (United States)

    2001-01-01

    Over the past year, more than 20,000 people came to Stennis Space Center to witness the 'shake, rattle and roar' of one of the world's most sophisticated engines. Stennis Space Center in south Mississippi is NASA's lead center for rocket propulsion testing. StenniSphere, the visitor center for Stennis Space Center, hosted more than 250,000 visitors in its first year of operation. Of those visitors, 26.4 percent were from Louisiana.

  15. DEVELOPMENT AND TESTING OF A PRE-PROTOTYPE MACH 2 RAMGEN ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Ramgen Power Systems

    2001-09-01

    The research and development effort of a new kind of combustion engine is presented. The engine is designed to convert the thrust from ramjet modules into shaft torque, which in turn can be used for electrical power generation or mechanical drive applications. An aggressive test program was undertaken that included evaluation of the existing engine, as well as incorporation of novel improvements to the thrust modules and supporting systems. Fuel mixing studies with Vortex Generators and bluff body flame holders illuminated the importance of increasing the shear-layer area and spreading angle to augment flame volume. Evaluation of flame-holding configurations (with variable fuel injection methods) concluded that the heat release zone, and therefore combustion efficiency, could be manipulated by judicious selection of bluff body geometry, and is less influenced by fuel injection distribution. Air film cooling studies demonstrated that acceptable combustor life could be achieved with optimized air film distribution patterns and thermal barrier coatings.

  16. Long term durability tests of small engines fueled with bio-ethanol / gasoline blends

    International Nuclear Information System (INIS)

    Tippayawong, N.; Kundhawiworn, N.; Jompakdee, W.

    2006-01-01

    The paper presents the result of an ongoing research to evaluate performance and wear of small, single cylinder, naturally aspirated, agricultural spark ignition engines using biomass-derived ethanol and gasoline blends. The reference gasoline fuel was selected to be representative of gasoline typically available in Thailand. Long-term engine tests of 10% and 20% ethanol / gasoline blends as well as the reference fuel were performed at a constant speed of 2300 rpm under part load condition up to 200 operation hours for each fuel type. Engine brake power, specific fuel consumption, carbon deposits and surface wear were measured and compared between neat gasoline and ethanol/ gasoline blends. It was found that blended fuels appeared to affect the engine performance in a similar way and compared well with the base gasoline fuel. From the results obtained, it was found that engine brake power and specific fuel consumption changed slightly with running time and were not found to have any significant change between different fuel blends. There were carbon deposits buildup on the spark plug, the intake port and exhaust valve stem for all fuels used. Surface wear was not significantly different in the test engines between neat gasoline or ethanol/gasoline blend fuelling

  17. SIMS prototype system 1 test results: Engineering analysis

    Science.gov (United States)

    1978-01-01

    The space and domestic water solar heating system designated SIMS Prototype Systems 1 was evaluated. The test system used 720 ft (gross) of Solar Energy Products Air Collectors, a Solar Control Corporation SAM 20 Air Handler with Model 75-175 control unit, a Jackson Solar Storage tank with Rho Sigma Mod 106 controller, and 20 tons of rack storage. The test data analysis performed evaluates the system performance and documents the suitability of SIMS Prototype System 1 hardware for field installation.

  18. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.305 How must I prepare and test my production-line engines...

  19. 40 CFR 1048.305 - How must I prepare and test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... production-line engines? 1048.305 Section 1048.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.305 How must I prepare and test my production-line engines? This...

  20. 40 CFR 1051.301 - When must I test my production-line vehicles or engines?

    Science.gov (United States)

    2010-07-01

    ... vehicles or engines? 1051.301 Section 1051.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.301 When must I test my production-line vehicles or engines? (a...

  1. 40 CFR 1045.301 - When must I test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.301 When must I test my production-line engines? (a) If you produce...

  2. Environmental assessment for Breeder Reprocessing Engineering Test (BRET): Revision 1

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1989-03-01

    This Environmental Assessment (EA) is for the proposed installation and operation of an integrated breeder fuel reprocessing test system in the shielded cells of the Fuels and Materials Examination Facility (FMEF) at Hanford and the associated modifications to the FMEF to accommodate BRET. These modifications would begin in FY-1986 subject to Congressional authorization. Hot operations would be scheduled to start in the early 1990's. The system, called the Breeder Reprocessing Engineering Test (BRET), is being designed to provide a test capability for developing the demonstrating fuel reprocessing, remote maintenance, and safeguards technologies for breeder reactor fuels. This EA describes (1) the action being proposed, (2) the existing environment which would be affected, (3) the potential environmental impacts from normal operations and severe accidents from the proposed action, (4) potential conflicts with federal, state, regional, and/or local plans for the area, and (5) environmental implications of alternatives considered to the proposed action. 41 refs., 10 figs., 31 tabs

  3. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    Science.gov (United States)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  4. Integrated System Health Management (ISHM) Implementation in Rocket Engine Testing

    Science.gov (United States)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera

    2010-01-01

    A pilot operational ISHM capability has been implemented for the E-2 Rocket Engine Test Stand (RETS) and a Chemical Steam Generator (CSG) test article at NASA Stennis Space Center. The implementation currently includes an ISHM computer and a large display in the control room. The paper will address the overall approach, tools, and requirements. It will also address the infrastructure and architecture. Specific anomaly detection algorithms will be discussed regarding leak detection and diagnostics, valve validation, and sensor validation. It will also describe development and use of a Health Assessment Database System (HADS) as a repository for measurements, health, configuration, and knowledge related to a system with ISHM capability. It will conclude with a discussion of user interfaces, and a description of the operation of the ISHM system prior, during, and after testing.

  5. Engineering test station for TFTR blanket module experiments

    International Nuclear Information System (INIS)

    Jassby, D.L.; Leinoff, S.

    1979-12-01

    A conceptual design has been carried out for an Engineering Test Station (ETS) which will provide structural support and utilities/instrumentation services for blanket modules positioned adjacent to the vacuum vessel of the TFTR (Tokamak Fusion Test Reactor). The ETS is supported independently from the Test Cell floor. The ETS module support platform is constructed of fiberglass to eliminate electromagnetic interaction with the pulsed tokamak fields. The ETS can hold blanket modules with dimensions up to 78 cm in width, 85 cm in height, and 105 cm in depth, and with a weight up to 4000 kg. Interfaces for all utility and instrumentation requirements are made via a shield plug in the TFTR igloo shielding. The modules are readily installed or removed by means of TFTR remote handling equipment

  6. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    Science.gov (United States)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  7. Development Testing of 1-Newton ADN-Based Rocket Engines

    Science.gov (United States)

    Anflo, K.; Gronland, T.-A.; Bergman, G.; Nedar, R.; Thormählen, P.

    2004-10-01

    With the objective to reduce operational hazards and improve specific and density impulse as compared with hydrazine, the Research and Development (R&D) of a new monopropellant for space applications based on AmmoniumDiNitramide (ADN), was first proposed in 1997. This pioneering work has been described in previous papers1,2,3,4 . From the discussion above, it is clear that cost savings as well as risk reduction are the main drivers to develop a new generation of reduced hazard propellants. However, this alone is not enough to convince a spacecraft builder to choose a new technology. Cost, risk and schedule reduction are good incentives, but a spacecraft supplier will ask for evidence that this new propulsion system meets a number of requirements within the following areas: This paper describes the ongoing effort to develop a storable liquid monopropellant blend, based on AND, and its specific rocket engines. After building and testing more than 20 experimental rocket engines, the first Engineering Model (EM-1) has now accumulated more than 1 hour of firing-time. The results from test firings have validated the design. Specific impulse, combustion stability, blow-down capability and short pulse capability are amongst the requirements that have been demonstrated. The LMP-103x propellant candidate has been stored for more than 1 year and initial material compatibility screening and testing has started. 1. Performance &life 2. Impact on spacecraft design &operation 3. Flight heritage Hereafter, the essential requirements for some of these areas are outlined. These issues are discussed in detail in a previous paper1 . The use of "Commercial Of The Shelf" (COTS) propulsion system components as much as possible is essential to minimize the overall cost, risk and schedule. This leads to the conclusion that the Technology Readiness Level (TRL) 5 has been reached for the thruster and propellant. Furthermore, that the concept of ADN-based propulsion is feasible.

  8. Role of diagnostic tests in esophageal evaluation

    International Nuclear Information System (INIS)

    Silverstein, B.D.; Pope, C.E. II

    1980-01-01

    In the evaluation of esophageal disease, the appropriate question must be asked before the correct tests can be selected. Reflux can be demonstrated by radiologic methods, pH testing or radioisotopic techniques. Esophageal mucosal damage is best evaluated by x-ray, endoscopy, or biopsy. Chest pain is demonstrated by acid infusion or by manometry. Two algorithms are presented for the evaluation of chest pain and reflux symptoms

  9. Evaluation of turbine microjet engine operating parameters in conditions conducive to inlet freezing

    Directory of Open Access Journals (Sweden)

    Markowski Jaroslaw

    2017-01-01

    Full Text Available The problem of turbine microjet engine operation is related to flight conditions of unmanned aircraft. These flights are often performed at low altitudes, where, in autumn and winter conditions, the air can be characterized by high humidity and low temperature. Such operating conditions may cause freezing the turbine engine inlet. In particular, this problem may be related to microengines, which most often are not equipped with a de-icing installation. Frosting of the inlet violates the air flow conditions at the engine inlet and may cause unstable operation and even outages, which eventually may lead to a loss of aircraft’s stability and breakdown. Therefore, an attempt was made to evaluate the changes in operational parameters of the turbine microjet engine under conditions leading to the freezing of the inlet. The engine test was performed in stationary conditions and the analysis of the obtained results are presented in this article.

  10. Including test errors in evaluating surveillance test intervals

    International Nuclear Information System (INIS)

    Kim, I.S.; Samanta, P.K.; Martorell, S.; Vesely, W.E.

    1991-01-01

    Technical Specifications require surveillance testing to assure that the standby systems important to safety will start and perform their intended functions in the event of plant abnormality. However, as evidenced by operating experience, the surveillance tests may be adversely impact safety because of their undesirable side effects, such as initiation of plant transients during testing or wearing-out of safety systems due to testing. This paper first defines the concerns, i.e., the potential adverse effects of surveillance testing, from a risk perspective. Then, we present a methodology to evaluate the risk impact of those adverse effects, focusing on two important kinds of adverse impacts of surveillance testing: (1) risk impact of test-caused trips and (2) risk impact of test-caused equipment wear. The quantitative risk methodology is demonstrated with several surveillance tests conducted at boiling water reactors, such as the tests of the main steam isolation valves, the turbine overspeed protection system, and the emergency diesel generators. We present the results of the risk-effectiveness evaluation of surveillance test intervals, which compares the adverse risk impact with the beneficial risk impact of testing from potential failure detection, along with insights from sensitivity studies

  11. Testing and Development of a Shrouded Gas Turbine Engine in a Freejet Facility

    National Research Council Canada - National Science Library

    Garcia, Hector

    2000-01-01

    .... The combined cycle engine (CCE) could be incorporated into a variety of applications. The building of a new freejet facility and engine test rig at the Naval Postgraduate School enabled dynamic testing of the ongoing development of a turboramjet...

  12. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    Science.gov (United States)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  13. Expert System Approach For Generating And Evaluating Engine Design Alternatives

    Science.gov (United States)

    Shen, Stewart N. T.; Chew, Meng-Sang; Issa, Ghassan F.

    1989-03-01

    Artificial intelligence is becoming an increasingly important subject of study for computer scientists, engineering designers, as well as professionals in other fields. Even though AI technology is a relatively new discipline, many of its concepts have already found practical applications. Expert systems, in particular, have made significant contributions to technologies in such fields as business, medicine, engineering design, chemistry, and particle physics. This paper describes an expert system developed to aid the mechanical designer with the preliminary design of variable-stroke internal-combustion engines. The expert system accomplished its task by generating and evaluating a large number of design alternatives represented in the form of graphs. Through the application of structural and design rules directly to the graphs, optimal and near optimal preliminary design configurations of engines are deduced.

  14. Engineering analysis activities in support of susquehanna unit 1 startup testing and cycle 1 operations

    International Nuclear Information System (INIS)

    Miller, G.D.; Kukielka, C.A.; Olson, L.M.; Refling, J.G.; Roscioli, A.J.; Somma, S.A.

    1985-01-01

    The engineering analysis group is responsible for all nuclear plant systems analysis and reactor analysis activities, excluding fuel management analysis, at Pennsylvania Power and Light Company. These activities include making pretest and posttest predictions of startup tests; analyzing unplanned or unexpected transient events; providing technical training to plant personnel; assisting in the development of emergency drill scenarios; providing engineering evaluations to support design and technical specification changes, and evaluating, assessing, and resolving a number of license conditions. Many of these activities have required the direct use of RETRAN models. Two RETRAN analyses that were completed to support plant operations - a pretest analysis of the turbine trip startup test, and a posttest analysis of the loss of startup transformer event - are investigated. For each case, RETRAN results are compared with available plant data and comparisons are drawn on the acceptability of the performance of the plant systems

  15. A quantitative evaluation of the public response to climate engineering

    Science.gov (United States)

    Wright, Malcolm J.; Teagle, Damon A. H.; Feetham, Pamela M.

    2014-02-01

    Atmospheric greenhouse gas concentrations continue to increase, with CO2 passing 400 parts per million in May 2013. To avoid severe climate change and the attendant economic and social dislocation, existing energy efficiency and emissions control initiatives may need support from some form of climate engineering. As climate engineering will be controversial, there is a pressing need to inform the public and understand their concerns before policy decisions are taken. So far, engagement has been exploratory, small-scale or technique-specific. We depart from past research to draw on the associative methods used by corporations to evaluate brands. A systematic, quantitative and comparative approach for evaluating public reaction to climate engineering is developed. Its application reveals that the overall public evaluation of climate engineering is negative. Where there are positive associations they favour carbon dioxide removal (CDR) over solar radiation management (SRM) techniques. Therefore, as SRM techniques become more widely known they are more likely to elicit negative reactions. Two climate engineering techniques, enhanced weathering and cloud brightening, have indistinct concept images and so are less likely to draw public attention than other CDR or SRM techniques.

  16. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage

    Science.gov (United States)

    Mansour, Joseph M.; Lee, Zhenghong; Welter, Jean F.

    2016-01-01

    In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue. PMID:26817458

  17. Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer

    Science.gov (United States)

    Schrading, J. Nicolas

    2013-01-01

    The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  18. Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer

    Science.gov (United States)

    Shrading, Nicholas J.

    2012-01-01

    The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  19. Sublimator Driven Coldplate Engineering Development Unit Test Results

    Science.gov (United States)

    Sheth, Rubik B.; Stephan, Ryan A.; Leimkuehler, Thomas O.

    2010-01-01

    The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially increasing reliability and reducing complexity while saving both mass and power. Because the SDC requires a consumable feedwater, it can only be used for short mission durations. Additionally, the SDC is ideal for a vehicle with small transport distances and low heat rejection requirements. An SDC Engineering Development Unit was designed and fabricated. Performance tests were performed in a vacuum chamber to quantify and assess the performance of the SDC. The test data was then used to develop correlated thermal math models. Nonetheless, an Integrated Sublimator Driven Coldplate (ISDC) concept is being developed. The ISDC couples a coolant loop with the previously described SDC hardware. This combination allows the SDC to be used as a traditional coldplate during long mission phases and provides for dissimilar system redundancy

  20. Risk effectiveness evaluation of surveillance testing

    International Nuclear Information System (INIS)

    Kim, I.S.; Samanta, P.K.; Martorell, S.; Vesely, W.E.

    1991-01-01

    To address the concerns about nuclear power plant surveillance tests, i.e., their adverse safety impact due to negative effects and too burdensome requirements, it is necessary to evaluate the safety significance or risk effectiveness of such tests explicitly considering both negative and positive effects. This paper defines the negative effects of surveillance testing from a risk perspective, and then presents a methodology to quantify the negative risk impact, i.e., the risk penalty or risk increase caused by the test. The method focuses on two important kinds of negative effects, namely, test-caused transients and test-caused equipment degradations. The concepts and quantitative methods for the risk evaluation can be used in the decision-making process to establish the safety significance of the tests and to screen the plant-specific surveillance test requirements. 6 refs., 2 figs., 2 tabs

  1. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  2. Evaluation of the Use of Two Teaching Techniques in Engineering

    Directory of Open Access Journals (Sweden)

    Jose Antonio Alvarez Salas

    2014-06-01

    Full Text Available This paper presents an analysis of the practical implementation of two teaching techniques so-called Problem-Based Learning and Cooperative Learning. These techniques were applied to some courses in the Department of Mechanical and Electrical Engineering and evaluated through assessment rubrics. In a sample of students and teachers, the assessment rubrics were applied to numerically evaluate the proportion of each course, in which the teacher uses traditional teaching versus teaching for meaningful learning. The results of the presented analysis allow to verify the use of these teaching techniques by professors of the Department of Mechanical and Electrical Engineering. This activity was developed as a part of the work established by the Institutional Development Plan of the Faculty of Engineering, which includes the strategic objective of developing an innovative educational model in the following ten years.

  3. 40 CFR 1051.501 - What procedures must I use to test my vehicles or engines?

    Science.gov (United States)

    2010-07-01

    ... vehicles or engines? 1051.501 Section 1051.501 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test Procedures § 1051.501 What procedures must I use to test my vehicles or engines? This section describes test...

  4. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine test cycle. 86....335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in... operating the engine at the higher approved load setting during cycle 1 and at the lower approved load...

  5. Design and evaluation of combustors for reducing aircraft engine pollution

    Science.gov (United States)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Various techniques and test results are briefly described and referenced for detail. The effort arises from the increasing concern for the measurement and control of emissions from gas turbine engines. The greater part of this research is focused on reducing the oxides of nitrogen formed during takeoff and cruise in both advanced CTOL, high pressure ratio engines, and advanced supersonic aircraft engines. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: multizone combustors incorporating reduced dwell time, fuel-air premixing, air atomization, fuel prevaporization, water injection, and gaseous fuels. In the experiments conducted to date, some of these techniques were more successful than others in reducing oxides of nitrogen emissions. Tests are being conducted on full-annular combustors at pressures up to 6 atmospheres and on combustor segments at pressures up to 30 atmospheres.

  6. Development and Performance Evaluation of Optical Sensors for High Temperature Engine Applications

    Science.gov (United States)

    Adamovsky, G.; Varga, D.; Floyd, B.

    2011-01-01

    This paper discusses fiber optic sensors designed and constructed to withstand extreme temperatures of aircraft engine. The paper describes development and performance evaluation of fiber optic Bragg grating based sensors. It also describes the design and presents test results of packaged sensors subjected to temperatures up to 1000 C for prolonged periods of time.

  7. Evaluation of Current Assessment Methods in Engineering Entrepreneurship Education

    Science.gov (United States)

    Purzer, Senay; Fila, Nicholas; Nataraja, Kavin

    2016-01-01

    Quality assessment is an essential component of education that allows educators to support student learning and improve educational programs. The purpose of this study is to evaluate the current state of assessment in engineering entrepreneurship education. We identified 52 assessment instruments covered in 29 journal articles and conference…

  8. Evaluation of Information Requirements of Reliability Methods in Engineering Design

    DEFF Research Database (Denmark)

    Marini, Vinicius Kaster; Restrepo-Giraldo, John Dairo; Ahmed-Kristensen, Saeema

    2010-01-01

    This paper aims to characterize the information needed to perform methods for robustness and reliability, and verify their applicability to early design stages. Several methods were evaluated on their support to synthesis in engineering design. Of those methods, FMEA, FTA and HAZOP were selected...

  9. Evaluating search effectiveness of some selected search engines ...

    African Journals Online (AJOL)

    With advancement in technology, many individuals are getting familiar with the internet a lot of users seek for information on the World Wide Web (WWW) using variety of search engines. This research work evaluates the retrieval effectiveness of Google, Yahoo, Bing, AOL and Baidu. Precision, relative recall and response ...

  10. Evaluation MUMIE Online Math Education Pilot Aerospace Engineering

    NARCIS (Netherlands)

    Vuik, K.; Daalderop, F.; Van Kints, R.; Schaap, B.

    2011-01-01

    In this document the Mumie pilot that took place in March 2010 for the Linear Algebra course (wi1403lr) at Aerospace Engineering will be evaluated. This pilot is the result of an interest in using an e-learning platform that can improve the level of education for first year mathematical courses at

  11. Testing and Characterization of Engineered Forms of Monosodium Titanate (MST)

    International Nuclear Information System (INIS)

    Taylor-Pashow, K.; Nash, C.; Hobbs, D.

    2012-01-01

    Engineered forms of MST and mMST were prepared at ORNL using an internal gelation process. Samples of these two materials were characterized at SRNL to examine particle size and morphology, peroxide content, tapped densities, and Na, Ti, and C content. Batch contact tests were also performed to examine the performance of the materials. The E mMST material was found to contain less than 10% of the peroxide found in a freshly prepared batch of mMST. This was also evidenced in batch contact testing with both simulated and actual waste, where little difference in performance was seen between the two engineered materials, E MST and E mMST. Based on these results, attempts were made to increase the peroxide content of the materials by post-treatment with hydrogen peroxide. The peroxide treatment resulted in a slight (∼10%) increase in peroxide content; however, the peroxide:Ti molar ratio was still much lower (∼0.1 X) than what is seen in a freshly prepared batch of mMST. Testing with simulated waste showed the performance of the peroxide treated materials was improved. Batch contact tests were also performed with an earlier (2003) prepared lot of E MST to examine the effect of ionic strength on the performance of the material. In general the results showed a decrease in removal performance with increasing ionic strength, which is consistent with previous testing with MST. A Sr loading isotherm was also determined, and the E MST material was found to reach a Sr loading as high as 13.2 wt % after 100 days of contact at a phase ratio of 20000 mL/g. At the typical MST phase ratio of 2500 mL/g (0.4 g/L), a Sr loading of 2.64 wt % was reached after 506 hours of contact. Samples of E MST and the post-peroxide treated E mMST were also tested in a column configuration using simulated waste solution. The breakthrough curves along with analysis of the sorbent beds at the conclusion of the experiments showed that the peroxide treated E mMST has a higher Sr and Np capacity, but

  12. TESTING AND CHARACTERIZATION OF ENGINEERED FORMS OF MONOSODIUM TITANATE (MST)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; Hobbs, D.

    2012-05-14

    Engineered forms of MST and mMST were prepared at ORNL using an internal gelation process. Samples of these two materials were characterized at SRNL to examine particle size and morphology, peroxide content, tapped densities, and Na, Ti, and C content. Batch contact tests were also performed to examine the performance of the materials. The {sup E}mMST material was found to contain less than 10% of the peroxide found in a freshly prepared batch of mMST. This was also evidenced in batch contact testing with both simulated and actual waste, where little difference in performance was seen between the two engineered materials, {sup E}MST and {sup E}mMST. Based on these results, attempts were made to increase the peroxide content of the materials by post-treatment with hydrogen peroxide. The peroxide treatment resulted in a slight ({approx}10%) increase in peroxide content; however, the peroxide:Ti molar ratio was still much lower ({approx}0.1 X) than what is seen in a freshly prepared batch of mMST. Testing with simulated waste showed the performance of the peroxide treated materials was improved. Batch contact tests were also performed with an earlier (2003) prepared lot of {sup E}MST to examine the effect of ionic strength on the performance of the material. In general the results showed a decrease in removal performance with increasing ionic strength, which is consistent with previous testing with MST. A Sr loading isotherm was also determined, and the {sup E}MST material was found to reach a Sr loading as high as 13.2 wt % after 100 days of contact at a phase ratio of 20000 mL/g. At the typical MST phase ratio of 2500 mL/g (0.4 g/L), a Sr loading of 2.64 wt % was reached after 506 hours of contact. Samples of {sup E}MST and the post-peroxide treated {sup E}mMST were also tested in a column configuration using simulated waste solution. The breakthrough curves along with analysis of the sorbent beds at the conclusion of the experiments showed that the peroxide treated

  13. Relevance Evaluation of Engineering Master's Program in Peru

    OpenAIRE

    Miñán, Erick; Lavalle, Carlos; Díaz-Puente, José M.

    2012-01-01

    In a context of mass higher education, it is necessary to ensure not only quality but also the relevance of engineering master's programs, namely the appropriateness of the objectives and outcomes to the needs and interests of the program beneficiaries. After a literature review we analyzed the evaluation models of three organizations in Peru: the Board of Evaluation, Accreditation and Certification of the University Education Quality CONEAU, the Institute of Quality and Accreditation of Comp...

  14. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    Science.gov (United States)

    Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2013-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707

  15. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    International Nuclear Information System (INIS)

    Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2012-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO 2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95%.

  16. Component evaluation testing and analysis algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Darren M.; Merchant, Bion John

    2011-10-01

    The Ground-Based Monitoring R&E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. In order to guarantee consistency, traceability, and visibility into the results of the testing process, it is necessary to document the test and analysis procedures that are in place. Other reports document the testing procedures that are in place (Kromer, 2007). This document serves to provide a comprehensive overview of the analysis and the algorithms that are applied to the Component Evaluation testing. A brief summary of each test is included to provide the context for the analysis that is to be performed.

  17. The FENIX [Fusion ENgineering International EXperimental] test facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Patrick, R.E.; Chaplin, M.R.; Miller, J.R.; Shen, S.S.; Summers, L.T.; Kerns, J.A.

    1989-01-01

    The Fusion ENgineering International EXperimental Magnet Facility (FENIX), under construction at Lawrence Livermore National Laboratory (LLNL), is a significant step forward in meeting the testing requirements necessary for the development of superconductor for large-scale, superconducting magnets. A 14-T, transverse field over a test volume of 150 x 60 x 150 mm in length will be capable of testing conductors the size of the International Thermonuclear Experimental Reactor (ITER). Proposed conductors for ITER measure ∼35 mm on one side and will operate at currents of up to 40 kA at fields of ∼14 T. The testing of conductors and associated components, such as joints, will require large-bore, high-field magnet facilities. FENIX is being constructed using the existing A 2o and A 2i magnets from the idle MFTF. The east and west A 2 pairs will be mounted together to form a split-pair solenoid. The pairs of magnets will be installed in a 4.0-m cryostat vessel located in the HFTF building at LLNL. Each magnet is enclosed in its own cryostat, the existing 4.0-m vessel serving only as a vacuum chamber. 4 refs., 8 figs

  18. Phased Array Ultrasonic Evaluation of Space Shuttle Main Engine (SSME) Nozzle Weld

    Science.gov (United States)

    James, Steve; Engel, J.; Kimbrough, D.; Suits, M.; Hopson, George (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the phased array ultrasonic evaluation of the Space Shuttle Main Engine (SSME) nozzle weld. Details are given on the nondestructive testing evaluation approach, conventional shear wave and phased array techniques, and an x-ray versus phased array risk analysis. The field set-up was duplicated to the greatest extent possible in the laboratory and the phased array ultrasonic technique was developed and validated prior to weld evaluation. Results are shown for the phased array ultrasonic evaluation and conventional ultrasonic evaluation results.

  19. Automatic testing devices for diesel engines for the quality control in engine production

    Energy Technology Data Exchange (ETDEWEB)

    Homann, R; Homilius, K

    1979-01-01

    A device which generates the torque for the brakes is the most important functional group in engine test stands. Hydraulic dynamometric brakes are serially produced for power ranges from 210 up to 70000 kw and maximum revolutions up to 10000 rpm. Eddy current brakes can be supplied for the power range of 40 to 3600 kW. Compared to the hydraulic dynamometric brake they have a larger rev-range for control while both have the same torque. Electric machines used as dynamometric brakes make it possible to recuperate electric energy. The properties of the individual braking devices are compared. Torque and number of revolutions are calculated digitally. Test methods are automatised as far as possible. There are four control methods: time plan, perforated strip, magnetic tape or computer.

  20. Comparative tests of bench equipment for fuel control system testing of gas-turbine engine

    Science.gov (United States)

    Shendaleva, E. V.

    2018-04-01

    The relevance of interlaboratory comparative researches is confirmed by attention of world metrological community to this field of activity. Use of the interlaboratory comparative research methodology not only for single gages collation, but also for bench equipment complexes, such as modeling stands for fuel control system testing of gas-turbine engine, is offered. In this case a comparative measure of different bench equipment will be the control fuel pump. Ensuring traceability of measuring result received at test benches of various air enterprises, development and introduction of national standards to practice of bench tests and, eventually, improvement of quality and safety of a aircraft equipment is result of this approach.

  1. Propulsion health monitoring of a turbine engine disk using spin test data

    Science.gov (United States)

    Abdul-Aziz, Ali; Woike, Mark; Oza, Nikunj; Matthews, Bryan; Baakilini, George

    2010-03-01

    On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenging feature to easily implement, especially, in the presence of scattered loading conditions, crack size, component geometry and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic event occurs. These techniques go further to evaluate materials' discontinuities and other anomalies that have grown to the level of critical defects which can lead to failure. Generally, health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost and durable products. Therefore, in an effort to address the technical issues concerning health monitoring of a rotor disk, this paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory will be evaluated using multiple data-driven anomaly detection techniques to identify anomalies in the disk. This study

  2. Student Tests for Teacher Evaluation: A Critique.

    Science.gov (United States)

    Florio, David H.

    1986-01-01

    This article supports Edward Haertel's views on inappropriate use of student test scores in evaluating teachers. Tests scores may identify a few incompetent teachers, but may bring new ailments to schools. The article argues that even the system proposed by Haertal may become subject to abuse by mechanistic or autocratic administrative practices.…

  3. Testing and evaluation of light ablation decontamination

    International Nuclear Information System (INIS)

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment

  4. Marihuana contact test, evaluation and development

    Science.gov (United States)

    1976-02-01

    A colorimetric swab test for detecting human contact with marihuana was evaluated. The test was found to be capable of detecting only 83% of marihuana smokers immediately after smoking and was also demonstrated to be subject to a wide range of possib...

  5. Evaluation of an intelligent open learning system for engineering education

    Directory of Open Access Journals (Sweden)

    Maria Samarakou

    2016-09-01

    Full Text Available In computer-assisted education, the continuous monitoring and assessment of the learner is crucial for the delivery of personalized education to be effective. In this paper, we present a pilot application of the Student Diagnosis, Assistance, Evaluation System based on Artificial Intelligence (StuDiAsE, an open learning system for unattended student diagnosis, assistance and evaluation based on artificial intelligence. The system demonstrated in this paper has been designed with engineering students in mind and is capable of monitoring their comprehension, assessing their prior knowledge, building individual learner profiles, providing personalized assistance and, finally, evaluating a learner's performance both quantitatively and qualitatively by means of artificial intelligence techniques. The architecture and user interface of the system are being exhibited, the results and feedback received from a pilot application of the system within a theoretical engineering course are being demonstrated and the outcomes are being discussed.

  6. Initial closed operation of the CELSS Test Facility Engineering Development Unit

    Science.gov (United States)

    Kliss, M.; Blackwell, C.; Zografos, A.; Drews, M.; MacElroy, R.; McKenna, R.; Heyenga, A. G.

    2003-01-01

    As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. Published by Elsevier Science Ltd on behalf of COSPAR.

  7. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    Science.gov (United States)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  8. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    Science.gov (United States)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  9. Reactivity control system of the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Sawahata, Hiroaki; Iyoku, Tatsuo; Nakazawa, Toshio

    2004-01-01

    The reactivity control system of the high temperature engineering test reactor (HTTR) consists of a control rod system and a reserve shutdown system. During normal operation, reactivity is controlled by the control rod system, which consists of 32 control rods (16 pairs) and 16 control rod drive mechanisms except for the case when the center control rods are removed to perform an irradiation test. In an unlikely event that the control rods fail to be inserted, reserve shutdown system is provided to insert pellets of neutron-absorbing material into the core. Alloy 800H is chosen for the metallic parts of the control rods. Because the maximum temperature of the control rods reaches about 900 deg. C at reactor scrams, structural design guideline and design material data on Alloy 800H are needed for the high temperature design. The design guideline for the HTTR control rod is based on ASME Code Case N-47-21. Design material data is also determined and shown in this paper. Observing the guideline, temperature and stress analysis were conducted; it can be confirmed that the target life of the control rods of 5 years can be achieved. Various tests conducted for the control rod system and the reserve shutdown system are also described

  10. Improved Nanomechanical Test Techniques for Surface Engineered Materials

    Directory of Open Access Journals (Sweden)

    Stephen R. Goodes

    2010-06-01

    Full Text Available The development and implementation of a wide range of innovative nanomechanical test techniques to solve tribological problems in applications as diverse as biomedical and automotive are described in this review. For improved wear resistance and durability, the importance of understanding the system response rather than the coating-only properties is emphasized. There are many applications involving mechanical contact where the key to understanding the problem is to test at higher load and to combine reliable measurements taken across different length scales using both nano- and micro-indentation and related wear measurement techniques which more closely simulate contact conditions to fully understand the mechanical behaviour and hence deliver improved application performance. Results are presented with the NanoTest platform for applications for biomedical devices and surface engineering of lightweight alloys for the automotive industry. By combining results with different techniques it is possible to postulate predictive design rules – based on the elastic and plastic deformation energies involved in contact - to aid the reliable optimisation of mechanical properties in the various contact situations in the different applications.

  11. Engineering-scale tests of in situ vitrification to PCB and radioactive contaminated soils

    International Nuclear Information System (INIS)

    Liikala, S.C.

    1991-01-01

    In Situ Vitrification (ISV) is a thermal treatment technology applicable to the remediation of hazardous chemical and radioactive contaminated soil and sludge sites. The ISV process utilizes electricity, through joule heating, to melt contaminated soil and form an inert glass and microcrystalline residual product. Applications of ISV to polychlorinated biphenyls (PCBs) and radionuclides have been demonstrated at engineering-scale in numerous tests (1,2,3). An updated evaluation of ISV applicability to treatment of PCBs and radionuclides, and recent test results are presented herein

  12. International evaluation of the programme on engine-related combustion

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, D [Imperial College, London (United Kingdom); Greenhalgh, D [Cranfield Univ. (United Kingdom); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Peters, N [Institut fuer Technische Mechanik, RWTH Aachen (Germany)

    1996-11-01

    The 12 projects in the engine related combustion programme cover the entire range from fundamental and theoretical aspects of combustion to more applied subjects such as engine control. The common denominator in the programme clearly is the internal combustion engine, both the reciprocating as well as the gas turbine engine. Such a large coverage by a relatively small number of projects necessarily leads to an isolation of some of the projects in terms of their subject as well as the methodology that is used. On the other hand, all the research areas of interest in combustion technology are represented by at least one of the projects. These are: mathematical and numerical methods in combustion; modelling of turbulent combustion; laser diagnostics of flows with combustion; studies of engine performance and their control; semi-empirical model development for practical applications. As a conclusion, the evaluation committee believes that the programme is well balanced between fundamental and applied projects. It covers the entire range of modern methodologies that are used on the international level and thereby contributes to the application and further development of these research tools in Sweden

  13. Engineering and evaluating drug delivery particles in microfluidic devices.

    Science.gov (United States)

    Björnmalm, Mattias; Yan, Yan; Caruso, Frank

    2014-09-28

    The development of new and improved particle-based drug delivery is underpinned by an enhanced ability to engineer particles with high fidelity and integrity, as well as increased knowledge of their biological performance. Microfluidics can facilitate these processes through the engineering of spatiotemporally highly controlled environments using designed microstructures in combination with physical phenomena present at the microscale. In this review, we discuss microfluidics in the context of addressing key challenges in particle-based drug delivery. We provide an overview of how microfluidic devices can: (i) be employed to engineer particles, by providing highly controlled interfaces, and (ii) be used to establish dynamic in vitro models that mimic in vivo environments for studying the biological behavior of engineered particles. Finally, we discuss how the flexible and modular nature of microfluidic devices provides opportunities to create increasingly realistic models of the in vivo milieu (including multi-cell, multi-tissue and even multi-organ devices), and how ongoing developments toward commercialization of microfluidic tools are opening up new opportunities for the engineering and evaluation of drug delivery particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. 40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine dynamometer... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.340-79 Gasoline-fueled engine dynamometer test run. (a) This section applies to gasoline...

  15. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  16. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    Science.gov (United States)

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  17. Role of testing in requalifying Transamerica Delaval, Inc., engines for nuclear service

    International Nuclear Information System (INIS)

    Nesbitt, J.F.; Dingee, D.A.; Laity, W.W.

    1985-03-01

    This paper discusses the role of testing in requalifying Transamerica Delaval, Inc. (TDI) diesel generators for use as emergency standby power sources at nuclear power plants. ''Lead'' engine tests (to confirm the design adequacy of key engine components under conditions that could induce high-cycle fatigue) and ''following'' engine tests (for engines of the same model and equipped with the same components as the ''lead'' engine) have been conducted at several nuclear power plants. The tests conducted by Duke Power Company (Catawba Nuclear Station Unit 1) and Long Island Lighting Company (Shoreham Nuclear Power Station Unit 1) are discussed. 2 refs

  18. 40 CFR 1051.325 - What happens if an engine family fails the production-line testing requirements?

    Science.gov (United States)

    2010-07-01

    ... ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.325 What happens if an engine... for an engine family if it fails under § 1051.315. The suspension may apply to all facilities producing vehicles or engines from an engine family, even if you find noncompliant vehicles or engines only...

  19. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  20. Proceedings: 19th International Nondestructive Testing and Evaluation of Wood Symposium

    Science.gov (United States)

    Robert J. Ross; Raquel Gonçalves; Xiping Wang

    2015-01-01

    The 19th International Nondestructive Testing and Evaluation of Wood Symposium was hosted by the University of Campinas, College of Agricultural Engineering (FEAGRI/UNICAMP), and the Brazilian Association of Nondestructive Testing and Evaluation (ABENDI) in Rio de Janeiro, Brazil, on September 22–25, 2015. This Symposium was a forum for those involved in nondestructive...

  1. First environmental data from the EUV engineering test stand

    Science.gov (United States)

    Klebanoff, Leonard E.; Malinowski, Michael E.; Grunow, Philip A.; Clift, W. Miles; Steinhaus, Chip; Leung, Alvin H.; Haney, Steven J.

    2001-08-01

    The first environmental data from the Engineering Test Stand (ETS) has been collected. Excellent control of high-mass hydrocarbons has been observed. This control is a result of extensive outgas testing of components and materials, vacuum compatible design of the ETS, careful cleaning of parts and pre-baking of cables and sub assemblies where possible, and clean assembly procedures. As a result of the hydrocarbon control, the residual ETS vacuum environment is rich in water vapor. Analysis of witness plate data indicates that the ETS environment does not pose a contamination risk to the optics in the absence of EUV irradiation. However, with EUV exposure, the water rich environment can lead to EUV- induced water oxidation of the Si-terminated Mo/Si optics. Added ethanol can prevent optic oxidation, allowing carbon growth via EUV cracking of low-level residual hydrocarbons to occur. The EUV environmental issues are understood, mitigation approaches have been validated, and EUV optic contamination appears to be manageable.

  2. Near Earth Asteroid Solar Sail Engineering Development Unit Test Program

    Science.gov (United States)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 30x20x10cm (6U) cubesat reconnaissance mission to investigate a near Earth asteroid utilizing an 86m2 solar sail as the primary propulsion system. This will be the largest solar sail NASA will launch to date. NEA Scout is a secondary payload currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis furthered understanding of thermal, stress, and dynamics of the stowed system and matured an integrated sail membrane model for deployed flight dynamics. This paper will address design, fabrication, and lessons learned from the NEA Scout solar sail subsystem engineering development unit. From optical properties of the sail material to folding and spooling the single 86m2 sail, the team has developed a robust deployment system for the solar sail. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  3. Basic data for surveillance test on core support graphite structures for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Kikuchi, Takayuki; Iyoku, Tatsuo; Fujimoto, Nozomu; Ishihara, Masahiro; Sawa, Kazuhiro

    2007-02-01

    Both of the visual inspection by a TV camera and the measurement of material properties by surveillance test on core support graphite structures are planned for the High Temperature Engineering Test Reactor (HTTR) to confirm their structural integrity and characteristics. The surveillance test is aimed to investigate the change of material properties by aging effects such as fast neutron irradiation and oxidation. The obtained data will be used not only for evaluating the structural integrity of the core support graphite structures of the HTTR but also for design of advanced Very High Temperature Reactor (VHTR) discussed at generation IV international forum. This report describes the initial material properties of surveillance specimens before installation and installed position of surveillance specimens in the HTTR. (author)

  4. Trajectory control sensor engineering model detailed test objective

    Science.gov (United States)

    Dekome, Kent; Barr, Joseph Martin

    1991-01-01

    The concept employed in an existing Trajectory Control Sensor (TCS) breadboard is being developed into an engineering model to be considered for flight on the Shuttle as a Detailed Test Objective (DTO). The sensor design addresses the needs of Shuttle/SSF docking/berthing by providing relative range and range rate to 1500 meters as well as the perceived needs of AR&C by relative attitude measurement over the last 100 meters. Range measurement is determined using a four-tone ranging technique. The Doppler shift on the highest frequency tone will be used to provide direct measurement of range rate. Bearing rate and attitude rates will be determined through back differencing of bearing and attitude, respectively. The target consists of an isosceles triangle configuration of three optical retroreflectors, roughly one meter and one-half meter in size. After target acquisition, the sensor continually updates the positions of the three retros at a rate of about one hertz. The engineering model is expected to weigh about 25 pounds, consume 25-30 watts, and have an envelope of about 1.25 cubic feet. The following concerns were addressed during the presentation: are there any concerns with differentiating attitude and bearing to get attitude and bearing rates? Since the docking scenario has low data bandwidth, back differencing is a sufficient approximation of a perfect differentiator for this application. Could range data be obtained if there were no retroreflectors on the target vehicle? Possibly, but only at close range. It would be dependent on target characteristics.

  5. In situ vitrification engineering-scale test ES-INEL-5 test plan

    International Nuclear Information System (INIS)

    Stoots, P.R.

    1990-06-01

    In 1952, the Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL). RWMC is located on approximately 144 acres in the southwestern corner of the INEL site and was established as a controlled area for the burial of solid low-level wastes generated by INEL operations. In 1954, the 88-acre Subsurface Disposal Area (SDA) of RWMC began accepting solid transuranic-contaminated waste. From 1954 to 1970, transuranic-contaminated waste was accepted from the Rocky Flats Plant (RFP) near Golden, CO, as well as from other US Department of Energy (DOE) locations. In 1987, the Buried Waste Program (BWP) was established by EG ampersand G Idaho, Inc., the prime contractor at INEL. Following the Environmental Restoration guidelines of the Buried Waste Program, the In Situ Vitrification Program is participating in a Remedial Investigation/Feasibility Study (RI/FS) for permanent disposal of INEL waste, in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study was requested and is being funded by the Office of Technology Development of the Idaho Operations Office of DOE (DOE-ID). As part of the RI/FS, an in situ vitrification (ISV) scoping study on the treatability of mixed low-level and mixed transuranic-contaminated waste is being performed to determine applicability of ISV to remediation of waste at SDA. This In Situ Vitrification Engineering-Scale Test ES-INEL-5 Test Plan considers the data needs of engineering, regulatory, health, and safety activities for all sampling and analysis activities in support of engineering scale test ES-INEL-5. 5 refs., 3 figs., 4 tabs

  6. Evaluating a federated medical search engine: tailoring the methodology and reporting the evaluation outcomes.

    Science.gov (United States)

    Saparova, D; Belden, J; Williams, J; Richardson, B; Schuster, K

    2014-01-01

    Federated medical search engines are health information systems that provide a single access point to different types of information. Their efficiency as clinical decision support tools has been demonstrated through numerous evaluations. Despite their rigor, very few of these studies report holistic evaluations of medical search engines and even fewer base their evaluations on existing evaluation frameworks. To evaluate a federated medical search engine, MedSocket, for its potential net benefits in an established clinical setting. This study applied the Human, Organization, and Technology (HOT-fit) evaluation framework in order to evaluate MedSocket. The hierarchical structure of the HOT-factors allowed for identification of a combination of efficiency metrics. Human fit was evaluated through user satisfaction and patterns of system use; technology fit was evaluated through the measurements of time-on-task and the accuracy of the found answers; and organization fit was evaluated from the perspective of system fit to the existing organizational structure. Evaluations produced mixed results and suggested several opportunities for system improvement. On average, participants were satisfied with MedSocket searches and confident in the accuracy of retrieved answers. However, MedSocket did not meet participants' expectations in terms of download speed, access to information, and relevance of the search results. These mixed results made it necessary to conclude that in the case of MedSocket, technology fit had a significant influence on the human and organization fit. Hence, improving technological capabilities of the system is critical before its net benefits can become noticeable. The HOT-fit evaluation framework was instrumental in tailoring the methodology for conducting a comprehensive evaluation of the search engine. Such multidimensional evaluation of the search engine resulted in recommendations for system improvement.

  7. Quality evaluation of rapeseed oils used as engine fuels

    Directory of Open Access Journals (Sweden)

    Marek Světlík

    2012-01-01

    Full Text Available Samples from six reference decentralised facilities and one industrial production unit of rapeseed oils were taken for the evaluation of the influence of production processes to the properties specified in the technical standard; in the laboratories, the properties limited by the standard for rapeseed oils were determined. In addition, long-term monitoring of changes in the oxidation stability in the storage test of rapeseed oils additived in the quantities of 200, 400 and 600 mg.kg−1 of the Baynox antioxidant was started. The results confirmed that the critical points in the rapeseed oil production process consist in the contamination with ash-forming elements, such as phosphorus, magnesium, calcium and overall impurities. Not only in the case of hot pressing, but also in two-step cold pressing of rapeseed it is necessary to reduce the content of ash-forming elements using additional processes, such as degumming, neutralisation and whitening. The safety step consisting of filtration down to maximum particle size of 1 μm must be always in place before the oil distribution. A positive effect of the Baynox antioxidant was clearly proved. As 200 mg.kg−1 of Baynox was added, the oxidation stability value increased from 8 to 9.05 hrs immediately after the pressing with a consequent decrease to 6 hrs after 270 days. With using of addition 400 ppm Baynox decreased oxidation stability under 6 hours not until after 390 days of storage. With addition 600 ppm Baynox the oxidation stability of rapeseed oil even after 510 days of storage makes 6.5 hours. The quality monitoring brought about necessary findings and knowledge for the optimisation of the rapeseed oil production and distribution as engine fuels. In addition, it serves as an initial supporting document for the creation of the necessary quality control system.

  8. The advanced test reactor strategic evaluation program

    International Nuclear Information System (INIS)

    Buescher, B.J.

    1989-01-01

    Since the Chernobly accident, the safety of test reactors and irradiation facilities has been critically evaluated from the public's point of view. A systematic evaluation of all safety, environmental, and operational issues must be made in an integrated manner to prioritize actions to maximize benefits while minimizing costs. Such a proactive program has been initiated at the Advanced Test Reactor (ATR). This program, called the Strategic Evaluation Program (STEP), is being conducted for the ATR to provide integrated safety and operational reviews of the reactor against the standards applied to licensed commercial power reactors. This has taken into consideration the lessons learned by the US Nuclear Regulatory Commission (NRC) in its Systematic Evaluation Program (SEP) and the follow-on effort known as the Integrated Safety Assessment Program (ISAP). The SEP was initiated by the NRC to review the designs of older operating nuclear power plants to confirm and document their safety. The ATR STEP objectives are discussed

  9. System engineering approach in the EU Test Blanket Systems Design Integration

    International Nuclear Information System (INIS)

    Panayotov, D.; Sardain, P.; Boccaccini, L.V.; Salavy, J.-F.; Cismondi, F.; Jourd'Heuil, L.

    2011-01-01

    The complexity of the Test Blanket Systems demands diverse and comprehensive integration activities. Test Blanket Modules - Consortia of Associates (TBM-CA) applies the system engineering methods in all stages of the Test Blanket System (TBS) design integration. Completed so far integration engineering tasks cover among others status and initial set of TBS operating parameters; list of codes, standards and regulations related to TBS; planning of the TBS interfaces and baseline documentation. Most of the attention is devoted to the establishment the Helium-Cooled Lithium Lead (HCLL) and Helium-Cooled Pebble Bed Lead (HCPB) TBS configuration baseline, TBS break down into sub-systems, identification, definition and management of the internal and external interfaces, development of the TBS plant break down structure (PBS), establishment and management of the required TBS baseline documentation infrastructure. Break down of the TBS into sub-systems that is crucial for the further design and interfaces' management has been selected considering several options and using specific evaluation criteria. Process of the TBS interfaces management covers the planning, definition and description, verification and review, non-conformances and deviations, and modification and improvement processes. Process of interfaces review is developed, identifying the actors, input, activities and output of the review. Finally the relations and interactions of system engineering processes with TBM configuration management and TBM-CA Quality Management System are discussed.

  10. Thermodynamic and heat transfer analysis of heat recovery from engine test cell by Organic Rankine Cycle

    Science.gov (United States)

    Shokati, Naser; Mohammadkhani, Farzad; Farrokhi, Navid; Ranjbar, Faramarz

    2014-12-01

    During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this study, in order to recover these heat losses, Organic Rankine Cycle (ORC) is recommended. The study has been conducted assuming the diesel oil to be composed of a single hydrocarbon such as C12H26. The composition of exhaust gases (products of combustion) have been computed (and not determined experimentally) from the stoichiometric equation representing the combustion reaction. The test cell heat losses are recovered in three separate heat exchangers (preheater, evaporator and superheater). These heat exchangers are separately designed, and the whole system is analyzed from energy and exergy viewpoints. Finally, a parametric study is performed to investigate the effect of different variables on the system performance characteristics such as the ORC net power, heat exchangers effectiveness, the first law efficiency, exergy destruction and heat transfer surfaces. The results of the study show that by utilizing ORC, heat recovery equivalent to 8.85 % of the engine power is possible. The evaporator has the highest exergy destruction rate, while the pump has the lowest among the system components. Heat transfer surfaces are calculated to be 173.6, 58.7, and 11.87 m2 for the preheater, evaporator and superheater, respectively.

  11. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.E.

    1992-04-01

    K-Reactor`s number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine`s original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators? Was excessive wear of the piston pin bushings a result of having exceeded the engine`s capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts? Considering the engine`s overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine`s original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine`s failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines` 12OOkw continuous rating.

  12. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    Science.gov (United States)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  13. Mission definition study for Stanford relativity satellite. Volume 2: Engineering flight test program

    Science.gov (United States)

    1971-01-01

    The need is examined for orbital flight tests of gyroscope, dewar, and other components, in order to reduce the technical and financial risk in performing the relativity experiment. A program is described that would generate engineering data to permit prediction of final performance. Two flight tests are recommended. The first flight would test a dewar smaller than that required for the final flight, but of size and form sufficient to allow extrapolation to the final design. The second flight would use the same dewar design to carry a set of three gyroscopes, which would be evaluated for spinup and drift characteristics for a period of a month or more. A proportional gas control system using boiloff helium gas from the dewar, and having the ability to prevent sloshing of liquid helium, would also be tested.

  14. USB environment measurements based on full-scale static engine ground tests

    Science.gov (United States)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.

  15. Scoping the parameter space for demo and the engineering test

    International Nuclear Information System (INIS)

    Meier, W R.

    1999-01-01

    In our IFE development plan, we have set a goal of building an Engineering Test Facility (ETF) for a total cost of $2B and a Demo for $3B. In Mike Campbell s presentation at Madison, we included a viewgraph with an example Demo that had 80 to 250 MWe of net power and showed a plausible argument that it could cost less than $3B. In this memo, I examine the design space for the Demo and then briefly for the ETF. Instead of attempting to estimate the costs of the drivers, I pose the question in a way to define R ampersand D goals: As a function of key design and performance parameters, how much can the driver cost if the total facility cost is limited to the specified goal? The design parameters examined for the Demo included target gain, driver energy, driver efficiency, and net power output. For the ETF; the design parameters are target gain, driver energy, and target yield. The resulting graphs of allowable driver cost determine the goals that the driver R ampersand D programs must seek to meet

  16. System integration and performance of the EUV engineering test stand

    International Nuclear Information System (INIS)

    Tichenor, Daniel A.; Ray-Chaudhuri, Avijit K.; Replogle, William C.; Stulen, Richard H.; Kubiak, Glenn D.; Rockett, Paul D.; Klebanoff, Leonard E.; Jefferson, Karen L.; Leung, Alvin H.; Wronosky, John B.; Hale, Layton C.; Chapman, Henry N.; Taylor, John S.; Folta, James A.; Montcalm, Claude; Soufli, Regina; Spiller, Eberhard; Blaedel, Kenneth; Sommargren, Gary E.; Sweeney, Donald W.; Naulleau, Patrick; Goldberg, Kenneth A.; Gullikson, Eric M.; Bokor, Jeffrey; Batson, Phillip J.; Attwood, David T.; Jackson, Keith H.; Hector, Scott D.; Gwyn, Charles W.; Yan, Pei-Yang; Yan, P.

    2001-01-01

    The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k 1 of 0.52. The illuminator produces 13.4 nm radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features

  17. High field, low current operation of engineering test reactors

    International Nuclear Information System (INIS)

    Schwartz, J.; Cohn, D.R.; Bromberg, L.; Williams, J.E.C.

    1987-06-01

    Steady state engineering test reactors with high field, low current operation are investigated and compared to high current, lower field concepts. Illustrative high field ETR parameters are R = 3 m, α ∼ 0.5 m, B ∼ 10 T, β = 2.2% and I = 4 MA. For similar wall loading the fusion power of an illustrative high field, low current concept could be about 50% that of a lower field device like TIBER II. This reduction could lead to a 50% decrease in tritium consumption, resulting in a substantial decrease in operating cost. Furthermore, high field operation could lead to substantially reduced current drive requirements and cost. A reduction in current drive source power on the order of 40 to 50 MW may be attainable relative to a lower field, high current design like TIBER II implying a possible cost savings on the order of $200 M. If current drive is less efficient than assumed, the savings could be even greater. Through larger β/sub p/ and aspect ratio, greater prospects for bootstrap current operation also exist. Further savings would be obtained from the reduced size of the first wall/blanket/shield system. The effects of high fields on magnet costs are very dependent on technological assumptions. Further improvements in the future may lie with advances in superconducting and structural materials

  18. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste

  19. Evaluating the Impact of E15 on Snowmobile Engine Durability and Vehicle Driveability: September 22, 2010 - August 15, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Miers, Scott A. [Michigan Technological Univ., Houghton, MI (United States); Blough, Jason R. [Michigan Technological Univ., Houghton, MI (United States)

    2013-08-01

    The objective of this study was to evaluate the effects of E15 on current and legacy snowmobile engines and vehicles that could occur due to misfueling by the vehicle owner. Three test scenarios were conducted to evaluate the impact of E15, including cold-start performance and emissions, on-snow vehicle driveability, and laboratory exhaust emissions over the useful life of the engine. The eightengines tested represent current and legacy product that may exhibit sensitivity to increased ethanol blended in gasoline. Because a limited number of snowmobile engines were evaluated for this test program, the results are not statistically significant. However, the broad range of engine and mixture preparation technologies, combined with the various test scenarios provide preliminaryinformation to assess potential issues with E15 use in snowmobiles. Cold-start tests were performed at -6.7 degrees C (20 degrees F), -17.8 degrees C (0 degrees F), and -28.9 degrees C (-20 degrees F). The evaluation included time to start or number of pulls to start, engine speed, exhaust gas temperature, and start-up engine emissions concentrations. Statistically significant differences instarting times were not observed for most vehicles. Snowmobile driveability was analyzed using a subjective evaluation on a controlled test course. The drivers could not easily discern which fuel the snowmobiles were using during the subjective evaluation. Durability tests were conducted to measure the emissions and performance of the snowmobiles over the useful life of the vehicles (5,000miles). There were no fuel-related engine failures on E0 or E15. Carbon monoxide emissions were generally reduced by E15 relative to E0, by from 10% to 35%. Occasional misfueling of snowmobiles with E15 is not likely to cause noticeable or immediate problems for consumers. E15 is not approved for snowmobile use, and observations made during this study support the U.S. Environmental ProtectionAgency's decision to not

  20. Tests of a Higgins contactor for the engineering-scale resin loading of uranium

    International Nuclear Information System (INIS)

    Spence, R.D.; Haas, P.A.

    1978-01-01

    The loading of uranium on weak-acid ion exchange resin is a basic step in the production of fuel particles for high-temperature gas-cooled reactors (HTGRs). In the work reported here, an engineering-scale continuous resin loader (2-in.-ID Higgins contactor) was tested with existing engineering-scale process equipment. The Higgins contactor was first successfully used to convert Na + -form resin to the H + -form; then it was evaluated as a uranium loader. Results show that the 2-in.-ID Higgins contactor can easily load 25 kg of uranium per day, indicating that a 4-in.-ID contactor could load 100 kg/day. Process control was achieved by monitoring and controlling the density, pH, and inventory volume of the uranium feed solution. This control scheme is amenable to remote operation

  1. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  2. Pre-test evaluation of LLTR series II Test A-7

    International Nuclear Information System (INIS)

    Knittle, D.

    1981-03-01

    The purpose of this report is to present pre-test predictions of pressure histories for the A-7 test to be conducted in the Large Leak Test Rig (LLTR) at the Energy Technology Engineering Center (ETEC) in April 1981

  3. Testing of a Stirling engine for heat + power cogeneration; Test eines Stirlingmotors zur Kraft-Waerme-Kopplung

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, M.; Heinen, J. [RWE Energy AG, Essen (Germany)

    2007-01-15

    As part of a technology evaluation of distributed energy generators, RWE Energy AG extensively tested a micro combined heat and power appliance, powered by a Stirling engine developed by the British firm Microgen Energy Limited. Microgen Energy Limited is a specialist in micro combined heat and power (microCHP) based on unique Free-Piston Stirling generator technology Microgen is working with leading appliance manufacturers to integrate its core technology into a range of innovative microCHP products. The investigations concentrated on the determination of capacity, efficiency and emissions, the grid connection and behaviour at start-up and under varying loads. This article summarises the results of the tests and gives an overview of micro-CHP technologies (CHP=combined heat and power) and their possible significance to the market in the future. (orig.)

  4. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this...

  5. 40 CFR 86.341-79 - Diesel engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ...-fueled engines are covered in § 86.340. (b) The temperature of the air supplied to the engine shall be... engine at rated speed and maximum horsepower until the oil and water temperatures are stabilized. The... segments. (4) A leak check is permitted between test segments. (5) A hang-up check is permitted between...

  6. Validation of an Integrated Airframe and Turbofan Engine Simulation for Evaluation of Propulsion Control Modes

    Science.gov (United States)

    Litt, Jonathan S.; Sowers, T Shane; Liu, Yuan; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The National Aeronautics and Space Administration (NASA) has developed independent airframe and engine models that have been integrated into a single real-time aircraft simulation for piloted evaluation of propulsion control algorithms. In order to have confidence in the results of these evaluations, the integrated simulation must be validated to demonstrate that its behavior is realistic and that it meets the appropriate Federal Aviation Administration (FAA) certification requirements for aircraft. The paper describes the test procedures and results, demonstrating that the integrated simulation generally meets the FAA requirements and is thus a valid testbed for evaluation of propulsion control modes.

  7. Operation, test, research and development of the high temperature engineering test reactor (HTTR). (FY2005)

    International Nuclear Information System (INIS)

    2007-03-01

    The High Temperature Engineering Test Reactor (HTTR) constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency (JAEA) is the first high-temperature gas-cooled reactor (HTGR) in Japan, which is a graphite-moderated and helium gas-cooled reactor with 30 MW of thermal power. The full power operation of 30 MW was attained in December, 2001, and then JAERI (JAEA) received the commissioning license for the HTTR in March, 2002. Since 2002, we have been carrying out rated power operation, safety demonstration tests and several R and Ds, etc., and conducted the high-temperature test operation of 950degC in April, 2004. In fiscal 2005 year, periodical inspection and overhaul of reactivity control system were conducted, and safety demonstration tests were promoted. This report summarizes activities and test results on HTTR operation and maintenance as well as safety demonstration tests and several R and Ds, which were carried out in the fiscal year of 2005. (author)

  8. Operation, test, research and development of the high temperature engineering test reactor (HTTR). FY2003

    International Nuclear Information System (INIS)

    2005-03-01

    The High Temperature Engineering Test Reactor (HTTR) constructed at the Oarai Research Establishment of The Japan Atomic Energy Research Institute (JAERI) is the first high-temperature gas-cooled reactor (HTGR) in Japan, which is a graphite-moderated and helium gas-cooled reactor with 30MW of thermal power. Coolant of helium-gas circulates under the pressure of about 4Mpa, and the reactor inlet and outlet temperature are 395degC and 950degC (maximum), respectively coated particle fuel is used as fuel, and the HTTR core is composed of graphite prismatic blocks. The full power operation of 30MW was attained in December, 2001, and then JAERI received the commissioning license for the HTTR in March, 2002. Since 2002, we have been carrying out rated power operation, safety demonstration tests and several R and Ds, etc., and conducted the high-temperature test operation of 950degC in April, 2004. This report summarizes activities and test results on HTTR operation and maintenance as well as safety demonstration tests and several R and Ds, which were carried out in the fiscal year of 2003 before the high temperature test operation of 950degC. (author)

  9. Critical evaluation of reverse engineering tool Imagix 4D!

    Science.gov (United States)

    Yadav, Rashmi; Patel, Ravindra; Kothari, Abhay

    2016-01-01

    The comprehension of legacy codes is difficult to understand. Various commercial reengineering tools are available that have unique working styles, and are equipped with their inherent capabilities and shortcomings. The focus of the available tools is in visualizing static behavior not the dynamic one. Therefore, it is difficult for people who work in software product maintenance, code understanding reengineering/reverse engineering. Consequently, the need for a comprehensive reengineering/reverse engineering tool arises. We found the usage of Imagix 4D to be good as it generates the maximum pictorial representations in the form of flow charts, flow graphs, class diagrams, metrics and, to a partial extent, dynamic visualizations. We evaluated Imagix 4D with the help of a case study involving a few samples of source code. The behavior of the tool was analyzed on multiple small codes and a large code gcc C parser. Large code evaluation was performed to uncover dead code, unstructured code, and the effect of not including required files at preprocessing level. The utility of Imagix 4D to prepare decision density and complexity metrics for a large code was found to be useful in getting to know how much reengineering is required. At the outset, Imagix 4D offered limitations in dynamic visualizations, flow chart separation (large code) and parsing loops. The outcome of evaluation will eventually help in upgrading Imagix 4D and posed a need of full featured tools in the area of software reengineering/reverse engineering. It will also help the research community, especially those who are interested in the realm of software reengineering tool building.

  10. Physics analysis of the TIBER-II engineering test reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Houlberg, W.A.; Attenberger, S.E.; Dory, R.A.; Spong, D.A.; Tolliver, J.S.; Sheffield, J.

    1987-11-01

    Confinement capability, burn characteristics, heating and fueling requirements, and fast alpha particle effects are assessed for the TIBER-II engineering test reactor (ETR/ITER). Confinement predictions for a wide variety of empirical scaling laws show that ignition in TIBER-II (or similar ETR-like devices) is marginal at 10 MA, whereas the design goal to achieve noninductively driven, steady-state burn with Q > 5 can easily be attained. Operation at the higher plasma currents being discussed for ITER or the attainment of higher density limits and/or favorable H-mode scalings improves the ignition capability. Pellet penetration calculations indicate that density profile control with pellets may not be feasible even for pellet velocities up to about 50 km/s, however, density peaking could result from inward pinch effects, as frequently inferred from experiments. The fast alpha contribution to pressure is substantial (10 to 30%) at TIBER (or any ETR/ITER) burn temperatures (8 to 20 keV). A relatively low level of fast alpha radial diffusion or a modest level of thermal alpha buildup significantly influences the ignition and steady-state burn capability. The fast alpha population can also modify the background plasma ballooning mode stability boundaries, lowering the beta limit β/sub crit/ - in particular, operation at the high electron temperatures needed for efficient current drive can exacerbate this effect. The use of high-energy neutral beams offers the promise of two important improvements in projected performance: an effective method for noninductive current drive and a means for controlling the current density profile deep within the plasma, as required for stable operation at high beta levels. 14 refs., 10 figs., 1 tab

  11. Physics analysis of the TIBER-II engineering test reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Houlberg, W.A.; Attenberger, S.E.; Dory, R.A.; Spong, D.A.; Tolliver, J.S.; Sheffield, J.

    1987-01-01

    Confinement capability, burn characteristics, heating and fueling requirements, and fast-alpha particle effects are assessed for the TIBER-II engineering test reactor (ETR/ITER). Confinement predictions for a wide variety of empirical scaling laws show that ignition on TIBER-II (or similar ETR-like devices) is marginal at 10 MA, whereas the design goal to achieve noninductively driven, steady-state burn with Q > 5 can easily be attained. Operation at the higher plasma currents being discussed for ITER or the attainment of higher density limits and/or favorable H-mode scalings improves the ignition capability. Pellet penetration calculations indicate that density profile control with pellets may not be feasible even for pellet velocities up to bout 50 km/s; however, density peaking could result from inward pinch effects, as frequently inferred from experiments. The fast alpha contribution to pressure is substantial (10-30%) at TIBER (or any ETR/ITER) burn temperatures (8-20 keV). A relatively low level of fast alpha radial diffusion or a modest level of thermal alpha buildup significantly influences the ignition and steady-state burn capability. The fast alpha population can also modify the background plasma ballooning mode stability boundaries, lowering the beta limit β/sub crit/ - in particular, operation at the high electron temperatures needed for efficient current drive can exacerbate this effect. The use of high-energy neutral beams offers the promise of two important improvements in projected performance: an effective method for noninductive current drive and a means for controlling the current density profile deep within the plasma, as required for stable operation at high beta levels

  12. The laboratory test rig with miniature jet engine to research aviation fuels combustion process

    Directory of Open Access Journals (Sweden)

    Gawron Bartosz

    2015-12-01

    Full Text Available This article presents laboratory test rig with a miniature turbojet engine (MiniJETRig – Miniature Jet Engine Test Rig, that was built in the Air Force Institute of Technology. The test rig has been developed for research and development works aimed at modelling and investigating processes and phenomena occurring in full scale jet engines. In the article construction of a test rig is described, with a brief discussion on the functionality of each of its main components. Additionally examples of measurement results obtained during the realization of the initial tests have been included, presenting the capabilities of the test rig.

  13. Educational digital resource for data analysis of Civil Engineering laboratory tests

    Directory of Open Access Journals (Sweden)

    Gustavo Henrique Nalon

    2018-02-01

    Full Text Available This work aims to implement and evaluate an interactive educational software that helps Civil Engineering students to perform and analyze the calculations related to different Soil Mechanics laboratory tests. This experience consists of an attempt to incorporate information and communication technologies (ICTs into the engineering teaching-learning process. The content of the program is distributed into three different modules: “Compaction test”, “Consolidation test”, and “Direct shear test”. Using vector graphics, tables, illustrative figures, animations, equations, tip buttons, and immediate correction of mistakes, the software clarifies the relationship between theoretical concepts and practical laboratory results, instructs the students in the moments of doubt, attracts their interest, and motivates them to achieve the complete data interpretation. Based on the results of an applied evaluation questionnaire, it was observed that most of the students were satisfied with the contents and functionalities of the program. The developed tool can be an inspiration for the creation of new educational software that improve the quality of education in different engineering areas.

  14. Experimental Evaluation of a Low Emissions High Performance Duct Burner for Variable Cycle Engines (VCE)

    Science.gov (United States)

    Lohmann, R. P.; Mador, R. J.

    1979-01-01

    An evaluation was conducted with a three stage Vorbix duct burner to determine the performance and emissions characteristics of the concept and to refine the configuration to provide acceptable durability and operational characteristics for its use in the variable cycle engine (VCE) testbed program. The tests were conducted at representative takeoff, transonic climb, and supersonic cruise inlet conditions for the VSCE-502B study engine. The test stand, the emissions sampling and analysis equipment, and the supporting flow visualization rigs are described. The performance parameters including the fuel-air ratio, the combustion efficiency/exit temperature, thrust efficiency, and gaseous emissions calculations are defined. The test procedures are reviewed and the results are discussed.

  15. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  16. Thermal-environmental testing of a 30-cm engineering model thruster

    Science.gov (United States)

    Mirtich, M. J.

    1976-01-01

    An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.

  17. Standard Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method establishes a test procedure for determining the propensity of aircraft turbine engine cleaning and maintenance materials for causing stress corrosion cracking of titanium alloy parts. 1.2 The evaluation is conducted on representative titanium alloys by determining the effect of contact with cleaning and maintenance materials on tendency of prestressed titanium alloys to crack when subsequently heated to elevated temperatures. 1.3 Test conditions are based upon manufacturer's maximum recommended operating solution concentration. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see and .

  18. Physicians' subjectivity in evaluating oxytocin challenge tests.

    Science.gov (United States)

    Peck, T M

    1980-07-01

    Five physicians subspecializing in maternal-fetal medicine individually evaluated 50 oxytocin challenge tests (OCTs), of which 33 were originally read as positive. There was considerable disagreement among the study physicians (SPs) such that 2 SPs would agree, on the average, only 52% of the time on any one OCT. The SPs were also asked to evaluate fetal heart rate (FHR) reactivity patterns, if present. Again, there was great disagreement. When the majority (3 of 5 or more) of SPs agreed on the OCT result and/or reactivity, there was reasonable correlation with neonatal outcome, indicating the validity of the physiologic premise of the test. In particular, the presence or absence of FHR accelerations with fetal motion, regardless of the OCT reading, correlated extremely well with eventual neonatal outcome. This indicates that the most significant variable in antepartum FHR monitoring is the FHR acceleration pattern.

  19. Evaluation of Thermal Barrier and PS-200 Self-Lubricating Coatings in an Air-Cooled Rotary Engine

    Science.gov (United States)

    Moller, Paul S.

    1995-01-01

    This project provides an evaluation of the feasibility and desirability of applying a thermal barrier coating overlaid with a wear coating on the internal surfaces of the combustion area of rotary engines. Many experiments were conducted with different combinations of coatings applied to engine components of aluminum, iron and titanium, and the engines were run on a well-instrumented test stand. Significant improvements in specific fuel consumption were achieved and the wear coating, PS-200, which was invented at NASA's Lewis Research Center, held up well under severe test conditions.

  20. A Dynamic Model for the Evaluation of Aircraft Engine Icing Detection and Control-Based Mitigation Strategies

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.

    2017-01-01

    Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the

  1. Space Industry Commercialization: A Systems Engineering Evaluation of Alternatives

    Science.gov (United States)

    Dinally, Jihan

    The Constellation Program cancellation reversed the government and commercial space industry's roles and relationships by dedicating the majority of the federal funding and opportunities to the commercial space industry and left the government space industry in search of an approach to collaborate with the dominant organization, the commercial space industry service providers. The space industry government agencies, Air Force Space Command (AFSPC) and National Aeronautics and Space Administration (NASA) had realized that to gain resources in the new commercially oriented economic environment, they had to work together and possess the capabilities aligned with the National Space Policy's documented goals. Multi-organizational collaboration in space industry programs is challenging, as NASA, AFSPC, and commercial providers, follow different [1] enterprise architecture guidance such as the NASA systems engineering Handbook, MIL-STD-499 and "A Guide to the systems engineering Body of Knowledge" by the International Council on systems engineering [2] [3]. A solution to streamline their enterprise architecture documentation and meet National Space Policy goals is the Multi-User Architecture Maturity Model Methodology (MAM3), which offers a tailored systems engineering technique the government agencies and private companies can implement for the program's maturity level. In order to demonstrate the MAM3, a CubeSat motivated study was conducted partnering a commercial provider with a government agency. A survey of the commercial space industry service providers' capabilities was performed to select the private companies for the study. Using the survey results, the commercial space industry service providers were ranked using the Analytic Hierarchy Process (AHP) [4]. The AHP is a structured technique for making complex decisions for representing and quantifying its weights, relating those weights to overall goals, and evaluating alternative solutions [5] - [8]. The weights

  2. Performance Evaluation of the T6 Ion Engine

    Science.gov (United States)

    Snyder, John Steven; Goebel, Dan M.; Hofer, Richard R.; Polk, James E.; Wallace, Neil C.; Simpson, Huw

    2010-01-01

    The T6 ion engine is a 22-cm diameter, 4.5-kW Kaufman-type ion thruster produced by QinetiQ, Ltd., and is baselined for the European Space Agency BepiColombo mission to Mercury and is being qualified under ESA sponsorship for the extended range AlphaBus communications satellite platform. The heritage of the T6 includes the T5 ion thruster now successfully operating on the ESA GOCE spacecraft. As a part of the T6 development program, an engineering model thruster was subjected to a suite of performance tests and plume diagnostics at the Jet Propulsion Laboratory. The engine was mounted on a thrust stand and operated over its nominal throttle range of 2.5 to 4.5 kW. In addition to the typical electrical and flow measurements, an E x B mass analyzer, scanning Faraday probe, thrust vector probe, and several near-field probes were utilized. Thrust, beam divergence, double ion content, and thrust vector movement were all measured at four separate throttle points. The engine performance agreed well with published data on this thruster. At full power the T6 produced 143 mN of thrust at a specific impulse of 4120 seconds and an efficiency of 64%; optimization of the neutralizer for lower flow rates increased the specific impulse to 4300 seconds and the efficiency to nearly 66%. Measured beam divergence was less than, and double ion content was greater than, the ring-cusp-design NSTAR thruster that has flown on NASA missions. The measured thrust vector offset depended slightly on throttle level and was found to increase with time as the thruster approached thermal equilibrium.

  3. Data on test results of vessel cooling system of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Saikusa, Akio; Nakagawa, Shigeaki; Fujimoto, Nozomu; Tachibana, Yukio; Iyoku, Tatsuo

    2003-02-01

    High Temperature Engineering Test Reactor (HTTR) is the first graphite-moderated helium gas cooled reactor in Japan. The rise-to-power test of the HTTR started on September 28, 1999 and thermal power of the HTTR reached its full power of 30 MW on December 7, 2001. Vessel Cooling System (VCS) of the HTTR is the first Reactor Cavity Cooling System (RCCS) applied for High Temperature Gas Cooled Reactors. The VCS cools the core indirectly through the reactor pressure vessel to keep core integrity during the loss of core flow accidents such as depressurization accident. Minimum heat removal of the VCS to satisfy its safety requirement is 0.3MW at 30 MW power operation. Through the performance test of the VCS in the rise-to-power test of the HTTR, it was confirmed that the VCS heat removal at 30 MW power operation was higher than 0.3 MW. This paper shows outline of the VCS and test results on the VCS performance. (author)

  4. Heat removal performance of auxiliary cooling system for the high temperature engineering test reactor during scrams

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Tachibana, Yukio; Iyoku, Tatsuo; Takenaka, Satsuki

    2003-01-01

    The auxiliary cooling system of the high temperature engineering test reactor (HTTR) is employed for heat removal as an engineered safety feature when the reactor scrams in an accident when forced circulation can cool the core. The HTTR is the first high temperature gas-cooled reactor in Japan with reactor outlet gas temperature of 950 degree sign C and thermal power of 30 MW. The auxiliary cooling system should cool the core continuously avoiding excessive cold shock to core graphite components and water boiling of itself. Simulation tests on manual trip from 9 MW operation and on loss of off-site electric power from 15 MW operation were carried out in the rise-to-power test up to 20 MW of the HTTR. Heat removal characteristics of the auxiliary cooling system were examined by the tests. Empirical correlations of overall heat transfer coefficients were acquired for a helium/water heat exchanger and air cooler for the auxiliary cooling system. Temperatures of fluids in the auxiliary cooling system were predicted on a scram event from 30 MW operation at 950 degree sign C of the reactor outlet coolant temperature. Under the predicted helium condition of the auxiliary cooling system, integrity of fuel blocks among the core graphite components was investigated by stress analysis. Evaluation results showed that overcooling to the core graphite components and boiling of water in the auxiliary cooling system should be prevented where open area condition of louvers in the air cooler is the full open

  5. Proceedings of the Conference on the Design of Experiments in Army Research Development and Testing (20th). Held at Army Operational Test and Evaluation Agency and Army Engineer Center at Fort Belvoir, VA., on 23-25 October 1974. Part 1

    Science.gov (United States)

    1975-06-01

    more about t h i s i n a few moments. "Jack" Youden had r ece ived h i s Ph.D. i n Chemistry from Columbia i n 1924, was a Phys i ca l...xx xx (, Final, &port on tho Evaluation of a Semiautomatic Flight Operations Center Army Tactical A i r Space Regulation Systcm ( ATARS ) a...consultant the the Office of Air Pollution. He was Chairman of the Gordon Conference on Statietics in Chemistry and Chemical Engineering in 1954, and

  6. The Advanced Test Reactor Strategic Evaluation Program

    International Nuclear Information System (INIS)

    Buescher, B.J.

    1990-01-01

    A systematic evaluation of safety, environmental, and operational issues has been initiated at the Advanced Test Reactor (ATR). This program, the Strategic Evaluation Program (STEP), provides an integrated review of safety and operational issues against the standards applied to licensed commercial facilities. In the review of safety issues, 18 deviations were identified which required prompt attention. Resolution of these items has been accelerated in the program. An integrated living schedule is being developed to address the remaining findings. A risk evaluation is being performed on the proposed corrective actions and these actions will then be formally ranked in order of priority based on considerations of safety and operational significance. Once the final ranking is completed, an integrated schedule will be developed, which will include considerations of availability of funding and operating schedule. 3 refs., 2 figs

  7. INEL test plan for evaluating waste assay systems

    International Nuclear Information System (INIS)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP

  8. INEL test plan for evaluating waste assay systems

    Energy Technology Data Exchange (ETDEWEB)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  9. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating

  10. Computer-Aided System of Virtual Testing of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Rybakov Viktor N.

    2016-01-01

    Full Text Available The article describes the concept of a virtual lab that includes subsystem of gas turbine engine simulation, subsystem of experiment planning, subsystem of measurement errors simulation, subsystem of simulator identification and others. The basis for virtual lab development is the computer-aided system of thermogasdynamic research and analysis “ASTRA”. The features of gas turbine engine transient modes simulator are described. The principal difference between the simulators of transient and stationary modes of gas turbine engines is that the energy balance of the compressor and turbine becomes not applicable. The computer-aided system of virtual gas turbine engine testing was created using the developed transient modes simulator. This system solves the tasks of operational (throttling, speed, climatic, altitude characteristics calculation, analysis of transient dynamics and selection of optimal control laws. Besides, the system of virtual gas turbine engine testing is a clear demonstration of gas turbine engine working process and the regularities of engine elements collaboration. The interface of the system of virtual gas turbine engine testing is described in the article and some screenshots of the interface elements are provided. The developed system of virtual gas turbine engine testing provides means for reducing the laboriousness of gas turbine engines testing. Besides, the implementation of this system in the learning process allows the diversification of lab works and therefore improve the quality of training.

  11. Explore-create-share study: An evaluation of teachers as curriculum innovators in engineering education

    Science.gov (United States)

    Berry, Ayora

    The purpose of this study was to investigate the effects of a curriculum design-based (CDB) professional development model on K-12 teachers' capacity to integrate engineering education in the classroom. This teacher professional development approach differs from other training programs where teachers learn how to use a standard curriculum and adopt it in their classrooms. In a CDB professional development model teachers actively design lessons, student resources, and assessments for their classroom instruction. In other science, technology, engineering and mathematics (STEM) disciplines, CDB professional development has been reported to (a) position teachers as architects of change, (b) provide a professional learning vehicle for educators to reflect on instructional practices and develop content knowledge, (c) inspire a sense of ownership in curriculum decision-making among teachers, and (d) use an instructional approach that is coherent with teachers' interests and professional goals. The CDB professional development program in this study used the Explore-Create-Share (ECS) framework as an instructional model to support teacher-led curriculum design and implementation. To evaluate the impact of the CDB professional development and associated ECS instructional model, three research studies were conducted. In each study, the participants completed a six-month CDB professional development program, the PTC STEM Certificate Program, that included sixty-two instructional contact hours. Participants learned about industry and education engineering concepts, tested engineering curricula, collaborated with K-12 educators and industry professionals, and developed project-based engineering curricula using the ECS framework. The first study evaluated the impact of the CDB professional development program on teachers' engineering knowledge, self-efficacy in designing engineering curriculum, and instructional practice in developing project-based engineering units. The study

  12. 412th Test Engineering Group Vision for Future Knowledge Management (KM)

    Science.gov (United States)

    2018-05-17

    Presentation 3. DATES COVERED (From - To) 17 May 2018 4. TITLE AND SUBTITLE 412th Test Engineering Group Vision for Future Knowledge Management (KM... Engineering Group 307 E. Popson Ave Edwards AFB, CA 93523 8. PERFORMING ORGANIZATION REPORT NUMBER 412TW-PA...centers for the TENG test customers to allow the data to be readily available within minutes of a flight, for the data to be organized so that the engineer

  13. A novel reliability evaluation method for large engineering systems

    Directory of Open Access Journals (Sweden)

    Reda Farag

    2016-06-01

    Full Text Available A novel reliability evaluation method for large nonlinear engineering systems excited by dynamic loading applied in time domain is presented. For this class of problems, the performance functions are expected to be function of time and implicit in nature. Available first- or second-order reliability method (FORM/SORM will be challenging to estimate reliability of such systems. Because of its inefficiency, the classical Monte Carlo simulation (MCS method also cannot be used for large nonlinear dynamic systems. In the proposed approach, only tens instead of hundreds or thousands of deterministic evaluations at intelligently selected points are used to extract the reliability information. A hybrid approach, consisting of the stochastic finite element method (SFEM developed by the author and his research team using FORM, response surface method (RSM, an interpolation scheme, and advanced factorial schemes, is proposed. The method is clarified with the help of several numerical examples.

  14. Idaho National Engineering Laboratory historical dose evaluation: Volume 1

    International Nuclear Information System (INIS)

    Francis, S.J.

    1991-08-01

    The methodology and results are presented for an evaluation of potential radiation doses to a hypothetical individual who may have resided at an offsite location with the highest concentration of airborne radionuclides near the Idaho National Engineering Laboratory (INEL). Volume 1 contains a summary of methods and results. The years of INEL operations from 1952 to 1989 were evaluated. Radiation doses to an adult, child, and infant were estimated for both operational (annual) and episodic (short-term) airborne releases from INEL facilities. Atmospheric dispersion of operational releases was modeled using annual average meteorological conditions. Dispersion of episodic releases was generally modeled using actual hourly wind speed and direction data at the time of release. 50 refs., 23 figs., 10 tabs

  15. Cross-system evaluation of clinical trial search engines.

    Science.gov (United States)

    Jiang, Silis Y; Weng, Chunhua

    2014-01-01

    Clinical trials are fundamental to the advancement of medicine but constantly face recruitment difficulties. Various clinical trial search engines have been designed to help health consumers identify trials for which they may be eligible. Unfortunately, knowledge of the usefulness and usability of their designs remains scarce. In this study, we used mixed methods, including time-motion analysis, think-aloud protocol, and survey, to evaluate five popular clinical trial search engines with 11 users. Differences in user preferences and time spent on each system were observed and correlated with user characteristics. In general, searching for applicable trials using these systems is a cognitively demanding task. Our results show that user perceptions of these systems are multifactorial. The survey indicated eTACTS being the generally preferred system, but this finding did not persist among all mixed methods. This study confirms the value of mixed-methods for a comprehensive system evaluation. Future system designers must be aware that different users groups expect different functionalities.

  16. Evaluation methodologies for security testing biometric systems beyond technological evaluation

    OpenAIRE

    Fernández Saavedra, María Belén

    2013-01-01

    The main objective of this PhD Thesis is the specification of formal evaluation methodologies for testing the security level achieved by biometric systems when these are working under specific contour conditions. This analysis is conducted through the calculation of the basic technical biometric system performance and its possible variations. To that end, the next two relevant contributions have been developed. The first contribution is the definition of two independent biometric performance ...

  17. 40 CFR 86.1327-96 - Engine dynamometer test procedures; overview.

    Science.gov (United States)

    2010-07-01

    ... device, the exhaust pipe must be the same diameter as found in-use for at least 4 pipe diameters upstream... Exhaust Test Procedures § 86.1327-96 Engine dynamometer test procedures; overview. (a) The engine.... The exhaust emissions are diluted with ambient air and a continuous proportional sample is collected...

  18. Successful testing of an emergency diesel generator engine at very low load

    International Nuclear Information System (INIS)

    Killinger, A.; Loeper, St.

    2001-01-01

    For more than 30 years, the nuclear power industry has been concerned about the ability of emergency diesel generator sets (EDGs) to operate for extended periods of time at low loads (typically less than 33% of design rating) and still be capable of meeting their design safety requirement. Most diesel engine manufacturers today still caution owners and operators to avoid running their diesel engines for extended periods of time at low loads. At one nuclear power plant, the emergency electrical bus arrangement only required approximately 25% of the EDG's design rating, which necessitated that the plant operators monitor EDG operating hours and periodically increase electrical load. In order to eliminate the plant operations burden of periodically loading the EDGs, the nuclear power plant decided to conduct a low-load test of a ''spare'' diesel engine. A SACM Model UD45V16S5D diesel engine was returned to the factory in Mulhouse, France where the week long testing at rated speed and 3% of design rating was completed. The test demonstrated that the engine was capable of operating for seven days (168 hours) at very low loads, with no loss of performance and no unusual internal wear or degradation. The planning and inspections associated with preparing the diesel engine for the test, the engine monitoring performed during the test, the final test results, and the results and material condition of the engine following the test are described. The successful diesel engine low-load test resulted in the elimination of unnecessary nuclear power plant operation restrictions that were based on old concerns about long-term, low-load operation of diesel engines. The paper describes the significance of this diesel engine test to the nuclear power plant and the entire nuclear power industry. (author)

  19. Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering.

    Science.gov (United States)

    Sardi, Maria; Gasch, Audrey P

    2017-08-01

    Engineering microbes with new properties is an important goal in industrial engineering, to establish biological factories for production of biofuels, commodity chemicals and pharmaceutics. But engineering microbes to produce new compounds with high yield remains a major challenge toward economically viable production. Incorporating several modern approaches, including synthetic and systems biology, metabolic modeling and regulatory rewiring, has proven to significantly advance industrial strain engineering. This review highlights how comparative genomics can also facilitate strain engineering, by identifying novel genes and pathways, regulatory mechanisms and genetic background effects for engineering. We discuss how incorporating comparative genomics into the design-test-learn cycle of strain engineering can provide novel information that complements other engineering strategies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    Science.gov (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  1. Solar Alpha Rotary Joint (SARJ) Lubrication Interval Test and Evaluation (LITE). Post-Test Grease Analysis

    Science.gov (United States)

    Golden, Johnny L.; Martinez, James E.; Devivar, Rodrigo V.

    2015-01-01

    The Solar Alpha Rotary Joint (SARJ) is a mechanism of the International Space Station (ISS) that orients the solar power generating arrays toward the sun as the ISS orbits our planet. The orientation with the sun must be maintained to fully charge the ISS batteries and maintain all the other ISS electrical systems operating properly. In 2007, just a few months after full deployment, the starboard SARJ developed anomalies that warranted a full investigation including ISS Extravehicular Activity (EVA). The EVA uncovered unexpected debris that was due to degradation of a nitride layer on the SARJ bearing race. ISS personnel identified the failure root-cause and applied an aerospace grease to lubricate the area associated with the anomaly. The corrective action allowed the starboard SARJ to continue operating within the specified engineering parameters. The SARJ LITE (Lubrication Interval Test and Evaluation) program was initiated by NASA, Lockheed Martin, and Boeing to simulate the operation of the ISS SARJ for an extended time. The hardware was designed to test and evaluate the exact material components used aboard the ISS SARJ, but in a controlled area where engineers could continuously monitor the performance. After running the SARJ LITE test for an equivalent of 36+ years of continuous use, the test was opened to evaluate the metallography and lubrication. We have sampled the SARJ LITE rollers and plate to fully assess the grease used for lubrication. Chemical and thermal analysis of these samples has generated information that has allowed us to assess the location, migration, and current condition of the grease. The collective information will be key toward understanding and circumventing any performance deviations involving the ISS SARJ in the years to come.

  2. Test, measurement and evaluation with the mine boot test and evaluation system

    CSIR Research Space (South Africa)

    Ramaloko, PM

    2014-09-01

    Full Text Available Protective footwear that mitigates the shock transferred to the victim’s leg during an antipersonnel landmine blast need to be evaluated to verify their protection levels. The Mine Boot Test and Evaluation System which include a surrogate lower leg...

  3. American chestnut: A test case for genetic engineering?

    Science.gov (United States)

    Leila Pinchot

    2014-01-01

    The thought of genetically engineered (GE) trees might conjure images of mutant trees with unnatural and invasive tendencies, but there is much more to the story. GE trees are a new reality that, like it or not, will probably be part of the future of forestry. The basic inclination of most Forest Guild stewards is to reject GE trees as violating our principle to...

  4. 40 CFR 86.096-24 - Test vehicles and engines.

    Science.gov (United States)

    2010-07-01

    ... in the Production AMA Durability Program, the engine families covered by an application for...) Method of carburetor sealing. (iii) Method of air cleaner sealing. (iv) Vapor storage working capacity... and light-duty trucks, but does not apply to the production vehicles selected under paragraph (h) of...

  5. Evaluation of Mycology Laboratory Proficiency Testing

    Science.gov (United States)

    Reilly, Andrew A.; Salkin, Ira F.; McGinnis, Michael R.; Gromadzki, Sally; Pasarell, Lester; Kemna, Maggi; Higgins, Nancy; Salfinger, Max

    1999-01-01

    Changes over the last decade in overt proficiency testing (OPT) regulations have been ostensibly directed at improving laboratory performance on patient samples. However, the overt (unblinded) format of the tests and regulatory penalties associated with incorrect values allow and encourage laboratorians to take extra precautions with OPT analytes. As a result OPT may measure optimal laboratory performance instead of the intended target of typical performance attained during routine patient testing. This study addresses this issue by evaluating medical mycology OPT and comparing its fungal specimen identification error rates to those obtained in a covert (blinded) proficiency testing (CPT) program. Identifications from 188 laboratories participating in the New York State mycology OPT from 1982 to 1994 were compared with the identifications of the same fungi recovered from patient specimens in 1989 and 1994 as part of the routine procedures of 88 of these laboratories. The consistency in the identification of OPT specimens was sufficient to make accurate predictions of OPT error rates. However, while the error rates in OPT and CPT were similar for Candida albicans, significantly higher error rates were found in CPT for Candida tropicalis, Candida glabrata, and other common pathogenic fungi. These differences may, in part, be due to OPT’s use of ideal organism representatives cultured under optimum growth conditions. This difference, as well as the organism-dependent error rate differences, reflects the limitations of OPT as a means of assessing the quality of routine laboratory performance in medical mycology. PMID:10364601

  6. Construction of Engineering Education Program based on the Alumni's Evaluation of the Educational Outcome

    Science.gov (United States)

    Tsukamoto, Takehiko; Nishizawa, Hitoshi

    The Department of Electrical and Electronic Engineering in Toyota National College of Technology has put great emphasis on fundamental subjects, such as “electrical and electronic circuit" and “electromagnetism" more than 40 years. On the other hand, several issues of our college were clarified by the alumni's evaluation of the educational outcome in 2002. The most serious issue was low achievement of English and Social education. The alumni of all generation are dissatisfied with their low skill in English communication. As a part of the educational reforms, our department has constructed a new engineering education program focusing on fundamental ability. We introduced many problem-based-learning experiments and the compulsory subjects such as “English communication for electrical engineers" and “Engineering Ethics" into this program. Great educative results are obtained by these improvements. As a typical example, the scores of all 2nd grade students of advanced engineering course in TOEIC tests became 450 points or more. Our program has been authorized by JABEE since 2004.

  7. Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements

    Science.gov (United States)

    Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.

  8. Engineered Option Treatment of Remediated Nitrate Salts: Surrogate Batch-Blending Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report provides results from batch-blending test work for remediated nitrate salt (RNS) treatment. Batch blending was identified as a preferred option for blending RNS and unremediated nitrate salt (UNS) material with zeolite to effectively safe the salt/Swheat material identified as ignitable (U.S. Environmental Protection Agency code D001). Blending with zeolite was the preferred remediation option identified in the Options Assessment Report and was originally proposed as the best option for remediation by Clark and Funk in their report, Chemical Reactivity and Recommended Remediation Strategy for Los Alamos Remediated Nitrate Salt (RNS) Wastes, and also found to be a preferred option in the Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing. This test work evaluated equipment and recipe alternatives to achieve effective blending of surrogate waste with zeolite.

  9. Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR). FY2013

    International Nuclear Information System (INIS)

    2014-12-01

    The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor with 30MW of thermal power, constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency (JAEA) is the first high-temperature gas-cooled reactor (HTGR) in Japan. The HTTR was attained at the full power operation of 30MW in December 2001 and achieved the 950degC of outlet coolant temperature at the outside the reactor pressure vessel in June 2004. To establish and upgrade basic technologies for HTGRs, we have obtained demonstration test data necessary for several R and Ds, and accumulated operation and maintenance experience of HTGRs throughout the HTTR's operation such as rated power operations, safety demonstration tests and long-term high temperature operations, and so on. In fiscal year 2013, we started to prepare the application document of reactor installation license for the HTTR to prove conformity with the new research reactor's safety regulatory requirements taken effect from December 2013. We had been making effort to restart the HTTR which was stopped since the 2011 when the Pacific coast of Tohoku Earthquake (2011.3.11) occurred. This report summarizes activities and results of HTTR operation, maintenance, and several R and Ds, which were carried out in the fiscal year 2013. (author)

  10. Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR). FY2014

    International Nuclear Information System (INIS)

    2016-02-01

    The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor with 30 MW of thermal power, constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency is the first high-temperature gas-cooled reactor (HTGR) in Japan. The HTTR was attained at the full power operation of 30 MW in December 2001 and achieved the 950degC of coolant outlet temperature at outside of the reactor pressure vessel in June 2004. To establish and upgrade basic technologies for HTGRs, we have obtained demonstration test data necessary for several R and Ds, and accumulated operation and maintenance experience of HTGRs throughout the HTTR's operation such as rated power operations, safety demonstration tests and long-term high temperature operations, and so on. In fiscal year 2014, we started to apply the application document of reactor installation license for the HTTR to prove conformity with the new research reactor's safety regulatory requirements taken effect from December 2013. We had been making effort to restart the HTTR which was stopped since the 2011 by the Pacific coast of Tohoku Earthquake. This report summarizes activities and results of HTTR operation, maintenance, and several R and Ds, which were carried out in the fiscal year 2014. (author)

  11. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix C: Data base plots for SSME tests 902-214 through 902-314

    Science.gov (United States)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.

  12. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    Science.gov (United States)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  13. NPP Evaluation, backfitting and life extension. An engineering viewpoint

    International Nuclear Information System (INIS)

    Gonzalez Lopez, A.

    1993-01-01

    During the decade of the 80s, the Owners of the two oldest operating plants in Spain designed and built during the 60s - namely, Jose Cabrera NPP, a Westinghouse PWR, and Santa Maria de Garona NPP, a GE BWR- undertook the following important programs: 1. A far-reaching Systematic Evaluation Program (SEP) for the Jose Cabrera NPP consisting in the systematic safety review of the plant design, followed by the necessary hardware modifications, to upgrade it and make it comply with current safety criteria, and a Plant Upgrading Program for the Garona Nuclear Station focusing on specific topics affecting GE BWR Mark-I type plants of the same vintage. 2. A Remaining Life Management Program to ensure that the units, after extensive backfittings and high capital investment, would complete their design life, leaving open the option for plant life extension. These two units are today considered by the Spanish nuclear industry as the pilot plants for Plant Life Extension (PLEX) programs for PWRs and BWRs in our country The purpose of this paper is to summarize the principal lessons learned from EMPRESARIOS AGRUPADOS' participation as an architect-engineering organization in the engineering, design and implementation of these Programs. They are practical examples of positive experience which could be considered as a reference when carrying out similar programs for other plants. (author)

  14. NPP Evaluation, backfitting and life extension. An engineering viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lopez, A [Empresarios Agrupados, A.I.E., Madrid (Spain)

    1993-12-15

    During the decade of the 80s, the Owners of the two oldest operating plants in Spain designed and built during the 60s - namely, Jose Cabrera NPP, a Westinghouse PWR, and Santa Maria de Garona NPP, a GE BWR- undertook the following important programs: 1. A far-reaching Systematic Evaluation Program (SEP) for the Jose Cabrera NPP consisting in the systematic safety review of the plant design, followed by the necessary hardware modifications, to upgrade it and make it comply with current safety criteria, and a Plant Upgrading Program for the Garona Nuclear Station focusing on specific topics affecting GE BWR Mark-I type plants of the same vintage. 2. A Remaining Life Management Program to ensure that the units, after extensive backfittings and high capital investment, would complete their design life, leaving open the option for plant life extension. These two units are today considered by the Spanish nuclear industry as the pilot plants for Plant Life Extension (PLEX) programs for PWRs and BWRs in our country The purpose of this paper is to summarize the principal lessons learned from EMPRESARIOS AGRUPADOS' participation as an architect-engineering organization in the engineering, design and implementation of these Programs. They are practical examples of positive experience which could be considered as a reference when carrying out similar programs for other plants. (author)

  15. Evaluation of Biodiesel Production, Engine Performance, and Emissions

    Science.gov (United States)

    Gürü, Metin; Keskïn, Ali

    2016-08-01

    Nowadays, to decrease environmental pollution and dependence on fossil-based fuels, research on alternative renewable energy sources has been increasing. One such renewable energy source is biodiesel, which is used as an alternative fuel for diesel engines. Biodiesel is renewable, nontoxic, biodegradable, and environmentally friendly. Biodiesel is domestically produced from vegetable oil (edible or nonedible), animal fat, and used cooking oils. In the biodiesel production process, oil or fat undergoes transesterification reaction through use of simple alcohols such as methanol, ethanol, propanol, butanol, etc. Use of methanol is most feasible because of its low cost, and physical and chemical advantages. Acid catalysis, alkali catalysis, and enzyme catalysis are usually used to improve the reaction rate and yield. Glycerol is a byproduct of the reaction and can be used as an industrial raw material. In this study, biodiesel production methods (direct use, pyrolysis, microemulsion, transesterification, supercritical processes, ultrasound- assisted, and microwave-assisted) and types of catalyst (homogeneous, heterogeneous, and enzyme) have been evaluated and compared. In addition, the effects of biodiesel and its blends on diesel engine performance and exhaust emissions are described and reviewed.

  16. Krypton-85 hydrofracture engineering feasibility and safety evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Peretz, F.J.; Muller, M.E.; Pan, P.Y.

    1981-07-01

    Engineering studies have been made to determine the hazards associated with the disposal of /sup 85/Kr using the hydrofracture process. To assess the hazards, an effort has been made to identify the equipment required to entrain and dissolve the noble gas into the grout stream at hydrofracture pressure (up to 350 bar). Off-the-shelf or slightly modified equipment has been identified for safe and effective compression and gas-grout mixing. Each monthly injection disposes of 1.6 x 10/sup 6/ Ci of /sup 85/Kr. By connecting only one gas cylinder to the injection system at a time, the maximum amount of krypton likely to be released as a result of equipment failure is limited to 128,000 Ci. An evaluation by Los Alamos Technical Associates shows that releasing this amount of gas in less than one hour under worst-case meteorological conditions through a 30-m stack would result in a whole-body dose of 170 millirem at a distance of 1 km from the facility. A krypton collection and recovery system can further reduce this dose to 17 millirem; increasing the distance to the site boundary to 3 km can also reduce the dose by a factor of ten. Lung and skin dose estimates are 1.6 and 120 times the whole-body dose, respectively. These are all worst-case values; releases under more typical conditions would result in a significantly lower dose. No insurmountable safety or engineering problems have been identified.

  17. Preliminary systems engineering evaluations for the National Ecological Observatory Network.

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Perry J.; Kottenstette, Richard Joseph; Crouch, Shannon M.; Brocato, Robert Wesley; Zak, Bernard Daniel; Osborn, Thor D.; Ivey, Mark D.; Gass, Karl Leslie; Heller, Edwin J.; Dishman, James Larry; Schubert, William Kent; Zirzow, Jeffrey A.

    2008-11-01

    The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.

  18. Krypton-85 hydrofracture engineering feasibility and safety evaluation

    International Nuclear Information System (INIS)

    Peretz, F.J.; Muller, M.E.; Pan, P.Y.

    1981-07-01

    Engineering studies have been made to determine the hazards associated with the disposal of 85 Kr using the hydrofracture process. To assess the hazards, an effort has been made to identify the equipment required to entrain and dissolve the noble gas into the grout stream at hydrofracture pressure (up to 350 bar). Off-the-shelf or slightly modified equipment has been identified for safe and effective compression and gas-grout mixing. Each monthly injection disposes of 1.6 x 10 6 Ci of 85 Kr. By connecting only one gas cylinder to the injection system at a time, the maximum amount of krypton likely to be released as a result of equipment failure is limited to 128,000 Ci. An evaluation by Los Alamos Technical Associates shows that releasing this amount of gas in less than one hour under worst-case meteorological conditions through a 30-m stack would result in a whole-body dose of 170 millirem at a distance of 1 km from the facility. A krypton collection and recovery system can further reduce this dose to 17 millirem; increasing the distance to the site boundary to 3 km can also reduce the dose by a factor of ten. Lung and skin dose estimates are 1.6 and 120 times the whole-body dose, respectively. These are all worst-case values; releases under more typical conditions would result in a significantly lower dose. No insurmountable safety or engineering problems have been identified

  19. Completion of an Online Library Module Improves Engineering Student Performance on Information Literacy Skills Tests

    Directory of Open Access Journals (Sweden)

    Rachel E. Scott

    2016-12-01

    Full Text Available A Review of: Zhang, Q., Goodman, M., & Xie, S. (2015. Integrating library instruction into the Course Management System for a first-year engineering class: An evidence-based study measuring the effectiveness of blended learning on students’ information literacy levels. College & Research Libraries, 76(7, 934-958. http://dx.doi.org/10.5860/crl.76.7.934 Objective – To assess the efficacy of an online library module and of blended learning methods on students’ information literacy skills. Design – Multi-modal, pre- and posttests, survey questionnaire, and focus groups. Setting – Public research university in London, Ontario, Canada. Subjects – First-year engineering students. Methods – Of 413 students enrolled in Engineering Science (ES 1050, 252 volunteered to participate in the study. Participants were asked to complete the online module, a pretest, a posttest, an online follow-up survey, and to take part in a focus group. Researchers generated a pretest and a posttest, each comprised of 15 questions:; multiple choice, true or false, and matching questions which tested students’ general and engineering-specific information literacy skills. The pretest and posttest had different, but similarly challenging, questions to ensure that students involved in the study would not have an advantage over those who had opted out. While all components of the study were voluntary, the posttest was a graded course assignment. In-person tutorials were offered on 4 occasions, with only 15 students participating. Both tutorial and module content were designed to cover all questions and competencies tested in the pretest and the posttest, including Boolean operators, peer review, identifying plagiarism, engineering standards, engineering handbooks, search strategies, patents, article citations, identifying reliable sources, and how to read journal articles. The posttest survey was delivered in the CMS immediately after the posttest was completed. It

  20. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  1. Resumption of surrogate testing in the Engineering Demonstration System at the Lawrence Livermore National Laboratory: Environmental assessment

    International Nuclear Information System (INIS)

    1990-04-01

    The Engineering Demonstration System (EDS) is an existing equipment system within the Plutonium Facility at the Lawrence Livermore National Laboratory (LLNL) designed to test the Atomic Vapor Laser Isotope Separation (AVLIS) process for application to the Special Isotope Separation (SIS) program. The proposed action is to resume testing with members of the family of rare-earth metals in the EDS. The purpose of these tests is to train operators, verify operations procedures and obtain information on the engineering design, operational reliability, and separative performance capability of the integrated system hardware. The information to be provided by the EDS tests with the rare-earth metals is needed for engineering and operability evaluation of the prototype AVLIS separator hardware in an integrated system configuration. These evaluations are necessary to demonstrate the technology to the maximum extent possible, short of actual validation with plutonium. The EDS tests to be performed would use single and multiple separator units. Testing would be intermittent in nature, typically consisting of one to two tests per month, with durations ranging from approximately 10 to 200 h. 19 refs., 4 figs., 5 tabs

  2. Engineering evaluation/cost analysis for 100-N area waste

    International Nuclear Information System (INIS)

    Mihalik, L.A.

    1996-08-01

    The 100 Area of the Hanford Site was placed on the U.S. Environmental Protection Agency's National Priorities List (NPL) in November 1989 under the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980.' The 100 Area NPL site includes the 100-N Area, which is in the early stages of the cleanup process. To facilitate the disposal of wastes generated in preparation for cleanup, the U.S. Department of Energy, Richland Operations Office in cooperation with the Washington State Department of Ecology and the U.S. Environmental Protection Agency, has prepared this Engineering Evaluation/Cost Analysis (EE/CA). The scope of this EE/CA includes wastes from cleanout of the EDB and deactivation facilities. Volumes and costs for disposal of investigation-derived waste are also included

  3. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    International Nuclear Information System (INIS)

    Susan Stacy; Hollie K. Gilbert

    2005-01-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly and Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway

  4. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    Energy Technology Data Exchange (ETDEWEB)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

  5. Scaffold library for tissue engineering: a geometric evaluation.

    Science.gov (United States)

    Chantarapanich, Nattapon; Puttawibul, Puttisak; Sucharitpwatskul, Sedthawatt; Jeamwatthanachai, Pongnarin; Inglam, Samroeng; Sitthiseripratip, Kriskrai

    2012-01-01

    Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD) model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE) method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO:BT) were good for making the open-cellular scaffold. The PO:BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO:BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress level were excluded. Good couples for

  6. Scaffold Library for Tissue Engineering: A Geometric Evaluation

    Directory of Open Access Journals (Sweden)

    Nattapon Chantarapanich

    2012-01-01

    Full Text Available Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO : BT were good for making the open-cellular scaffold. The PO : BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO : BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress

  7. The development and testing of ceramic components in piston engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEntire, B.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.; Willis, R.W.; Southam, R.E. [TRW, Inc., Cleveland, OH (United States)

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  8. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    International Nuclear Information System (INIS)

    Gross, R.E.

    1992-04-01

    K-Reactor's number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine's original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators? Was excessive wear of the piston pin bushings a result of having exceeded the engine's capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts? Considering the engine's overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine's original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine's failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines' 12OOkw continuous rating

  9. Durability testing of medium speed diesel engine components designed for operating on coal/water slurry fuel

    Science.gov (United States)

    McDowell, R. E.; Giammarise, A. W.; Johnson, R. N.

    1994-01-01

    Over 200 operating cylinder hours were run on critical wearing engine parts. The main components tested included cylinder liners, piston rings, and fuel injector nozzles for coal/water slurry fueled operation. The liners had no visible indication of scoring nor major wear steps found on their tungsten carbide coating. While the tungsten carbide coating on the rings showed good wear resistance, some visual evidence suggests adhesive wear mode was present. Tungsten carbide coated rings running against tungsten carbide coated liners in GE 7FDL engines exhibit wear rates which suggest an approximate 500 to 750 hour life. Injector nozzle orifice materials evaluated were diamond compacts, chemical vapor deposited diamond tubes, and thermally stabilized diamond. Based upon a total of 500 cylinder hours of engine operation (including single-cylinder combustion tests), diamond compact was determined to be the preferred orifice material.

  10. In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan

    International Nuclear Information System (INIS)

    Weidner, J.R.; Stoots, P.R.

    1990-06-01

    In 1987, the Buried Waste Program (BWP) was established within EG ampersand G Idaho, Inc., the prime contractor at INEL. Following the Environmental Restoration guidelines of the Buried Waste Program, the In Situ Vitrification Program is participating in a Remedial Investigation/Feasibility Study (RI/FS) for permanent disposal of INEL waste, in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study was requested and is being funded by the Office of Technology Development of the Idaho Operations Office of DOE (DOE-ID). As part of the RI/FS, an in situ vitrification (ISV) scoping study on the treatability of mixed low-level and mixed transuranic-contaminated waste is being performed to determine the applicability of ISV to remediation of waste at SDA. In examination of the ISV process for applicability to SDA waste, this In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan identifies the following: sampling and analysis strategy; sampling procedures; methods to conduct analyses; equipment; and procedures to ensure data quality. 8 refs., 2 tabs

  11. A CAMAC and FASTBUS engineering test environment supported by a MicroVAX/MicroVMS system

    International Nuclear Information System (INIS)

    Logg, C.A.

    1987-10-01

    A flexible, multiuser engineering test environment has been established for the engineers in SLAC's Electronic Instrumentation Engineering group. The system hardware includes a standard MicroVAX II and MicroVAX I with multiple CAMAC, FASTBUS, and GPIB instrumentation buses. The system software components include MicroVMS licenses with DECNET/SLACNET, FORTRAN, PASCAL, FORTH, and a versatile graphical display package. In addition, there are several software utilities available to facilitate FASTBUS and CAMAC prototype hardware debugging. 16 refs., 7 figs

  12. Test results of the Chrysler upgraded automotive gas turbine engine: Initial design

    Science.gov (United States)

    Horvath, D.; Ribble, G. H., Jr.; Warren, E. L.; Wood, J. C.

    1981-01-01

    The upgraded engine as built to the original design was deficient in power and had excessive specific fuel consumption. A high instrumented version of the engine was tested to identify the sources of the engine problems. Analysis of the data shows the major problems to be low compressor and power turbine efficiency and excessive interstage duct losses. In addition, high HC and CO emission were measured at idle, and high NOx emissions at high energy speeds.

  13. Evaluation of civil engineering training in respect to disaster ...

    African Journals Online (AJOL)

    This paper focuses on the training aspect of civil engineers as one sector of professionals whose contribution is necessary in reducing disaster impact in society. The paper identifies areas, which need to be integrated in the current training of civil engineers to make them more effective in the use of engineering tools to ...

  14. 40 CFR 1048.401 - What testing requirements apply to my engines that have gone into service?

    Science.gov (United States)

    2010-07-01

    ... engines that have gone into service? 1048.401 Section 1048.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.401 What testing requirements apply to my engines that have...

  15. 40 CFR 1048.410 - How must I select, prepare, and test my in-use engines?

    Science.gov (United States)

    2010-07-01

    ... my in-use engines? 1048.410 Section 1048.410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.410 How must I select, prepare, and test my in-use engines? (a) You...

  16. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    Science.gov (United States)

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  17. 40 CFR 85.1506 - Inspection and testing of imported motor vehicles and engines.

    Science.gov (United States)

    2010-07-01

    ... motor vehicles and engines. 85.1506 Section 85.1506 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor Vehicles and Motor Vehicle Engines § 85.1506 Inspection and testing of imported motor vehicles and...

  18. Single-Cylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions

    Science.gov (United States)

    1978-08-01

    A single-cylinder, four-stroke cycle diesel engine was operated on unstabilized water-in-fuel emulsions. Two prototype devices were used to produce the emulsions on-line with the engine. More than 350 test points were run with baseline diesel fuel an...

  19. Automating the Human Factors Engineering and Evaluation Processes

    International Nuclear Information System (INIS)

    Mastromonico, C.

    2002-01-01

    The Westinghouse Savannah River Company (WSRC) has developed a software tool for automating the Human Factors Engineering (HFE) design review, analysis, and evaluation processes. The tool provides a consistent, cost effective, graded, user-friendly approach for evaluating process control system Human System Interface (HSI) specifications, designs, and existing implementations. The initial set of HFE design guidelines, used in the tool, was obtained from NUREG- 0700. Each guideline was analyzed and classified according to its significance (general concept vs. supporting detail), the HSI technology (computer based vs. non-computer based), and the HSI safety function (safety vs. non-safety). Approximately 10 percent of the guidelines were determined to be redundant or obsolete and were discarded. The remaining guidelines were arranged in a Microsoft Access relational database, and a Microsoft Visual Basic user interface was provided to facilitate the HFE design review. The tool also provides the capability to add new criteria to accommodate advances in HSI technology and incorporate lessons learned. Summary reports produced by the tool can be easily ported to Microsoft Word and other popular PC office applications. An IBM compatible PC with Microsoft Windows 95 or higher is required to run the application

  20. Sims Prototype System 2 test results: Engineering analysis

    Science.gov (United States)

    1978-01-01

    The testing, problems encountered, and the results and conclusions obtained from tests performed on the IBM Prototype System, 2, solar hot water system, at the Marshall Space Flight Center Solar Test Facility was described. System 2 is a liquid, non draining solar energy system for supplying domestic hot water to single residences. The system consists of collectors, storage tank, heat exchanger, pumps and associated plumbing and controls.

  1. The electromagnetic integrated demonstration at the Idaho National Engineering Laboratory cold test pit

    International Nuclear Information System (INIS)

    Pellerin, L.; Alumbaugh, D.L.; Pfeifer, M.C.

    1997-01-01

    The electromagnetic integrated demonstration (EMID) is a baseline study in electromagnetic (EM) exploration of the shallow subsurface (< 10 m). Eleven distinct EM systems, covering the geophysical spectrum, acquired data on a grid over the Idaho National Engineering Laboratory (INEL) Cold Test Pit (CTP). The systems are investigated and evaluated for the purpose of identifying and reviewing existing geophysical characterization instrumentation (commercial and experimental), integrating those technologies with multi-dimensional interpretational algorithms, and identifying gaps in shallow subsurface EM imaging technology. The EMID data, are valuable for testing and evaluating new interpretational software, and developing techniques for integrating multiple datasets. The experimental field techniques shows how the acquisition of data in a variety of array configurations can considerably enhance interpretation. All data are available on the world wide web. Educators and students are encouraged to use the data for both classroom and graduate studies. The purpose of this paper is to explain why, where, how and what kind of data were collected. It is left to the reader to assess the value of a given system for their particular application. Information about the EMID is organized into two general categories: survey description and system evaluation

  2. Objective and automated protocols for the evaluation of biomedical search engines using No Title Evaluation protocols.

    Science.gov (United States)

    Campagne, Fabien

    2008-02-29

    The evaluation of information retrieval techniques has traditionally relied on human judges to determine which documents are relevant to a query and which are not. This protocol is used in the Text Retrieval Evaluation Conference (TREC), organized annually for the past 15 years, to support the unbiased evaluation of novel information retrieval approaches. The TREC Genomics Track has recently been introduced to measure the performance of information retrieval for biomedical applications. We describe two protocols for evaluating biomedical information retrieval techniques without human relevance judgments. We call these protocols No Title Evaluation (NT Evaluation). The first protocol measures performance for focused searches, where only one relevant document exists for each query. The second protocol measures performance for queries expected to have potentially many relevant documents per query (high-recall searches). Both protocols take advantage of the clear separation of titles and abstracts found in Medline. We compare the performance obtained with these evaluation protocols to results obtained by reusing the relevance judgments produced in the 2004 and 2005 TREC Genomics Track and observe significant correlations between performance rankings generated by our approach and TREC. Spearman's correlation coefficients in the range of 0.79-0.92 are observed comparing bpref measured with NT Evaluation or with TREC evaluations. For comparison, coefficients in the range 0.86-0.94 can be observed when evaluating the same set of methods with data from two independent TREC Genomics Track evaluations. We discuss the advantages of NT Evaluation over the TRels and the data fusion evaluation protocols introduced recently. Our results suggest that the NT Evaluation protocols described here could be used to optimize some search engine parameters before human evaluation. Further research is needed to determine if NT Evaluation or variants of these protocols can fully substitute

  3. Alternative filtration testing program: Pre-evaluation of test results

    International Nuclear Information System (INIS)

    Georgeton, G.K.; Poirier, M.R.

    1990-01-01

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing

  4. Alternative filtration testing program: Pre-evaluation of test results

    Energy Technology Data Exchange (ETDEWEB)

    Georgeton, G.K.; Poirier, M.R.

    1990-09-28

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing.

  5. TOXICITY EVALUATION OF NEW ENGINEERED NANOMATERIALS IN ZEBRAFISH

    Directory of Open Access Journals (Sweden)

    Maria Violetta Brundo

    2016-04-01

    Full Text Available The effect of the nanoparticles on the marine organisms, depends on their size, chemical composition, surface structure, solubility and shape.In order to take advantage from their activity, preserving the surrounding environment from a possible pollution, we are trying to trap the nanoparticles into new nanomaterials. The nanomaterials tested were synthesized proposing a ground-breaking approach by an upside-down vision of the Au/TiO2nano-system to avoid the release of nanoparticles. The system was synthesized by wrapping Au nanoparticles with a thin layer of TiO2. The non-toxicity of the nano-system was established by testing the effect of the material on zebrafish larvae. Danio rerio o zebrafish was considered a excellent model for the environmental biomonitoring of aquatic environments and the Zebrafish Embryo Toxicity Test is considered an alternative method of animal test. For this reason zebrafish larvae were exposed to different concentrations of nanoparticles of TiO2 and Au and new nanomaterials. As biomarkers of exposure, we evaluated the expression of metallothioneins by immunohistochemistry analysis and western blotting analysis also. The results obtained by toxicity test showed that neither mortality as well as sublethal effects were induced by the different nanomaterials and nanoparticles tested. Only zebrafish larvae exposed to free Au nanoparticles showed a different response to anti-MT antibody. In fact, the immunolocalization analysis highlighted an increase of the metallothioneins synthesis.

  6. Test/QA plan for the verification testing of selective catalytic reduction control technologies for highway, nonroad use heavy-duty diesel engines

    Science.gov (United States)

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  7. 40 CFR 1048.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Science.gov (United States)

    2010-07-01

    ...-state duty cycles, including ramped-modal testing? 1048.505 Section 1048.505 Protection of Environment... SPARK-IGNITION ENGINES Test Procedures § 1048.505 How do I test engines using steady-state duty cycles... some cases, we allow you to choose the appropriate steady-state duty cycle for an engine. In these...

  8. Development of a test and flight engineering oriented language, phase 3

    Science.gov (United States)

    Kamsler, W. F.; Case, C. W.; Kinney, E. L.; Gyure, J.

    1970-01-01

    Based on an analysis of previously developed test oriented languages and a study of test language requirements, a high order language was designed to enable test and flight engineers to checkout and operate the proposed space shuttle and other NASA vehicles and experiments. The language is called ALOFT (a language oriented to flight engineering and testing). The language is described, its terminology is compared to similar terms in other test languages, and its features and utilization are discussed. The appendix provides the specifications for ALOFT.

  9. Integrated Locomotor Function Tests for Countermeasure Evaluation

    Science.gov (United States)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the

  10. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  11. Evaluation of field test equipment for halide and DOP testing

    International Nuclear Information System (INIS)

    Schreiber, K.L.; Kovach, J.L.

    1975-01-01

    The Nucon Testing Services Department, field testing at power reactor sites, has performed tests using R-11, R-12, and R-112 in conjunction with gas chromatographs and direct reading halide detectors. The field operational experience with these detector systems, thus sensitivity, precision, and manner of field calibration, are presented. Laboratory experiments regarding 3 H-tagged methyl iodide for in place leak testing of adsorber systems indicate a low hazard, high reliability process for leak testing in facilities where atmospheric cross contamination occurs. (U.S.)

  12. Management and Use of Director, Operational Test and Evaluation Funds

    National Research Council Canada - National Science Library

    2000-01-01

    ... and transferred a wide range of test and evaluation functions and resources, including the oversight of the test ranges and facilities, test investment, and sponsorship of many test related programs...

  13. Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    National Research Council Canada - National Science Library

    Proctor, Margaret

    2004-01-01

    .... To address engine manufacturers' concerns about the heat generation and power loss from these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature...

  14. Multicamera High Dynamic Range High-Speed Video of Rocket Engine Tests and Launches

    Data.gov (United States)

    National Aeronautics and Space Administration — High-speed video recording of rocket engine tests has several challenges. The scenes that are imaged have both bright and dark regions associated with plume emission...

  15. Air Force Research Laboratory's Rocket Engine Program Enters Fast-Paced Test Phase

    National Research Council Canada - National Science Library

    Thornburg, Jeff

    2002-01-01

    .... Recent tests of the Integrated Powerhead Demonstration project here established a technical first for the United States and mark the first advancements in boost engine technology since the space...

  16. 40 CFR 1068.415 - How do I test my engines/equipment?

    Science.gov (United States)

    2010-07-01

    ... POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Selective Enforcement Auditing § 1068... for the year, you may test a minimum of one per 24-hour period. If you request and justify it, we may...

  17. Aquatic toxicity testing for hazard identification of engineered nanoparticles

    DEFF Research Database (Denmark)

    Sørensen, Sara Nørgaard

    the traditionally applied, and determination of different exposure fractions such as the concentration of dissolved ions from ENPs and body burdens. Although these approaches are scientifically exploratory by nature, the aim is to generate data applicable for regulatory hazard identification of ENPs. The focus has......Within the last few decades, major advances in the field of nanotechnology have enabled production of engineered nanoparticles (ENPs) for various applications and consumer products already available on the market. ENPs may exhibit unique and novel properties compared to their bulk counterparts...... and the response axes. The actual exposure experienced by organisms may not be reflected by the ENPconcentration in medium, commonly applied as the exposure metric, and the responses of organisms may result from various toxic and non-toxic mechanisms occurring simultaneously. In this thesis, the challenges related...

  18. Results from tests of a Stirling engine and wood chips gasifier plant

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell; Werling, J.

    2002-01-01

    The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced....... Furthermore, the overall electric efficiency of the system can be improved. At the Technical University of Denmark a small CHP plant based on a Stirling engine and an updraft gasifier has been developed and tested successfully. The advantages of updraft gasifiers are the simplicity and that the amount...... of the Stirling engine reduces the problems with tar to a minor problem in the design of the burner. The Stirling engine, which has an electric power output of 35 kW, is specifically designed for utilisation of fuels with a content of particles. The gas burner for the engine is designed for low specific energy...

  19. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  20. 40 CFR 1045.310 - How must I select engines for production-line testing?

    Science.gov (United States)

    2010-07-01

    ... select and test one more engine. Then, calculate the required sample size for the model year as described.... It defines 95% confidence intervals for a one-tail distribution. σ = Test sample standard deviation (see paragraph (c)(2) of this section). x = Mean of emission test results of the sample. STD = Emission...

  1. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Competency Test Package.

    Science.gov (United States)

    Hamlin, Larry

    This document contains the competency test package for three sections of a general mechanical repair course: minor automotive maintenance, small engine mechanics, and welding. Following a list of the common essential elements for trade and industrial education, competency tests for the three sections are provided. Each test includes unit name,…

  2. FJ44 Turbofan Engine Test at NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory

    Science.gov (United States)

    Lauer, Joel T.; McAllister, Joseph; Loew, Raymond A.; Sutliff, Daniel L.; Harley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was tested in the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory. This report presents the test set-up and documents the test conditions. Farfield directivity, in-duct unsteady pressures, duct mode data, and phased-array data were taken and are reported separately.

  3. Using inertial measurement units originally developed for biomechanics for modal testing of civil engineering structures

    Science.gov (United States)

    Hester, David; Brownjohn, James; Bocian, Mateusz; Xu, Yan; Quattrone, Antonino

    2018-05-01

    This paper explores the use of wireless Inertial Measurement Units (IMU) originally developed for bio-mechanical research applications for modal testing of civil engineering infrastructure. Due to their biomechanics origin, these devices combine a triaxial accelerometer with gyroscopes and magnetometers for orientation, as well as on board data logging capability and wireless communication for optional data streaming and to coordinate synchronisation with other IMUs in a network. The motivation for application to civil structures is that their capabilities and simple operating procedures make them suitable for modal testing of many types of civil infrastructure of limited dimension including footbridges and floors while also enabling recovering of dynamic forces generated and applied to structures by moving humans. To explore their capabilities in civil applications, the IMUs are evaluated through modal tests on three different structures with increasing challenge of spatial and environmental complexity. These are, a full-scale floor mock-up in a laboratory, a short span road bridge and a seven story office tower. For each case, the results from the IMUs are compared with those from a conventional wired system to identify the limitations. The main conclusion is that the relatively high noise floor and limited communication range will not be a serious limitation in the great majority of typical civil modal test applications where convenient operation is a significant advantage over conventional wired systems.

  4. Bibliography of Testing and Evaluation Reference Material

    Science.gov (United States)

    1989-08-01

    G.W. Geber , and J.-M. Serre. "Semi-Automatic Implementation of Communica- tion Protocols." IEEE: Transactions on Software Engineering, 13/9 (Sep...GaudXX] Gault J.W.........................[(Scot84a], [Scot84b], EScot87J, (TrivSOJ Geber G.W

  5. The Effect of Rubric Rating Scale on the Evaluation of Engineering Design Projects

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Clemmensen, Line Katrine Harder; Ahn, Beung-uk

    2013-01-01

    This paper explores the impact of the rubric rating scale on the evaluation of projects from a first year engineering design course.Asmall experiment was conducted in which twenty-one experienced graders scored five technical posters using one of four rating scales. All rating scales tested...... produced excellent results in terms of inter-rater reliability and validity. However, there were significant differences in the performance of each of the scales. Based on the experiment’s results and past experience, we conclude that increasing the opportunities for raters to deduct points results...

  6. Engineering design of IFMIF/EVEDA lithium test loop. Electro-magnetic pump and pressure drop

    International Nuclear Information System (INIS)

    Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Wakai, Eiichi; Nakamura, Kazuyuki; Horiike, H.; Yamaoka, N.; Matsushita, I.

    2011-01-01

    The Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeding as one of the ITER Broader Approach (ITER-BA). A Li circulation loop for testing hydraulic stability of the Li target (high speed free-surface flow of liquid Li as a beam target) and Li purification traps are under construction in the Japan Atomic Energy Agency as a major Japanese activities in the EVEDA. This paper presents specification of an electro-magnetic pump (EMP) for the EVEDA Li Test Loop (ELTL) and evaluation of the pressure drop in the main loop of the ELTL. The EMP circulates the liquid Li at a large flow rate up to 0.05 m 3 /s (3000 l/min) under a vacuum cover gas (Ar) pressure of 10 -3 Pa, thus the evaluation of cavitation generation is a crucial issue. The EMP used in the ELTL consists of two EMPs aligned in series through a U-tube whose size of one EMP is 0.8 m square and 2.6 m in length. The calculation of the pressure drop in the main Li loop to the EMP is approx. 25 kPa at the design maximum flow rate of 0.05 m 3 /s. On the other hand the height from the EMP to a Li tank to supply Li to the EMP is designed to be 9.72 m, and secures a static pressure and the cavitation number of 18 kPa and 3.4 respectively at the maximum flow rate in a vacuum condition. As a result, it is confirmed to prevent cavitation at the inlet of the EMP in this design. (author)

  7. Design and Implementation of the Control System of an Internal Combustion Engine Test Unit

    Directory of Open Access Journals (Sweden)

    Tufan Koç

    2014-02-01

    Full Text Available Accurate tests and performance analysis of engines are required to minimize measurement errors and so the use of the advanced test equipment is imperative. In other words, the reliable test results depend on the measurement of many parameters and recording the experimental data accurately which is depended on engine test unit. This study aims to design the control system of an internal combustion engine test unit. In the study, the performance parameters of an available internal combustion engine have been transferred to computer in real time. A data acquisition (DAQ card has been used to transfer the experimental data to the computer. Also, a user interface has been developed for performing the necessary procedures by using LabVIEW. The dynamometer load, the fuel consumption, and the desired speed can easily be adjusted precisely by using DAQ card and the user interface during the engine test. Load, fuel consumption, and temperature values (the engine inlet-outlet, exhaust inlet-outlet, oil, and environment can be seen on the interface and also these values can be recorded to the computer. It is expected that developed system will contribute both to the education of students and to the researchers’ studies and so it will eliminate a major lack.

  8. Additional patient outcomes and pathways in evaluations of testing

    NARCIS (Netherlands)

    Bossuyt, Patrick M. M.; McCaffery, Kirsten

    2009-01-01

    Before medical tests are introduced into practice, they should be properly evaluated. Randomized trials and other comprehensive evaluations of tests and test strategies can best be designed based on an understanding of how tests can benefit or harm patients. Tests primarily affect patients' health

  9. The Role of Alternative Testing Strategies in Environmental Risk Assessment of Engineered Nanomaterials

    OpenAIRE

    Hjorth, Rune; Holden, Patricia; Hansen, Steffen Foss; Colman, Ben; Grieger, Khara; Hendren, Christine

    2017-01-01

    Within toxicology there is a pressure to find new test systems and organisms to replace, reduce and refine animal testing. In nanoecotoxicology the need for alternative testing strategies (ATS) is further emphasized as the validity of tests and risk assessment practices developed for dissolved chemicals are challenged. Nonetheless, standardized whole organism animal testing is still considered the gold standard for environmental risk assessment. Advancing risk analysis of engineered nanomater...

  10. Evaluation of the potential of the Stirling engine for heavy duty application

    Science.gov (United States)

    Meijer, R. J.; Ziph, B.

    1981-01-01

    A 150 hp four cylinder heavy duty Stirling engine was evaluated. The engine uses a variable stroke power control system, swashplate drive and ceramic insulation. The sensitivity of the design to engine size and heater temperature is investigated. Optimization shows that, with porous ceramics, indicated efficiencies as high as 52% can be achieved. It is shown that the gain in engine efficiency becomes insignificant when the heater temperature is raised above 200 degrees F.

  11. Test plan for In Situ Vitrification Engineering-Scale Test No. 6, EG ampersand G Idaho, Inc., Job Number 318230

    International Nuclear Information System (INIS)

    1991-03-01

    The objectives of the test included the effects of in situ vitrification on containerized sludge contained in a simulated randomly-disposed array. From this arrangement, the test results obtained the following data applicable to Idaho National Engineering Laboratory Large Field Testing: canister burst pressure and temperature, canister depressurization rate, melt encapsulation rate of the canister and the hood area plenum temperatures, pressures, compositional analyses, and flows as affected by gas releases. 10 figs., 1 tab

  12. A Decision Support Framework for Evaluation of Engineered ...

    Science.gov (United States)

    Engineered nanomaterials (ENM) are currently being developed and applied at rates that far exceed our ability to evaluate their potential for environmental or human health risks. The gap between material development and capacity for assessment grows wider every day. Transformative approaches are required that enhance our ability to forecast potential exposure and adverse health risks based on limited information such as the physical and chemical parameters of ENM, their proposed uses, and functional assays reflective of key ENM - environmental interactions. We are developing a framework that encompasses the potential for release of nanomaterials across a product life cycle, environmental transport, transformations and fate, exposure to sensitive species, including humans, and the potential for causing adverse effects. Each component of the framework is conceive of as a sequential segmented model depicting the movement, transformations and actions of ENM through environmental or biological compartments, and along which targeted functional assays can be developed that are indicative of projected rates of ENM movement or action. The eventual goal is to allow simple predictive models to be built that incorporate the data from key functional assays and thereby allow rapid screening of the projected margin of exposure for proposed applications of ENM enabled products. In this way, cases where a substantially safe margin of exposure is forecast can be reduced in

  13. Integrated Test and Evaluation (ITE) Flight Test Series 4

    Science.gov (United States)

    Marston, Michael

    2016-01-01

    The integrated Flight Test 4 (FT4) will gather data for the UAS researchers Sense and Avoid systems (referred to as Detect and Avoid in the RTCA SC 228 ToR) algorithms and pilot displays for candidate UAS systems in a relevant environment. The technical goals of FT4 are to: 1) perform end-to-end traffic encounter test of pilot guidance generated by DAA algorithms; 2) collect data to inform the initial Minimum Operational Performance Standards (MOPS) for Detect and Avoid systems. FT4 objectives and test infrastructure builds from previous UAS project simulations and flight tests. NASA Ames (ARC), NASA Armstrong (AFRC), and NASA Langley (LaRC) Research Centers will share responsibility for conducting the tests, each providing a test lab and critical functionality. UAS-NAS project support and participation on the 2014 flight test of ACAS Xu and DAA Self Separation (SS) significantly contributed to building up infrastructure and procedures for FT3 as well. The DAA Scripted flight test (FT4) will be conducted out of NASA Armstrong over an eight-week period beginning in April 2016.

  14. A retrospective evaluation of proficiency testing, and rapid HIV test ...

    African Journals Online (AJOL)

    Background: Proficiency testing (PT) has been implemented as a form of External Quality Assurance (EQA) by the National HIV Reference Laboratory in Kenya since 2007 in order to monitor and improve on the quality of HIV testing and counselling HTC services. Objective: To compare concordance between National HIV ...

  15. Summary of Altitude Pulse Testing of a 100-lbf L02/LCH4 Reaction Control Engine

    Science.gov (United States)

    Marshall, William M.; Kleinhenz, Julie E.

    2011-01-01

    Recently, liquid oxygen-liquid methane (LO2/LCH4) has been considered as a potential "green" propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project has been tasked by NASA to develop this propulsion combination to enable safe and cost effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating the viability of implementing such a system. The NASA Glenn Research Center has conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes a unique propellant conditioning feed system (PCFS) which allows precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed mode operation portion of testing, with a focus on minimum impulse bit (I-bit) and repeatable pulse performance. The engine successfully demonstrated target minimum impulse bit performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon which was not noted in previous test programs for this engine.

  16. Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.

  17. Thermionic system evaluation test (TSET) facility construction: A United States and Russian effort

    International Nuclear Information System (INIS)

    Wold, S.K.

    1993-01-01

    The Thermionic System Evaluation Test (TSET) is a ground test of an unfueled Russian TOPAZ-II in-core thermionic space reactor powered by electric heaters. The facility that will be used for testing of the TOPAZ-II systems is located at the New Mexico Engineering Research Institute (NMERI) complex in Albuquerque, NM. The reassembly of the Russian test equipment is the responsibility of International Scientific Products (ISP), a San Jose, CA, company and Inertek, a Russian corporation, with support provided by engineers and technicians from Phillips Laboratory (PL), Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the University of New Mexico (UNM). This test is the first test to be performed under the New Mexico Strategic Alliance agreement. This alliance consists of the PL, SNL, LANL, and UNM. The testing is being funded by the Strategic Defense Initiative Organization (SDIO) with the PL responsible for project execution

  18. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    Science.gov (United States)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  19. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules. Final Report

    International Nuclear Information System (INIS)

    1981-09-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions

  20. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    Science.gov (United States)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control

  1. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    Science.gov (United States)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  2. Transient and Steady-state Tests of the Space Power Research Engine with Resistive and Motor Loads

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  3. Transient and steady-state tests of the space power research engine with resistive and motor loads

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  4. SIMS prototype System 3 test results: engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    The results obtained during testing of a closed hydronic drain down solar system designed for space and hot water heating are presented. Data analysis is included which documents the system performance and verifies the suitability of SIMS Prototype System 3 for field installation.

  5. SIMS prototype system 3 test results: Engineering analysis

    Science.gov (United States)

    1978-01-01

    The results obtained during testing of a closed hydronic drain down solar system designed for space and hot water heating is presented. Data analysis is included which documents the system performance and verifies the suitability of SIMS Prototype System 3 for field installation.

  6. Development of prototype virtual testing system for ultrasonic examination engineers

    International Nuclear Information System (INIS)

    Shohji, Hajime; Hide, Koichiro

    2015-01-01

    The reliability of inspection results is affected by the skill of examination personnel, particularly with regard to manual ultrasonic testing (UT). The number and design of test specimens are among the most important points to be considered during training or assessing the qualification of UT examination personnel. For training, a simulated UT training system using a computer mouse or touch sensor was proposed. However, this system proved to be inadequate as a replacement with for actual UT work. In this study, we have developed a novel virtual UT system that simulates actual UT work for piping welds. This system (Tool for Realistic UltraSound Testing) consists of a dummy UT probe, dummy piping, a computer system, and a 3D position detection system. It can detect the state of the dummy probe (3D position, skewing angle), and displays recorded A-scan data corresponding to the dummy probe status with random noise. Furthermore, it does not display A-scan data if the dummy probe is not in contact with the pipe. Thus, in this way, the system simulates actual UT work. Using this system, it is possible to significantly reduce the number of test specimens being utilized for training or assessing the qualification of UT examination personnel. Additionally, highly efficient training and certification will be achieved through this system. (author)

  7. NATO Guidelines on Human Engineering Testing and Evaluation

    National Research Council Canada - National Science Library

    Geddie, J

    2001-01-01

    The purpose of this report is to document the efforts of RSC-24, which was initiated by DRG Panel 8 in 1992, and was sponsored after the merger of DRG and AGARD by the Human Factors and Medicine (HFM...

  8. SMC Standard: Evaluation and Test Requirements for Liquid Rocket Engines

    Science.gov (United States)

    2017-07-26

    manufacturing of qualification or flight hardware. Activities during this phase will provide confidence that the new design and concepts will...failure (S-N) design curve to determine the fatigue life. Flight Design : Final production design intended for the “as‐flown” hardware. Flight...Prototype: First example build of a preliminary design under consideration for production . Intended to be as representative of the definitive article

  9. Performance Evaluation of 14 Neural Network Architectures Used for Predicting Heat Transfer Characteristics of Engine Oils

    Science.gov (United States)

    Al-Ajmi, R. M.; Abou-Ziyan, H. Z.; Mahmoud, M. A.

    2012-01-01

    This paper reports the results of a comprehensive study that aimed at identifying best neural network architecture and parameters to predict subcooled boiling characteristics of engine oils. A total of 57 different neural networks (NNs) that were derived from 14 different NN architectures were evaluated for four different prediction cases. The NNs were trained on experimental datasets performed on five engine oils of different chemical compositions. The performance of each NN was evaluated using a rigorous statistical analysis as well as careful examination of smoothness of predicted boiling curves. One NN, out of the 57 evaluated, correctly predicted the boiling curves for all cases considered either for individual oils or for all oils taken together. It was found that the pattern selection and weight update techniques strongly affect the performance of the NNs. It was also revealed that the use of descriptive statistical analysis such as R2, mean error, standard deviation, and T and slope tests, is a necessary but not sufficient condition for evaluating NN performance. The performance criteria should also include inspection of the smoothness of the predicted curves either visually or by plotting the slopes of these curves.

  10. Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications

    Science.gov (United States)

    Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming

    2013-01-01

    The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).

  11. National Test and Evaluation Conference (26th)

    Science.gov (United States)

    2010-03-04

    Operations Division, Office of the Chief of Naval Operations (OPNAV N41) Luncheon Speaker · BrigGen Mike Dana , USMC, Director of Logistics...Speaker u BrigGen Mike Dana , USMC, Director of Logistics & Engineering, J4, NORAD and USNORTHCOM u Col Alex Vohr, USMC, Director of Logistics, J4...are the Core Elements of a Curriculum on Contemporary Strategy, and What are the Best Methods of Teaching Them? Dr Richard Betts, Arnold A. Saltzman

  12. Implementing Systems Engineering in the Civil Engineering Consulting Firm: An Evaluation

    NARCIS (Netherlands)

    de Graaf, Robin S.; Voordijk, Johannes T.; van den Heuvel, Len

    2016-01-01

    This study explores the challenges that civil engineering consulting firms face in their projects when they apply Systems Engineering (SE). It is also explained were these firms should focus when improving the use of SE. To conduct this study, the methodology of Eisenhardt (Building theories from

  13. Engineering spinal fusion: evaluating ceramic materials for cell based tissue engineered approaches

    NARCIS (Netherlands)

    Wilson, C.E.

    2011-01-01

    The principal aim of this thesis was to advance the development of tissue engineered posterolateral spinal fusion by investigating the potential of calcium phosphate ceramic materials to support cell based tissue engineered bone formation. This was accomplished by developing several novel model

  14. Engineered Barrier System - Manufacturing, Testing and Quality Assurance. Report from a Workshop

    International Nuclear Information System (INIS)

    2004-06-01

    As part of preparations for review of future license applications, the Swedish Nuclear Power Inspectorate (SKI) organised a workshop on the engineered barrier system for the KBS-3 concept, with the focus on manufacturing, testing and quality assurance. The main purpose of the workshop was to identify critical issues in the demonstration of how long-term safety requirements could be fulfilled for the engineered barriers. The workshop included presentations related to engineered barrier manufacturing and testing held by external experts, and working group sessions to prepare questions to the Swedish Nuclear Fuel and Waste Management Co. (SKB). SKB presentations were followed by an informal questioning and discussion with SKB representatives. This report includes a presentation of the questions posed by the working groups, SKB's replies to these questions as well as a summary of the working group discussions. The conclusions and viewpoints presented in this report are those of one or several workshop participants. During the workshop many issues regarding manufacturing, testing and quality assurance of the engineered barriers were discussed. The central themes in the questions and discussions are summarised as follows: There is a need to specify how the functional requirements for the buffer and backfill will be achieved in practise. Issues of particular interest are material selection, compaction density, initial water content and manufacturing methods for bentonite blocks. A major problem that must be addressed is the long period required to obtain relevant results from large-scale testing. The uncertainties relating to the wetting and subsequent swelling processes of the bentonite buffer have implications for analysis of the canister. It is necessary to know now non-uniform the bentonite swelling pressure could be in a worst case pressure differential, in order to evaluate the sufficiency of 'as tested' canister performance. Regarding the copper shell of the

  15. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing

    DEFF Research Database (Denmark)

    Baun, Anders; Hartmann, Nanna Isabella Bloch; Grieger, Khara Deanne

    2008-01-01

    Based on a literature review and an overview of toxic effects of engineered nanoparticles in aquatic invertebrates, this paper proposes a number of recommendations for the developing field of nanoecotoxicology by highlighting the importance of invertebrates as sensitive and relevant test organisms...... through standardized short-term (lethality) tests with invertebrates as a basis for investigating behaviour and bioavailability of engineered nanoparticles in the aquatic environment. Based on this literature review, we further recommend that research is directed towards invertebrate tests employing long....... Results show that there is a pronounced lack of data in this field (less than 20 peer-reviewed papers are published so far), and the most frequently tested engineered nanoparticles in invertebrate tests are C-60, carbon nanotubes, and titanium dioxide. In addition, the majority of the studies have used...

  16. Development And Testing Of Biogas-Petrol Blend As An Alternative Fuel For Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Awogbemi

    2015-08-01

    Full Text Available Abstract This research is on the development and testing of a biogas-petrol blend to run a spark ignition engine. A2080 ratio biogaspetrol blend was developed as an alternative fuel for spark ignition engine test bed. Petrol and biogas-petrol blend were comparatively tested on the test bed to determine the effectiveness of the fuels. The results of the tests showed that biogas petrol blend generated higher torque brake power indicated power brake thermal efficiency and brake mean effective pressure but lower fuel consumption and exhaust temperature than petrol. The research concluded that a spark ignition engine powered by biogas-petrol blend was found to be economical consumed less fuel and contributes to sanitation and production of fertilizer.

  17. Development and Hotfire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    Science.gov (United States)

    Gradl, Paul R.; Greene, Sandy; Protz, Chris

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA’s Marshall Space Flight Center (MSFC) has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. MSFC’s efforts include a 4,000 pounds-force thrust liquid oxygen/methane (LOX/CH4) combustion chamber. Small thrust chambers for 1,200 pounds-force LOX/hydrogen (H2) applications have also been designed and fabricated with SLM GRCop-84. Similar chambers have also completed development with an Inconel 625 jacket bonded to the GRCop-84 material, evaluating direct metal deposition (DMD) laser- and arc-based techniques. The same technologies for these lower thrust applications are being applied to 25,000-35,000 pounds-force main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  18. Engineering scale tests of an FFTF fission gas delay bed

    International Nuclear Information System (INIS)

    Kabele, T.J.; Bohringer, A.P.

    1975-01-01

    The dynamic adsorption coefficient of 85 Kr on activated charcoal from a nitrogen carrier gas was measured at -80 and -120 0 C at pressures of zero and 30 psig. The effects of the presence of impurities in the nitrogen carrier gas (1 percent oxygen, and 100 vppm carbon dioxide) on the adsorption coefficient of 85 Kr were also measured. The 85 Kr adsorption coefficient increased with decreasing temperature, and increased with increasing pressure. The presence of oxygen and carbon dioxide impurities in the nitrogen carrier gas had no discernible effect upon the adsorption coefficient. The adsorption coefficient for 85 Kr from nitrogen gas was lower than for adsorption of 85 Kr from an argon gas stream. The work concluded a test program which provided design data for the fission gas delay beds which will be installed in the Fast Flux Test Facility (FFTF). (U.S.)

  19. Modal Testing of the NPSAT1 Engineering Development Unit

    Science.gov (United States)

    2012-07-01

    erkläre ich, dass die vorliegende Master Arbeit von mir selbstständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt...logarithmic scale . As 5 Figure 2 shows, natural frequencies are indicated by large values of the first CMIF (peaks), and multiple modes can be detected by...structure’s behavior. Ewins even states, “that no large- scale modal test should be permitted to proceed until some preliminary SDOF analyses have

  20. HEAT ENGINEERING TESTING OF AIR COOLING UNIT OF HORIZONTAL TYPE

    OpenAIRE

    Rohachov, Valerii Andriiovych; Semeniako, Oleksandr Volodymyrovych; Лазоренко, Р. О.; Середа, Р. М.; Parafeinyk, Volodymyr Petrovych

    2018-01-01

    The results of the thermal tests of the section of air cooler, the heat-exchange surface of which is made up of chess package of bimetal finned tubes are presented. The methods of research are presented, the experimental stand is described, the measurement errors are given. The efficiency of the experimental stand and the accuracy of the experimental data on it are confirmed. Proposed to use the stand for researches of air cooling units with other types and sections of finned tubes.

  1. Thermal Development Test of the NEXT PM1 Ion Engine

    Science.gov (United States)

    Anderson, John R.; Snyder, John S.; VanNoord, Jonathan L.; Soulas, George C.

    2010-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is a next-generation high-power ion propulsion system under development by NASA as a part of the In-Space Propulsion Technology Program. NEXT is designed for use on robotic exploration missions of the solar system using solar electric power. Potential mission destinations that could benefit from a NEXT Solar Electric Propulsion (SEP) system include inner planets, small bodies, and outer planets and their moons. This range of robotic exploration missions generally calls for ion propulsion systems with deep throttling capability and system input power ranging from 0.6 to 25 kW, as referenced to solar array output at 1 Astronomical Unit (AU). Thermal development testing of the NEXT prototype model 1 (PM1) was conducted at JPL to assist in developing and validating a thruster thermal model and assessing the thermal design margins. NEXT PM1 performance prior to, during and subsequent to thermal testing are presented. Test results are compared to the predicted hot and cold environments expected missions and the functionality of the thruster for these missions is discussed.

  2. The passive hamstring stretch test: clinical evaluation.

    Science.gov (United States)

    Fisk, J W

    1979-03-28

    The passive hamstring stretch test is described. Using a modified goniometer it is shown that independent measurements taken by trained examiners approximate very closely to each other. This establishes the test as a valid objective measurement. The possible value of this test as a research tool in low back pain problems is discussed.

  3. Evaluation of the performance of a dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshiharu [The Japan Gas Association, Tokyo (Japan). NGV Project Dept.; Daisho, Yasuhiro; Saito, Takeshi [Waseda Univ., Tokyo (Japan)

    1998-12-31

    Dual fuel operation, in which natural gas is mixed with the diesel engine intake air and ignition is by diesel fuel spray, has the advantage that engine conversion is simple. Under high load it has the same high efficiency as a diesel engine and it can be switched to normal diesel operation for long distance running. Also, NO{sub x} and black smoke emissions can also be reduced. However, the disadvantages are to increase HC and CO emissions, to reduce efficiency under low load, and to emit the large amount of NO{sub x} under high load. Waseda University was commissioned by Tokyo Gas Co., Ltd. to conduct research program involving experimentation ragarding a dual fuel engine. It was then discovered that the most effective means of solving the problems mentioned above is Exhaust Gas Recirculation (EGR) and that the effect can be increased by heating the intake air. An old engine before the current emission standard was converted to dual fuel operation. It was found that these measures enables NO{sub x}, black smoke and CO{sub 2} to be reduced while high thermal efficiency was maintained. They did not reach the point of satisfying latest Japanese emission standard. But it seemed that good results would have been obtained, if a base engine with good emissions had been converted for dual fuel operation. The results of assessing the performance of the dual fuel engine at this time are reported here, centered on the effect of EGR and intake heating. (orig.)

  4. Technical Evaluation of Oak Ridge Filter Test Facility

    CERN Document Server

    Kriskovich, J R

    2002-01-01

    Two evaluations of the Oak Ridge Department of Energy (DOE) Filter Test Facility (FTF) were performed on December 11 and 12, 2001, and consisted of a quality assurance and a technical evaluation. This report documents results of the technical evaluation.

  5. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  6. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  7. Evaluation of complementary technologies to reduce bio engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Blowes, J.H.

    2003-09-01

    This report summaries the results of a study examining the technical and economic feasibility of exhaust gas treatment technologies for reducing emissions from diesel engines burning pyrolysis oil to within internationally recognised limits. Details are given of the burning of pyrolysis oils in reciprocating engines, the reviewing of information on pyrolysis oils and engines, and the aim to produce detailed information for securing investment for a British funded diesel project. The burning of the pyrolysis oils in an oxygen-rich atmosphere to allow efficient combustion with acceptable exhaust emission limits is discussed along with the problems caused by the deterioration of the injection system.

  8. Evaluation of synthetic zeolite as engineering passive permeable reactive barrier

    International Nuclear Information System (INIS)

    Ibrahim, O.A.A.

    2011-01-01

    The presence of toxic pollutants in groundwater brings about significant changes in the properties of water resources and has to be avoided in order to preserve the environmental quality. Heavy metals are among the most dangerous inorganic water pollutants, that related to many anthropogenic sources and their compounds are extremely toxic. The treatment of contaminated groundwater is among the most difficult and expensive environmental problems. Over the past years, permeable reactive barriers have provided an increasingly important role in the passive insitu treatment of contaminated groundwater. There are a large number of materials that are able to immobilize contaminants by sorption, including granulated active carbon, zeolite, montmorillonite, peat, compost, sawdust, etc. Zeolite X is a synthetic counterpart of the naturally occurring mineral Faujasite. It has one of the largest cavities and cavity entrances of any known zeolites. The main aim of this work is to examine the possibility of using synthetic zeolite X as an engineering permeable reactive barrier to remove heavy metals from a contaminated groundwater. Within this context, the following investigations were carried out: 1. Review on the materials most commonly used as engineered permeable reactive barriers to identify the important features to be considered in the examination of the proposed permeable reactive barrier material (zeolite X). 2. Synthesis of zeolite X and characterization of the synthesized material using different techniques. 3. Batch tests were carried out to characterize the equilibrium and kinetic sorption properties of the synthesized zeolite X towards the concerned heavy metals; zinc and cadmium ions. 4. Column tests were also performed to determine the design factors for permeable reactive barrier against zinc and cadmium ions solutions.Breakthrough curves measured in such experiments used to determine the hydrodynamic dispersion coefficients for both metal ions. 5. Analytical

  9. Engineered covers for mud pit closures Central Nevada Test Area, Nevada

    International Nuclear Information System (INIS)

    Madsen, D.D.

    2000-01-01

    Two abandoned drilling mud pits impacted with petroleum hydrocarbons were determined to require closure action at the Central Nevada Test Area. The UC-4 Mud Pit C is approximately 0.12 hectares (0.3 acres) and 1.2 meters (4 feet) in depth. The UC-1 Central Mud Pit (CMP) is approximately 1.54 hectares (3.8 acres) and 2.4 meters (8 feet) in depth. Both mud pits contain bentonite drilling muds with a thin dry crust, low shear strength, low permeability, and high moisture content. The following closure methodologies were evaluated: stabilization by mixing/injection with soil, fly ash, and lime; excavation and disposal; on-site drying; thermal destruction; wick drains; administrative closure (postings and land-use restrictions); and engineered covers. Based upon regulatory closure criteria, implementation, and cost considerations, the selected remedial alternative was the construction of an engineered cover. A multilayered cover with a geo-grid and geo-synthetic clay liner (GCL) was designed and constructed over the UC-4 Mud Pit C to evaluate the constructability and applicability of the design for the CMP cover. The geo-grid provided structural strength for equipment and material loads during cover construction, and the GCL was used as a moisture infiltration barrier. The design was determined to be constructable and applicable. To reduce project costs for the CMP cover, a vegetative cover was designed with drainage toward the center of the cover rather than the perimeter. The vegetative cover with the internal drainage design resulted in a fill volume reduction of approximately 63 percent compared to the multilayered cover design with a GCL

  10. Engineering test of stripping performance by multi-centrifugal contactors system for spent nuclear reprocessing

    International Nuclear Information System (INIS)

    Masayuki Takeuchi; Tadahiro Washiya; Hiroki Nakabayashi; Takashi Suganuma; Shinnichi Aose

    2005-01-01

    Japan Nuclear Cycle Development Institute (JNC) has been developing centrifugal contactors which are compact and high performance for solvent extraction process in industrial reprocessing plant. The stripping performance including equilibrium time for distribution and hydraulic behavior of the multi-centrifugal contactors were mainly evaluated by using uranium nitrite solution on engineering scale (10 kgHM/hr). In particular, the effects of feed temperature of stripping solution and O/A on the stripping performance were focused in this test. As results, no hydraulic problem such as overflow and entrainment were observed in multi-centrifugal contactors system through all conditions, and the uranium and acid concentrations showed desirable profiles which were nearly consistent with calculated one by MIXSET-X code. As to stripping performance, uranium leak concentration in solvent reached to less than 0.01 g/L, which is target of the stripping performance on this centrifugal contactors system, within nine stages on all conditions. It was also found that the effect of feed temperature of stripping solution (35 degree C → 60 degree C) or O/A (1.0→0.8) on stripping performance corresponds to distribution capacity of two contactors, respectively. The stage efficiency for a contactor was estimated as 97-98% on stripping stage. There were no uranium leaks (less than 40μg/L) in spent solvent discharged from the final stage. The profiles of uranium concentration in multi-contactors become stable within 10 minutes after the stripping test starting. In this way, it was demonstrated that the centrifugal contactors system has good stripping performance on engineering scale. (authors)

  11. Numerical analysis of hydrogen and methane propagation during testing of combustion engines

    Directory of Open Access Journals (Sweden)

    Dvořák V.

    2007-10-01

    Full Text Available The research of gas-fuelled combustion engines using hydrogen or methane require accordingly equipped test benches which take respect to the higher dangerous of self ignition accidents. This article deals with numerical calculations of flow in laboratory during simulated leakage of gas-fuel from fuel system of tested engine. The influences of local suction and influences of roof exhausters on the flow in the laboratory and on the gas propagation are discussed. Results obtained for hydrogen and for methane are compared. Conclusions for design and performance of suction devices and test benches are deduced from these results.

  12. Evaluation of the performance of Moses statistical engine adapted to ...

    African Journals Online (AJOL)

    ... of Moses statistical engine adapted to English-Arabic language combination. ... of Artificial Intelligence (AI) dedicated to Natural Language Processing (NLP). ... and focuses on SMT, then introducing the features of the open source Moses ...

  13. Final report : evaluation of microcomputer applications in transportation engineering.

    Science.gov (United States)

    1984-01-01

    This study investigated areas where microcomputers can aid in the effectiveness of transportation engineering at state and local levels. A survey of the microcomputer needs of transportation professionals in state and local agencies in Virginia was c...

  14. Evaluating Air Force Civil Engineer's Current Automated Information Systems

    National Research Council Canada - National Science Library

    Phillips, Edward

    2002-01-01

    ...) to the Automated Civil Engineer System (ACES). This research focused on users perceptions of both database and data importance to determine if significant differences existed between various user sub-groups...

  15. Scope and status of the USA Engineering Test Facility including relevant TFTR research and development

    International Nuclear Information System (INIS)

    Becraft, W.R.; Reardon, P.J.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The progress toward the design and construction of the ETF will reflect the significant achievements of past, present, and future experimental tokamak devices. Some of the features of this foundation of experimental results and relevant engineering designs and operation will derive from the Tokamak Fusion Test Reactor (TFTR) Project, now nearing the completion of its construction phase. The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy (OFE) established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF and discusses some highlights of the TFTR R and D work

  16. Scope and status of the USA Engineering Test Facility including relevant TFTR research and development

    International Nuclear Information System (INIS)

    Becraft, W.R.; Reardon, P.J.

    1981-01-01

    The vehicle by which the fusion programme would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The progress toward the design and construction of the ETF will reflect the significant achievements of past, present, and future experimental tokamak devices. Some of the features of this foundation of experimental results and relevant engineering designs and operation will derive from the Tokamak Fusion Test Reactor (TFTR) Project, now nearing the completion of its construction phase. The ETF would provide a test-bed for reactor components in the fusion environment. To initiate preliminary planning for the ETF decision, the Office of Fusion Energy (OFE) established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF and discusses some highlights of the TFTR R and D work. (author)

  17. First-wall, blanket, and shield engineering test program for magnetically confined fusion power reactors

    International Nuclear Information System (INIS)

    Maroni, V.A.

    1980-01-01

    The key engineering areas identified for early study relate to FW/B/S system thermal-hydraulics, thermomechnics, nucleonics, electromagnetics, assembly, maintenance, and repair. Programmatic guidance derived frm planning exercises involving over thirty organizations (laboratories, industries, and universities) has indicated (1) that meaningful near term engineering testing should be feasible within the bounds of a modest funding base, (2) that there are existing facilities and expertise which can be profitably utilized in this testing, and (3) that near term efforts should focus on the measurement of engineering data and the verification/calibration of predictive methods for anticipated normal operational and transient FW/B/S conditions. The remainder of this paper discusses in more detail the planning strategies, proposed approach to near term testing, and longer range needs for integrated FW/B/S test facilities

  18. Overview of the main challenges for the engineering design of the test facilities system of IFMIF

    International Nuclear Information System (INIS)

    Molla, J.; Nakamura, K.

    2009-01-01

    High intense radiation fields were demanded to IFMIF to address the lack of information on effects in materials due to radiation fields with fusion reactor features. Such intense radiation fields will also produce a number of unwanted effects in exposed materials and components. The main difficulties to achieve a reliable engineering design of the Test Facilities System during the Engineering Validation and the Engineering Design phase of IFMIF now under development are reviewed in this paper. The most challenging activities will be the design of the high flux test module, the creep fatigue test module, the test cell and the remote handling system. The intense radiation fields in the irradiation area and the high availability required for IFMIF (70%) are the main reasons for these difficulties.

  19. Niland Test Facility Startup Evaluation Task Force

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The following team reports are included: systems, operation, control, and safety; instrumentation; brine chemistry and materials evaluation; reservoir assessment; environment; and contingency analysis. (MHR)

  20. Buffer mass test - Rock drilling and civil engineering

    International Nuclear Information System (INIS)

    Pusch, R.

    1982-09-01

    The buffer mass test (BMT) is being run in the former 'ventilation drift' in which a number of rock investigations were previously conducted. A number of vertical pilot holes were drilled from the tunnel floor to get information of the water inflow in possible heater hole position. The final decision of the location of the heater holes was then made, the main principle being that much water should be available in each hole with the possible exception of one of the holes. Thereafter, the diameter 0.76 m heater holes were drilled to a depth of 3-3.3 m. Additional holes were then drilled for rock anchoring of the lids of the four outer heater holes, for the rock mechanical investigation, as well as for a number of water pressure gauges. The inner, about 12 m long part of the tunnel, was separated from the outer by bulwark. The purpose of this construction was to confine a backfill, the requirements of the bulwark being to withstand the swelling pressure as well as the water pressure. Outside the bulwark an approximately 1.5-1.7 m thick concrete slab was cast on the tunnel floor, extending about 24.7 m from the bulwark. Boxing-outs with the same height as the slab and with the horizontal dimensions 1.8 x 1.8 m, were made and rock-anchored concrete lids were cast on top of them after backfilling. The slab which thus represents 'rock', also forms a basal support of the bulwark. The lids permits access to the backfill as well as to the underlying, highly compacted bentonite for rapid direct determination of the water distributin at the intended successive test stops. The construction of the slab and lids will be described in this report. (Author)

  1. An engineering evaluation of the Space Shuttle OMS engine after 5 orbital flights

    Science.gov (United States)

    David, D.

    1983-01-01

    Design features, performances on the first five flights, and condition of the Shuttle OMS engines are summarized. The engines were designed to provide a vacuum-fed 6000 lb of thrust and a 310 sec specific impulse, fueled by a combination of N2O4 and monomethylhydrazine (MMH) at a mixture ratio of 1.65. The design lifetime is 1000 starts and 15 hr of cumulative firing duration. The engine assembly is throat gimballed and features yaw actuators. No degradation of the hot components was observed during the first five flights, and the injector pattern maintained a uniform, enduring level of performance. An increase in the take-off loads have led to enhancing the wall thickness in the nozzle in affected areas. The engine is concluded to be performing to design specifications and is considered an operational system.

  2. Relevance Evaluation of a Master's Degree in Engineering in Peru

    OpenAIRE

    Miñán Ubillús, Erick Alexander; Díaz Puente, José

    2012-01-01

    A good engineering education has a direct impact on competitiveness and the development of a country. In the context of the increase and diversification of higher education, it is necessary to ensure not only the quality, but also the relevance of master?s programs in engineering; that is, to say the appropriateness of objectives and results to the needs and interests (national and regional) of program beneficiaries. After a literature review and interviews with experts, one should propose a ...

  3. The development and testing of pulsed detonation engine ground demonstrators

    Science.gov (United States)

    Panicker, Philip Koshy

    2008-10-01

    The successful implementation of a PDE running on fuel and air mixtures will require fast-acting fuel-air injection and mixing techniques, detonation initiation techniques such as DDT enhancing devices or a pre-detonator, an effective ignition system that can sustain repeated firing at high rates and a fast and capable, closed-loop control system. The control system requires high-speed transducers for real-time monitoring of the PDE and the detection of the detonation wave speed. It is widely accepted that the detonation properties predicted by C-J detonation relations are fairly accurate in comparison to experimental values. The post-detonation flow properties can also be expressed as a function of wave speed or Mach number. Therefore, the PDE control system can use C-J relations to predict the post-detonation flow properties based on measured initial conditions and compare the values with those obtained from using the wave speed. The controller can then vary the initial conditions within the combustor for the subsequent cycle, by modulating the frequency and duty cycle of the valves, to obtain optimum air and fuel flow rates, as well as modulate the energy and timing of the ignition to achieve the required detonation properties. Five different PDE ground demonstrators were designed, built and tested to study a number of the required sub-systems. This work presents a review of all the systems that were tested, along with suggestions for their improvement. The PDE setups, ranged from a compact PDE with a 19 mm (3/4 in.) i.d., to two 25 mm (1 in.) i.d. setups, to a 101 mm (4 in.) i.d. dual-stage PDE setup with a pre-detonator. Propane-oxygen mixtures were used in the smaller PDEs. In the dual-stage PDE, propane-oxygen was used in the pre-detonator, while propane-air mixtures were used in the main combustor. Both rotary valves and solenoid valve injectors were studied. The rotary valves setups were tested at 10 Hz, while the solenoid valves were tested at up to 30 Hz

  4. Test and evaluation of pressure vessel materials

    International Nuclear Information System (INIS)

    Choi, Sun Pil; Hong, Jun Hwa; Nho, Kye Hoe; Han, Dae June; Chi, Se Hwan

    1985-01-01

    We have prepared a method for analyzing the Charpy impact test data, which is deduced from ''the standard anelastic solid equation''. The theoretical expression for the absorbed energy is in a form of W=Wsub(U)+(Wsub(R)-Wsub(U))/ [1+(ωtau) 2 ] showing the Debye characteristics and where tau is given by the Arrhenius equation; tau=tau 0 exp(ΔH/ksub(B)T). Four measurable parameters, at the present stage, can characterize the dynamic hehavior of cracking (Charpy impact result). They are the upper shelf energy(Wsub(R), the lower shelf energy (Wsub(U)), the activation energy of crack (ΔH, and wtau(0) where w tau(0) are the resonance frequency of the specimen and the jumping pre-exponential factor of propagating crack respectively. However the states of R (relaxed) and U (un-relaxed) should be defined from reasonable physical conditions in the future and it is possible that Wsub(U) is small enough to be taken as zero. The effects of irradiation, alloying elements, and heat treatment on the impact results should be interpreted as changes in the above characteristic parameters. The present method has been applied for weld metal of SA 508-2 irradiated up to a fluence of 4x10 18 n/cm 2 , E>1.0Mev, resulting in about 29% decrease in Wsub(R), negligible change in Wsub(U), 5.6 times increase in ωtau 0 , and no change in ΔH. This seems to indicate that irradiation degrades an average value of YOUNG's modulus so that cracks propagate more easily and it does not effect on breaking the lattice bond. However much more systematic analyses should be necessary for correct judgment. It is concluded that the present method is quite adequate for analyzing the Charpy impact data even though plastic deformation in the specimen was not considered separately so that the method should be applied for various cases in order to evaluate the proper trend of effects of irradiation, alloying elements, and heat treatment on the Charpy impact results. (Author)

  5. Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles?

    NARCIS (Netherlands)

    Kourmouli, A.; Valenti, M.; van Rijn, E.; Beaumont, H.J.E.; Kalantzi, Olga Ioanna; Schmidt-Ott, A.; Biskos, G.

    2018-01-01

    The use of disc diffusion susceptibility tests to determine the antibacterial activity of engineered nanoparticles (ENPs) is questionable because their low diffusivity practically prevents them from penetrating through the culture media. In this study, we investigate the ability of such a test,

  6. Virtualization of System of Systems Test and Evaluation

    Science.gov (United States)

    2012-06-04

    computers and is the primary enabler for virtualization. 2. Virtualization System Elements Parmalee, Peterson , Tillman, & Hatfield (1972) outlined the...The work of Abu-Taieh and El Sheikh, based on the work of Balci (1994, 1995), and Balci et al. ( 1996 ), seeks to organize types of tests and to...and testing. In A. Dasso & A. Funes (Eds.), Verification, validation, and testing in software engineering (pp. 155–184). Hershey , PA: Idea Group

  7. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.E.

    1992-04-01

    K-Reactor's number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine's original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators Was excessive wear of the piston pin bushings a result of having exceeded the engine's capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts Considering the engine's overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine's original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine's failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines' 12OOkw continuous rating.

  8. Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air

    Science.gov (United States)

    2012-03-22

    Jay Rutledge (Member) Date v AFIT/GAE/ENY/12-M36 Abstract Rotating detonation engines ( RDEs ) have the potential for greater...efficiencies over conventional engines by utilizing pressure gain combustion. A new modular RDE (6 in diameter) was developed and successfully run on...hydrogen and standard air. The RDE allows for variation of injection scheme and detonation channel widths. Tests provided the operational space of the

  9. Standard practice for conducting and evaluating laboratory corrosions tests in soils

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers procedures for conducting laboratory corrosion tests in soils to evaluate the corrosive attack on engineering materials. 1.2 This practice covers specimen selection and preparation, test environments, and evaluation of test results. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. 25th Test and Evaluation National Conference

    Science.gov (United States)

    2009-03-05

    assembly area.] • Load Aircraft and Weapon Status Check. • Lineup for takeoff. – Execute Mission [R and A mission executed as requested by ground... sequential testing and the sharing of high-demand testing assets Negative impact on ability to successfully execute complex programs: Massive

  11. Empirical Evaluation of Directional-Dependence Tests

    Science.gov (United States)

    Thoemmes, Felix

    2015-01-01

    Testing of directional dependence is a method to infer causal direction that recently has attracted some attention. Previous examples by e.g. von Eye and DeShon (2012a) and extensive simulation studies by Pornprasertmanit and Little (2012) have demonstrated that under specific assumptions, directional-dependence tests can recover the true causal…

  12. 40 CFR Table 6 to Subpart IIIi of... - Optional 3-Mode Test Cycle for Stationary Fire Pump Engines

    Science.gov (United States)

    2010-07-01

    ... Engines [As stated in § 60.4210(g), manufacturers of fire pump engines may use the following test cycle... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Optional 3-Mode Test Cycle for Stationary Fire Pump Engines 6 Table 6 to Subpart IIII of Part 60 Protection of Environment ENVIRONMENTAL...

  13. 40 CFR 1051.305 - How must I prepare and test my production-line vehicles or engines?

    Science.gov (United States)

    2010-07-01

    ... production-line vehicles or engines? 1051.305 Section 1051.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.305 How must I prepare and test my production...

  14. Portal monitor evaluation and test procedure

    International Nuclear Information System (INIS)

    Johnson, L.O.; Gupta, V.P.; Stevenson, R.L.; Rich, B.L.

    1983-10-01

    The purpose was to develop techniques and procedures to allow users to measure performance and sensitivity of portal monitors. Additionally, a methodology was developed to assist users in optimizing monitor performance. The two monitors tested utilized thin-window gas-flow proportional counters sensitive to beta and gamma radiation. Various tests were performed: a) background count rate and the statistical variability, b) detector efficiency at different distances, c) moving source sensitivity for various size sources and speeds, and d) false alarm rates at different background levels. A model was developed for the moving source measurements to compare the experimental data with measured results, and to test whether it is possible to adequately model the behavior of a portal monitor's response to a moving source. The model results were compared with the actual test results. A procedure for testing portal monitors is also given. 1 reference, 9 figures, 8 tables

  15. Evaluation of metallic materials for use in engineering barrier systems

    International Nuclear Information System (INIS)

    Pitman, S.G.; Griggs, B.; Elmore, R.P.

    1980-01-01

    Conclusions of this work are as follows: Inconel, Incoloy, Hastelloy C-276, and titanium alloys all had excellent corrosion resistance in all postulated repository environments tested. Further work will be required to evaluate the pertinent enviro-mechanical properties of these materials; the mechanical properties of grade 2 titanium are better than those of grade 12 titanium, except the tensile and yield strengths. These properties include fatigue-crack-growth rate, environmental fatigue-crack-growth rate, fracture toughness, impact toughness, and dynamic fracture toughness; there is no evidence in the current data to indicate that the simulated repository environment is aggressive to grade 2 or grade 12 titanium. This includes data from corrosion-fatigue, crevice corrosion, wedge-loaded cracked specimens, and residual-stress specimens

  16. Subscale Carbon-Carbon Nozzle Extension Development and Hot Fire Testing in Support of Upper Stage Liquid Rocket Engines

    Science.gov (United States)

    Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam

    2016-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.

  17. Performance and efficiency evaluation and heat release study of a direct-injection stratified-charge rotary engine

    Science.gov (United States)

    Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.

    1987-01-01

    A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.

  18. Systematic evaluation of nondestructive testing methods

    International Nuclear Information System (INIS)

    Segal, Y.; Notea, A.; Segal, E.

    1977-01-01

    The main task of an NDT engineer is to select the best method, considering the cost-benefit value of different available systems and taking into account the special existing constraints. The aim of the paper is to suggest a tool that will enable characterization of measuring systems. The derivation of the characterization parameters and functions has to be general, i.e., suitable for all possible measuring methods, independent of their principle of operation. Quite often the properties measured during the NDT procedure are not the wanted ones, but there must be a correlation between the measured property and the performance of the product. One has to bear in mind that the ultimate choice between systems is not, in practice, just based on the mathematical optimization approach that is presented. Factors like cost-benefit, availability of trained manpower, service, real-time information, weight, volume, etc., may be crucial problems, and they may well dictate the final selection

  19. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    Science.gov (United States)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  20. Cold test for bean seed vigor evaluation

    OpenAIRE

    Miguel, Marcelo Hissnauer; Cicero, Silvio Moure

    1999-01-01

    O presente trabalho teve como objetivo estudar o comportamento de sementes de feijão submetidas a diferentes metodologias do teste de frio, comparativamente a outros testes de vigor tradicionalmente utilizados na avaliação da qualidade fisiológica dessas sementes. As metodologias do teste de frio utilizadas foram: caixa plástica com terra, rolo de papel com terra e rolo de papel sem terra, nas temperaturas de 10ºC e de 15ºC e períodos de exposição, de três, cinco e sete dias. Paralelamente fo...