WorldWideScience

Sample records for engineered system radionuclide

  1. Technical Work Plan for: Near Field Environment: Engineered Barrier System: Radionuclide Transport Abstraction Model Report

    International Nuclear Information System (INIS)

    J.D. Schreiber

    2006-01-01

    This technical work plan (TWP) describes work activities to be performed by the Near-Field Environment Team. The objective of the work scope covered by this TWP is to generate Revision 03 of EBS Radionuclide Transport Abstraction, referred to herein as the radionuclide transport abstraction (RTA) report. The RTA report is being revised primarily to address condition reports (CRs), to address issues identified by the Independent Validation Review Team (IVRT), to address the potential impact of transport, aging, and disposal (TAD) canister design on transport models, and to ensure integration with other models that are closely associated with the RTA report and being developed or revised in other analysis/model reports in response to IVRT comments. The RTA report will be developed in accordance with the most current version of LP-SIII.10Q-BSC and will reflect current administrative procedures (LP-3.15Q-BSC, ''Managing Technical Product Inputs''; LP-SIII.2Q-BSC, ''Qualification of Unqualified Data''; etc.), and will develop related Document Input Reference System (DIRS) reports and data qualifications as applicable in accordance with prevailing procedures. The RTA report consists of three models: the engineered barrier system (EBS) flow model, the EBS transport model, and the EBS-unsaturated zone (UZ) interface model. The flux-splitting submodel in the EBS flow model will change, so the EBS flow model will be validated again. The EBS transport model and validation of the model will be substantially revised in Revision 03 of the RTA report, which is the main subject of this TWP. The EBS-UZ interface model may be changed in Revision 03 of the RTA report due to changes in the conceptualization of the UZ transport abstraction model (a particle tracker transport model based on the discrete fracture transfer function will be used instead of the dual-continuum transport model previously used). Validation of the EBS-UZ interface model will be revised to be consistent with

  2. Technical Work Plan for: Near Field Environment: Engineered System: Radionuclide Transport Abstraction Model Report

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Schreiber

    2006-12-08

    This technical work plan (TWP) describes work activities to be performed by the Near-Field Environment Team. The objective of the work scope covered by this TWP is to generate Revision 03 of EBS Radionuclide Transport Abstraction, referred to herein as the radionuclide transport abstraction (RTA) report. The RTA report is being revised primarily to address condition reports (CRs), to address issues identified by the Independent Validation Review Team (IVRT), to address the potential impact of transport, aging, and disposal (TAD) canister design on transport models, and to ensure integration with other models that are closely associated with the RTA report and being developed or revised in other analysis/model reports in response to IVRT comments. The RTA report will be developed in accordance with the most current version of LP-SIII.10Q-BSC and will reflect current administrative procedures (LP-3.15Q-BSC, ''Managing Technical Product Inputs''; LP-SIII.2Q-BSC, ''Qualification of Unqualified Data''; etc.), and will develop related Document Input Reference System (DIRS) reports and data qualifications as applicable in accordance with prevailing procedures. The RTA report consists of three models: the engineered barrier system (EBS) flow model, the EBS transport model, and the EBS-unsaturated zone (UZ) interface model. The flux-splitting submodel in the EBS flow model will change, so the EBS flow model will be validated again. The EBS transport model and validation of the model will be substantially revised in Revision 03 of the RTA report, which is the main subject of this TWP. The EBS-UZ interface model may be changed in Revision 03 of the RTA report due to changes in the conceptualization of the UZ transport abstraction model (a particle tracker transport model based on the discrete fracture transfer function will be used instead of the dual-continuum transport model previously used). Validation of the EBS-UZ interface model

  3. Modeling the Hydrogeochemical Transport of Radionuclides through Engineered Barriers System in the Proposed LLW Disposal Site of Taiwan - 12082

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Sheng [Hydrotech Research Institute, National Taiwan University, Taipei, Taiwan (China); Liu, Chen-Wuing; Tsao, Jui-Hsuan [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan (China); Li, Ming-Hsu [Institute of Hydrological and Oceanic Sciences, National Central University, Jhongli, Taiwan (China)

    2012-07-01

    A proposed site for final disposal of low-level radioactive waste located in Daren Township of Taitung County along the southeastern coast has been on the selected list in Taiwan. The geology of the Daren site consists of argillite and meta-sedimentary rocks. A mined cavern design with a tunnel system of 500 m below the surface is proposed. Concrete is used as the main confinement material for the engineered barrier. To investigate the hydrogeochemical transport of radionuclides through engineered barriers system, HYDROGEOCHEM5.0 model was applied to simulate the complex chemical interactions among radionuclides, the cement minerals of the concrete, groundwater flow, and transport in the proposed site. The simulation results showed that the engineered barriers system with the side ditch efficiently drained the ground water and lowered the concentration of the concrete degradation induced species (e.g., hydrogen ion, sulfate, and chloride). The velocity of groundwater observed at side ditch gradually decreased with time due to the fouling of pore space by the mineral formation of ettringite and thaumasite. The short half-life of Co-60, Sr-90 and Cs-137 significantly reduced the concentrations, whereas the long half-life of I-129(1.57x10{sup 7} years) and Am-241(432 years) remain stable concentrations at the interface of waste canister and concrete barrier after 300 years. The mineral saturation index (SI) was much less than zero due to the low aqueous concentration of radionuclide, so that the precipitation formation of Co-60, Sr-90, I-129, Cs-137 and Am-241 related minerals were not found. The effect of adsorption/desorption (i.e., surface complexation model) could be a crucial geochemical mechanism for the modeling of liquid-solid phase behavior of radionuclide in geochemically dynamic environments. Moreover, the development of advanced numerical models that are coupled with hydrogeochemical transport and dose assessment of radionuclide is required in the future

  4. The evaluation of the effects of buffer thickness and dry density on radionuclides migration in engineered barrier system

    International Nuclear Information System (INIS)

    Kato, Fujitaka; Ishihara, Yoshinao; Makino, Hitoshi; Ishiguro, Katsuhiko

    2000-01-01

    The evaluation of the effects of buffer thickness and dry density, one of the buffer design, on radionuclides migration behavior is important from the viewpoint of performance assessment since they have relation to radionuclides migration retardation. It is also considered to help investigation of buffer design that satisfy both safety and economy to condition of the disposal site, which may be required with development of disposal project in the future. Therefore we have performed a sensitivity analysis used buffer thickness and dry density as parameter and considered their combination in this report. Based on this, we have evaluated the effects of buffer thickness and dry density on radionuclides migration in engineered barrier system. And, we have considered about radionuclides migration retardation quality of the buffer which is based on the design (relationship between thickness and dry density) set in the second progress report on research and development for the geological disposal of HLW in Japan. In results, the maximum release rates from the engineered barrier system for the nuclides which have high distribution coefficients and short half lives are sensitive to changes in buffer thickness and dry density. And, using dose converted from the nuclide release rates from the engineered barrier system as a convenient index, it is almost shown that the maximum of total dose is less than 10 μ Sv/y in the cases which buffer thickness and dry density are based on the buffer design set in the second progress report on research and development for the geological disposal of HLW in Japan. These can be used as an information when design of buffer thickness and dry density is set by synthetically judgement of balance of safety and economy. (author)

  5. Expert system based radionuclide identification

    International Nuclear Information System (INIS)

    Aarnio, P.A.; Ala-Heikkil, J.J.; Hakulinen, T.T.; Nikkinen, M.T.

    1998-01-01

    An expert system coupled with the gamma spectrum analysis system SAMPO has been developed for automating the qualitative identification of radionuclides as well as for determining the quantitative parameters of the spectrum components. The program is written in C-language and runs in various environments ranging from PCs to UNIX workstations. The expert system utilizes a complete gamma library with over 2600 nuclides and 80,000 lines, and a rule base of about fifty criteria including energies, relative peak intensities, genesis modes, half lives, parent-daughter relationships, etc. The rule base is furthermore extensible by the user. This is not an original contribution but a somewhat updated version of papers and reports previously published elsewhere. (author)

  6. The radionuclide migration model in river system

    International Nuclear Information System (INIS)

    Zhukova, O.M.; Shiryaeva, N.M.; Myshkina, M.K.; Shagalova, Eh.D.; Denisova, V.V.; Skurat, V.V.

    2001-01-01

    It was propose the model of radionuclide migration in river system based on principle of the compartmental model at hydraulically stationary and chemically equilibrium conditions of interaction of radionuclides in system water-dredge, water-sediments. Different conditions of radioactive contamination entry in river system were considered. The model was verified on the data of radiation monitoring of Iput' river

  7. Transverse section radionuclide scanning system

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Edwards, R.Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program. 5 claims, 11 figures

  8. Multibarrier system preventing migration of radionuclides from radioactive waste repository

    Directory of Open Access Journals (Sweden)

    Olszewska Wioleta

    2015-09-01

    Full Text Available Safety of radioactive waste repositories operation is associated with a multibarrier system designed and constructed to isolate and contain the waste from the biosphere. Each of radioactive waste repositories is equipped with system of barriers, which reduces the possibility of release of radionuclides from the storage site. Safety systems may differ from each other depending on the type of repository. They consist of the natural geological barrier provided by host rocks of the repository and its surroundings, and an engineered barrier system (EBS. The EBS may itself comprise a variety of sub-systems or components, such as waste forms, canisters, buffers, backfills, seals and plugs. The EBS plays a major role in providing the required disposal system performance. It is assumed that the metal canisters and system of barriers adequately isolate waste from the biosphere. The evaluation of the multibarrier system is carried out after detailed tests to determine its parameters, and after analysis including mathematical modeling of migration of contaminants. To provide an assurance of safety of radioactive waste repository multibarrier system, detailed long term safety assessments are developed. Usually they comprise modeling of EBS stability, corrosion rate and radionuclide migration in near field in geosphere and biosphere. The principal goal of radionuclide migration modeling is assessment of the radionuclides release paths and rate from the repository, radionuclides concentration in geosphere in time and human exposure to ionizing radiation

  9. Systems Engineering

    OpenAIRE

    Vaughan, William W.

    2016-01-01

    The term “systems engineering” when entered into the Google search page, produces a significant number of results, evidence that systems engineering is recognized as being important for the success of essentially all products. Since most readers of this item will be rather well versed in documents concerning systems engineering, I have elected to share some of the points made on this subject in a document developed by the European Cooperation for Space Standardization (ECSS), a component of t...

  10. Aligning physics and physiology: Engineering antibodies for radionuclide delivery.

    Science.gov (United States)

    Tsai, Wen-Ting K; Wu, Anna M

    2018-03-14

    The exquisite specificity of antibodies and antibody fragments renders them excellent agents for targeted delivery of radionuclides. Radiolabeled antibodies and fragments have been successfully used for molecular imaging and radioimmunotherapy (RIT) of cell surface targets in oncology and immunology. Protein engineering has been used for antibody humanization essential for clinical applications, as well as optimization of important characteristics including pharmacokinetics, biodistribution, and clearance. Although intact antibodies have high potential as imaging and therapeutic agents, challenges include long circulation time in blood, which leads to later imaging time points post-injection and higher blood absorbed dose that may be disadvantageous for RIT. Using engineered fragments may address these challenges, as size reduction and removal of Fc function decreases serum half-life. Radiolabeled fragments and pretargeting strategies can result in high contrast images within hours to days, and a reduction of RIT toxicity in normal tissues. Additionally, fragments can be engineered to direct hepatic or renal clearance, which may be chosen based on the application and disease setting. This review discusses aligning the physical properties of radionuclides (positron, gamma, beta, alpha, and Auger emitters) with antibodies and fragments and highlights recent advances of engineered antibodies and fragments in preclinical and clinical development for imaging and therapy. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Methods and systems for detection of radionuclides

    Science.gov (United States)

    Coates, Jr., John T.; DeVol, Timothy A.

    2010-05-25

    Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location.

  12. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Science.gov (United States)

    2010-04-01

    ... radionuclide applicator system. (a) Identification. A remote controlled radionuclide applicator system is an... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Remote controlled radionuclide applicator system... include patient and equipment supports, component parts, treatment planning computer programs, and...

  13. Computer-based radionuclide analyzer system

    International Nuclear Information System (INIS)

    Ohba, Kengo; Ishizuka, Akira; Kobayashi, Akira; Ohhashi, Hideaki; Tsuruoka, Kimitoshi.

    1978-01-01

    The radionuclide analysis in nuclear power plants, practiced for the purpose of monitoring the quality of the primary loop water, the confirmation of the performance of reactor cleanup system and monitoring the radioactive waste effluent, is an important job. Important as it is, it requires considerable labor of experts, because the samples to be analyzed are multifarious and very large in number, and in addition, this job depends much on manual work. With a view of saving the labor, simplifying and standardizing the work, reducing radiation exposure, and automatizing the work of analysis, the computerized analyzer system has been worked out. The results of its performance test at the operating power plant have proved that the development has fairly accomplished the objects and that the system is well useful. The developmental work was carried out by the cooperation between The Tokyo Electric Power Co. and Toshiba in about 4 years from 1974 to this year. (auth.)

  14. Radionuclides in groundwater flow system understanding

    Science.gov (United States)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  15. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit an... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide radiation therapy system. 892.5750... patient's body. This generic type of device may include signal analysis and display equipment, patient and...

  16. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual radionuclide applicator system. 892.5650.... This generic type of device may include patient and equipment supports, component parts, treatment...

  17. Development of a transportable system for radionuclide analysis

    International Nuclear Information System (INIS)

    Cunningham, W.C.; Anderson, D.L.; Lamont, W.H.; South, P.K.; Rury, M.A.; Beachley, G.M.; Ondov, J.M.

    2008-01-01

    Transportable radioanalytical systems were assembled and tested for quantitative determination of γ-emitting radionuclides and screening of β- emitting radionuclides. Standard operating procedures (SOPs), including instructions for assembly, disassembly, operation, sample collection and analysis, and all other procedures needed, were developed. Foods, as well as National Institute of Standards and Technology, International Atomic Energy Agency, and in-house Reference Materials were analyzed. An SOP for γ-emitting radionuclides was successfully tested at 3 locations. (author)

  18. Developing a personal computer based expert system for radionuclide identification

    International Nuclear Information System (INIS)

    Aarnio, P.A.; Hakulinen, T.T.

    1990-01-01

    Several expert system development tools are available for personal computers today. We have used one of the LISP-based high end tools for nearly two years in developing an expert system for identification of gamma sources. The system contains a radionuclide database of 2055 nuclides and 48000 gamma transitions with a knowledge base of about sixty rules. This application combines a LISP-based inference engine with database management and relatively heavy numerical calculations performed using C-language. The most important feature needed has been the possibility to use LISP and C together with the more advanced object oriented features of the development tool. Main difficulties have been long response times and the big amount (10-16 MB) of computer memory required

  19. Natural systems prediction of radionuclide migration

    International Nuclear Information System (INIS)

    Ewing, R.C.

    1991-01-01

    This paper reviews the application (and limitations) of data from natural systems to the verification of performance assessments, particularly as they apply to the evaluation of the long-term performance of waste forms, backfill, canister materials, and finally, the integrity of the repository itself. Two specific examples, the corrosion of borosilicate glass and the formation of alteration products of spent fuel, will be discussed. In both cases, inferences are of three types: 1) directly applicable data (i.e. radiation effects, stable phase assemblages): 2) inferences based on the analogous behaviour of the natural and repository systems (e.g. long-term corrosion rate); 3) specific identification of new phenomena that could not have been anticipated from the short term laboratory data (i.e. new mechanisms for the retention or release of radionuclides). The latter can only be derived from the observation of natural systems. Finally, specific attention will be paid to the limitations in the use of natural systems, particularly as the spatial and temporal scales expand, and to the inherent limitations of prediction and verification. (J.P.N.)

  20. Modeling of release of radionuclides from an engineered disposal facility for shallow-land disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuzuru, H.; Suzuki, A.

    1989-01-01

    The computer code, ENBAR-1, for the simulation of radionuclide releases from an engineered disposal facility has been developed to evaluate the source term for subsequent migration of radionuclides in and through a natural barrier. The system considered here is that a waste package (waste form and container) is placed, together with backfill materials, into a concrete pit as a disposal unit for shallow-land disposal of low-level radioactive wastes. The code developed includes the following modules: water penetration into a concrete pit, corrosion of a drum as a container, leaching of radionuclides from a waste form, migration of radionuclides in backfill materials, release of radionuclides from the pit. The code has the advantage of its simplicity of operation and presentation while still allowing comprehensive evaluation of each element of an engineered disposal facility to be treated. The performance and source term of the facility might be readily estimated with a few key parameters to define the problem

  1. Engineering Review Information System

    Science.gov (United States)

    Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)

    2015-01-01

    A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.

  2. Migration of radionuclides through a river system

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    Migration behavior of several atmospherically-derived radionuclides in a river watershed was studied. A main interest was in their relocation from the ground soil of the watershed to a downstream region through a river. Studied radionuclides are: {sup 137}Cs generated by weapon tests in the atmosphere; {sup 210}Pb and {sup 7}Be of naturally occurring radionuclides; {sup 137}Cs, {sup 90}Sr, {sup 239,240}Pu and {sup 241}Am released by the Chernobyl nuclear power plant accident. Dominance of the form in suspended solid in river water (particulate form) was qualified for the radionuclides in the Kuji river watershed. An importance of discharge in flooding was also confirmed. A historical budget analysis for weapon test derived {sup 137}Cs was presented for the Hi-i river watershed and its accompanied lake sediment (Lake Shinji). The work afforded a scheme of a fate of {sup 137}Cs after falling on the ground soil and on the lake surface. Several controlling factors, which can influence on the chemical form of radionuclides discharged to a river, were also investigated in the vicinity of the Chernobyl nuclear power plant. A special attention was paid on the association of the radionuclides with dissolved species in water. Preferential association of Pu and Am isotopes to a large molecular size of dissolved matrices, probably of humic substances, was suggested. (author)

  3. Systems engineering simplified

    CERN Document Server

    Cloutier, Robert; Bone, Mary Alice

    2015-01-01

    IntroductionOverviewDiscussion of Common TerminologyThe Case for Systems EngineeringA Brief History of Systems EngineeringSystem ExamplesSummaryThe System Life CycleManaging System Development-The Vee ModelSystem ProductionSystem Utilization and SupportSystem Retirement and DisposalOther Systems Engineering Development ModelsSpiral ModelAgile Model for Systems EngineeringSystem of InterestAbstraction and DecompositionIntegrationDeveloping and Managing RequirementsCyclone Requiremen

  4. Progress of radionuclide diagnostic methods in central nervous system diseases

    International Nuclear Information System (INIS)

    Badmaev, K.N.; Zen'kovich, S.G.

    1982-01-01

    A summarry on modern radionuclide diagnosis achivements of central nervous system diseases is presented. Most optimal tumorotropic preparations and compounds in the view of decreasing irradiation does and optimazing image are given

  5. Site systems engineering: Systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-05-03

    The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

  6. New radionuclide generator systems for use in nuclear medicine

    International Nuclear Information System (INIS)

    Atcher, R.W.

    1979-01-01

    A current emphasis in nuclear medicine is to better match the physical lifetime of the radionuclides used in vivo for diagnosis and treatment to the biological lifetime of the diagnostic procedure or to minimize radiation dose to areas other than those to be treated. In many cases the biological lifetime is on the order of minutes. Since the direct production of radionuclides with half lives of minutes requires the user to be near a suitable reactor or accelerator, this study was undertaken to produce short-lived radionuclides indirectly. If a long-lived radionuclide decays into a short-lived radionuclide, quick separation of the daughter activity from the parent enables the user to have a short-lived daughter while freeing him from the constraint of proximity to a cyclotron. Systems where a short-lived daughter is separated from a long-lived parent are called radionuclide generators. Two generator systems were developed for use in nuclear medicine, one in diagnostic work and the other for therapeutic work. The yield and breakthrough characteristics were within the limits required to minimize unnecessary radiation exposure in patients. Two parent radionuclides were produced using 4 He beams available from medium energy cyclotrons. The yield was high enough to produce generators that would be useful in clinical applications

  7. Solar engine system

    International Nuclear Information System (INIS)

    Tan, K.K.; Bahrom Sanugi; Chen, L.C.; Chong, K.K.; Jasmy Yunus; Kannan, K.S.; Lim, B.H.; Noriah Bidin; Omar Aliman; Sahar Salehan; Sheikh Ab Rezan Sheikh A H; Tam, C.M.; Chen, Y.T.

    2001-01-01

    This paper reports the revolutionary solar engine system in Universiti Teknologi Malaysia (UTM). The solar engine is a single cylinder stirling engine driven by solar thermal energy. A first prototype solar engine has been built and demonstrated. A new-concept non-imaging focusing heliostat and a recently invented optical receiver are used in the demonstration. Second generation of prototype solar engine is described briefly. In this paper, the solar engine system development is reported. Measurement for the first prototype engine speed, temperature and specifications are presented. The benefits and potential applications for the future solar engine system, especially for the electricity generating aspect are discussed. (Author)

  8. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  9. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  10. NASA systems engineering handbook

    Science.gov (United States)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  11. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  12. A data acquisition system for a radionuclide laboratory

    International Nuclear Information System (INIS)

    Reher, D.; Idzerda, A.B.

    1984-01-01

    The concept and installation of a computer system for use in a radionuclide laboratory is described. It consists of a hierarchical star network of distributed intelligence. The system installation was spread over several years in three phases which made an economical solution possible. (orig.)

  13. Monitoring and characterization of radionuclide transport in the hydrogeologic system

    International Nuclear Information System (INIS)

    Phillips, S.J.; Raymond, J.R.

    1975-01-01

    Historical records pertaining to the 300 North and Wye Burial Grounds at the Hanford Reservation were reviewed as a prerequisite to determining programs for land reclamation. All available historical documents, agency communications, and engineering drawings related to the study areas were located, reviewed, and analyzed. An inventory of recorded location, type, and quantity of radionuclides and associated materials in each burial ground was completed and distributed to cooperating investigators. A geophysical survey of the 300 North Burial Ground was conducted as a basis for detecting the composition, size, distribution, and depth of buried objects and characterizing the sediments in which they are buried. Acoustic, radar, magnetic, and metal detection surveys were completed and their applicability evaluated; drilling techniques and equipment for recovering and characterizing sediments and radioactive contaminated material were developed. Drilling will also determine the amount and dimensional extent of radionuclide migration; sediment-fluid interaction and fluid migration through the unsaturated zone at the 300 North Burial Ground were characterized. A study to determine biological transport of radionuclides at the Wye Burial Ground was also initiated. This study involved a preliminary survey of present flora and fauna inhabiting the Wye Burial Ground site. Plant tissue was chemically and radiochemically analyzed to determine radionuclide migration and possible dose effects and population dynamics of burrowing animals that could potentially be exposed to buried waste materials were investigated

  14. Systems Engineering Analysis

    Directory of Open Access Journals (Sweden)

    Alexei Serna M.

    2013-07-01

    Full Text Available The challenges proposed by the development of the new computer systems demand new guidance related to engineer´s education, because they will solve these problems. In the XXI century, system engineers must be able to integrate a number of topics and knowledge disciplines that complement that traditionally has been known as Computer Systems Engineering. We have enough software development engineers, today we need professional engineers for software integration, leaders and system architects that make the most of the technological development for the benefit of society, leaders that integrate sciences to the solutions they build and propose. In this article the current situation of Computer Systems Engineering is analyzed and is presented a theory proposing the need for modifying the approach Universities have given to these careers, to achieve the education of leader engineers according to the needs of this century.

  15. Systems engineering research

    OpenAIRE

    Sahraoui , Abd-El-Kader; Buede , Dennis ,; Sage , Andrew ,

    2008-01-01

    International audience; In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that ar...

  16. CDMA systems capacity engineering

    CERN Document Server

    Kim, Kiseon

    2004-01-01

    This new hands-on resource tackles capacity planning and engineering issues that are crucial to optimizing wireless communication systems performance. Going beyond the system physical level and investigating CDMA system capacity at the service level, this volume is the single-source for engineering and analyzing systems capacity and resources.

  17. Principles of radionuclide studies of the genitourinary system

    International Nuclear Information System (INIS)

    Kim, E.E.; Pjura, G.A.; Lowry, P.A.

    1988-01-01

    The clinical assessment of renal diseases with radionuclide procedures is discussed. It has achieved general recognition only during the last decade. The proper assessment of renal function with radionuclides provides useful information for the management of patients with renal disease and renal transplant recipients. Renal imaging with radionuclides gives some information on morphology and the integrity of the urinary collecting system, but more importantly it provides functional information that may include renal blood flow or effective renal plasma flow (ERPF), glomerular filtration rate (GFR), the quantitation of differential renal function, the evaluation of vesicoureteral reflux, the quantitation of postvoiding residual urine volume, and the differential diagnosis of testicular disease. Acute renal failure resulting from acute tubular necrosis, hepatorenal syndrome, acute interstitial nephirits, cortical necrosis, renal artery embolism, or acute pyelonephritis may be recognized by radionuclide studies. Data useful in the diagnosis and management of the patient with obstructive or reflux nephropathy also may be obtained. Radionuclide studies in patients with chronic renal failure may reveal such causes as renal artery stenosis, chronic pyelonephritis, or infiltrative renal disease. Finally, nuclear study in transplant recipients is useful to help differentiate rejection from acute tubular necrosis and other causes of reduced renal function

  18. Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this Monitored Retrievable Storage (MRS) Project Systems Engineering Management Plan (SEMP) is to define and establish the MRS Project Systems Engineering process that implements the approved policy and requirements of the Office of Civilian Radioactive Waste Management (OCRWM) for the US Department of Energy (DOE). This plan is Volume 5 of the MRS Project Management Plan (PMP). This plan provides the framework for implementation of systems engineering on the MRS Project consistent with DOE Order 4700.1, the OCRWM Program Management System Manual (PMSM), and the OCRWM Systems Engineering Management Plan (SEMP)

  19. Radionuclide Imaging Technologies for Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Calvin R. [Duke Univ., Durham, NC (United States); Reid, Chantal D. [Duke Univ., Durham, NC (United States); Weisenberger, Andrew G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-05-14

    The main objective of this project is to develop technologies and experimental techniques for studying the dynamics of physiological responses of plants to changes in their interface with the local environment and to educate a new generation of scientists in an interdisciplinary environment of biology, physics and engineering. Also an important goal is to perform measurements to demonstrate the new data that can be produced and made available to the plant-biology community using the imaging technologies and experimental techniques developed in this project. The study of the plant-environment interface includes a wide range of topics in plant physiology, e.g., the root-soil interface, resource availability, impact of herbivores, influence of microbes on root surface, and responses to toxins in the air and soil. The initial scientific motivation for our work is to improve understanding of the mechanisms for physiological responses to abrupt changes in the local environment, in particular, the responses that result in short-term adjustments in resource (e.g., sugars, nutrients and water) allocations. Data of time-dependent responses of plants to environmental changes are essential in developing mechanistic models for substance intake and resource allocation. Our approach is to use radioisotope tracing techniques to study whole-plant and plant organ (e.g., leaves, stems, roots) dynamical responses to abrupt changes in environmental conditions such as concentration of CO2 in the atmosphere, nutrient availability and lighting. To this aim we are collaborating with the Radiation Detector and Imaging Group at the Thomas Jefferson National Laboratory Facility (JLab) to develop gamma-ray and beta particle imaging systems optimized for plant studies. The radioisotope tracing measurements are conducted at the Phytotron facility at Duke University. The Phytotron is a controlled environment plant research facility with a variety of plant growth chambers. One chamber

  20. Safety of systems for the retention of wastes containing radionuclides

    International Nuclear Information System (INIS)

    1980-11-01

    Information and minimal requirements demanded by CNEN for the emission of the Approval Certificate of the Safety Analysis Report related to system for the retention of wastes containing radionuclide, are established, aiming to assure low radioactivity levels to the environment. (E.G.) [pt

  1. Unified Engineering Software System

    Science.gov (United States)

    Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.

    1989-01-01

    Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.

  2. NASA Systems Engineering Handbook

    Science.gov (United States)

    Hirshorn, Steven R.; Voss, Linda D.; Bromley, Linda K.

    2017-01-01

    The update of this handbook continues the methodology of the previous revision: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. This approach provides the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering processes and to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. Material used for updating this handbook has been drawn from many sources, including NPRs, Center systems engineering handbooks and processes, other Agency best practices, and external systems engineering textbooks and guides. This handbook consists of six chapters: (1) an introduction, (2) a systems engineering fundamentals discussion, (3) the NASA program project life cycles, (4) systems engineering processes to get from a concept to a design, (5) systems engineering processes to get from a design to a final product, and (6) crosscutting management processes in systems engineering. The chapters are supplemented by appendices that provide outlines, examples, and further information to illustrate topics in the chapters. The handbook makes extensive use of boxes and figures to define, refine, illustrate, and extend concepts in the chapters.

  3. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  4. Approaches to modelling radionuclide transfer in agricultural systems

    International Nuclear Information System (INIS)

    Mitchell, N. G.

    1995-01-01

    Radiological dose assessment requires information describing the concentration and distribution of radionuclides in the environment. This information can be obtained from monitoring but is also evaluated with the aid of mathematical models. In such models the pathways of radionuclides from the release point to man are described in terms of transfer between compartments. The main pathways to be considered include: deposition to vegetation and soils; transfer from soil-to-plant; uptake and turnover in domestic animals; and, intake by man. The development of mathematical models for simulating transfer via these pathways depends on: an understanding of the system under study, in particular for those processes that are most important in the overall transfer to man; the availability of data to determine the structure and parameters for the model; the computing systems available; the knowledge of the user of the model; and, the application of the model. (author)

  5. Optomechanical systems engineering

    CERN Document Server

    Kasunic, Keith J

    2015-01-01

    Covers the fundamental principles behind optomechanical design This book emphasizes a practical, systems-level overview of optomechanical engineering, showing throughout how the requirements on the optical system flow down to those on the optomechanical design. The author begins with an overview of optical engineering, including optical fundamentals as well as the fabrication and alignment of optical components such as lenses and mirrors. The concepts of optomechanical engineering are then applied to the design of optical systems, including the structural design of mechanical and optical co

  6. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  7. Radionuclide study of the liver macrophage system in diabetes mellitus

    International Nuclear Information System (INIS)

    Slavnov, V.M.; Savich, O.A.; Markov, V.V.

    2002-01-01

    The functional state of the liver macrophage system (MS) in diabetes mellitus (DM) and to analyze the functional disturbances depending of the type of DM, presence of complications, duration of the disease and the age of the patients was studied. The obtained data suggest the necessity of radionuclide study of the liver MS with the purpose to reveal pre-clinical disturbances and administer timely treatment

  8. Systems Engineering Workshops | Wind | NREL

    Science.gov (United States)

    Workshops Systems Engineering Workshops The Wind Energy Systems Engineering Workshop is a biennial topics relevant to systems engineering and the wind industry. The presentations and agendas are available for all of the Systems Engineering Workshops: The 1st NREL Wind Energy Systems Engineering Workshop

  9. Systems engineering management plan

    International Nuclear Information System (INIS)

    Conner, C.W.

    1985-10-01

    The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe the systems engineering procedures to be implemented at the Program level and the minimum requirements for systems engineering at the Program-element level. The Program level corresponds to the Director, OCRWM, or to the organizations within OCRWM to which the Director delegates responsibility for the development of the System and for coordinating and integrating the activities at the Program-element level. The Office of Policy and Outreach (OPO) and the Office of Resource Management (ORM) support the Director at the Program level. The Program-element level corresponds to the organizations within OCRWM (i.e., the Office of Geologic Repositories (OGR) and the Office of Storage and Transportation Systems (OSTS)) with overall responsibility for developing the System elements - that is, the mined geologic disposal system (MGDS), monitored retrievable storage (MRS) (if approved by Congress), and the transportation system

  10. Radioactive waste-Portland cement systems: I, radionuclide distribution

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Glasser, F.P.; Lachowski, E.E.

    1984-01-01

    Crystal chemical stabilization of radioactive wastes can be achieved during clinkering of, or with, ordinary portland cement. Waste loadings of 20 to 30 wt% are achieved by dilute solid solution of waste ions into cementitious host lattices. Higher waste loadings result in compatible noncementitious radiophases. The cementitious phases hydrate without loss of compressive strength. Crystallochemical relationships predict that the radionuclide partitioning in the anhydrous clinkered phases will be maintained in the hydration products. These cementitious hydroxylated radiophases would be in internal equilibrium under anticipated repository conditions. The radionuclide distributions observed are described in the context of established phase equilibria for commercial waste cement systems, but are applicable to transuranic, medium- and low-level wastes

  11. Airborne anthropogenic radioactivity measurements from an international radionuclide monitoring system

    International Nuclear Information System (INIS)

    Mason, L.R.; Bohner, J.D.; Williams, D.L.

    1998-01-01

    Anthropogenic radioactivity is being measured in near-real time by an international monitoring system designed to verify the Comprehensive Nuclear Test Ban Treaty. Airborne radioactivity measurements are conducted in-situ by stations that are linked to a central data processing and analysis facility. Aerosols are separated by high-volume air sampling with high-efficiency particulate filters. Radio-xenon is separated from other gases through cryogenic methods. Gamma-spectrometry is performed by high purity germanium detectors and the raw spectral data is immediately transmitted to the central facility via Internet, satellite, or modem. These highly sensitive sensors, combined with the automated data processing at the central facility, result in a system capable of measuring environmental radioactivity on the microbecquerel scale where the data is available to scientists within minutes of the field measurement. During the past year, anthropogenic radioactivity has been measured at approximately half of the stations in the current network. Sources of these measured radionuclides include nuclear power plant emissions, Chernobyl resuspension, and isotope production facilities. The ability to thoroughly characterize site-specific radionuclides, which contribute to the radioactivity of the ambient environment, will be necessary to reduce the number of false positive events. This is especially true of anthropogenic radionuclides that could lead to ambiguous analysis. (author)

  12. Radionuclide partitioning in environmental systems: a critical analysis

    International Nuclear Information System (INIS)

    Cremers, A.; Maes, A.

    1986-01-01

    A survey is given of some of the important processes involved in the solid-liquid distribution behaviour of radionuclides in both well-defined adsorbents and multicomponent natural systems. The thermodynamic significance of distribution coefficients is analyzed and the various parameters affecting partition behaviour are discussed in relation to possible retention mechanisms. Attention is being given to factors such as solid/liquid ratio, pH-Eh, reversibility, liquid phase composition and speciation effects. Various processes are discussed such as ion exchange and complex formation involving clays, oxides, humic acids. It is shown that, only in rare cases, Ksub(D) values can be rationalized in terms of process mechanistics. In addition, it is indicated that, in general, radionuclide distribution coefficients cannot be considered as constants unless the conditions are restricted to very small loading intervals. It is furthermore suggested that, in order to produce meaningful data on radionuclide partitioning behaviour, efforts should be made to operate under conditions which are representative for the 'in situ' situation. (author)

  13. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  14. System Reliability Engineering

    International Nuclear Information System (INIS)

    Lim, Tae Jin

    2005-02-01

    This book tells of reliability engineering, which includes quality and reliability, reliability data, importance of reliability engineering, reliability and measure, the poisson process like goodness of fit test and the poisson arrival model, reliability estimation like exponential distribution, reliability of systems, availability, preventive maintenance such as replacement policies, minimal repair policy, shock models, spares, group maintenance and periodic inspection, analysis of common cause failure, and analysis model of repair effect.

  15. Systems Engineering Awareness

    Science.gov (United States)

    Lucero, John

    2016-01-01

    The presentation will provide an overview of the fundamentals and principles of Systems Engineering (SE). This includes understanding the processes that are used to assist the engineer in a successful design, build and implementation of solutions. The context of this presentation will be to describe the involvement of SE throughout the life-cycle of a project from cradle to grave. Due to the ever growing number of complex technical problems facing our world, a Systems Engineering approach is desirable for many reasons. The interdisciplinary technical structure of current systems, technical processes representing System Design, Technical Management and Product Realization are instrumental in the development and integration of new technologies into mainstream applications. This tutorial will demonstrate the application of SE tools to these types of problems..

  16. Systems and Control Engineering

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 5. Systems and Control Engineering - Control Systems-Analysis and Design. A Rama Kalyan J R Vengateswaran. General Article Volume 4 Issue 5 May 1999 pp 88-94 ...

  17. Systems engineering and analysis

    CERN Document Server

    Blanchard, Benjamin S

    2010-01-01

    For senior-level undergraduate and first and second year graduate systems engineering and related courses. A total life-cycle approach to systems and their analysis. This practical introduction to systems engineering and analysis provides the concepts, methodologies, models, and tools needed to understand and implement a total life-cycle approach to systems and their analysis. The authors focus first on the process of bringing systems into being--beginning with the identification of a need and extending that need through requirements determination, functional analysis and allocation, design synthesis, evaluation, and validation, operation and support, phase-out, and disposal. Next, the authors discuss the improvement of systems currently in being, showing that by employing the iterative process of analysis, evaluation, feedback, and modification, most systems in existence can be improved in their affordability, effectiveness, and stakeholder satisfaction.

  18. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Science.gov (United States)

    2010-04-01

    ... gaseous or volatile radionuclide or a radionuclide-labeled aerosol and permit it to be respired by the patient during nuclear medicine ventilatory tests (testing process of exchange between the lungs and the...

  19. Radionuclides in hydrothermal systems as indicators of repository conditions

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1990-11-01

    Hydrothermal systems in tuffaceous and older sedimentary rocks contain evidence of the interaction of radionuclides in fluids with rock matrix minerals and with materials lining fractures, in settings somewhat analogous to the candidate repository site at Yucca Mountain, NV. Earlier studies encompassed the occurrences of U and Th in a ''fossil'' hydrothermal system in tuffaceous rock of the San Juan Mountains volcanic field, CO. More recent and ongoing studies examine active hydrothermal systems in calderas at Long Valley, CA and Valles, NM. At the Nevada Test Site, occurrences of U and Th in fractured and unfractured rhyolitic tuff that was heated to simulate the introduction of radioactive waste are also under investigation. Observations to date suggest that U is mobile in hydrothermal systems, but that localized reducing environments provided by Fe-rich minerals and/or carbonaceous material concentrate U and thus attenuate its migration. 11 refs., 6 figs., 1 tab

  20. Systems Safety and Engineering Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Systems Safety and Engineering Division conducts engineering, research, and analysis to improve transportation safety, capacity, and resiliency. We provide...

  1. Transforming Systems Engineering through Model Centric Engineering

    Science.gov (United States)

    2017-08-08

    Contract No. HQ0034-13-D-0004 Report No. SERC-2017-TR-110 Date: August 8, 2017 Transforming Systems Engineering through Model-Centric... Engineering Technical Report SERC-2017-TR-110 Update: August 8, 2017 Principal Investigator: Mark Blackburn, Stevens Institute of Technology Co...Evangelista Sponsor: U.S. Army Armament Research, Development and Engineering Center (ARDEC), Office of the Deputy Assistant Secretary of Defense for

  2. Systems and Control Engineering

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Systems and Control Engineering - Notions of Control. A Rama Kalyan J R Vengateswaran. General Article Volume 4 Issue 1 January 1999 pp 45-52. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standard for Hazardous Air Pollutants - Radionuclides. Annual report

    International Nuclear Information System (INIS)

    1998-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions

  4. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  5. Using radionuclide imaging for monitoring repairment of bone defect with tissue-engineered bone graft in rabbits

    International Nuclear Information System (INIS)

    Xia Changsuo; Ye Fagang; Zou Yunwen; Ji Shixiang; Wang Dengchun

    2004-01-01

    Objective: To observe the effect of tissue-engineered bone grafts in repairing bone defect in rabbits, and assess the value of radionuclide for monitoring the therapeutic effect of this approach. Methods: Bilateral radial defects of 15 mm in length in 24 rabbits were made. The tissue-engineered bone grafts (composite graft) contained bone marrow stromal cells (BMSCs) of rabbits and calcium phosphate cement (CPC) were grafted in left side defects, CPC only grafts (artificial bone graft) in right defects. After the operation, radionuclide was used to monitor the therapeutic effects at 4, 8 and 12 weeks. Results: 99 Tc m -methylene diphosphonic acid (MDP) radionuclide bone imaging indicated that there was more radionuclide accumulation in grafting region of composite than that of CPC. There was significant difference between 99 Tc m -MDP uptake of the region of interest (ROI) and scintillant counts of composite bone and the artificial bone (P<0.01). Conclusion: Tissue-engineered bone grafts is eligible for repairing radial bone defects, and radionuclide imaging may accurately monitor the revascularization and bone regeneration after the bone graft implantation. (authors)

  6. Control systems engineering

    CERN Document Server

    Nise, Norman S

    1995-01-01

    This completely updated new edition shows how to use MATLAB to perform control-system calculations. Designed for the professional or engineering student who needs a quick and readable update on designing control systems, the text features a series of tightly focused examples that clearly illustrate each concept of designing control systems. Most chapters conclude with a detailed application from the two case studies that run throughout the book: an antenna asimuth control system and a submarine. The author also refers to many examples of design methods.

  7. Automotive systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Markus [Technische Univ. Braunschweig (Germany). Inst. fuer Regelungstechnik; Winner, Hermann (eds.) [Technische Univ. Darmstadt (Germany). Fachgebiet Fahrzeugtechnik

    2013-06-01

    Innovative state-of-the-art book. Presents brand new results of a joint workshop in the field of automotive systems engineering. Recommendable to students for further reading even though not a primary text book. This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as ''automotive systems engineering''. These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  8. Engineering Elegant Systems: Postulates, Principles, and Hypotheses of Systems Engineering

    Science.gov (United States)

    Watson, Michael D.

    2018-01-01

    Definition: System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system; Elegant System - A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation. Primary Focus: System Design and Integration: Identify system couplings and interactions; Identify system uncertainties and sensitivities; Identify emergent properties; Manage the effectiveness of the system. Engineering Discipline Integration: Manage flow of information for system development and/or operations; Maintain system activities within budget and schedule. Supporting Activities: Process application and execution.

  9. Experimental methodology to study radionuclide sorption and migration in geological formations and engineered barriers of waste repositories

    International Nuclear Information System (INIS)

    Rojo Sanz, H.

    2010-01-01

    In Spain, the waste management options include either the possibility of a final storage in a deep geological repository (DGR) or the centralized temporal surface disposal (CTS). DGRs are based in a multi-barrier concept with the geological barrier and including the vitrified waste, the metal containers and engineered barriers such as compacted bentonite and cement-based materials. On the other hand, CTS mainly considers concrete and cement to confine the metal canisters containing the waste. Radionuclide migration will mainly take place by the existence of chemical concentration gradients being thus diffusion the main transport mechanism or by the existence of hydraulic gradients due to the existence of water-conductive fractures. Radionuclide sorption/retention on the materials composing the natural and engineered barriers is the fundamental process controlling contaminant migration. The evaluation of sorption parameters and the understanding of the different mechanisms leading to radionuclide retention are very important issues. The study of diffusion processes is very relevant as well. This paper describes the main experimental methodologies applied to analyse radionuclide transport in the different barriers of radioactive repositories. Particularly we focused on obtaining of retention parameters as distribution coefficients, kd, or retardation factors, Rf, and diffusion coefficients of radionuclides. (Author) 6 refs.

  10. Transfer of accidentally released radionuclides in agricultural systems (TARRAS)

    International Nuclear Information System (INIS)

    Cancio, D.; Maubert, Colle; Rauret, G.; Grandison, A.S.

    1993-01-01

    The aim of this project is to contribute to the reliability of radiological assessment methods and establish a scientific base for the design of post-accident countermeasures. Three main aspects are considered in this project: A simulated accidental source term is used and the behaviour of aerosol deposits containing Sr, Cs and Ag isotopes are followed in some European soil-crop systems; the modification of radionuclide transfer rates through the food chain by well established food processing techniques is studied for Sr, Cs, Co and Ru; the project includes a study on the specific mediterranean diet and transfer data that are compared with currently used generic parameters. Seven contributions of the project for the reporting period are presented. (R.P.) 11 figs., 12 tabs

  11. Framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available In this paper a framework is proposed to perform systems engineering research within South Africa. It is proposed that within the reference of the National Research Foundation (NRF) classification of research, systems engineering is a Field...

  12. Intelligent systems engineering methodology

    Science.gov (United States)

    Fouse, Scott

    1990-01-01

    An added challenge for the designers of large scale systems such as Space Station Freedom is the appropriate incorporation of intelligent system technology (artificial intelligence, expert systems, knowledge-based systems, etc.) into their requirements and design. This presentation will describe a view of systems engineering which successfully addresses several aspects of this complex problem: design of large scale systems, design with requirements that are so complex they only completely unfold during the development of a baseline system and even then continue to evolve throughout the system's life cycle, design that involves the incorporation of new technologies, and design and development that takes place with many players in a distributed manner yet can be easily integrated to meet a single view of the requirements. The first generation of this methodology was developed and evolved jointly by ISX and the Lockheed Aeronautical Systems Company over the past five years on the Defense Advanced Research Projects Agency/Air Force Pilot's Associate Program, one of the largest, most complex, and most successful intelligent systems constructed to date. As the methodology has evolved it has also been applied successfully to a number of other projects. Some of the lessons learned from this experience may be applicable to Freedom.

  13. Introduction to CRRIS: a computerized radiological risk investigation system for assessing atmospheric releases of radionuclides

    International Nuclear Information System (INIS)

    Baes, C.F. III; Miller, C.W.; Kocher, D.C.; Sjoreen, A.L.; Murphy, B.D.

    1985-08-01

    The CRRIS is a Computerized Radiological Risk Investigation System consisting of eight fully integrated computer codes which calculate environmental transport of atmospheric releases of radionuclides and resulting doses and health risks to individuals or populations. Each code may also be used alone for various assessment applications. Radionuclides are handled by the CRRIS either in terms of the released radionuclides or the exposure radionuclides which consist of both the released nuclides and decay products that grow in during environmental transport. The CRRIS is not designed to simulate short-term effects. 51 refs

  14. Developing systems engineers

    CSIR Research Space (South Africa)

    Goncalves, D

    2008-07-01

    Full Text Available will have rendered him incapable of dealing with the majority of problems that will face him.” (Quoted in [12]). UP has applied the SPICES model, proposed by Harden et al. [12], for developing their medical curriculum. Some aspects of the model... are useful to developing systems engineers and will be considered in SE terms at a relevant level of detail. The SPICES model is contrasted against traditional medical curriculum approaches in TABLE 1. These are two extremes on a continuum. Traditional...

  15. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  16. New radionuclide specific laboratory detection system for metallurgical industry

    International Nuclear Information System (INIS)

    Burianova, L.; Solc, J.; Dryak, P.; Moser, H.; Branger, T.; Garcia-Torano, E.; Peyres, V.; Capogni, M.; Luca, A.; Vodenik, B.; Oliveira, C.; Portugal, L.; Tzika, F.; Lutter, G.; Szucs, L.; Dziel, T.; Burda, O.; Dirk, A.; Martinkovic, J.; Sliskonen, T.; Mattila, A.

    2014-01-01

    One of the main outputs of the European Metrology Research Programme (EMRP) project 'Ionising radiation metrology for the metallurgical industry' (MetroMetal) was the recommendation on a novel spectrometric detection system optimized for the measurement of radioactivity in metallurgical samples. The recommended system, prototypes of which were constructed at two project partner's laboratories, was characterized by using Monte Carlo (MC) simulations. Six different MC codes were used to model the system and a range of cylindrical samples of cast steel, slag and fume dust. The samples' shape, density, and elemental composition were the same as the ones of the calibration standards developed within the project to provide traceability to end-users. The MC models were used to calculate full-energy peak and total detection efficiencies as well as true coincidence summing correction (TCSC) factors for selected radionuclides of interest in the metallurgical industry: 60 Co, 137 Cs, 192 Ir, 214 Bi, 214 Pb, and 208 Tl. The MC codes were compared to each other on the basis of the calculated detection efficiencies and TCSC factors. In addition, a 'Procedural guide for calculation of TCSC factors for samples in metallurgical industry' was developed for end-users. The TCSC factors reached in certain cases up to 32% showing that the summing effects are of high importance in the close measurement geometries met in routine analysis of metallurgical samples. (authors)

  17. Systems Engineering Leadership Development: Advancing Systems Engineering Excellence

    Science.gov (United States)

    Hall, Phil; Whitfield, Susan

    2011-01-01

    This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

  18. Radionuclide imaging of bone marrow in hematologic systemic disease

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, F.; Hahn, K.; Gamm, H.

    1987-02-01

    Radionuclide imaging studies of the bone marrow were carried out in 164 patients suffering from hematologic systemic disease. One third of 90 patients with Hodgkin lymphoma (HL) or Non Hodgkin lymphoma (NHL) displayed a pathological distribution pattern representing bone marrow expansion. In HL there were 17% accumulation defects caused by metastases in contrast to only 7% in NHL. Among 30 patients with chronic myelocytic leukemia bone marrow expansion was found in 60%, bone marrow displacement and aplasia 10%. Focal bone marrow defects were found in 3 patients. All patients with primary polycythemia rubra vera displayed a pathologic bone marrow distribution pattern as well as splenomegaly. All patients with acute myelocytic leukemia (AML) and one patient with an acute lymphatic leukemia (ALL) had a pathological distribution pattern with bone marrow expansion and displacement. Focal bone marrow defects were not seen. Multiple myeloma with bone marrow expansion was found in 6 of 12 patients and focal accumulation defects were found in 40%, the latter lesions being not visible or equivocal on skeletal imaging studies. Pathological changes in liver and spleen were found in a high percentage of the total collective. The results document the important clinical value of bone marrow scintigraphy among the hematologic diseases studied.

  19. Ocean model system for radionuclides - validation and application to the Rokkasho coastal area

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    2010-01-01

    Coastal areas have complex environmental systems and often a high influence from the atmosphere, rivers and the open sea. A nuclear fuel reprocessing plant in Japan releases liquid radioactive waste from a discharge pipe to such a complex coastal area. Consequently, the development of radionuclide migration forecast system in the ocean plays an important rule for assessing the behavior of radionuclides in the coastal area. The development of ocean model systems will be presented and model application will also be described. (author)

  20. Endoprobe: A system for radionuclide-guided endoscopy

    International Nuclear Information System (INIS)

    Raylman, Raymond R.; Srinivasan, Amarnath

    2004-01-01

    Methods to guide the surgical treatment of cancer utilizing handheld beta-sensitive probes in conjunction with tumor-avid radiopharmaceuticals [such as 18 F-fluorodeoxyglucose (FDG)] have previously been developed. These technologies could also potentially be used to assist in minimally invasive techniques for the diagnosis of cancer. The goal of this project is to develop and test a system for performing radionuclide-guided endoscopies. This system (called Endoprobe) has four major subsystems: beta detector, position tracker, endoscope, and user interface. The beta detection unit utilizes two miniaturized solid state detectors to preferentially detect beta particles. The position tracking system allows real-time monitoring of the unit's location. The beta detector and position tracking system's receiver are mounted on the tip of an endoscope. Information from the beta detector and tracking system, in addition to the video signal from the endoscope, are combined and presented to the user via a computer interface. The system was tested in a simulated search for radiotracer-avid areas of esophageal cancer. The search for esophageal cancer was chosen because this type of cancer is often diagnosed with endoscopic procedures and has been reported to have good affinity for FDG. Accumulations of FDG in the normal organs of the abdomen were simulated by an anthropomorphic torso phantom filled with the appropriate amounts of radioactivity. A 1.5-mm-thick gelatin film containing FDG was used to simulate radiotracer uptake in the lining of normal esophagus. Esophageal lesions (both benign and malignant) were simulated by thin disks of gelatin (diameters=3.5-12 mm) containing appropriate concentrations of FDG embedded in the gelatin film simulating normal esophagus. Endoprobe facilitated visual identification and examination of the simulated lesions. The position tracking system permitted the location of the Endoprobe tip to be monitored and plotted in real time on a

  1. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description. Appendix I. Engineering drawings

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    The engineering plans for a test facility to monitor radionuclide transport in water through partially saturated geological media are included. Drawings for the experimental set-up excavation plan and details, lysimeter, pad, access caisson, and caisson details are presented

  2. Study of Scramjet Engine System

    OpenAIRE

    苅田, 丈士; KANDA, Takeshi

    2001-01-01

    1. Introduction The scramjet engine for the single-stage-to-orbit (SSTO) aerospace plane has been studied in the ramjet propulsion research division. The problems of the scramjet are (1) combustion, (2) light structure, (3) startability of the inlet, (4) integration of engines, and (5) cooling. The construction of the cooling system is important for the scramjet engine, because of high heat flux during operation. Cooling is not only a problem for the engine itself, but also for the airframe. ...

  3. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  4. NASA System Engineering Design Process

    Science.gov (United States)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  5. Radionuclides in the ecological system of the Boka Kotorska Bay

    International Nuclear Information System (INIS)

    Martic, M.; Ajdacic, N.

    1988-01-01

    In order to determine radioactive contamination in the South Adriatic region after May, 1986, activities of 21 radionuclides of natural and artificial origin were determined by gamma-spectrometry in the samples of sea water, sediments and several characteristic types of organisms collected on several locations in the Boka Kotorska Bay and open sea. Quantitative data on radionuclide contents are presented. Change of activity levels with respect to the 'zero state' determined for this region during previous years is also discussed. (author) 6 refs.; 4 tabs

  6. Behaviour of transuranic radionuclides in soils, plants and soil-plant system

    International Nuclear Information System (INIS)

    Vyas, B.N.; Mistry, K.B.

    1996-01-01

    The present paper reviews the investigations undertaken to elucidate the physicochemical, edaphic and physiological aspects of the behaviour of long-lived transuranic radionuclides 239 Pu and 241 Am in typical Indian soils and soil-plant systems. 23 refs

  7. Recommendation systems in software engineering

    CERN Document Server

    Robillard, Martin P; Walker, Robert J; Zimmermann, Thomas

    2014-01-01

    With the growth of public and private data stores and the emergence of off-the-shelf data-mining technology, recommendation systems have emerged that specifically address the unique challenges of navigating and interpreting software engineering data.This book collects, structures and formalizes knowledge on recommendation systems in software engineering. It adopts a pragmatic approach with an explicit focus on system design, implementation, and evaluation. The book is divided into three parts: "Part I - Techniques" introduces basics for building recommenders in software engineering, including techniques for collecting and processing software engineering data, but also for presenting recommendations to users as part of their workflow.?"Part II - Evaluation" summarizes methods and experimental designs for evaluating recommendations in software engineering.?"Part III - Applications" describes needs, issues and solution concepts involved in entire recommendation systems for specific software engineering tasks, fo...

  8. Washing of Cloth Contaminated with Radionuclides Using a Detergent-free Laundry System

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Sung Paal

    2005-07-01

    In this study, a new laundry system to wash clothes without using detergent (detergent-free) was applied to wash clothes contaminated with radionuclides at the RWTF of KAERI. If the clothes contaminated with radionuclides and soil decontaminated and cleaned by washing without using detergent, the problem caused by the detergent could be solved naturally. The experiment was performed in two stages. In the first stage, washability of the processed water from the detergent=free laundry system was investigated with regard to its decontamination efficiency for the radionuclides and the detergency for the soil by using the test cloth specimens. In the second stage, real working clothes contaminated with radionuclides from the RWTF were washed by using a laundry machine equipped with a detergent-free system. Decontamination and detergency of the clothes were estimated after washing and the wastewater was also analyzed for its properties.

  9. Dynamic Systems and Control Engineering

    International Nuclear Information System (INIS)

    Kim, Jong Seok

    1994-02-01

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  10. Dynamic Systems and Control Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seok

    1994-02-15

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  11. System safety engineering analysis handbook

    Science.gov (United States)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  12. Power systems engineering and mathematics

    CERN Document Server

    Knight, U G

    1972-01-01

    Power Systems Engineering and Mathematics investigates the application of mathematical aids, particularly the techniques of resource planning, to some of the technical-economic problems of power systems engineering. Topics covered include the process of engineering design and the use of computers in system design and operation; power system planning and operation; time scales and computation in system operation; and load prediction and generation capacity. This volume is comprised of 13 chapters and begins by outlining the stages in the synthesis of designs (or operating states) for engineerin

  13. Systems and Control Engineering

    Indian Academy of Sciences (India)

    design of civil engineering structures has been noted. Protecting ci vil ... R despite disturbing forces such as wind gusts, changes in ambient temperature, etc .. Brief History of ... frequency regulation, boiler control for steam generation, electric.

  14. Radionuclide cisternography

    International Nuclear Information System (INIS)

    Song, H.H.

    1980-01-01

    The purpose of this thesis is to show that radionuclide cisternography makes an essential contribution to the investigation of cerebrospinal fluid (CSF) dynamics, especially for the investigation of hydrocephalus. The technical details of radionuclide cisternography are discussed, followed by a description of the normal and abnormal radionuclide cisternograms. The dynamics of CFS by means of radionuclide cisternography were examined in 188 patients in whom some kind of hydrocephalus was suspected. This study included findings of anomalies associated with hydrocephalus in a number of cases, such as nasal liquorrhea, hygromas, leptomeningeal or porencephalic cysts. The investigation substantiates the value of radionuclide cisternography in the diagnosis of disturbances of CSF flow. The retrograde flow of radiopharmaceutical into the ventricular system (ventricular reflux) is an abnormal phenomenon indicating the presence of communicating hydrocephalus. (Auth.)

  15. Systems engineering and integration as a foundation for mission engineering

    OpenAIRE

    Beam, David F.

    2015-01-01

    Approved for public release; distribution is unlimited This paper investigates the emerging term mission engineering through the framework of systems engineering and systems integration. Systems engineering concepts, processes, and methodologies are extrapolated for use in conjunction with a systems integration, life-cycle based framework to effect mission engineering. The specific systems engineering concepts of measures of effectiveness, performance and suitability are recommended as fou...

  16. Engine systems and methods of operating an engine

    Energy Technology Data Exchange (ETDEWEB)

    Scotto, Mark Vincent

    2018-01-23

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  17. Engine systems and methods of operating an engine

    Science.gov (United States)

    Scotto, Mark Vincent

    2015-08-25

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  18. MECHATRONICS SYSTEM ENGINEERING FOR

    DEFF Research Database (Denmark)

    Conrad, Finn; Roli, Francesco

    2005-01-01

    rotary vane actuator for robot manipulators is presented. The contribution proposes mathematical modelling, control and simulation of a novel water hydraulic rotary vane actuator applied to power and control a three-links manipulator. The results include engineering design and test of the proposed...

  19. Applications of extraction chromatography in the development of radionuclide generator systems for nuclear medicine

    International Nuclear Information System (INIS)

    Dietz, M.L.; Horwitz, E.P.

    2000-01-01

    Numerous methods have been described for the separation and purification of radionuclides for application in diagnostic and therapeutic nuclear medicine, among them ion exchange, solvent extraction, and various forms of chromatography. Although extraction chromatography has previously been shown to provide a means of performing a number of separations of potential use in radionuclide generator systems, the application of the technique to generator development has thus far been limited. Recent work directed at improved methods for the determination of radionuclides in biological and environmental samples has led to the development of a series of novel extraction chromatographic resins exhibiting enhanced metal ion retention from strongly acidic media and excellent selectivity, among them materials suitable for the isolation of 212 Bi, 90 Y, and 213 Bi. These resins, along with extraction chromatographic materials employing functionalized supports to improve their physical stability or metal ion retention properties, are shown to offer promise in the development of improved radionuclide generators

  20. Transformation processes influencing physico-chemical forms of radionuclides and trace elements in natural water systems

    International Nuclear Information System (INIS)

    Salbu, B.; Riise, G.; Oughton, D.H.

    1995-01-01

    In order to assess short and long term consequences of radionuclides and trace elements introduced to aquatic systems, knowledge on source terms, key factors and key processes influencing the speciation is essential. The mobility, bioavailability and subsequent transfer into food chains depend on the physico-chemical forms on radionuclides and trace metals. In addition, transformation processes and especially the interaction with natural organic matter (NOM) influences the distribution pattern. Furthermore, the prevailing climate conditions, e.g. episodic events and temperature are vital for fluxes and for the kinetics of the transformation processes. In the present work processes in catchments and processes associated with acidification, episodic events, climate conditions (temperature) and mixing zone phenomena influencing the speciation of radionuclides and trace metals are highlighted. These processes should be highly relevant for assessing far field consequences of radionuclides potentially released from disposal sites. (authors). 21 refs., 8 figs., 1 tab

  1. Systems engineering for very large systems

    Science.gov (United States)

    Lewkowicz, Paul E.

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  2. Engineering Information System (EIS)

    Science.gov (United States)

    1992-01-31

    be availabe and usefu for creating powerful tailored contro and mangeen functions. Mode and Framwork Wirth further elaboration of the EIS portio of...control data and activities of the engineering process. The EIM is a conceptual model of administrative and electroic design information. It records...of the access opeations are derived from the instance variable name and type. An attribute conceptually holds one or more instances of a basic type

  3. System dynamics for mechanical engineers

    CERN Document Server

    Davies, Matthew

    2015-01-01

    This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: ·         Reinforces the connection between the subject matter and engineering reality ·         Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements ·         Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high...

  4. Systems Engineering a Naval Railgun

    National Research Council Canada - National Science Library

    Bean, John; Shebalin, Paul; Solitario, William

    2006-01-01

    ... to a viable acquisition program. The detailed formulation and application of the railgun systems engineering process will be defined by government acquisition agents and the selected private sector contractors in accordance with United States (US...

  5. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    International Nuclear Information System (INIS)

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines

  6. Automatic control systems engineering

    International Nuclear Information System (INIS)

    Shin, Yun Gi

    2004-01-01

    This book gives descriptions of automatic control for electrical electronics, which indicates history of automatic control, Laplace transform, block diagram and signal flow diagram, electrometer, linearization of system, space of situation, state space analysis of electric system, sensor, hydro controlling system, stability, time response of linear dynamic system, conception of root locus, procedure to draw root locus, frequency response, and design of control system.

  7. KESS: Knowledge Engineering Support System

    OpenAIRE

    Said, Mohamed Ben; Dougherty, Nini; Anderson, Curtis; Altman, Stanley J.; Bouhaddou, Omar; Warner, Homer R.

    1987-01-01

    KESS (Knowledge Engineering Support System) is a relational information management system created at the University of Utah to document each step in the building of four expert knowledge bases. In weekly knowledge engineering sessions, groups of experts propose decision making criteria and examine information sources in the process of creating HELP knowledge frames. KESS utilizes many-to-many links with multiple files and central link files to track the different kinds of information generate...

  8. Transfer of Chernobyl radionuclides in the aquatic systems

    International Nuclear Information System (INIS)

    Zhukova, O.; Shiryaeva, N.; Shagalova, E.; Bakarykava, Zh.

    2003-01-01

    The data on radioecology of the rivers of Belarus, which catchment area is completely or partly situated in Russia and the Ukraine (the Sozh, the Iput, the Besed, the Braginka) are given. The radioactive contamination of lakes are represent. The article demonstrates, that nowadays Chernobyl radionuclides content in surface water depends on wash-off from contaminated territories, groundwater leakage, and composition of bottom sediments. Wash out by rain and melted water is considered to be the most permanent and hazardous. The accumulation of radioactive sediments before dams, in stagnant zones of rivers and reservoirs creates moving local cites of increased concentration. Today and for forthcoming decades the main input into water contamination will be Cs-137, Sr-90 and for the nearest Chernobyl PP zone - isotopes of plutonium as well as Am-241. The migration of radionuclides on the experimental watershed of the Iput river was investigated. The studies have shown that the contamination of the Iput river in the territory of Belarus was influenced by the transboundary transfer of radionuclides from the territory of Russia during first years after Chernobyl accident. According to our estimates, at the end of 1986, this contribution amounted to 30% for Cs-137 and 96% for Sr-90; as of-now, it is 86% and 65% for Cs-137 and Sr-90, respectively. The concentration of Cs-137 in bottom sediments on some sites in the Braginka river (12940 - 49760 Bq/kg), the Revuchee lake (10345 - 18260 Bq/kg) and the Svyatskoe lake (11618 - 16430 Bq/kg) are so great, that they can be attributed to low-level waste storage facilities (9630 Bq/kg). Such high levels of radioactive contamination of bottom sediments are secondary sources of pollution of surface water. (authors)

  9. Radionuclide therapy: regional and systemic routes of administration

    International Nuclear Information System (INIS)

    Shapiro, B.

    1991-01-01

    The optimal sequencing and integration of radiopharmaceutical therapy with respect to the multiple and competing therapeutic modalities is examined. It is estimated that the central goal of therapeutic nuclear medicine is to increase radiopharmaceutical delivery to tumour targets while sparing sensitive normal tissues. Among the factors to be considered in the choice of therapeutic radionuclides are: the decay mode, gamma-ray yield, half-lives and chemical reactivity. Several routes of administration are discussed and a number of manipulations which may be used to further improve radioparmaceutical delivery are outlined. The difficulty to perform accurate radiation dosimetry is also briefly examined. 14 refs., 1 tab

  10. Distribution of natural and artificial radionuclides in chernozem soil/crop system from stationary experiments.

    Science.gov (United States)

    Sarap, Nataša B; Rajačić, Milica M; Đalović, Ivica G; Šeremešić, Srđan I; Đorđević, Aleksandar R; Janković, Marija M; Daković, Marko Z

    2016-09-01

    The present paper focuses on the determination of radiological characteristics of cultivated chernozem soil and crops from long-term field experiments, taking into account the importance of distribution and transfer of radionuclides in the soil-plant system, especially in agricultural cropland. The investigation was performed on the experimental fields where maize, winter wheat, and rapeseed were cultivated. Analysis of radioactivity included determination of the gross alpha and beta activity as a screening method, as well as the activities of the following radionuclides: natural ((210)Pb, (235)U, (238)U, (226)Ra, (232)Th, (40)K, (7)Be) and artificial ((90)Sr and (137)Cs). The activities of natural and artificial ((137)Cs) radionuclides were determined by gamma spectrometry, while the artificial radionuclide (90)Sr was determined by a radiochemical analytical method. Based on the obtained results for the specific activity of (40)K, (137)Cs, and (90)Sr, accumulation factors for these radionuclides were calculated in order to estimate transfer of radionuclides from soil to crops. The results of performed analyses showed that there is no increase of radioactivity that could endanger the food production through the grown crops.

  11. The Q system and the radiotoxicity of the radionuclides

    International Nuclear Information System (INIS)

    Hamard, J.

    1989-01-01

    The first edition of the International Atomic Energy Agency (IAEA) Regulations for the safe transport of radioactive materials was issued in 1962. The transported radionuclides were distributed into three groups according to their radiotoxicity. The radiotoxicity was evaluated by means of an injury index taking into account the dose equivalent received following a mean accident by incorporation, by inhalation, by ingestion or by wound. The 1962 regulations introduced the terminology of type A and type B packages and the nature of mean accident during which a person can incorporate an activity equal to 1/10 6 of the activity contained in the type A package. The reference dose equivalent was equal to 1/4 of the annual limit of equivalent dose for workers (in the following, they use dose in place of equivalent dose). Following these criteria the transported radionuclides were distributed into three groups of radiotoxicity: Very high - High - Low or moderate. The nature of special form materials and of low specific activity materials (LSA) was also introduced by reference to the incorporation of mass superior to 1 mg

  12. Diffusion of radionuclides in concrete/bentonite systems

    International Nuclear Information System (INIS)

    Albinsson, Y.; Boerjesson, S.; Andersson, K.; Allard, B.

    1993-02-01

    In a repository for nuclear waste, different construction materials will be used. Two important materials among these are concrete and bentonite clay. These will act as mechanical barriers, preventing convective water flow and also retard transport due to diffusion of dissolved radionuclides by a combination of mechanical constraints and chemical interactions with the solid. An important issue is the possible change of the initial sodium bentonite into the calcium form due to ion exchange with calcium from the cement. The initial leaching of the concrete has been studied using radioactive spiked concrete in contact with compacted bentonite. The diffusion of Cs, Am and Pu into 5 different types of concrete in contact with porewater have been measured. The measured diffusivity for Cs agrees reasonable well with data found in literature. For Am and Pu no movement could be measured (less than 0.2 mm) even though the contact times were extremely long (2.5 y and 5 y, respectively). This report gives also a summary of the previously published results about sorption and diffusion of radionuclides in cement performed in Prav/KBS/SKB projects 1980-1990. 25 refs

  13. Monitoring and characterization of radionuclide transport in the hydrogeologic system

    International Nuclear Information System (INIS)

    Phillips, S.J.; Raymond, J.R.

    1975-01-01

    The groundwater monitoring program provides information and data on groundwater quality required to evaluate the impact of waste disposal practices on the Hanford Reservation. The program includes: collection and analysis of groundwater samples on a routine basis; data processing, analysis and reporting; design, construction and maintenance of well sampling structures; and design and implementation of supporting research studies. Within the overall framework of the Groundwater Monitoring Program, the 300 Area and Wye Burial Ground Characterization Program was initiated to evaluate transport of radionuclides in the partially saturated zone above the water table and to provide site characterization at solid waste burial locations on the Reservation. Methods for collecting and analyzing program data include geophysical exploration by ground penetrating radar, refraction and reflection acoustics, magnetics, and metal detection; stratigraphic investigations by drilling and sample collection techniques; evaluation of transport phenomena by in situ psychrometric and gamma-neutron techniques; laboratory characterization of fluid and vapor transport-controlling mechanisms; and evaluation of biological radionuclide transport by organisms inhabiting contaminated areas

  14. Photovoltaic systems engineering

    CERN Document Server

    Messenger, Roger A

    2010-01-01

    BackgroundPopulation and Energy DemandEnergy UnitsCurrent World Energy Use PatternsExponential GrowthHubbert's Gaussian ModelNet Energy, Btu Economics, and the Test for SustainabilityDirect Conversion of Sunlight to Electricity with PhotovoltaicsThe SunThe Solar SpectrumThe Effect of Atmosphere on SunlightSunlight SpecificsCapturing SunlightIntroduction to PV SystemsThe PV CellThe PV ModuleThe PV ArrayEnergy StoragePV System LoadsPV System AvailabilityAssociated System Electronic ComponentsGeneratorsBalance of System (BOS) ComponentsGrid-Connected Utility-Interactive PV SystemsApplicable Codes and StandardsDesign Considerations for Straight Grid-Connected PV SystemsDesign of a System Based on Desired Annual System PerformanceDesign of a System Based on Available Roof SpaceDesign of a Microinverter-Based SystemDesign of a Nominal 21 kW System that Feeds a Three-Phase Distribution PanelDesign of a Nominal 250 kW SystemSystem Performance MonitoringMechanical ConsiderationsImportant Properties of MaterialsEstabli...

  15. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  16. MEMS Rotary Engine Power System

    Science.gov (United States)

    Fernandez-Pello, A. Carlos; Pisano, Albert P.; Fu, Kelvin; Walther, David C.; Knobloch, Aaron; Martinez, Fabian; Senesky, Matt; Stoldt, Conrad; Maboudian, Roya; Sanders, Seth; Liepmann, Dorian

    This work presents a project overview and recent research results for the MEMS Rotary Engine Power System project at the Berkeley Sensor & Actuator Center of the University of California at Berkeley. The research motivation for the project is the high specific energy density of hydrocarbon fuels. When compared with the energy density of batteries, hydrocarbon fuels may have as much as 20x more energy. However, the technical challenge is the conversion of hydrocarbon fuel to electricity in an efficient and clean micro engine. A 12.9 mm diameter Wankel engine will be shown that has already generated 4 Watts of power at 9300rpm. In addition, the 1mm and 2.4 mm Wankel engines that BSAC is developing for power generation at the microscale will be discussed. The project goal is to develop electrical power output of 90milliwatts from the 2.4 mm engine. Prototype engine components have already been fabricated and these will be described. The integrated generator design concept utilizes a nickel-iron alloy electroplated in the engine rotor poles, so that the engine rotor also serves as the generator rotor.

  17. Hydrogeological modelling for assessment of radionuclide release scenarios for the repository system 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, L.; Hoek, J.; Swan, D.; Appleyard, P.; Baxter, S.; Roberts, D.; Simpson, T. [AMEC (United Kingdom)

    2013-07-15

    Posiva Oy is responsible for implementing the programme for geological disposal of spent nuclear fuel produced by its owners Teollisuuden Voima Oyj (TVO) and Fortum Power and Heat Oy in Finland. Olkiluoto in Eurajoki has been selected as the primary site for the repository, subject to further detailed investigation which is currently focused on the construction of an underground rock characterisation and research facility (the ONKALO). An essential part of the assessment of long-term safety of a repository is the analysis of groundwater flow since it is the only means of transport of radionuclides to the biosphere (besides human intrusion). The analysis of long-term safety for a KBS-3 concept requires as input a description of details of the groundwater flow around and through components of the engineered barrier system as well as details of the groundwater pathway to the biosphere during the current temperate climate period, as well as indications of behaviour under future climate periods such as glacial conditions. This report describes the groundwater flow modelling study performed to provide some of the necessary inputs required by Safety Assessment (i.e. radionuclide transport analysis). Underlying this study is the understanding of the site developed during the site investigations as summarised in the site descriptive model (SDM), and in particular the description of Olkiluoto Hydrogeological DFN model (Hydro-DFN). The main focus of this study is the temperate climate period, i.e. the evolution over the next 10,000 years, but the hydrogeological situation under various glacial climate conditions is also evaluated. Primary outputs of the study are repository performance measures relating to: the distributions of groundwater flow around the deposition holes; deposition tunnels and through the EDZ; flow-related transport resistance along groundwater pathways from the repository to the surface; and their the exit locations. Other analyses consider the

  18. Hydrogeological modelling for assessment of radionuclide release scenarios for the repository system 2012

    International Nuclear Information System (INIS)

    Hartley, L.; Hoek, J.; Swan, D.; Appleyard, P.; Baxter, S.; Roberts, D.; Simpson, T.

    2013-07-01

    Posiva Oy is responsible for implementing the programme for geological disposal of spent nuclear fuel produced by its owners Teollisuuden Voima Oyj (TVO) and Fortum Power and Heat Oy in Finland. Olkiluoto in Eurajoki has been selected as the primary site for the repository, subject to further detailed investigation which is currently focused on the construction of an underground rock characterisation and research facility (the ONKALO). An essential part of the assessment of long-term safety of a repository is the analysis of groundwater flow since it is the only means of transport of radionuclides to the biosphere (besides human intrusion). The analysis of long-term safety for a KBS-3 concept requires as input a description of details of the groundwater flow around and through components of the engineered barrier system as well as details of the groundwater pathway to the biosphere during the current temperate climate period, as well as indications of behaviour under future climate periods such as glacial conditions. This report describes the groundwater flow modelling study performed to provide some of the necessary inputs required by Safety Assessment (i.e. radionuclide transport analysis). Underlying this study is the understanding of the site developed during the site investigations as summarised in the site descriptive model (SDM), and in particular the description of Olkiluoto Hydrogeological DFN model (Hydro-DFN). The main focus of this study is the temperate climate period, i.e. the evolution over the next 10,000 years, but the hydrogeological situation under various glacial climate conditions is also evaluated. Primary outputs of the study are repository performance measures relating to: the distributions of groundwater flow around the deposition holes; deposition tunnels and through the EDZ; flow-related transport resistance along groundwater pathways from the repository to the surface; and their the exit locations. Other analyses consider the

  19. Radionuclide distributions and sorption behavior in the Susquehanna--Chesapeake Bay System

    International Nuclear Information System (INIS)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; McLean, R.I.; Domotor, S.L.

    1989-01-01

    Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout 137 Cs; reactor-released 137 Cs, 134 Cs, 65 Zn, 60 Co, and 58 Co; and naturally occurring 7 Be and 210 Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioning among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs

  20. Engineering MerR for Sequestration and MerA for Reduction of Toxic Metals and Radionuclides

    International Nuclear Information System (INIS)

    Summers, Anne O.

    2008-01-01

    The objectives of this project were (1) to alter a metalloregulatory protein (MerR) so that it would bind other toxic metals or radionuclides with similar affinity so that the engineered protein itself and/or bacteria expressing it could be deployed in the environment to specifically sequester such metals and (2) to alter the mercuric reductase, MerA, to reduce radionuclides and render them less mobile. Both projects had a basic science component. In the first case, such information about MerR illuminates how proteins discriminate very similar metals/elements. In the second case, information about MerA reveals the criteria for transmission of reducing equivalents from NADPH to redox-active metals. The work involved genetic engineering of all or parts of both proteins and examination of their resultant properties both in vivo and in vitro, the latter with biochemical and biophysical tools including equilibrium and non-equilibrium dialysis, XAFS, NMR, x-ray crystallography, and titration calorimetry. We defined the basis for metal specificity in MerR, devised a bacterial strain that sequesters Hg while growing, characterized gold reduction by MerA and the role of the metallochaperone domain of MerA, and determined the 3-D structure of MerB, the organomercurial lyase.

  1. Hydrology of the solid waste burial ground as related to potential migration of radionuclides, Idaho National Engineering Laboratory

    Science.gov (United States)

    Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.

    1976-01-01

    A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)

  2. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    Energy Technology Data Exchange (ETDEWEB)

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

  3. Computational Intelligence for Engineering Systems

    CERN Document Server

    Madureira, A; Vale, Zita

    2011-01-01

    "Computational Intelligence for Engineering Systems" provides an overview and original analysis of new developments and advances in several areas of computational intelligence. Computational Intelligence have become the road-map for engineers to develop and analyze novel techniques to solve problems in basic sciences (such as physics, chemistry and biology) and engineering, environmental, life and social sciences. The contributions are written by international experts, who provide up-to-date aspects of the topics discussed and present recent, original insights into their own experien

  4. Cenotic and physiological control of the radionuclides migration into system soil-plant

    International Nuclear Information System (INIS)

    Kravets, A.P.

    1998-01-01

    . Investigation into the various aspects of biological control of radionuclide migration in the soil-plant system is proposed as a necessary step in the development of the modern management methods for soil reclamation

  5. Mathematical modelling in radionuclide diagnosis of physiologic systems state

    International Nuclear Information System (INIS)

    Narkevich, B.Ya.

    1981-01-01

    It is shown that the development of software for radionuclide functional diagnostics should be carried out in two directions: 1) increasing the accuracy of radiographic measurements proper; 2) increasing clinical and diagnostic informativeness in the interpretation of the results of measurements. The realization of the first problem is reduced to a mathematical model of the measurement process and the computerized selection of optimum radiography parameters and regimes. The second problem is not solved in the general form, as the interpretation of measurement results depends on the specific clinical and diagnostic aim of investigation, indicator type and the way of its administration in the organism, etc. The lecture gives the classification of the mathematical models of indicator transport, techniques of identification of model parameters. Methods promoting the increase in the accuracy of model identification are presented [ru

  6. The foundation of computer based closed radionuclide sources turnover control system in Moscow city region

    International Nuclear Information System (INIS)

    Gusev, A.E.; Kozlov, A.A.; Lavrov, K.N.; Sobolev, I.A.

    1998-01-01

    This paper concerns the problem of Closed Radionuclide Sources (CRS) automated account and control in Moscow city and Moscow region. Information relations structure between authorities and enterprises is shown. Special computer oriented system of CRS turnover monitoring is used for this purposes. Its possibilities and numeric characteristics of database are mentioned. This system benefit and application aspects are discussed in detail. (author)

  7. Industrial and Systems Engineering Applications in NASA

    Science.gov (United States)

    Shivers, Charles H.

    2006-01-01

    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  8. Screening candidate systems engineers: a research design

    CSIR Research Space (South Africa)

    Goncalves, DP

    2009-07-01

    Full Text Available engineering screening methodology that could be used to screen potential systems engineers. According to their design, this can be achieved by defining a system engineering profile according to specific psychological attributes, and using this profile...

  9. Engineering Multiagent Systems - Reflections

    DEFF Research Database (Denmark)

    Villadsen, Jørgen

    2012-01-01

    In the first part I look at a theater performance by artistic director Troels Christian Jakobsen as a multiagent system. It is designed as a self-organising critical system using a framework where within its borders but without a script there is real interaction between the elements of the perfor......In the first part I look at a theater performance by artistic director Troels Christian Jakobsen as a multiagent system. It is designed as a self-organising critical system using a framework where within its borders but without a script there is real interaction between the elements...... of the performance. In the second part I discuss the ideas behind my recent monograph on propositional attitudes and inconsistency tolerance. Natural language sentences are parsed using a categorial grammar and correctness of arguments are decided using a paraconsistent logic. In the third part I present...

  10. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Information is given on each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of CTR concepts, and (4) cross section measurements and techniques

  11. Automotive systems engineering

    CERN Document Server

    Winner, Hermann

    2013-01-01

    This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as  “automotive systems engineering”.  These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  12. Systems Engineering Management Procedures

    Science.gov (United States)

    1966-03-10

    hls -iii-rit. -miiiirme 4 --tandnirdized hle iil*ri oa;iu ’ -enperfrm)a- -yýfefi ~lall uitm l--im eniai~ atar n which will lumPremiiieuiea -. v-imli m...with standard component/part selection. and de- tile total system requirements stated in the Sys- tailed functional and physical interfaces: eval- tern...system survivability requirAent. As physical , interface, time, environment, use of these facility requirements are bei developed, standard perts; and

  13. Computer systems and software engineering

    Science.gov (United States)

    Mckay, Charles W.

    1988-01-01

    The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.

  14. Object Based Systems Engineering

    Science.gov (United States)

    2011-10-17

    practically impossible where the original SMEs are unavailable or lack perfect recall. 7. Capture the precious and transient logic behind this...complex system. References 1. FITCH, J. Exploiting Decision-to-Requirements Traceability, briefing to NDIA CMMI Conference, November, 2009 2

  15. Systems Security Engineering

    Science.gov (United States)

    2010-08-22

    environment that contains network- borne cybersecurity threats, an argument may be made that the firewall increases overall system functionality by reserving...the number of administered devices. This approach to security analysis is at once old and new. In the early days of eCommerce , security

  16. Introducing Model-Based System Engineering Transforming System Engineering through Model-Based Systems Engineering

    Science.gov (United States)

    2014-03-31

    Web  Presentation...Software  .....................................................  20   Figure  6.  Published   Web  Page  from  Data  Collection...the  term  Model  Based  Engineering  (MBE),  Model  Driven  Engineering  ( MDE ),  or  Model-­‐Based  Systems  

  17. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Research during this report period has covered the following areas: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) MACKLIB-IV, a new library of nuclear response functions, (5) energy storage and power supply requirements for commercial fusion reactors, (6) blanket/shield design evaluation for commercial fusion reactors, and (7) cross section measurements, evaluations, and techniques

  18. Security systems engineering overview

    International Nuclear Information System (INIS)

    Steele, B.J.

    1996-01-01

    Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose a threat. The crime in this country has been estimated at $70 billion in direct costs and up to $300 billion in indirect costs. Health insurance fraud alone is estimated to cost American businesses $100 billion. Theft, warranty fraud, and counterfeiting of computer hardware totaled $3 billion in 1994. A threat analysis is a prerequisite to any security system design to assess the vulnerabilities with respect to the anticipated threat. Having established a comprehensive definition of the threat, crime prevention, detection, and threat assessment technologies can be used to address these criminal activities. This talk will outline the process used to design a security system regardless of the level of security. This methodology has been applied to many applications including: government high security facilities; residential and commercial intrusion detection and assessment; anti-counterfeiting/fraud detection technologies (counterfeit currency, cellular phone billing, credit card fraud, health care fraud, passport, green cards, and questionable documents); industrial espionage detection and prevention (intellectual property, computer chips, etc.); and security barrier technology (creation of delay such as gates, vaults, etc.)

  19. Security systems engineering overview

    Science.gov (United States)

    Steele, Basil J.

    1997-01-01

    Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose a threat. The crime in this country has been estimated at 70 billion dollars in direct costs and up to 300 billion dollars in indirect costs. Health insurance fraud alone is estimated to cost American businesses 100 billion dollars. Theft, warranty fraud, and counterfeiting of computer hardware totaled 3 billion dollars in 1994. A threat analysis is a prerequisite to any security system design to assess the vulnerabilities with respect to the anticipated threat. Having established a comprehensive definition of the threat, crime prevention, detection, and threat assessment technologies can be used to address these criminal activities. This talk will outline the process used to design a security system regardless of the level of security. This methodology has been applied to many applications including: government high security facilities; residential and commercial intrusion detection and assessment; anti-counterfeiting/fraud detection technologies; industrial espionage detection and prevention; security barrier technology.

  20. IDC Re-Engineering Phase 2 System Specification Document Version 1.5

    Energy Technology Data Exchange (ETDEWEB)

    Satpathi, Meara Allena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burns, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harris, James M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This document contains the system specifications derived to satisfy the system requirements found in the IDC System Requirements Document for the IDC Re-Engineering Phase 2 project. This System Specification Document (SSD) defines waveform data processing requirements for the International Data Centre (IDC) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). The routine processing includes characterization of events with the objective of screening out events considered to be consistent with natural phenomena or non-nuclear, man-made phenomena. This document does not address requirements concerning acquisition, processing and analysis of radionuclide data but does include requirements for the dissemination of radionuclide data and products.

  1. Systems engineering at the nanoscale

    Science.gov (United States)

    Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

    2012-06-01

    Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

  2. Systems Engineering 2010 Workshop | Wind | NREL

    Science.gov (United States)

    0 Workshop Systems Engineering 2010 Workshop The 1st NREL Wind Energy Systems Engineering Workshop of the system engineering model. In the middle of the model is optimization, metric tracking &M model, capital cost model, and balance of station. Systems engineering represents a holistic

  3. Radionuclide inventories for short run-time space nuclear reactor systems

    International Nuclear Information System (INIS)

    Coats, R.L.

    1993-01-01

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems

  4. MOIRA models and methodologies for assessing the effectiveness of countermeasures in complex aquatic systems contaminated by radionuclides

    International Nuclear Information System (INIS)

    Monte, L.; Haakanson, L.; Gallego Diaz, E.

    1999-01-01

    The present report is composed of a set of articles written by the partners of the MOIRA project (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas). The report describes models for predicting the behaviour of radionuclides in complex aquatic systems and the effects of countermeasures for their restoration [it

  5. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    International Nuclear Information System (INIS)

    Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

    2009-01-01

    Battelle-Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy's Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided

  6. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barfuss, Brad C.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2009-04-08

    Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  7. Radionuclide mobility in the shallow portion of an active high-temperature geothermal system

    International Nuclear Information System (INIS)

    Sturchio, N.C.; Seitz, M.G.

    1984-01-01

    Accurate knowledge of the behavior of radionuclides in natural rock-water systems is crucial for the prediction of the consequences of failure of a high-level nuclear waste repository. Work in progress at Argonne National Laboratory involves the detailed geochemical analysis of rock, mineral, and water samples from shallow drill holes in a thermal area of Yellowstone National Park. This study is designed to provide data that will increase our understanding of the behavior of a group of radionuclides in an environment similar to that of the near field of a high-level nuclear waste repository

  8. Implementation of the aquatic radionuclide transport models RIVTOX and COASTOX into the RODOS System

    International Nuclear Information System (INIS)

    Gofman, D.; Lyashenko, G.; Marinets, A.; Mezhueva, I.; Shepeleva, T.; Tkalich, P.; Zheleznyak, M.

    1996-01-01

    The one -dimensional model of radionuclide transport in a network of river channel RIVTOX and two-dimensional lateral-longitudinal model of radionuclide transport in rivers, reservoirs and shallow lakes COASTOX have been implemented into the hydrological model chain of the decision support system RODOS. The software framework is developed to operate the models and to support their coupling with the other parts of RODOS hydrological model chain. The validation studies were performed for RIVTOX and COASTOX on the base of the data sets from Ukrainian, German and United States rivers

  9. TWRS Systems Engineering Working Plan

    International Nuclear Information System (INIS)

    Eiholzer, C.R.

    1994-01-01

    The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop a technical baseline within TWRS. Section 5.0 covers the plans and schedules to implement the SE process and management within TWRS. Detailed information contained in the TWRS Program SEMP is not repeated in this document. This SEWP and the SE discipline defined within apply to the TWRS Program and new and ongoing TWRS projects or activities, including new facilities and safety. The SE process will be applied to the existing Tank Farm operations where the Richland TWRS Program Office management determines the process appropriate and where value will be added to existing Tank Farm system and operations

  10. 40 CFR 141.26 - Monitoring frequency and compliance requirements for radionuclides in community water systems.

    Science.gov (United States)

    2010-07-01

    ... identified in the finished water. (iii) Annual monitoring for strontium-90 and tritium shall be conducted by... requirements for radionuclides in community water systems. 141.26 Section 141.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER...

  11. Investigation on the relationship between systemic burden and annual limits on intake of radionuclides

    International Nuclear Information System (INIS)

    Zhou Yongzeng

    1984-01-01

    The concept of systemic burden and the calculation of annual limits on intake (ALI) of radionuclides are discussed. The relationship between these two quantities is also described. Using this relationship, the ratio of actual amount of intake to ALI can be obtained for the assessment of the risk to internal exposure

  12. MODELLING OF RADIONUCLIDE MIGRATION IN THE SYSTEM OF NUCLEAR POWER PLANT BIOLOGICAL PONDS

    Directory of Open Access Journals (Sweden)

    Ю. Кутлахмедов

    2011-04-01

    Full Text Available Migration of radionuclide coming from nuclear power plant into the system of biological pondsand then into the water reservoir-cooler is considered in the article. The theme of the work ismodeling of radionuclide migration process in the system of biological ponds on the example of thePivdennoukrainska nuclear power plant using chamber models method. Typical water ecosystemconsisting of three chambers (chamber-water, chamber-biota and chamber-bed silt was the basistaken by the authors. Application of chamber models method allowed authors to develop thedynamic chamber model of radionuclide migration in nuclear power plant biological ponds. Thismodel allows to forecast values and dynamics of radioactive water pollution based on limitedecosystem monitoring data. Thus, parameters of radioactive capacity of nuclear power plantbiological ponds system and water reservoir-cooler were modeled by authors, the estimation andprognosis of radionuclide distribution and accumulation in the system of nuclear power plantbiological ponds were done. Authors also explain the roles of basin water, biomass and bed silt inradionuclide deposition

  13. Application of Chaos Theory to Engine Systems

    OpenAIRE

    Matsumoto, Kazuhiro; Diebner, Hans H.; Tsuda, Ichiro; Hosoi, Yukiharu

    2008-01-01

    We focus on the control issue for engine systems from the perspective of chaos theory, which is based on the fact that engine systems have a low-dimensional chaotic dynamics. Two approaches are discussed: controlling chaos and harnessing chaos, respectively. We apply Pyragas' chaos control method to an actual engine system. The experimental results show that the chaotic motion of an engine system may be stabilized to a periodic motion. Alternatively, harnessing chaos for engine systems is add...

  14. Aerospace Engineering Systems

    Science.gov (United States)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: Physics-based analysis tools for filling the design space database; Distributed computational resources to reduce response time and cost; Web-based technologies to relieve machine-dependence; and Artificial intelligence technologies to accelerate processes and reduce process variability. Activities such as the Advanced Design Technologies Testbed (ADTT) project at NASA Ames Research Center study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities will be reported.

  15. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    International Nuclear Information System (INIS)

    1997-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year)

  16. Engineered Barrier System performance requirements systems study report. Revision 02

    Energy Technology Data Exchange (ETDEWEB)

    Balady, M.A.

    1997-01-14

    This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS include the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.

  17. Engineered Barrier System performance requirements systems study report. Revision 02

    International Nuclear Information System (INIS)

    Balady, M.A.

    1997-01-01

    This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS include the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken

  18. A fuzzy approach for modelling radionuclide in lake system

    International Nuclear Information System (INIS)

    Desai, H.K.; Christian, R.A.; Banerjee, J.; Patra, A.K.

    2013-01-01

    Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of 3 H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict 3 H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and 3 H concentration at discharge point. The Output was 3 H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. -- Highlights: • Uncommon approach (Fuzzy Rule Base) of modelling radionuclide dispersion in Lake. • Predicts 3 H released from Kakrapar Atomic Power Station at a point of human exposure. • RMSE of fuzzy model is 1.95, which means, it has well imitated natural ecosystem

  19. Role of soil micro-organisms in the sorption of radionuclides in organic systems

    International Nuclear Information System (INIS)

    Parekh, N.R.; Potter, E.D.; Poskitt, J.M.; Dodd, B.A.; Sanchez, A.

    2004-01-01

    Although the fraction of radionuclides linked to soil organic matter and soil microorganisms may be relatively small when compared to the amount bound to the mineral constituents, (mostly irreversibly bound), this fraction is of great importance as it remains readily exchangeable and is thus available for plant uptake. Many studies have measured the uptake of radionuclides by organic soils but the role of soil micro-organisms may have been masked by the presence of even small amounts of clay minerals occurring in these soils. We have carried out a series of experiments using a biologically active, 'mineral-free' organic soil produced under laboratory conditions, to determine the potential of soil micro-organisms to accumulate radionuclides Cs-134 and Sr-85. Biological uptake and release was differentiated from abiotic processes by comparing experimental results with inoculated and non-inoculated sterile organic material. We have investigated the role of different clay minerals, competing potassium and calcium ions, and changes in temperature on the sorption of Cs and Sr isotopes. The results from studies so far show conclusively that living components of soil systems are of primary importance in the uptake of radionuclides in organic material, microorganisms also influence the importance of chemical factors (e.g. adsorption to clay minerals) which may play a secondary role in these highly organic systems. In further experiments we hope to define the precise role of specific soil micro-organisms in these organic systems. (author)

  20. Contribution on the study of microbial effects on the leaching of radionuclides embedded in nuclear waste engineered barriers

    International Nuclear Information System (INIS)

    Spor, H.

    1994-05-01

    The aim of this work is to study the different interactions mechanisms between microorganisms and radioelements in conditions similar to those of a radioactive waste disposal site and to determine all the mechanisms due to microbial effects on the leaching of radionuclides embedded in nuclear waste engineered barriers. In this work are presented the different following points: - a bibliographic study on the microorganisms-radioelements interactions; - the conditions of metabolites production during the microbial growth (influence of the nature of the carbonated source, pH effects, aerobiosis conditions...); the mechanisms of a direct effect for determining the importance of the bio-sorption mechanism by microorganisms; the fact that the microbial biomass can strongly interact with actinides, heavy metals and radioelements; the effects of microorganisms on storage materials (cement and clay) containing radioelements (uranium, cesium); the complexation capacities of the organic and mineral acids produced during the microbial growth. (O.M.)

  1. Dosimetric characterization of radionuclides for systemic tumor therapy: Influence of particle range, photon emission, and subcellular distribution

    International Nuclear Information System (INIS)

    Uusijaervi, Helena; Bernhardt, Peter; Ericsson, Thomas; Forssell-Aronsson, Eva

    2006-01-01

    Various radionuclides have been proposed for systemic tumor therapy. However, in most dosimetric analysis of proposed radionuclides the charged particles are taken into consideration while the potential photons are ignored. The photons will cause undesirable irradiation of normal tissue, and increase the probability of toxicity in, e.g., the bone marrow. The aim of this study was to investigate the dosimetric properties according to particle range, photon emission, and subcellular radionuclide distribution, of a selection of radionuclides used or proposed for radionuclide therapy, and to investigate the possibility of dividing radionuclides into groups according to their dosimetric properties. The absorbed dose rate to the tumors divided by the absorbed dose rate to the normal tissue (TND) was estimated for different tumor sizes in a mathematical model of the human body. The body was simulated as a 70-kg ellipsoid and the tumors as spheres of different sizes (1 ng-100 g). The radionuclides were either assumed to be uniformly distributed throughout the entire tumor and normal tissue, or located in the nucleus or the cytoplasm of the tumor cells and on the cell membrane of the normal cells. Fifty-nine radionuclides were studied together with monoenergetic electrons, positrons, and alpha particles. The tumor and normal tissue were assumed to be of water density. The activity concentration ratio between the tumor and normal tissue was assumed to be 25. The radionuclides emitting low-energy electrons combined with a low photon contribution, and the alpha emitters showed high TND values for most tumor sizes. Electrons with higher energy gave reduced TND values for small tumors, while a higher photon contribution reduced the TND values for large tumors. Radionuclides with high photon contributions showed low TND value for all tumor sizes studied. The radionuclides studied could be divided into four main groups according to their TND values: beta emitters, Auger electron

  2. A study of radionuclide dispersion by river systems, using GIS and remote sensing techniques

    International Nuclear Information System (INIS)

    Borghuis, Sander; Brown, Justin; Steenhuisen, Frits; Skorve, Johnny

    2000-01-01

    The Krasnoyarsk Mining and Chemical Combine in Zheleznogorsk, Russia, is situated on the banks of the Yenisey river. The combine consists of three RBMK-type graphite moderate reactors, a reprocessing plant for the production of weapons-grade plutonium and storage facilities for nuclear waste. Discharges of radionuclides into the Yenisey river were either part of normal operation procedures or caused by accidental releases (Strand et al., 1997). So far, little is known about the transport and fate of the radioactive contaminants in the areas downstream of the Krasnoyarsk CC that are influenced by the Yenisey river system. Aim is to comprehend the dispersion of radionuclides through the river system. Remotely sensed and field study information are combined in a geographical information system (GIS) to study the processes leading to the dispersion of sediment-bound radionuclides carried by the river system. Since the extent of the study area is several thousands or kilometres of river and adjacent flood plains, use is made of a record of remotely sensed (satellite) images that are handled by the GIS. Panchromatic, high resolution satellite images as well as multispectral Landsat MSS and TM images were compiled for the area of interest. The panchromatic images were taken in a period during which the facility was in operation (1960-1972) and obtained for intervals of circa 6 months. A time series of satellite images enables the identification of erosion and sedimentation zones. The behaviour and fate of particle-reactive radionuclides, e.g. 239,240 Pu and to large extent 137 Cs, will be closely related to the movement of sediment. With respect to the behaviour and fate of more conservative radionuclides as 90 Sr, information is required accounting for fractionation between the particulate and aqueous phases. Stereo images are used to comprehend the geomorphology of the Yenisey river systems, focused on classification of sedimentary deposits. Landsat MSS and TM with five

  3. Essentials of Project and Systems Engineering Management

    CERN Document Server

    Eisner, Howard S

    2008-01-01

    The Third Edition of Essentials of Project and Systems Engineering Management enables readers to manage the design, development, and engineering of systems effectively and efficiently. The book both defines and describes the essentials of project and systems engineering management and, moreover, shows the critical relationship and interconnection between project management and systems engineering. The author's comprehensive presentation has proven successful in enabling both engineers and project managers to understand their roles, collaborate, and quickly grasp and apply all the basic princip

  4. Method Engineering: Engineering of Information Systems Development Methods and Tools

    NARCIS (Netherlands)

    Brinkkemper, J.N.; Brinkkemper, Sjaak

    1996-01-01

    This paper proposes the term method engineering for the research field of the construction of information systems development methods and tools. Some research issues in method engineering are identified. One major research topic in method engineering is discussed in depth: situational methods, i.e.

  5. The engineering of cybernetic systems

    Science.gov (United States)

    Fry, Robert L.

    2002-05-01

    This tutorial develops a logical basis for the engineering of systems that operate cybernetically. The term cybernetic system has a clear quantitative definition. It is a system that dynamically matches acquired information to selected actions relative to a computational issue that defines the essential purpose of the system or machine. This notion requires that information and control be further quantified. The logic of questions and assertions as developed by Cox provides one means of doing this. The design and operation of cybernetic systems can be understood by contrasting these kinds of systems with communication systems and information theory as developed by Shannon. The joint logic of questions and assertions can be seen to underlie and be common to both information theory as applied to the design of discrete communication systems and to a theory of discrete general systems. The joint logic captures a natural complementarity between systems that transmit and receive information and those that acquire and act on it. Specific comparisons and contrasts are made between the source rate and channel capacity of a communication system and the acquisition rate and control capacity of a general system. An overview is provided of the joint logic of questions and assertions and the ties that this logic has to both conventional information theory and to a general theory of systems. I-diagrams, the interrogative complement of Venn diagrams, are described as providing valuable reasoning tools. An initial framework is suggested for the design of cybernetic systems. Two examples are given to illustrate this framework as applied to discrete cybernetic systems. These examples include a predator-prey problem as illustrated through "The Dog Chrysippus Pursuing its Prey," and the derivation of a single-neuron system that operates cybernetically and is biologically plausible. Future areas of research are highlighted which require development for a mature engineering framework.

  6. Method Engineering: Engineering of Information Systems Development Methods and Tools

    OpenAIRE

    Brinkkemper, J.N.; Brinkkemper, Sjaak

    1996-01-01

    This paper proposes the term method engineering for the research field of the construction of information systems development methods and tools. Some research issues in method engineering are identified. One major research topic in method engineering is discussed in depth: situational methods, i.e. the configuration of a project approach that is tuned to the project at hand. A language and support tool for the engineering of situational methods are discussed.

  7. Information technology security system engineering methodology

    Science.gov (United States)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  8. A computerized system for control and management of radionuclide inventory: application in nuclear medicine

    International Nuclear Information System (INIS)

    Hoory, S.; Levy, I.M.; Moskowitz, G.; Bandyopadhyay, D.; Vaugeois, J.C.

    1982-01-01

    An interactive computerized system for radioisotope management and instantaneous inventory is reported. The system is capable of handling operations such as filing, nuclear imaging and disposing of various radionuclides. All radiopharmaceutical transactions are achieved with the aid of a Prime 300 mini-computer of 192K words of high speed semi-conductor memory and over 120 mega bytes of disk storage. The system automatically corrects for the appropriate decay, monitors and updates the storage file after every subsequent study. The performed study is recorded in a special file, together with the time and data retrieved from the computer's real time clock at the time of the entry. The system provides an organized and complete bookkeeping of all records concerning radionuclide transactions. It is found to be simple, efficient, highly versatile, and drastically reduces the time of operation and errors in handling the radioisotope inventory. (author)

  9. A model for radionuclide Migration in Urban Environment and Drainage Systems

    International Nuclear Information System (INIS)

    Garcia, E.; Gallego, E.; Jimenez, F.

    1998-01-01

    The Model for Radionuclide Migration in Urban Environment and Drainage Systems aims to estimate the discharge of radioactivity removed by natural or forced decontamination into the receiving waters from the drainage system, as well as the radioactivity joined with the sludge produced in treatments plants, whose various applications can mean a potential hazard. This model, built in Powersim, is included in the MOIRA system, a project whose main aim is the evaluation of the situation after a radioactive contamination of the aquatic ecosystems and the estimation of optimal remedial strategies to restore the contaminated waters. Powersim is an easy-to-use software package which simulates dynamic processes. Two sub-models compose the global model: one, simulating the evolution of Cs-137 in urban areas, and the other, the behaviour of this radionuclide, once it ha entered the drainage systems, with the various existing alternatives of waste water treatment in Europe. (Author) 8 refs

  10. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    International Nuclear Information System (INIS)

    Quinn, T.P.

    2003-01-01

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with 99m Tc and 188 Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic nuclear

  11. A nuclear power plant system engineering workstation

    International Nuclear Information System (INIS)

    Mason, J.H.; Crosby, J.W.

    1989-01-01

    System engineers offer an approach for effective technical support for operation and maintenance of nuclear power plants. System engineer groups are being set up by most utilities in the United States. Institute of Nuclear Power operations (INPO) and U.S. Nuclear Regulatory Commission (NRC) have endorsed the concept. The INPO Good Practice and a survey of system engineer programs in the southeastern United States provide descriptions of system engineering programs. The purpose of this paper is to describe a process for developing a design for a department-level information network of workstations for system engineering groups. The process includes the following: (1) application of a formal information engineering methodology, (2) analysis of system engineer functions and activities; (3) use of Electric Power Research Institute (EPRI) Plant Information Network (PIN) data; (4) application of the Information Engineering Workbench. The resulting design for this system engineer workstation can provide a reference for design of plant-specific systems

  12. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    J. Prouty

    2006-01-01

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  13. EBS Radionuclide Transport Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  14. B-2 Systems Engineering Case Study

    Science.gov (United States)

    2007-01-01

    of four small circles on the top view in front of the cockpit and on the bottom view engine bay doors. This air data system has no standard pitot ...Skantze, General, Air Force, Source Selection Advisory Board Chairman Erich Smith, Vought, Test Engineer, Systems Engineer, Chief engineer Henry

  15. Design and application of the MARK IV scanning system for radionuclide computed tomography of the brain

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Hoffman, E.J.; Phelps, M.E.; Ricci, A.; Reivich, M.

    1976-01-01

    The MARK IV radioisotope scanning system was built to provide fast and accurate radionuclide computed tomography (RCT). It is designed primarily for detecting commonly available radioactive labels such as /sup 99m/Tc, but it is also adapted to detecting positron emitters such as 18 F. The system has interlaced convergent collimation in a 4-sided arrangement of 32-independent detectors which continuously rotate as a unit, detecting, processing, and displaying the reconstructed data while the study progresses

  16. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  17. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  18. Quantitative Analysis of Radionuclide for the Used Resin of the Primary Purification System in HANARO

    International Nuclear Information System (INIS)

    Lee, Mun; Kim, Myong Seop; Park, Se Il; Kim, Tae Whan; Kim, Dong Hun; Kim, Young Chil

    2005-01-01

    In HANARO, a 30 MW research reactor, the ion exchange resin has been used for the purification of the primary coolant system. The resin used in the primary coolant purification system is replaced with new one once every 3 months during 30 MW reactor operation. The extracted resin from the primary coolant purification system is temporarily stored in a shielding treatment of the reactor hall for radiation cooling. After the radiation level of resin decreases enough to be handled for the waste disposal, it is put into the waste drum, and delivered to the waste facility in KAERI. Recently, in this procedure, the quantitative analysis of radionuclide which is contained in resin is required to have more quantitative data for the disposal. Therefore, in this work, a preliminary study was performed to find a sampling method for the representation of the characteristics of radionuclide in the spent resin

  19. Concerning initial and secondary character of radionuclide distribution in elementary landscape geochemical systems

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey

    2017-04-01

    Specificity of radionuclide distribution in elementary landscape geochemical systems (ELGS) treated as local system of geochemically linked elementary terrestrial units (in toposequence: watershed-slope-closing depression), belongs to one of the less investigated but practically significant problems of current geochemistry. First measurements after the Chernobyl accident showed a considerable variation of Cs-137 distribution in all examined ELGS (Shcheglov et al, 2001; Romanov, 1989; Korobova, Korovaykov, 1990; Linnik, 2008). The results may be interpreted in frames of two alternative hypotheses: 1) irregularity of the initial contamination; 2) secondary redistribution of the initially regular level of fallout. But herewith only a disproof of the first hypothesis automatically justifies the second one. Factors responsible for initial irregularity of surface contamination included: 1) the presence of the so-called "hot" particles in the initial fallout; 2) interception of radionuclides by forest canopy; 3) irregular aerial particles deposition; 4) uneven initial precipitation. Basing on monitoring Cs-137 spatial distribution that has been performed since 2005, we demonstrate that the observed spatial irregularity in distribution of Cs-137 in ELGS reflects a purely secondary distribution of initial reserves of radionuclides in fallout matter due to its migration with water in local geochemical systems. This statement has some significant consequences. 1. Mechanism of migration of matter in ELGS is complicated and could not be reduced solely to a primitive moving from watershed to closing depression. 2. The control of migration of "labeled atoms" (Cs-137) permits to understand common mechanism of migration of water in all systems on the level of ELGS. 3. Understanding formation of the structure of contamination zones in ELGS permits to use mathematical model to solve the inverse problem of restoration of the initially equable level of their contamination. Performed

  20. 4+ Dimensional nuclear systems engineering

    International Nuclear Information System (INIS)

    Suh, Kune Y.

    2009-01-01

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully integrated way of managing the information flow spanning their life cycle. This paper proposes digital systems engineering anchored in three dimensional (3D) computer aided design (CAD) models. The signature in the proposal lies with the four plus dimensional (4 + D) Technology TM , a critical know how for digital management. ESSE (Engineering Super Simulation Emulation) features a 4 + D Technology TM for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Dased on an integrated 3D configuration management system, ESSE consists of solutions JANUS (Junctional Analysis Neodynamic Unit SoftPower), EURUS (Engineering Utilities Research Unit SoftPower), NOTUS (Neosystemic Optimization Technical Unit SoftPower), VENUS (Virtual Engineering Neocybernetic Unit SoftPower) and INUUS (Informative Neographic Utilities Unit SoftPower). NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4 + D system. Problems with equipment positioning and manpower congestion in certain areas can be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between two machines and losses in

  1. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    Schreiner, R.

    2001-01-01

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M and O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model will allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by other

  2. Systems engineering: A problem of perception

    Energy Technology Data Exchange (ETDEWEB)

    Senglaub, M.

    1995-08-01

    The characterization of systems engineering as a discipline, process, procedure or a set of heuristics will have an impact on the implementation strategy, the training methodology, and operational environment. The systems engineering upgrade activities in the New Mexico Weapons Development Center and a search of systems engineering related information provides evidence of a degree of ambiguity in this characterization of systems engineering. A case is made in this article for systems engineering being the engineering discipline applied to the science of complexity. Implications of this characterization and some generic issues are delineated with the goal of providing an enterprise with a starting point for developing its business environment.

  3. Transforming Systems Engineering through Model-Centric Engineering

    Science.gov (United States)

    2018-02-28

    Contract No. HQ0034-13-D-0004 Research Tasks: 48, 118, 141, 157, 170 Report No. SERC-2018-TR-103 Transforming Systems Engineering through...Model-Centric Engineering Technical Report SERC-2018-TR-103 February 28, 2018 Principal Investigator Dr. Mark Blackburn, Stevens Institute of...Systems Engineering Research Center This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the

  4. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  5. Proceedings of the international workshop on mechanistic understanding of radionuclide migration in compacted/intact systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Yui, Mikazu

    2010-03-01

    The international workshop on mechanistic understanding of radionuclide migration in compacted / intact systems was held at ENTRY, JAEA, Tokai on 21st - 23rd January, 2009. This workshop was hosted by Japan Atomic Energy Agency (JAEA) as part of the project on the mechanistic model/database development for radionuclide sorption and diffusion behavior in compacted / intact systems. The overall goal of the project is to develop the mechanistic model / database for a consistent understanding and prediction of migration parameters and its uncertainties for performance assessment of geological disposal of radioactive waste. The objective of the workshop is to integrate the state-of-the-art of mechanistic sorption and diffusion model in compacted / intact systems, especially in bentonite / clay systems, and discuss the JAEA's mechanistic approaches and future challenges, especially the following discussions points; 1) What's the status and difficulties for mechanistic model/database development? 2) What's the status and difficulties for applicability of mechanistic model to the compacted/intact system? 3) What's the status and difficulties for obtaining evidences for mechanistic model? 4) What's the status and difficulties for standardization of experimental methodology for batch sorption and diffusion? 5) What's the uncertainties of transport parameters in radionuclides migration analysis due to a lack of understanding/experimental methodologies, and how do we derive them? This report includes workshop program, overview and materials of each presentation, summary of discussions. (author)

  6. Status of operation of radionuclides assay system in Korean nuclear power plant

    International Nuclear Information System (INIS)

    Hwang, K.H.; Lee, K.J.; Jeong, C.W.; Ahn, S.M.

    2003-01-01

    In Korea, 17 nuclear power plants composed of 13 pressurized water reactors and 4 CANDU reactors are currently in operation. The cumulative amounts of low and intermediate level radioactive waste in nuclear power plant reached 58,718 drums (unit: 200 liter) in 2001. Efforts to construct LILW disposal facility are continued and its first operation is planned in the year 2008. Its first stage capacity is assumed to be 100,000 drums and total capacity will reach to 800,000 drums. Radwaste disposal site selection is an urgent national project at present time. Regulations and guidelines require detailed information about the radioactive waste package and its contents prior to the transport to the disposal sites. The Enforcement Decree of the Korean Atomic Energy Act (articles 234-17) requires the Minister of Science and Technology (MOST) of Korea to establish regulation for the waste acceptance (MOST notice. 1196-10). It requires detailed information about the radioactive waste package and its contents such as activity of radionuclides, total activities, types and characteristics of waste. For the measurement of the concentrations and activities of radionuclides in radwaste drum, a radionuclides assay system is installed at Korean nuclear power plant (KORI site) in 1996. The waste drum can be measured in the vertical direction with eight vertical segments while in the radial direction also with eight segments. Using this measurement method, homogeneous and non-homogeneous waste drum can be measured. Scaling factor methods have been played a dominant role in the determination of the radionuclides concentration in this system. For corrosion product, generic scaling factors were used due to the similarity and better-characterized properties of Korean analyzed data as compared with the worldwide data base of PWR industry. For fission product and TRU nuclides, it is not easy to determine the generic scaling factors. Thus simple model reflecting the operation history of power

  7. Evaluation of an automated assay system to measure soil radionuclides by L x-ray and gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Drennon, B.J.; Crowell, J.M.

    1982-08-01

    An automated radionuclide assay system for conducting soil radioassays using L x-ray and gamma-ray spectrometry was evaluated. Wet chemistry assay procedures were shown to be considerably more time consuming than similar analyses of soil on this radionuclide assay system. The detection limits of 241 Am and plutonium were determined, as well as the reproducibility of radionuclide assay results. The L x-ray spectrometric measurements were compared with radiochemical analyses on several tuff samples. The assay system's intrinsic germanium detector was found to respond linearly to varying low concentrations of 241 Am and plutonium, both of which were easily detected in the presence of elevated concentrations of 137 Cs

  8. A framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available This presentation discusses a framework which is proposed to perform systems engineering research within South Africa and the necessity for hybrid research methods in systems engineering....

  9. Bentonite erosion: effects on the long term performance of the engineered barrier and radionuclide transport - The BELBAR project

    International Nuclear Information System (INIS)

    Sellin, P.; Sundman, D.; Bailey, L.; Missana, T.; Schaefer, T.; Cervinka, R.; Koskinen, K.

    2012-01-01

    Document available in extended abstract form only. BELBaR is a Collaborative Project within the Seventh Framework Programme of the European Atomic Energy Community (Euratom) for nuclear research and training activities. The main aim of BELBaR is to increase knowledge of the processes that control clay colloid stability, generation and its ability to transport radionuclides. The overall purpose of the project is to come up with a new way of treating issues in long-term safety/performance assessment. The project started March 1, 2012 and has a duration of 48 months. The project has 14 partners from seven European countries. The main aim of BELBaR is to reduce the uncertainties in the description of the effect of clay colloids on the long term performance of the engineered barrier and on radionuclide transport as illustrated in Figure 1. This is done by: - Improving the understanding on when bentonite colloids are unstable. For a given site/site evolution, this is critical information, since it determines whether or not clay colloids need to be included in the long-term assessment. - Improving the quantitative models for erosion on the bentonite barrier for the cases when the colloids are stable - Improving the understanding of how radionuclides attach to clay colloids. This information will be used to formulate improved transport models for the assessment of radionuclide transport in the geosphere. To meet the main aim a number of experimental and modelling activities will be undertaken within the project. BELBaR consists of six RTD (research and technical development) work packages and one project management work package. WP1 will have the responsibility to ensure that that the type and values of the parameters selected for experimental and modelling work are those that represent as much as possible the full range of conditions and situations that can be expected in a repository. Drawing on the work undertaken in WP 2 to 5, the general objective of this work package

  10. ENGINEERING OF UNIVERSITY INTELLIGENT LEARNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Vasiliy M. Trembach

    2016-01-01

    Full Text Available In the article issues of engineering intelligent tutoring systems of University with adaptation are considered. The article also dwells on some modern approaches to engineering of information systems. It shows the role of engineering e-learning devices (systems in system engineering. The article describes the basic principles of system engineering and these principles are expanded regarding to intelligent information systems. The structure of intelligent learning systems with adaptation of the individual learning environments based on services is represented in the article.

  11. Drift-Scale Radionuclide Transport

    International Nuclear Information System (INIS)

    Houseworth, J.

    2004-01-01

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the

  12. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    International Nuclear Information System (INIS)

    Heams, T.J.; Williams, D.A.; Johns, N.A.; Mason, A.; Bixler, N.E.; Grimley, A.J.; Wheatley, C.J.; Dickson, L.W.; Osborn-Lee, I.; Domagala, P.; Zawadzki, S.; Rest, J.; Alexander, C.A.; Lee, R.Y.

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided

  13. Airbreathing combined cycle engine systems

    Science.gov (United States)

    Rohde, John

    1992-01-01

    The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.

  14. The role of natural organics in radionuclide migration in natural aquifer systems

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1992-01-01

    The wide variety of organic compounds present in natural waters is assessed for the role they may play in radionuclide and, especially, actinide migration. Some natural analog and environmental data are briefly reviewed for evaluation of the effect of organics in these systems. The binding constants and the kinetics of complexation of actinides by humics are discussed in terms of probable effects on actinide migration. The role of organics in redox, and in sorption, is also considered. (orig.)

  15. Characteristic radionuclide appearance of certain pediatric central nervous system neoplasms

    International Nuclear Information System (INIS)

    Conway, J.J.

    1974-01-01

    The results of 5 years experience in the localization of brain neoplasms in children are summarized. The radiopharmaceutical of choice was /sup 99m/Tc-labeled pertechnetate administered in a dosage of 100μ Ci/lb. The appearance of the most common neoplasms of the central nervous system in childhood is characterized. (U.S.)

  16. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  17. Development of maintenance engineering system

    International Nuclear Information System (INIS)

    1995-03-01

    Department of JMTR project has developed the Maintenance Engineering System which evaluates the aging tendency of the facilities. The system is used for the repair plan and the replace period of parts, components, equipments or facilities. The system has the data-base which consists of the check data, the inspection data, the trouble data and the repair data at the JMTR since the virgin criticality. The system is utilized maintenance works and concludes the maintenance procedures for the failure components, equipments and facilities. This system has the following characteristics. (1) Anybody can operate the system as easily as word processor. (2) Data are put into by man-machine-interface. (3) The data sheets are with light color and the recognizable arrangements. (4) The system is cost-efficient using commercial personal computers and applications. The research card and the layouts of the input data sheet had been formatted. Data has been begun to be put into the system and to check its functions. The result demonstrates that the system is available for preventive maintenance at the JMTR. (author)

  18. RAMM: a system of computer programs for radionuclide pathway analysis calculations

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1976-09-01

    A generalized system of computer programs, designated RAMM (Radioactive Materials Management) system, has been developed to assist in the analysis of the movement of radionuclides through the environment to man. RAMM incorporates the GASP IV continuous/discrete simulation system. A nodal approach is used whereby the system to be analyzed is split up into parts small enough that the distribution of nuclides within the node may be taken to be homogeneous. Pathways are defined between nodes, and appropriate transfer coefficients are input or generated. Output includes the time dependent contents of the nodes and dose rates, integrated doses and dose commitments of selected nodes. (author)

  19. Dynamic sorption data of selected radionuclides in sediment-water-systems from the Gorleben region

    International Nuclear Information System (INIS)

    Klotz, D.

    1993-01-01

    In 48 sediment-water-systems from the Gorleben region about 300 continuous-flow-column experiments were performed with 10 radionuclides. To simulate conditions as close as possible to natural ones (as regards the bedding of sediments, speed of filtration, environment, and microbiology - if necessary) for the sediment-groundwater-systems, the ranges of retardation factors for fresh, mixed and salt water systems were specified. For the investigated sand-water-systems, a comparison of the results obtained from continuous-flow-column and batch experiments for 85Sr and 134Cs was made. (orig.) [de

  20. Security Research on Engineering Database System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engine engineering database system is an oriented C AD applied database management system that has the capability managing distributed data. The paper discusses the security issue of the engine engineering database management system (EDBMS). Through studying and analyzing the database security, to draw a series of securi ty rules, which reach B1, level security standard. Which includes discretionary access control (DAC), mandatory access control (MAC) and audit. The EDBMS implem ents functions of DAC, ...

  1. Security Engineering FY17 Systems Aware Cybersecurity

    Science.gov (United States)

    2017-12-07

    Security Engineering – FY17 Systems Aware Cybersecurity Technical Report SERC-2017-TR-114 December 7 2017 Principal Investigator: Dr...December 7, 2017 Copyright © 2017 Stevens Institute of Technology, Systems Engineering Research Center The Systems Engineering Research Center (SERC...supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD

  2. Low Power, Room Temperature Systems for the Detection and Identification of Radionuclides from Atmospheric Nuclear Test

    Science.gov (United States)

    2013-07-01

    DTRA-TR-13-48 Low Power, Room Temperature Systems for the Detection and Identification of Radionuclides from Atmospheric Nuclear Test Approved for...01-C-0071 Radionuclides from Atmospheric Nuclear Tests 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Muren Chu...I IIlIl4eI ilf "tt""f;lk~ l).t::l’e.do)- mllin:: in an n-t~’J𔃻f mlllril.: II!’ ,-kll ~".r’I::!, ..... ·hkh j,-, .:auI,,·d br thP . la-ek f.r ·;IIff

  3. Radiological consequences of radionuclide releases to sewage systems from hospitals in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Rodolfo; Cruz, Idalmis de la [Facilia AB (Sweden); Bergman, Synnoeve [Vattenfall Power Consultants AB (Sweden); Hasselblad, Serena [Callido AB (Sweden)

    2007-08-15

    The report addresses radioactive discharges to sewers originating from hospitals, mainly in the form of the excretion of patients treated with radioisotopes for diagnostic or therapeutic purposes. Assessments of doses to the public, including sewage workers, arising from such discharges are performed. Doses are compared against the exemption level of 10 {mu}Sv/a and the dose constraint of 100 {mu}Sv/a. As a basis for the dose assessments, information on the use of radionuclides in Swedish hospitals during the period 1999-2004 is presented and estimates of discharges to the sewage systems are derived. Current sewage treatment practices in Sweden are summarised focusing particularly on the fate of sewage sludge, both in the sewage plant and outside. Radiological impact assessments are performed in two steps. The assessments in the first stage are performed using a simple screening model, not intending to predict exposures realistically but only to identify exposure pathways and radionuclides that are potentially relevant and require further consideration in the more detailed assessments. Results show that only a few of those radionuclides used in the period 1999-2004 in Swedish hospitals for radiotherapy and radiodiagnostics could lead to potentially significant doses (P-32, Y-90, Tc-99m, In-111, I-123, I-131 and Tl-201). Relevant exposure pathways are the external exposure of sewage workers (for Tc- 99m, I-123, I-131, In-111 and Tl-201) and the exposure of the public via ingestion of water (I-131) and fish (P-32, Y-90 and In-111 and I-131). The objective of the second stage is to perform realistic assessments of the doses to sewage workers and to the public through the use of contaminated agricultural sludge and through the contamination of drinking water. For this purpose, the LUCIA model was developed. This model dynamically addresses the behaviour of radionuclides in the different process steps of a sewage plant. The model can address continuous releases as well

  4. Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Brown, Jason H.; Walker, Brian A.

    2012-04-01

    Battelle–Pacific Northwest Division operates numerous research and development (R&D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)’s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

  5. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

    Science.gov (United States)

    Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N

    2008-12-01

    In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

  6. Reverse engineering for quality systems

    International Nuclear Information System (INIS)

    Nolan, A.J.

    1995-01-01

    When the age of software engineering began, many companies were faced with a problem of how to support the older, pre-software-engineering, programs. The techniques of reverse engineering and re-engineering were developed to bridge the gap between the past and the present. Although reverse engineering can be used for generating missing documentation, it can also be used as a means to demonstrate quality in these older programs. This paper presents, in the form of a case study, how Rolls-Royce and Associates Limited addressed the quality issues of reverse engineering and re-engineering. (author)

  7. Process and research method of radionuclide migration in high level radioactive waste geological disposal system

    International Nuclear Information System (INIS)

    Chen Rui; Zhang Zhanshi

    2014-01-01

    Radionuclides released from waste can migrate from the repository to the rock and soil outside. On the other hand, nuclides also are retarded by the backfill material. Radionuclide migration is the main geochemical process of the waste disposal. This paper introduces various methods for radionuclide migration research, and give a brief analysis of the geochemical process of radionuclide migration. Finally, two of the most important processes of the radionuclide migration have been instanced. (authors)

  8. System of automated processing of radionuclide investigations (SAPRI-01) in clinical practice

    International Nuclear Information System (INIS)

    Sivachenko, T.P.; Mechev, D.S.; Krupka, I.N.

    1988-01-01

    The author described the results of clinical testing of a system SAPRI-01 designed for automated collection, storage and processing of data on radionuclide investigations. He gave examples of automated processing of RCG and the results of positive scintigraphy of tumors of different sites using 67 Ga-citrate and 99m Tc pertechnetate in statistical and dynamic investigations. Short-comings and ways for updating 4 the system during its serial production were pointed out. The introduction of the system into clinical practice on a wide scale was shown to hold promise

  9. Amended Final Report - Antibodies to Radionuclides. Engineering by Surface Display for Immunosensors

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Diane A. [Tulane Univ., New Orleans, LA (United States)

    2013-06-14

    The relatively new techniques of antibody display, which permit molecular engineering of antibody structure and function, have the potential to revolutionize the way scientists generate binding proteins for specific applications. However, the skills required to efficiently use antibody display techniques have proven difficult for other laboratories to acquire without hands-on training and exchange of laboratory personnel. This research project is designed bring important expertise in antibody display to the State of Louisiana while pursuing a project with direct relevance to the DOE’s EM program.

  10. Laser engineering of microbial systems

    Science.gov (United States)

    Yusupov, V. I.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Churbanova, E. S.; Zhigarkov, V. S.; Chutko, E. A.; Evlashin, S. A.; Chichkov, B. N.; Bagratashvili, V. N.

    2018-06-01

    A technology of laser engineering of microbial systems (LEMS) based on the method of laser-induced transfer of heterogeneous mixtures containing microorganisms (laser bioprinting) is described. This technology involves laser printing of soil microparticles by focusing near-infrared laser pulses on a specially prepared gel/soil mixture spread onto a gold-coated glass plate. The optimal range of laser energies from the point of view of the formation of stable jets and droplets with minimal negative impact on living systems of giant accelerations, laser pulse irradiation, and Au nanoparticles was found. Microsamples of soil were printed on glucose-peptone-yeast agar plates to estimate the LEMS process influence on structural and morphological microbial diversity. The obtained results were compared with traditionally treated soil samples. It was shown that LEMS technology allows significantly increasing the biodiversity of printed organisms and is effective for isolating rare or unculturable microorganisms.

  11. 23rd International Conference on Systems Engineering

    CERN Document Server

    Zydek, Dawid; Chmaj, Grzegorz

    2015-01-01

    This collection of proceedings from the International Conference on Systems Engineering, Las Vegas, 2014 is orientated toward systems engineering, including topics like aerospace, power systems, industrial automation and robotics, systems theory, control theory, artificial intelligence, signal processing, decision support, pattern recognition and machine learning, information and communication technologies, image processing, and computer vision as well as its applications. The volume’s main focus is on models, algorithms, and software tools that facilitate efficient and convenient utilization of modern achievements in systems engineering.

  12. Screening candidate systems engineers: exploratory results

    CSIR Research Space (South Africa)

    Gonçalves, D

    2010-09-01

    Full Text Available systems engineers for further development. Data were collected on personality, cognition, values and competence on 21 SE competencies using four computerised assessments. We report on the cognitive style distribution of the participating engineers...

  13. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  14. Development of migration prediction system (MIGSTEM) for cationic species of radionuclides through soil layers

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Takebe, Shinichi; Yamamoto, Tadatoshi

    1989-01-01

    The migration prediction system (MIGSTEM) has been developed for estimating the migration of cationic species of radionuclides through soil layers systematically. The MIGSTEM consists of the migration experiments, the one-dimensional fitting code (inverse analysis code) for determining retardation factor and dispersivity (migration factors) and the three-dimensional differential code (prediction code) for estimating the migration of the radionuclides. The migration experiments are carried out for obtaining the concentration profiles of the radionuclides in unsaturated and saturated soil layers. Using the inverse analysis code, the migration factors are obtained at one time by fitting the concentration profiles calculated to those observed. The prediction code can give the contours of concentration and the one-dimensional concentration profiles at selected time, as well as the changing in the concentration at a selected position with time. The validity of the MIGSTEM was obtained by the benchmark test on the prediction and inverse analysis codes. The MIGSTEM was applied to estimate the migration of Sr 2+ through the sandy soil. (author)

  15. Evaluation of metals and radionuclides in water treatment system for drinking in Pernambuco state, Brazil

    International Nuclear Information System (INIS)

    Albuquerque, Adriana Muniz de Almeida

    2017-01-01

    The metals and radionuclides are naturally incorporated into natural waters, and may be present at levels that condition the health of the population. In view of this, health agencies regulate standards which determine maximum concentration values for these elements in water intended for human consumption. However, the water sources do not have the required quality and the application of treatment technologies is necessary. These technologies remove the impurities initially incorporated into the waters of the fountains from the application of physical and chemical processes. The impurities are retained and concentrated in the treatment systems giving rise to a residue which may contain appreciable concentrations of metals and radionuclides, and this residue is included among the United States Environmental Protection Agency (USEPA). In the present study, the investigation of raw, treated and wastewater samples from 19 Water Treatment Stations located in the state of Pernambuco, in relation to the behavior of Al, Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn and radionuclides 226 Ra and 228 Ra, alpha and beta total and gamma emitters in the treatment systems, from the analysis of the concentrations of these in the waters and residues, evaluating the suitability of the waters in accordance with established in the norms in force, as well as the associated with the disposal of wastes that are commonly released into the environment. The results obtained for the metals indicated that the treatment systems must have their processes optimized to ensure the adequacy of the water supplied to the population to the potability parameters and for the residues levels that could generate environmental risk were observed. For the radionuclides the levels found in the waters were low, indicating a low contribution of these to the sources undergoing treatment, and in the residues the levels were low, but within the range described in the literature, corroborating its classification as a TENORM

  16. The production of radionuclides for nuclear medicine from a compact, low-energy accelerator system.

    Science.gov (United States)

    Webster, William D; Parks, Geoffrey T; Titov, Dmitry; Beasley, Paul

    2014-05-01

    The field of nuclear medicine is reliant on radionuclides for medical imaging procedures and radioimmunotherapy (RIT). The recent shut-downs of key radionuclide producers have highlighted the fragility of the current radionuclide supply network, however. To ensure that nuclear medicine can continue to grow, adding new diagnostic and therapy options to healthcare, novel and reliable production methods are required. Siemens are developing a low-energy, high-current - up to 10 MeV and 1 mA respectively - accelerator. The capability of this low-cost, compact system for radionuclide production, for use in nuclear medicine procedures, has been considered. The production of three medically important radionuclides - (89)Zr, (64)Cu, and (103)Pd - has been considered, via the (89)Y(p,n), (64)Ni(p,n) and (103)Rh(p,n) reactions, respectively. Theoretical cross-sections were generated using TALYS and compared to experimental data available from EXFOR. Stopping power values generated by SRIM have been used, with the TALYS-generated excitation functions, to calculate potential yields and isotopic purity in different irradiation regimes. The TALYS excitation functions were found to have a good agreement with the experimental data available from the EXFOR database. It was found that both (89)Zr and (64)Cu could be produced with high isotopic purity (over 99%), with activity yields suitable for medical diagnostics and therapy, at a proton energy of 10MeV. At 10MeV, the irradiation of (103)Rh produced appreciable quantities of (102)Pd, reducing the isotopic purity. A reduction in beam energy to 9.5MeV increased the radioisotopic purity to 99% with only a small reduction in activity yield. This work demonstrates that the low-energy, compact accelerator system under development by Siemens would be capable of providing sufficient quantities of (89)Zr, (64)Cu, and (103)Pd for use in medical diagnostics and therapy. It is suggested that the system could be used to produce many other

  17. Advances in communication systems and electrical engineering

    CERN Document Server

    Huang, Xu

    2008-01-01

    This volume contains contributions from participants in the 2007 International Multiconference of Engineers and Computer Scientists Topics covered include communications theory, communications protocols, network management, wireless networks, telecommunication, electronics, power engineering, control engineering, signal processing, and industrial applications. The book will offer the states of arts of tremendous advances in communication systems and electrical engineering and also serve as an excellent reference work for researchers and graduate students working with/on communication systems a

  18. Influences of engineered barrier systems on low-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L. P.

    1987-09-15

    There are major differences between the current practices of shallow land burial and alternative concepts for the disposal of low-level radioactive wastes. Additional protection provided with engineered barrier systems can overcome major concerns the public has with shallow land burial: subsidence; percolating ground waters; radionuclide migration; and the vulnerability of shallow trenches to intrusion. The presence of a variety of engineered barriers to restrict water movement, retain radionuclides and to prevent plant animal or human intrusion leads to significant changes to input data for performance assessment models. Several programs which are underway to more accurately predict the long-term performance of engineered barriers for low-level waste will be described.

  19. Influences of engineered barrier systems on low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Buckley, L.P.

    1987-09-01

    There are major differences between the current practices of shallow land burial and alternative concepts for the disposal of low-level radioactive wastes. Additional protection provided with engineered barrier systems can overcome major concerns the public has with shallow land burial: subsidence; percolating ground waters; radionuclide migration; and the vulnerability of shallow trenches to intrusion. The presence of a variety of engineered barriers to restrict water movement, retain radionuclides and to prevent plant animal or human intrusion leads to significant changes to input data for performance assessment models. Several programs which are underway to more accurately predict the long-term performance of engineered barriers for low-level waste will be described

  20. Study of migration behavior of technogenic radionuclides in the Yenisey River-Kara Sea aquatic system

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu.; Legin, E.; Legin, V. [Khlopin Radium Institute, St. Petersburg (Russian Federation); Shishlov, A.; Savitskii, Yu. [Krasnoyarsk Mining and Chemical Combine, Krasnoyarsk (Russian Federation); Novikov, A.; Goryachenkova, T. [Russian Academy of Sciences, Institute of Geochemistry and Analytical Chemistry, Moscow (Russian Federation)

    2001-03-01

    For 35 years Krasnoyarsk Mining-Chemical Combine (MCC) manufactures weapon plutonium in single-pass production reactors cooled with water of the Yenisey River. Water discharge from these reactors is the major source of radioactive contamination of the Yenisey River. We have demonstrated that after putting the reactors out of operation (in late 1992) the contamination level of the Yenisey River with short-lived radionuclides considerably decreased, and now the radioactive contamination is caused essentially by Cs-137, Eu-152, Pu-239,240, Sr-90, and Am-241, whose concentration in the aqueous phase is lower than in bottom sediments and, particularly, flood-land deposits by several orders of magnitude (except for Sr-90). The flood-land deposits are classified with the most contaminated environmental objects in the territories under the impact of MCC: their radioactivity is comparable with that of low-level waste. Taking into account the considerable depth and area of the flood-land deposits, this allows their classification as a great technogenic radiation anomaly. Comparison of the maximal Cs-137 and Pu-239,240 levels in flood-land soils and bottom sediments of the Yenisey River with those in bottom sediments of the Pripyat' River and the Kiev reservoir shows that these values are close each to other. A direct correlation is found between the spatial distribution of Cs-137 on the one hand and Pu-239,240, Eu-152, and Am-241 on the other hand in the aqueous phase and bottom sediments, which is not the case for Sr-90. Data on the distribution coefficients of the indicated radionuclides between the deposits and aqueous phase (obtained with actual and model systems) and also on the radionuclide distribution throughout geochemical mobility forms suggest that the essential part of Cs, Pu, Eu, and Am migrates with fine-disperse suspended material, the transport and distribution of which is controlled by the hydrological regime of the Yenisey River. By contrast, strontium

  1. Study of migration behavior of technogenic radionuclides in the Yenisey River-Kara Sea aquatic system

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.; Legin, E.; Legin, V.; Shishlov, A.; Savitskii, Yu.; Novikov, A.; Goryachenkova, T.

    2001-01-01

    For 35 years Krasnoyarsk Mining-Chemical Combine (MCC) manufactures weapon plutonium in single-pass production reactors cooled with water of the Yenisey River. Water discharge from these reactors is the major source of radioactive contamination of the Yenisey River. We have demonstrated that after putting the reactors out of operation (in late 1992) the contamination level of the Yenisey River with short-lived radionuclides considerably decreased, and now the radioactive contamination is caused essentially by Cs-137, Eu-152, Pu-239,240, Sr-90, and Am-241, whose concentration in the aqueous phase is lower than in bottom sediments and, particularly, flood-land deposits by several orders of magnitude (except for Sr-90). The flood-land deposits are classified with the most contaminated environmental objects in the territories under the impact of MCC: their radioactivity is comparable with that of low-level waste. Taking into account the considerable depth and area of the flood-land deposits, this allows their classification as a great technogenic radiation anomaly. Comparison of the maximal Cs-137 and Pu-239,240 levels in flood-land soils and bottom sediments of the Yenisey River with those in bottom sediments of the Pripyat' River and the Kiev reservoir shows that these values are close each to other. A direct correlation is found between the spatial distribution of Cs-137 on the one hand and Pu-239,240, Eu-152, and Am-241 on the other hand in the aqueous phase and bottom sediments, which is not the case for Sr-90. Data on the distribution coefficients of the indicated radionuclides between the deposits and aqueous phase (obtained with actual and model systems) and also on the radionuclide distribution throughout geochemical mobility forms suggest that the essential part of Cs, Pu, Eu, and Am migrates with fine-disperse suspended material, the transport and distribution of which is controlled by the hydrological regime of the Yenisey River. By contrast, strontium

  2. Determination of cosmic ray produced radionuclides by means of background radiation counting system, 3

    International Nuclear Information System (INIS)

    1976-01-01

    This is the third report of the progress report series on studies of cosmic ray produced radionuclides by means of low background radiation counting system. In Part I some characteristics of a low beta-gamma coincidence spectrometer are described -- counter system, electronics, background spectra, counting efficiencies -- and studies on radioactive impurities in materials for scientific research are also described. In Part II, suitable solvents for a large scale liquid scintillation counter were examined and best combinations of solvents, solutes and naphthalene are shown. In Part III, miscellaneous topics are reported. (auth.)

  3. Integrating system safety into the basic systems engineering process

    Science.gov (United States)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  4. Modeling the effects of repeated systemic administrations of small activity amounts In radionuclide therapy with beta emitters

    International Nuclear Information System (INIS)

    Calderon, Carlos; Gonzalez, Joaquin; Cepero, Janet; Colom, Camila; Rodriguez, Juan C.

    2008-01-01

    Full text: Good results for radionuclide therapy treatments where repeated short time spaced systemic injection of small activity amounts are given have been reported. Bone marrow and kidneys are usually considered as dose-limiting organs in radionuclide therapy. The treatments in radionuclide therapy with repeated administration could be optimized if irradiation effects in those one might be estimated. Xeno-grafted mice is the often biological model used during the evaluation of candidates for radionuclide therapy. A mathematical model of tumor cell kinetics was combined with another one reported for marrow cell kinetics which allows the calculation of marrow cell survival and proliferation in response to different irradiation schemes. Radionuclide therapy treatment with repeated administrations with radiopharmaceuticals labeled with beta emitters were simulated. The effects on fast-growing and slow-growing tumors were evaluated, as well as radiosensitive and radioresistant tumors. For more realistic estimation of absorbed dose in mice organs the cross-irradiation due to high energy beta particles was included into the MIRD's formula. Tumor and kidneys responses to the irradiation were estimated on the linear-quadratic model framework which was adapted for a multi-exponential dose rate function describing radionuclide therapy treatments with repeated administrations. Published values for murine tumors kinetics, marrows cellular turnover rates and radiosensitivities were used during the calculations. Iso-effective schemes were also determined varying the interval between fractions and the number of administration. For a given tolerated level of thrombocytopenia and absorbed dose in kidneys an optimal regime of radionuclide therapy with repeated administration could be found. The mathematical model presented here allows the prediction of the nadir and duration of thrombocytopenia, the effects on kidneys and the tumor cell response to various treatment schemes

  5. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  6. Multidisciplinary systems engineering architecting the design process

    CERN Document Server

    Crowder, James A; Demijohn, Russell

    2016-01-01

    This book presents Systems Engineering from a modern, multidisciplinary engineering approach, providing the understanding that all aspects of systems design, systems, software, test, security, maintenance and the full life-cycle must be factored in to any large-scale system design; up front, not factored in later. It lays out a step-by-step approach to systems-of-systems architectural design, describing in detail the documentation flow throughout the systems engineering design process. It provides a straightforward look and the entire systems engineering process, providing realistic case studies, examples, and design problems that will enable students to gain a firm grasp on the fundamentals of modern systems engineering.  Included is a comprehensive design problem that weaves throughout the entire text book, concluding with a complete top-level systems architecture for a real-world design problem.

  7. Radionuclide activity and the immune system functioning in residents of radiation contaminated areas

    Directory of Open Access Journals (Sweden)

    V. L. Sokolenko

    2015-09-01

    Full Text Available The objective of this research is to assess the relation of radioactive contamination degree to immune system functioning, in the absence or presence of additional potential immunosuppressants. To achieve the objective, during the period of 1995–2015 we examined 250 people, students of Cherkasy State University, who lived in the areas of enhanced radiation monitoring before. Also we evaluated the additional impact of the emotional stress caused by examinations on examined students. Indicators of cellular immunity were determined by immunophenotyping and dyeing using Romanowsky-Giemsa method. The level of immunoglobulins in blood serum was determined by radial immunodiffusion (Mancini method. The level of cortisol in blood serum was determined by immunoenzyme method. We have found that in absence of the emotional stress among residents of the areas contaminated with radionuclides, cortisol level remained at the upper limit of homeostatic norm. There is an average positive correlation between the activity of radionuclides in the territories of residence and the level of cortisol. There are marked average positive correlations between the activity of radionuclides and the level of neutrophils, and low positive correlations with the levels of IgG and IgM in blood serum. Average negative correlations between the activity of radionuclides and the following parameters are also observed: absolute and relative number of functionally mature T-lymphocytes with phenotype CD3+, absolute and relative number of their helper subpopulation CD4+, absolute and relative number of natural killer cells with phenotype CD16+; and strong negative correlations with immunoregulatory index CD4+/CD8+. Cortisol level shows the similar correlation with the same parameters, but correlation coefficient is lower. Under conditions of additional stress, caused by emotional load during the examinations, cortisol level significantly increases. This enhanced previously discovered

  8. Environmental Restoration Project - Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1998-06-01

    This Environmental Restoration (ER) Project Systems Engineering Management Plan (SEMP) describes relevant Environmental Restoration Contractor (ERC) management processes and shows how they implement systems engineering. The objective of this SEMP is to explain and demonstrate how systems engineering is being approached and implemented in the ER Project. The application of systems engineering appropriate to the general nature and scope of the project is summarized in Section 2.0. The basic ER Project management approach is described in Section 3.0. The interrelation and integration of project practices and systems engineering are outlined in Section 4.0. Integration with sitewide systems engineering under the Project Hanford Management Contract is described in Section 5.0

  9. Radionuclide transport in the "sediments - water - plants" system of the water bodies at the Semipalatinsk test site.

    Science.gov (United States)

    Aidarkhanova, A K; Lukashenko, S N; Larionova, N V; Polevik, V V

    2018-04-01

    This paper provides research data on levels and character of radionuclide contamination distribution in the «sediments- water - plants » system of objects of the Semipalatinsk test site (STS). As the research objects there were chosen water bodies of man-made origin which located at the territory of "Experimental Field", "Balapan", "Telkem" and "Sary-Uzen" testing sites. For research the sampling of bottom sediments, water, lakeside and water plants was taken. Collected samples were used to determine concentration of anthropogenic radionuclides 90 Sr, 239+240 Pu, 241 Am, 137 Cs. The distribution coefficient (K d ) was calculated as the ratio of the content of radionuclides in the sediments to the content in water, and the concentration ratio (F V ) was calculated as the ratio of radionuclide content in plants to the content in sediments or soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Verification and Validation in Systems Engineering

    CERN Document Server

    Debbabi, Mourad; Jarraya, Yosr; Soeanu, Andrei; Alawneh, Luay

    2010-01-01

    "Verification and validation" represents an important process used for the quality assessment of engineered systems and their compliance with the requirements established at the beginning of or during the development cycle. Debbabi and his coauthors investigate methodologies and techniques that can be employed for the automatic verification and validation of systems engineering design models expressed in standardized modeling languages. Their presentation includes a bird's eye view of the most prominent modeling languages for software and systems engineering, namely the Unified Model

  11. A road map for implementing systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dean, F.F. [Sandia National Labs., Albuquerque, NM (United States). New Mexico Weapons Systems Engineering Center; Bentz, B.; Bahill, A.T. [Univ. of Arizona, Tucson, AZ (United States)

    1997-02-01

    Studies by academia, industry, and government indicate that applying a sound systems engineering process to development programs is an important tool for preventing cost and schedule overruns and performance deficiencies. There is an enormous body of systems engineering knowledge. Where does one start? How can the principles of systems engineering be applied in the Sandia environment? This road map is intended to be an aid to answering these questions.

  12. Industrial biosystems engineering and biorefinery systems.

    Science.gov (United States)

    Chen, Shulin

    2008-06-01

    The concept of Industrial Biosystems Engineering (IBsE) was suggested as a new engineering branch to be developed for meeting the needs for science, technology and professionals by the upcoming bioeconomy. With emphasis on systems, IBsE builds upon the interfaces between systems biology, bioprocessing, and systems engineering. This paper discussed the background, the suggested definition, the theoretical framework and methodologies of this new discipline as well as its challenges and future development.

  13. Physico-chemical and hydraulic mechanisms of radionuclide mobilization in aquatic systems

    International Nuclear Information System (INIS)

    Konoplev, A.V.; Bulgakov, A.A.; Comans, R.N.J.; Hilton, J.; Smith, J.; Madruga, M.J.; Voitsekhovich, O.V.; Sansone, U.; Kudelsky, A.V.

    1996-01-01

    This paper presents main results of joint studies carried out in frame of EC-coordinated ECP-3 Project 'Modelling and study of the mechanisms of the transfer of radioactive material from the terrestrial ecosystem to and in water bodies around Chernobyl' in part of geochemical pathways. Physico-chemical models of specific migration processes are developed and recommended for application as sub models for inclusion in the decision support system (JSP-1). Main parameters, determining the behaviour of radionuclides in aquatic ecosystems are identified and methods for their estimation in |emergency situations are proposed

  14. Content Analysis in Systems Engineering Acquisition Activities

    Science.gov (United States)

    2016-04-30

    Acquisition Activities Karen Holness, Assistant Professor, NPS Update on the Department of the Navy Systems Engineering Career Competency Model Clifford...systems engineering toolkit . Having a common analysis tool that is easy to use would support the feedback of observed system performance trends from the

  15. Tank waste remediation system engineering plan

    International Nuclear Information System (INIS)

    Rifaey, S.H.

    1998-01-01

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ''as is'' condition of engineering practice, systems, and facilities to the desired ''to be'' configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively

  16. CAESY - COMPUTER AIDED ENGINEERING SYSTEM

    Science.gov (United States)

    Wette, M. R.

    1994-01-01

    Many developers of software and algorithms for control system design have recognized that current tools have limits in both flexibility and efficiency. Many forces drive the development of new tools including the desire to make complex system modeling design and analysis easier and the need for quicker turnaround time in analysis and design. Other considerations include the desire to make use of advanced computer architectures to help in control system design, adopt new methodologies in control, and integrate design processes (e.g., structure, control, optics). CAESY was developed to provide a means to evaluate methods for dealing with user needs in computer-aided control system design. It is an interpreter for performing engineering calculations and incorporates features of both Ada and MATLAB. It is designed to be reasonably flexible and powerful. CAESY includes internally defined functions and procedures, as well as user defined ones. Support for matrix calculations is provided in the same manner as MATLAB. However, the development of CAESY is a research project, and while it provides some features which are not found in commercially sold tools, it does not exhibit the robustness that many commercially developed tools provide. CAESY is written in C-language for use on Sun4 series computers running SunOS 4.1.1 and later. The program is designed to optionally use the LAPACK math library. The LAPACK math routines are available through anonymous ftp from research.att.com. CAESY requires 4Mb of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic tape cartridge (QIC-24) in UNIX tar format. CAESY was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

  17. Gasoline engine management systems and components

    CERN Document Server

    2015-01-01

    The call for environmentally compatible and economical vehicles necessitates immense efforts to develop innovative engine concepts. Technical concepts such as gasoline direct injection helped to save fuel up to 20 % and reduce CO2-emissions. Descriptions of the cylinder-charge control, fuel injection, ignition and catalytic emission-control systems provides comprehensive overview of today´s gasoline engines. This book also describes emission-control systems and explains the diagnostic systems. The publication provides information on engine-management-systems and emission-control regulations. Contents History of the automobile.- Basics of the gasoline engine.- Fuels.- Cylinder-charge control systems.- Gasoline injection systems over the years.- Fuel supply.- Manifold fuel injection.- Gasoline direct injection.- Operation of gasoline engines on natural gas.- Ignition systems over the years.- Inductive ignition systems.- Ignition coils.- Spark plugs.- Electronic control.- Sensors.- Electronic control unit.- Exh...

  18. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  19. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan); Ogata, Yoshimune [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan)

    2016-09-11

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively ~3 mm FWHM and ~10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  20. Natural radionuclides in major aquifer systems of the Parana sedimentary basin, Brazil

    International Nuclear Information System (INIS)

    Bonotto, Daniel Marcos

    2011-01-01

    This paper describes the natural radioactivity of groundwater occurring in sedimentary (Bauru and Guarani) and fractured rock (Serra Geral) aquifer systems in the Parana sedimentary basin, South America that is extensively used for drinking purposes, among others. The measurements of gross alpha and gross beta radioactivity as well the activity concentration of the natural dissolved radionuclides 40 K, 238 U, 234 U, 226 Ra, 222 Rn, 210 Po and 210 Pb were held in 80 tubular wells drilled in 21 municipalities located at Sao Paulo State and its border with Mato Grosso do Sul State in Brazil. Most of the gross alpha radioactivity data were below 1 mBq/L, whereas values exceeding the gross beta radioactivity detection limit of 30 mBq/L were found. The radioelement solubility in the studied systems varied according to the sequence radon>radium>other radionuclides and the higher porosity of sandstones relatively to basalts and diabases could justify the enhanced presence of dissolved radon in the porous aquifer. The implications of the data obtained in terms of standards established for defining the drinking water quality have also been discussed. The population-weighted average activity concentration for these radionuclides was compared to the guideline value of 0.1 mSv/yr for the total effective dose and discussed in terms of the choice of the dose conversion factors. - Highlights: → Integration of distinct radiometric data acquired in groundwaters. → Radiation dose in important hydrological resources in South America. → Contribution of 226 Ra for the more accentuated radiation dose in aquifers. → Dose factors for Rn and generation of values exceeding the maximum of 0.1 mSv/yr.

  1. Natural radionuclides in major aquifer systems of the Parana sedimentary basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Bonotto, Daniel Marcos, E-mail: danielbonotto@yahoo.com.br [Departamento de Petrologia e Metalogenia, IGCE-Instituto de Geociencias e Ciencias Exatas, UNESP-Universidade Estadual Paulista Julio de Mesquita Filho, Av. 24-A, No. 1515 - CP 178, CEP 13506-900-Rio Claro, SP (Brazil)

    2011-10-15

    This paper describes the natural radioactivity of groundwater occurring in sedimentary (Bauru and Guarani) and fractured rock (Serra Geral) aquifer systems in the Parana sedimentary basin, South America that is extensively used for drinking purposes, among others. The measurements of gross alpha and gross beta radioactivity as well the activity concentration of the natural dissolved radionuclides {sup 40}K, {sup 238}U, {sup 234}U, {sup 226}Ra, {sup 222}Rn, {sup 210}Po and {sup 210}Pb were held in 80 tubular wells drilled in 21 municipalities located at Sao Paulo State and its border with Mato Grosso do Sul State in Brazil. Most of the gross alpha radioactivity data were below 1 mBq/L, whereas values exceeding the gross beta radioactivity detection limit of 30 mBq/L were found. The radioelement solubility in the studied systems varied according to the sequence radon>radium>other radionuclides and the higher porosity of sandstones relatively to basalts and diabases could justify the enhanced presence of dissolved radon in the porous aquifer. The implications of the data obtained in terms of standards established for defining the drinking water quality have also been discussed. The population-weighted average activity concentration for these radionuclides was compared to the guideline value of 0.1 mSv/yr for the total effective dose and discussed in terms of the choice of the dose conversion factors. - Highlights: > Integration of distinct radiometric data acquired in groundwaters. > Radiation dose in important hydrological resources in South America. > Contribution of {sup 226}Ra for the more accentuated radiation dose in aquifers. > Dose factors for Rn and generation of values exceeding the maximum of 0.1 mSv/yr.

  2. Soil microorganisms determine the sorption of radionuclides within organic soil systems

    International Nuclear Information System (INIS)

    Parekh, N.R.; Poskitt, J.M.; Dodd, B.A.; Potter, E.D.; Sanchez, A.

    2008-01-01

    The potential of soil microorganisms to enhance the retention of 137 Cs and 85 Sr in organic systems was assessed in a series of experiments. A biologically active, 'mineral-free', organic material, produced under laboratory conditions from leaves, was used as the uptake matrix in all experiments to minimise potential interference from competing clay minerals. Biological uptake and release were differentiated from abiotic processes by comparing the sorption of radionuclides in sterilised organic material with sterile material inoculated with soil extracts or single fungal strains. Our results show conclusively that living components of soil systems are of primary importance in the uptake of radionuclides in organic material. The presence of soil microorganisms significantly enhanced the retention of Cs in organic systems and ∼70% of the Cs spike was strongly (irreversibly) bound (remained non-extractable) in the presence of microorganisms compared to only ∼10% in abiotic systems. Sorption of 85 Sr was not significantly influenced by the presence of soil microorganisms. A non-linear temperature response was observed for the retention in biotic systems with increased uptake at between 10 and 30 deg. C and lower retention at temperatures above or below the optimum range. The optimum temperatures for biological uptake were between 15 and 20 deg. C for Cs, and 25 and 30 deg. C for Sr. Our results indicate that single strains of soil and saprotrophic fungi make an important contribution to the sorption of Cs and Sr in organic systems, but can only account for part of the strong, irreversible binding observed in biotic systems. Single strains of soil fungi increased the amount of non-extractable 137 Cs (by ∼30%) and 85 Sr (by ∼20%) in the organic systems as compared to abiotic systems, but the major fraction of 137 Cs and 85 Sr sorbed in systems inoculated with saprotrophic fungi remained extractable

  3. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  4. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  5. Advancing Systems Engineering Excellence: The Marshall Systems Engineering Leadership Development Program

    Science.gov (United States)

    Hall, Philip; Whitfield, Susan

    2011-01-01

    As NASA undertakes increasingly complex projects, the need for expert systems engineers and leaders in systems engineering is becoming more pronounced. As a result of this issue, the Agency has undertaken an initiative to develop more systems engineering leaders through its Systems Engineering Leadership Development Program; however, the NASA Office of the Chief Engineer has also called on the field Centers to develop mechanisms to strengthen their expertise in systems engineering locally. In response to this call, Marshall Space Flight Center (MSFC) has developed a comprehensive development program for aspiring systems engineers and systems engineering leaders. This presentation will summarize the two-level program, which consists of a combination of training courses and on-the-job, developmental training assignments at the Center to help develop stronger expertise in systems engineering and technical leadership. In addition, it will focus on the success the program has had in its pilot year. The program hosted a formal kickoff event for Level I on October 13, 2009. The first class includes 42 participants from across MSFC and Michoud Assembly Facility (MAF). A formal call for Level II is forthcoming. With the new Agency focus on research and development of new technologies, having a strong pool of well-trained systems engineers is becoming increasingly more critical. Programs such as the Marshall Systems Engineering Leadership Development Program, as well as those developed at other Centers, help ensure that there is an upcoming generation of trained systems engineers and systems engineering leaders to meet future design challenges.

  6. A demonstration of expert systems applications in transportation engineering : volume I, transportation engineers and expert systems.

    Science.gov (United States)

    1987-01-01

    Expert systems, a branch of artificial-intelligence studies, is introduced with a view to its relevance in transportation engineering. Knowledge engineering, the process of building expert systems or transferring knowledge from human experts to compu...

  7. Systems Engineering Analysis for Office Space Management

    Science.gov (United States)

    2017-09-01

    ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT by James E. Abellana September 2017 Thesis Advisor: Diana Angelis Second Reader: Walter E. Owen...Master’s thesis 4. TITLE AND SUBTITLE SYSTEMS ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT 5. FUNDING NUMBERS 6. AUTHOR(S) James E. Abellana 7...of the systems engineering method, this thesis develops a multicriteria decision-making framework applicable to space allocation decisions for

  8. Vehicle Systems Engineering and Integration Activities

    Science.gov (United States)

    2012-08-31

    liter turbo diesel Bolt on armor required upgraded suspension, engine, and steering Mattracks or wheels Imbalance in cupola required motorized...liter turbo diesel engine, a new transmission, improved suspension and frame for an increased armor capability, 1,800- 4,400 lb payload and GVW 18,000...space (14 cubic feet), enhanced 6500 turbo diesel engine, higher capacity transmission, air induction system and exhaust systems. Lessons

  9. Principles of Sociology in Systems Engineering

    Science.gov (United States)

    Watson, Michael D.; Andrews, James G.; Larsen, Jordan A.

    2017-01-01

    Systems engineering involves both the integration of the system and the integration of the disciplines which develop and operate the system. Integrating the disciplines is a sociological effort to bring together different groups, often with different terminology, to achieve a common goal, the system. The focus for the systems engineer is information flow through the organization, between the disciplines, to ensure the system is developed and operated with all relevant information informing system decisions. Robert K. Merton studied the sociological principles of the sciences and the sociological principles he developed apply to systems engineering. Concepts such as specification of ignorance, common terminology, opportunity structures, role-sets, and the reclama (reconsideration) process are all important sociological approaches that should be employed by the systems engineer. In bringing the disciplines together, the systems engineer must also be wary of social ambivalence, social anomie, social dysfunction, insider-outsider behavior, unintended consequences, and the self-fulfilling prophecy. These sociological principles provide the systems engineer with key approaches to manage the information flow through the organization as the disciplines are integrated and share their information. This also helps identify key sociological barriers to information flow through the organization. This paper will discuss this theoretical basis for the application of sociological principles to systems engineering.

  10. Development of a chromatographic micro-system for radionuclides analysis in nitric acid media

    International Nuclear Information System (INIS)

    Losno, Marion

    2017-01-01

    Radionuclides analysis is a key point for nuclear waste management and nuclear material control. Several steps of sample modification have to be carried out before measurements in order to avoid any interferences and improve measurement precision. However those different steps are long, irradiating and difficult to achieve in gloveboxes. Moreover they produce liquid and solid waste. The goal of the study is to offer a new alternative to the use of solid phase extraction column for radionuclides separation in hard nitric acid medium. The system will decrease the amount of nuclear waste due to the analysis and automatize the different steps of the analysis. A plastic device made of COC containing a micro solid phase extraction column is first designed. Stationary phase is a poly(AMA-co-EDMA) monolith synthesized in situ. Its structure is adjustable and its functionalization versatile with a high resistance to nitric acid medium. Exchange capacity is 150 mg/g of monolith for TBP and TBP/CMPO column and up to 280 mg/g of monolith in case of DAAP. Exchange coefficients are determined for U(VI), Th(IV), Eu(III) and Nd(III) for 3 different extractants (and Pu(IV) in case of TBP column). Monolith synthesis is transferred in centrifugal device and hydrodynamic behavior studied. U,Th/Eu separation was finally carried out in both classic and centrifugal micro-system on TBP column. (author) [fr

  11. Applying Systems Engineering on Energy Challenges

    NARCIS (Netherlands)

    Safi, J.; Muller, G.; Bonnema, Gerrit Maarten

    2012-01-01

    Systems engineering is a discipline with methods and techniques to address complex problems. We want to study how Systems Engineering methods can help to address today's grand challenges, such as the energy problem. The first step is problem definition which aims at articulating the problem in its

  12. Assessment of function of the cardiovascular system in arterial hypertension using radionuclide methods of investigation

    International Nuclear Information System (INIS)

    Oganesyan, N.M.; Babayan, A.S.; Mikaehlyan, R.S.; Mnatsakyan, Eh.L.

    1986-01-01

    Proceeding from a study of the nature of changes in hemodynamics during development of hypertensive disease (HD) at its different stages it was shown that hemodynamic changes in 42.1% of the patients with Stage 1-2A HD were of hypertensive type, in the patients with Stage 2B-3 HD normal and hypokinetic types of the blood circulation prevailed. After bicycle ergometry exercise the reactivity of the cardiovascular system was revealed more completely. The most complete information on function of the cardiovascular system and myocardial contractility can be obtained with the help of radioangiocardiography and radionuclide ventriculography. However in the absence of a gamma-chamber radiocardiography can provide necessary information on function of the cardiovascular system in case it is used in one and the same patient over time using bicycle ergometry testing

  13. MOIRA models and methodologies for assessing the effectiveness of countermeasures in complex aquatic systems contaminated by radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Monte, L. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente; Brittain, J.E. [Oslo Univ., Oslo (Norway); Zoological Museum, Oslo (Norway); Haakanson, L. [Uppsala Univ., Uppsala (Sweden). Inst. of Earth Science; Gallego Diaz, E. [Madrid Univ. Politecnica, Madrid (Spain). Dept. de Ingenieria Nuclear

    1999-07-01

    The present report is composed of a set of articles written by the partners of the MOIRA project (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas). The report describes models for predicting the behaviour of radionuclides in complex aquatic systems and the effects of countermeasures for their restoration. [Italian] Il rapporto contiene articoli preparati nell'ambito del progetto MOIRA (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas), che descrive alcuni modelli per la previsione del comportamento di radionuclidi in sistemi acquatici complessi e per la valutazione dell'effetto delle contromisure per il loro recupero.

  14. MOIRA models and methodologies for assessing the effectiveness of countermeasures in complex aquatic systems contaminated by radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Monte, L [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente; Brittain, J E [Oslo Univ., Oslo (Norway); Zoological Museum, Oslo [Norway; Haakanson, L [Uppsala Univ., Uppsala (Sweden). Inst. of Earth Science; Gallego Diaz, E [Madrid Univ. Politecnica, Madrid (Spain). Dept. de Ingenieria Nuclear

    1999-07-01

    The present report is composed of a set of articles written by the partners of the MOIRA project (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas). The report describes models for predicting the behaviour of radionuclides in complex aquatic systems and the effects of countermeasures for their restoration. [Italian] Il rapporto contiene articoli preparati nell'ambito del progetto MOIRA (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas), che descrive alcuni modelli per la previsione del comportamento di radionuclidi in sistemi acquatici complessi e per la valutazione dell'effetto delle contromisure per il loro recupero.

  15. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  16. SU-E-T-666: Radionuclides and Activity of the Patient Apertures Used in a Proton Beam of Wobbling System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.Y.; Chen, H.H.; Tsai, H.Y.; Sheu, R.J.

    2015-06-15

    Purpose: To identify the radionuclides and quantify the activity of the patient apertures used in a 190-MeV proton beam of wobbling system. Methods: A proton beam of wobbling system in the first proton center in Taiwan, Chang Gung Memorial Hospital at Linkou, was used to bombard the patient apertures. The patient aperture was composed of 60.5 % copper, 39.4 % Zinc, 0.05 % iron, 0.05 % lead. A protable high-purity germanium (HPGe) coaxial detector was used to measure the spectra of the induced nuclides of patient apertures. The analysis of the spectra and the identification of the radionuclides were preliminarily operated by the Nuclide Navigator III Master Library. On the basis of the results by Nuclide Navigator III Master Library, we manually selected the reliable nuclides by the gamma-ray energies, branching ratio, and half life. In the spectra, we can quantify the activity of radionuclides by the Monte Carlo efficiency transfer method. Results: In this study, the radioisotopes activated in patient apertures by the 190-MeV proton beam were divided into two categories. The first category is long half-life radionuclides, such as Co-56 (half life, 77.3 days). Other radionuclides of Cu-60, Cu-61, Cu-62, Cu-66, and Zn-62 have shorter half life. The radionuclide of Cu-60 had the highest activity. From calculation with the efficiency transfer method, the deviations between the computed results and the measured efficiencies were mostly within 10%. Conclusion: To identify the radionuclides and quantify the activity helps us to estimate proper time intervals for cooling the patient apertures. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)

  17. SU-E-T-666: Radionuclides and Activity of the Patient Apertures Used in a Proton Beam of Wobbling System

    International Nuclear Information System (INIS)

    Wang, B.Y.; Chen, H.H.; Tsai, H.Y.; Sheu, R.J.

    2015-01-01

    Purpose: To identify the radionuclides and quantify the activity of the patient apertures used in a 190-MeV proton beam of wobbling system. Methods: A proton beam of wobbling system in the first proton center in Taiwan, Chang Gung Memorial Hospital at Linkou, was used to bombard the patient apertures. The patient aperture was composed of 60.5 % copper, 39.4 % Zinc, 0.05 % iron, 0.05 % lead. A protable high-purity germanium (HPGe) coaxial detector was used to measure the spectra of the induced nuclides of patient apertures. The analysis of the spectra and the identification of the radionuclides were preliminarily operated by the Nuclide Navigator III Master Library. On the basis of the results by Nuclide Navigator III Master Library, we manually selected the reliable nuclides by the gamma-ray energies, branching ratio, and half life. In the spectra, we can quantify the activity of radionuclides by the Monte Carlo efficiency transfer method. Results: In this study, the radioisotopes activated in patient apertures by the 190-MeV proton beam were divided into two categories. The first category is long half-life radionuclides, such as Co-56 (half life, 77.3 days). Other radionuclides of Cu-60, Cu-61, Cu-62, Cu-66, and Zn-62 have shorter half life. The radionuclide of Cu-60 had the highest activity. From calculation with the efficiency transfer method, the deviations between the computed results and the measured efficiencies were mostly within 10%. Conclusion: To identify the radionuclides and quantify the activity helps us to estimate proper time intervals for cooling the patient apertures. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)

  18. Transportation of natural radionuclides and rare earth light elements in the lagoon system of Buena, RJ

    International Nuclear Information System (INIS)

    Lauria, Dejanira da Costa

    1999-03-01

    it was investigated the transport of the series natural radionuclides and the earth rare light elements in a coastal lagoon system, located in a monazite rich region, in the coast north region of Rio de Janeiro state. The lagoon water showed off abnormal concentrations of radium isotopes and of the earth rare light elements (ERLEs). The longitudinal gradient of the Ra, of the ERLEs and of the major ion concentration's, whose data were obtained during two and half years of the research at the place, and the statistical analysis pointed to two mainly source as responsible for the water lagoon composition - the marine and the underground waters. The underground water supplies the radionuclides and ERLEs, possibly originated by monazite lixiviation. Based on the water speciation modeling, the results of laboratory adsorption on sediment experiments and the sediment characterization, the behavior of the radio isotopes, the ERLEs, U, Th e Pb-210, along of the lagoon, are discussed. It is also discussed the role of the aquatic macrophyte Typha dominguesis Pers in the nuclide uptake and the following liberation. (author)

  19. Release of iodine radionuclides from gas media in a system of selective block sorbents

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Miroshnikov, V.S.; Mel'nikov, V.A.; Chetverikov, V.V.

    1979-01-01

    A scheme of extracting iodine radionuclides from gas flows in a system of selective sorbents has been developed. The method provides separation of three forms of iodine: the aerosol component, the elementary iodine and organic-iodine compounds. Aerosols are trapped by a mechanical filter made of porous polytetrafluoroethylene with pores of no more than 1 μm. Silver-based sorbents for the elementary iodine are made by sintering the granular polytetrafluoroethylene (the size of granules is 0.1-0.5 mm) with of finely dispersed solver (5% mass). Organic iodine compounds are extracted by a silica sorbent impregnated with silver nitrate. The efficiency of sorbents was tested in gas flows with a known content of 131 I in the form of elementary iodine and methyl iodide. The results of experiments show that the efficiency of sorption of elementary iodine by a metallic-silver sorbent and of methyl iodide by a SiO 2 /AgNO 3 sorbent constitutes no less than 99% at a flow rate of up to 200 l/h. The iodine has been extracted at a flow rate of 100 l/h during 100 hours and for that time the efficiency of the iodine sorbtion has not changed. The suggested variant of extracting iodine radionuclides from gaseous media can be used both for fast control of iodine content in gas blowoffs and for researches aimed at studying the distribution of iodine forms in steam-and-gas media depending on nuclear plant operating conditions

  20. Decomissioning of nuclear reactors - methods for calculation of radionuclide inventories in contaminated BWR systems

    International Nuclear Information System (INIS)

    Lundgren, K.

    1991-01-01

    The purpose of the study has been to develop and demonstrate calculation models for the prediction of radionuclide inventories in contaminated systems in the Nordic BWRs at the time of decommissioning. Oskarshamn 2 was selected as reference reactor for the study. The study is divided in radionuclide inventories of activated corrosion products, and inventories of fission products and actinides from leaking fuel. The study is restricted to contamination outside the reactor pressure vessel. Inventories of activated corrosion products on primary system surfaces were predicted with the ABB Atom computer code BKM-CRUD. The calculations were performed for an extended operation time up to year 2010 for the nuclides Co60, Co58, Zn65 and Mn54. A special set of calculations were also made covering the non-standard nuclides Fe55, Ni59, No63 and Mo93. ABB Atom has carried out a comprehensive program on shutdown dose rates and activity measurements in delivered BWRs. The resulting data base have been used in the study to derive conversion factors for evaluation of contamination levels in secondary systems from the BKM-CRUD results for primary systems. Fission products and actinides were treated by defining two different fuel leakage scenarios. The first one corresponds to a rather stable situation, with an average leakage rate of 1 'standard pin hole' (i.e. 2 MBq/s Xe133). The second scenario means more severe fuel leakage every 10 years (200 MBq/s Xe133). The radioactive inventories in different part of the plant were calculated by combining the surface areas with the calculated contamination levels in the different systems. The uncertainty in total activity inventory has been estimated to not exceed a factor of 2. The uncertainty in total activity inventory has been to not exceed a factor of 2. The estimated inventories in this study has been compared to the results from other studies, and a reasonable agreement was achieved

  1. Practical Application of Sociology in Systems Engineering

    Science.gov (United States)

    Watson, Michael D.; Andrews, James G.; Eckley, Jeri Cassel; Culver, Michael L.

    2017-01-01

    Systems engineering involves both the integration of the system and the integration of the disciplines which develop and operate the system. Integrating the disciplines is a sociological effort to bring together different groups, who often have different terminology, to achieve a common goal, the system. The focus for the systems engineer is information flow through the organization, between the disciplines, to ensure the system is developed and operated will all relevant information informing system decisions. The practical application of the sociology in systems engineering brings in various organizational development concepts including the principles of planned renegotiation and the application of principles to address information barriers created by organizational culture. Concepts such as specification of ignorance, consistent terminology, opportunity structures, role-sets, and the reclama (reconsideration) process are all important sociological approaches that help address the organizational social structure (culture). In bringing the disciplines together, the systems engineer must also be wary of social ambivalence, social anomie, social dysfunction, and insider-outsider behavior. Unintended consequences can result when these social issues are present. These issues can occur when localized subcultures shift from the overarching organizational culture, or when the organizational culture prevents achievement of system goals. These sociological principles provide the systems engineer with key approaches to manage the information flow through the organization as the disciplines are integrated and share their information and provides key sociological barriers to information flow through the organization. This paper will discuss the practical application of sociological principles to systems engineering.

  2. Complex engineering systems science meets technology

    CERN Document Server

    Minai, Ali A; Bar-Yam, Yaneer

    2006-01-01

    Every time that we take money out of an ATM, surf the internet or simply turn on a light switch, we enjoy the benefits of complex engineered systems. Systems like power grids and global communication networks are so ubiquitous in our daily lives that we usually take them for granted, only noticing them when they break down. But how do such amazing technologies and infrastructures come to be what they are? How are these systems designed? How do distributed networks work? How are they made to respond rapidly in 'real time'? And as the demands that we place on these systems become increasingly complex, are traditional systems-engineering practices still relevant? This volume examines the difficulties that arise in creating highly complex engineered systems and new approaches that are being adopted. Topics addressed range from the formal representation and classification of distributed networked systems to revolutionary engineering practices inspired by biological evolution. By bringing together the latest resear...

  3. The characteristics of mechanical engineering systems

    CERN Document Server

    Holmes, R

    1977-01-01

    The Characteristics of Mechanical Engineering Systems focuses on the characteristics that must be considered when designing a mechanical engineering system. Mechanical systems are presented on the basis of component input-output relationships, paying particular attention to lumped-parameter problems and the interrelationships between lumped components or """"black-boxes"""" in an engineering system. Electric motors and generators are treated in an elementary manner, and the principles involved are explained as far as possible from physical and qualitative reasoning. This book is comprised of

  4. Visualizing systems engineering data with Java

    International Nuclear Information System (INIS)

    Barter, R; Vinzant, A.

    1998-01-01

    Systems Engineers are required to deal with complex sets of data. To be useful, the data must be managed effectively, and presented in meaningful terms to a wide variety of information consumers. Two software patterns are presented as the basis for exploring the visualization of systems engineering data. The Model, View, Controller pattern defines an information management system architecture. The Entity, Relation, Attribute pattern defines the information model. MVC Views then form the basis for the user interface between the information consumer and the MVC Controller/Model combination. A Java tool set is described for exploring alternative views into the underlying complex data structures encountered in systems engineering

  5. Rethinking the Systems Engineering Process in Light of Design Thinking

    Science.gov (United States)

    2016-04-30

    systems engineering process models (Blanchard & Fabrycky, 1990) and the majority of engineering design education (Dym et al., 2005). The waterfall model ...Engineering Career Competency Model Clifford Whitcomb, Systems Engineering Professor, NPS Corina White, Systems Engineering Research Associate, NPS...Postgraduate School (NPS) in Monterey, CA. He teaches and conducts research in the design of enterprise systems, systems modeling , and system

  6. EBS Radionuclide Transport Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport

  7. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    J.D. Schreiber

    2005-01-01

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  8. MOIRA: a computerised decision support system for the management of radionuclide contaminated freshwater ecosystems

    International Nuclear Information System (INIS)

    Gallego, Eduardo; Brittain, John E.; Hakanson, Lars; Heling, Rudie; Hofman, Dmitry; Monte, Luigi

    2004-01-01

    The radiation dose resulting from contamination of freshwater ecosystems due to the release of radioactive substances into the environment may be reduced by applying suitable countermeasures. Despite their benefits, intervention strategies may have detrimental effects of economic, ecological and social nature. Thus, it is of paramount importance to assess, by objective criteria, the global cost-benefit balance of different options. The MOIRA project (A MOdel based computerised system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems) has developed a user-friendly, computerised tool that will allow decision makers to choose optimal intervention strategies for freshwater ecosystems with different contamination scenarios. The aim of the paper is to briefly describe the main components of the MOIRA system and to demonstrate its application using real case based scenarios. (author)

  9. Radionuclide studies in patients with neurological and psychiatric complications of systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Lass, P.; Krajka-Lauer, J.; Koseda-Dragan, M.; Lyczak, P.; Stepien, E.

    1998-01-01

    The psychiatric and neurological complications are present in a major part of patients with systemic lupus erythematosus (SLE). When biochemical and immunological assessment of those patients is currently satisfactory , diagnostic imaging of central nervous system is met with difficulties. The paper overviews the psychiatric and neurological complications of SLE, pathological changes in CNS and the diagnostic imaging of CNS in SLE. The paper underlines an important role of radionuclide studies in the diagnostic algorithm in this group of patients facing the unsatisfactory sensitivity and specificity of computed tomography and nuclear magnetic resonance. Regional cerebral blood flow imaging using simple photon computed tomography and cerebral glucose metabolism using positron emission tomography may play the crucial role both in assessment of present CNS involvement and for the follow-up in the course of therapy. (author)

  10. Systems study on engineered barriers: barrier performance analysis

    International Nuclear Information System (INIS)

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed

  11. Systems study on engineered barriers: barrier performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed.

  12. System for measuring engine exhaust constituents

    International Nuclear Information System (INIS)

    Carduner, K.R.; Colvin, A.D.; Leong, D.Y.W.

    1992-01-01

    This patent describes a system for measuring an automotive engine exhaust constituent. It comprises: a meter for determining the mass of air flowing through the engine and for generating an engine airflow signal corresponding to the airflow; sample handling apparatus; diluent adding means; processor means. This patent also describes a method for using an analyzer to determine the amount of lubricating oil consumed by an automotive engine. It comprises: determining the amount of sulfur dioxide within the room air being drawn into the engine; maintaining a constant total flow comprised of a constant fraction of the engine's exhaust gas and a diluent gas through the analyzer, while: determining the amount of sulfur dioxide contained within the engine's exhaust, determining the amount of sulfur dioxide contained within the engine's exhaust, while operating the engine on room air; determining an efficiency factor for the analyzer; and using the efficiency factor and the concentration of sulfur in the engine oil and the amounts of sulfur dioxide determined in steps a and d to determine the amount of lubrication oil leaving the engine through its exhaust

  13. The estimation possibility of cleaning from radionuclides for the coast parts of drainage system by the soil fractionating method

    International Nuclear Information System (INIS)

    Karlin, Y.V.; Chuikov, V.Y.; Belianina, N.G.; Barinov, A.S.

    1996-01-01

    In this paper is considered the possibility of the cleaning from the radionuclides for the coast parts of the drainage system at the Moscow SIA open-quotes Radonclose quotes by the soil fractionating treatment. It is showed that this method cannot to be used for the cleaning of the soils near water flowing (a river, a spring or a open drainage system) because the most part of the soil size-fractions is the fine fractions and the main contaminant radionuclide ( 137 Cs) is distributed among the different soil components homogeneously

  14. Radionuclide trap

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition

  15. Quantifying radionuclide signatures from a γ–γ coincidence system

    International Nuclear Information System (INIS)

    Britton, Richard; Jackson, Mark J.; Davies, Ashley V.

    2015-01-01

    A method for quantifying gamma coincidence signatures has been developed, and tested in conjunction with a high-efficiency multi-detector system to quickly identify trace amounts of radioactive material. The γ–γ system utilises fully digital electronics and list-mode acquisition to time–stamp each event, allowing coincidence matrices to be easily produced alongside typical ‘singles’ spectra. To quantify the coincidence signatures a software package has been developed to calculate efficiency and cascade summing corrected branching ratios. This utilises ENSDF records as an input, and can be fully automated, allowing the user to quickly and easily create/update a coincidence library that contains all possible γ and conversion electron cascades, associated cascade emission probabilities, and true-coincidence summing corrected γ cascade detection probabilities. It is also fully searchable by energy, nuclide, coincidence pair, γ multiplicity, cascade probability and half-life of the cascade. The probabilities calculated were tested using measurements performed on the γ–γ system, and found to provide accurate results for the nuclides investigated. Given the flexibility of the method, (it only relies on evaluated nuclear data, and accurate efficiency characterisations), the software can now be utilised for a variety of systems, quickly and easily calculating coincidence signature probabilities. - Highlights: • Monte-Carlo based software developed to easily create/update a coincidence signal library for environmental radionuclides. • Coincidence library utilised to accurately quantify gamma coincidence signatures. • All coincidence signature probabilities are corrected for cascade summing, conversion electron emission and pair production. • Key CTBTO relevant radionuclides have been tested to verify the calculated correction factors. • Accurately quantifying coincidence signals during routine analysis will allow dramatically improved detection

  16. Basic studies on the estimation of the capacitance of human pulmonary 'venous' system using radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Fujiwara, Hideki; Gotoh, Kohshi; Suzuki, Takahiko; Ohsumi, Yukio; Yagi, Yasuo; Hirakawa, Senri

    1993-01-01

    To establish the methodology to assess the capacitance of human pulmonary 'venous' system, using radionuclide angiocardiography and passive leg elevation, some basic aspects of the method were investigated. The pulmonary 'venous' system consisted of pulmonary veins and the left atrium. A short segment of the volume-pressure curve in human pulmonary 'venous' system was obtained as a line connecting the 2 points. (1) Pulmonary 'venous' volume-mean pulmonary capillary wedge pressure plot (P 'V' V-PCW plot) in supine position, where P 'V' V=0.7 x PBV. Pulmonary blood volume (PBV) was obtained by radionuclide angiocardiography, while mean pulmonary capillary wedge pressure (PCW) was simultaneously recorded by a floating catheter. (2) ΔP 'V' V-ΔPCW relation where ΔP 'V' V=0.8 x ΔPBV. Increment of the pulmonary blood volume (ΔPBV) during passive elevation of legs was measured from the baseline PBV and the percentage increase in the radioactivity over the right anterior chest during the leg elevation, after correction for (a) radioactivity from chest wall origin, and for (b) attenuation of the radioactive beams by the lung and the anterior chest wall. ΔPCW was the increase in PCW during leg elevation. The present study focussed on the details of the two corrections, (a) and (b), using, in parts, mechanical models. The present study also focussed on the reproducibility of the ΔP 'V' V, ΔPCW and Cp'v' (compliance of the pulmonary 'venous' system). The coefficient of variation was ±23% in ΔP 'V' V, ±18% in ΔPCW and ±18% in Cp'v', indicating a fair degree of reproducibility. (author)

  17. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  18. Radionuclide transport in the Neogene aquifer system located in the environment of the Boom clay

    International Nuclear Information System (INIS)

    Gedeon, M.; Marivoet, J.; Vandersteen, K.

    2012-01-01

    Document available in extended abstract form only. In the framework the Belgian research program on the long term management of high-level and/or long-lived radioactive waste coordinated by ONDRAF/NIRAS, the Boom Clay is considered as a reference host rock for the geological disposal of high-level radioactive waste in NE-Belgium (Campine area). In the frame of the performance assessments of a disposal system located in the Boom Clay Formation, the transport of radionuclides diffusing through the clay barrier into the aquifers located above is modelled. The transport model for the Neogene aquifer is based on a series of groundwater flow models simulating the aquifer systems in the surroundings of the Boom Clay. This series of groundwater models include the regional north-eastern Belgium model simulating flow both above and below the Boom Clay, the recently updated deep-aquifer pumping model, simulating transient flow in the over-exploited aquifers below the Boom Clay and finally the catchment-scale Neogene aquifer model, simulating flow in the aquifer system above the Boom Clay. The Neogene aquifer system consists of two main aquifers. The Pliocene aquifer is located at the top, separated from the underlying Miocene aquifer by the Kasterlee Clay aquitard. The Miocene aquifer consists of three hydrostratigraphic units: the Diest, Berchem and Voort Formations; with the last two having a lower hydraulic conductivity than the Diest unit. The transport model for the Neogene aquifer represents a fraction of the catchment-scale Neogene aquifer model. It stretches from the local divide between the Grote and Kleine Nete Rivers up to the Kleine Nete River, representing the main model sink. The boundary conditions and the sources/sinks in the Pliocene aquifer are defined mostly by the surface water features, such as the rivers, brooks, lakes and canals. In the partially confined Miocene aquifer, the effect of the surface water features is dampened and the heads at the model

  19. Design of environment monitoring system to evaluate radionuclide release from subsystem on PWR nuclear power accident

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Sugiyanto; Pande Made Udiyani; Jupiter Sitorus Pane

    2012-01-01

    Nuclear Power Plan (NPP) as a renewable energy source is selected as an alternative, because it has many advantages that is environmentally friendly, fuel supply which is independent of the season, and the price that can compete with other power plants. However, the existence of some public skepticism about nuclear radiation safety, the government must be convinced about the operation of nuclear power plants are safe and secure. Research on the design of environment monitoring system for evaluation of radionuclide release from the reactor subsystems and the environment due to accidents at power reactors has been done. The study was conducted by calculating the distribution of radionuclide release into the reactor subsystem and the environment and also to build the environment radiation monitoring system. Environmental monitoring system consists of a radiation counter, early warning systems, meteorological measurement systems, GPS systems and GIS. Radiation monitoring system used to record the data of radiation, meteorological measurement system used to record data of wind and speed direction, while the GPS system is used to determine position of data measurements. The data is then transmitted to a data acquisition system and then to be transmitted to the control center. Collection and transmission of data is done via SMS formatting using a modem device that is placed in the control center. The control center receives measurement data from various places. In this case the control center has a function as an SMS Gateway. This system can visualize for different measurement locations. Furthermore, radiation data and position data to be integrated with digital maps. System integration is then visualized in a personal computer. To position of measurements directly visualized on the map and also look for the data displayed on a monitor as a red or green circle colour. That colour indicated as a safe limit of radiation monitor. When the cycle colour is red, the system will

  20. Influence of Cracks in Cementitious Engineered Barriers in a Near-Surface Disposal System: Assessment Analysis of the Belgian Case

    International Nuclear Information System (INIS)

    Perko, Janez; Seetharam, Suresh C.; Jacques, Diederik; Mallants, Dirk; Cool, Wim; Vermarien, Elise

    2013-01-01

    In large cement-based structures such as a near surface disposal facility for radioactive waste voids and cracks are inevitable. However, the pattern and nature of cracks are very difficult to predict reliably. Cracks facilitate preferential water flow through the facility because their saturated hydraulic conductivity is generally higher than the conductivity of the cementitious matrix. Moreover, sorption within the crack is expected to be lower than in the matrix and hence cracks in engineered barriers can act as a bypass for radionuclides. Consequently, understanding the effects of crack characteristics on contaminant fluxes from the facility is of utmost importance in a safety assessment. In this paper we numerically studied radionuclide leaching from a crack-containing cementitious containment system. First, the effect of cracks on radionuclide fluxes is assessed for a single repository component which contains a radionuclide source (i.e. conditioned radwaste). These analyses reveal the influence of cracks on radionuclide release from the source. The second set of calculations deals with the safety assessment results for the planned near-surface disposal facility for low-level radioactive waste in Dessel (Belgium); our focus is on the analysis of total system behaviour in regards to release of radionuclide fluxes from the facility. Simulation results are interpreted through a complementary safety indicator (radiotoxicity flux). We discuss the possible consequences from different scenarios of cracks and voids. (authors)

  1. Software And Systems Engineering Risk Management

    Science.gov (United States)

    2010-04-01

    RSKM 2004 COSO Enterprise RSKM Framework 2006 ISO/IEC 16085 Risk Management Process 2008 ISO/IEC 12207 Software Lifecycle Processes 2009 ISO/IEC...1 Software And Systems Engineering Risk Management John Walz VP Technical and Conferences Activities, IEEE Computer Society Vice-Chair Planning...Software & Systems Engineering Standards Committee, IEEE Computer Society US TAG to ISO TMB Risk Management Working Group Systems and Software

  2. Systems engineering: A formal approach. Part 1: System concepts

    Science.gov (United States)

    Vanhee, K. M.

    1993-03-01

    Engineering is the scientific discipline focused on the creation of new artifacts that are supposed to be of some use to our society. Different types of artifacts require different engineering approaches. However, in all these disciplines the development of a new artifact is divided into stages. Three stages can always be recognized: Analysis, Design, and Realization. The book considers only the first two stages of the development process. It focuses on a specific type of artifacts, called discrete dynamic systems. These systems consist of active components of actors that consume and produce passive components or tokens. Three subtypes are studied in more detail: business systems (like a factory or restaurant), information systems (whether automated or not), and automated systems (systems that are controlled by an automated information system). The first subtype is studied by industrial engineers, the last by software engineers and electrical engineers, whereas the second is a battlefield for all three disciplines. The union of these disciplines is called systems engineering.

  3. 1995 Idaho National Engineering Laboratory (INEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs): Radionuclides. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Under Section 61.94 of 40 CFR 61, Subpart H (National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities), each DOE facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at INEL for CY 1995. For that year, airborne radionuclide emissions from INEL operations were calculated to result in a maximum individual dose to a member of the public of 1.80E-02 mrem (1.80E-07 Sievert), well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  4. 1995 Idaho National Engineering Laboratory (INEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs): Radionuclides. Annual report

    International Nuclear Information System (INIS)

    1996-06-01

    Under Section 61.94 of 40 CFR 61, Subpart H (National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities), each DOE facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at INEL for CY 1995. For that year, airborne radionuclide emissions from INEL operations were calculated to result in a maximum individual dose to a member of the public of 1.80E-02 mrem (1.80E-07 Sievert), well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year)

  5. Contemporary issues in systems science and engineering

    CERN Document Server

    Zhou, M; Weijnen, M

    2015-01-01

    This volume provides a comprehensive overview of all important areas in systems science and engineering and poses the issues and challenges in these areas in order to deal with ever-increasingly complex systems and newly emergent applications. The topics range from discrete event systems, distributed intelligent systems, grey systems, and enterprise information systems to conflict resolution, robotics and intelligent sensing, smart grids, and system of systems approaches. Individual chapters are written by leading experts in the field.

  6. The application of polyelectrolytes to improve liquid radwaste treatment system radionuclide removal efficiency

    International Nuclear Information System (INIS)

    Homyk, W.A.; Spall, M.J.; Vance, J.N.

    1990-01-01

    At nuclear plants, miscellaneous waste water treated in the liquid radwaste processing system contains a significant fraction of suspended particulate materials ranging in size from a few microns down to the submicron region. The fewer particles that typically exist as colloids are generally negatively charged by virtue of inorganic and organic anions absorbed onto the particle surfaces. Because many of the radionuclides exist as colloids and resist agglomeration and settling they are not easily removed by mechanical filtration or ion exchange processes. The colloidal materials will easily pass through most filters with conventional pore size ratings and through most ion exchange media. This leads to poor decontamination Factors (dFs) and higher radionuclide releases to the environment. A laboratory-scale testing program was conducted at Indian Point Unit No. 2 to determine the effectiveness of the use of organic polyelectrolytes to destabilize colloidal suspensions in liquid radwaste. Destabilizing colloidal suspensions will improve the removal efficiencies of the suspended material by typical filtration and ion exchange processes. The increased removal efficiencies will provide increased dFs in the liquid radwaste treatment system. The testing focused on identifying the specific organic polyelectrolytes and the associated dosages which would be effective in destabilizing the colloidal suspensions on actual waste water samples. The testing also examined the filtration characteristics of the water source to determine filter parameters such as: body feed material, body feed dosages, specific flow rates, etc., which would provide the basis for the design of filtration systems for these applications. The testing effort and the major conclusions from this investigation are given. 4 refs., 8 figs., 2 tabs

  7. Migration of radionuclides in the soil-crop-food product system and assessment of agricultural countermeasures

    International Nuclear Information System (INIS)

    Bogdevitch, I.; Ageyets, V.

    1996-01-01

    Studies on dynamics of redistribution of radionuclides through of profile of the different soils on uncultivated agricultural lands of Belarus during the 1986-1995 period show that vertical migration occurs with low rate. In arable soils the radionuclides are distributed in comparatively uniform way through the whole depth of the 25-30 cm cultivated layer. Investigations on migration of radionuclides with wind erosion on the drained series of wet sandy and peat soils and water erosion on sloping lands show that one should take into consideration the secondary contamination of soils while forecasting a possible accumulation of radionuclides in farm products

  8. Process Systems Engineering Education: Learning by Research

    Science.gov (United States)

    Abbas, A.; Alhammadi, H. Y.; Romagnoli, J. A.

    2009-01-01

    In this paper, we discuss our approach in teaching the final-year course Process Systems Engineering. Students are given ownership of the course by transferring to them the responsibility of learning. A project-based group environment stimulates learning while solving a real engineering problem. We discuss postgraduate student involvement and how…

  9. Pragmatic electrical engineering systems and instruments

    CERN Document Server

    Eccles, William

    2011-01-01

    Pragmatic Electrical Engineering: Systems and Instruments is about some of the non-energy parts of electrical systems, the parts that control things and measure physical parameters. The primary topics are control systems and their characterization, instrumentation, signals, and electromagnetic compatibility. This text features a large number of completely worked examples to aid the reader in understanding how the various principles fit together.While electric engineers may find this material useful as a review, engineers in other fields can use this short lecture text as a modest introduction

  10. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  11. Nuclear engine system simulation (NESS) program update

    International Nuclear Information System (INIS)

    Scheil, C.M.; Pelaccio, D.G.; Petrosky, L.J.

    1993-01-01

    The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump

  12. OCRWM Systems Engineering Management Plan (SEMP)

    International Nuclear Information System (INIS)

    1994-06-01

    The Office of Civilian Radioactive Waste Management Systems Engineering Management Plan (OCRWM SEMP) specifies the technical management approach for the development of the waste management system, and specifies the approach for the development of each of the system elements -- the waste acceptance system, the transportation system, the Monitored Retrievable Storage (MRS) facility, and the mined geologic disposal system, which includes site characterization activity. The SEMP also delineates how systems engineering will be used by OCRWM to describe the system development process; it identifies responsibilities for its implementation, and specifies the minimum requirements for systems engineering. It also identifies the close interrelationship of system engineering and licensing processes. This SEMP, which is a combined OCRWM and M ampersand O SEMP, is part of the top-level program documentation and is prepared in accordance with the direction provided in the Program Management System Manual (PMSM). The relationship of this document to other top level documents in the CRWMS document hierarchy is defined in the PMSM. A systems engineering management plan for each project, which specifies the actions to be taken in implementing systems engineering at the project level, shall be prepared by the respective project managers. [''Program'' refers to the CRWMS-wide activity and ''project'' refers to that level responsible for accomplishing the specific activities of that segment of the program.] The requirements for the project level SEMPs are addressed in Section 4.2.2.2. They represent the minimum set of requirements, and do not preclude the broadening of systems engineering activities to meet the specific needs of each project

  13. A systems engineering primer for every engineer and scientist

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, William R.

    2001-12-10

    The Systems Engineering (SE) staff at LBNL has generated the following artifacts to assist projects with implementing a systems approach: (1) The present document that focuses on the what, why, and when of SE. It also provides a simple case-study to illustrate several SE tasks. (2) A web site with primary emphasis on the project life-cycle and workflow, (http://www-eng.LBNL.gov/Systems/index.html). It includes: SE guidelines and principles; A list of in-house tools; Templates; Case studies with ''how to'' examples; and Links to useful SE material. These sources are living documents to be updated as necessary. The viewpoint adopted in this document is that what LBNL engineers and scientists need is a set of principles and guiding practices for developing R and D systems rather than a ''cookbook''. There are many excellent ''how to'' resources such as the ''INCOSE Systems Engineering Handbook'' to guide those in search of more details. The SE staff is another resource available to consult and support projects. This document specifies SE principles and activities that are applicable to all LBNL projects independent of their specific differences. Each project should tailor the SE implementation to meet its individual needs and culture including project-specific resources, procedures, products, and tools.

  14. A systems engineering primer for every engineer and scientist

    International Nuclear Information System (INIS)

    Edwards, William R.

    2001-01-01

    The Systems Engineering (SE) staff at LBNL has generated the following artifacts to assist projects with implementing a systems approach: (1) The present document that focuses on the what, why, and when of SE. It also provides a simple case-study to illustrate several SE tasks. (2) A web site with primary emphasis on the project life-cycle and workflow, (http://www-eng.LBNL.gov/Systems/index.html). It includes: SE guidelines and principles; A list of in-house tools; Templates; Case studies with ''how to'' examples; and Links to useful SE material. These sources are living documents to be updated as necessary. The viewpoint adopted in this document is that what LBNL engineers and scientists need is a set of principles and guiding practices for developing R and D systems rather than a ''cookbook''. There are many excellent ''how to'' resources such as the ''INCOSE Systems Engineering Handbook'' to guide those in search of more details. The SE staff is another resource available to consult and support projects. This document specifies SE principles and activities that are applicable to all LBNL projects independent of their specific differences. Each project should tailor the SE implementation to meet its individual needs and culture including project-specific resources, procedures, products, and tools

  15. A predictive model for the behavior of radionuclides in lake systems

    International Nuclear Information System (INIS)

    Monte, L.

    1993-01-01

    This paper describes a predictive model for the behavior of 137Cs in lacustrine systems. The model was tested by comparing its predictions to contamination data collected in various lakes in Europe and North America. The migration of 137Cs from catchment basin and from bottom sediments to lake water was discussed in detail; these two factors influence the time behavior of contamination in lake water. The contributions to the levels of radionuclide concentrations in water, due to the above factors, generally increase in the long run. The uncertainty of the model, used as a generic tool for prediction of the levels of contamination in lake water, was evaluated. Data sets of water contamination analyzed in the present work suggest that the model uncertainty, at a 68% confidence level, is a factor 1.9

  16. Presence of radionuclides in clays of the hydrothermal system of the Volcano Turrialba, Costa Rica

    International Nuclear Information System (INIS)

    Garcia-Vindas, J.R.; Gazel, Esteban

    2004-01-01

    The first results obtained about the presence of radionuclides of terrigenous origin in the hydrothermal system of Turrialba Volcano are shown in this paper. Several samples were taken in the central and southwest craters, and analyzed by gamma-ray spectrometry, with Hyper pure Germanium detector. The values of the activities of the natural radioactive isotopes are shown in Bq/kg. A disequilibrium in the series of U-238 was found, which is explained by two different mechanisms: one convective and the other by Rn-222 enrichment. An increase of the activity of all isotopes is observed between September 2001 and May 2002. Because the low possibilities that this can be produced by the water runoff, it is proposed that such rise in the concentration of the elements can be explained by their presence in the water vapour and other volcanic gases. (Author) [es

  17. Cardiointervalography investigation of the nervous system of children from the radionuclide contaminated districts

    International Nuclear Information System (INIS)

    Nedvetskaya, V.V.; Lyalikov, S.A.

    1994-01-01

    Using cardiointervalography the vegetative status of 177 children living in the supervised Belarus regions (more 15 Ci/km 2 of 137 Cs) and of 1291 children from the areas which are not contaminated with radionuclides is assessed. It is stated that the most characteristic peculiarity common for children living on supervised territories is an increase of the subcortical nervous centers activity, reinforcement of the central regulation stability, bettering of relations between the central and peripheral regulation profiles at rest and damage of these relations under physical load. Changes in the vegetative regulation developing in children from these districts are more pronounced in girls as compared to boys and are characterized by the nervous system sympathetic section tone decrease, by the liability to hyporeactivity accompanied by the parasympathetic section compensatory mechanisms tension. (author). 4 refs., 2 tabs

  18. A simplified radionuclide source term for total-system performance assessment

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1991-11-01

    A parametric model for releases of radionuclides from spent-nuclear-fuel containers in a waste repository is presented. The model is appropriate for use in preliminary total-system performance assessments of the potential repository site at Yucca Mountain, Nevada; for this reason it is simpler than the models used for detailed studies of waste-package performance. Terms are included for releases from the spent fuel pellets, from the pellet/cladding gap and the grain boundaries within the fuel pellets, from the cladding of the fuel rods, and from the radioactive fuel-assembly parts. Multiple barriers are considered, including the waste container, the fuel-rod cladding, the thermal ''dry-out'', and the waste form itself. The basic formulas for release from a single fuel rod or container are extended to formulas for expected releases for the whole repository by using analytic expressions for probability distributions of some important parameters. 39 refs., 4 figs., 4 tabs

  19. Radionuclide diagnosis of hepatobiliary system functional state at complex treatment of uterine cancer

    International Nuclear Information System (INIS)

    Vusik, Yi.M.; Slabodchikov, M.Je.; Nesterov, V.G.

    1993-01-01

    The study involved 68 patients with uterine cancer (stage II-III) who underwent complex treatment and 16 healthy women aged 27-69. The patients were performed hepatography (44 of them - dynamic liver scintigraphy with Tc 99m - mezida) before the treatment, immediately after and 1-1.5 and 2-3 years after the course of radiotherapy. Latent disturbance of hepatobiliary system function which can be revealed with radionuclide study is shown to be observed in the patients with uterine cancer before the treatment. The level of hepatocytes functioning after the treatment depends largely on their initial functional state. Computer assisted multichannel radiography with evaluation of effective blood flow in the liver and effective fraction of minute volume of the blood flow is the most reasonable for monitoring hepatocytes function during treatment in the patients with uterine cancer

  20. External tandem target system for efficient production of short-lived positron emitting radionuclides

    International Nuclear Information System (INIS)

    Koh, K.; Dwyer, J.; Finn, R.; Sheh, Y.; Sinnreich, J.; Wooten, T.

    1983-01-01

    Recent developments in radiopharmaceutical chemistry allow the incorporation of short-lived, positron-emitting radionuclides into a variety of compounds which when used with a positron emission tomograph provide a means of monitoring physiological disorders by a standard technique. To effectively meet the increased ''in-house'' clinical demands while maintaining a production schedule, a tandem target was designed and has been installed for the simultaneous ''on-line'' preparation of oxygen-15 labelled compounds such as CO 2 15 , H 2 O 15 ; and nitrogen-13 labelled compounds such as 13 NH 3 , 13 N 2 O, and 13 N 2 . The processing time required for the synthesis of the nitrogen-13 products as compared to the essentially instantaneous formation of oxygen-15 labelled compounds has provided the necessary time delay for clinical utilization. The characterisitcs of this external tandem target system as well as the automation for the dual processing are presented

  1. Effect of ionizing radiation on radionuclide speciation: Preliminary results from site-specific experiments in a basaltic system

    International Nuclear Information System (INIS)

    Reed, D.T.; Burnell, J.R.

    1986-01-01

    Rockwell Hanford Operations, under contract to the Department of Energy, is investigating the suitability of the Hanford site in the state of Washington as a high level nuclear waste repository. An important consideration in these investigations is the effect of ionizing radiation on the speciation of radionuclides in the groundwater after the high-level-waste container has been breached and there is direct contact between the groundwater and the waste form (controlled released period). The effect of ionizing radiation on radionuclide speciation depends on the radiation environment and site-specific chemistry near the waste container. With respect to these two aspects, the following results will be presented: a definition of the radiation environment during the controlled release period; preliminary site-specific experimental results: (1) basaltic systems spiked with radionuclides; (2) spent fuel-groundwater-basalt experiments

  2. Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental release: design and first results

    International Nuclear Information System (INIS)

    Rauret, G.; Real, J.

    1995-01-01

    The behaviour of 134 Cs, 110m Ag and 85 Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author)

  3. Transfer of radionuclides in soil-plant systems following aerosol simulation of accidental release: design and first results

    Energy Technology Data Exchange (ETDEWEB)

    Rauret, G. [Universitat de Barcelona (Spain). Dept. of Quimica Analitica; Vallejo, V.R. [Universitat de barcelona (Spain). Dept. of Biologia Vegetal; Cancio, D. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Real, J. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1995-12-31

    The behaviour of {sup 134}Cs, {sup 110m}Ag and {sup 85}Sr was studied in different soil-plant systems, using two types of Mediterranean soil with contrasting properties (sandy and sandy-loam soils). The plant species used was lettuce (Lactuca sativa). Contamination was induced at different stages of plant growth, using a synthetic aerosol which simulated a distant contamination source. Characterisation of aerosol and soils, interception factors in the various growth stages, foliar and root uptake, leaching from leaves by irrigation and distribution and migration of radionuclides of soils were studied, in an attempt to understand the key factors involving radionuclide soil-to-plant transferance. (author).

  4. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2017-01-01

    of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes

  5. System Engineering Process Realization Toolkit, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA faces many systems engineering challenges as it seeks to conduct exploration and science missions concurrently. One such challenge is implementing a repeatable...

  6. Framework to investigate emergence in system engineering

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2011-09-01

    Full Text Available System Engineering is the process of identifying, implementing and maintaining solutions to real world problems. Some problems tend to be messy with no single solution or set of effective and accurate requirements, often resulting in implementation...

  7. TURVA-2012: Assessment of radionuclide release scenarios for the repository system

    International Nuclear Information System (INIS)

    Smith, Paul; Poteri, Antti; Nordman, Henrik; Cormenzana, Jose Luis; Snellman, Margit; Marcos, Nuria; Hjerpe, Thomas; Koskinen, Lasse

    2014-01-01

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR) and application for a construction licence for a repository for disposal of spent nuclear fuel at the Olkiluoto site in south-western Finland. This paper gives a summary of the analyses of the radionuclide release scenarios formulated in a companion paper, TURVA-2012: Formulation of Radionuclide Release Scenarios (Marcos, 2014). The scenarios and the analyses take into account major uncertainties in the initial state of the barriers and possible paths for the evolution of the repository system identified in a further paper: TURVA-2012: Performance Assessment (Hellae, 2014). For each scenario, calculation cases are analysed to evaluate compliance of the proposed repository with regulatory requirements on radiological protection, as well as to illustrate the impact of specific uncertainties or combinations of uncertainties on the calculated results. Each case illustrates different possibilities for how the repository might evolve and perform over time, taking into account uncertainties in the models and parameter values used to represent radionuclide release, retention and transport and, for biosphere assessment calculation cases, radiation exposure. The calculation cases each address a single, failed canister, where three possible modes of failure are considered: - The presence of an initial defect in the copper overpack of the canister that penetrates the overpack completely (subsequent corrosion of the insert may then lead to an enlargement of the defect). - Corrosion of the copper overpack, which occurs most rapidly in scenarios in which buffer density is reduced, e.g. by erosion. - Shear movements on fractures intersecting the deposition holes. However, the likelihood and consequences of more than one canister failure occurring during the assessment time fame are also considered, generally based on the findings from the single canister calculations. Quantitative

  8. Applying systems engineering in the civil engineering industry : an analysis of systems engineering projects of a Dutch water board

    NARCIS (Netherlands)

    de Graaf, R. S. (Robin); Vromen, R. M.(Rick); Boes, J. (Hans)

    2017-01-01

    The past decade, practice and literature have shown an increasing interest in Systems Engineering (SE) in the civil engineering industry. The aim of this study is to analyse to what extent SE is applied in six civil engineering SE projects of a Dutch water board. The projects were analysed using a

  9. The development of new radionuclide generator systems for nuclear medicine applications

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Callahan, A.P.; Mirzadeh, S.; Brihaye, C.; Guillaume, M.

    1991-01-01

    Radioisotope generator systems have traditionally played a central role in nuclear medicine in providing radioisotopes for both research and clinical applications. In this paper, the development of several tungsten-188/rhenium-188 prototype generators which provide rhenium-188 for radioimmunotherapy (RAIT) is discussed. The authors have recently demonstrated that carrier-free iridium-194 can be obtained from the activated carbon system from decay of reactor-produced osmium-194 for potential RAIT applications. Instrumentation advances such as the new generation of high-count-rate (fast) gamma camera systems for first-pass technology require the availability of generator-produced ultra short-lived radioisotopes for radionuclide angiography (RNA). The activated carbon generator is an efficient system to obtain ultra short-lived iridium-191 m from osmium-191 for RNA. In addition, the growing number of PET centers has stimulated research in generators which provide positron-emitting radioisotopes. Copper-62, obtained from the zinc-62 generator, is currently used for PET evaluation of organ perfusion. The availability of the parent radioisotopes, the fabrication and use of these generators, and the practical factors for use of these systems in the radiopharmacy are discussed. 74 refs., 6 figs., 5 tabs

  10. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  11. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2010-11-01

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14 C, 129 I, 36 Cl, 94 Nb, 59 Ni, 93 Mo, 79 Se, 99 Tc, 230 Th, 90 Sr, 226 Ra, 135 Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites

  12. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos21 Consulting S.L., Barcelona (Spain))

    2010-11-15

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14C, 129I, 36Cl, 94Nb, 59Ni, 93Mo, 79Se, 99Tc, 230Th, 90Sr, 226Ra, 135Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites) decreases, the

  13. Engineering management of large scale systems

    Science.gov (United States)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  14. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  15. Systems Engineering Assessment & Workforce Development Plan

    Science.gov (United States)

    2012-11-05

    Government or its technical domains. Other fields, such as culinary and healthcare, have also identified these emerging and growing issues (Calhoun...et al. (2009). "The Art and Science of Systems Engineering." Systems Research Forum 3(2): 81-100. Shenhar, A. and B. Sauser, Eds. (2009). Systems

  16. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail

    2017-07-20

    Network efficiency and proper utilization of its resources are essential requirements to operate wireless networks in an optimal fashion. Cognitive radio aims to fulfill these requirements by exploiting artificial intelligence techniques to create an entity called cognitive engine. Cognitive engine exploits awareness about the surrounding radio environment to optimize the use of radio resources and adapt relevant transmission parameters. In this paper, we propose a hybrid cognitive engine that employs Case Based Reasoning (CBR) and Decision Trees (DTs) to perform radio adaptation in multi-carriers wireless networks. The engine complexity is reduced by employing DTs to improve the indexing methodology used in CBR cases retrieval. The performance of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes in different scenarios.

  17. Development of a coincidence system for radio-nuclide standardization using surface barrier detectors

    International Nuclear Information System (INIS)

    Koskinas, M.F.

    1988-01-01

    A system for the standardization of alpha-gamma or electron-X radionuclide emitters has been developed in the present work. The system consists of one or two surface barrier detectors for alpha or electron detection which are coupled to thin-window NaI (T1) crystals suitable for low energy X or gamma ray detection. The performance of the system has been verified by means of the standardization of 241 Am, 137 Cs and 109 Cd solutions. The activity has been obtained using the extrapolation method applied to the 4Πα-γ and 2Πe c -X coincidence technique. The surface barrier detection efficiency was varied by placing absorbers over the radioactive sources or by changing the source to detector distance. The results were compared to those obtained using conventional absolute systems based on gas-flow and pressurized 4Π proportional counters, or using radioactive solutions standardized in international comparisons spondored by the Bureau International des Poids et Mesures. The expect and measured activities agree within the experimental uncertainties which were: 0.2 % for 241 Am, 0.7% for 137 Cs and 0.6% for 109 Cd. The ratio between the probabilities of (electron capture + internal conversion) and internal conversion for the K-shell of 109 Cd has been determined. The result is: 2.8883 ± 0.016. (author) [pt

  18. Radionuclide toxicity

    International Nuclear Information System (INIS)

    Galle, P.

    1982-01-01

    The aim of this symposium was to review the radionuclide toxicity problems. Five topics were discussed: (1) natural and artificial radionuclides (origin, presence or emission in the environment, human irradiation); (2) environmental behaviour of radionuclides and transfer to man; (3) metabolism and toxicity of radionuclides (radioiodine, strontium, rare gas released from nuclear power plants, ruthenium-activation metals, rare earths, tritium, carbon 14, plutonium, americium, curium and einsteinium, neptunium, californium, uranium) cancerogenous effects of radon 222 and of its danghter products; (4) comparison of the hazards of various types of energy; (5) human epidemiology of radionuclide toxicity (bone cancer induction by radium, lung cancer induction by radon daughter products, liver cancer and leukaemia following the use of Thorotrast, thyroid cancer; other site of cancer induction by radionuclides) [fr

  19. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future

  20. Tank waste remediation system systems engineering management plan

    International Nuclear Information System (INIS)

    Peck, L.G.

    1998-01-01

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance

  1. Requirements engineering for software and systems

    CERN Document Server

    Laplante, Phillip A

    2014-01-01

    Solid requirements engineering has increasingly been recognized as the key to improved, on-time and on-budget delivery of software and systems projects. This book provides practical teaching for graduate and professional systems and software engineers. It uses extensive case studies and exercises to help students grasp concepts and techniques. With a focus on software-intensive systems, this text provides a probing and comprehensive review of recent developments in intelligent systems, soft computing techniques, and their diverse applications in manufacturing. The second edition contains 100% revised content and approximately 30% new material

  2. Human engineering in mobile radwaste systems

    International Nuclear Information System (INIS)

    Jones, D.; McMahon, J.; Motl, G.

    1988-01-01

    To a large degree, mobile radwaste systems are replacing installed plant systems at US nuclear plants due to regulatory obsolescence, high capital and maintenance costs, and increased radiation exposure. Well over half the power plants in the United States now use some sort of mobile system similar to those offered by LN Technologies Corporation. Human engineering is reflected in mobile radwaste system design due to concerns about safety, efficiency, and cost. The radwaste services business is so competitive that vendors must reflect human engineering in several areas of equipment design in order to compete. The paper discusses radiation exposure control, contamination control, compact components, maintainability, operation, and transportability

  3. TURVA-2012: Formulation of radionuclide release scenarios

    International Nuclear Information System (INIS)

    Marcos, Nuria; Hjerpe, Thomas; Snellman, Margit; Ikonen, Ari; Smith, Paul

    2014-01-01

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR) and application for a construction licence for a repository for disposal of spent nuclear fuel at the Olkiluoto site in south-western Finland. This paper gives a summary of the scenarios and the methodology followed in formulating them as described in TURVA-2012: Formulation of Radionuclide Release Scenarios (Posiva, 2013). The scenarios are further analysed in TURVA-2012: Assessment of Radionuclide Release Scenarios for the Repository System and TURVA-2012: Biosphere Assessment (Posiva, 2012a, 2012b). The formulation of scenarios takes into account the safety functions of the main barriers of the repository system and the uncertainties in the features, events, and processes (FEP) that may affect the entire disposal system (i.e. repository system plus the surface environment) from the emplacement of the first canister until the far future. In the report TURVA-2012: Performance Assessment (2012d), the performance of the engineered and natural barriers has been assessed against the loads expected during the evolution of the repository system and the site. Uncertainties have been identified and these are taken into account in the formulation of radionuclide release scenarios. The uncertainties in the FEP and evolution of the surface environment are taken into account in formulating the surface environment scenarios used ultimately in estimating radiation exposure. Formulating radionuclide release scenarios for the repository system links the reports Performance Assessment and Assessment of Radionuclide Release Scenarios for the Repository System. The formulation of radionuclide release scenarios for the surface environment brings together biosphere description and the surface environment FEP and is the link to the assessment of the surface environment scenarios summarised in TURVA-2012: Biosphere Assessment. (authors)

  4. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  5. Reusable Rocket Engine Turbopump Health Management System

    Science.gov (United States)

    Surko, Pamela

    1994-01-01

    A health monitoring expert system software architecture has been developed to support condition-based health monitoring of rocket engines. Its first application is in the diagnosis decisions relating to the health of the high pressure oxidizer turbopump (HPOTP) of Space Shuttle Main Engine (SSME). The post test diagnostic system runs off-line, using as input the data recorded from hundreds of sensors, each running typically at rates of 25, 50, or .1 Hz. The system is invoked after a test has been completed, and produces an analysis and an organized graphical presentation of the data with important effects highlighted. The overall expert system architecture has been developed and documented so that expert modules analyzing other line replaceable units may easily be added. The architecture emphasizes modularity, reusability, and open system interfaces so that it may be used to analyze other engines as well.

  6. Current Hitachi knowledge engineering systems: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Masui, S; Maeda, A; Masuishi, T [Hitachi, Ltd., Tokyo (Japan)

    1992-02-01

    In order to bring the knowledge engineering technology up to the practical phase, Hitachi has provided several knowledge engineering system products, including expert system building tools, knowledge acquisition tools, and many kinds of stand-alone and build-in expert systems in both the business and process control fields. In this review article, an overview of Hitachi{prime}s recent knowledge systems is described, which includes a trend analysis on recent market recognition. In addition, to introduce the Hitachi{prime}s current activities, a new product, a user interface building tool, and a new method of tuning fuzzy membership functions using a neuro-computing algorithm are also described. Furthermore, it is pointed out that not only practical tools and methodologies, but also a practical development team, including a planning section, a cooperating expert, a user section, and experienced knowledge engineers, is needed to achieve practical expert systems. 20 refs., 10 figs., 1 tab.

  7. Advances in reliability and system engineering

    CERN Document Server

    Davim, J

    2017-01-01

    This book presents original studies describing the latest research and developments in the area of reliability and systems engineering. It helps the reader identifying gaps in the current knowledge and presents fruitful areas for further research in the field. Among others, this book covers reliability measures, reliability assessment of multi-state systems, optimization of multi-state systems, continuous multi-state systems, new computational techniques applied to multi-state systems and probabilistic and non-probabilistic safety assessment.

  8. Hydrology of the solid waste burial ground, as related to the potential migration of radionuclides, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Barraclough, J.T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.

    1976-08-01

    This report describes a study conducted by the U. S. Geological Survey with the following objectives: to evaluate the hydrologic, radiologic and geochemical variables that control the potential for subsurface migration of waste radionuclides from the burial trenches to the Snake River Plain aquifer; to determine the extent of radionuclide migration, if any; and, to construct monitoring wells into the aquifer. Statistically significant trace amounts of radioactivity were found in about one-half of the 44 sedimentary samples from the six holes core drilled inside the burial ground and from all water samples from one hole tapping a perched water table. These very low levels of radioactivity are detectable only with the most sensitive of analytical equipment and techniques. The levels of radioactivity detected were, in most cases, less than the amounts found in surface soils in this region resulting from world-wide fallout. This radioactivity found in the cores could have been introduced naturally by migration by infiltrating water which had made contact with buried waste or could have been introduced artificially during drilling and sampling. The available data from the four peripheral monitoring wells do not indicate that radionuclide constituents from the burial ground have migrated into the underlying Snake River Plain aquifer. The low concentrations of radionuclides detected in samples taken from the sedimentary layers are not expected to migrate to the Snake River Plain aquifer. Water samples from the peripheral wells and one core hole inside the burial ground will continue to be collected and analyzed for radioactivity semi-annually

  9. Development of a computational system for monitoring data management in vivo of the radionuclides in human body

    International Nuclear Information System (INIS)

    Reis, Arlene A. dos; Lucena, Eder A. de; Dantas, Ana Leticia A.; Dantas, Bernardo M.

    2014-01-01

    The management of in vivo monitoring process of internal contamination by radionuclides in human beings request a set of steps ranging from the spectrum acquisition to reporting. The spectrum analysis is the identification and quantification of radioactive materials present in organs and individual's body tissues submitted to monitoring procedures. The Body Counter Unit of IRD performs in vivo measurements emitting radionuclide photons in the 10-3000 keV energy range, using NaI type scintillation detectors (Tl) 8” x 4” and 3” x 3” and as semiconductor detectors type HPGe. The measuring system uses the Canberra Genie 2000 software for the acquisition of spectra with 1024 channels related to their respective energies. The counting are distributed in the spectrum due to the energy of the photons emitted by radionuclides of interest. The SIGMIV program (System for Management of in vivo monitoring), developed in MS Visual Basic 2010 accesses the spectrum after it is converted into an EXCEL spreadsheet. This program uses a bank Data developed in MS-Access to store information associated with each measurement, as counting and calibration parameters. SIGMIV generates a report containing personal information, activity and radionuclides of interest present in the body, associated with respective uncertainties and minimum activity detectable. The program SIGMIV optimized monitoring procedures 'in vivo', showing that is flexible, reliable and easy to handle, thus becoming an important tool for development routine in In vivo Monitoring Laboratory of IRD

  10. NVESTIGATION OF INTERNATIONAL ENGINEERING LICENSURE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Selim BARADAN

    2009-01-01

    Full Text Available In many countries, engineers are legally required to register to a "licensure" system, which is founded on education and experience criteria and administered by a government body, to use the "engineer" title and offer professional services to the public. In today's globalized world, international alliances such as FEANI, APEC and EMF award engineers with European, APEC and International Professional engineer titles within a framework of mutual recognition of qualifications enabling them to practice outside their own country. This article examines such international licensure systems, particularly their administration processes and registration criteria, and discusses how current licensure procedures in Turkey should be revamped in case of joining an international alliance such as European Union.

  11. The art and science of Systems Engineering

    Directory of Open Access Journals (Sweden)

    Jerome Longrew

    2014-12-01

    Full Text Available In this work are collected years of experience and the work of systems engineering, and debates centered in the industry leadership, of engineer and instructors around the world. A recurrent issue in this experiences and discussions is that community used a lot of terms and titles more diffused with the aim of achieve an agreement toward a common comprehension of this area of knowledge. Besides, it does not matter how are divided the functions and responsibilities among teams, the obligatoriness is ensure that this be clears and are run as a functional whole. The goal is provide a wide definition of systems engineer, described the characteristics of behave of highly effective engineered, and make explicit the expectations of the same.

  12. Study on structuring the supervision system of coal mine associated with radionuclides in Xinjiang

    International Nuclear Information System (INIS)

    Feng Guangwen; Jia Xiahui

    2012-01-01

    Xinjiang is one of China's rich coal provinces (areas) and it accounts for about 40% national coal reserves. In the long-term radioactive scientific research, monitoring and environmental impact assessment works, we found parts of Yili and Hetian's coal was associated with higher radionuclide, and parts of coal seam even reached nuclear mining level. However the laws and regulations about associated radioactive coal mine supervision were not perfect, and the supervision system is still in the exploration. This article mainly started with the coal mine enterprises' geological prospecting reports, radiation environmental impact assessment and monitoring report preparation for environment acceptance checking and supervisory monitoring, controlled the coal radioactive pollution from the sources, and carried out the research of building Xinjiang associated radioactive coal mine supervision system. The establishment of supervision system will provide technical guidance for the enterprises' coal exploitation and cinders using on the one hand, and on the other hand will provide decision-making basis for strengthening the associated radioactive coal mine supervision for Xinjiang environmental regulators. (authors)

  13. Characterization of primary coolant purification system samples for assay of spent ion exchanger radionuclide inventor

    International Nuclear Information System (INIS)

    Sajin Prasad, S.; Pant, Amar; Sharma, Ranjit; Pal, Sanjit

    2018-01-01

    The primary coolant system water of a research reactor contains various fission and activation products and the water is circulated continuously through ion exchange resin cartridges, to reduce the radioactive ionic impurity present in it. The coolant purification system comprises of an ion exchange cooler, two micro filters, and a battery of six ion exchanger beds, associated valves, piping and instrumentation (Heavy water System Operating manual, 2014). The spent cartridge is finally disposed off as active solid waste which contains predominantly long lived fission and activation products. The heavy water coolant is also used to cool the structural assemblies after passing through primary heat exchanger and a metallic strainer, which accumulates the fission and activation products. When there is a reduction of coolant flow through these strainers, they are removed for cleaning and decontamination. This paper describes the characterization of ion exchange resin samples and liquid effluent generated during ultra sonic decontamination of strainer. The results obtained can be used as a methodology for the assay of the spent ion exchanger cartridges radionuclide inventory, during its disposal

  14. Automated system for ST segment and arrhythmia analysis in exercise radionuclide ventriculography

    International Nuclear Information System (INIS)

    Hsia, P.W.; Jenkins, J.M.; Shimoni, Y.; Gage, K.P.; Santinga, J.T.; Pitt, B.

    1986-01-01

    A computer-based system for interpretation of the electrocardiogram (ECG) in the diagnosis of arrhythmia and ST segment abnormality in an exercise system is presented. The system was designed for inclusion in a gamma camera so the ECG diagnosis could be combined with the diagnostic capability of radionuclide ventriculography. Digitized data are analyzed in a beat-by-beat mode and a contextual diagnosis of underlying rhythm is provided. Each beat is assigned a beat code based on a combination of waveform analysis and RR interval measurement. The waveform analysis employs a new correlation coefficient formula which corrects for baseline wander. Selective signal averaging, in which only normal beats are included, is done for an improved signal-to-noise ratio prior to ST segment analysis. Template generation, R wave detection, QRS window size, baseline correction, and continuous updating of heart rate have all been automated. ST level and slope measurements are computed on signal-averaged data. Arrhythmia analysis of 13 passages of abnormal rhythm by computer was found to be correct in 98.4 percent of all beats. 25 passages of exercise data, 1-5 min in length, were evaluated by the cardiologist and found to be in agreement in 95.8 percent in measurements of ST level and 91.7 percent in measurements of ST slope

  15. Quantitative estimation of compliance of human systemic veins by occlusion plethysmography with radionuclide

    International Nuclear Information System (INIS)

    Takatsu, Hisato; Gotoh, Kohshi; Suzuki, Takahiko; Ohsumi, Yukio; Yagi, Yasuo; Tsukamoto, Tatsuo; Terashima, Yasushi; Nagashima, Kenshi; Hirakawa, Senri

    1989-01-01

    Volume-pressure relationship and compliance of human systemic veins were estimated quantitatively and noninvasively using radionuclide. The effect of nitroglycerin (NTG) on these parameters was examined. Plethysmography with radionuclide (RN) was performed using the occlusion method on the forearm in 56 patients with various cardiac diseases after RN angiocardiography with 99m Tc-RBC. The RN counts-venous pressure curve was constructed from (1) the changes in radioactivity from region of interest on the forearm that were considered to reflect the changes in the blood volume of the forearm, and (2) the changes in the pressure of the forearm vein (fv) due to venous occlusion. The specific compliance of the forearm veins (Csp.fv; (1/V)·(ΔV/ΔP)) was obtained graphically from this curve at each patient's venous pressure (Pv). Csp.fv was 0.044±0.012 mmHg -1 in class I (mean±SD; n=13), 0.033±0.007 mmHg -1 in class II (n=30), and 0.019±0.007 mmHg -1 in class III (n=13), of the previous NYHA classification of work tolerance. There were significant differences in Csp.fv among the three classes. The systemic venous blood volume (Vsv) was determined by subtracting the central blood volume, measured by RN-angiocardiography, from total blood volume, measured by the indicator dilution method utilizing 131 I-human serum albumin. Systemic venous compliance (Csv) was calculated from Csv=Csp.fv·Vsv. The Csv was 127.2±24.8 ml·mmHg -1 (mean±SD) in class I, 101.1±24.1 ml·mmHg -1 in class II and 62.2±28.1 ml·mmHg -1 in class III. There were significant differences in Csv among the three classes. The class I Csv value was calculated to be 127.2±24.8 ml·mmHg -1 and the Csv/body weight was calculated to be 2.3±0.7 ml·mmHg -1 ·kg -1 of body weight. The administration of NTG increased Csv significantly in all cases. (J.P.N.)

  16. User engineering: A new look at system engineering

    Science.gov (United States)

    Mclaughlin, Larry L.

    1987-01-01

    User Engineering is a new System Engineering perspective responsible for defining and maintaining the user view of the system. Its elements are a process to guide the project and customer, a multidisciplinary team including hard and soft sciences, rapid prototyping tools to build user interfaces quickly and modify them frequently at low cost, and a prototyping center for involving users and designers in an iterative way. The main consideration is reducing the risk that the end user will not or cannot effectively use the system. The process begins with user analysis to produce cognitive and work style models, and task analysis to produce user work functions and scenarios. These become major drivers of the human computer interface design which is presented and reviewed as an interactive prototype by users. Feedback is rapid and productive, and user effectiveness can be measured and observed before the system is built and fielded. Requirements are derived via the prototype and baselined early to serve as an input to the architecture and software design.

  17. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    International Nuclear Information System (INIS)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  18. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  19. Software engineering practices for control system reliability

    International Nuclear Information System (INIS)

    S. K. Schaffner; K. S White

    1999-01-01

    This paper will discuss software engineering practices used to improve Control System reliability. The authors begin with a brief discussion of the Software Engineering Institute's Capability Maturity Model (CMM) which is a framework for evaluating and improving key practices used to enhance software development and maintenance capabilities. The software engineering processes developed and used by the Controls Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the Experimental Physics and Industrial Control System (EPICS) for accelerator control, are described. Examples are given of how their procedures have been used to minimized control system downtime and improve reliability. While their examples are primarily drawn from their experience with EPICS, these practices are equally applicable to any control system. Specific issues addressed include resource allocation, developing reliable software lifecycle processes and risk management

  20. Calculations of the radiological impact of disposal of unit activity of selected radionuclides for use in waste management system studies

    International Nuclear Information System (INIS)

    Smith, G.M.

    1985-03-01

    The purpose of the work described is to provide estimates of the radiological impact following disposal of unit activity via each of several options, including shallow burial, engineered trench disposal, disposal in a geologic repository and disposal on the deep ocean bed. Results are presented for a range of important representative radionuclides. No single option is clearly the best from the radiological point of view. However, in conjunction with waste inventory data the results may be used to provide a preliminary view of the relative radiological merits of the various disposal options. (author)

  1. Industrial deployment of system engineering methods

    CERN Document Server

    Romanovsky, Alexander

    2013-01-01

    A formal method is not the main engine of a development process, its contribution is to improve system dependability by motivating formalisation where useful. This book summarizes the results of the DEPLOY research project on engineering methods for dependable systems through the industrial deployment of formal methods in software development. The applications considered were in automotive, aerospace, railway, and enterprise information systems, and microprocessor design.  The project introduced a formal method, Event-B, into several industrial organisations and built on the lessons learned to

  2. An initial bibliometric analysis and mapping of systems engineering research

    CSIR Research Space (South Africa)

    Oosthuizen, Rudolph

    2016-07-01

    Full Text Available Systems engineering is still a growing field that depends on continuous research to develop and mature. Research in systems engineering is difficult and the classic approaches for other engineering disciplines may not be sufficient. Additional...

  3. Telecommunications system reliability engineering theory and practice

    CERN Document Server

    Ayers, Mark L

    2012-01-01

    "Increasing system complexity require new, more sophisticated tools for system modeling and metric calculation. Bringing the field up to date, this book provides telecommunications engineers with practical tools for analyzing, calculating, and reporting availability, reliability, and maintainability metrics. It gives the background in system reliability theory and covers in-depth applications in fiber optic networks, microwave networks, satellite networks, power systems, and facilities management. Computer programming tools for simulating the approaches presented, using the Matlab software suite, are also provided"

  4. Integrated Control System Engineering Support.

    Science.gov (United States)

    1984-12-01

    Advanced Medium Range Air to Air Missile ASTEC Advanced Speech Technology Experimental Configuration BA Body Axis BCIU Bus Control Interface Unit BMU Bus...support nreeded to tie an ASTEC speech recognition system into the DIGISYN fJcility and support an FIGR experiment designed to investigate the voice...information passed to the PDP computer consisted of integers which represented words or phrases recognized by the ASTEC recognition system. An interface

  5. Methodical aspects of radionuclide study of locomotor system in patients with systemic diseases of connective tissue with single photon emission computed tomography

    International Nuclear Information System (INIS)

    Potsibyina, V.V.; Oderyij, Je.A.

    1998-01-01

    The original technique was used to examine 427 patients aged 18-64 with systemic diseases of locomotor system connective tissue and 65 controls. In addition to clinical studies, radionuclide signs of locomotor system lesions was investigated with NUCLETRON APEX SP-6 CT unit using labeled with Tc-99m and osteotropic radiopharmaceuticals

  6. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    International Nuclear Information System (INIS)

    McGrail, B.P.; Mahoney, L.A.

    1995-10-01

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected to affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites

  7. Radionuclide cardiography in medical practice

    International Nuclear Information System (INIS)

    Strangfeld, D.; Mohnike, W.; Schmidt, J.; Heine, H.; Correns, H.J.

    1986-01-01

    This publication is a compendium on all aspects of radionuclide diagnostics concerning cardiovascular system diseases. Starting with introductory remarks on the control of cardiovascular diseases the contribution of radionuclide cardiology to functional cardiovascular diagnostics as well as pathophysiological and pathobiochemical aspects of radiocardiography are outlined. Radiopharmaceuticals used in radiocardiography, physical and technical problems in application of radionuclides and their measuring techniques are discussed. In individual chapters radionuclide ventriculography, myocardial scintiscanning, circulatory diagnostics, radionuclide diagnostics of arterial hypertension, of thrombosis and in vitro diagnostics of thrombophilia are treated in the framework of clinical medicine

  8. OCRWM Systems Engineering Management Plan (SEMP)

    International Nuclear Information System (INIS)

    1990-03-01

    The Nuclear Waste Policy Act of 1982 established the Office of Civilian Radioactive Waste Management (OCRWM) in the Department of Energy (DOE) to implement a program for the safe and permanent disposal of spent nuclear fuel and high-level radioactive waste. To achieve this objective, the OCRWM is developing an integrated waste-management system consisting of three elements: the transportation system, the monitored retrievable storage (MRS) facility, and the mined geologic disposal system (MGDS). The development of such a system requires management of many diverse disciplines that are involved in research, siting, design, licensing, and external interactions. The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe how the systems-engineering process will be implemented in the development of the waste-management system. Systems engineering will be used by the OCRWM to manage, integrate, and document all aspects of the technical development of the waste-management system and its system elements to ensure that the requirements of the waste-management program are met. It will be applied to all technical activities of the OCRWM program. It will be used by the OCRWM to specify the sequence of technical activities necessary to define the requirements the waste-management system must satisfy, to develop the waste-management system, to relate system elements to each other, and to determine how the waste-management system can be optimized to most effectively satisfy the requirements. Furthermore, systems engineering will be used in the management of Program activities at the program, program-element, and project levels by specifying procedures, studies, reviews, and documentation requirements. 9 refs., 1 fig

  9. Cognitive systems engineering in health care

    CERN Document Server

    Bisantz, Ann M; Fairbanks, Rollin J

    2014-01-01

    Cognitive Engineering for Better Health Care Systems, Ann M. Bisantz, Rollin J. Fairbanks, and Catherine M. BurnsThe Role of Cognitive Engineering in Improving Clinical Decision Support, Anne Miller and Laura MilitelloTeam Cognitive Work Analysis as an Approach for Understanding Teamwork in Health Care, Catherine M. BurnsCognitive Engineering Design of an Emergency Department Information System, Theresa K. Guarrera, Nicolette M. McGeorge, Lindsey N. Clark, David T. LaVergne, Zachary A. Hettinger, Rollin J. Fairbanks, and Ann M. BisantzDisplays for Health Care Teams: A Conceptual Framework and Design Methodology, Avi ParushInformation Modeling for Cognitive Work in a Health Care System, Priyadarshini R. PennathurSupport for ICU Clinician Cognitive Work through CSE, Christopher Nemeth, Shilo Anders, Jeffrey Brown, Anna Grome, Beth Crandall, and Jeremy PamplinMatching Cognitive Aids and the "Real Work" of Health Care in Support of Surgical Microsystem Teamwork, Sarah Henrickson Parker and Shawna J. PerryEngageme...

  10. Cognitive Systems Engineering: The Next 30 Years

    Science.gov (United States)

    Feary, Michael

    2012-01-01

    This presentation is part of panel discussion on Cognitive Systems Engineering. The purpose of this panel is to discuss the challenges and future directions of Cognitive Systems Engineering for the next 30 years. I intended to present the work we have been doing with the Aviation Safety program and Space Human Factors Engineering project on Work Domain Analysis and some areas of Research Focus. Specifically, I intend to focus on the shift on the need to understand and model attention in mixed-initiative systems, the need for methods which can generate results to be used in trade-off decisions, and the need to account for a range of human behavior in the design.

  11. Engineering education as a complex system

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-12-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating problem-solving orientations that emerge within students' thinking as they progress through an engineering curriculum. It is proposed that the traditional engineering education model, while analytically rigorous, is characterised by properties that, although necessary, are insufficient for preparing students to address complex issues of the twenty-first century. A Synthesis and Design Studio model for engineering education is proposed, which maintains the necessary rigor of analysis within a uniquely complex yet sufficiently structured learning environment.

  12. 46 CFR 121.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  13. Systems metabolic engineering in an industrial setting.

    Science.gov (United States)

    Sagt, Cees M J

    2013-03-01

    Systems metabolic engineering is based on systems biology, synthetic biology, and evolutionary engineering and is now also applied in industry. Industrial use of systems metabolic engineering focuses on strain and process optimization. Since ambitious yields, titers, productivities, and low costs are key in an industrial setting, the use of effective and robust methods in systems metabolic engineering is becoming very important. Major improvements in the field of proteomics and metabolomics have been crucial in the development of genome-wide approaches in strain and process development. This is accompanied by a rapid increase in DNA sequencing and synthesis capacity. These developments enable the use of systems metabolic engineering in an industrial setting. Industrial systems metabolic engineering can be defined as the combined use of genome-wide genomics, transcriptomics, proteomics, and metabolomics to modify strains or processes. This approach has become very common since the technology for generating large data sets of all levels of the cellular processes has developed quite fast into robust, reliable, and affordable methods. The main challenge and scope of this mini review is how to translate these large data sets in relevant biological leads which can be tested for strain or process improvements. Experimental setup, heterogeneity of the culture, and sample pretreatment are important issues which are easily underrated. In addition, the process of structuring, filtering, and visualization of data is important, but also, the availability of a genetic toolbox and equipment for medium/high-throughput fermentation is a key success factor. For an efficient bioprocess, all the different components in this process have to work together. Therefore, mutual tuning of these components is an important strategy.

  14. The electric power engineering handbook power systems

    CERN Document Server

    2012-01-01

    Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheble, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse arr

  15. Targeting engineering synchronization in chaotic systems

    Science.gov (United States)

    Bhowmick, Sourav K.; Ghosh, Dibakar

    2016-07-01

    A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.

  16. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  17. Final Report (BMWi Project No.: 02 E 10971): Joint project: Retention of radionuclides relevant for final disposal in natural clay rock and saline systems - Subproject 2: Geochemical behavior and transport of radionuclides in saline systems in the prese

    Energy Technology Data Exchange (ETDEWEB)

    Schmeide, Katja [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Fritsch, Katharina [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Lippold, Holger [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Poetsch, Maria [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Kulenkampff, Johannes [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Lippmann-Pipke, Johanna [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Jordan, Norbert [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Joseph, Claudia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Moll, Henry [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Cherkouk, Andrea [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Bader, Miriam [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology

    2016-02-29

    The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide – organics – clay – aquifer. For this, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol kg-1) and the background electrolyte (NaCl, CaCl2, MgCl2).

  18. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  19. Countercurrent soil washing system for remediation of viscous hydrocarbons, heavy metals, radionuclides

    International Nuclear Information System (INIS)

    Kuhlman, M.I.; Karlsson, M.K.; Downie, C.A.

    1995-01-01

    Drying augers and multicell DAF tanks are excellent machines in which to countercurrently wash soil and remove hazardous hydrocarbons, metals or radionuclides. An auger works well because it preferentially moves soil along one side of its trough. Thus, when enough high pressure and temperature water jets are placed along that path, contaminants can be melted, or dissolved and scoured from the soil. Contaminants and fines flow down the opposite side of the auger and out for extraction in a series of flotation tanks. Countercurrent washing of the silt results when soil settles in tanks through rising water and air bubbles then is pumped through cyclones placed above the next DAF tank of the series. LNAPLs, DNAPLs, or metallic contaminants made hydrophobic by chemicals in the system are removed at the overflow of the cyclones or by flotation in the tanks. The overflow from the cyclones and DAF tanks flows into the previous tank of the series. Examples of contaminants remediated include; arsenic, cadmium, lead and mercury, Naturally Occurring Radioactive Materials (NORM), uranium, solid oils, polyaromatic hydrocarbons in creosote and coal tars, and polychlorinated hydrocarbons

  20. Process for encapsulating radionuclides

    International Nuclear Information System (INIS)

    Brownell, L.E.; Isaacson, R.E.

    1976-01-01

    Radionuclides are immobilized in virtually an insoluble form by reacting at a temperature of at least 90 0 C as an aqueous alkaline mixture having a solution pH of at least 10, containing a source of silicon, the radionuclide waste, and a metal cation. The molar ratio of silicon to the metal cation is on the order of unity to produce a gel from which complex metalosilicates crystallize to entrap the radionuclides within the resultant condensed crystal lattice. The product is a silicious stone-like material which is virtually insoluble and nonleachable in alkaline or neutral environment. One embodiment provides for the formation of the complex metalo-silicates, such as synthetic pollucite, by gel formation with subsequent calcination to the solid product; another embodiment utilizes a hydrothermal process, either above ground or deep within basalt caverns, at greater than atmospheric pressures and a temperature between 90 and 500 0 C to form complex metalo-silicates, such as strontium aluminosilicate. Another embodiment provides for the formation of complex metalo-silicates, such as synthetic pollucite, by slurrying an alkaline mixture of bentonite or kaolinite with a source of silicon and the radionuclide waste in salt form. In each of the embodiments a mobile system is achieved whereby the metalo-silicate constituents reorient into a condensed crystal lattice forming a cage structure with the condensed metalo-silicate lattice which completely surrounds the radionuclide and traps the radionuclide therein; thus rendering the radionuclide virtually insoluble

  1. Offshore Wind Energy Systems Engineering Curriculum Development

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Jon G. [Univ. of Massachusetts, Amherst, MA (United States); Manwell, James F. [Univ. of Massachusetts, Amherst, MA (United States); Lackner, Matthew A. [Univ. of Massachusetts, Amherst, MA (United States)

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  2. Engineering of complex systems: The impact of systems engineering at NASA

    Science.gov (United States)

    Kludze, Ave-Klutse Kodzo Paaku

    The "true" impact or value of systems engineering to an organization unfortunately appears not to have been well-studied and understood. The principles of systems engineering are highly encouraged by NASA at all levels, and most practitioners, both internal and external to NASA, intuitively "believe" it adds some value to the development of complex systems by producing them faster, better and cheaper. This research, in trying to fill a gap that exists in the systems engineering literature, analyzes data collected within NASA and other sources external to NASA (INCOSE) for comparisons. Analyses involving a number of case studies performed on selected NASA projects are presented to draw attention to the impact systems engineering had or could have had on these projects. This research clearly shows that systems engineering does add value to projects within and outside NASA. The research results further demonstrate that systems engineering has been beneficial not only to NASA but also to organizations within which INCOSE members work. It was determined, however, that systems engineering does not operate in a vacuum and may not always guarantee success through mere application. During this research, it was discovered that the lack of or inadequate application of systems engineering in the development of complex systems may result in cost overruns, poor technical performance, project delays, and in some cases unmitigated risk with disastrous consequences including the loss of life and property. How much is saved (in terms of cost, schedule) or improved (in terms of technical performance) as a result of its implementation may never be known precisely, but by indirectly measuring its value or impact on a project, percentages of project budget spent on systems engineering activities and any schedule reductions or performance enhancements realized could be determined. According to this research, systems engineering is not a waste of time and resources; in most cases, it is

  3. Metasynthetic computing and engineering of complex systems

    CERN Document Server

    Cao, Longbing

    2015-01-01

    Provides a comprehensive overview and introduction to the concepts, methodologies, analysis, design and applications of metasynthetic computing and engineering. The author: Presents an overview of complex systems, especially open complex giant systems such as the Internet, complex behavioural and social problems, and actionable knowledge discovery and delivery in the big data era. Discusses ubiquitous intelligence in complex systems, including human intelligence, domain intelligence, social intelligence, network intelligence, data intelligence and machine intelligence, and their synergy thro

  4. Radio systems engineering a tutorial approach

    CERN Document Server

    Santos, Héctor J De Los; Ponte, Juan

    2015-01-01

    This book is intended for readers who already have knowledge of devices and circuits for radio-frequency (RF) and microwave communication and are ready to study the systems engineering-level aspects of modern radio communications systems. The authors provide a general overview of radio systems with their components, focusing on the analog parts of the system and their non-idealities. Based on the physical functionality of the various building blocks of a modern radio system, block parameters are derived, which allows the examination of their influence on the overall system performance. The dis

  5. Micro electromechanical systems (MEMS) for mechanical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical

  6. Plan for studies of subsurface radionuclide migration at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. Volume 2 of 2. Appendices

    International Nuclear Information System (INIS)

    1983-11-01

    This document describes planned studies of subsurface radionuclide migration at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. A plan is provided for each proposed study. The rational for arriving at the list of proposed studies is also presented. This document consists of two volumes. In the first volume, Sections 1 through 5 contain the introduction, the objectives of the proposed studies, and background information. The discussion is not comprehensive in detail; documents are referenced that discuss the background material in greater detail. Sections 6 through 9 identify and select the group of studies to be performed and discuss the peer review process. The second volume contains Appendices A and B, which present the assignment of responsibilities and the detailed plans, schedules, and costs for the proposed program

  7. Plan for studies of subsurface radionuclide migration at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. Volume 1 of 2

    International Nuclear Information System (INIS)

    1983-11-01

    This document describes planned studies of subsurface radionuclide migration at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. A plan is provided for each proposed study. The rational for arriving at the list of proposed studies is also presented. This document consists of two volumes. In the first volume, Sections 1 through 5 contain the introduction, the objectives of the proposed studies, and background information. The discussion is not comprehensive in detail; documents are referenced that discuss the background material in greater detail. Sections 6 through 9 identify and select the group of studies to be performed and discuss the peer review process. The second volume contains Appendices A and B, which present the assignment of responsibilities and the detailed plans, schedules, and costs for the proposed program

  8. Engineering design of systems models and methods

    CERN Document Server

    Buede, Dennis M

    2009-01-01

    The ideal introduction to the engineering design of systems-now in a new edition. The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: * The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology * Additional material on partitioning functions and components * More descriptive material on usage scenarios based on literature from use case development * Updated homework assignments * The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference ...

  9. High efficiency stoichiometric internal combustion engine system

    Science.gov (United States)

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  10. Equilibrium concentration of radionuclides in cement/groundwater/carbon steel system

    International Nuclear Information System (INIS)

    Keum, D. K.; Cho, W. J.; Hahn, P. S.

    1997-01-01

    Equilibrium concentration of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment, while it almost entirely exists as the precipitate of Fe(OH) 3 (s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amounts of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements - cesium, strontium, cobalt, nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system. (author)

  11. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Heams, T J [Science Applications International Corp., Albuquerque, NM (United States); Williams, D A; Johns, N A; Mason, A [UKAEA, Winfrith, (England); Bixler, N E; Grimley, A J [Sandia National Labs., Albuquerque, NM (United States); Wheatley, C J [UKAEA, Culcheth (England); Dickson, L W [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Osborn-Lee, I [Oak Ridge National Lab., TN (United States); Domagala, P; Zawadzki, S; Rest, J [Argonne National Lab., IL (United States); Alexander, C A [Battelle, Columbus, OH (United States); Lee, R Y [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  12. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    International Nuclear Information System (INIS)

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools

  13. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.; Grandy, J.; Chambers, A. [and others

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  14. MOIRA: a computerised decision support system for the restoration of radionuclide contaminated freshwater ecosystems

    International Nuclear Information System (INIS)

    Gallego, Eduardo; Brittain, J.E.; Hakanson, Lars; Heling, Rudie; Hofman, Dmitry; Monte, Luigi

    2000-01-01

    The radiation dose resulting from contamination of freshwater ecosystems due to the release of radioactive substances into the environment may be reduced by applying suitable countermeasures. The options for intervention are wide-ranging and can be broadly grouped into three main categories: chemical, physical and social countermeasures. In some cases, a combination of actions -or even the no action- may be the optimal strategy. Despite their benefits, intervention strategies may have detrimental effects of economic, ecological and social nature. Thus, it is of paramount importance to assess, by objective criteria, the global cost-benefit balance of different options. The MOIRA project (A MOdel based computerised system for management support to Identity optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems, European Commission contract FI4P-CT96-0036) has developed a user-friendly, computerised tool that will allow decision makers to choose optimal intervention strategies for freshwater ecosystems with different contamination scenarios. To achieve that goal, the MOIRA software system -apart from a user-friendly interface- incorporates several innovative aspects: - eographical information system (GIS) and databases to get to get the values of the model parameters at different locations in Europe. - redictive ecosystem models for the behaviour of radionuclides (namely Cs-137 and Sr-90) in catchments, lakes and rivers, complemented with models of the effect of the countermeasures on the environmental contamination levels. These models are based on an extensive use of aggregate parameters' that summarise, in single quantities, the effects of a variety of environmental processes. Methods for critical model testing, sensitivity and uncertainty analyses have been applied to them getting a high reliability. - cosystem index (EI) to handle the influence chemical remedial measures may have on the structure, reproduction and biomass of key

  15. The engineering of microprocessor systems guidelines on system development

    CERN Document Server

    1979-01-01

    The Engineering of Microprocessor Systems: Guidelines on System Development provides economical and technical guidance for use when incorporating microprocessors in products or production processes and assesses the alternatives that are available. This volume is part of Project 0251 undertaken by The Electrical Research Association, which aims to give managers and development engineers advice and comment on the development process and the hardware and software needed to support the engineering of microprocessor systems. The results of Phase 1 of the five-phase project are contained in this fir

  16. 20th Annual Systems Engineering Conference, Thursday, Volume 4

    Science.gov (United States)

    2017-10-26

    20th Annual Systems Engineering Conference October 23-26, 2017 | Waterford at Springfield | Springfield, VA NDIA.org/systemsengineering...Conference Program SYSTEMS ENGINEERING CONFERENCE 2 Welcome to the NDIA Systems Engineering Conference On behalf of the National Defense Industrial...Association’s Systems Engineering Division, I would like to extend a very warm welcome to the 20th Annual Systems Engineering Conference. Yes, the 20th Annual

  17. System Engineering of Photonic Systems for Space Application

    Science.gov (United States)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  18. Evaluation of radionuclide migration in the homogeneous system of a geological repository

    International Nuclear Information System (INIS)

    Prvakova, S.; Duran, J.; Necas, V.

    2005-01-01

    The aim of this paper is to study radionuclide migration and release from a deep underground repository situated in a clay formation. An insight into the processes influencing the radionuclide transport in the near field and far field will be presented. For the calculation, a set of radionuclides has been chosen, considering the half-life, decay chains, capacity of the sorption, solubility limits and diffusion coefficients. The migration of radionuclides is dependent on transport properties of the particular nuclide. Due to the low hydraulic conductivity of the backfill material and clay geological formation, the transport in the repository occurs mainly by diffusion. The migration rate will be influenced by the water chemistry, solubility, retardation and diffusive properties of the nuclides, and the water flow rate in the clay. The release rates of radionuclides from the geosphere to the biosphere will be converted into the indicative dose rates using dose conversion factors for ingestion. The impact of the critical group is considered via consumption of meat, root vegetables and drinking water from wells. (author)

  19. A cylinder pressure based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Truscott, A.; Noble, A. [Ricardo Consulting Engineers Ltd. (United Kingdom); Mueller, R.; Hart, M.; Kroetz, G.; Eickhoff, M. [DaimlerChrysler AG (Germany); Cavalloni, C.; Gnielka, M. [Kistler Instrumente AG (Switzerland)

    2000-07-01

    Worldwide demands on fuel economy and lower emissions from automotive vehicles have led to stringent requirements in the development of Engine Management Systems (EMS). Cylinder Pressure based Engine Management Systems (CPEMS) provide a way forward in EMS technology by combining intelligent control algorithms with innovative sensing techniques. The full utilisation of model-based control and diagnostics to provide improvements in cost, efficiency, emissions and comfort requires the close monitoring of engine conditions. This is made possible with the advent of new inexpensive sensor materials that can withstand the harsh environment of the combustion chamber. AENEAS is a collaborative project undertaken by Ricardo, DaimlerChrysler and Kistler, with financial support from the European Commission and the Swiss Government, aimed at demonstrating the major benefits of CPEMS technology. This paper describes the application of CPEMS technology to a spark ignition (SI) engine. It describes how the combination of model based algorithms, incorporating physical principles, and cylinder pressure sensing can provide an effective means of engine control and diagnostics. Results are presented to demonstrate the benefits of this new technology. (author)

  20. Systems Engineering as a tool; Verktoeyet Systems Engineering : struktur fra start til maal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Randi

    2002-07-01

    Systems engineering integrates all types of specialists and disciplines into teams that try to create a structured development process from concept via production to operation. The idea is that by using systems engineering, projects can be completed efficiently and successfully. It is important that the individual participant in a project understands that he or she works within a system and that there is a need for skill, comprehensiveness and communication. Systems engineering comprises system design, computer aided design, cybernetics and mecatronics. The article describes the use of systems engineering in a student project in which a heat pump will be used to utilize the energy potential of ground water primarily to heat the visitors' area in a mine museum in Kongsberg, Norway.

  1. Engineering Education as a Complex System

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-01-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating…

  2. Practice-based systems engineering programme

    CSIR Research Space (South Africa)

    Goncalves, D

    2010-08-01

    Full Text Available the required system engineering competencies is introduced. A practice-based approach is presented as part of the solution, including the roles of universities, students and industry within this approach. Finally we elaborate on a proposed curriculum for a...

  3. Study of scenario 'mistake in determination of adsorbing properties of radionuclides on the materials of engineering barriers and host rock'

    International Nuclear Information System (INIS)

    Amosov, P.V.; Novozhilova, N.V.

    2008-01-01

    During investigations within the framework of this ASE of a storage facility, conceptual and mathematical models remained the same, as in SNE. Basic provisions of models, a solution 'tool' for diffusion equation taking into account radioactive decay and the chosen boundary conditions are presented in paper. The 79 Se isotope is chosen as basic analyzed radionuclide within the framework of the accepted ASE. The selection of this isotope can be substantiated by the following reasons: 1) Migration parameters of this radionuclide, in particular, the distribution coefficient of 79 Se isotope has specific enough values. For example, in granitoid formations (according to different research groups from Sweden, Finland, Switzerland during rather a small time range of experiments carrying out) the values of distribution coefficient vary within 20 times and thus its numerical value is small enough (0.0005 - 0.01 m 3 /kg). At the same time, the situation is reverse with cement materials: from references accessible to us only in one the value of this parameter is cited. 2) Performing calculations for the full list of radio-nuclides (in the SNE there were 8 of them) will require considerable labor expenditures and computer facilities resources: much processor time and much memory on a hard disk to store information. Since, when considering the selected ASE of facility there are accepted 4 areas of materials (the source, concrete, bentonite, the host rock) generally, it means practically a fourfold increase of all specified expenses in comparison with similar expenses for a SNE of facility. The main conclusions are: There are considered possible variants of error, which consequence is the 79 Se isotope transition in the category of a non-sorbing one in respective barrier of the near field that can conservatively lead to an increase of the facility hazard. If there is an error in selection of sorption parameters of 79 Se isotope in the host rock an increase in pollution of the

  4. Random summing in a multi-detector counting system measuring mixtures of radionuclides of short and long half-lives

    International Nuclear Information System (INIS)

    Oxby, C.B.; Oldroyd, B.; Graham, S.G.

    1979-01-01

    A method is described for correcting a radiation spectrum for the distortion caused by random summing when a multidetector array is used to acquire events from a mixture of radionuclides whose half-lives may be long or short compared with the counting period. With our own counting system it was found that both the resolving time, and the fractions of the energy of a second signal which may be added to that of the immediately previous signal, i.e., the resolving time function, are dependent upon the energies of these two signals. The method requires knowledge of the losses which occur in a multidetector system e.g., live-time error and blocking losses, the variation of the resolving time function with signal energies, a standard spectrum of each radionuclide of the mixture and the fractions of them which constitute the mixture spectrum, the decay constant of each radionuclide, and the fraction of the total events recorded by the system being received by each detector. (orig.)

  5. Systems engineering approach for future automotive microcontroller solutions; Systems-Engineering-Ansatz zur Entwicklung zukuenftiger Mikrocontroller

    Energy Technology Data Exchange (ETDEWEB)

    Hilgert, J.; Turski, K.; Vollhardt, S. [NEC Electronics Europe, Duesseldorf (Germany)

    2005-09-01

    In the future, microcontrollers used in automotive applications will have to meet escalating demands from different areas. For this reason, NEC Electronics (Europe) regards the concept of Systems Engineering as the key to handling the development of the complex system vehicle. This article describes how the Systems Engineering approach is applied to the development of new microcontrollers. The example used is the development platform for NEC's upcoming gateway product. (orig.)

  6. Design and application of Mark IV scanning system for radionuclide computed tomography of the brain

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Hoffman, E.J.; Phelps, M.E.; Ricci, A.; Reivich, M.

    1977-01-01

    The MARK IV system was built in our laboratory to provide fast and accurate radionuclide computed tomography (RCT). It is designed primarily for detecting commonly available radioactive labels such as 99 Tcsup(m), but it is also adapted to detecting positron emitters such as 18 F. The system has interlaced convergent collimation in a four-sided arrangement of 32 independent detectors which continuously rotate as a unit, detecting, processing and displaying the reconstructed data while the study progresses. During the scanning procedure, accumulated data are transferred to a digital computer for reconstruction processing. Data are corrected to equalize detector response and compensate for photon attenuation in the head. This program requires 30 seconds for completion, whereupon the final reconstruction, a 64 x 64 matrix from the single revolution, outputs to a core store and is displayed on the screen of a cathode-ray tube. As the rotation sequence continues, new data from each revolution are added to previous data and reprocessed for a new picture. Since the instrument operates at 50 s per revolution, the continuous collection and processing of data causes a new picture to appear on the display every 50 s as the study progresses. The operator may extend or curtail the duration of the examination according to the appearance of the picture. In practice, a five revolution (4.2 min.) scan is commonly used in most clinical studies. The instrument is a high sensitivity device with approximately uniform resolution (1.7 cm FWHM) throughout the section plane. Quantification of concentration of radioactivity in small regions is accurate and reproducible. The instrument has been applied to the study of alterations in cerebral vascular permeability, blood flow and blood volume, and to the study of cerebral glucose metabolism and cerebral spinal fluid distribution. (author)

  7. Radionuclide studies of the lymphatic systems and their particular role in the assessment of the lymphoedema

    International Nuclear Information System (INIS)

    Zakkou, E.

    1984-01-01

    Dynamic radionuclide studies of the lymphatic system are used to measure the length of time required for the tracer to transit the upper and lower extremities as well as to determine, for any given point of time, the transportation and storage capacities of lymph vessels and nodes, respectively. Secondary lymphoedemas of more substantial proportions can reliably be diagnosed and classified on the basis of degrees of severity. The presence of those lymphoedemas is typically indicated by dermal back flow at circulatory bottlenecks, delays or marked delays (by more than 15 min) in transit and durations of transit beyond the measurable range. Further characteristic signs are passive dilatation of the prefacial bundle of lymph vessels (which is likely to be a first degree dilatation, if seen in late scintigrams and a second or third degree dilatation in cases escaping scintigraphic detection) and wide-spread inhibitions of activity over the entire extremity examined. Combined oedematous changes of lymph vessels and veins can only be predicted from lymph circulation disorders. This method permits an immediate diagnosis of any conditions precluding the use of endolymphatic therapy in malignant melanomas, thus sparing the patient the discomforts of treatment and helping to avoid unnecessary expenditure. Dynamic scintigraphy offers advantages over lymphography in that it has a greater discriminating power in diagnostic evaluations of active or passive dilatation of the bundle of lymph vessels, dermal back flow as well as the functional performance of damaged lymph vessels and also in that it permits a more precise visualisation of the superfacial and deep vessels of the lymphatic systems. (TRV) [de

  8. Execution Of Systems Integration Principles During Systems Engineering Design

    Science.gov (United States)

    2016-09-01

    application utilized a paper-based approach to systems design. The customer directed utilization of an SE Waterfall process model . These new...regarding requirements, stakeholders, testing, and system boundaries. Additionally, this thesis discusses use of systems architecture frameworks and models ...and the consistent use of model - based systems engineering throughout development. Lastly, it proposes formal methods language for improving models

  9. 46 CFR 184.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...

  10. Morphogenetic Engineering Toward Programmable Complex Systems

    CERN Document Server

    Sayama, Hiroki; Michel, Olivier

    2012-01-01

    Generally, spontaneous pattern formation phenomena are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both self-organized and architectural.   This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is placed on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies.   Altogether, the aim of this work is to provide a framework for and examples of a larger class of “self-architecturing” systems, while addressing fundamental questions such as   > How do biological organisms carry out morphog...

  11. Electronic ignition system for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, L W

    1980-11-20

    Mechanical ignition adjustment devices are sensitive to many effects, for example breakage, faults due to manufacturing tolerances, play in the linkage and the effect of a dirty or corrosive environment. It is therefore the purpose of the invention to provide an electronic ignition system which avoids the disadvantages of a mechanical system. The invention provides adjustment of the ignition point, which gives advance of the ignition timing with increasing speed. An output signal is formed, which supersedes the signal supplied by the electronic control system, so that the ignition is advanced. This also occurs with a larger crankshaft angle before top dead centre of the engine. The electronic control system combines with a source of AC time signals which has a generator as electrical transmitter and a DC battery and ignition coil. The rotor of the electrical generator is driven synchronised with the engine. Structural and functional details of the transistor control circuits are given in 5 patent claims.

  12. A soil-based model to predict radionuclide transfer in a soil-plant system

    International Nuclear Information System (INIS)

    Roig, M.; Vidal, M.; Tent, J.; Rauret, G.; Roca, M.C.; Vallejo, V.R.

    1998-01-01

    The aim of this work was to check if the main soil parameters predefined as ruling soil-plant transfer were sufficient to predict a relative scale of radionuclide mobility in mineral soils. Two agricultural soils, two radionuclides ( 85 Sr and 134 Cs), and two crops (lettuce and pea) were used in these experiments following radioactive aerosol deposition simulating the conditions of a site some distance far away from the center of a nuclear accident, for which condensed deposition would be the more significant contribution. The available fraction of these radionuclides was estimated in these soils from experiments in which various reagents were tested and several experimental conditions were compared. As a general conclusion, the soil parameters seemed to be sufficient for prediction purposes, although the model should be improved through the consideration of physiological aspects, especially those depending of the plant selectivity according to the composition of the soil solution

  13. Models and data to predict radionuclide concentrations in river basin systems

    International Nuclear Information System (INIS)

    Fleming, G.; Rufai, G.G.

    1990-01-01

    Radioactive contamination of land may result from the detonation of nuclear weapons or nuclear accidents, such as Chernobyl. The deposition of fallout on soil and/or plants, and subsequent erosion by rainsplash and overland flow, could introduce radioactive isotopes into the water and soil resources of the environment. A model to simulate the transport and deposition of concentrated pollutants and radionuclides within the river basin is proposed. The proposed model is built on an existing Strathclyde River Basin Model, (SRBM), which has the potential to simulate runoff and erosion and the distribution of eroded soil particle sizes. An algorithm of the processes of concentration of pollutants and radionuclides can be developed based on the current understanding of the process of radionuclide attachment to soil particles. (author)

  14. Assessment of atmospherically-released radionuclides using the computerized radiological risk investigation system

    International Nuclear Information System (INIS)

    Nelson, C.B.; Sjoreen, A.L.; Miller, C.W.; Baes, C.F. III.

    1986-01-01

    For radionuclides, the standards are in terms of an annual dose, and the regulations require assurance that no member of the general public receives a dose in excess of that standard. Thus, spatial variations in the population around an emission source must be considered. Furthermore, for most chemical pollutants the standards are written in terms of an air concentration while for radionuclides other pathways of exposure, e.g., uptake of the airborne emissions by terrestrial food chains must also be considered. The remainder of this paper discusses the computer codes that make up the CRRIS and how they are used to perform an assessment of the health impacts on man of radionuclides released to the atmosphere

  15. Experimental methodology to study radionuclide sorption and migration in geological formations and engineered barriers of waste repositories; Metodologia experimental para estudios de sorcion y migracion de radionucleidos en formaciones geologicas y barreras de almacenamientos de residuos

    Energy Technology Data Exchange (ETDEWEB)

    Rojo Sanz, H.

    2010-07-01

    In Spain, the waste management options include either the possibility of a final storage in a deep geological repository (DGR) or the centralized temporal surface disposal (CTS). DGRs are based in a multi-barrier concept with the geological barrier and including the vitrified waste, the metal containers and engineered barriers such as compacted bentonite and cement-based materials. On the other hand, CTS mainly considers concrete and cement to confine the metal canisters containing the waste. Radionuclide migration will mainly take place by the existence of chemical concentration gradients being thus diffusion the main transport mechanism or by the existence of hydraulic gradients due to the existence of water-conductive fractures. Radionuclide sorption/retention on the materials composing the natural and engineered barriers is the fundamental process controlling contaminant migration. The evaluation of sorption parameters and the understanding of the different mechanisms leading to radionuclide retention are very important issues. The study of diffusion processes is very relevant as well. This paper describes the main experimental methodologies applied to analyse radionuclide transport in the different barriers of radioactive repositories. Particularly we focused on obtaining of retention parameters as distribution coefficients, kd, or retardation factors, Rf, and diffusion coefficients of radionuclides. (Author) 6 refs.

  16. Waste form performance assessment in the YUCCA Mountain engineered barrier system, American Nuclear Society

    International Nuclear Information System (INIS)

    Morris, E. E.; Fanning, T. H.; Wigeland, R. A.

    2000-01-01

    This work demonstrates a technique for comparing the performance of waste forms in a repository environment when one or more of the waste forms constitute a small part of the total amount of waste planned for the repository. In applying the technique, it is important to identify radionuclides that are highly soluble in the transport fluid since it is only for these that the release is controlled by the dissolution rate of the waste form matrix. The techniques presented here have been applied to an evaluation of the performance of waste forms from the electrometallurgical treatment of spent fuel in the proposed Yucca Mountain Repository Engineered Barrier System (EBS)

  17. WFIRST: Coronagraph Systems Engineering and Performance Budgets

    Science.gov (United States)

    Poberezhskiy, Ilya; cady, eric; Frerking, Margaret A.; Kern, Brian; Nemati, Bijan; Noecker, Martin; Seo, Byoung-Joon; Zhao, Feng; Zhou, Hanying

    2018-01-01

    The WFIRST coronagraph instrument (CGI) will be the first in-space coronagraph using active wavefront control to directly image and characterize mature exoplanets and zodiacal disks in reflected starlight. For CGI systems engineering, including requirements development, CGI performance is predicted using a hierarchy of performance budgets to estimate various noise components — spatial and temporal flux variations — that obscure exoplanet signals in direct imaging and spectroscopy configurations. These performance budgets are validated through a robust integrated modeling and testbed model validation efforts.We present the performance budgeting framework used by WFIRST for the flow-down of coronagraph science requirements, mission constraints, and observatory interfaces to measurable instrument engineering parameters.

  18. Systems engineering real estate development projects

    Science.gov (United States)

    Gusakova, Elena; Titarenko, Boris; Stepanov, Vitaliy

    2017-10-01

    In recent years, real estate development has accumulated a wealth of experience in implementing major projects, which requires comprehension and systematization. The scientific instrument of system engineering is studied in the article and is substantively interpreted with reference to real estate development projects. The most perspective approaches and models are substantiated, allowing strategically to plan the life cycle of the project as a whole, and also to solve the engineering butt problems of the project. The relevance of further scientific studies of regularities and specifics of the life cycle of real estate development projects conducted at the Moscow State University of Economics and Management at the ISTA department is shown.

  19. Principles of e-learning systems engineering

    CERN Document Server

    Gilbert, Lester

    2008-01-01

    The book integrates the principles of software engineering with the principles of educational theory, and applies them to the problems of e-learning development, thus establishing the discipline of E-learning systems engineering. For the first time, these principles are collected and organised into the coherent framework that this book provides. Both newcomers to and established practitioners in the field are provided with integrated and grounded advice on theory and practice. The book presents strong practical and theoretical frameworks for the design and development of technology-based mater

  20. Assessing the impact of releases of radionuclides into sewage systems in urban environment - simulation, modelling and experimental studies - LUCIA

    International Nuclear Information System (INIS)

    Sundelll-Bergman, S.; Avila, R.; Cruz, I. de la; Xu, S.; Puhakainen, M.; Heikkinene, T.; Rahola, T.; Hosseini, A.; Nielsen, Sven; Sigurgeirsson, M.

    2009-06-01

    This report summarises the findings of a project on assessing the impact of releases of radionuclides into sewage systems and was established to provide more knowledge and suitable tools for emergency preparedness purposes in urban areas. It was known that the design of sewage plants, and their wastewater treatments, is rather similar between the Nordic countries. One sewage plant in each of the five Nordic countries was selected for assessing the impact of radionuclide releases from hospitals into their sewerage systems. Measurements and model predictions of dose assessments to different potentially exposed members of the public were carried out. The results from the dose assessments indicate that in case of routine releases annual doses to the three hypothetical groups of individuals are most likely insignificant. Estimated doses for workers are below 10 μSv/y, for the two studied radionuclides 99mTc and 131I. If uncertainties in the predictions of activity concentrations in sludge are considered, then the probability of obtaining doses above 10 μSv/y may not be insignificant. The models and approaches developed can also be applied in case of accidental releases. A laboratory inter-comparison exercise was also organised to compare analytical results across the laboratories participating in the project, using both 131I, dominating man-made radionuclide in sewage systems due to the medical use. A process oriented model of the biological treatment is also proposed in the report that does not require as much input data as for the LUCIA model. This model is a combination of a simplified well known Activated Sludge Model No.1 (Henze, 1987) and the Kd concept used in the LUCIA model. The simplified model is able to estimate the concentrations and the retention time of the sludge in different parts of the treatment plant, which in turn, can be used as a tool for the dose assessment purpose.filled by the activity. (au)

  1. Assessing the impact of releases of radionuclides into sewage systems in urban environment - simulation, modelling and experimental studies - LUCIA

    Energy Technology Data Exchange (ETDEWEB)

    Sundelll-Bergman, S. (Vattenfall Power Consultant, Stockholm (Sweden)); Avila, R.; Cruz, I. de la (Facilia AB, (Sweden)); Xu, S. (Swedish Radiation Safety Authority, (Sweden)); Puhakainen, M.; Heikkinene, T.; Rahola, T. (STUK (Finland)); Hosseini, A. (Norwegian Radiation Protection Authority (Norway)); Nielsen, Sven (Risoe National Laboratory for Sustainable Energy, DTU (Denmark)); Sigurgeirsson, M. (Geislavarnir rikisins (Iceland))

    2009-06-15

    This report summarises the findings of a project on assessing the impact of releases of radionuclides into sewage systems and was established to provide more knowledge and suitable tools for emergency preparedness purposes in urban areas. It was known that the design of sewage plants, and their wastewater treatments, is rather similar between the Nordic countries. One sewage plant in each of the five Nordic countries was selected for assessing the impact of radionuclide releases from hospitals into their sewerage systems. Measurements and model predictions of dose assessments to different potentially exposed members of the public were carried out. The results from the dose assessments indicate that in case of routine releases annual doses to the three hypothetical groups of individuals are most likely insignificant. Estimated doses for workers are below 10 muSv/y, for the two studied radionuclides 99mTc and 131I. If uncertainties in the predictions of activity concentrations in sludge are considered, then the probability of obtaining doses above 10 muSv/y may not be insignificant. The models and approaches developed can also be applied in case of accidental releases. A laboratory inter-comparison exercise was also organised to compare analytical results across the laboratories participating in the project, using both 131I, dominating man-made radionuclide in sewage systems due to the medical use. A process oriented model of the biological treatment is also proposed in the report that does not require as much input data as for the LUCIA model. This model is a combination of a simplified well known Activated Sludge Model No.1 (Henze, 1987) and the Kd concept used in the LUCIA model. The simplified model is able to estimate the concentrations and the retention time of the sludge in different parts of the treatment plant, which in turn, can be used as a tool for the dose assessment purpose.filled by the activity. (au)

  2. The systems engineering overview and process (from the Systems Engineering Management Guide, 1990)

    Science.gov (United States)

    1993-01-01

    The past several decades have seen the rise of large, highly interactive systems that are on the forward edge of technology. As a result of this growth and the increased usage of digital systems (computers and software), the concept of systems engineering has gained increasing attention. Some of this attention is no doubt due to large program failures which possibly could have been avoided, or at least mitigated, through the use of systems engineering principles. The complexity of modern day weapon systems requires conscious application of systems engineering concepts to ensure producible, operable and supportable systems that satisfy mission requirements. Although many authors have traced the roots of systems engineering to earlier dates, the initial formalization of the systems engineering process for military development began to surface in the mid-1950s on the ballistic missile programs. These early ballistic missile development programs marked the emergence of engineering discipline 'specialists' which has since continued to grow. Each of these specialties not only has a need to take data from the overall development process, but also to supply data, in the form of requirements and analysis results, to the process. A number of technical instructions, military standards and specifications, and manuals were developed as a result of these development programs. In particular, MILSTD-499 was issued in 1969 to assist both government and contractor personnel in defining the systems engineering effort in support of defense acquisition programs. This standard was updated to MIL-STD499A in 1974, and formed the foundation for current application of systems engineering principles to military development programs.

  3. Radionuclide carrier

    International Nuclear Information System (INIS)

    Hartman, F.A.; Kretschmar, H.C.; Tofe, A.J.

    1978-01-01

    A physiologically acceptable particulate radionuclide carrier is described. It comprises a modified anionic starch derivative with 0.1% to 1.5% by weight of a reducing agent and 1 to 20% by weight of anionic substituents

  4. Systems Engineering Management Training at Naval Air Systems Command

    National Research Council Canada - National Science Library

    Rebel, James

    2000-01-01

    Within the past few years, the Naval Air Systems Command (NAVAIR) has undergone several major changes including an engineering reorganization from a matrix organization to an Integrated Program Team/Competency Aligned Organization (IPT/CAO...

  5. Behaviour of long-lived radionuclides in soil-plant systems of the Mediterranean region

    International Nuclear Information System (INIS)

    Apostolakis, C.; Papanicolaou, E.

    1993-01-01

    The objectives of the project are the selection of regions in Greece with high degree of contamination and sampling of the main soil types - in various depths - and of the cultivated or indigenous plants grown on them; determination of the physicochemical parameters of the soil samples and the radionuclide concentration, especially of 137 Cs, in the soil and plant samples; greenhouse experimentation with selected soil types and main agricultural crops to establish uptake rates, and laboratory studies to investigate translocation of radionuclides within undisturbed soil columns; correlation of analytical and experimental data and calculation of transfer factors from soil to plants and various products. (R.P.) 12 refs

  6. System engineering approach to GPM retrieval algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rose, C. R. (Chris R.); Chandrasekar, V.

    2004-01-01

    System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Ground validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do

  7. Ignition system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, G

    1977-05-12

    The invention pertains to ignition systems for internal combustion engines; in particular, these are used in the engines of modern small motorcycles, where power is supplied by means of a so-called flywheel magneto, so that there is no need for an additional battery. The invention will prevent back-kicking. This is achieved by the following means: in the right direction of rotation of the internal combustion engine, due to an axial magnetic unsymmetry of the rotor, a voltage component that can switch the electronic switch will occur only in one of the two parts of the control winding at the point of ignition. In the wrong direction of rotation, on the other hand, this voltage component will only occur in the other part of the control winding and will act in direction on a diode connected in parallel to this part of the winding.

  8. Integration and framing between system engineering, enterprise engineering and whole of society

    CSIR Research Space (South Africa)

    Erasmus, Louwrence D

    2017-07-01

    Full Text Available with the semantic theoretical constructs of systems levels of Boulding’s General Systems Theory. The construct of systems hierarchy levels addresses the progression from complicated engineered levels to the complexity of human interaction with engineered... predicates in: • A theory of the systems engineering process (Doeben-Henisch, et al., 2008) (Erasmus & Doeben-Henisch, 2011a) • A theory of systems engineering management (SEMBASE) (Erasmus & Doeben-Henisch, 2011b). In the structuralist programme...

  9. Standardization of radionuclides 45Ca, 137Cs, 204Tl by tracing method using 4πβ-γ coincidence system

    International Nuclear Information System (INIS)

    Ponge-Ferreira, Claudia Regina Ponte

    2005-01-01

    The procedure followed for the standardization of 45 Ca, 137 Cs and 204 Tl is described. The activity measurements was carried out in a 4πβ-γ coincidence system by the tracing method. The radionuclides chosen as the P-y emitting tracer nuclide were 60 Co for the 45 Ca and 134 Cs for 137 Cs and 204 TL because their end-point beta-ray energy are close to the respective beta emitters. The radioactive sources were prepared using two different techniques: one was the drops technique and the other was the solution technique. In the drop technique the sources were prepared by dropping directly on the subtract both solutions (tracer and beta pure). In the other technique a solution of tracer plus beta pure was mixed previously before making the radioactive sources. The activities of the radionuclides obtained with these technique were compared and the values are in agreement within the experimental uncertainties. (author)

  10. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  11. Standardization of 201Tl and 55Fe radionuclides in a 4 (PC)-NaI(Tl) coincidence system

    International Nuclear Information System (INIS)

    Pires, Carlos Augusto

    2008-01-01

    In the present work the procedure for the standardization of radionuclides using the 4π(PC)-NaI(Tl) coincidence system was developed. The radionuclides selected were 201 Tl, used in nuclear medicine, and 55 Fe primary standard source, used for x-ray spectrometers calibration. The 4π(PC)-NaI(Tl) is composed of a 4 proportional counter operated at 0.1MPa coupled to two NaI(Tl) crystals. The 201 Tl decays by electron capture process followed by a prompt gamma-ray. The disintegration rate was determined by extrapolation technique using two methods: electronic discrimination and external absorbers. The radioactive sources were prepared in a 20 μg cm -2 thick Collodion film. The conventional electronic system was used. The observed events were registered by the TAC method. The 55 Fe decays by electron capture process to the ground state of 55 Mn, emitting x rays with around 6 keV. The standardization was obtained by the tracing method. This technique was applied using two radionuclides, which decay by electron capture process followed by a prompt gamma-ray, namely 51 Cr and 54 Mn, as tracers. Measurements with 1 and 2 aluminum foils, each 150 g cm-2 thick were carried out. The activity was obtained by extrapolation for zero thickness Al foil. The uncertainties were treated by means of matrix covariance methodology and takes into account all correlations involved. (author)

  12. Analysis of the processes defining radionuclide migration from deep geological repositories in porous medium

    International Nuclear Information System (INIS)

    Brazauskaite, A.; Poskas, P.

    2004-01-01

    Due to the danger of exposure arising from long-lived radionuclides to humans and environment, spent nuclear fuel (SNF) and high level waste (HLW) are not allowed to be disposed of in near surface repositories. There exists an international consensus that such high level and long-lived radioactive wastes are best disposed of in geological repositories using a system of engineered and natural barriers. At present, the geological repository of SNF and HLW has not been realized yet in any country but there is a lot of experience in the assessment of radionuclide migration from deep repositories, investigations of different processes related to the safety of a disposal system. The aim of this study was to analyze the processes related to the radionuclide migration from deep geological repositories in porous medium such as SNF matrix dissolution, release mechanism of radionuclides from SNF matrix, radionuclide solubility, sorption, diffusive, advective transport of radionuclides from the canister and through the engineered and natural barriers. It has been indicated that SNF matrix dissolution, radionuclide solubility and sorption are sensitive to ambient conditions prevailing in the repository. The approaches that could be used for modeling the radionuclide migration from deep repositories in porous medium are also presented. (author)

  13. Systems Engineering for Space Exploration Medical Capabilities

    Science.gov (United States)

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  14. DIDACTIC ENGINEERING: DESIGNING NEW GENERATION LEARNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Nail K. Nuriyev

    2016-09-01

    Full Text Available Introduction: the article deals with the organisation of training activities in the man-made environment. Didactic engineering is seen as a methodology within which problems of didactics are solved with application of pedagogical, psychological, engineering methods. It is obvious that in order to implement the training of future engineers in a competence-based format (according to educational standard a new type of teaching system is needed, with new capacities (properties. These systems should set each student towards the development of professionally significant (key abilities, taking into account his/her psychological characteristics; ensure training on the verge of permissible difficulties (developing training, and thereby achieve rapid development of key skills, through his/her zone of “immediate development”; to diagnose the quality of possession of a competence in the academic sense. For the objectivity and reliability of assessment of the level and depth of learned knowledge it is necessary to generate this evaluation in a metric format. As a result, we created a didactic system, which combines all the listed properties and the properties of classical systems. This allowed us to construct a new generation of didactic systems. Materials and Methods: the research is based on a systematic analysis of the activity of an engineer; on models of “zones of immediate development” by L. S. Vygotsky; on “developmental education” by L. N. Zankova; on the use of pedagogical and psychological patterns as well as taxonomic methods, didactic engineering, theory of probability and mathematical statistics. Results: constructed is a model for training engineers in the metric format of competence, which envisages a rapid development of students project and constructive abilit ies based on their knowledge learned. Discussion and Conclusions: the parameters defining the probability of engineer’s success have been described; the taxonomic scale

  15. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  16. NPP site selection: A systems engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Pwani, Henry; Kamanja, Florah; Zolkaffly, Zulfakar; Jung, J. C. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2012-10-15

    The necessity for improved decision making concerning the siting and licensing of major power facilities has been accelerated in the past decade by the increased environmental consciousness of the public and by the energy crisis. These problems are exceedingly complex due to their multiple objective nature, the many interest groups, the long range time horizons, and the inherent uncertainties of the potential impacts of any decision. Along with the relatively objective economic and engineering concerns, the more subjective factors involving safety, environmental, and social issues are crucial to the problem. The preferences of the general public, as consumers, the utility companies, as builders and operators of power plant facilities, and environmentalists and the government must be accounted for in analyzing power plant siting and licensing issues. We advocate for a systems engineering approach that articulates stake holder's requirements, expert judgements, and a systems decision making approach. The appropriateness and application of systems decision making process is illustrated in this paper.

  17. NPP site selection: A systems engineering approach

    International Nuclear Information System (INIS)

    Pwani, Henry; Kamanja, Florah; Zolkaffly, Zulfakar; Jung, J. C.

    2012-01-01

    The necessity for improved decision making concerning the siting and licensing of major power facilities has been accelerated in the past decade by the increased environmental consciousness of the public and by the energy crisis. These problems are exceedingly complex due to their multiple objective nature, the many interest groups, the long range time horizons, and the inherent uncertainties of the potential impacts of any decision. Along with the relatively objective economic and engineering concerns, the more subjective factors involving safety, environmental, and social issues are crucial to the problem. The preferences of the general public, as consumers, the utility companies, as builders and operators of power plant facilities, and environmentalists and the government must be accounted for in analyzing power plant siting and licensing issues. We advocate for a systems engineering approach that articulates stake holder's requirements, expert judgements, and a systems decision making approach. The appropriateness and application of systems decision making process is illustrated in this paper

  18. Engineering embedded systems physics, programs, circuits

    CERN Document Server

    Hintenaus, Peter

    2015-01-01

    This is a textbook for graduate and final-year-undergraduate computer-science and electrical-engineering students interested in the hardware and software aspects of embedded and cyberphysical systems design. It is comprehensive and self-contained, covering everything from the basics to case-study implementation. Emphasis is placed on the physical nature of the problem domain and of the devices used. The reader is assumed to be familiar on a theoretical level with mathematical tools like ordinary differential equation and Fourier transforms. In this book these tools will be put to practical use. Engineering Embedded Systems begins by addressing basic material on signals and systems, before introducing to electronics. Treatment of digital electronics accentuating synchronous circuits and including high-speed effects proceeds to micro-controllers, digital signal processors and programmable logic. Peripheral units and decentralized networks are given due weight. The properties of analog circuits and devices like ...

  19. Sensitivity analysis and uncertainties simulation of the migration of radionuclide in the system of geological disposal-CRP-GEORC model

    International Nuclear Information System (INIS)

    Su Rui; Wang Ju; Chen Weiming; Zong Zihua; Zhao Honggang

    2008-01-01

    CRP-GEORC concept model is an artificial system of geological disposal for High-Level radioactive waste. Sensitivity analysis and uncertainties simulation of the migration of radionuclide Se-79 and I-129 in the far field of this system by using GoldSim Code have been conducted. It can be seen from the simulation results that variables used to describe the geological features and characterization of groundwater flow are sensitive variables of whole geological disposal system. The uncertainties of parameters have remarkable influence on the simulation results. (authors)

  20. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  1. Combustion pressure-based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R.; Hart, M. [DaimlerChrysler, Stuttart (Germany); Truscott, A.; Noble, A. [Ricardo, Shoreham-by-Sea (United Kingdom); Kroetz, G.; Richter, C. [DaimlerChrysler, Munchen (Germany); Cavalloni, C. [Kistler Instruments AG, Winterthur (Switzerland)

    2000-07-01

    In order to fulfill future emissions and OBD regulations, whilst meeting increasing demands for driveability and refinement, new technologies for SI engines have to be found in terms of sensors and algorithms for engine control units. One promising way, explored in the AENEAS collaborative project between DaimlerChrysler, Kistler, Ricardo and the European Commission, is to optimize the behavior of the system by using in-cylinder measurements and analysing them with modern control algorithms. In this paper a new engine management system based on combustion pressure sensing is presented. The pressure sensor is designed to give a reliable and accurate signal of the full pressure trace during a working cycle. With the application of new technologies low cost manufacturing appears to be achievable, so that an application in mass production can be considered. Furthermore, model-based algorithms were developed to allow optimal control of the engine based on the in-cylinder measurements. The algorithms incorporate physical principles to improve efficiency, emissions and to reduce the parameterisation effort. In the paper, applications of the combustion pressure signal for air mass estimation, knock detection, ignition control cam phase detection and diagnosis are discussed. (author)

  2. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS, AND PROCESSES

    International Nuclear Information System (INIS)

    2005-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1 - 1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1 - 1). The objective of this analysis was to develop the BDCFs for the

  3. Radionuclides and particles in seawater with the large volume in situ filtration and concentration system in the coastal waters off Japan

    International Nuclear Information System (INIS)

    Aono, Tatsuo; Nakanishi, Takahiro; Okubo, Ayako; Zheng, Jian; Yamada, Masatoshi; Kusakabe, Masashi

    2008-01-01

    It is necessary to determine the radionuclides in dissolved and particulate state in order to clarify the distributions and behavior of these in seawater. Because the concentrations of radionuclides and particles are very low in the ocean, it is difficult to concentrate and fractionate the particulate matters with the filtration systems in seawater. The large volume in situ filtration and concentration system (LV-FiCS) was developed to collect various forms of trace radionuclides and particles in seawater. The LV-FiCS has been operated during several cruises in the coastal waters off Japan, and several m 3 of seawaters were filtered through different kinds of filters and then pass through the adsorbents to concentrate radionuclides simultaneously. This system could be shown the vertical profiles of thorium with the size-fractionated method and the behavior of these nuclides in the ocean. (author)

  4. Study on the radionuclide movement in the land water system in Rokkasho Village

    International Nuclear Information System (INIS)

    Kondo, Kunio

    1996-01-01

    In order to determine the margin of safety for radionuclides to be released from Rokkasho Village, an investigation is required for evaluating the radiation safety in response to the actual situations including the meteorological, geographical and ecological conditions specific to the village. Aiming to construct a model for evaluating the amount of nuclide transfer from a river to a farm land, an investigation is planned on the radionuclide behaviors in the river water and their transfer from the river to the farm land and vice versa in the village. Since several little rivers originating in a small hill flow into a brackish marsh of the village, of which water and biological environments are very complicated and highly variable, an investigation is planned in this study on the parameters involving in the inflow and outflow of nuclides for the marsh and the amount and the mechanism of radionuclide accumulation in the marsh. Thus, it will be able to estimate the degree of the effects of changes in the marsh's water environment on radionuclide behaviors in it. Since this study is to start in this year, only the plans were described here. (M.N.)

  5. New system for production of reactor medical radionuclides tested with Lu-176

    Czech Academy of Sciences Publication Activity Database

    Seifert, Daniel; Kropáček, Martin; Tomeš, Marek; Kučera, Jan; Lebeda, Ondřej

    2015-01-01

    Roč. 42, S (2015), s. 857-857 ISSN 1619-7070. [28th Annual congress of the European-Association-of-Nuclear-Medicine (EANM). 10.10.2015-14.10.2015, Hamburg] R&D Projects: GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : Lu-177 * radionuclides * reactor Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  6. Exploration Medical Cap Ability System Engineering Overview

    Science.gov (United States)

    McGuire, K.; Mindock, J.

    2018-01-01

    Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and

  7. Evolution of a Unique Systems Engineering Capability

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Caliva; James A. Murphy; Kyle B. Oswald

    2011-06-01

    The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INL’s Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INL’s Systems Engineering Department has chosen to focus on customer intimacy where the customer’s needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

  8. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  9. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  10. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  11. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  12. Wind energy systems control engineering design

    CERN Document Server

    Garcia-Sanz, Mario

    2012-01-01

    IntroductionBroad Context and MotivationConcurrent Engineering: A Road Map for EnergyQuantitative Robust ControlNovel CAD Toolbox for QFT Controller DesignOutline Part I: Advanced Robust Control Techniques: QFT and Nonlinear SwitchingIntroduction to QFTQuantitative Feedback TheoryWhy Feedback? QFT OverviewInsight into the QFT TechniqueBenefits of QFTMISO Analog QFT Control SystemIntroductionQFT Method (Single-Loop MISO System)Design Procedure OutlineMinimum-Phase System Performance SpecificationsJ LTI Plant ModelsPlant Templates of P?(s), P( j_i )Nominal PlantU-Contour (Stability Bound)Trackin

  13. Spent Nuclear Fuel project systems engineering management plan

    International Nuclear Information System (INIS)

    Womack, J.C.

    1995-01-01

    The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

  14. Development of TIGER code for radionuclide transport in a geochemically evolving region

    International Nuclear Information System (INIS)

    Mihara, Morihiro; Ooi, Takao

    2004-01-01

    In a transuranic (TRU) waste geological disposal facility, using cementitious materials is being considered. Cementitious materials will gradually dissolve in groundwater over the long-term. In the performance assessment report of a TRU waste repository in Japan already published, the most conservative radionuclide migration parameter set was selected considering the evolving cementitious material. Therefore, a tool to perform the calculation of radionuclide transport considering long-term geochemically evolving cementitious materials, named the TIGER code, Transport In Geochemically Evolving Region was developed to calculate a more realistic performance assessment. It can calculate radionuclide transport in engineered and natural barrier systems. In this report, mathematical equations of this code are described and validated with analytical solutions and results of other codes for radionuclide transport. The more realistic calculation of radionuclide transport for a TRU waste geological disposal system using the TIGER code could be performed. (author)

  15. MATADOR (Methods for the Analysis of Transport And Deposition Of Radionuclides) code description and User's Manual

    International Nuclear Information System (INIS)

    Avci, H.I.; Raghuram, S.; Baybutt, P.

    1985-04-01

    A new computer code called MATADOR (Methods for the Analysis of Transport And Deposition Of Radionuclides) has been developed to replace the CORRAL-2 computer code which was written for the Reactor Safety Study (WASH-1400). This report is a User's Manual for MATADOR. MATADOR is intended for use in system risk studies to analyze radionuclide transport and deposition in reactor containments. The principal output of the code is information on the timing and magnitude of radionuclide releases to the environment as a result of severely degraded core accidents. MATADOR considers the transport of radionuclides through the containment and their removal by natural deposition and by engineered safety systems such as sprays. It is capable of analyzing the behavior of radionuclides existing either as vapors or aerosols in the containment. The code requires input data on the source terms into the containment, the geometry of the containment, and thermal-hydraulic conditions in the containment

  16. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  17. Prototype Engineered Barrier System Field Tests

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Beatty, J.; Buscheck, T.A.

    1989-01-01

    This paper presents selected preliminary results obtained during the first 54 days of the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT). The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures for future investigations that will be conducted in the Exploratory Shaft Facilities of the Yucca Mountain Project (YMP). The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures, gas pressures, and rock mass gas-phase humidity. 10 refs., 12 figs

  18. Cardiac tissue engineering using perfusion bioreactor systems

    Science.gov (United States)

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  19. Applying Product Configuration Systems in Engineering Companies

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde

    This Ph.D. thesis looks into the application of configuration systems in engineering companies, and how configuration systems can be used to support business processes in engineering companies. Often the motivation stated by researchers and practitioners is, that a configuration project...... and sustain competitive advantage” (Teece, Pisano, & Shuen, 1997, pp.509) This question has puzzled academics and preoccupied managers for the last century. Yet, it seems there is still no consensus regarding the meaning of strategy, and how strategy works. Type in the word “strategy” on Amazon.co.uk and 76......,133 books apply. Type it in on Google scholar and 8,580,000 homepages apply3. Obviously, strategy is an important subject. However, the subject also seems to be difficult to perceive. Although this thesis is not about strategy, or strategizing, I would like to pursue the definition of strategy one step...

  20. Improvement of Engineering Work Efficiency through System Integration

    International Nuclear Information System (INIS)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo

    2016-01-01

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently

  1. Improvement of Engineering Work Efficiency through System Integration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently.

  2. Agile Systems Engineering-Kanban Scheduling Subsection

    Science.gov (United States)

    2017-03-10

    Community Programs, derived an initial methodology for evaluating software-related MPTs that might be applicable in systems engineering through surveys...was also conducted using a different simulation tool (SIMIO) as a reference. Appendix A provides a short white paper on the methodology and the...resource and task assignment, and the Incremental Commitment Spiral Model (ICSM) to manage constantly changing risks, clarifying objectives and

  3. Materials to Engineer the Immune System

    Science.gov (United States)

    2011-04-01

    alone (Lysate), or with GM-CSF and lysate (GM+Lys), and 14 days later 200,000 NT1 cells were injected into the mammary pad. Mice survival was...followed over time. Fig. 2. Therapeutic vaccination against NT1 transplantable tumors. NT1 cells (200,000) were injected into the mammary...Engineer the Immune System David Mooney Harvard College Cambridge, MA 02136 Dendritic cells , GM-CSF, CpG, poly(lactide-co-glycolide) The

  4. Exhaust system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-04

    A catalytic converter system for internal combustion engines is described that includes a means to maintain the catalyst temperature within a predetermined range for the efficient reduction of nitrogen oxides in the exhaust gas. Upstream of the catalytic converter, the exhaust pipe is encased in a structure such that a space is provided for the flow of a coolant around the exhaust pipe in response to the sensed catalytic temperature. A coolant control valve is actuated in response to the temperature sensor.

  5. Airfoil seal system for gas turbine engine

    Science.gov (United States)

    None, None

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  6. Charter for Systems Engineer Working Group

    Science.gov (United States)

    Suffredini, Michael T.; Grissom, Larry

    2015-01-01

    This charter establishes the International Space Station Program (ISSP) Mobile Servicing System (MSS) Systems Engineering Working Group (SEWG). The MSS SEWG is established to provide a mechanism for Systems Engineering for the end-to-end MSS function. The MSS end-to-end function includes the Space Station Remote Manipulator System (SSRMS), the Mobile Remote Servicer (MRS) Base System (MBS), Robotic Work Station (RWS), Special Purpose Dexterous Manipulator (SPDM), Video Signal Converters (VSC), and Operations Control Software (OCS), the Mobile Transporter (MT), and by interfaces between and among these elements, and United States On-Orbit Segment (USOS) distributed systems, and other International Space Station Elements and Payloads, (including the Power Data Grapple Fixtures (PDGFs), MSS Capture Attach System (MCAS) and the Mobile Transporter Capture Latch (MTCL)). This end-to-end function will be supported by the ISS and MSS ground segment facilities. This charter defines the scope and limits of the program authority and document control that is delegated to the SEWG and it also identifies the panel core membership and specific operating policies.

  7. Development of backfill material as an engineered barrier in the waste package system. Interim topical report

    International Nuclear Information System (INIS)

    Wheelwright, E.J.; Hodges, F.N.; Bray, L.A.; Westsik, J.H. Jr.; Lester, D.H.; Nakai, T.L.; Spaeth, M.E.; Stula, R.T.

    1981-09-01

    A backfill barrier, emplaced between the containerized waste and the host rock, can both protect the other engineered barriers and act as a primary barrier to the release of radionuclides from the waste package. Attributes that a backfill should provide in order to carry out its required function have been identified. Primary attributes are those that have a direct effect upon the release and transport of radionuclides from the waste package. Supportive attributes do not directly affect radionuclide release but are necessary to support the primary attributes. The primary attributes, in order of importance, are: minimize (retard or exclude) the migration of ground water between the host rock and the waste canister system; retard the migration of selected chemical species (corrosive species and radionuclides) in the ground water; control the Eh and pH of the ground water within the waste-package environment. The supportive attributes are: self-seal any cracks or discontinuities in the backfill or interfacing host geology; retain performance properties at all repository temperatures; retain peformance properties during and after receiving repository levels of gamma radiation; conduct heat from the canister system to the host geology; retain mechanical properties and provide resistance to applied mechanical forces; retain morphological stability and compatibility with structural barriers and with the host geology for required period of time. Screening and selection of candidate backfill materials has resulted in a preliminary list of materials for testing. Primary emphasis has been placed on sodium and calcium bentonites and zeolites used in conjunction with quartz sand or crushed host rock. Preliminary laboratory studies have concentrated on permeability, sorption, swelling pressure, and compaction properties of candidate backfill materials

  8. Radionuclide migration through porous cement-waste composition in semi-real conditions

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.; Kostadinovic, A.

    1989-01-01

    In this paper, result of examination of Leakage rate or radionuclides Co-60 and Cs-137 in semi-real conditions are given. Radionuclides Co-60 and Cs-137 were immobilized by cement process and conditioned in concrete containers trying to make similar scenario for storing radioactive waste materials as in engineering trench system, repository. Experiments were realized with two waste water, evaporator bottom and reactor cooling system, (EB) and (RCS), from Nuclear Power Plants Krsko, in which the main radionuclides are Co-60 and Cs-137. These results will be used for future Yugoslav radioactive waste storing center (author)

  9. Study of a 4πβ-γ coincidence system for absolute radionuclide activity measurement using plastic scintillators

    International Nuclear Information System (INIS)

    Piuvezam Filho, Helio

    2007-01-01

    The present work was intended to study a coincidence system 4π(PS)β-γ for absolute activity measurement using plastic scintillators in 4π geometry. Along with experiments on the coincidence system, simulations were also performed applying the Monte Carlo Method, by means of codes PENELOPE and ESQUEMA. These simulations were performed in order to calculate the extrapolation curve of the coincidence system 4π(PS)β-γ and compare it to experimental data. A new geometry was proposed to the coincidence system adding up a second photomultiplier tube to the previous system for improving light collection from the plastic scintillator, as this system presented limitations in the minimum detected energy due to the presence of electronic noise and low gain. The results show that an improvement in the signal-to-noise ratio was obtained, as well as in the minimum detected energy. Moreover, there was an increase in the detection efficiency. With these modifications, it is now possible to calibrate radionuclides which emit low energy electrons or X-rays, increasing the number of radionuclides that can be standardized with this type of system.(author)

  10. Radionuclide data

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Chapter 8 presents tables on selected alpha, beta, gamma and x-ray emitters by increasing energy; information on specific activity for selected radionuclides; naturally occurring radionuclides; the natural decay series; and the artificially produced neptunium series. A table of alpha emitters is listed by increasing atomic number and by energy. The table of β emitters presented is useful in identifying β emitters whose energies and possibly half-lives have been determined by standard laboratory techniques. It is also a handy guide to β-emitting isotopes for applications requiring specific half-lives and/or energies. Gamma rays for radionuclides of importance to radiological assessments and radiation protection are listed by increasing energy. The energies and branching ratios are important for radionuclide determinations with gamma spectrometry detectors. This section also presents a table of x-ray energies which are useful for radiochemical analyses. A number of nuclides emit x-rays as part of their decay scheme. These x-rays may be counted with Ar proportional counters, Ge planar or n-type Ge co-axial detectors, or thin crystal NaI(T1) scintillation counters. In both cases, spectral measurements can be made and both qualitative and quantitative information obtained on the sample. Nuclear decay data (energy and probability by radiation type) for more than one hundred radionuclides that are important to health physicists are presented in a schematic manner

  11. Determining of leakage rate of radionuclides Co-60 and Cs-137 in real conditioning; Odredjivanje brzine procurivanja radionuklida Co-60 i Cs-137 u realnim uslovima

    Energy Technology Data Exchange (ETDEWEB)

    Plecas, I; Peric, A; Kostadinovic, A [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1989-07-01

    In this paper, results of examination of LEAKAGE rate of radionuclides Co-60 and Cs-137 in real condition are given. Radionuclides Co-60 and Cs-137 were immobilized by cement process and conditioned in concrete containers trying to make similar scenario for repository of radioactive waste materials as in engineering trench systems. Experiments were realized with evaporator bottom concentrate (EB) from Nuclear Power Plant Krsko in which the main radionuclides are Co-60 and Cs-137. (author)

  12. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  13. Radionuclides 26Al, 53Mn and 60Fe as a test of the possible nucleosynthesis immediately before solar system formation

    International Nuclear Information System (INIS)

    Chechev, V.P.

    2000-01-01

    Parameters of a possible burst of nucleosynthesis just prior to the solar system formation were calculated on the basis of data on occurrence of 26 Al, 53 Mn and 60 Fe radionuclides in the early solar system. The whole number of the observance data was shown to result in the following restrictions of the parameters of the mentioned burst: its contribution into the general galactic synthesis of the elements did not exceed 0.5 % while time interval from the burst up to hardening of meteorites did not exceed 10 mln. years [ru

  14. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level

  15. The Art and Science of Systems Engineering

    Science.gov (United States)

    Singer, Christopher E.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.

  16. Towards systems metabolic engineering in Pichia pastoris.

    Science.gov (United States)

    Schwarzhans, Jan-Philipp; Luttermann, Tobias; Geier, Martina; Kalinowski, Jörn; Friehs, Karl

    2017-11-01

    The methylotrophic yeast Pichia pastoris is firmly established as a host for the production of recombinant proteins, frequently outperforming other heterologous hosts. Already, a sizeable amount of systems biology knowledge has been acquired for this non-conventional yeast. By applying various omics-technologies, productivity features have been thoroughly analyzed and optimized via genetic engineering. However, challenging clonal variability, limited vector repertoire and insufficient genome annotation have hampered further developments. Yet, in the last few years a reinvigorated effort to establish P. pastoris as a host for both protein and metabolite production is visible. A variety of compounds from terpenoids to polyketides have been synthesized, often exceeding the productivity of other microbial systems. The clonal variability was systematically investigated and strategies formulated to circumvent untargeted events, thereby streamlining the screening procedure. Promoters with novel regulatory properties were discovered or engineered from existing ones. The genetic tractability was increased via the transfer of popular manipulation and assembly techniques, as well as the creation of new ones. A second generation of sequencing projects culminated in the creation of the second best functionally annotated yeast genome. In combination with landmark physiological insights and increased output of omics-data, a good basis for the creation of refined genome-scale metabolic models was created. The first application of model-based metabolic engineering in P. pastoris showcased the potential of this approach. Recent efforts to establish yeast peroxisomes for compartmentalized metabolite synthesis appear to fit ideally with the well-studied high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are collected and reviewed with the aim of supporting the establishment of systems metabolic engineering in P. pastoris. Copyright © 2017. Published

  17. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1983-01-01

    The status of radionuclide generators for chemical research and applications related to the life sciences and biomedical research are reviewed. Emphasis is placed upon convenient, efficient and rapid separation of short-lived daughter radionuclides in a chemical form suitable for use without further chemical manipulation. The focus is on the production of the parent, the radiochemistry associated with processing the parent and daughter, the selection and the characteristic separation methods, and yields. Quality control considerations are briefly noted. The scope of this review includes selected references to applications of radionuclide generators in radiopharmaceutical chemistry, and the life sciences, particularly in diagnostic and therapeutic medicine. The 99 Mo-sup(99m)Tc generator was excluded. 202 references are cited. (orig.)

  18. Software Engineering and Swarm-Based Systems

    Science.gov (United States)

    Hinchey, Michael G.; Sterritt, Roy; Pena, Joaquin; Rouff, Christopher A.

    2006-01-01

    We discuss two software engineering aspects in the development of complex swarm-based systems. NASA researchers have been investigating various possible concept missions that would greatly advance future space exploration capabilities. The concept mission that we have focused on exploits the principles of autonomic computing as well as being based on the use of intelligent swarms, whereby a (potentially large) number of similar spacecraft collaborate to achieve mission goals. The intent is that such systems not only can be sent to explore remote and harsh environments but also are endowed with greater degrees of protection and longevity to achieve mission goals.

  19. Engineering systems for novel automation methods

    International Nuclear Information System (INIS)

    Fischer, H.D.

    1997-01-01

    Modern automation methods of Optimal Control, or for state reconstruction or parameter identification, require a discrete dynamic path model. This is established among others by time and location discretisation of a system of partial differential equations. The digital wave filter principle is paricularly suitable for this purpose, since the numeric stability of the derived algorithms can be easily guaranteed, and their robustness as to effects of word length limitations can be proven. This principle is also particularly attractive in that it can be excellently integrated into currently existing engineering systems for instrumentation and control. (orig./CB) [de

  20. Engineering redox balance through cofactor systems.

    Science.gov (United States)

    Chen, Xiulai; Li, Shubo; Liu, Liming

    2014-06-01

    Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Radiation monitoring for radionuclide release in water system resulted from nuclear power plant operation

    International Nuclear Information System (INIS)

    Vintsukevich, N.V.; Tomilin, Yu.A.

    1983-01-01

    Pre-operational investigation into environmental radioactivity in the vicinity of Yuzhno-Ukrainskaya NPP with reverse- direct flow cooling scheme of circulating water was conducted. Considering that reservoir-coolant of NPP will be connected constantly with water reservoirs located on the Yuzhnyj Bug river possibilities of radionuclide accumulation in different river components - 5ilt, algae, river water-were investigated. It was established that increase of pH and salt concentration in water of river undercurrent create the conditions for formation of radionuclide sedimentary forms, increase their accumulation in bottom sediments and aqquatic vegetation. The conclusion on the necessity of constant radiation monitoring for relase of liquid coastes of Yuzhno-Ukrainskaya NPP in the Yuzhnyj Bug river is drawn

  2. Conceptual and Numerical Modeling of Radionuclide Transport and Retention in Near-Surface Systems

    International Nuclear Information System (INIS)

    Pique, Angels; Arcos, David; Grandia, Fidel; Molinero, Jorge; Duro, Lara; Berglund, Sten

    2013-01-01

    Scenarios of barrier failure and radionuclide release to the near-surface environment are important to consider within performance and safety assessments of repositories for nuclear waste. A geological repository for spent nuclear fuel is planned at Forsmark, Sweden. Conceptual and numerical reactive transport models were developed in order to assess the retention capacity of the Quaternary till and clay deposits for selected radionuclides, in the event of an activity release from the repository. The elements considered were carbon (C), chlorine (Cl), cesium (Cs), iodine (I), molybdenum (Mo), niobium (Nb), nickel (Ni), radium (Ra), selenium (Se), strontium (Sr), technetium (Tc), thorium (Th), and uranium (U). According to the numerical predictions, the repository-derived nuclides that would be most significantly retained are Th, Ni, and Cs, mainly through sorption onto clays, followed by U, C, Sr, and Ra, trapped by sorption and/or incorporation into mineral phases

  3. Application of systems engineering: An acquisition agent perspective

    CSIR Research Space (South Africa)

    Niken, A

    2014-09-01

    Full Text Available This article covers a descriptive case study on the application of systems engineering and systems engineering management at Armscor. The report also covers the investigation into development methods used and the how the requirements changes...

  4. Application of systems engineering: An acquisition agent perspective

    CSIR Research Space (South Africa)

    Niken, A

    2014-10-01

    Full Text Available This article covers a descriptive case study on the application of systems engineering and systems engineering management at Armscor. The report also covers the investigation into development methods used and the how the requirements changes...

  5. Grid Integration Science, NREL Power Systems Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-25

    This report highlights journal articles published in 2016 by researchers in the Power Systems Engineering Center. NREL's Power Systems Engineering Center published 47 journal and magazine articles in the past year, highlighting recent research in grid modernization.

  6. Radionuclides behaviour in the silts-water system of a cooling pond

    International Nuclear Information System (INIS)

    Ol'khovik, Yu.A.; Kostyuchenko, N.G.; Koromyslichenko, T.I.

    1989-01-01

    As a result of the Chernobyl' accident a considerable amount of radioisotopes (1-5x10 5 Ci) concentrated in a cooling pond. A year later the accident a level of water contamination decreased by 2 orders, whereas the radionuclide distribution changed perceptibly. Processes of water self-decontamination in the cooling pond were considered. A forecast of water radiactivity level in the cooling pond in the summer of 1988 was made. 3 refs.; 1 refs.; 2 tabs

  7. Bayesian Inference for Source Term Estimation: Application to the International Monitoring System Radionuclide Network

    Science.gov (United States)

    2014-10-01

    paradigm involving the fusion of sensor measurements of radionuclide activity concentration with the predictive outputs (model activity concentration...such as the normal operation of nuclear reactors and the production and use of medical isotopes [1] which can create difficulties in the interpretation...evidence integral is a one- dimensional integral which is conceptually easy to approximate numerically. In par- ticular, if we can evaluate the likelihood

  8. Fundamentals of electric power engineering engineering from electromagnetics to power systems

    CERN Document Server

    Ceraolo, Massimo

    2014-01-01

    At the basis of many sectors of engineering, electrical engineering deals with electricity phenomena involved in the transfer of energy and power. Professionals requiring a refresher course in this interdisciplinary branch need look no further than Fundamentals of Electric Power Engineering, which imparts tools and trade tricks to remembering basic concepts and grasping new developments. Even established engineers must supplement their careers with an invigorated knowledge base, and this comprehensive resource helps non-electrical engineers amass power system information quickly.

  9. Cardiovascular system simulation in biomedical engineering education.

    Science.gov (United States)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  10. Low emission turbo compound engine system

    Science.gov (United States)

    Vuk,; Carl, T [Denver, IA

    2011-05-31

    A diesel or HHCI engine has an air intake and an exhaust for products of combustion. A pair of turbochargers receive the products of combustion in a series relationship and an exhaust aftertreatment device receive the products of combustion from the downstream turbine. A power turbine receives the output from the exhaust aftertreatment device and an EGR system of the power turbine passes a selected portion of the output to a point upstream of the upstream turbocharger compressor. A device adds fuel to the aftertreatment device to regenerate the particulate filter and the power turbine recoups the additional energy. The power turbine may be used to drive accessories or the prime output of the engine.

  11. System and method for engine combustion

    Science.gov (United States)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.

    2018-03-13

    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the condition of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.

  12. Engineering quantum hyperentangled states in atomic systems

    Science.gov (United States)

    Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor

    2017-11-01

    Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.

  13. Primary 4πβ-γ coincidence system for standardization of radionuclides by means of plastic scintillators

    International Nuclear Information System (INIS)

    Baccarelli, Aida Maria

    2003-01-01

    The present work describes a 4π(α,β)-γ coincidence system for absolute measurement of radionuclide activity using a plastic scintillator in 4π geometry for charged particles detection and a Nal (Tl) crystal for gamma-ray detection. Several shapes and dimensions of the plastic scintillator have been tried in order to obtain the best system configuration. Radionuclides which decay by alpha emission, β - , β + and electron capture have been standardized. The results showed excellent agreement with other conventional primary system which makes use of a 4π proportional counter for X-ray and charged particle detection. The system developed in the present work have some advantages when compared with the conventional systems, namely; it does not need metal coating on the films used as radioactive source holders. When compared to liquid scintillators, is showed the advantage of not needing to be kept in dark for more than 24 h to allow phosphorescence decay of ambient light. Therefore it can be set to count immediately after the sources are placed inside of it. (author)

  14. Understanding Radionuclide Interactions with Layered Materials

    Science.gov (United States)

    Wang, Y.

    2015-12-01

    Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  15. Developing a New Industrial Engineering Curriculum Using a Systems Engineering Approach

    Science.gov (United States)

    Buyurgan, Nebil; Kiassat, Corey

    2017-01-01

    This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have…

  16. Calibration of a 4π-γ well-type ionization chamber system for measuring of the radionuclides activity

    International Nuclear Information System (INIS)

    Dias, M.S.

    1978-01-01

    The calibration of a 4π well-type ionization Chamber System installed at the Laboratorio de Metrologia Nuclear, of the Instituto de Energia Atomica of Sao Paulo used for of the activity determination of radioactive solutions is descrided. The determination can be performed by two methods: 1) Direct Method, comparing the ionization Chamber response for solutions of unknown activity against that obtained with a solution which is standardized by the Absolute 4πβγ Coincidence Method. By this method the following radionuclides are standardized: 241 Am, 139 Ce, 198 Au, 22 Na, 134 Cs, 54 Mn, 60 Co, 42 K, 24 Na. In this case, the accuracy achieved is about 0.2 to 0,4%. 2) Indirect Method, by means of curves of relative beta or gama efficiency, which were determined in this work. This method can be applied for those radionuclides not included in the direct method. In this case, the accuracy depends on the gama energy range of the curves and on the accuracy of the absolute gama intensities, taken from the literature. In general the uncertainty is greater than the direct method, but values of 0,2% can be achieved in favourable cases. The upper and lower limits of Activity that can be measured depend on the radionuclide. These limits are from a few micro-curies to many mili-curies, which are satisfactory for most purposes. The sample preparation is simple and the time spent in the measurement is, in general, restricted to a few minutes. These are some of the advantages of this ionization Chamber System in comparison with other systems [pt

  17. Systems Engineering and Integration (SE and I)

    Science.gov (United States)

    Chevers, ED; Haley, Sam

    1990-01-01

    The issue of technology advancement and future space transportation vehicles is addressed. The challenge is to develop systems which can be evolved and improved in small incremental steps where each increment reduces present cost, improves, reliability, or does neither but sets the stage for a second incremental upgrade that does. Future requirements are interface standards for commercial off the shelf products to aid in the development of integrated facilities; enhanced automated code generation system slightly coupled to specification and design documentation; modeling tools that support data flow analysis; and shared project data bases consisting of technical characteristics cast information, measurement parameters, and reusable software programs. Topics addressed include: advanced avionics development strategy; risk analysis and management; tool quality management; low cost avionics; cost estimation and benefits; computer aided software engineering; computer systems and software safety; system testability; and advanced avionics laboratories - and rapid prototyping. This presentation is represented by viewgraphs only.

  18. Engine control system having speed-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-02-14

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

  19. Spacecraft systems engineering: An introduction to the process at GSFC

    Science.gov (United States)

    Fragomeni, Tony; Ryschkewitsch, Michael G.

    1993-01-01

    The main objective in systems engineering is to devise a coherent total system design capable of achieving the stated requirements. Requirements should be rigid. However, they should be continuously challenged, rechallenged and/or validated. The systems engineer must specify every requirement in order to design, document, implement and conduct the mission. Each and every requirement must be logically considered, traceable and evaluated through various analysis and trade studies in a total systems design. Margins must be determined to be realistic as well as adequate. The systems engineer must also continuously close the loop and verify system performance against the requirements. The fundamental role of the systems engineer, however, is to engineer, not manage. Yet, in large, complex missions, where more than one systems engineer is required, someone needs to manage the systems engineers, and we call them 'systems managers.' Systems engineering management is an overview function which plans, guides, monitors and controls the technical execution of a project as implemented by the systems engineers. As the project moves on through Phases A and B into Phase C/D, the systems engineering tasks become a small portion of the total effort. The systems management role increases since discipline subsystem engineers are conducting analyses and reviewing test data for final review and acceptance by the systems managers.

  20. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Systems-engineered metal buildings. 1926.758 Section 1926... Systems-engineered metal buildings. (a) All of the requirements of this subpart apply to the erection of systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel...

  1. Interactive Model-Centric Systems Engineering (IMCSE) Phase 5

    Science.gov (United States)

    2018-02-28

    Interactive Model-Centric Systems Engineering (IMCSE) Phase 5 Technical Report SERC-2018-TR-104 Feb 28, 2018 Principal Investigator...Date February 28, 2018 Copyright © 2018 Stevens Institute of Technology, Systems Engineering ...Research Center The Systems Engineering Research Center (SERC) is a federally funded University Affiliated Research Center managed by Stevens

  2. Systems design and engineering : facilitating multidisciplinary development projects

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Veenvliet, Karel; Broenink, Johannes F.

    2016-01-01

    As its name implies, the aim of Systems Design and Engineering: Facilitating Multidisciplinary Development Projects is to help systems engineers develop the skills and thought processes needed to successfully develop and implement engineered systems. Such expertise typically does not come through

  3. Reducing acquisition risk through integrated systems of systems engineering

    Science.gov (United States)

    Gross, Andrew; Hobson, Brian; Bouwens, Christina

    2016-05-01

    In the fall of 2015, the Joint Staff J7 (JS J7) sponsored the Bold Quest (BQ) 15.2 event and conducted planning and coordination to combine this event into a joint event with the Army Warfighting Assessment (AWA) 16.1 sponsored by the U.S. Army. This multipurpose event combined a Joint/Coalition exercise (JS J7) with components of testing, training, and experimentation required by the Army. In support of Assistant Secretary of the Army for Acquisition, Logistics, and Technology (ASA(ALT)) System of Systems Engineering and Integration (SoSE&I), Always On-On Demand (AO-OD) used a system of systems (SoS) engineering approach to develop a live, virtual, constructive distributed environment (LVC-DE) to support risk mitigation utilizing this complex and challenging exercise environment for a system preparing to enter limited user test (LUT). AO-OD executed a requirements-based SoS engineering process starting with user needs and objectives from Army Integrated Air and Missile Defense (AIAMD), Patriot units, Coalition Intelligence, Surveillance and Reconnaissance (CISR), Focused End State 4 (FES4) Mission Command (MC) Interoperability with Unified Action Partners (UAP), and Mission Partner Environment (MPE) Integration and Training, Tactics and Procedures (TTP) assessment. The SoS engineering process decomposed the common operational, analytical, and technical requirements, while utilizing the Institute of Electrical and Electronics Engineers (IEEE) Distributed Simulation Engineering and Execution Process (DSEEP) to provide structured accountability for the integration and execution of the AO-OD LVC-DE. As a result of this process implementation, AO-OD successfully planned for, prepared, and executed a distributed simulation support environment that responsively satisfied user needs and objectives, demonstrating the viability of an LVC-DE environment to support multiple user objectives and support risk mitigation activities for systems in the acquisition process.

  4. 14 CFR 33.91 - Engine system and component tests.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected... hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use in...

  5. The repeatability of left ventricular volume assessment by a new ambulatory radionuclide monitoring system during head-up tilt

    International Nuclear Information System (INIS)

    Takase, Bonpei; Hosaka, Haruhiko; Kitamura, Katsuhiro

    2001-01-01

    The precise measurement of changes in left ventricular volume is important to elucidate the mechanisms of neurally mediated syncope. This study was conducted to determine whether or not a brand-new ambulatory radionuclide monitoring system (C-VEST system) can be clinically used to easily and precisely measure left ventricular volume and function in tilt testing. To assess the repeatability of the C-VEST system, 12 healthy volunteers (mean age 24±4 years old) underwent 20 minute head-up tilt testing and we measured the temporal changes in left ventricular volume and ejection fraction twice a day (first and second studies). To investigate the changes in the C-VEST measurements and the detector position in the first and second studies, tilt testing was performed with an 80-degree passive tilt, which is the same as the standard procedure used in diagnosing neurally mediated syncope. The coefficient of repeatability for both the C-VEST and detector position was well within the clinical range (coefficient of repeatability in left ventricular volume ranged from 1.7 to 2.8; coefficient of repeatability in the detector position ranged from 2.3 to 3.1). Precise evaluation of the left ventricular volume can be achieved by an ambulatory radionuclide monitoring system in tilt testing. (author)

  6. Radionuclides (210Pb, 226Ra, 210Po e 137Cs) in the Cananeia-Iguape coastal system: environmental studies

    International Nuclear Information System (INIS)

    Saito, Roberto Tatsuya

    2002-01-01

    This work was developed in the Cananeia-lguape Coastal System, coast south of the State of Sao Paulo, with the aim of monitoring the levels of some natural radionuclides ( 210 Pb, 210 Po, 226 Ra ) and artificial ( 137 Cs) and to study the sedimentary dynamics of the area. For this, some studies and determinations were carried out, such as: sedimentation rates, concentration factors, bio-indicators and ingestion for the human population of some of these radionuclides. For the obtaining of the levels of these radionuclides, radiochemical and instrumental methodologies were developed and applied in reference samples of the International Agency of Atomic Energy (IAEA). After this, the methodologies were applied in samples of sediments, aquatic organisms and water of the channels collected in several points. In the sediments, the levels of ( 210 Pb, 226 Ra and 137 Cs varied from 6.1 to 167.5 Bq.kg -1 from 4.1 to 28.5 Bq.kg -1 and from MDC (0.28) to 6.1 Bq.kg -1 respectively. More significant correlations were observed among the percentage of mud (silt-clay) in the sediments and the levels of these radionuclides. These data were used for sedimentation rate studies in the points of sampling in the System. The sedimentation rates obtained with the values of unsupported ( 210 Pb and 137 Cs for the Ponta do Arrozal (T1), Ponta do Frade (T2), Valo Grande (T3) and Carapara-BOCA River (T4) were of 5.02 and 5.00 mm.a -1 , 2.30 and 3.82 mm.a -1 , 14.59 and 15.74 mm.a -1 , 3.41 and 5.00 mm.a -1 respectively. The sedimentation rates obtained with unsupported 210 Pb and the 137 Cs in the cores(T1, T2, T3 and T4) showed a good agreement. The sedimentation rates obtained along the System reflect the dynamics intern of the channels, that presents general tendency the one accentuated deposition process, with pronounced contribution of sediments of continental origin, for the drainages Mandira and Ribeira of Iguape Rivers, by the high biological production of the System as well as the

  7. Radionuclide measuring systems and improved methods of evaluation for the measurement of wear in stationary and mobile systems

    International Nuclear Information System (INIS)

    Lausch, W.

    1976-01-01

    A newly developped flow through measuring unit makes it possible to perform continuous wear measurements on stationary and mobile systems. It was specifically designed for measurements on engine components of passenger cars. For tests of long duration an oil sampling technique was developed. Fully automated measurements are achieved with a sampling device suitable for both stationary and mobile systems. For systems with oil consumption a mathematical model provides for the necessary connection of the loss of wear particles through oil consumption. In certain cases an empirical graphical method can achieve nearly the same results. (orig.) [de

  8. Radionuclide dispersion calculation in environmental radiation monitoring system of the PAKS NPP

    International Nuclear Information System (INIS)

    Deme, S.; Janosy, J. S.; Lang, E.; Szabo, I. C.

    2003-01-01

    The new Environmental Radiation Monitoring System of the Paks NPP in Hungary consists of three radiation release measurement posts (placed into the two ventilation stacks of the four units and into the ventilation stack of the spent fuel intermediate storage building), 9 radiation monitoring stations and 11 gamma-radiation measurement posts placed more or less evenly around the plant. The basic goal of the Environmental Radiation Monitoring System is to provide complex and reliable information about the releases in all operating modes to facilitate the adequate estimation of the situation and to promote the decision making. Thanks to the astonishing development in the digital technology and to the state-of-the-art, up-to-date measurement techniques, a new level of confidence can be reached. Unpredictable radioactive leakage of the containment can be detected and the radiological situation of a relatively large area can be calculated and predicted. A very reliable system can be constructed withstanding earthquake and protected against single failure. Based on reliable and detailed measurement data, advanced simulation methodology and well-designed graphical user interface, an easy-to-use operator advisory system can be created to help the decision making in the very first and most difficult period of a nuclear accident. It is very important that the same system is used with the same features during the normal operation of the nuclear power plant, too; this means that the operators are able to get the necessary 'hands-on' training in order to be able to use the system during extreme stress and very unusual situations, too. Shaping the system in close cooperation with plant engineers and operators is indispensable in order to achieve the aforementioned goals. (authors)

  9. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Wollongong Univ.; Tomiyoshi, K.; Sekine, T.

    1997-01-01

    The present status and future directions of research and development on radionuclide generator technology are reported. The recent interest to develop double-neutron capture reactions for production of in vivo generators; neutron rich nuclides for radio-immunotherapeutic pharmaceuticals: and advances with ultra-short lived generators is highlighted. Emphasis is focused on: production of the parent radionuclide; the selection and the evaluation of support materials and eluents with respect to the resultant radiochemical yield of the daughter, and the breakthrough of the radionuclide parent: and, the uses of radionuclide generators in radiopharmaceutical chemistry, biomedical and industrial applications. The 62 Zn → 62 Cu, 66 Ni → 66 Cu, 103m Rh → 103 Rh, 188 W → 188 Re and the 225 Ac → 221 Fr → 213 Bi generators are predicted to be emphasized for future development. Coverage of the 99 Mo → 99m Tc generator was excluded, as it the subject of another review. The literature search ended June, 1996. (orig.)

  10. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  11. Selected systems engineering process deficiencies and their consequences

    Science.gov (United States)

    Thomas, L. Dale

    2007-06-01

    The systems engineering process is well established and well understood. While this statement could be argued in the light of the many systems engineering guidelines and that have been developed, comparative review of these respective descriptions reveal that they differ primarily in the number of discrete steps or other nuances, and are at their core essentially common. Likewise, the systems engineering textbooks differ primarily in the context for application of systems engineering or in the utilization of evolved tools and techniques, not in the basic method. Thus, failures in systems engineering cannot credibly be attributed to implementation of the wrong systems engineering process among alternatives. However, numerous system failures can be attributed to deficient implementation of the systems engineering process. What may clearly be perceived as a systems engineering deficiency in retrospect can appear to be a well considered system engineering efficiency in real time—an efficiency taken to reduce cost or meet a schedule, or more often both. Typically these efficiencies are grounded on apparently solid rationale, such as reuse of heritage hardware or software. Over time, unintended consequences of a systems engineering process deficiency may begin to be realized, and unfortunately often the consequence is systems failure. This paper describes several actual cases of system failures that resulted from deficiencies in their systems engineering process implementation, including the Ariane 5 and the Hubble Space Telescope.

  12. Transient simulation and sensitivity analysis for transport of radionuclides in a saturated-unsaturated groundwater flow system

    International Nuclear Information System (INIS)

    Chen, H.H.

    1980-01-01

    Radionuclide transport by groundwater flow is an important pathway in the assessment of the environmental impact of radioactive waste disposal to the biosphere. A numerical model was developed to simulate radionuclide transport by groundwater flow and predict the radionuclide discharge rate to the biosphere. A sensitivity analysis methodology was developed to address the sensitivity of the input parameters of the radionuclide transport equation to the specified response of interest

  13. Optical monitoring system for a turbine engine

    Science.gov (United States)

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  14. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS, AND PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    na

    2005-05-30

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1 - 1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1 - 1). The

  15. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  16. Heavy element radionuclides (Pu, Np, U) and 137Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming

    International Nuclear Information System (INIS)

    Beasley, T.M.; Rivera, W. Jr.; Liszewski, M.J.; Orlandini, K.A.

    1998-10-01

    The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of 237 Np and 137 Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that 241 Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of 236 U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and 238 Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated

  17. Engineering approach to modeling of piled systems

    International Nuclear Information System (INIS)

    Coombs, R.F.; Silva, M.A.G. da

    1980-01-01

    Available methods of analysis of piled systems subjected to dynamic excitation invade areas of mathematics usually beyond the reach of a practising engineer. A simple technique that avoids that conflict is proposed, at least for preliminary studies, and its application, compared with other methods, is shown to be satisfactory. A corrective factor for parameters currently used to represent transmitting boundaries is derived for a finite strip that models an infinite layer. The influence of internal damping on the dynamic stiffness of the layer and on radiation damping is analysed. (Author) [pt

  18. Application engineering for process computer systems

    International Nuclear Information System (INIS)

    Mueller, K.

    1975-01-01

    The variety of tasks for process computers in nuclear power stations necessitates the centralization of all production stages from the planning stage to the delivery of the finished process computer system (PRA) to the user. This so-called 'application engineering' comprises all of the activities connected with the application of the PRA: a) establishment of the PRA concept, b) project counselling, c) handling of offers, d) handling of orders, e) internal handling of orders, f) technical counselling, g) establishing of parameters, h) monitoring deadlines, i) training of customers, j) compiling an operation manual. (orig./AK) [de

  19. Reliability modeling of an engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.; Flueck, J.A.

    1993-01-01

    The Weibull distribution is widely used in reliability literature as a distribution of time to failure, as it allows for both increasing failure rate (IFR) and decreasing failure rate (DFR) models. It has also been used to develop models for an engineered barrier system (EBS), which is known to be one of the key components in a deep geological repository for high level radioactive waste (HLW). The EBS failure time can more realistically be modelled by an IFR distribution, since the failure rate for the EBS is not expected to decrease with time. In this paper, we use an IFR distribution to develop a reliability model for the EBS

  20. Reliability modeling of an engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.; Flueck, J.A.

    1993-01-01

    The Weibull distribution is widely used in reliability literature as a distribution of time to failure, as it allows for both increasing failure rate (IFR) and decreasing failure rate (DFR) models. It has also been used to develop models for an engineered barrier system (EBS), which is known to be one of the key components in a deep geological repository for high level radioactive waste (HLW). The EBS failure time can more realistically be modelled by an IFR distribution, since the failure rate for the EBS is not expected to decrease with time. In this paper, an IFR distribution is used to develop a reliability model for the EBS