WorldWideScience

Sample records for engineered periosteum model

  1. Evaluation of immunocompatibility of tissue-engineered periosteum

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lin; Wang Shuanke; Xia Yayi; Liu Jia; He Jing; Wang Xin [Orthopaedic Institute of the 2nd Hospital of Lanzhou University, 80 CuiYingMen, ChengGuan District, Lanzhou City, 730030 (China); Zhao Junli, E-mail: bonezl@qq.com [Department of Nephrology, the 2nd Hospital of Lanzhou University, 80 CuiYingMen, ChengGuan District, Lanzhou City, 730030 (China)

    2011-02-15

    Tissue-engineered periosteum (TEP) and 'intramembranous ossification' may be an alternative approach to bone tissue engineering. In the previous study we attained successful bone defect reparation with homemade TEP in an allogenic rabbit model. But its allogenic immunocompatibility remained unknown. In this study TEP was constructed by seeding osteogenically induced mesenchymal stem cells of rabbit onto porcine small intestinal submucosa (SIS). A mixed lymphocyte reaction (MLR) was applied to evaluate the in vitro immunogenicity. The ratio of CD4{sup +}/CD8{sup +} T-lymphocytes was tested kinetically to evaluate the systematic reaction of the TEP allograft, and a histological examination was performed to investigate local inflammation and ectopic osteogenesis. MLR indicated that TEP had a higher in vitro immunostimulation than SIS (p < 0.05). The ratios of CD4{sup +}/CD8{sup +} lymphocytes increased in both TEP and SIS implanted groups in 2 weeks, followed by a decrease to a normal level from 2 to 4 weeks. Histological examination revealed modest lymphocyte infiltration for no more than 2 weeks. Moreover, subcutaneous ectopic ossification was observed in TEP allograft animals (8/12). Our findings imply that TEP has a certain immune reaction for the allograft, but it is not severe enough to impact osteogenesis in the allogenic rabbit model.

  2. Periosteum tissue engineering in an orthotopic in vivo platform.

    Science.gov (United States)

    Baldwin, J G; Wagner, F; Martine, L C; Holzapfel, B M; Theodoropoulos, C; Bas, O; Savi, F M; Werner, C; De-Juan-Pardo, E M; Hutmacher, D W

    2017-03-01

    The periosteum plays a critical role in bone homeostasis and regeneration. It contains a vascular component that provides vital blood supply to the cortical bone and an osteogenic niche that acts as a source of bone-forming cells. Periosteal grafts have shown promise in the regeneration of critical size defects, however their limited availability restricts their widespread clinical application. Only a small number of tissue-engineered periosteum constructs (TEPCs) have been reported in the literature. A current challenge in the development of appropriate TEPCs is a lack of pre-clinical models in which they can reliably be evaluated. In this study, we present a novel periosteum tissue engineering concept utilizing a multiphasic scaffold design in combination with different human cell types for periosteal regeneration in an orthotopic in vivo platform. Human endothelial and bone marrow mesenchymal stem cells (BM-MSCs) were used to mirror both the vascular and osteogenic niche respectively. Immunohistochemistry showed that the BM-MSCs maintained their undifferentiated phenotype. The human endothelial cells developed into mature vessels and connected to host vasculature. The addition of an in vitro engineered endothelial network increased vascularization in comparison to cell-free constructs. Altogether, the results showed that the human TEPC (hTEPC) successfully recapitulated the osteogenic and vascular niche of native periosteum, and that the presented orthotopic xenograft model provides a suitable in vivo environment for evaluating scaffold-based tissue engineering concepts exploiting human cells. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold.

    Science.gov (United States)

    Kang, Yunqing; Ren, Liling; Yang, Yunzhi

    2014-06-25

    Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration.

  4. In vitro study of bioactivity of homemade tissue-engineered periosteum

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lin, E-mail: bonezl@sina.com [Orthopaedic Department, Jinshan Branch of the Sixth People' s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 201500 (China); Zhao, Junli [Department of Nephrology, Shanghai ZhouPu Hospital, Shanghai 201318 (China); Yu, Jiajia; Zhao, Xiaofei [Orthopaedic Institute, The Second Hospital of Lanzhou University, Lanzhou 730030 (China); Chen, Qi; Huang, Yanfeng [Orthopaedic Department, Jinshan Branch of the Sixth People' s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 201500 (China)

    2016-01-01

    This study was aimed to evaluate in vitro bioactivity of tissue-engineered periosteum (TEP) which was fabricated by coupling either rabbits' MSCs or osteodifferentiated MSCs (O-MSCs) with porcine small intestinal submucosa (SIS), and that produced two kinds of TEPs (M1 = MSCs + SIS and M2 = Osteoblast + SIS). The cell adherence was observed under scanning electronic microscopy (SEM). Cell proliferation was measured by 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl-2 H-tetrazoliumbromide (MTT) test. In vitro osteogenetic potential of TEPs was evaluated kinetically at 0, 5, 10 and 15 d by measuring alkaline phosphatase (ALP) activity, and semi-quantitative assay of osteocalcin and collagen type I expression with Western blot. SEM indicated that either MSCs or O-MSCs could adhere and survive on SIS, but MTT test revealed that SIS was more preferable for O-MSCs than MSCs in proliferative aspect. In contrast, ALP activity, osteocalcin and collagen type I expression of M2 were higher than M1 in general. Kinetically, osteocalcin and collagen type I expression demonstrated a continuous increase, while ALP activity of both groups was displayed an early peak around the fifth day, followed a decrease trend. In conclusion, TEP, especially M2, has an active osteogenesis and is promising for in vivo bone defect reparation via a supposed biomimetic procedure of intramembranous ossification. - Highlights: • Artificial periosteum was constructed by coupling of osteogenetic induced MSCs and SIS. • Seeding cells showed good attachment and active proliferation on the surface of SIS scaffold. • Artificial periosteum expresses ALP, osteocalcin and collagen type I in vitro.

  5. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.

    Science.gov (United States)

    Zhang, Dan; Gao, Peng; Li, Qin; Li, Jinda; Li, Xiaojuan; Liu, Xiaoning; Kang, Yunqing; Ren, Liling

    2017-06-05

    There is a critical need for the management of large bone defects. The purpose of this study was to engineer a biomimetic periosteum and to combine this with a macroporous β-tricalcium phosphate (β-TCP) scaffold for bone tissue regeneration. Rat bone marrow-derived mesenchymal stem cells (rBMSCs) were harvested and cultured in different culture media to form undifferentiated rBMSC sheets (undifferentiated medium (UM)) and osteogenic cell sheets (osteogenic medium (OM)). Simultaneously, rBMSCs were differentiated to induced endothelial-like cells (iECs), and the iECs were further cultured on a UM to form a vascularized cell sheet. At the same time, flow cytometry was used to detect the conversion rates of rBMSCs to iECs. The pre-vascularized cell sheet (iECs/UM) and the osteogenic cell sheet (OM) were stacked together to form a biomimetic periosteum with two distinct layers, which mimicked the fibrous layer and cambium layer of native periosteum. The biomimetic periostea were wrapped onto porous β-TCP scaffolds (BP/β-TCP) and implanted in the calvarial bone defects of rats. As controls, autologous periostea with β-TCP (AP/β-TCP) and β-TCP alone were implanted in the calvarial defects of rats, with a no implantation group as another control. At 2, 4, and 8 weeks post-surgery, implants were retrieved and X-ray, microcomputed tomography (micro-CT), histology, and immunohistochemistry staining analyses were performed. Flow cytometry results showed that rBMSCs were partially differentiated into iECs with a 35.1% conversion rate in terms of CD31. There were still 20.97% rBMSCs expressing CD90. Scanning electron microscopy (SEM) results indicated that cells from the wrapped cell sheet on the β-TCP scaffold apparently migrated into the pores of the β-TCP scaffold. The histology and immunohistochemistry staining results from in vivo implantation indicated that the BP/β-TCP and AP/β-TCP groups promoted the formation of blood vessels and new bone tissues in the bone

  6. Superior mineralization and neovascularization capacity of adult human metaphyseal periosteum-derived cells for skeletal tissue engineering applications.

    Science.gov (United States)

    Chen, Daoyun; Shen, Hao; Shao, Junjie; Jiang, Yao; Lu, Jianxi; He, Yaohua; Huang, Chenglong

    2011-05-01

    Bone tissue engineering is a promising cell-based strategy to treat bone defects. Mesenchymal stem cells from adult human bone marrow (hBMSCs) are a frequently used cellular source for bone tissue generation. However, the low frequency of these stem cells in adult bone marrow and their limited proliferation restrict their clinical utility. An alternative source of MSCs is the periosteum-derived cells, and these cells appear to be easy to harvest and expand ex vivo. We isolated human metaphyseal periosteum-derived cells (hMPCs) and hBMSCs from the same donors and compared their osteogenic capacity both in vitro and in vivo. After osteogenic induction in monolayer cultures, hMPCs resulted in more robust mineralization and expressed higher mRNA levels of BMP-2, osteopontin and osteocalcin than hBMSCs. Eight weeks after implantation of cellular-β-TCP scaffolds in immunodeficient mice, hMPC implantation showed higher neovascularization and higher percentage of mature bone formation than hBMSC implantation. In conclusion, hMPCs represent a promising cellular candidate for bone tissue engineering.

  7. Development of Collagen/Demineralized Bone Powder Scaffolds and Periosteum-Derived Cells for Bone Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Wilairat Leeanansaksiri

    2013-01-01

    Full Text Available The aim of this study was to investigate physical and biological properties of collagen (COL and demineralized bone powder (DBP scaffolds for bone tissue engineering. DBP was prepared and divided into three groups, based on various particle sizes: 75–125 µm, 125–250 µm, and 250–500 µm. DBP was homogeneously mixed with type I collagen and three-dimensional scaffolds were constructed, applying chemical crosslinking and lyophilization. Upon culture with human periosteum-derived cells (PD cells, osteogenic differentiation of PD cells was investigated using alkaline phosphatase (ALP activity and calcium assay kits. The physical properties of the COL/DBP scaffolds were obviously different from COL scaffolds, irrespective of the size of DBP. In addition, PD cells cultured with COL scaffolds showed significantly higher cell adhesion and proliferation than those with COL/DBP scaffolds. In contrast, COL/DBP scaffolds exhibited greater osteoinductive potential than COL scaffolds. The PD cells with COL/DBP scaffolds possessed higher ALP activity than those with COL scaffolds. PD cells cultured with COL/DBP scaffolds with 250–500 mm particle size yielded the maximum calcium deposition. In conclusion, PD cells cultured on the scaffolds could exhibit osteoinductive potential. The composite scaffold of COL/DBP with 250–500 mm particle size could be considered a potential bone tissue engineering implant.

  8. Rabbit tibial periosteum and saphenous arteriovenous vascular bundle as an in vivo bioreactor to construct vascularized tissue-engineered bone: a feasibility study.

    Science.gov (United States)

    Han, Dong; Guan, Xiaoyi; Wang, Jian; Wei, Jiao; Li, Qingfeng

    2014-02-01

    The aim of this project was to construct vascularized tissue-engineered living bone with an autologous vascular network by means of a rabbit bioreactor in vivo. The key components of the in vivo bioreactor for bone formation were the vascularized tibial periosteum and the saphenous vascular bundle. Beta-tricalcium phosphate (β-TCP) scaffolds were implanted into the in vivo bioreactor (vascular pedicle implantation and vascularized periosteum encapsulation). At 4 weeks postsurgery, new bone formation was mainly "cartilage-bone inducing" in the inner periosteum, and was primarily seen in the outer aspects of the scaffold with some amount in the middle part as well. Microvascular infusion showed that direct revascularization of β-TCP was obtained by means of vascular implantation. Triple staining results showed a large amount of blue collagen fibers. Vascular endothelial growth factor immunohistochemical staining displayed endothelial cells of new blood vessels in bone tissue. The bioreactor established in this study can be used to prepare tissue-engineered bone with a vascular network. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  9. Translating Periosteum's Regenerative Power: Insights From Quantitative Analysis of Tissue Genesis With a Periosteum Substitute Implant.

    Science.gov (United States)

    Moore, Shannon R; Heu, Céline; Yu, Nicole Y C; Whan, Renee M; Knothe, Ulf R; Milz, Stefan; Knothe Tate, Melissa L

    2016-12-01

    in surgery to repair tissues as diverse as trachea and bone. In the past 25 years, the number of articles indexed in PubMed for the keywords "periosteum and tissue engineering" and "periosteum and regenerative medicine" has burgeoned. Yet the biggest limitation to the prescriptive use of periosteum is lack of easy access, giving impetus to the development of periosteum substitutes. Recent studies have opened up the possibility to bank periosteal tissues (e.g., from the femoral neck during routine resection for implantation of hip replacements). This study used an interdisciplinary, quantitative approach to assess tissue genesis in modular periosteum substitute implants, with the aim to provide translational strategies for regenerative medicine and tissue engineering. ©AlphaMed Press.

  10. Molecular profiling of a simple rat model of open tibial fractures with hematoma and periosteum disruption

    Science.gov (United States)

    Villafan-Bernal, Jose Rafael; Franco-De La Torre, Lorenzo; Sandoval-Rodriguez, Ana Soledad; Armendariz-Borunda, Juan; Alcala-Zermeno, Juan Luis; Cruz-Ramos, Jose Alfonso; Lopez-Armas, Gabriela; Ramirez-Bastidas, Blanca Estela; González-Enríquez, Gracia Viviana; Collazo-Guzman, Emerson Armando; Martinez-Portilla, Raigam Jafet; Sánchez-Enríquez, Sergio

    2016-01-01

    Bone fractures are a worldwide public health concern. Therefore, improving understanding of the bone healing process at a molecular level, which could lead to the discovery of potential therapeutic targets, is important. In the present study, a model of open tibial fractures with hematoma disruption, periosteal rupture and internal fixation in 6-month-old male Wistar rats was established, in order to identify expression patterns of key genes and their protein products throughout the bone healing process. A tibial shaft fracture was produced using the three-point bending technique, the hematoma was drained through a 4-mm incision on the medial aspect of the tibia and the fracture stabilized by inserting a needle into the medullary canal. Radiographs confirmed that the induced fractures were diaphyseal and this model was highly reproducible (kappa inter-rater reliability, 0.82). Rats were sacrificed 5, 14, 21, 28 and 35 days post-fracture to obtain samples for histological, immunohistochemical and molecular analysis. Expression of interleukin-1β (Il-1β), transforming growth factor-β2 (Tgf-β2), bone morphogenetic protein-6 (Bmp-6), bone morphogenetic protein-7 (Bmp-7) and bone γ-carboxyglutamic acid-containing protein (Bglap) genes was determined by reverse transcription quantitative polymerase chain reaction and protein expression was evaluated by immunohistochemistry, while histological examination allowed characterization of the bone repair process. Il-1β showed a biphasic expression, peaking 5 and 28 days post-fracture. Expression of Tgf-β2, Bmp-6 and Bmp-7 was restricted to the period 21 days post-fracture. Bglap expression increased gradually, peaking 21 days post-fracture, although it was expressed in all evaluated stages. Protein expression corresponded with the increased expression of their corresponding genes. In conclusion, a clear and well-defined expression pattern of the evaluated genes and proteins was observed, where their maximal expression

  11. Effect of extracorporeal shock wave therapy on fracture healing in rat femural fractures with intact and excised periosteum.

    Science.gov (United States)

    Oktaş, Birhan; Orhan, Zafer; Erbil, Barış; Değirmenci, Erdem; Ustündağ, Nil

    2014-01-01

    The aim of this study is to compare the effect of extracorporeal shock wave therapy (ESWT) on fractures with intact periosteum and excised periosteum. Thirty-seven Wistar albino rats were randomized into four groups. Osteotomy and intramedullary Kirschner wire fixation were performed on all right femurs under ketamin anesthesia. The first group (n=10) was identified as control group. In the second group (n=10), periosteum located at the osteotomy site was excised circumferentially during surgery. In the third group (n=9), periosteum was left intact and ESWT was applied. In the forth group (n=8), periosteums of all rats were excised and ESWT was applied. All fracture lines were evaluated radiographically each two weeks and histologically at the sixth week. Results were evaluated statistically. In periosteum excised group which represents a model of open fractures with soft tissue defect, ESWT application had a significantly positive histologic effect on bone healing. However, radiological evaluation did not reveal any statistically significant difference between groups with intact and excised periosteums. According to our findings, ESWT can be used to improve fracture healing and prevent pseudoarthrosis in the treatment of open fractures with accompanying soft tissue and periosteum damage. However, further clinical studies are required to include ESWT in routine practice.

  12. The periosteum eversion technique for coverage of denuded root surface

    Directory of Open Access Journals (Sweden)

    Awadhesh Kumar Singh

    2015-01-01

    Full Text Available The periosteum is highly cellular connective tissue with rich vascularity and regenerative potential, which make it suitable autogenous graft. The periosteum eversion technique utilized periosteum for coverage of denuded root surface. The purpose of this case report was to evaluate the periosteum eversion technique that involves a single surgical site, in terms of root coverage, gingival height, and probing depth. A patient with Miller class I gingival recession of 3.0 mm, gingival height of 2.0 mm and probing depth of 2.0 mm was treated by the periosteum eversion technique. Root conditioning was done with 24% ethylenediaminetetra-acetic acid. In this technique, marginal periosteum was used as a pedicle graft. At the end of 6 months, 100% root surface was covered successfully with 5.0 mm of gingival height and 1.0 mm of probing depth. The periosteum eversion technique can be used for the treatment of gingival recession defect successfully.

  13. Imaging and quantifying solute transport across periosteum: implications for muscle-bone crosstalk.

    Science.gov (United States)

    Lai, Xiaohan; Price, Christopher; Lu, Xin Lucas; Wang, Liyun

    2014-09-01

    Muscle and bone are known to act as a functional unit and communicate biochemically during tissue development and maintenance. Muscle-derived factors (myokines) have been found to affect bone functions in vitro. However, the transport times of myokines to penetrate into bone, a critical step required for local muscle-bone crosstalk, have not been quantified in situ or in vivo. In this study, we investigated the permeability of the periosteum, a major barrier to muscle-bone crosstalk by tracking and modeling fluorescent tracers that mimic myokines under confocal microscopy. Periosteal surface boundaries and tracer penetration within the boundaries were imaged in intact murine tibiae using reflected light and time-series xz confocal imaging, respectively. Four fluorescent tracers including sodium fluorescein (376Da) and dextrans (3kDa, 10kDa and 40kDa) were chosen because they represented a wide range of molecular weights (MW) of myokines. We found that i) murine periosteum was permeable to the three smaller tracers while the 40kDa could not penetrate beyond 40% of the outer periosteum within 8h, suggesting that periosteum is semi-permeable with a cut-off MW of approximately 40kDa, and ii) the characteristic penetration time through the periosteum (~60μm thick) increased with tracer MW and fit well with a relationship tcs=-4.43×10(4)-0.57×MWDa-4×10(4)-8.65×10(8)MWDa-4×10(4), from which, the characteristic penetration times of various myokines were extrapolated. To achieve effective muscle-bone crosstalk, likely signaling candidates should have shorter penetration time than their bioactive time, which we assumed to be 5 times of the molecule's half-lifetime in the body. Myokines such as PGE2, IGF-1, IL-15 and FGF-2 were predicted to satisfy this requirement. In summary, a novel imaging approach was developed and used to investigate the transport of myokine mimicking-tracers through the periosteum, enabling further quantitative studies of muscle

  14. Application of autogenous periosteum as a membrane in sinus lifting ...

    African Journals Online (AJOL)

    Aim: To evaluate the success level of autogenous periosteum in sinus lifting as a barrier membrane which contributes positively to wound healing and is effective in bone formation without the risk of tissue rejection. Materials and Methods: In this study, 32 male New Zealand rabbits were used and were divided into four ...

  15. Application of Autogenous Periosteum as a Membrane in Sinus Lifting

    African Journals Online (AJOL)

    2018-01-24

    Jan 24, 2018 ... Aim: To evaluate the success level of autogenous periosteum in sinus lifting as a barrier membrane which contributes positively to wound healing and is effective in bone formation without the risk of tissue rejection. Materials and Methods: In this study, 32 male New Zealand rabbits were used and were ...

  16. Immunohistochemical and molecular characterization of the human periosteum.

    Science.gov (United States)

    Frey, Sönke Percy; Jansen, Hendrik; Doht, Stefanie; Filgueira, Luis; Zellweger, Rene

    2013-01-01

    The aim of the present study was to characterize the cell of the human periosteum using immunohistological and molecular methods. Phenotypic properties and the distribution of the cells within the different layers were investigated with immunohistochemical staining techniques and RT-PCR, focussing on markers for stromal stem cells, osteoblasts, osteoclasts and immune cells. Immunohistochemical results revealed that all stained cells were located in the cambium layer and that most cells were positive for vimentin. The majority of cells consisted of stromal stem cells and osteoblastic precursor cells. The density increased towards the deeper layers of the cambium. In addition, cells positive for markers of the osteoblast, chondrocyte, and osteoclast lineages were found. Interestingly, there were MHC class II-expressing immune cells suggesting the presence of dendritic cells. Using lineage-specific primer pairs RT-PCR confirmed the immunofluorescence microscopy results, supporting that human periosteum serves as a reservoir of stromal stem cells, as well as cells of the osteoblastic, and the chondroblastic lineage, osteoclasts, and dendritic cells. Our work elucidates the role of periosteum as a source of cells with a high regenerative capacity. Undifferentiated stromal stem cells as well as osteoblastic precursor cells are dominating in the cambium layer. A new outlook is given towards an immune response coming from the periosteum as MHC II positive immune cells were detected.

  17. Selection of osteoprogenitors from the jaw periosteum by a specific animal-free culture medium.

    Science.gov (United States)

    Alexander, Dorothea; Rieger, Melanie; Klein, Christian; Ardjomandi, Nina; Reinert, Siegmar

    2013-01-01

    The goal of our research work is to establish mesenchymal osteoprogenitors derived from human jaw periosteum for tissue engineering applications in oral and maxillofacial surgery. For future autologous and/or allogeneic transplantations, some issues must be addressed. On the one hand, animal-free culture conditions have yet to be established. On the other hand, attempts should be undertaken to shorten the in vitro culturing process efficiently. The aim of the present study is to compare and analyze the phenotype of osteoprogenitors from the jaw periosteum under normal FCS-containing and animal-free culture conditions. Therefore, we analyzed the proliferation rates of MesenCult-XF medium (MC-) in comparison to DMEM-cultured JPCs. Whereas jaw periosteal cells (JPCs) show relatively slow proliferation rates and a fibroblastoid shape under DMEM culture conditions, MC-cultured JPCs diminished their cell size significantly and proliferated rapidly. By live-monitoring measurements of adhesion and proliferation, we made an interesting observation: whereas the proliferation of the MSCA-1(+) subpopulation and the unseparated cell fraction were favored by the animal-free culture medium, the proliferation of the MSCA-1(-) subpopulation seemed to be repressed under these conditions. The alkaline phosphatase expression pattern showed similar results under both culture conditions. Comparison of the mineralization capacity revealed an earlier formation of calcium-phosphate precipitates under MC culture conditions; however, the mineralization capacity of the DMEM-cultured cells seemed to be higher. We conclude that the tested animal-free medium is suitable for the in vitro expansion and even for the specific selection of osteoprogenitor cells derived from the jaw periosteum.

  18. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  19. Diesel engine ignition modeling

    Energy Technology Data Exchange (ETDEWEB)

    Elsden, M.; Gutheil, E.; Warnatz, J.; Nehse, M.

    1997-12-31

    The ability to correctly predict the self-ignition behaviour of a compression ignition engine is extremely important when trying to model the complex fluid dynamics and chemical processes found within these engines. Correct prediction of the ignition timing and location is clearly a necessary starting point for the calculation of the fuel combustion process. However, the complex mixing processes and chemical reactions which govern ignition are not easily claculated simultaneously during the engine cycle. This paper presents, a method of coupling the detailed pre-compustion chemistry to the in-cylinder fluid dynamics occurring in the complex geometry of a modern diesel engine. The chemistry is pre-calculated for laminar conditions and linked to the CFD calculation through the use of lookup tables. Development of the radical pool, which leads to auto-ignition, is calculated for a range of pressures, temperatures and mixture fractions, using a detailed chemical mechanism (200 species, 1200 reactions). A lookup table is formed relating the concentration of a representative radical to its reaction rate. Due to the non-monotonic behaviour of this radical it is necessary to solve for a monotonic species and relate this concentration to that of the ignition tracking species. The transport equation for the species is implemented in the engine simulation code KIVA-3. Closure of the mean chemical reaction term is accemplished by integration of the laminar reaction rates, obtained from the look-up table, over PDFs for temperature, mixture fraction and radical concentration. The results are encouraging. The ignition timing is predicted well for a range of injection timing. While no direct experimental data is available for the ignition location in this engine, the predicted location agrees well with other studies. (orig.)

  20. Engine Modelling for Control Applications

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1997-01-01

    In earlier work published by the author and co-authors, a dynamic engine model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. In its newer form, it is easy to fit to many different engines and requires little...... engine data for this purpose. It is especially well suited to embedded model applications in engine controllers, such as nonlinear observer based air/fuel ratio and advanced idle speed control. After a brief review of this model, it will be compared with other similar models which can be found...

  1. Coordination of early cellular reactions during activation of bone resorption in the rat mandible periosteum: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Bassam Hassan

    2017-10-01

    Full Text Available The activation step of bone remodeling remains poorly characterized. Activation comprises determination of the site to be remodeled, osteoclast precursor recruitment, their migration to the site of remodeling, and differentiation. These actions involve different compartments and cell types. The aim of this study was to investigate events and cell types involved during activation. We used a bone remodeling model in rats where extractions of the upper jaw molars initiate remodeling of the antagonist lower jaw (mandible cortex along the periosteum. In this model osteoclastic resorption peaks 4 days after extractions. We previously reported that mast cell activation in the periosteum fibrous compartment is an early event of activation, associated with recruitment of circulating monocyte osteoclast precursors. By using immunohistochemistry, we observed 9 hours after induction a spatially oriented expression of InterCellular Adhesion Molecule-1 in the vessels that was inhibited by antagonists of histamine receptors 1 and 2. It was followed at 12 hours by the recruitment of ED1+ monocytes. In parallel, at 9 hours, Vascular Cellular Adhesion Molecule-1+ fibroblast-like cells scattered in the fibrous compartment of the periosteum between the vessels and the osteogenic compartment increased; these cells may be implicated in osteoclast precursor migration. Receptor Activator of NF KappaB Ligand+ cells increased at 12 hours in the osteogenic compartment and reached a peak at 18 hours. At 24 hours the numbers of osteogenic cells and subjacent osteocytes expressing semaphorin 3a, a repulsive for osteoclast precursors, decreased before returning to baseline at 48 hours. These data show that during activation the two periosteum compartments and several cell types are coordinated to recruit and guide osteoclast precursors towards the bone surface. Keywords: Biological sciences, Cell biology, Physiology, Dentistry

  2. Bone tissue engineering with periosteal-free graft and pedicle omentum.

    Science.gov (United States)

    Bigham-Sadegh, Amin; Oryan, Ahmad; Mirshokraei, Pezhman; Shadkhast, Mohamad; Basiri, Ehsan

    2013-04-01

    The histological characteristics of periosteum make it a specific tissue with a unique capacity to be engineered. Higher flexibility of the greater omentum is useful for reconstructive surgery as it facilitates not only filling of the site of infections such as myelitis, but also is effective in filling complicated defects of the soft and hard tissues, and these criteria make it suitable for tissue engineering. The present study was designed to evaluate bone tissue engineering with periosteal-free graft concurrent with pedicle omentum and compare it with subcuticular periosteal grafting in a dog model. This is the first report in which periosteum-free graft has been used as bone tissue engineering. Eight young female indigenous dogs were used in this experiment. In omental group (n = 4), end of omentum was wrapped by periosteum of the radial bone in the abdomen of each dog, while in the subcutaneous group (n = 4), the harvested periosteum was sutured on the subcutaneous layer. Lateral view radiographs were taken from the abdominal cavity post-operatively at 2, 4, 6 and 8 weeks post surgery. Eight weeks after operation, the dogs were re-anaesthetized and the omental or subcutical grafted periosteom was found and removed for histopathological evaluation. Radiological, gross and histopathological evaluations revealed a superior bone formation in the wrapped omentum with periosteum compared with that of the subcuticular periosteal grafting. This is a novel and efficient technique in producing mature trabecular bone and could be used as a potential source of bone tissue engineering for autotransplantation. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  3. Engineering model for body armor

    NARCIS (Netherlands)

    Roebroeks, G.H.J.J.; Carton, E.P.

    2014-01-01

    TNO has developed an engineering model for flexible body armor, as one of their energy based engineering models that describe the physics of projectile to target interactions (weaves, metals, ceramics). These models form the basis for exploring the possibilities for protection improvement. This

  4. An Otto Engine Dynamic Model

    OpenAIRE

    Florian Ion Tiberiu Petrescu; Relly Victoria Virgil Petrescu

    2016-01-01

    Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. One uses then the Lagrange equation. Kinetic energy conservation shows angular speed variation (from the shaft) with inertial masses. One uses and elastic constant of...

  5. Engineering workstation: Sensor modeling

    Science.gov (United States)

    Pavel, M; Sweet, B.

    1993-01-01

    The purpose of the engineering workstation is to provide an environment for rapid prototyping and evaluation of fusion and image processing algorithms. Ideally, the algorithms are designed to optimize the extraction of information that is useful to a pilot for all phases of flight operations. Successful design of effective fusion algorithms depends on the ability to characterize both the information available from the sensors and the information useful to a pilot. The workstation is comprised of subsystems for simulation of sensor-generated images, image processing, image enhancement, and fusion algorithms. As such, the workstation can be used to implement and evaluate both short-term solutions and long-term solutions. The short-term solutions are being developed to enhance a pilot's situational awareness by providing information in addition to his direct vision. The long term solutions are aimed at the development of complete synthetic vision systems. One of the important functions of the engineering workstation is to simulate the images that would be generated by the sensors. The simulation system is designed to use the graphics modeling and rendering capabilities of various workstations manufactured by Silicon Graphics Inc. The workstation simulates various aspects of the sensor-generated images arising from phenomenology of the sensors. In addition, the workstation can be used to simulate a variety of impairments due to mechanical limitations of the sensor placement and due to the motion of the airplane. Although the simulation is currently not performed in real-time, sequences of individual frames can be processed, stored, and recorded in a video format. In that way, it is possible to examine the appearance of different dynamic sensor-generated and fused images.

  6. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  7. A modified rabbit ulna defect model for evaluating periosteal substitutes in bone engineering: a pilot study

    Directory of Open Access Journals (Sweden)

    Rania M El Backly

    2015-01-01

    Full Text Available The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane scaffold soaked in PBS and left as such (group Ia or wrapped with a tissue-engineered periosteal substitute (group Ib. For group II, an e-PTFE (GORE-TEX® membrane was inserted around the radius then the defects received either scaffold alone (group IIa or scaffold wrapped with periosteal substitute (group IIb. Animals were euthanized after 12-16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (µCT, and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX® membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.

  8. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  9. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  10. Modeling Diesel Engine Injector Flows

    National Research Council Canada - National Science Library

    Heister, S

    2001-01-01

    Models have been developed to assess flow fields inside diesel injector orifice passages in order to increase our understanding of the spray formation process which governs performance and emissions in these engines...

  11. Trapped periosteum in a distal femoral physeal injury: magnetic resonance imaging evaluation

    Directory of Open Access Journals (Sweden)

    Marina Vimieiro Timponi de Moura

    2012-06-01

    Full Text Available Epiphyseal fractures are frequently associated with knee trauma during sports in children and adolescents. Usually, Salter-Harris types I and II fractures are conservatively treated. However, failed closed reduction of displaced fractures suggest the presence of trapped periosteum, with indication for surgery. The present report describes a case of Salter-Harris type I fracture of the distal femur in a child, complicated with trapped periosteum detected at magnetic resonance imaging.

  12. Complex systems models: engineering simulations

    OpenAIRE

    Polack, Fiona A. C.; Hoverd, Tim; Sampson, Adam T.; Stepney, Susan; Timmis, Jon,

    2008-01-01

    As part of research towards the CoSMoS unified infrastructure for modelling and simulating complex systems, we review uses of definitional and descriptive models in natural science and computing, and existing integrated platforms. From these, we identify requirements for engineering models of complex systems, and consider how some of the requirements could be met, using state-of-the-art model management and a mobile, process-oriented computing paradigm.

  13. Conceptual Models for Search Engines

    Science.gov (United States)

    Hendry, D. G.; Efthimiadis, E. N.

    Search engines have entered popular culture. They touch people in diverse private and public settings and thus heighten the importance of such important social matters as information privacy and control, censorship, and equitable access. To fully benefit from search engines and to participate in debate about their merits, people necessarily appeal to their understandings for how they function. In this chapter we examine the conceptual understandings that people have of search engines by performing a content analysis on the sketches that 200 undergraduate and graduate students drew when asked to draw a sketch of how a search engine works. Analysis of the sketches reveals a diverse range of conceptual approaches, metaphors, representations, and misconceptions. On the whole, the conceptual models articulated by these students are simplistic. However, students with higher levels of academic achievement sketched more complete models. This research calls attention to the importance of improving students' technical knowledge of how search engines work so they can be better equipped to develop and advocate policies for how search engines should be embedded in, and restricted from, various private and public information settings.

  14. Mean Value Engine Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Müller, Martin; Chevalier, Alain

    1999-01-01

    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models what are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas...... Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experimental engine...

  15. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  16. An Otto Engine Dynamic Model

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu

    2016-03-01

    Full Text Available Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. One uses then the Lagrange equation. Kinetic energy conservation shows angular speed variation (from the shaft with inertial masses. One uses and elastic constant of the crank shaft, k. Calculations should be made for an engine with a single cylinder. Finally it makes a dynamic analysis of the mechanism with discussion and conclusions. The ratio between the crank length r and the length of the connecting-rod l is noted with landa. When landa increases the mechanism dynamics is deteriorating. For a proper operation is necessary the reduction of the ratio landa, especially if we want to increase the engine speed. We can reduce the acceleration values by reducing the dimensions r and l.

  17. Multiscale modeling in food engineering

    NARCIS (Netherlands)

    Ho, Q.T.; Carmeliet, J.; Datta, A.K.; Defraeye, T.; Delele, M.A.; Herremans, E.; Opara, L.; Ramon, H.; Tijskens, E.; Sman, van der R.G.M.; Liedekerke, Van P.; Verboven, P.; Nicolai, B.M.

    2013-01-01

    Since many years food engineers have attempted to describe physical phenomena such as heat and mass transfer that occur in food during unit operations by means of mathematical models. Foods are hierarchically structured and have features that extend from the molecular scale to the food plant scale.

  18. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells

    Science.gov (United States)

    Yang, Wuchen; Guo, Dayong; Harris, Marie A.; Cui, Yong; Gluhak-Heinrich, Jelica; Wu, Junjie; Chen, Xiao-Dong; Skinner, Charles; Nyman, Jeffry S.; Edwards, James R.; Mundy, Gregory R.; Lichtler, Alex; Kream, Barbara E.; Rowe, David W.; Kalajzic, Ivo; David, Val; Quarles, Darryl L.; Villareal, Demetri; Scott, Greg; Ray, Manas; Liu, S.; Martin, James F.; Mishina, Yuji; Harris, Stephen E.

    2013-01-01

    Summary We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKOob) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKOob mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKOob osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA+ MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells. PMID:23843612

  19. Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair.

    Science.gov (United States)

    Wang, Qun; Huang, Chunlan; Zeng, Fanjie; Xue, Ming; Zhang, Xinping

    2010-12-01

    While the essential role of periosteum in cortical bone repair and regeneration is well established, the molecular pathways that control the early osteogenic and chondrogenic differentiation of periosteal stem/progenitor cells during repair processes are unclear. Using a murine segmental bone graft transplantation model, we isolated a population of early periosteum-callus-derived mesenchymal stem cells (PCDSCs) from the healing autograft periosteum. These cells express typical mesenchymal stem cell markers and are capable of differentiating into osteoblasts, adipocytes, and chondrocytes. Characterization of these cells demonstrated that activation of the hedgehog (Hh) pathway effectively promoted osteogenic and chondrogenic differentiation of PCDSCs in vitro and induced bone formation in vivo. To determine the role of the Hh pathway in adult bone repair, we deleted Smoothened (Smo), the receptor that transduces all Hh signals at the onset of bone autograft repair via a tamoxifen-inducible RosaCreER mouse model. We found that deletion of Smo markedly reduced osteogenic differentiation of isolated PCDSCs and further resulted in a near 50% reduction in periosteal bone callus formation at the cortical bone junction as determined by MicroCT and histomorphometric analyses. These data strongly suggest that the Hh pathway plays an important role in adult bone repair via enhancing differentiation of periosteal progenitors and that activation of the Hh pathway at the onset of healing could be beneficial for repair and regeneration.

  20. Model-Driven Useware Engineering

    Science.gov (United States)

    Meixner, Gerrit; Seissler, Marc; Breiner, Kai

    User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.

  1. Transforming System Engineering through Model-Centric Engineering

    Science.gov (United States)

    2015-01-31

    sensible about cost The Engineering Data Requirements Agreement Plan (E/DRAP) is another essential artifact that is used in flight readiness...Grogan, O. de Weck, Interactive Model- Cent ic Systems Engineering (IMCSE), Phase One Technical Report SERC-2014-TR-048-1, Systems Engineering

  2. Imaging appearance of entrapped periosteum within a distal femoral Salter-Harris II fracture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Johnathan [University of Virginia, Department of Radiology and Medical Imaging, 1218 Lee Street, Box 800170, Charlottesville, VA (United States); Children' s Hospital of Los Angeles, Department of Radiology, Los Angeles, CA (United States); Abel, Mark F. [University of Virginia, Department of Orthopedics, P.O. Box 801016, Charlottesville, VA (United States); Fox, Michael G. [University of Virginia, Department of Radiology and Medical Imaging, 1218 Lee Street, Box 800170, Charlottesville, VA (United States)

    2015-10-15

    Salter Harris II fractures of the distal femur are associated with a high incidence of complications, especially premature physeal closure. Many risk factors for this high rate of premature physeal closure have been proposed. More recently, entrapment of periosteum within the physis has been suggested as an additional predisposing factor for premature physeal closure. The radiographic diagnosis of entrapped soft tissues, including periosteum, can be suggested in the setting of a Salter-Harris II fracture when the fracture does not reduce and physeal widening >3 mm remains. We report a patient who sustained a distal femoral Salter-Harris II fracture following a valgus injury. The patient had persistent distal medial physeal widening >5 mm following attempted reduction. A subsequent MRI revealed a torn periosteum entrapped within the distal femoral physis. Following removal of the periosteum, the patient developed a leg length discrepancy which required physiodesis of the contralateral distal femur. We present this case to raise awareness of the importance of having a high index of suspicion of periosteal entrapment in the setting of Salter-Harris II fractures since most consider entrapped periosteum an indication for surgery. (orig.)

  3. Modelling skill competencies in engineering companies.

    OpenAIRE

    Coates, G.; Thompson, C. M.; Duffy, A.H.B.; Hills, W; Whitfield, R.I.

    2009-01-01

    Engineering companies across many industrial sectors have recognised that their engineers' skills and competencies provide the greatest force for economic competitiveness. More specifi cally, the effective utilisation of a company's engineers, through the most appropriate application of their skills and competencies, can improve organisational performance, thus aiding competitiveness. Prior to enabling the effective utilisation of their engineers, companies need to model their skills competen...

  4. Engineering graphic modelling a workbook for design engineers

    CERN Document Server

    Tjalve, E; Frackmann Schmidt, F

    2013-01-01

    Engineering Graphic Modelling: A Practical Guide to Drawing and Design covers how engineering drawing relates to the design activity. The book describes modeled properties, such as the function, structure, form, material, dimension, and surface, as well as the coordinates, symbols, and types of projection of the drawing code. The text provides drawing techniques, such as freehand sketching, bold freehand drawing, drawing with a straightedge, a draughting machine or a plotter, and use of templates, and then describes the types of drawing. Graphic designers, design engineers, mechanical engine

  5. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  6. Reg Gene Expression in Periosteum after Fracture and Its In Vitro Induction Triggered by IL-6

    Directory of Open Access Journals (Sweden)

    Yasuaki Tohma

    2017-10-01

    Full Text Available The periosteum is a thin membrane that surrounds the outer surface of bones and participates in fracture healing. However, the molecular signals that trigger/initiate the periosteal reaction are not well established. We fractured the rat femoral bone at the diaphysis and fixed it with an intramedullary inserted wire, and the expression of regenerating gene (Reg I, which encodes a tissue regeneration/growth factor, was analyzed. Neither bone/marrow nor muscle showed Reg I gene expression before or after the fracture. By contrast, the periosteum showed an elevated expression after the fracture, thereby confirming the localization of Reg I expression exclusively in the periosteum around the fractured areas. Expression of the Reg family increased after the fracture, followed by a decrease to basal levels by six weeks, when the fracture had almost healed. In vitro cultures of periosteal cells showed no Reg I expression, but the addition of IL-6 significantly induced Reg I gene expression. The addition of IL-6 also increased the cell number and reduced pro-apoptotic gene expression of Bim. The increased cell proliferation and reduction in Bim gene expression were abolished by transfection with Reg I siRNA, indicating that these IL-6-dependent effects require the Reg I gene expression. These results indicate the involvement of the IL-6/Reg pathway in the osteogenic response of the periosteum, which leads to fracture repair.

  7. Treatment of Osteomyelitis: A Case for Disruption of the Affected Adjacent Periosteum.

    Science.gov (United States)

    Hudson, John W; Daly, Austin P; Foster, Michael

    2017-10-01

    To evaluate the response of mandibular osteomyelitis treated by surgical decortication with disruption of the affected adjacent periosteum in concert with long-term targeted antibiotic therapy. The hypothesis is that, by removing the buccal cortical plate and disrupting the hypertrophically inflamed adjacent periosteum, the medullary bone will be brought in contact with bleeding tissue and circulating immunologic factors and antibiotics, which will promote definitive resolution. A retrospective review was conducted of 7 patient charts with associated radiographs from November 2010 to August 2016 treated by the first author at the University of Tennessee Medical Center (Knoxville, TN). Patients with chronic suppurative or nonsuppurative osteomyelitis of the mandible without condylar involvement or pathologic fracture were selected and treated with decortication with periosteal disruption in combination with long-term targeted antibiotic therapy. Seven patients (3 women and 4 men; mean age, 60 yr) underwent decortication with periosteal disruption of the affected area and received at least 6 weeks of targeted intravenous antibiotics. Computed tomography was performed preoperatively and a repeat study was performed after completion of antibiotics. In each case, post-treatment imaging showed definitive resolution after treatment with decortication in concert with disruption of the inflamed hypertrophic periosteum and intravenous antibiotics. Debridement of the infected cortical bone with restoration of the blood supply through disruption of the adjacent periosteum provided definitive resolution of mandibular osteomyelitis in the 7 patients treated. The hypothesis is that disruption of the affected adjacent periosteum reintroduces an immune-mediated response in concert with improved antibiotic delivery to and penetrance of the diseased mandible, aiding in definitive resolution. Decortication with periosteal disruption allows for preservation of the inferior alveolar

  8. Tasks and Ontologies in Engineering Modelling

    NARCIS (Netherlands)

    Top, J.L.; Top, Jan; Akkermans, J.M.; Akkermans, Hans

    1994-01-01

    Constructing models of physical systems is a recurring activity in engineering problem solving. This paper presents a generic knowledge-level analysis of the task of engineering modelling. Starting from the premise that modelling is a design-like activity, it proposes the Specify-Construct-Assess

  9. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  10. RGD-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells.

    Science.gov (United States)

    Kudva, Abhijith K; Luyten, Frank P; Patterson, Jennifer

    2018-01-01

    The combination of progenitor cells with appropriate scaffolds and in vitro culture regimes is a promising area of research in bone and cartilage tissue engineering. Mesenchymal stem cells (MSCs), when encapsulated within hydrogels composed of the necessary cues and/or preconditioned using suitable culture conditions, have been shown to differentiate into bone or cartilage. Here, we utilized human periosteum-derived cells (hPDCs), a progenitor cell population with MSC characteristics, paired with protease-degradable, functionalized polyethylene glycol (PEG) hydrogels to create tissue-engineered constructs. The objective of this study was to investigate the effects of scaffold composition, exploring the addition of the cell-binding motif Arginine-Glycine-Aspartic Acid (RGD), in combination with various in vitro culture conditions on the proliferation, chondrogenic gene expression, and matrix production of encapsulated hPDCs. In growth medium, the hPDCs in the RGD-functionalized hydrogels maintained high levels of viability and demonstrated an enhanced proliferation when compared with hPDCs in non-functionalized hydrogels. Additionally, the RGD-containing hydrogels promoted higher glycosaminoglycan (GAG) synthesis and chondrogenic gene expression of the encapsulated hPDCs, as opposed to the non-functionalized constructs, when cultured in two different chondrogenic media. These results demonstrate the potential of hPDCs in combination with enzymatically degradable PEG hydrogels functionalized with adhesion ligands for cartilage regenerative applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 33-42, 2018. © 2017 Wiley Periodicals, Inc.

  11. Osteoinduction in umbilical cord- and palate periosteum-derived mesenchymal stem cells.

    Science.gov (United States)

    Caballero, Montserrat; Reed, Courtney R; Madan, Gitanjali; van Aalst, John A

    2010-05-01

    Adult abdominoplasty (AA) fat is an ideal source for mesenchymal stem cells (MSCs) because it is discarded after surgery, abundant, and easy to harvest. Children however, do not have the same abundant quantities of fat as adults, nor are they likely to undergo a procedure during which fat is routinely discarded. Hence, finding an alternate source for MSCs in children is a reasonable strategy. Two such sources are the palate periosteum (PP) and the umbilical cord (UC). Advantages for PP as a source of MSCs are accessibility during palate repair, ease of harvest, and minimal risk to the patient. The UC, like AA, is a discarded tissue, with a theoretically unlimited supply, which can be harvested in children with craniofacial bone abnormalities in advance of reconstructive procedures. Our objective in this study is to characterize MSCs from 3 sources (AA, PP, and UC) by surface marker prevalence, and to assess osteoinductive capability. Institutional review board approval was obtained for harvest of AA, PP, and UC. The presence of MSCs was determined using immunostaining and flow cytometry for cell surface markers CD73, CD90, CD105, and SSEA-4. Osteogenesis was induced using osteogenic medium. Osteoinduction was evaluated using Alizarin red staining, and real-time polymerase chain reaction for bone morphogenetic protein-2, alkaline phosphatase, and osteocalcin at 7, 14, and 21 days. MSCs from AA, PP, and UC all stained positive for CD73, CD90, CD105, and SSEA-4. Flow cytometry demonstrated significant differences in expression of CD90 and SSEA-4 but similar values for CD73 and CD105. Following osteoinduction, MSCs from all sources stained positive for calcium deposition. In UC MSCs, reverse transcriptase-polymerase chain reaction demonstrated greater elevation in bone morphogenetic protein-2 and alkaline phosphatase mRNA beginning at day 7 and extending to day 21. Osteocalcin mRNA levels were comparable for all 3 sources of MSCs. For children with craniofacial bone

  12. Lin28a enhances in vitro osteoblastic differentiation of human periosteum-derived cells.

    Science.gov (United States)

    Park, Jin-Ho; Park, Bong-Wook; Kang, Young-Hoon; Byun, Sung-Hoon; Hwang, Sun-Chul; Kim, Deok Ryong; Woo, Dong Kyun; Byun, June-Ho

    2017-12-01

    Despite a capacity for proliferation and an ability to differentiate into multiple cell types, in long-term culture and with ageing, stem cells show a reduction in growth, display a decrease in differentiation potential, and enter senescence without evidence of transformation. The Lin28a gene encodes an RNA-binding protein that plays a role in regulating stem cell activity, including self-renewal and differentiation propensity. However, the effect of the Lin28a gene on cultured human osteoprecursor cells is poorly understood. In the present study, alkaline phosphatase activity, alizarin red-positive mineralization, and calcium content, positive indicators of osteogenic differentiation, were significantly higher in cultured human periosteum-derived cells (hPDCs) with Lin28a overexpression compared with cells without Lin28a overexpression. Lin28a overexpression by hPDCs also increased mitochondrial activity, which is essential for cellular proliferation, as suggested by a reduced presence of reactive oxygen species and significantly enhanced lactate levels and ATP production. Our results suggest that, in hPDCs, the Lin28a gene enhances osteoblastic differentiation and increases mitochondrial activity. Although Lin28a is known as a marker of undifferentiated human embryogenic stem cell, there is limited evidence regarding the influence of Lin28a on osteoblastic differentiation of cultured osteoprecursor cells. This study was to examine the impact of Lin28a on osteogenic phenotypes of human periosteum-derived cells. Their phenotypes can be similar to those of mesenchymal stem cells. Our results suggest that the Lin28a gene enhances the osteoblastic differentiation of human periosteum-derived cells. In addition, the Lin28a gene increases mitochondrial activity in human periosteum-derived cells. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  14. Mean Value Modelling of Turbocharged SI Engines

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.

    1998-01-01

    The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented.......The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented....

  15. Efficacy of Connective Tissue with and without Periosteum in Regeneration of Intrabony Defects.

    Science.gov (United States)

    Esfahanian, Vahid; Golestaneh, Hedayatollah; Moghaddas, Omid; Ghafari, Mohammad Reza

    2014-01-01

    Background and aims. Connective tissue grafts with and without periosteum is used in regenerative treatments of bone and has demonstrated successful outcomes in previous investigations. The aim of present study was to evaluate the effectiveness of connective tissue graft with and without periosteum in regeneration of intrabony defects. Materials and methods. In this single-blind randomized split-mouth clinical trial, 15 pairs of intrabony defects in 15 patients with moderate to advanced periodontitis were treated by periosteal connective tissue graft + ABBM (test group) or non-periosteal connective tissue graft + ABBM (control group). Probing pocket depth, clinical attachment level, free gingival margin position, bone crestal position, crest defect depth and defect depth to stent were measured at baseline and after six months by surgical re-entry. Data was analyzed by Student's t-test and paired t-tests (α=0.05). Results. Changes in clinical parameters after 6 months in the test and control groups were as follows: mean of PPD reduction: 3.1±0.6 (Pconnective tissue graft + ABBM and non-periosteal connective tissue graft + ABBM were similarly effective in treating intrabony defects without any favor for any group. Connective tissue and perio-steum can be equally effective in regeneration of intrabony defects.

  16. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  17. Optimization in engineering models and algorithms

    CERN Document Server

    Sioshansi, Ramteen

    2017-01-01

    This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...

  18. Osteoinduction of umbilical cord and palate periosteum-derived mesenchymal stem cells on poly(lactic-co-glycolic) acid nanomicrofibers.

    Science.gov (United States)

    Caballero, Montserrat; Pappa, Andrew K; Roden, Katherine S; Krochmal, Daniel J; van Aalst, John A

    2014-01-01

    The need for tissue-engineered bone to treat complex craniofacial bone defects secondary to congenital anomalies, trauma, and cancer extirpation is sizeable. Traditional strategies for treatment have focused on autologous bone in younger patients and bone substitutes in older patients. However, the capacity for merging new technologies, including the creation of nanofiber and microfiber scaffolds with advances in natal sources of stem cells, is crucial to improving our treatment options. The advantages of using smaller diameter fibers for scaffolding are 2-fold: the similar fiber diameters mimic the in vivo extracellular matrix construct and smaller fibers also provide a dramatically increased surface area for cell-scaffold interactions. In this study, we compare the capacity for a polymer with Federal Drug Administration approval for use in humans, poly(lactic-co-glycolic) acid (PLGA) from Delta polymer, to support osteoinduction of mesenchymal stem cells (MSCs) harvested from the umbilical cord (UC) and palate periosteum (PP). Proliferation of both UC- and PP-derived MSCs was improved on PLGA scaffolds. The PLGA scaffolds promoted UC MSC differentiation (indicated by earlier gene expression and higher calcium deposition), but not in PP-derived MSCs. Umbilical cord-derived MSCs on the PLGA nanomicrofiber scaffolds have potential clinical utility in providing solutions for craniofacial bone defects, with the added benefit of earlier availability.

  19. The Redox Balance in Erythrocytes, Plasma, and Periosteum of Patients with Titanium Fixation of the Jaw

    Directory of Open Access Journals (Sweden)

    Jan Borys

    2017-06-01

    Full Text Available Titanium miniplates and screws are commonly used for fixation of jaw fractured or osteotomies. Despite the opinion of their biocompatibility, in clinical practice symptoms of chronic inflammation around the fixation develop in some patients, even many years after the application of miniplates and screws. The cause of these complications is still an unanswered question. Taking into account that oxidative stress is one of the toxic action of titanium, we have evaluated the antioxidant barrier as well as oxidative stress in the erythrocytes, plasma and periosteum covering the titanium fixation of the jaw. The study group was composed of 32 patients aged 20–30 with inserted miniplates and screws. The antioxidant defense: catalase (CAT, glutathione peroxidase (GPx, superoxide dismutase-1 (SOD1, uric acid (UA, total antioxidant capacity (TAC, as well as oxidative damage products: advanced oxidation protein products (AOPP, advanced glycation end products (AGE, dityrosine, kynurenine, N-formylkynurenine, tryptophan, malondialdehyde (MDA, 4-hydroxynonenal (4-HNE, total oxidant status (TOS, and oxidative status index (OSI were evaluated. SOD1 activity (↓37%, and tryptophan levels (↓34% showed a significant decrease while AOPP (↑25%, TOS (↑80% and OSI (↑101% were significantly elevated in maxillary periosteum of patients who underwent bimaxillary osteotomies as compared to the control group. SOD-1 (↓55%, TAC (↓58.6%, AGE (↓60% and N-formylkynurenine (↓34% was statistically reduced while AOPP (↑38%, MDA (↑29%, 4-HNE (↑114%, TOS (↑99%, and OSI (↑381% were significantly higher in the mandibular periosteum covering miniplates/screw compared with the control tissues. There were no correlations between antioxidants and oxidative stress markers in the periosteum of all patients and the blood. As exposure to the Ti6Al4V titanium alloy leads to disturbances of redox balance in the periosteum surrounding titanium implants of the maxilla

  20. Thrust modeling for hypersonic engines

    Science.gov (United States)

    Riggins, D. W.; Mcclinton, C. R.

    1995-01-01

    Expressions for the thrust losses of a scramjet engine are developed in terms of irreversible entropy increases and the degree of incomplete combustion. A method is developed which allows the calculation of the lost vehicle thrust due to different loss mechanisms within a given flow-field. This analysis demonstrates clearly the trade-off between mixing enhancement and resultant increased flow losses in scramjet combustors. An engine effectiveness parameter is defined in terms of thrust loss. Exergy and the thrust-potential method are related and compared.

  1. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed

  2. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  3. Engineering Abstractions in Model Checking and Testing

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus

    2009-01-01

    Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and implementing abstractions will improve the applicability of model checking in practice....

  4. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  5. Numerical methods and modelling for engineering

    CERN Document Server

    Khoury, Richard

    2016-01-01

    This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...

  6. Statistical models of petrol engines vehicles dynamics

    Science.gov (United States)

    Ilie, C. O.; Marinescu, M.; Alexa, O.; Vilău, R.; Grosu, D.

    2017-10-01

    This paper focuses on studying statistical models of vehicles dynamics. It was design and perform a one year testing program. There were used many same type cars with gasoline engines and different mileage. Experimental data were collected of onboard sensors and those on the engine test stand. A database containing data of 64th tests was created. Several mathematical modelling were developed using database and the system identification method. Each modelling is a SISO or a MISO linear predictive ARMAX (AutoRegressive–Moving-Average with eXogenous inputs) model. It represents a differential equation with constant coefficients. It were made 64th equations for each dependency like engine torque as output and engine’s load and intake manifold pressure, as inputs. There were obtained strings with 64 values for each type of model. The final models were obtained using average values of the coefficients. The accuracy of models was assessed.

  7. Control of Stirling engine. Simplified, compressible model

    Science.gov (United States)

    Plotnikov, P. I.; Sokołowski, J.; Żochowski, A.

    2016-06-01

    A one-dimensional free boundary problem on a motion of a heavy piston in a tube filled with viscous gas is considered. The system of governing equations and boundary conditions is derived. The obtained system of differential equations can be regarded as a mathematical model of an exterior combustion engine. The existence of a weak solution to this model is proved. The problem of maximization of the total work of the engine is considered.

  8. Mathematical Model For Engineering Analysis And Optimization

    Science.gov (United States)

    Sobieski, Jaroslaw

    1992-01-01

    Computational support for engineering design process reveals behavior of designed system in response to external stimuli; and finds out how behavior modified by changing physical attributes of system. System-sensitivity analysis combined with extrapolation forms model of design complementary to model of behavior, capable of direct simulation of effects of changes in design variables. Algorithms developed for this method applicable to design of large engineering systems, especially those consisting of several subsystems involving many disciplines.

  9. A Simple HCCI Engine Model for Control

    Energy Technology Data Exchange (ETDEWEB)

    Killingsworth, N; Aceves, S; Flowers, D; Krstic, M

    2006-06-29

    The homogeneous charge compression ignition (HCCI) engine is an attractive technology because of its high efficiency and low emissions. However, HCCI lacks a direct combustion trigger making control of combustion timing challenging, especially during transients. To aid in HCCI engine control we present a simple model of the HCCI combustion process valid over a range of intake pressures, intake temperatures, equivalence ratios, and engine speeds. The model provides an estimate of the combustion timing on a cycle-by-cycle basis. An ignition threshold, which is a function of the in-cylinder motored temperature and pressure is used to predict start of combustion. This model allows the synthesis of nonlinear control laws, which can be utilized for control of an HCCI engine during transients.

  10. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  11. Modelling and Simulation of Search Engine

    Science.gov (United States)

    Nasution, Mahyuddin K. M.

    2017-01-01

    The best tool currently used to access information is a search engine. Meanwhile, the information space has its own behaviour. Systematically, an information space needs to be familiarized with mathematics so easily we identify the characteristics associated with it. This paper reveal some characteristics of search engine based on a model of document collection, which are then estimated the impact on the feasibility of information. We reveal some of characteristics of search engine on the lemma and theorem about singleton and doubleton, then computes statistically characteristic as simulating the possibility of using search engine. In this case, Google and Yahoo. There are differences in the behaviour of both search engines, although in theory based on the concept of documents collection.

  12. Efficacy of Connective Tissue with and without Periosteum in Regeneration of Intrabony Defects

    Directory of Open Access Journals (Sweden)

    Vahid Esfahanian

    2014-12-01

    Full Text Available Background and aims. Connective tissue grafts with and without periosteum is used in regenerative treatments of bone and has demonstrated successful outcomes in previous investigations. The aim of present study was to evaluate the effec-tiveness of connective tissue graft with and without periosteum in regeneration of intrabony defects. Materials and methods. In this single-blind randomized split-mouth clinical trial, 15 pairs of intrabony defects in 15 pa-tients with moderate to advanced periodontitis were treated by periosteal connective tissue graft + ABBM (test group or non-periosteal connective tissue graft + ABBM (control group. Probing pocket depth, clinical attachment level, free gingi-val margin position, bone crestal position, crest defect depth and defect depth to stent were measured at baseline and after six months by surgical re-entry. Data was analyzed by Student’s t-test and paired t-tests (α=0.05. Results. Changes in clinical parameters after 6 months in the test and control groups were as follows: mean of PPD reduc-tion: 3.1±0.6 (P<0.0001; 2.5±1.0 mm (P<0.0001, CAL gain: 2.3±0.9 (P<0.0001; 2.2±1.0 mm (P<0.0001, bone fill: 2.2±0.7 mm (P<0.0001; 2.2±0.7 mm (P<0.0001, respectively. No significant differences in the position of free gingival margin were observed during 6 months compared to baseline in both groups. Conclusion. Combinations of periosteal connective tissue graft + ABBM and non-periosteal connective tissue graft + ABBM were similarly effective in treating intrabony defects without any favor for any group. Connective tissue and perio-steum can be equally effective in regeneration of intrabony defects.

  13. COST ENGINEERING WITH QFD: A MATHEMATICAL MODEL

    Directory of Open Access Journals (Sweden)

    K.G. Durga Prasad

    2011-03-01

    Full Text Available Cost engineering helps the firms in decision-making with respect to product development. It is primarily concerned with cost estimation and cost control. Decisions made during the design phase have a significant influence on development and life cycle costs. The effective cost management during the design phase of a product is essential to develop a product with minimum cost and desired quality of the customer. In this paper a mathematical model is established by incorporating cost engineering techniques such as Target Costing (TC and Value Engineering (VE with Quality Function Deployment (QFD to develop a product. An illustrative example is also presented.

  14. Graph-based modelling in engineering

    CERN Document Server

    Rysiński, Jacek

    2017-01-01

    This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be. .

  15. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  16. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  17. Mathematicals Models in Science and Engineering

    OpenAIRE

    Quarteroni, Alfio

    2009-01-01

    Mathematical models, along with scientific theory and practical experiments, are a crucial part of modern engineering and science. The author takes a look at the role mathematical models play in topics ranging from vascular simulation to weather forecasting to designing America's Cup sailboats.

  18. Software Engineering Tools for Scientific Models

    Science.gov (United States)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  19. Modeling student success in engineering education

    Science.gov (United States)

    Jin, Qu

    In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation. However, there are only a limited number of works that have systematically developed models to investigate important factors and to predict student success in engineering. Therefore, this research presents three separate but highly connected investigations to address this gap. The first investigation involves explaining and predicting engineering students' success in Calculus I courses using statistical models. The participants were more than 4000 first-year engineering students (cohort years 2004 - 2008) who enrolled in Calculus I courses during the first semester in a large Midwestern university. Predictions from statistical models were proposed to be used to place engineering students into calculus courses. The success rates were improved by 12% in Calculus IA using predictions from models developed over traditional placement method. The results showed that these statistical models provided a more accurate calculus placement method than traditional placement methods and help improve success rates in those courses. In the second investigation, multi-outcome and single-outcome neural network models were designed to understand and to predict first-year retention and first-year GPA of engineering students. The participants were more than 3000 first year engineering students (cohort years 2004 - 2005) enrolled in a large Midwestern university. The independent variables include both high school academic performance factors and affective factors measured prior to entry. The prediction performances of the multi-outcome and single-outcome models were comparable. The ability to predict cumulative GPA at the end of an engineering

  20. MRI diagnosis of trapped periosteum following incomplete closed reduction of distal tibial Salter-Harris II fracture

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Subha [University of Massachusetts Memorial Medical Center, University of Massachusetts Medical School, Department of Radiology, Worcester, MA (United States); Wallace, E.C. [University of Massachusetts Memorial Medical Center, University of Massachusetts Medical School, Department of Radiology, Worcester, MA (United States); UMass Memorial Medical Center, Division of Pediatric Radiology, Worcester, MA (United States)

    2011-12-15

    Irreducible fracture of the distal tibial physis due to interposed soft tissue including periosteum is well documented in the orthopedic literature but is uncommon. This condition has been associated with subsequent growth disturbance and requires open reduction. There are very few prior reports of MRI depiction of soft tissue interposition and none of periosteal interposition in the distal tibial physis. This is a relatively common location of physeal injury and related growth disturbance. We present a case of periosteum trapped in the distal tibial physis, diagnosed on MRI, in a Salter-Harris II fracture and its management implications. (orig.)

  1. ARTIFICIAL NEURAL NETWORK OPTIMIZATION MODELING ON ENGINE PERFORMANCE OF DIESEL ENGINE USING BIODIESEL FUEL

    National Research Council Canada - National Science Library

    M R Shukri; M M Rahman; D Ramasamy; K Kadirgama

    2015-01-01

      This paper presents a study of engine performance using a mixture of palm oil methyl ester blends with diesel oil as biodiesel in a diesel engine, and optimizes the engine performance using artificial neural network (ANN) modeling...

  2. 76 FR 25648 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Science.gov (United States)

    2011-05-05

    ... Engine Torque Loads for Sudden Engine Stoppage AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... design features include ] engine size and the potential torque load imposed by sudden engine stoppage... application date to September 28, 2006. The Gulfstream Model GVI airplane will be an all-new, two- engine jet...

  3. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  4. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  5. Ethical Issues in Engineering Models : Personal Reflections

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.

    2010-01-01

    I start this contribution with an overview of my personal involvement—as an Operations Research consultant—in several engineering case-studies that may raise ethical questions; these case studies employ simulation models. Next, I present an overview of the recent literature on ethical issues in

  6. 75 FR 68179 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    Science.gov (United States)

    2010-11-05

    ... Model E4 Diesel Piston Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule...) None. Applicability (c) This AD applies to Austro Engine GmbH model E4 diesel piston engines. These.... Contact Austro Engine GmbH, Rudolf-Diesel- Strasse 11, A-2700 Weiner Neustadt, Austria, telephone: +43...

  7. 76 FR 56637 - Airworthiness Directives; Lycoming Engines Model IO-720-A1B Reciprocating Engines

    Science.gov (United States)

    2011-09-14

    ...-21-AD; Amendment 39-16791; AD 2011-18-09] RIN 2120-AA64 Airworthiness Directives; Lycoming Engines Model IO-720-A1B Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... model IO-720-A1B Lycoming Engines reciprocating engines. This AD requires a crankshaft inspection for...

  8. 76 FR 42609 - Airworthiness Directives; Lycoming Engines Model TIO 540-A Series Reciprocating Engines

    Science.gov (United States)

    2011-07-19

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Lycoming Engines Model TIO 540-A Series Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... directive (AD) for Lycoming Engines model TIO 540-A series reciprocating engines. The existing AD, AD 71-13...

  9. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  10. AADL and Model-based Engineering

    Science.gov (United States)

    2014-10-20

    Quality Attribute Analysis Security •Intrusion •Integrity •Confidentiality Safety & Reliability •MTBF • FMEA •Hazard analysis Real-time...Actuator & Wings Safety Analysis (FHA, FMEA ) Reliability Analysis (MTTF) Aircraft system: (Tier 1) Engine, Landing Gear, Cockpit, … Weight...various declarations. System Component Subsystem Capture FMEA model Capture hazards Capture risk mitigation architecture Error Model Annex can be

  11. Mechanics, Models and Methods in Civil Engineering

    CERN Document Server

    Maceri, Franco

    2012-01-01

    „Mechanics, Models and Methods in Civil Engineering” collects leading papers dealing with actual Civil Engineering problems. The approach is in the line of the Italian-French school and therefore deeply couples mechanics and mathematics creating new predictive theories, enhancing clarity in understanding, and improving effectiveness in applications. The authors of the contributions collected here belong to the Lagrange Laboratory, an European Research Network active since many years. This book will be of a major interest for the reader aware of modern Civil Engineering.

  12. Periosteum Metabolism and Nerve Fiber Positioning Depend on Interactions between Osteoblasts and Peripheral Innervation in Rat Mandible

    Science.gov (United States)

    Mauprivez, Cédric; Bataille, Caroline; Baroukh, Brigitte; Llorens, Annie; Lesieur, Julie; Marie, Pierre J.; Saffar, Jean-Louis; Biosse Duplan, Martin; Cherruau, Marc

    2015-01-01

    The sympathetic nervous system controls bone remodeling by regulating bone formation and resorption. How nerves and bone cells influence each other remains elusive. Here we modulated the content or activity of the neuropeptide Vasoactive Intestinal Peptide to investigate nerve-bone cell interplays in the mandible periosteum by assessing factors involved in nerve and bone behaviors. Young adult rats were chemically sympathectomized or treated with Vasoactive Intestinal Peptide or Vasoactive Intestinal Peptide10-28, a receptor antagonist. Sympathectomy depleted the osteogenic layer of the periosteum in neurotrophic proNerve Growth Factor and neurorepulsive semaphorin3a; sensory Calcitonin-Gene Related Peptide-positive fibers invaded this layer physiologically devoid of sensory fibers. In the periosteum non-osteogenic layer, sympathectomy activated mast cells to release mature Nerve Growth Factor while Calcitonin-Gene Related Peptide-positive fibers increased. Vasoactive Intestinal Peptide treatment reversed sympathectomy effects. Treating intact animals with Vasoactive Intestinal Peptide increased proNerve Growth Factor expression and stabilized mast cells. Vasoactive Intestinal Peptide10-28 treatment mimicked sympathectomy effects. Our data suggest that sympathetic Vasoactive Intestinal Peptide modulate the interactions between nervous fibers and bone cells by tuning expressions by osteogenic cells of factors responsible for mandible periosteum maintenance while osteogenic cells keep nervous fibers at a distance from the bone surface. PMID:26509533

  13. Building Information Modeling in engineering teaching

    DEFF Research Database (Denmark)

    Andersson, Niclas; Andersson, Pernille Hammar

    2010-01-01

    in this case is represented by adopting Building Information Modelling, BIM, for construction management purposes. Course evaluations, a questionnaire and discussions with students confirm a genuinely positive attitude towards the role-play simulation and interaction with industry professionals. The students...... to operate the ICT systems properly. This study takes on the challenge of using ICT in engineering education without diminishing the body of technical disciplinary knowledge and the understanding of the engineering context in which it is taught, practiced, and learned. The objective of the study...... is to describe and review an extensive role play simulation where students interact with real professional engineers. The role play simulation aims at providing a realistic learning context for the students in order to facilitate the learning objectives of the disciplinary knowledge of the course, which...

  14. Genome-scale modeling for metabolic engineering.

    Science.gov (United States)

    Simeonidis, Evangelos; Price, Nathan D

    2015-03-01

    We focus on the application of constraint-based methodologies and, more specifically, flux balance analysis in the field of metabolic engineering, and enumerate recent developments and successes of the field. We also review computational frameworks that have been developed with the express purpose of automatically selecting optimal gene deletions for achieving improved production of a chemical of interest. The application of flux balance analysis methods in rational metabolic engineering requires a metabolic network reconstruction and a corresponding in silico metabolic model for the microorganism in question. For this reason, we additionally present a brief overview of automated reconstruction techniques. Finally, we emphasize the importance of integrating metabolic networks with regulatory information-an area which we expect will become increasingly important for metabolic engineering-and present recent developments in the field of metabolic and regulatory integration.

  15. Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering.

    NARCIS (Netherlands)

    Becker, S.T.; Douglas, T.E.L.; Acil, Y.; Seitz, H.; Sivananthan, S.; Wiltfang, J.; Warnke, P.H.

    2010-01-01

    The aim of this study was to evaluate and compare the biocompatibility of computer-assisted designed (CAD) synthetic hydroxyapatite (HA) and tricalciumphosphate (TCP) blocks and natural bovine hydroxyapatite blocks for augmentations and endocultivation by supporting and promoting the proliferation

  16. Model based systems engineering for astronomical projects

    Science.gov (United States)

    Karban, R.; Andolfato, L.; Bristow, P.; Chiozzi, G.; Esselborn, M.; Schilling, M.; Schmid, C.; Sommer, H.; Zamparelli, M.

    2014-08-01

    Model Based Systems Engineering (MBSE) is an emerging field of systems engineering for which the System Modeling Language (SysML) is a key enabler for descriptive, prescriptive and predictive models. This paper surveys some of the capabilities, expectations and peculiarities of tools-assisted MBSE experienced in real-life astronomical projects. The examples range in depth and scope across a wide spectrum of applications (for example documentation, requirements, analysis, trade studies) and purposes (addressing a particular development need, or accompanying a project throughout many - if not all - its lifecycle phases, fostering reuse and minimizing ambiguity). From the beginnings of the Active Phasing Experiment, through VLT instrumentation, VLTI infrastructure, Telescope Control System for the E-ELT, until Wavefront Control for the E-ELT, we show how stepwise refinements of tools, processes and methods have provided tangible benefits to customary system engineering activities like requirement flow-down, design trade studies, interfaces definition, and validation, by means of a variety of approaches (like Model Checking, Simulation, Model Transformation) and methodologies (like OOSEM, State Analysis)

  17. The effect of the periosteum and strain gages on the structural response of human ribs - biomed 2009.

    Science.gov (United States)

    Kemper, Andrew R; McNally, Craig; Duma, Steffany M

    2009-01-01

    The purpose of this study was to determine if the removal of the periosteum or the application of a strain gage has any significant effect on the structural response of human ribs. A total of 32 three-point bending tests were performed on 16 matched whole rib sections obtained from the left and right sides of five male human thoraces. For one test group, matched specimens were tested to determine the effect of removing the soft tissue and periosteum versus leaving it intact. For a second test group, matched specimens were tested to determine the effects of placing a strain gage on the tension side of the specimen versus no strain gage attachment. The specimens were tested using a servo-hydraulic material testing machine (MTS) at a displacement rate of 17.78 cm/s with a fixed testing span of 10.16 cm. Prior to testing, a microCT was used to obtain a detailed cross-sectional image of each specimen at the point of the impactor blade contact. There were no statistical differences in area moment of inertia (p=0.60), distance to the neutral axis (p=0.29), peak moment (p=0.14), peak impactor displacement (p=0.13), estimated peak stress (p=0.42), or estimated peak strain (p=0.15) between specimens with the periosteum and those without the periosteum. There were no statistical differences in area moment of inertia (p=0.76), distance to the neutral axis (p=0.20), peak moment (p=0.81), peak impactor displacement (p=0.91), estimated peak stress (p=0.59), or estimated peak strain (p=0.29) between specimens with a strain gage and those without a strain gage. In summary, neither the removal of the periosteum nor the application of a strain gage has any significant effect on the structural response of human ribs in dynamic three-point bending.

  18. On science versus engineering in hydrological modelling

    Science.gov (United States)

    Melsen, Lieke

    2017-04-01

    It is always stressed that hydrological modelling is very important, to prevent floods, to mitigate droughts, to ensure food production or nature conservation. All very true, but I believe that focussing so much on the application of our knowledge (which I call `the engineering approach'), does not stimulate thorough system understanding (which I call `the scientific approach'). In many studies, science and engineering approaches are mixed, which results in large uncertainty e.g. due to a lack of system understanding. To what extent engineering and science approached are mixed depends on the Philosophy of Science of the researcher; verificationism seems to be closer related to engineering, than falsificationism or Bayesianism. In order to grow our scientific knowledge, which means increasing our understanding of the system, we need to be more critical towards the models that we use, but also recognize all the processes that influence the hydrological cycle. In an era called 'The Anthropocene' the influence of humans on the water system can no longer be neglected, and if we choose a scientific approach we have to account for human-induced processes. Summarizing, I believe that we have to account for human impact on the hydrological system, but we have to resist the temptation to directly quantify the hydrological impact on the human system.

  19. 3D Modeling Engine Representation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  20. 76 FR 33660 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    Science.gov (United States)

    2011-06-09

    ... Model E4 Diesel Piston Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... 2010-23-09, Amendment 39-16498 (75 FR 68179, November 5, 2010), for Austro Engine GmbH model E4 diesel... 2011-0039, dated March 8, 2011, adding a terminating action on Austro Engine GmbH model E4 diesel...

  1. Cycle Engine Modelling Of Spark Ignition Engine Processes during Wide-Open Throttle (WOT) Engine Operation Running By Gasoline Fuel

    Science.gov (United States)

    Rahim, M. F. Abdul; Rahman, M. M.; Bakar, R. A.

    2012-09-01

    One-dimensional engine model is developed to simulate spark ignition engine processes in a 4-stroke, 4 cylinders gasoline engine. Physically, the baseline engine is inline cylinder engine with 3-valves per cylinder. Currently, the engine's mixture is formed by external mixture formation using piston-type carburettor. The model of the engine is based on one-dimensional equation of the gas exchange process, isentropic compression and expansion, progressive engine combustion process, and accounting for the heat transfer and frictional losses as well as the effect of valves overlapping. The model is tested for 2000, 3000 and 4000 rpm of engine speed and validated using experimental engine data. Results showed that the engine is able to simulate engine's combustion process and produce reasonable prediction. However, by comparing with experimental data, major discrepancy is noticeable especially on the 2000 and 4000 rpm prediction. At low and high engine speed, simulated cylinder pressures tend to under predict the measured data. Whereas the cylinder temperatures always tend to over predict the measured data at all engine speed. The most accurate prediction is obtained at medium engine speed of 3000 rpm. Appropriate wall heat transfer setup is vital for more precise calculation of cylinder pressure and temperature. More heat loss to the wall can lower cylinder temperature. On the hand, more heat converted to the useful work mean an increase in cylinder pressure. Thus, instead of wall heat transfer setup, the Wiebe combustion parameters are needed to be carefully evaluated for better results.

  2. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...... with a major international engineering company....

  3. Engineering

    National Research Council Canada - National Science Library

    Includes papers in the following fields: Aerospace Engineering, Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering, Environmental Engineering, Industrial Engineering, Materials Engineering, Mechanical...

  4. Finite element modeling for materials engineers using Matlab

    CERN Document Server

    Oluwole, Oluleke

    2014-01-01

    Finite Element Modeling for Materials Engineers Using MATLAB® combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes.

  5. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems: Advanced Search. Journal Home > Journal of Modeling, Design and Management of Engineering Systems: Advanced Search. Log in or Register to get access to full text downloads.

  6. SEISMIC MODELING ENGINES PHASE 1 FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    BRUCE P. MARION

    2006-02-09

    Seismic modeling is a core component of petroleum exploration and production today. Potential applications include modeling the influence of dip on anisotropic migration; source/receiver placement in deviated-well three-dimensional surveys for vertical seismic profiling (VSP); and the generation of realistic data sets for testing contractor-supplied migration algorithms or for interpreting AVO (amplitude variation with offset) responses. This project was designed to extend the use of a finite-difference modeling package, developed at Lawrence Berkeley Laboratories, to the advanced applications needed by industry. The approach included a realistic, easy-to-use 2-D modeling package for the desktop of the practicing geophysicist. The feasibility of providing a wide-ranging set of seismic modeling engines was fully demonstrated in Phase I. The technical focus was on adding variable gridding in both the horizontal and vertical directions, incorporating attenuation, improving absorbing boundary conditions and adding the optional coefficient finite difference methods.

  7. Generomak: Fusion physics, engineering and costing model

    Energy Technology Data Exchange (ETDEWEB)

    Delene, J.G.; Krakowski, R.A.; Sheffield, J.; Dory, R.A.

    1988-06-01

    A generic fusion physics, engineering and economics model (Generomak) was developed as a means of performing consistent analysis of the economic viability of alternative magnetic fusion reactors. The original Generomak model developed at Oak Ridge by Sheffield was expanded for the analyses of the Senior Committee on Environmental Safety and Economics of Magnetic Fusion Energy (ESECOM). This report describes the Generomak code as used by ESECOM. The input data used for each of the ten ESECOM fusion plants and the Generomak code output for each case is given. 14 refs., 3 figs., 17 tabs.

  8. 76 FR 54373 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    Science.gov (United States)

    2011-09-01

    ...; AD 2011-18-19] RIN 2120-AA64 Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston...: For service information identified in this AD, contact Austro Engine GmbH, Rudolf-Diesel-Strasse 11, A... estimate that this AD will affect about 32 model E4 diesel piston engines, installed on airplanes of US...

  9. Engineered miniaturized models of musculoskeletal diseases.

    Science.gov (United States)

    Bersini, Simone; Arrigoni, Chiara; Lopa, Silvia; Bongio, Matilde; Martin, Ivan; Moretti, Matteo

    2016-09-01

    The musculoskeletal system is an incredible machine that protects, supports and moves the human body. However, several diseases can limit its functionality, compromising patient quality of life. Designing novel pathological models would help to clarify the mechanisms driving such diseases, identify new biomarkers and screen potential drug candidates. Miniaturized models in particular can mimic the structure and function of basic tissue units within highly controlled microenvironments, overcoming the limitations of traditional macroscale models and complementing animal studies, which despite being closer to the in vivo situation, are affected by species-specific differences. Here, we discuss the miniaturized models engineered over the past few years to analyze osteochondral and skeletal muscle pathologies, demonstrating how the rationale design of novel systems could provide key insights into the pathological mechanisms behind diseases of the musculoskeletal system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    Science.gov (United States)

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  11. Modeling of Engine Parameters for Condition-Based Maintenance of the MTU Series 2000 Diesel Engine

    Science.gov (United States)

    2016-09-01

    Distribution is unlimited. MODELING OF ENGINE PARAMETERS FOR CONDITION-BASED MAINTENANCE OF THE MTU SERIES 2000 DIESEL ENGINE Siew Peng Yue... maintenance only when needed to save on resources and cost. Formulating a model that reflects the behavior of the marine diesel engine in its “normal...program that provides high availability of the main engine. Corrective maintenance requires the performance of maintenance only when a failure occurs

  12. Genetically Engineered Mouse Models in Cancer Research

    Science.gov (United States)

    Walrath, Jessica C.; Hawes, Jessica J.; Van Dyke, Terry; Reilly, Karlyne M.

    2012-01-01

    Mouse models of human cancer have played a vital role in understanding tumorigenesis and answering experimental questions that other systems cannot address. Advances continue to be made that allow better understanding of the mechanisms of tumor development, and therefore the identification of better therapeutic and diagnostic strategies. We review major advances that have been made in modeling cancer in the mouse and specific areas of research that have been explored with mouse models. For example, although there are differences between mice and humans, new models are able to more accurately model sporadic human cancers by specifically controlling timing and location of mutations, even within single cells. As hypotheses are developed in human and cell culture systems, engineered mice provide the most tractable and accurate test of their validity in vivo. For example, largely through the use of these models, the microenvironment has been established to play a critical role in tumorigenesis, since tumor development and the interaction with surrounding stroma can be studied as both evolve. These mouse models have specifically fueled our understanding of cancer initiation, immune system roles, tumor angiogenesis, invasion, and metastasis, and the relevance of molecular diversity observed among human cancers. Currently, these models are being designed to facilitate in vivo imaging to track both primary and metastatic tumor development from much earlier stages than previously possible. Finally, the approaches developed in this field to achieve basic understanding are emerging as effective tools to guide much needed development of treatment strategies, diagnostic strategies, and patient stratification strategies in clinical research. PMID:20399958

  13. Academic program models for undergraduate biomedical engineering.

    Science.gov (United States)

    Krishnan, Shankar M

    2014-01-01

    There is a proliferation of medical devices across the globe for the diagnosis and therapy of diseases. Biomedical engineering (BME) plays a significant role in healthcare and advancing medical technologies thus creating a substantial demand for biomedical engineers at undergraduate and graduate levels. There has been a surge in undergraduate programs due to increasing demands from the biomedical industries to cover many of their segments from bench to bedside. With the requirement of multidisciplinary training within allottable duration, it is indeed a challenge to design a comprehensive standardized undergraduate BME program to suit the needs of educators across the globe. This paper's objective is to describe three major models of undergraduate BME programs and their curricular requirements, with relevant recommendations to be applicable in institutions of higher education located in varied resource settings. Model 1 is based on programs to be offered in large research-intensive universities with multiple focus areas. The focus areas depend on the institution's research expertise and training mission. Model 2 has basic segments similar to those of Model 1, but the focus areas are limited due to resource constraints. In this model, co-op/internship in hospitals or medical companies is included which prepares the graduates for the work place. In Model 3, students are trained to earn an Associate Degree in the initial two years and they are trained for two more years to be BME's or BME Technologists. This model is well suited for the resource-poor countries. All three models must be designed to meet applicable accreditation requirements. The challenges in designing undergraduate BME programs include manpower, facility and funding resource requirements and time constraints. Each academic institution has to carefully analyze its short term and long term requirements. In conclusion, three models for BME programs are described based on large universities, colleges, and

  14. Artificial Dermis Graft on the Mandible Lacking Periosteum After Excision of an Ossifying Fibroma: A Case Report

    Directory of Open Access Journals (Sweden)

    Chun-Ming Chen

    2007-07-01

    Full Text Available Collagen-based grafts have often been used as artificial tissue substitutes for the repair of tissue and organ defects. It is common surgical knowledge that autogenous or artificial skin grafts take well on the intact periosteum of bone. However, many experienced surgeons indicate that auto-genous or artificial skin grafts subsist poorly on the bone surface without periosteum. Therefore, primary closure is usually recommended in the wound healing of exposed bone. Vestibuloplasty might be needed to create enough depth of vestibule in the future. In this case report, we describe a peripheral ossifying fibroma surgically excised leaving a bony defect, which was covered by a piece of artificial dermis. Satisfactory result of the repaired surgical defect showed no need of vestibuloplasty after 6 years of follow-up.

  15. Transplantation of insulin-producing cells differentiated from human periosteum-derived progenitor cells ameliorate hyperglycemia in diabetic mice.

    Science.gov (United States)

    Dao, Lan T M; Park, Eun-Young; Lim, Sang-Min; Choi, Yong-Soo; Jung, Hye Seung; Jun, Hee-Sook

    2014-11-27

    Periosteum-derived progenitor cells (PDPCs) isolated from the adult periosteum can differentiate into several specific cell types. In this study, we examined the characteristics of human PDPCs and insulin-producing cells (IPCs) differentiated from PDPCs and their ability to ameliorate hyperglycemia when transplanted into streptozotocin-induced nonobese diabetic-severe combined immunodeficiency diabetic mice. Periosteum-derived progenitor cells were isolated from patients, expanded in culture, and subjected to a three-step differentiation protocol to produce IPCs. The expression of immunogenic, pluripotent, and pancreatic markers was examined, and glucose-stimulated insulin release in vitro was also assessed. Insulin-producing cells that differentiated from PDPCs were transplanted under the kidney capsule of streptozotocin-induced diabetic mice, and glucose levels and glucose tolerance were measured. We found that PDPCs expressed the mesenchymal stem cell markers CD73, CD90, and CD105 and the pluripotent markers, octamer-binding transcription factor 4 and Nanog, but not sex-determining region Y-box 2 or Rex1. Periosteum-derived progenitor cells expressed human leukocyte antigen-ABC but did not express human leukocyte antigen-DR or the costimulatory molecules CD80 and CD86. Differentiated IPCs expressed pancreatic hormones (insulin, glucagon, somatostatin, and glucose transporter 2), hormone processing, and secretion molecules (prohormone convertase-1 and convertase-2, Kir6.2), and pancreatic transcription factors (neurogenin 3, pancreatic and duodenal homeobox 1, sex-determining region Y-box 17). When IPCs were stimulated with glucose in vitro, insulin secretion was elevated. Transplantation of IPCs under the kidney capsules of diabetic mice improved hyperglycemia and glucose tolerance. Human insulin was detected in the serum and kidney sections of mice transplanted with IPCs differentiated from PDPCs. These results suggest that IPCs differentiated from PDPCs might

  16. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. ... Publisher. Department of Chemical Engineering, University of Port Harcourt. Sponsors. The Journal of Modeling, Design & Management of Engineering Systems is published by. Dialetique Publishers. ISSN: 1596-3497. AJOL African Journals Online.

  17. Mars 2020 Model Based Systems Engineering Pilot

    Science.gov (United States)

    Dukes, Alexandra Marie

    2017-01-01

    The pilot study is led by the Integration Engineering group in NASA's Launch Services Program (LSP). The Integration Engineering (IE) group is responsible for managing the interfaces between the spacecraft and launch vehicle. This pilot investigates the utility of Model-Based Systems Engineering (MBSE) with respect to managing and verifying interface requirements. The main objectives of the pilot are to model several key aspects of the Mars 2020 integrated operations and interface requirements based on the design and verification artifacts from Mars Science Laboratory (MSL) and to demonstrate how MBSE could be used by LSP to gain further insight on the interface between the spacecraft and launch vehicle as well as to enhance how LSP manages the launch service. The method used to accomplish this pilot started through familiarization of SysML, MagicDraw, and the Mars 2020 and MSL systems through books, tutorials, and NASA documentation. MSL was chosen as the focus of the model since its processes and verifications translate easily to the Mars 2020 mission. The study was further focused by modeling specialized systems and processes within MSL in order to demonstrate the utility of MBSE for the rest of the mission. The systems chosen were the In-Flight Disconnect (IFD) system and the Mass Properties process. The IFD was chosen as a system of focus since it is an interface between the spacecraft and launch vehicle which can demonstrate the usefulness of MBSE from a system perspective. The Mass Properties process was chosen as a process of focus since the verifications for mass properties occur throughout the lifecycle and can demonstrate the usefulness of MBSE from a multi-discipline perspective. Several iterations of both perspectives have been modeled and evaluated. While the pilot study will continue for another 2 weeks, pros and cons of using MBSE for LSP IE have been identified. A pro of using MBSE includes an integrated view of the disciplines, requirements, and

  18. Requirements Engineering Model: Role Based Goal Oriented Model

    Directory of Open Access Journals (Sweden)

    Sandfreni

    2016-01-01

    Full Text Available Requirements engineering approach through intentional perspective is one of the arguments that appear in the field of requirement engineering. That approach can explain the characteristics of the behavior of an actor. The usage Goal Based Workflow and KAOS method in iStar modeling might help the system analyst to gain knowledge about the internal process inside each of actor sequentially, such that the whole sequential activity to achieve the goal are exposed clearly in those actor’s internal process. The adoption of the concept of the role of RACI diagram on Role Based Goal Oriented Model system analyst gain complete knowledge about requirements of actor who involve in a system. System analyst might also distinguish the dependency between each actor in each process. Those dependencies are exhibited in strategic dependency model. In addition, the internal activities of the actor are also shown in strategic rationale model.

  19. Loss terms in free-piston Stirling engine models

    Science.gov (United States)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  20. Engineering models for merging wakes in wind farm optimization applications

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Murcia Leon, Juan Pablo

    2015-01-01

    The present paper deals with validation of 4 different engineering wake superposition approaches against detailed CFD simulations and covering different turbine interspacing, ambient turbulence intensities and mean wind speeds. The first engineering model is a simple linear superposition of wake ...

  1. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Focus and Scope. The Journal of Modeling, Design & Management of Engineering Systems publishes original research reports, short communications, and critical reviews in any branch of engineering and allied fields such as applied mathematics, applied physics, applied chemistry and management sciences.

  2. Osteogenic differentiation of periosteum-derived stromal cells in blast-associated traumatic loading

    Science.gov (United States)

    Sory, David R.; Amin, Harsh D.; Rankin, Sara M.; Proud, William G.

    2017-06-01

    One of the most recurrent medical complications resulting from blast trauma includes blast-induced heterotopic ossification. Heterotopic ossification refers to the pathologic formation of extraskeletal bone in non-osseous tissue. Although a number of studies have established the interaction between mechanics and biology in bone formation following shock trauma, the exact nature of the mechanical stimuli associated to blast-loading and their influence on the activation of osteogenic differentiation of cells remain unanswered. Here we present the design and calibration of a loading platform compatible with living cells to examine the effects of mechanical stress pulses of blast-associated varying strain rates on the activation of osteogenic differentiation of periosteum (PO) cells. Multiaxial compression loadings of PO cells are performed at different magnitudes of stress and ranges of strain rate. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injuries at the cellular level. This work was conducted under the auspices of the Royal British Legion Centre for Blast Injury Studies at Imperial College London. The authors would like to acknowledge the financial support of the Royal British Legion.

  3. LNGFR induction during osteogenesis of human jaw periosteum-derived cells.

    Science.gov (United States)

    Alexander, Dorothea; Schäfer, Fabian; Munz, Adelheid; Friedrich, Björn; Klein, Christian; Hoffmann, Jürgen; Bühring, Hans-Jörg; Reinert, Siegmar

    2009-01-01

    Isolated jaw periosteum-derived cells (JPCs) comprise a morphologically heterogeneous population. There are no known specific surface markers that are able to distinguish between progenitors and cells of other tissue types. The aim of our study was to identify differentiation markers as predictors of JPC mineralization capacity. JPCs underwent osteogenic differentiation after cultivation in osteogenic medium containing known activators. By FACS analysis, we found the low affinity nerve growth factor receptor (LNGFR-CD271) to be induced during the first five days of osteogenesis and that it was expressed at higher levels in mineralizing JPCs (mJPCs) in comparison to non-mineralizing JPCs (nmJPCs). Similar results were obtained by semi-quantitative immunohistochemical stainings and western blot analyses. Quantitative real-time PCR results showed significantly higher LNGFR and alkaline phosphatase transcript levels in mJPCs compared to nmJPCs. LNGFR is a differentiation marker that distinguishes between mineralizing JPCs and non-mineralizing JPCs during the first phase of osteogenesis and can therefore be considered an early surface marker of osteogenic capacity in vitro. Copyright (c) 2009 S. Karger AG, Basel.

  4. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  5. Cognitive engineering models in space systems

    Science.gov (United States)

    Mitchell, Christine M.

    1993-01-01

    , the PDRS was identified as the most accessible system for the demonstration. Pursuant to this a PDRS simulation was obtained from the HCIL and an initial knowledge engineering effort was conducted to understand the operator's tasks in the PDRS application. The preliminary results of the knowledge engineering effort and an initial formulation of an operator function model (OFM) are contained in the appendices.

  6. Software Engineering Laboratory (SEL) cleanroom process model

    Science.gov (United States)

    Green, Scott; Basili, Victor; Godfrey, Sally; Mcgarry, Frank; Pajerski, Rose; Waligora, Sharon

    1991-01-01

    The Software Engineering Laboratory (SEL) cleanroom process model is described. The term 'cleanroom' originates in the integrated circuit (IC) production process, where IC's are assembled in dust free 'clean rooms' to prevent the destructive effects of dust. When applying the clean room methodology to the development of software systems, the primary focus is on software defect prevention rather than defect removal. The model is based on data and analysis from previous cleanroom efforts within the SEL and is tailored to serve as a guideline in applying the methodology to future production software efforts. The phases that are part of the process model life cycle from the delivery of requirements to the start of acceptance testing are described. For each defined phase, a set of specific activities is discussed, and the appropriate data flow is described. Pertinent managerial issues, key similarities and differences between the SEL's cleanroom process model and the standard development approach used on SEL projects, and significant lessons learned from prior cleanroom projects are presented. It is intended that the process model described here will be further tailored as additional SEL cleanroom projects are analyzed.

  7. Osteoinduction of Umbilical Cord and Palate Periosteum-Derived Mesenchymal Stem Cells on Poly-Co-Glycolytic Acid Nano-Microfibers

    Science.gov (United States)

    Caballero, Montserrat; Pappa, Andrew; Roden, Katherine; Krochmal, Daniel J.; van Aalst, John A.

    2014-01-01

    The need for tissue engineered bone to treat complex craniofacial bone defects secondary to congenital anomalies, trauma, and cancer extirpation is sizeable. Traditional strategies for treatment have focused on autologous bone in younger patients and bone substitutes in older patients. However, the capacity for merging new technologies, including the creation of nano and microfiber scaffolds with advances in natal sources of stem cells, is crucial to improving our treatment options. The advantages of using smaller diameter fibers for scaffolding are two-fold: the similar fiber diameters mimic the in vivo extracellular matrix construct;, and smaller fibers also provide a dramatically increased surface area for cell-scaffold interactions. In this study, we compare the capacity for a polymer with Federal Drug Administration (FDA) approval for use in humans, poly-co-glycolytic acid (PLGA) from Delta polymer, to support osteoinduction of mesenchymal stem cells (MSCs) harvested from the umbilical cord (UC) and palate periosteum (PP). Proliferation of both UC- and PP-derived MSCs was improved on PLGA scaffolds. PLGA scaffolds promoted UC MSC differentiation (indicated by earlier gene expression and higher calcium deposition), but not in PP-derived MSCs. UC-derived MSCs on PLGA nano-micro-fiber scaffolds have potential clinical utility in providing solutions for craniofacial bone defects, with the added benefit of earlier availability. PMID:24691324

  8. Mean Value Modelling of a Turbocharged SI Engine

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.

    1998-01-01

    An important paradigm for the modelling of naturallly aspirated (NA) spark ignition (SI) engines for control purposes is the Mean Value Engine Model (MVEM). Such models have a time resolution which is just sufficient to capture the main details of the dynamic performance of NA SI engines...... but not the cycle-by-cycle behavior. In principle such models are also physically based,are very compact in a mathematical sense but nevertheless can have reasonable prediction accuracy. Presently no MVEMs have been constructed for intercooled turbocharged SI engines because their complexity confounds the simple...... physical understanding and description of such engines. This paper presents a newly constructed MVEM for a turbocharged SI engine which contains the details of the compressor and turbine characteristics in a compact way. The model has been tested against the responses of an experimental engine and has...

  9. Modeling as an Engineering Habit of Mind and Practice

    Science.gov (United States)

    Lammi, Matthew D.; Denson, Cameron D.

    2017-01-01

    In this paper we examine a case study of a pedagogical strategy that focuses on the teaching of modeling as a habit of mind and practice for novice designers engaged in engineering design challenges. In an engineering design course, pre-service teachers created modeling artifacts in the form of conceptual models, graphical models, mathematical…

  10. Thermodynamic and themoeconomic optimization of isothermal endoreversible chemical engine models

    Science.gov (United States)

    Ocampo-García, A.; Barranco-Jiménez, M. A.; Angulo-Brown, F.

    2017-12-01

    A branch of finite-time thermodynamics (FTT) is the thermoeconomical analysis of simplified power plant models. The most studied models are those of the Curzon-Ahlborn (CA) and Novikov-Chambadal types. In the decade of 90's of the past century, the FTT analysis of thermal engines was extended to chemical engines. In the present paper we made a thermoeconomical analysis of heat engines and chemical engines of the CA and Novikov types. This study is carried out for isothermal endoreversible chemical engine models with a linear mass transfer law and under three different modes of thermodynamic performance (maximum power, maximum ecological function and maximum efficient power).

  11. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  12. [Evaluation of images of periosteum on computed tomography in children with malignant bone tumours before and after chemotherapy].

    Science.gov (United States)

    Kopys-Wiszniewska, Izabela

    2008-01-01

    to assess the value of different images of periosteal reaction on computed tomography (CT) in children with malignant bone tumours in determining the effectiveness of the chemotherapy. To evaluate the prognostic value of particular symptoms of the periosteal reaction. material includes documentation of CT imaging of periosteum in children with malignant bone tumours. Investigations were performed in 80 children (39 boys and 41 girls), aged from 3 years and 6 months to 20 years and 5 months, treated at the Institute of Mother and Child in the years 1995-2000. Osteogenic sarcoma (59 patients), Ewing's sarcoma/PNET (14 patients) and other mesenchymal tumours (7 patients) were diagnosed. The assessment of the periosteum was carried out before and after preliminary chemotherapy. Eleven symptoms of the periosteal reaction were distinguished: 1) changes in calcification, 2) thickness and 3) outlines of the periosteum, 4) change of number of stratifications, 5) reconstruction of the broken periosteum and 6) rebuilding of the Codman's triangle, 7) changes of calcification, 8) incorporation and 9) the number of spicules as well as 10) changes in the zone of unreactive areas and 11) distance from the periosteum to the bones. Each symptom was evaluated according to a three-grade scale: favourable, uncertain, unfavourable. The kind of response to chemotherapy was determined on the basis of these symptoms relations. The response was good if there were at least twice as many favourable as uncertain signs. Poor response was indicated if there were more uncertain than favourable symptoms or if an unfavourable symptom was found. The remaining situations accounted for medium response. CT scan assessment was compared with the tumour histopathological examination after surgical excision. The data underwent statistical analysis. the relationship of symptoms of the periosteal reaction and histopathological response to chemotherapy was determined. Assessment of tumour reaction to

  13. Diagrammatic Models in the Engineering Sciences.

    NARCIS (Netherlands)

    Boon, Mieke

    2008-01-01

    This paper is concerned with scientific reasoning in the engineering sciences. Engineering sciences aim at explaining, predicting and describing physical phenomena occurring in technological devices. The focus of this paper is on mathematical description. These mathematical descriptions are

  14. Social Engineering Attack Detection Model: SEADMv2

    CSIR Research Space (South Africa)

    Mouton, F

    2015-10-01

    Full Text Available and is only able to cater for social engineering attacks that use bidirectional communication. Previous research discovered that social engineering attacks can be classified into three different categories, namely attacks that utilise bidirectional...

  15. Engineering Glass Passivation Layers -Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  16. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  17. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Science.gov (United States)

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  18. Survey of Traceability Approaches in Model-Driven Engineering

    NARCIS (Netherlands)

    Galvao, I.; Göknil, Arda

    2007-01-01

    Models have been used in various engineering fields to help managing complexity and represent information in different abstraction levels, according to specific notations and stakeholder's viewpoints. Model-Driven Engineering (MDE) gives the basic principles for the use of models as primary

  19. Transforming System Engineering through Model-Centric Engineering

    Science.gov (United States)

    2015-11-18

    fit into the model? We initially developed (as a straw man) an example model in System Modeling Language (SysML) that represented the Integrated...strain transitions from elastic to plastic deformation, etc.) will give erroneous results Mechanical or electro-mechanical control and isolation

  20. Mean Value Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Muller, Martin; Chevalier, Alain

    1999-01-01

    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR......). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, ver fast manifold pressure, manifold temperature, port and EGR mass flow sensores. Reasonable agreement has been obtained on an experimental engine, mounted on a dynamometer....

  1. Applied data analysis and modeling for energy engineers and scientists

    CERN Document Server

    Reddy, T Agami

    2011-01-01

    ""Applied Data Analysis and Modeling for Energy Engineers and Scientists"" discusses mathematical models, data analysis, and decision analysis in modeling. The approach taken in this volume focuses on the modeling and analysis of thermal systems in an engineering environment, while also covering a number of other critical areas. Other material covered includes the tools that researchers and engineering professionals will need in order to explore different analysis methods, use critical assessment skills and reach sound engineering conclusions. The book also covers process and system design and

  2. Introducing Model Based Systems Engineering Transforming System Engineering through Model-Based Systems Engineering

    Science.gov (United States)

    2014-03-31

    BPMN ).  This  is  when  the...to  a  model-­‐centric   approach.     The   AGM   was   developed   using   the   iGrafx6   tool   with   BPMN   [12... BPMN  notation  as  shown  in  Figure  14.  It   provides  a  time-­‐sequenced  perspective  on  the  process

  3. Modeling pollution formation in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  4. A Model for Sustainable Humanitarian Engineering Projects

    Directory of Open Access Journals (Sweden)

    Evan Thomas

    2009-11-01

    Full Text Available The engineering profession should embrace a new mission statement—to contribute to the building of a more sustainable, stable, and equitable world. Recently, engineering students and professionals in the United States have shown strong interest in directly addressing the needs of developing communities worldwide. That interest has taken the form of short-and medium-term international trips through Engineers Without Borders—USA and similar organizations. There are also several instances where this kind of outreach work has been integrated into engineering education at various US institutions such as the University of Colorado at Boulder. This paper addresses the challenges and opportunities associated with balancing two goals in engineering for humanitarian development projects: (i effective sustainable community development, and (ii meaningful education of engineers. Guiding principles necessary to meet those two goals are proposed.

  5. Model-Based Engineering mit Industriesteuerungen

    OpenAIRE

    Hofmann, Andreas; Menager, Nils; Schweig, Stephan; Mikelsons, Lars

    2015-01-01

    Das durchgängige Engineering über den gesamten Lebenszyklus ist neben der horizontalen und vertikalen Vernetzung die dritte Säule von Industrie 4.0. Durchgängigkeit im Engineering bedeutet dabei insbesondere Wiederverwendung von Modellen aus vorherigen Entwicklungsphasen. Beispiele hierfür sind die virtuelle Inbetriebnahme sowie die Codegenerierung. Dieser Beitrag stellt dar, wie diese modernen Engineering-Methoden bei der Verwendung von Rexroth Komponenten angewendet werden können. Die Koste...

  6. Practical Techniques for Modeling Gas Turbine Engine Performance

    Science.gov (United States)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.

    2016-01-01

    The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.

  7. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  8. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    Science.gov (United States)

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  9. Modeling Engineered Nanomaterials (ENMs) Fate and ...

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  10. Human factors engineering program review model

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element.

  11. Modelling and Simulation of Gas Engines Using Aspen HYSYS

    Directory of Open Access Journals (Sweden)

    M. C. Ekwonu

    2013-12-01

    Full Text Available In this paper gas engine model was developed in Aspen HYSYS V7.3 and validated with Waukesha 16V275GL+ gas engine. Fuel flexibility, fuel types and part load performance of the gas engine were investigated. The design variability revealed that the gas engine can operate on poor fuel with low lower heating value (LHV such as landfill gas, sewage gas and biogas with biogas offering potential integration with bottoming cycles when compared to natural gas. The result of the gas engine simulation gave an efficiency 40.7% and power output of 3592kW.

  12. Engineering teacher training models and experiences

    Science.gov (United States)

    González-Tirados, R. M.

    2009-04-01

    Education Area, we renewed the programme, content and methodology, teaching the course under the name of "Initial Teacher Training Course within the framework of the European Higher Education Area". Continuous Training means learning throughout one's life as an Engineering teacher. They are actions designed to update and improve teaching staff, and are systematically offered on the current issues of: Teaching Strategies, training for research, training for personal development, classroom innovations, etc. They are activities aimed at conceptual change, changing the way of teaching and bringing teaching staff up-to-date. At the same time, the Institution is at the disposal of all teaching staff as a meeting point to discuss issues in common, attend conferences, department meetings, etc. In this Congress we present a justification of both training models and their design together with some results obtained on: training needs, participation, how it is developing and to what extent students are profiting from it.

  13. Using cognitive modeling for requirements engineering in anesthesiology

    NARCIS (Netherlands)

    Pott, C; le Feber, J

    2005-01-01

    Cognitive modeling is a complexity reducing method to describe significant cognitive processes under a specified research focus. Here, a cognitive process model for decision making in anesthesiology is presented and applied in requirements engineering. Three decision making situations of

  14. An algebraic approach to modeling in software engineering

    Energy Technology Data Exchange (ETDEWEB)

    Loegel, G.J. [Superconducting Super Collider Lab., Dallas, TX (United States)]|[Michigan Univ., Ann Arbor, MI (United States); Ravishankar, C.V. [Michigan Univ., Ann Arbor, MI (United States)

    1993-09-01

    Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ``computer science`` objects like abstract data types, but in practice software errors are often caused because ``real-world`` objects are improperly modeled. There is a large semantic gap between the customer`s objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form.

  15. Compact and Accurate Turbocharger Modelling for Engine Control

    DEFF Research Database (Denmark)

    Sorenson, Spencer C; Hendricks, Elbert; Magnússon, Sigurjón

    2005-01-01

    (Engine Control Unit) as a table. This method uses a great deal of memory space and often requires on-line interpolation and thus a large amount of CPU time. In this paper a more compact, accurate and rapid method of dealing with the compressor modelling problem is presented and is applicable to all......With the current trend towards engine downsizing, the use of turbochargers to obtain extra engine power has become common. A great díffuculty in the use of turbochargers is in the modelling of the compressor map. In general this is done by inserting the compressor map directly into the engine ECU...

  16. Application for certification 1993 model year heavy-duty diesel engines - Cummins Engine Company

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Each year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement or compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  17. Therapeutic efficacy of guided tissue regeneration and connective tissue autotransplants with periosteum in the management of gingival recession

    Directory of Open Access Journals (Sweden)

    Jovičić Bojan

    2008-01-01

    Full Text Available Background/Aim. Gingival recession progression in clinical practice as an ethiological factor of periodontal diseases, and symptoms of the disease have caused the development of various surgical procedures and techniques of the reconstruction of periodontal defects. The aim of this study was to verify efficacy of surgical procedures that include connective tissue autotransplants with periosteum and guided tissue regeneration for the treatment of gingival recession. Methods. The study included 20 teet with gingival recession, Müller class II and III. Ten teeth with gingival recession were treated with resorptive membrane and coronary guided surgical flap (GTR group. On the contralateral side 10 teeth with gingival recession were treated with connective tissue autotransplants with periosteum in combination with coronary guided surgical flap (TVT group. We measured the degree of epithelial attachment (DEA, width of subgingival curettage (WGC and vertical deepness of recession (VDR. For statistical significance we used Student's ttest. Results. The study revealed statistical significance in reducing VDR by both used treatments. Root deepness in GTR and TVT group was 63.5%, and 90%, respectively. With both surgical techniques we achieved coronary dislocation of the epithelial attachment, larger zone of gingival curettage, and better oral hygiene. Conclusion. Current surgical techniques are effective in the regeneration of deep periodontal spaces and the treatment of gingival recession. Significantly better results were achieved with the used coronary guided surgical flap than with guided tissue regeneration.

  18. Osseous Flap of Galea and Periosteum Filled With Mesenchymal Stem Cells, Platelet-Rich Plasma, Bone Dust, and Hyaluronic Acid.

    Science.gov (United States)

    Brock, Ryane Schmidt; Viterbo, Fausto; Deffune, Elenice; Domingues, Maria Aparecida Custodio; Mamprim, Maria Jaqueline; Paschoalinotte, Eloisa Elena

    2017-10-01

    Reconstructive surgery to craniofacial deformities caused by tumor ressections, traumas or congenital malformation are frequent in medicine practice. It aims to provide the patients with better quality of life and functional improvement of speech, breathing, chewing, and swallowing. Many are the techniques described in the literature to recover bone defects. This study evaluated a vascularized galeal and periosteum flap in rabbits, which could possibly substitute the bone graft in reconstructive surgery, especially for facial defects. It involved rabbits, divided into 12 groups, submitted to a surgical procedure to construct the galea and periosteum cranial flap filled with fragments of cranial bone, platelet-rich plasma, mesenchimal stem cells, and hyaluronic acid. The evaluation methods included image examinations and histological analysis.The results demonstrated bone formation with the use of platelet-rich plasma, mesenchimal stem cells, and bone fragments. The use of several enrichment materials of osseous cellular stimulation improved the quality and bone tissue organization. The more enrichment factor used, the better the tissue quality result was.Much research should be done to improve the methods and to analyze if results in human have the same bone formation as it happened in rabbits.

  19. Predictive modeling and reducing cyclic variability in autoignition engines

    Science.gov (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-08-30

    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  20. An Object Model for a Rocket Engine Numerical Simulator

    Science.gov (United States)

    Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.

    1998-01-01

    Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.

  1. Underwater striling engine design with modified one-dimensional model

    Directory of Open Access Journals (Sweden)

    Daijin Li

    2015-05-01

    Full Text Available Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA. The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  2. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  3. Mean Value SI Engine Model for Control Studies

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Sorenson, Spencer C

    1990-01-01

    This paper presents a mathematically simple nonlinear three state (three differential equation) dynamic model of an SI engine which has the same steady state accuracy as a typical dynamometer measurement of the engine over its entire speed/load operating range (± 2.0%). The model's accuracy...... for large, fast transients is of the same order in the same operating region. Because the model is mathematically compact, it has few adjustable parameters and is thus simple to fit to a given engine either on the basis of measurements or given the steady state results of a larger cycle simulation package...

  4. Propulsion Controls Modeling for a Small Turbofan Engine

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin

    2017-01-01

    A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.

  5. A Compositional Knowledge Level Process Model of Requirements Engineering

    NARCIS (Netherlands)

    Herlea, D.E.; Jonker, C.M.; Treur, J.; Wijngaards, W.C.A.

    2002-01-01

    In current literature few detailed process models for Requirements Engineering are presented: usually high-level activities are distinguished, without a more precise specification of each activity. In this paper the process of Requirements Engineering has been analyzed using knowledge-level

  6. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. Journal Homepage Image. The Journal of Modeling, Design & Management of Engineering Systems publishes original research reports, short communications, and critical reviews in any branch of engineering and allied fields such as ...

  7. Semantic modeling and interoperability in product and process engineering a technology for engineering informatics

    CERN Document Server

    2013-01-01

    In the past decade, feature-based design and manufacturing has gained some momentum in various engineering domains to represent and reuse semantic patterns with effective applicability. However, the actual scope of feature application is still very limited. Semantic Modeling and Interoperability in Product and Process Engineering provides a systematic solution for the challenging engineering informatics field aiming at the enhancement of sustainable knowledge representation, implementation and reuse in an open and yet practically manageable scale.   This semantic modeling technology supports uniform, multi-facet and multi-level collaborative system engineering with heterogeneous computer-aided tools, such as CADCAM, CAE, and ERP.  This presented unified feature model can be applied to product and process representation, development, implementation and management. Practical case studies and test samples are provided to illustrate applications which can be implemented by the readers in real-world scenarios. �...

  8. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  9. Multidisciplinary Engineering Models: Methodology and Case Study in Spreadsheet Analytics

    OpenAIRE

    Birch, D.; Liang, H.; Ko, J.; Kelly, P; Field, A.; Mullineux, G; Simondetti, A

    2014-01-01

    This paper demonstrates a methodology to help practitioners maximise the utility of complex multidisciplinary engineering models implemented as spreadsheets, an area presenting unique challenges. As motivation we investigate the expanding use of Integrated Resource Management(IRM) models which assess the sustainability of urban masterplan designs. IRM models reflect the inherent complexity of multidisciplinary sustainability analysis by integrating models from many disciplines. This complexit...

  10. THERMODYNAMIC MODELLING OF A PISTONS ENGINE ...

    African Journals Online (AJOL)

    2013-06-30

    Jun 30, 2013 ... principal mechanisms of formation of the various pollutants are of thermal nature, it was necessary to ... unburnt residues, progressive combustion, the heat transfer and propagation of flame in the study of the ... An experimental research into the use of LPG in spark-ignition outboard engines is presented.

  11. THERMODYNAMIC MODELLING OF A PISTONS ENGINE ...

    African Journals Online (AJOL)

    2013-06-30

    Jun 30, 2013 ... ABSTRACT. The internal combustion engines are under development remarkable these last decades, but they represent, currently, a very important source of polluting gas emissions. The nitrogen oxides (NOx) form part of these polluting emissions, and have a harmful effect on human health, as well as the ...

  12. Gamified Requirements Engineering: Model and Experimentation

    NARCIS (Netherlands)

    Lombriser, Philipp; Dalpiaz, Fabiano; Lucassen, Garm; Brinkkemper, Sjaak

    2016-01-01

    [Context & Motivation] Engaging stakeholders in requirements engineering (RE) influences the quality of the requirements and ultimately of the system to-be. Unfortunately, stakeholder engagement is often insufficient, leading to too few, low-quality requirements. [Question/problem] We aim to

  13. The Engineer Model Improvement Program Plan

    Science.gov (United States)

    1988-08-01

    that combat results are inextricably bound to the terrain, whether engineer modified or not (e.g., Kursk, Monte Casino, North Africa, and Market Garden...34 " ’ - - - - - ALBE ,--BA -- Hi E-1-2 !! Army DTD Production in Costa Rica Quad No. Quad Name 32451 Barranca 3245IV Golfo 3246111 Chomes 3246 IV

  14. Modeling uncertainty in requirements engineering decision support

    Science.gov (United States)

    Feather, Martin S.; Maynard-Zhang, Pedrito; Kiper, James D.

    2005-01-01

    One inherent characteristic of requrements engineering is a lack of certainty during this early phase of a project. Nevertheless, decisions about requirements must be made in spite of this uncertainty. Here we describe the context in which we are exploring this, and some initial work to support elicitation of uncertain requirements, and to deal with the combination of such information from multiple stakeholders.

  15. Engineering Student's Ethical Awareness and Behavior: A New Motivational Model.

    Science.gov (United States)

    Bairaktarova, Diana; Woodcock, Anna

    2017-08-01

    Professional communities are experiencing scandals involving unethical and illegal practices daily. Yet it should not take a national major structure failure to highlight the importance of ethical awareness and behavior, or the need for the development and practice of ethical behavior in engineering students. Development of ethical behavior skills in future engineers is a key competency for engineering schools as ethical behavior is a part of the professional identity and practice of engineers. While engineering educators have somewhat established instructional methods to teach engineering ethics, they still rely heavily on teaching ethical awareness, and pay little attention to how well ethical awareness predicts ethical behavior. However the ability to exercise ethical judgement does not mean that students are ethically educated or likely to behave in an ethical manner. This paper argues measuring ethical judgment is insufficient for evaluating the teaching of engineering ethics, because ethical awareness has not been demonstrated to translate into ethical behavior. The focus of this paper is to propose a model that correlates with both, ethical awareness and ethical behavior. This model integrates the theory of planned behavior, person and thing orientation, and spheres of control. Applying this model will allow educators to build confidence and trust in their students' ability to build a professional identity and be prepared for the engineering profession and practice.

  16. Engine System Model Development for Nuclear Thermal Propulsion

    Science.gov (United States)

    Nelson, Karl W.; Simpson, Steven P.

    2006-01-01

    In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.

  17. A quantum heat engine based on Tavis-Cummings model

    Science.gov (United States)

    Sun, Kai-Wei; Li, Ran; Zhang, Guo-Feng

    2017-09-01

    This paper will investigate a four-stroke quantum heat engine based on the Tavis-Cummings model. The cycle of the heat engine is similar to the Otto cycle in classical thermodynamics. The relationship between output power as well as cycle efficiency and external physical system parameters are given. Under this condition, the entanglement behavior of the system will be studied. The system can show considerable entanglement by strictly controlling relevant parameters. Unlike common two-level quantum heat engines, efficiency is a function of temperature, showing interesting and unexpected phenomena. Several ways to adjust engine properties by external parameters are proposed, with which the output power and efficiency can be optimized. The heat engine model exhibits high efficiency and output power with the participation of a small number of photons, and decay rapidly as the number of photons increases in entangled area but shows interesting behaviors in non-entangled area of photon numbers.

  18. Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...

  19. Solving Engineering, Project, and Production Management Problems through Modeling

    OpenAIRE

    Chien-Ho Ko

    2016-01-01

    This issue presents five papers covering engineering management, project management, and production management. While distinct, these three fields frequently overlap and share common managerial concepts, e.g. solving problems through modeling.

  20. Implementing model based systems engineering in South Africa

    CSIR Research Space (South Africa)

    Oosthuizen, Rudolph

    2017-10-01

    Full Text Available of the system may be structured and organized into an architecture. The conceptual models may assist design by understanding the relationship between the system as a whole and its parts to enable deriving possible emergent properties (Buede 2000, Ramos et al... for systems engineering and include concepts such as interface and flow specifications, system concepts, parametric, and integrated requirements. SysML aims to provide a standard modelling language for systems engineering to analyze, specify, design...

  1. Model-driven and software product line engineering

    CERN Document Server

    Royer, Jean-Claude

    2013-01-01

    Many approaches to creating Software Product Lines have emerged that are based on Model-Driven Engineering. This book introduces both Software Product Lines and Model-Driven Engineering, which have separate success stories in industry, and focuses on the practical combination of them. It describes the challenges and benefits of merging these two software development trends and provides the reader with a novel approach and practical mechanisms to improve software development productivity.The book is aimed at engineers and students who wish to understand and apply software product lines

  2. Engine panel seals for hypersonic engine applications: High temperature leakage assessments and flow modelling

    Science.gov (United States)

    Steinetz, Bruce M.; Mutharasan, Rajakkannu; Du, Guang-Wu; Miller, Jeffrey H.; Ko, Frank

    1992-01-01

    A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating horizontal engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the seal concept design and development of two new seal classes that show promise of meeting these demands will be presented. These seals include the ceramic wafer seal and the braided ceramic rope seal. Presented are key elements of leakage flow models for each of these seal types. Flow models such as these help designers to predict performance-robbing parasitic losses past the seals, and estimate purge coolant flow rates. Comparisons are made between measured and predicted leakage rates over a wide range of engine simulated temperatures and pressures, showing good agreement.

  3. The Influence of Engineers' Training Models on Ethics and Civic Education Component in Engineering Courses in Portugal

    Science.gov (United States)

    Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina

    2017-01-01

    The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its…

  4. Engineers' Non-Scientific Models in Technology Education

    Science.gov (United States)

    Norstrom, Per

    2013-01-01

    Engineers commonly use rules, theories and models that lack scientific justification. Examples include rules of thumb based on experience, but also models based on obsolete science or folk theories. Centrifugal forces, heat and cold as substances, and sucking vacuum all belong to the latter group. These models contradict scientific knowledge, but…

  5. An intercausal cancellation model for Bayesian-network engineering

    NARCIS (Netherlands)

    Woudenberg, Steven P D; Van Der Gaag, Linda C.; Rademaker, Carin M A

    2015-01-01

    When constructing Bayesian networks with domain experts, network engineers often use the noisy-OR model, and causal interaction models more generally, to alleviate the burden of probability elicitation: the use of such a model serves to reduce the number of probabilities to be elicited on the one

  6. Pretreatment of periosteum with TGF-beta1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits.

    Science.gov (United States)

    Olivos-Meza, A; Fitzsimmons, J S; Casper, M E; Chen, Q; An, K-N; Ruesink, T J; O'Driscoll, S W; Reinholz, G G

    2010-09-01

    To compare the efficacy of in situ transforming growth factor-beta1 (TGF-beta1)-pretreated periosteum to untreated periosteum for regeneration of osteochondral tissue in rabbits. In the pretreatment group, 12 month-old New Zealand white rabbits received subperiosteal injections of 200 ng of TGF-beta1 percutaneously in the medial side of the proximal tibia, 7 days prior to surgery. Control rabbits received no treatment prior surgery. Osteochondral transverse defects measuring 5mm proximal to distal and spanning the entire width of the patellar groove were created and repaired with untreated or TGF-beta1-pretreated periosteal grafts. Post-operatively the rabbits resumed normal cage activity for 6 weeks. Complete filling of the defects with regenerated tissue was observed in both the TGF-beta1-pretreated and control groups with reformation of the original contours of the patellar groove. The total histological score (modified O'Driscoll) in the TGF-beta1-pretreated group, 20 (95% Confidence Interval (CI), 19-21), was significantly higher (P=0.0001) than the control group, 18 (16-19). The most notable improvements were in structural integrity and subchondral bone regeneration. No significant differences in glycosaminoglycan or type II collagen content, or equilibrium modulus were found between the surgical groups. The cambium of the periosteum regenerated at the graft harvest site was significantly thicker (P=0.0065) in the TGF-beta1-pretreated rabbits, 121 microm (94-149), compared to controls, 74 microm (52-96), after 6 weeks. This study demonstrates that in situ pretreatment of periosteum with TGF-beta1 improves osteochondral tissue regeneration at 6-weeks post-op compared to untreated periosteum in 12 month-old rabbits. Copyright 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  8. Quantum heat engine: A fully quantized model

    Science.gov (United States)

    Youssef, M.; Mahler, G.; Obada, A.-S. F.

    2010-01-01

    Motivated by the growing interest in the nanophysics and the field of quantum thermodynamics [J. Gemmer, M. Michel, G. Mahler, Springer, 2005] we study a system consisting of two different 2-level atoms (spins) coupled to a quantum oscillator (resonator field mode), and each spin linked to a heat bath with different temperatures. We find that the energy gradient imposed on the system and the “coherent driving” of the two atoms achieved by the oscillator make this system act as a thermodynamic machine. We analyze the engine dynamics using the recently developed definitions of heat flux and power [E. Boukobza, D.J. Tannor, Phys. Rev. A. 74 (2006) 063823; H. Weimer, M.J. Henrich, F. Rempp, H. Schröder, G. Mahler, Eur. Phys. Lett. 83 (3) (2008) 30008]. The system can work as heat engine (laser) or a heat pump in a non-cyclic continuous mode. We characterize the properties of the resonator field. The concept of work and heat for this machine is discussed.

  9. Mean Line Pump Flow Model in Rocket Engine System Simulation

    Science.gov (United States)

    Veres, Joseph P.; Lavelle, Thomas M.

    2000-01-01

    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  10. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    Energy Technology Data Exchange (ETDEWEB)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze [University of Tehran, Karaj (India)

    2010-11-15

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  11. Complete modeling for systems of a marine diesel engine

    Science.gov (United States)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  12. Artificial Intelligence Software Engineering (AISE) model

    Science.gov (United States)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  13. Systems metabolic engineering: Genome-scale models and beyond

    Science.gov (United States)

    Blazeck, John; Alper, Hal

    2010-01-01

    The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches – based on the data collected with high throughput technologies – to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems. PMID:20151446

  14. Systems metabolic engineering: genome-scale models and beyond.

    Science.gov (United States)

    Blazeck, John; Alper, Hal

    2010-07-01

    The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches--based on the data collected with high throughput technologies--to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.

  15. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  16. Space engineering modeling and optimization with case studies

    CERN Document Server

    Pintér, János

    2016-01-01

    This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary Trajectories •Satellite Constellation Image Acquisition •Re-entry Test Vehicle Configuration Selection •Collision Risk Assessment on Perturbed Orbits •Optimal Robust Design of Hybrid Rocket Engines •Nonlinear Regression Analysis in Space Engineering< •Regression-Based Sensitivity Analysis and Robust Design ...

  17. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  18. Decision models in engineering and management

    CERN Document Server

    2015-01-01

    Providing a comprehensive overview of various methods  and applications in decision engineering, this book presents chapters written by a range experts in the field. It presents conceptual aspects of decision support applications in various areas including finance, vendor selection, construction, process management, water management and energy, agribusiness , production scheduling and control, and waste management. In addition to this, a special focus is given to methods of multi-criteria decision analysis. Decision making in organizations is a recurrent theme and is essential for business continuity.  Managers from various fields including public, private, industrial, trading or service sectors are required to make decisions. Consequently managers need the support of these structured methods in order to engage in effective decision making. This book provides a valuable resource for graduate students, professors and researchers of decision analysis, multi-criteria decision analysis and group decision analys...

  19. Next-generation genome-scale models for metabolic engineering

    DEFF Research Database (Denmark)

    King, Zachary A.; Lloyd, Colton J.; Feist, Adam M.

    2015-01-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict...... examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering....

  20. Software Engineering with Process Algebra: Modelling Client / Server Architectures

    OpenAIRE

    Diertens, B.

    2009-01-01

    In previous work we described how the process algebra based language PSF can be used in software engineering, using the ToolBus, a coordination architecture also based on process algebra, as implementation model. We also described this software development process more formally by presenting the tools we use in this process in a CASE setting, leading to the PSF-ToolBus software engineering environment. In this article we summarize that work and describe a similar software development process ...

  1. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  2. Human Engineering Modeling and Performance Lab Study Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  3. Potency of Animal Models in KANSEI Engineering

    Science.gov (United States)

    Ozaki, Shigeru; Hisano, Setsuji; Iwamoto, Yoshiki

    Various species of animals have been used as animal models for neuroscience and provided critical information about the brain functions. Although it seems difficult to elucidate a highly advanced function of the human brain, animal models have potency to clarify the fundamental mechanisms of emotion, decision-making and social behavior. In this review, we will pick up common animal models and point to both the merits and demerits caused by the characteristics. We will also mention that wide-ranging approaches from animal models are advantageous to understand KANSEI as well as mind in humans.

  4. Engineering Model of High Pressure Moist Air

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2017-01-01

    Full Text Available The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept of an ideal mixture of real gases. The comparison of enthalpy end entropy based on the model of an ideal mixture of ideal gases and the model of an ideal mixture of real gases is performed. It is shown that the model of an ideal mixture of real gases deviates from the model of an ideal mixture of ideal gases only in the case of high pressure. An impossibility of the definition of partial pressure in the mixture of real gases is discussed, where the virial equation of state is used.

  5. NTP system simulation and detailed nuclear engine modeling

    Science.gov (United States)

    Anghaie, Samim

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear thermal propulsion (NTP) & detailed nuclear engine modeling; modeling and engineering simulation of nuclear thermal rocket systems; nuclear thermal rocket simulation system; INSPI-NTVR core axial flow profiles; INSPI-NTRV core axial flow profiles; specific impulse vs. chamber pressure; turbine pressure ratio vs. chamber pressure; NERVA core axial flow profiles; P&W XNR2000 core axial flow profiles; pump pressure rise vs. chamber pressure; streamline of jet-induced flow in cylindrical chamber; flow pattern of a jet-induced flow in a chamber; and radiative heat transfer models.

  6. Human Modeling for Ground Processing Human Factors Engineering Analysis

    Science.gov (United States)

    Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim

    2011-01-01

    There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs

  7. Human Modeling For Ground Processing Human Factors Engineering Analysis

    Science.gov (United States)

    Tran, Donald; Stambolian, Damon; Henderson, Gena; Barth, Tim

    2011-01-01

    There have been many advancements and accomplishments over that last few years using human modeling for human factors engineering analysis for design of spacecraft and launch vehicles. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the different types of human modeling used currently and in the past at Kennedy Space Center (KSC) currently, and to explain the future plans for human modeling for future spacecraft designs.

  8. An engineering model for dilute riser flow.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Nieuwland, J.J.; Delnoij, E.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1997-01-01

    To facilitate understanding of the hydrodynamic behaviour of CFBs, a one-dimensional model for the riser tube of a CFB has been developed. The model describes steady state hydrodynamic key variables (i.e. cross-sectional averaged values of pressure, solids concentration and velocities of both

  9. Modeling and Engineering Algorithms for Mobile Data

    DEFF Research Database (Denmark)

    Blunck, Henrik; Hinrichs, Klaus; Sondern, Joëlle

    2006-01-01

    In this paper, we present an object-oriented approach to modeling mobile data and algorithms operating on such data. Our model is general enough to capture any kind of continuous motion while at the same time allowing for encompassing algorithms optimized for specific types of motion. Such motion...

  10. Performance Characteristics of Automotive Engines in the United States : Report No. 7. Mercedes Benz Model OM617 Diesel Engine.

    Science.gov (United States)

    1977-01-01

    Experimental data were obtained in dynamometer tests of the Mercedes Benz Model OM617 diesel engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitroge, and smoke) at steady-state engine-operating modes. The o...

  11. Strategies for the Curation of CAD Engineering Models

    Directory of Open Access Journals (Sweden)

    Manjula Patel

    2009-06-01

    Full Text Available Normal 0 Product Lifecycle Management (PLM has become increasingly important in the engineering community over the last decade or so, due to the globalisation of markets and the rising popularity of products provided as services. It demands the efficient capture, representation, organisation, retrieval and reuse of product data over its entire life. Simultaneously, there is now a much greater reliance on CAD models for communicating designs to manufacturers, builders, maintenance crews and regulators, and for definitively expressing designs. Creating the engineering record digitally, however, presents problems not only for its long-term maintenance and accessibility - due in part to the rapid obsolescence of the hardware, software and file formats involved - but also for recording the evolution of designs, artefacts and products. We examine the curation and preservation requirements in PLM and suggest ways of alleviating the problems of sustaining CAD engineering models through the use of lightweight formats, layered annotation and the collection of Representation Information as defined in the Open Archival Information System (OAIS Reference Model.  We describe two tools which have been specifically developed to aid in the curation of CAD engineering models in the context of PLM: Lightweight Models with Multilayered Annotation (LiMMA and a Registry/Repository of Representation Information for Engineering (RRoRIfE.

  12. Engineering model for impact of blunt projectiles on metallic sheets

    NARCIS (Netherlands)

    Roebroeks, G.; Carton, E.P.

    2014-01-01

    At TNO mind sized engineering models are created for specific penetration conditions. The models are energy based and calculate the energy absorbed by target deformation (strain energy) and displacement (kinetic energy). The input parameters are restricted to basic target material properties

  13. Design of a Human Reliability Assessment model for structural engineering

    NARCIS (Netherlands)

    De Haan, J.; Terwel, K.C.; Al-Jibouri, S.H.S.

    2013-01-01

    It is generally accepted that humans are the “weakest link” in structural design and construction processes. Despite this, few models are available to quantify human error within engineering processes. This paper demonstrates the use of a quantitative Human Reliability Assessment model within

  14. A Team Building Model for Software Engineering Courses Term Projects

    Science.gov (United States)

    Sahin, Yasar Guneri

    2011-01-01

    This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…

  15. Automated Model Fit Method for Diesel Engine Control Development

    NARCIS (Netherlands)

    Seykens, X.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is

  16. Modeling for Control of a Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    García–Canseco, Eloísa; Scherpen, Jacquelien M.A.; Kuindersma, Marnix

    2009-01-01

    In this paper we derive the dynamic model of a four–cylinder double–acting wobble–yoke Stirling engine. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control system perspective to obtain a useful model for the analysis and

  17. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  18. Combustion engine diagnosis model-based condition monitoring of gasoline and diesel engines and their components

    CERN Document Server

    Isermann, Rolf

    2017-01-01

    This book offers first a short introduction to advanced supervision, fault detection and diagnosis methods. It then describes model-based methods of fault detection and diagnosis for the main components of gasoline and diesel engines, such as the intake system, fuel supply, fuel injection, combustion process, turbocharger, exhaust system and exhaust gas aftertreatment. Additionally, model-based fault diagnosis of electrical motors, electric, pneumatic and hydraulic actuators and fault-tolerant systems is treated. In general series production sensors are used. It includes abundant experimental results showing the detection and diagnosis quality of implemented faults. Written for automotive engineers in practice, it is also of interest to graduate students of mechanical and electrical engineering and computer science. The Content Introduction.- I SUPERVISION, FAULT DETECTION AND DIAGNOSIS METHODS.- Supervision, Fault-Detection and Fault-Diagnosis Methods - a short Introduction.- II DIAGNOSIS OF INTERNAL COMBUST...

  19. Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting

    Science.gov (United States)

    Moorhead, Althea V.

    2017-01-01

    The meteoroid environment is often divided conceptually into meteor showers plus a sporadic background component. The sporadic complex poses the bulk of the risk to spacecraft, but showers can produce significant short-term enhancements of the meteoroid flux. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. Both MEM and the forecast are used by multiple manned spaceflight projects in their meteoroid risk evaluation, and both tools are being revised to incorporate recent meteor velocity, density, and timing measurements. MEM describes the sporadic meteoroid complex and calculates the flux, speed, and directionality of the meteoroid environment relative to a user-supplied spacecraft trajectory, taking the spacecraft's motion into account. MEM is valid in the inner solar system and offers near-Earth and cis-lunar environments. While the current version of MEM offers a nominal meteoroid environment corresponding to a single meteoroid bulk density, the next version of MEMR3 will offer both flux uncertainties and a density distribution in addition to a revised near-Earth environment. We have updated the near-Earth meteor speed distribution and have made the first determination of uncertainty in this distribution. We have also derived a meteor density distribution from the work of Kikwaya et al. (2011). The annual meteor shower forecast takes the form of a report and data tables that can be used in conjunction with an existing MEM assessment. Fluxes are typically quoted to a constant limiting kinetic energy in order to comport with commonly used ballistic limit equations. For the 2017 annual forecast, the MEO substantially revised the list of showers and their characteristics using 14 years of meteor flux measurements from the Canadian Meteor Orbit Radar (CMOR). Defunct or insignificant showers were removed and the temporal profiles of many showers

  20. Engineered telomere degradation models dyskeratosis congenita

    National Research Council Canada - National Science Library

    Hockemeyer, Dirk; Palm, Wilhelm; Wang, Richard C; Couto, Suzana S; de Lange, Titia

    2008-01-01

    .... However, mice with extensively shortened telomeres due to telomerase deficiency do not develop the characteristics of DC, raising questions about the etiology of DC and/or mouse models for human telomere dysfunction...

  1. Computational fluid dynamics modeling in yarn engineering

    CSIR Research Space (South Africa)

    Patanaik, A

    2011-07-01

    Full Text Available This chapter deals with the application of computational fluid dynamics (CFD) modeling in reducing yarn hairiness during the ring spinning process and thereby “engineering” yarn with desired properties. Hairiness significantly affects the appearance...

  2. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  3. A Mathematical Model of Marine Diesel Engine Speed Control System

    Science.gov (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2017-12-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  4. A Mathematical Model of Marine Diesel Engine Speed Control System

    Science.gov (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  5. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes

    2016-01-01

    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  6. Capability maturity models in engineering companies: case study analysis

    Directory of Open Access Journals (Sweden)

    Titov Sergei

    2016-01-01

    Full Text Available In the conditions of the current economic downturn engineering companies in Russia and worldwide are searching for new approaches and frameworks to improve their strategic position, increase the efficiency of the internal business processes and enhance the quality of the final products. Capability maturity models are well-known tools used by many foreign engineering companies to assess the productivity of the processes, to elaborate the program of business process improvement and to prioritize the efforts to optimize the whole company performance. The impact of capability maturity model implementation on cost and time are documented and analyzed in the existing research. However, the potential of maturity models as tools of quality management is less known. The article attempts to analyze the impact of CMM implementation on the quality issues. The research is based on a case study methodology and investigates the real life situation in a Russian engineering company.

  7. Semantic Web and Model-Driven Engineering

    CERN Document Server

    Parreiras, Fernando S

    2012-01-01

    The next enterprise computing era will rely on the synergy between both technologies: semantic web and model-driven software development (MDSD). The semantic web organizes system knowledge in conceptual domains according to its meaning. It addresses various enterprise computing needs by identifying, abstracting and rationalizing commonalities, and checking for inconsistencies across system specifications. On the other side, model-driven software development is closing the gap among business requirements, designs and executables by using domain-specific languages with custom-built syntax and se

  8. Genetically engineered mouse models of prostate cancer

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Bergman, Andreas M.; van der Poel, Henk G.

    Objectives: Mouse models of prostate cancer are used to test the contribution of individual genes to the transformation process, evaluate the collaboration between multiple genetic lesions observed in a single tumour, and perform preclinical intervention studies in prostate cancer research. Methods:

  9. Use of genome-scale microbial models for metabolic engineering

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Åkesson, M.; Nielsen, Jens

    2004-01-01

    network structures. The major challenge for metabolic engineering in the post-genomic era is to broaden its design methodologies to incorporate genome-scale biological data. Genome-scale stoichiometric models of microorganisms represent a first step in this direction.......Metabolic engineering serves as an integrated approach to design new cell factories by providing rational design procedures and valuable mathematical and experimental tools. Mathematical models have an important role for phenotypic analysis, but can also be used for the design of optimal metabolic...

  10. Models and metrics for software management and engineering

    Science.gov (United States)

    Basili, V. R.

    1988-01-01

    This paper attempts to characterize and present a state of the art view of several quantitative models and metrics of the software life cycle. These models and metrics can be used to aid in managing and engineering software projects. They deal with various aspects of the software process and product, including resources allocation and estimation, changes and errors, size, complexity and reliability. Some indication is given of the extent to which the various models have been used and the success they have achieved.

  11. Miscibility of polymer blends with engineering models

    DEFF Research Database (Denmark)

    Vassilis, Harismiadis; van Bergen, A. R. D.; Goncalves, Ana Saraiva

    1996-01-01

    The miscibility behavior of polymer blends that do not exhibit strong specific interactions is examined. Phase equilibrium calculations are presented with the van der Waals equation of state and three group-contribution models (UNIFAC, Entropic-FV, and GC-Flory). Performance of these models is also...... compared. The van der Waals equation of state was recently shown to accurately correlate and predict vapor-liquid and liquid-liquid equilibria for binary polymer/solvent solutions. In this work, it is demonstrated that it correlates the upper critical solution behavior of polymer blends with excellent......, the upper critical solution temperature can be predicted with an average error of less than 45 degrees C. The van der Waals equation of state can correlate the lower critical solution behavior of polymer blends, using an interaction parameter that is a linear function of temperature. The UNIFAC and Entropic...

  12. Systems Engineering Interfaces: A Model Based Approach

    Science.gov (United States)

    Fosse, Elyse; Delp, Christopher

    2013-01-01

    Currently: Ops Rev developed and maintains a framework that includes interface-specific language, patterns, and Viewpoints. Ops Rev implements the framework to design MOS 2.0 and its 5 Mission Services. Implementation de-couples interfaces and instances of interaction Future: A Mission MOSE implements the approach and uses the model based artifacts for reviews. The framework extends further into the ground data layers and provides a unified methodology.

  13. Diluents and lean mixture combustion modeling for SI engines with a quasi-dimensional model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, W.; Davis, G.C. [Ford Motor Co., Dearborn, MI (United States); Hall, M.J.; Matthews, R.D. [Univ. of Texas, Austin, TX (United States)

    1995-12-31

    Lean mixture combustion might be an important feature in the next generation of SI engines, while diluents have already played a key role in the reductions of emissions and fuel consumption. Lean burning modeling is even more important for engine modeling tools which are sometimes used for new engine development. The effect of flame strain on flame speed is believed to be significant, especially under lean mixture conditions. Current quasi-dimensional engine models usually do not include flame strain effects and tend to predict burn rate which is too high under lean burn conditions. An attempt was made to model flame strain effects in quasi-dimensional SI engine models. The Ford model GESIM was used as the platform. A new strain rate model was developed with the Lewis number effect included. A 2.5L V6 4-valve engine and 4.6L V8 2-valve modular engine were used to validate the modified turbulent entrainment combustion model in GESIM. Results showed that the current GESIM can differ by as much as 10 crank angle degrees compared with test data. The modified GESIM can predict burn duration to within 1--2 CA of experimental data, which is considered very good for engine models.

  14. Mechanistic, mathematical model to predict the dynamics of tissue genesis in bone defects via mechanical feedback and mediation of biochemical factors.

    Directory of Open Access Journals (Sweden)

    Shannon R Moore

    2014-06-01

    Full Text Available The link between mechanics and biology in the generation and the adaptation of bone has been well studied in context of skeletal development and fracture healing. Yet, the prediction of tissue genesis within - and the spatiotemporal healing of - postnatal defects, necessitates a quantitative evaluation of mechano-biological interactions using experimental and clinical parameters. To address this current gap in knowledge, this study aims to develop a mechanistic mathematical model of tissue genesis using bone morphogenetic protein (BMP to represent of a class of factors that may coordinate bone healing. Specifically, we developed a mechanistic, mathematical model to predict the dynamics of tissue genesis by periosteal progenitor cells within a long bone defect surrounded by periosteum and stabilized via an intramedullary nail. The emergent material properties and mechanical environment associated with nascent tissue genesis influence the strain stimulus sensed by progenitor cells within the periosteum. Using a mechanical finite element model, periosteal surface strains are predicted as a function of emergent, nascent tissue properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and tissue production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of endochondral tissue regeneration, assessed as areas of cartilage and mineralized bone, as functions of radial distance from the periosteum and time. Comparing model results to histological outcomes from two previous studies of periosteum-mediated bone regeneration in a common ovine model, it was shown that mechanistic models incorporating mechanical feedback successfully predict patterns (spatial and trends (temporal of bone tissue regeneration. The novel model framework presented here integrates a mechanistic feedback system based

  15. Analysis of simulated engine sounds using a psychoacoustic model

    Science.gov (United States)

    Duvigneau, Fabian; Liefold, Steffen; Höchstetter, Marius; Verhey, Jesko L.; Gabbert, Ulrich

    2016-03-01

    The aim of the paper is the evaluation and the prediction of the perceived quality of engine sounds, which is predicted in the design process by numerical simulations. Periodic combustion sounds of the operating engine are synthesized with the help of an overall numerical simulation approach before a real prototype exists. The perceived quality of the sound is rated in hearing tests using the method of relative comparison and absolute judgment. Results are transferred into an interval scaled ranking of the stimuli. Based on the data, a psychoacoustic model for sound quality is developed using psychoacoustic parameters. Predictions of this model are used to evaluate the sound quality of several technical design modifications, for example, different engine encapsulations. The results are visualized to allow a simple qualitative analysis of the sound perception. This results in an impartial and objective decision regarding the final design of an acoustic encapsulation with a higher perceived sound quality.

  16. Modeling Spitsbergen fjords by hydrodynamic MIKE engine.

    Science.gov (United States)

    Kosecki, Szymon; Przyborska, Anna; Jakacki, Jaromir

    2013-04-01

    Two Svalbard's fjords - Hornsund (on the western side of the most southern part of Spitsbergen island) and Kongsfjorden (also on the western side of Spitsbergen island, but in the northern part) are quite different - the first one is "cold" and second one is "warm". It is obvious that both of them are under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current detaches Hornsund. But there is also freshwater stored in Spitsbergen glaciers that have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord and there is no answer which one is the most important in each fjord. Modeling could help to solve this problem - MIKE 3D model has been implemented for both fjords. Mesh-grid of the each fjord has been extended for covering shelf area. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Hornsund and Kongsfjorden. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.

  17. A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects

    Directory of Open Access Journals (Sweden)

    Shuai Luo

    2016-02-01

    Full Text Available Bioelectrochemical systems (BES are promising technologies to convert organic compounds in wastewater to electrical energy through a series of complex physical-chemical, biological and electrochemical processes. Representative BES such as microbial fuel cells (MFCs have been studied and advanced for energy recovery. Substantial experimental and modeling efforts have been made for investigating the processes involved in electricity generation toward the improvement of the BES performance for practical applications. However, there are many parameters that will potentially affect these processes, thereby making the optimization of system performance hard to be achieved. Mathematical models, including engineering models and statistical models, are powerful tools to help understand the interactions among the parameters in BES and perform optimization of BES configuration/operation. This review paper aims to introduce and discuss the recent developments of BES modeling from engineering and statistical aspects, including analysis on the model structure, description of application cases and sensitivity analysis of various parameters. It is expected to serves as a compass for integrating the engineering and statistical modeling strategies to improve model accuracy for BES development.

  18. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  19. Model-driven Service Engineering with SoaML

    Science.gov (United States)

    Elvesæter, Brian; Carrez, Cyril; Mohagheghi, Parastoo; Berre, Arne-Jørgen; Johnsen, Svein G.; Solberg, Arnor

    This chapter presents a model-driven service engineering (MDSE) methodology that uses OMG MDA specifications such as BMM, BPMN and SoaML to identify and specify services within a service-oriented architecture. The methodology takes advantage of business modelling practices and provides a guide to service modelling with SoaML. The presentation is case-driven and illuminated using the telecommunication example. The chapter focuses in particular on the use of the SoaML modelling language as a means for expressing service specifications that are aligned with business models and can be realized in different platform technologies.

  20. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, Nicholas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  1. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. ... Numerical investigation of heat transfer in Plastic Leaded Chip Carrier (PLCC) packages in in-line arrangement · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. M Mohamed, M.Z Abdullah, M.A Mujeebu, ...

  2. Towards Model-Driven Engineering Constraint-Based Scheduling Applications

    OpenAIRE

    de Siqueira Teles, Fabrício

    2008-01-01

    de Siqueira Teles, Fabrício; Pierre Louis Robin, Jacques. Towards Model-Driven Engineering Constraint-Based Scheduling Applications. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008.

  3. Applications of computational modeling in metabolic engineering of yeast.

    Science.gov (United States)

    Kerkhoven, Eduard J; Lahtvee, Petri-Jaan; Nielsen, Jens

    2015-02-01

    Generally, a microorganism's phenotype can be described by its pattern of metabolic fluxes. Although fluxes cannot be measured directly, inference of fluxes is well established. In biotechnology the aim is often to increase the capacity of specific fluxes. For this, metabolic engineering methods have been developed and applied extensively. Many of these rely on balancing of intracellular metabolites, redox, and energy fluxes, using genome-scale models (GEMs) that in combination with appropriate objective functions and constraints can be used to predict potential gene targets for obtaining a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering, tools from synthetic biology have emerged, enabling integration and assembly of naturally nonexistent, but well-characterized components into a living organism. To describe these systems kinetic models are often used and to integrate these systems with the standard metabolic engineering approach, it is necessary to expand the modeling of metabolism to consider kinetics of individual processes. This review will give an overview about models available for metabolic engineering of yeast and discusses their applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  4. Model-Driven Instructional Engineering to Generate Adaptable Learning Materials

    NARCIS (Netherlands)

    Dodero, Juan Manuel; Díez, David

    2006-01-01

    Please, cite this publication as: Dodero, J. M. & Díez, D. (2006). Model-Driven Instructional Engineering to Generate Adaptable Learning Materials. Proceedings of ICALT2006. July, Kerkrade, The Netherlands: IEEE. Retrieved July 30th, 2006, from http://dspace.learningnetworks.org

  5. Software engineering with process algebra: Modelling client / server architecures

    NARCIS (Netherlands)

    Diertens, B.

    2009-01-01

    In previous work we described how the process algebra based language PSF can be used in software engineering, using the ToolBus, a coordination architecture also based on process algebra, as implementation model. We also described this software development process more formally by presenting the

  6. Software-engineering-based model for mitigating Repetitive Strain ...

    African Journals Online (AJOL)

    The incorporation of Information and Communication Technology (ICT) in virtually all facets of human endeavours has fostered the use of computers. This has induced Repetitive Stress Injury (RSI) for continuous and persistent computer users. Proposing a software engineering model capable of enacted RSI force break ...

  7. Computer model of catalytic combustion/Stirling engine heater head

    Science.gov (United States)

    Chu, E. K.; Chang, R. L.; Tong, H.

    1981-01-01

    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.

  8. A decision-making model for engineering designers

    DEFF Research Database (Denmark)

    Ahmed, S.; Hansen, Claus Thorp

    2002-01-01

    This paper describes research that combines the generic decision-making model of Hansen, together with design strategies employed by experienced engineering designers. The relationship between the six decision-making sub-activities and the eight design strategies are examined. By combining...

  9. Model based methods and tools for process systems engineering

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Process systems engineering (PSE) provides means to solve a wide range of problems in a systematic and efficient manner. This presentation will give a perspective on model based methods and tools needed to solve a wide range of problems in product-process synthesis-design. These methods and tools...

  10. Hydraulic modeling development and application in water resources engineering

    Science.gov (United States)

    Simoes, Francisco J.; Yang, Chih Ted; Wang, Lawrence K.

    2015-01-01

    The use of modeling has become widespread in water resources engineering and science to study rivers, lakes, estuaries, and coastal regions. For example, computer models are commonly used to forecast anthropogenic effects on the environment, and to help provide advanced mitigation measures against catastrophic events such as natural and dam-break floods. Linking hydraulic models to vegetation and habitat models has expanded their use in multidisciplinary applications to the riparian corridor. Implementation of these models in software packages on personal desktop computers has made them accessible to the general engineering community, and their use has been popularized by the need of minimal training due to intuitive graphical user interface front ends. Models are, however, complex and nontrivial, to the extent that even common terminology is sometimes ambiguous and often applied incorrectly. In fact, many efforts are currently under way in order to standardize terminology and offer guidelines for good practice, but none has yet reached unanimous acceptance. This chapter provides a view of the elements involved in modeling surface flows for the application in environmental water resources engineering. It presents the concepts and steps necessary for rational model development and use by starting with the exploration of the ideas involved in defining a model. Tangible form of those ideas is provided by the development of a mathematical and corresponding numerical hydraulic model, which is given with a substantial amount of detail. The issues of model deployment in a practical and productive work environment are also addressed. The chapter ends by presenting a few model applications highlighting the need for good quality control in model validation.

  11. Model-driven engineering of supramolecular buffering by multivalency.

    Science.gov (United States)

    Paffen, Tim F E; Teunissen, Abraham J P; de Greef, Tom F A; Meijer, E W

    2017-12-05

    A supramolecular system in which the concentration of a molecule is buffered over several orders of magnitude is presented. Molecular buffering is achieved as a result of competition in a ring-chain equilibrium of multivalent ureidopyrimidinone monomers and a monovalent naphthyridine molecule which acts as an end-capper. While we previously only considered divalent ureidopyrimidinone monomers we now present a model-driven engineering approach to improve molecular buffering using multivalent ring-chain systems. Our theoretical models reveal an odd-even effect where even-valent molecules show superior buffering capabilities. Furthermore, we predict that supramolecular buffering can be significantly improved using a tetravalent instead of a divalent molecule, since the tetravalent molecule can form two intramolecular rings with different "stabilities" due to statistical effects. Our model predictions are validated against experimental 1H NMR data, demonstrating that model-driven engineering has considerable potential in supramolecular chemistry. Copyright © 2017 the Author(s). Published by PNAS.

  12. Requirements engineering for cross-sectional information chain models.

    Science.gov (United States)

    Hübner, U; Cruel, E; Gök, M; Garthaus, M; Zimansky, M; Remmers, H; Rienhoff, O

    2012-01-01

    Despite the wealth of literature on requirements engineering, little is known about engineering very generic, innovative and emerging requirements, such as those for cross-sectional information chains. The IKM health project aims at building information chain reference models for the care of patients with chronic wounds, cancer-related pain and back pain. Our question therefore was how to appropriately capture information and process requirements that are both generally applicable and practically useful. To this end, we started with recommendations from clinical guidelines and put them up for discussion in Delphi surveys and expert interviews. Despite the heterogeneity we encountered in all three methods, it was possible to obtain requirements suitable for building reference models. We evaluated three modelling languages and then chose to write the models in UML (class and activity diagrams). On the basis of the current project results, the pros and cons of our approach are discussed.

  13. Thermodynamics of Paint Related Systems with Engineering Models

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2001-01-01

    to solid surfaces and drying. Many engineering models have been applied over the last decades for solutions with commoditity polymers. In this work the performance of some of these models is investigated for paint-related systems, focusing on those drying by the so-called " lacquer mechanism " (evaporation......Paints are complex materials composed of polymers (binders) dissolved in one or more solvents, pigments, and other additives. The thermodynamics of such systems is essential, for example, for selecting improved solvents and understanding a number of phenomena related especially! to adhesion...... that, despite the uncertainties involved, several models yield reasonably accurate activity coefficients, even at infinite dilution. Thus, engineering models may be useful for solvent selection via semiempirical rules of thumb, which are based on thermodynamic considerations....

  14. Prioritization of engineering support requests and advanced technology projects using decision support and industrial engineering models

    Science.gov (United States)

    Tavana, Madjid

    1995-01-01

    The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.

  15. Sharing Research Models: Using Software Engineering Practices for Facilitation.

    Science.gov (United States)

    Bryant, Stephanie P; Solano, Eric; Cantor, Susanna; Cooley, Philip C; Wagener, Diane K

    2011-03-01

    Increasingly, researchers are turning to computational models to understand the interplay of important variables on systems' behaviors. Although researchers may develop models that meet the needs of their investigation, application limitations-such as nonintuitive user interface features and data input specifications-may limit the sharing of these tools with other research groups. By removing these barriers, other research groups that perform related work can leverage these work products to expedite their own investigations. The use of software engineering practices can enable managed application production and shared research artifacts among multiple research groups by promoting consistent models, reducing redundant effort, encouraging rigorous peer review, and facilitating research collaborations that are supported by a common toolset. This report discusses three established software engineering practices- the iterative software development process, object-oriented methodology, and Unified Modeling Language-and the applicability of these practices to computational model development. Our efforts to modify the MIDAS TranStat application to make it more user-friendly are presented as an example of how computational models that are based on research and developed using software engineering practices can benefit a broader audience of researchers.

  16. Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling

    Science.gov (United States)

    Tew, Roy C., Jr.

    1988-01-01

    NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

  17. A Fuel-Sensitive Reduced-Order Model (ROM) for Piston Engine Scaling Analysis

    Science.gov (United States)

    2017-09-29

    single-cylinder moving piston case near top dead center at diesel - engine conditions. The ROM provides a real-time engineering analytical tool for liquid...length scaling that may be used toward optimizing engine performance . 15. SUBJECT TERMS reduced-order model, ROM, engine scaling, spray... diesel engine ................................... 20 Approved for public release; distribution is unlimited. 1 1. Introduction A central

  18. Key Reliability Drivers of Liquid Propulsion Engines and A Reliability Model for Sensitivity Analysis

    Science.gov (United States)

    Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.

    2005-01-01

    This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).

  19. Applications of computational modeling in metabolic engineering of yeast

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Lahtvee, Petri-Jaan; Nielsen, Jens

    2015-01-01

    Generally, a microorganism's phenotype can be described by its pattern of metabolic fluxes. Although fluxes cannot be measured directly, inference of fluxes is well established. In biotechnology the aim is often to increase the capacity of specific fluxes. For this, metabolic engineering methods...... a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering......, tools from synthetic biology have emerged, enabling integration and assembly of naturally nonexistent, but well-characterized components into a living organism. To describe these systems kinetic models are often used and to integrate these systems with the standard metabolic engineering approach...

  20. Femur Model Reconstruction Based on Reverse Engineering and Rapid Prototyping

    Science.gov (United States)

    Tang, Tongming; Zhang, Zheng; Ni, Hongjun; Deng, Jiawen; Huang, Mingyu

    Precise reconstruction of 3D models is fundamental and crucial to the researches of human femur. In this paper we present our approach towards tackling this problem. The surface of a human femur was scanned using a hand-held 3D laser scanner. The data obtained, in the form of point cloud, was then processed using the reverse engineering software Geomagic and the CAD/CAM software CimatronE to reconstruct a digital 3D model. The digital model was then used by the rapid prototyping machine to build a physical model of human femur using 3D printing. The geometric characteristics of the obtained physical model matched that of the original femur. The process of "physical object - 3D data - digital 3D model - physical model" presented in this paper provides a foundation of precise modeling for the digital manufacturing, virtual assembly, stress analysis, and simulated surgery of artificial bionic femurs.

  1. Effect of bone marrow and low power lasers on fracture healing with destruction of both periosteum and endosteum in rabbits

    Directory of Open Access Journals (Sweden)

    M. G. Thanoon

    2010-01-01

    Full Text Available Ten mature rabbits of local breed were used in this study; weighing between 1.5 to 1.75 kg and aged about 1–2 years. These animals were divided into two equal groups; in group A destruction of both periosteum and endosteum was done one centimeter from each side of mid-shaft femoral bone fracture, then sufficient amount of autogenously bone marrow was injected directly at the fracture site after immobilization by intramedullary pin. In group B a similar procedure was achieved as in group A, but in additional to that He-Ne infrared laser therapy was used for several sessions. The result of radiological findings indicated that, the fracture healing occurred within group B at fifteen weeks, whereas in group A the healing occurred at eighteen weeks after operation. The implantation of autologous bone marrow enhanced the fracture healing, whereas using of combinations of autologous bone marrow and He-Ne infrared laser therapy hastened the healing.

  2. Therapeutic efficacy of connective tissue autotransplants with periosteum and platelet rich plasma in the management of gingival recession

    Directory of Open Access Journals (Sweden)

    Jovičić Bojan

    2013-01-01

    Full Text Available Background/Aim. Gingival recession progression in clinical practaice has influenced the development of various surgical procedures and techniques for solving esthetic imperfections and subjective difficulties coused by gingival recession. The aim of this study was to verify efficacy of surgical procedures and to compare both of surgical procedures through the keratinized tissue width. Methods. The study included 20 teeth with gingival recesion, Müller class I and II. Ten teeth with gingival recession were treated with connective tissue autotransplants with periosteum in combination with coronary guided surgical flap (CTG group. On the contralateral side 10 teeth with gingival recession were treated with the same surgical procedures but in combination with platelet-rich plasma (CTGPRP group. We measured the keratinized tissue width. For statistical significance we used the Student's t-test. Results. The study reveled a statistical significance in reducing vertical deepress of recession by both used treatments. Root deepness in CTG and CTG-PRP group was 90% and 93.5%, respectively. With both surgical techniques we achieved larger zone of keratinized gingiva but with a wide zone of keratinized tissue in CTG - the PRP group. Conclusion. The concept regeneration technique with PRP and with the stimulating influence of platele activated growth factors results in the regeneration of deep periodontal tissue as an important prerequisite for the successful treatment of gingival recession.

  3. Scaffold-free three-dimensional culture systems for mass production of periosteum-derived progenitor cells.

    Science.gov (United States)

    Cha, Hyun-Myoung; Kim, Sun-Mi; Choi, Yong-Soo; Kim, Dong-Il

    2015-08-01

    Mesenchymal stem cells (MSCs) are capable of self-renewal and can differentiate into various types of cells for therapeutic purposes. MSCs are frequently cultured in a two-dimensional (2D) system. However, MSCs can lose their differentiation capacity over time in this culture system. In addition, the available surface area for the propagation of cells is limited. Therefore, various three-dimensional (3D) culture systems have been developed. In this study, we developed the scaffold-free 3D culture systems for the expansion of periosteum-derived progenitor cells (PDPCs) as spheres. The spheroid formation of PDPCs was induced using a rotation platform. The spheres maintained their viability and proliferation ability. Moreover, expression levels of the stemness marker genes and proteins were higher in cells grown on 3D culture system than in 2D culture system. In conclusion, a simple and economical 3D culture system has been developed that can increase the potential of PDPCs for clinical use. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Importance of preserved periosteum around jugular foramen neurinomas for functional outcome of lower cranial nerves: anatomic and clinical studies.

    Science.gov (United States)

    Sutiono, Agung Budi; Kawase, Takeshi; Tabuse, Masanao; Kitamura, Yohei; Arifin, Muh Zafrullah; Horiguchi, Takashi; Yoshida, Kazunari

    2011-12-01

    Surgical removal of jugular foramen (JF) neurinomas remains controversial because of their radicality in relation to periosteal sheath structures. To clarify the particular meningeal structures of the JF with the aim of helping to eliminate surgical complications of the lower cranial nerves (LCNs). We sectioned 6 JFs and examined histological sections using Masson trichrome stain. A consecutive series of 25 patients with JF neurinomas was also analyzed, and the MIB-1 index of each excised tumor was determined. In the JF, meningeal dura disappeared at the nerve entrance, forming a jugular pocket. JF neurinomas were classified into 4 types: subarachnoid (type A by the Samii classification), foraminal (type B), epidural (type C), and episubdural (type D). After an average follow-up of 9.2 years, tumors recurred in 9 cases (36%). Type A tumors did not show regrowth, unlike type B tumors, in which all recurred. Radical surgery by the modified Fisch approach did not contribute to tumor radicality in type C and D tumors, even in cases in which LCN function was sacrificed. In preserved periosteum, postoperative LCN deterioration was decreased. Bivariate correlation analysis revealed that jugular pocket extension, tumor removal, MIB-1 greater than 3%, and reoperation or gamma knife use were significant recurrence factors. For LCN preservation, the periosteal layer covering the cranial nerves must be left intact except in patients with a subarachnoid tumor. To prevent tumor regrowth, postoperative gamma knife treatment is recommended in tumors with an MIB-1 greater than 3%.

  5. Genome engineering of stem cell organoids for disease modeling

    Directory of Open Access Journals (Sweden)

    Yingmin Sun

    2017-01-01

    Full Text Available Abstract Precision medicine emerges as a new approach that takes into account individual variability. Successful realization of precision medicine requires disease models that are able to incorporate personalized disease information and recapitulate disease development processes at the molecular, cellular and organ levels. With recent development in stem cell field, a variety of tissue organoids can be derived from patient specific pluripotent stem cells and adult stem cells. In combination with the state-of-the-art genome editing tools, organoids can be further engineered to mimic disease-relevant genetic and epigenetic status of a patient. This has therefore enabled a rapid expansion of sophisticated in vitro disease models, offering a unique system for fundamental and biomedical research as well as the development of personalized medicine. Here we summarize some of the latest advances and future perspectives in engineering stem cell organoids for human disease modeling.

  6. Engineered Polymeric Hydrogels for 3D Tissue Models

    Directory of Open Access Journals (Sweden)

    Sujin Park

    2016-01-01

    Full Text Available Polymeric biomaterials are widely used in a wide range of biomedical applications due to their unique properties, such as biocompatibility, multi-tunability and easy fabrication. Specifically, polymeric hydrogel materials are extensively utilized as therapeutic implants and therapeutic vehicles for tissue regeneration and drug delivery systems. Recently, hydrogels have been developed as artificial cellular microenvironments because of the structural and physiological similarity to native extracellular matrices. With recent advances in hydrogel materials, many researchers are creating three-dimensional tissue models using engineered hydrogels and various cell sources, which is a promising platform for tissue regeneration, drug discovery, alternatives to animal models and the study of basic cell biology. In this review, we discuss how polymeric hydrogels are used to create engineered tissue constructs. Specifically, we focus on emerging technologies to generate advanced tissue models that precisely recapitulate complex native tissues in vivo.

  7. Next-generation genome-scale models for metabolic engineering.

    Science.gov (United States)

    King, Zachary A; Lloyd, Colton J; Feist, Adam M; Palsson, Bernhard O

    2015-12-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict optimal genetic modifications that improve the rate and yield of chemical production. A new generation of COBRA models and methods is now being developed--encompassing many biological processes and simulation strategies-and next-generation models enable new types of predictions. Here, three key examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Test-Driven, Model-Based Systems Engineering

    DEFF Research Database (Denmark)

    Munck, Allan

    . This thesis concerns methods for identifying, selecting and implementing tools for various aspects of model-based systems engineering. A comprehensive method was proposed that include several novel steps such as techniques for analyzing the gap between requirements and tool capabilities. The method...... was verified with good results in two case studies for selection of a traceability tool (single-tool scenario) and a set of modeling tools (multi-tool scenarios). Models must be subjected to testing to allow engineers to predict functionality and performance of systems. Test-first strategies are known......Hearing systems have evolved over many years from simple mechanical devices (horns) to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers, batteries, etc. Digital signal processors replaced analog filters to provide better performance end new features. Central...

  9. Thermal barrier coating life modeling in aircraft gas turbine engines

    Science.gov (United States)

    Nissley, David M.

    1995-01-01

    Analytical models for predicting ceramic thermal barrier coating (TBC) spalling life in aircraft gas turbine engines are presented. Electron beam-physical vapor deposited (EB-PVD) and plasma sprayed TBC systems are discussed. An overview of the following TBC spalling mechanisms is presented: metal oxidation at the ceramic-metal interface, ceramic-metal interface stress singularities at edges and corners, ceramic-metal interface stresses caused by radius of curvature and interface roughness, material properties and mechanical behavior, temperature gradients, component design features and object impact damage. TBC spalling life analytical models are proposed based on observations of TBC spalling and plausible failure theories. TBC spalling was assumed to occur when the imposed stresses exceed the material strength (at or near the ceramic-metal interface). TBC failure knowledge gaps caused by lack of experimental evidence and analytical understanding are noted. The analytical models are considered initial engineering approaches that capture observed TBC failure trends.

  10. Generalized Linear Models with Applications in Engineering and the Sciences

    CERN Document Server

    Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J

    2012-01-01

    Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma

  11. Verification of geological/engineering model in waterflood areas

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, B.; Szpakiewicz, M.; Honarpour, M.; Schatzinger, R.A.; Tillman, R.

    1988-12-01

    The construction of a detailed geological/engineering model is the basis for development of the methodology for characterizing reservoir heterogeneity. The NIPER geological/engineering model is the subject of this report. The area selected for geological and production performance studies is a four-section area within the Powder River Basin which includes the Tertiary Incentive Project (TIP) pilot. Log, well test, production, and core data were acquired for construction of the geological model of a barrier island reservoir. In this investigation, emphasis was on the synthesis and quantification of the abundant geological information acquired from the literature and field studies (subsurface and outcrop) by mapping the geological heterogeneities that influence fluid flow. The geological model was verified by comparing it with the exceptionally complete production data available for Bell Creek field. This integration of new and existing information from various geological, geophysical, and engineering disciplines has enabled better definition of the heterogeneities that influence production during different recovery operations. 16 refs., 26 figs., 6 tabs.

  12. Model-driven engineering of gene expression from RNA replicons.

    Science.gov (United States)

    Beal, Jacob; Wagner, Tyler E; Kitada, Tasuku; Azizgolshani, Odisse; Parker, Jordan Moberg; Densmore, Douglas; Weiss, Ron

    2015-01-16

    RNA replicons are an emerging platform for engineering synthetic biological systems. Replicons self-amplify, can provide persistent high-level expression of proteins even from a small initial dose, and, unlike DNA vectors, pose minimal risk of chromosomal integration. However, no quantitative model sufficient for engineering levels of protein expression from such replicon systems currently exists. Here, we aim to enable the engineering of multigene expression from more than one species of replicon by creating a computational model based on our experimental observations of the expression dynamics in single- and multireplicon systems. To this end, we studied fluorescent protein expression in baby hamster kidney (BHK-21) cells using a replicon derived from Sindbis virus (SINV). We characterized expression dynamics for this platform based on the dose-response of a single species of replicon over 50 h and on a titration of two cotransfected replicons expressing different fluorescent proteins. From this data, we derive a quantitative model of multireplicon expression and validate it by designing a variety of three-replicon systems, with profiles that match desired expression levels. We achieved a mean error of 1.7-fold on a 1000-fold range, thus demonstrating how our model can be applied to precisely control expression levels of each Sindbis replicon species in a system.

  13. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server

    2016-01-01

    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  14. Aspect-Oriented Model-Driven Software Product Line Engineering

    Science.gov (United States)

    Groher, Iris; Voelter, Markus

    Software product line engineering aims to reduce development time, effort, cost, and complexity by taking advantage of the commonality within a portfolio of similar products. The effectiveness of a software product line approach directly depends on how well feature variability within the portfolio is implemented and managed throughout the development lifecycle, from early analysis through maintenance and evolution. This article presents an approach that facilitates variability implementation, management, and tracing by integrating model-driven and aspect-oriented software development. Features are separated in models and composed of aspect-oriented composition techniques on model level. Model transformations support the transition from problem to solution space models. Aspect-oriented techniques enable the explicit expression and modularization of variability on model, template, and code level. The presented concepts are illustrated with a case study of a home automation system.

  15. Formal Model-Driven Engineering: Generating Data and Behavioural Components

    Directory of Open Access Journals (Sweden)

    Chen-Wei Wang

    2012-12-01

    Full Text Available Model-driven engineering is the automatic production of software artefacts from abstract models of structure and functionality. By targeting a specific class of system, it is possible to automate aspects of the development process, using model transformations and code generators that encode domain knowledge and implementation strategies. Using this approach, questions of correctness for a complex, software system may be answered through analysis of abstract models of lower complexity, under the assumption that the transformations and generators employed are themselves correct. This paper shows how formal techniques can be used to establish the correctness of model transformations used in the generation of software components from precise object models. The source language is based upon existing, formal techniques; the target language is the widely-used SQL notation for database programming. Correctness is established by giving comparable, relational semantics to both languages, and checking that the transformations are semantics-preserving.

  16. Concurrent engineering and product models in seafood companies

    DEFF Research Database (Denmark)

    Jonsdottir, Stella; Vesterager, Johan; Børresen, Torger

    1998-01-01

    Concurrent Engineering (CE) can provide an improved approach to product development for extending the lines of seafood products. Information technology (IT) support tools based on product models can provide an integrated and simultaneous approach for specifying new recipes. The seafood industry can...... techniques. It is anticipated that other food industries can also benefit from the more simultaneous development approach. (C) 1999 Elsevier Science Ltd. All rights reserved...

  17. Model-driven performance evaluation for service engineering

    OpenAIRE

    Pahl, Claus; Boskovic, Marko; Hasselbring, Wilhelm

    2007-01-01

    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluat...

  18. Underlying finite state machine for the social engineering attack detection model

    CSIR Research Space (South Africa)

    Mouton, Francois

    2017-08-01

    Full Text Available definitions, attack frameworks, examples of attacks and detection models. In order to formally address social engineering in a broad context, this paper proposes the underlying finite state machine of the Social Engineering Attack Detection Model (SEADM...

  19. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  20. Modeling and laser-based sensing of pulsed detonation engines

    Science.gov (United States)

    Barbour, Ethan A.

    This work is concerned with two major aspects of pulse detonation engines (PDE) research: modeling and laser-based sensing. The modeling addresses both ideal and real considerations relevant to PDE design. First, an ideal nozzle model is developed which provides a tool for choosing area ratios for fixed-geometry converging, diverging, or converging-diverging nozzles. Next, losses associated with finite-rate chemistry are investigated. It was found that PDEs can experience up to 10% reduction in specific impulse from this effect if 02 is used as the oxidizer, whereas the losses are negligible for air-breathing applications. Next, heat transfer and friction losses were investigated and found to be greater than the losses from simple straight-tube PDEs. These losses are most pronounced (˜15%) when converging nozzles are used. The second portion of this work focuses on laser-based absorption sensing for PDEs. The mid-infrared was chosen as the best way to address the challenges of signal-to-noise ratio, sensitivity, robustness, and sensor bandwidth. A water vapor sensor was developed and applied to the PDE at the Naval Postgraduate School. This sensor provided improvements in temperature accuracy, and it revealed that water (generated by the vitiator) inhibited performance of the engine. Next, a JP-10 absorption sensor was developed and applied to the same engine. This sensor provided thermometry data at a higher temporal resolution than the water sensor. The sensor also provided crucial information on equivalence ratio and fuel arrival time which enabled the engine to be successfully operated on JP-10 and air for the first time.

  1. Comparison of Engineering Wake Models with CFD Simulations

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Ivanell, S.

    2014-01-01

    The engineering wake models by Jensen [1] and Frandsen et al. [2] are assessed for different scenarios simulated using Large Eddy Simulation and the Actuator Line method implemented in the Navier-Stokes equations. The scenarios include the far wake behind a single wind turbine, a long row...... of turbines in an atmospheric boundary layer, idealised cases of an infinitely long row of wind turbines and infinite wind farms with three different spacings. Both models include a wake expansion factor, which is calibrated to fit the simulated wake velocities. The analysis highlights physical deficiencies...

  2. Model-based engineering for medical-device software.

    Science.gov (United States)

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  3. Potential Osteoinductive Effects of Calcitriol on the m-RNA of Mesenchymal Stem Cells Derived from Human Alveolar Periosteum

    Directory of Open Access Journals (Sweden)

    Hsiang-Hsi Hong

    2016-01-01

    Full Text Available This study characterized alveolar periosteum-derived mesenchymal stem cells (P-MSCs and examined the hypothesis that 1,25-(OH2D3 (calcitriol exerts osteoinductive effects on P-MSCs. The mRNA expressions of alkaline phosphatase (ALP, bone sialoprotein (BSP, core-binding factor alpha-1 (CBFA1, collagen-1 (Col-1, osteocalcin (OCN, and vitamin D3 receptor (VDR were assessed after incubation with calcitriol for 2 weeks. Vitamin C as positive control (Vit. C-p increased ALP and CBFA1 mRNA expression at both 1 and 2 weeks and increased BSP and Col-1 mRNA expression only at the first week. A concentration of 10−8 M calcitriol enhanced ALP, CBFA1, Col-1, and OCN mRNA expression at both weeks and BSP mRNA expression at the first week. Furthermore, 10−7 M calcitriol increased the mRNA expressions of all compounds at both weeks, except that of CBFA1 at the first week. 10−8 M calcitriol and Vit. C-p enhanced ALP activity at the second and third weeks. The results revealed that 10−9, 10−8, and 10−7 M calcitriol induced osteoinduction in alveolar P-MSCs by increasing ALP, CBFA1, Col-1, and OCN mRNA expression. A 10−7 M calcitriol yielded a higher mRNA expression than Vit. Cp on VDR and OCN mRNA expression at both weeks and on Col-1 mRNA at the second week.

  4. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells.

    Science.gov (United States)

    Eyckmans, Jeroen; Lin, Grace L; Chen, Christopher S

    2012-11-15

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs) to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs) exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  5. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

    Directory of Open Access Journals (Sweden)

    Jeroen Eyckmans

    2012-08-01

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  6. The combined mechanism of bone morphogenetic protein- and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells.

    Science.gov (United States)

    Bolander, J; Ji, W; Geris, L; Bloemen, V; Chai, Y C; Schrooten, J; Luyten, F P

    2016-01-05

    When combining osteogenic progenitor cells such as human periosteum derived cells (hPDCs) with osteoconductive biomaterials like calcium phosphate (CaP)-scaffolds, in vivo bone formation can be achieved. This process is dependent on the early activation of Bone morphogenetic protein (BMP)-signalling. However, the bone forming process is slow and routinely only a limited amount of bone and bone marrow is formed. Therefore, we hypothesised that a robust clinically relevant outcome could be achieved by adding more physiological levels of potent BMP-ligands to these cell- and CaP-based constructs. For this, hPDCs were characterised for their responsiveness to BMP-ligands upon in vitro 2D stimulation. BMP-2, -4, -6 and -9 robustly induced osteochondrogenic differentiation. Subsequently, these ligands were coated onto clinically approved CaP-scaffolds, BioOss® and CopiOs®, followed by hPDC-seeding. Protein lysates and conditioned media were investigated for activation of BMP signalling pathways. Upon in vivo implantation, the most abundant bone formation was found in BMP-2 and BMP-6-coated scaffolds. Implanted cells actively contributed to the newly formed bone. Remnants of cartilage could be observed in BMP-coated CopiOs®-constructs. Computational analysis displayed that the type of BMP-ligand as well as the CaP-scaffold affects skeletal tissue formation, observed in a qualitative as well as quantitative manner. Furthermore, the in vitro mechanism appears to predict the in vivo outcome. This study presents further evidence for the potential of BMP-technology in the development of clinically relevant cell-based constructs for bone regenerative strategies.

  7. An Integrated Bioprocess for the Expansion and Chondrogenic Priming of Human Periosteum-Derived Progenitor Cells in Suspension Bioreactors.

    Science.gov (United States)

    Gupta, Priyanka; Geris, Liesbet; Luyten, Frank P; Papantoniou, Ioannis

    2018-02-01

    The increasing use of microcarrier-based suspension bioreactors for scalable expansion of adult progenitor cells in recent years reveals the necessity of such approaches to address bio manufacturing challenges of advanced therapeutic medicinal products. However, the differentiation of progenitor cells within suspension bioreactors for the production of tissue modules is of equal importance but not well investigated. This study reports on the development of a bioreactor-based integrated process for expansion and chondrogenic priming of human periosteum-derived stem cells (hPDCs) using Cultispher S microcarriers. Spinner flask-based expansion and priming of hPDCs were carried out over 12 days for expansion and 14 days for priming. Characterization of the cells were carried out every 3rd day. Our study showed that hPDCs were able to expand till confluency with fold increase of 3.2±0.64 and to be subsequently primed toward a chondrogenic state within spinner flasks. During expansion, the cells maintained their phenotypic markers, trilineage differentiation capabilities and viability. Upon switching to TGF-β containing media the cells were able to differentiate toward chondrogenic lineage by clustering into mm-sized macrotissues containing hundreds of microcarriers. Chondrogenic priming was further evidenced by the expression of relevant markers at the mRNA level while maintaining their viability. Ectopic implantation of macrotissues highlighted that they were able to sustain their chondrogenic properties for 8 weeks in vivo. The method indicated here, suggests that expansion and relevant priming of progenitor cells can be carried out in an integrated bioprocess using spinner flasks and as such could be potentially extrapolated to other stem and progenitor cell populations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The role of technology and engineering models in transforming healthcare.

    Science.gov (United States)

    Pavel, Misha; Jimison, Holly Brugge; Wactlar, Howard D; Hayes, Tamara L; Barkis, Will; Skapik, Julia; Kaye, Jeffrey

    2013-01-01

    The healthcare system is in crisis due to challenges including escalating costs, the inconsistent provision of care, an aging population, and high burden of chronic disease related to health behaviors. Mitigating this crisis will require a major transformation of healthcare to be proactive, preventive, patient-centered, and evidence-based with a focus on improving quality-of-life. Information technology, networking, and biomedical engineering are likely to be essential in making this transformation possible with the help of advances, such as sensor technology, mobile computing, machine learning, etc. This paper has three themes: 1) motivation for a transformation of healthcare; 2) description of how information technology and engineering can support this transformation with the help of computational models; and 3) a technical overview of several research areas that illustrate the need for mathematical modeling approaches, ranging from sparse sampling to behavioral phenotyping and early detection. A key tenet of this paper concerns complementing prior work on patient-specific modeling and simulation by modeling neuropsychological, behavioral, and social phenomena. The resulting models, in combination with frequent or continuous measurements, are likely to be key components of health interventions to enhance health and wellbeing and the provision of healthcare.

  9. Career Persistence Model for Female Engineers in the Indonesian Context

    Directory of Open Access Journals (Sweden)

    Lies Dahlia

    2017-08-01

    Full Text Available Extant studies about female engineers have suggested their career persistency in the engineering career is influenced by the workplace, which is characterized by male dominated culture making them feel marginalized. In Indonesia, similar studies for reference are limited. This paper is based on an exploratory quantitative study using a questionnaire developed based on the Career Persistence Model. This paper is based on an empirical exploratory quantitative study by adopting Buse’s et al. Career Persistence Model (2013. The intention is to contribute to the literature in the context of Indonesia. It explores the Indonesian cultural dimensions and investigates their relationship to the roles of women in family, society and the workplace, and how women manage to navigate barriers to avoid taking alternative career paths. Contrary to extant studies, findings show women feel equally treated to men in the workplace, however some work demands may hinder. The strong acknowledgement of one’s roles in this collective society outdoes the opinions that the Islamic jurisprudence (fiqh has marginalized empowerment of women, resulting in gender-based injustices and discrimination. Future studies should look into social supports at the workplace in an attempt to retain and increase the share of women in the engineering career in Indonesia.

  10. Modeling and cold start in alcohol-fueled engines

    Energy Technology Data Exchange (ETDEWEB)

    Markel, A.J.; Bailey, B.K.

    1998-05-01

    Neat alcohol fuels offer several benefits over conventional gasoline in automotive applications. However, their low vapor pressure and high heat of vaporization make it difficult to produce a flammable vapor composition from a neat alcohol fuel during a start under cold ambient conditions. Various methods have been introduced to compensate for this deficiency. In this study, the authors applied computer modeling and simulation to evaluate the potential of four cold-start technologies for engines fueled by near-neat alcohol. The four technologies were a rich combustor device, a partial oxidation reactor, a catalytic reformer, and an enhanced ignition system. The authors ranked the competing technologies by their ability to meet two primary criteria for cold starting an engine at {minus}25 deg C and also by several secondary parameters related to commercialization. Their analysis results suggest that of the four technologies evaluated, the enhanced ignition system is the best option for further development.

  11. Drive Rig Mufflers for Model Scale Engine Acoustic Testing

    Science.gov (United States)

    Stephens, David

    2010-01-01

    Testing of air breathing propulsion systems in the 9x15 foot wind tunnel at NASA Glenn Research Center depends on compressed air turbines for power. The drive rig turbines exhaust directly to the wind tunnel test section, and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the model being tested. In order to mitigate this acoustic contamination, a muffler can be attached downstream of the drive rig turbine. The modern engine designs currently being tested produce much less noise than traditional engines, and consequently a lower noise floor is required of the facility. An acoustic test of a muffler designed to mitigate this extraneous noise is presented, and a noise reduction of 8 dB between 700 Hz and 20 kHz was documented, significantly improving the quality of acoustic measurements in the facility.

  12. A new engineering model for understanding extrusion process

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    A new engineering method is proposed to understand extrudate expansion and extrusion operation parameters for starch based food extrusion cooking process through dimensional analysis principle, i.e. Buckingham pi theorem. Three dimensionless groups, i.e. pump efficiency, water content and tempera......A new engineering method is proposed to understand extrudate expansion and extrusion operation parameters for starch based food extrusion cooking process through dimensional analysis principle, i.e. Buckingham pi theorem. Three dimensionless groups, i.e. pump efficiency, water content...... and temperature, are suggested to describe the extrudate expansion. Using the three dimensionless groups, an equation is derived to express the extrudate expansion. The model has been used to correlate the experimental data for whole wheat flour and fish feed extrusion cooking. The average deviations...

  13. Model Based Document and Report Generation for Systems Engineering

    Science.gov (United States)

    Delp, Christopher; Lam, Doris; Fosse, Elyse; Lee, Cin-Young

    2013-01-01

    As Model Based Systems Engineering (MBSE) practices gain adoption, various approaches have been developed in order to simplify and automate the process of generating documents from models. Essentially, all of these techniques can be unified around the concept of producing different views of the model according to the needs of the intended audience. In this paper, we will describe a technique developed at JPL of applying SysML Viewpoints and Views to generate documents and reports. An architecture of model-based view and document generation will be presented, and the necessary extensions to SysML with associated rationale will be explained. A survey of examples will highlight a variety of views that can be generated, and will provide some insight into how collaboration and integration is enabled. We will also describe the basic architecture for the enterprise applications that support this approach.

  14. Model based document and report generation for systems engineering

    Science.gov (United States)

    Delp, C.; Lam, D.; Fosse, E.; Lee, Cin-Young

    As Model Based Systems Engineering (MBSE) practices gain adoption, various approaches have been developed in order to simplify and automate the process of generating documents from models. Essentially, all of these techniques can be unified around the concept of producing different views of the model according to the needs of the intended audience. In this paper, we will describe a technique developed at JPL of applying SysML Viewpoints and Views to generate documents and reports. An architecture of model-based view and document generation will be presented, and the necessary extensions to SysML with associated rationale will be explained. A survey of examples will highlight a variety of views that can be generated, and will provide some insight into how collaboration and integration is enabled. We will also describe the basic architecture for the enterprise applications that support this approach.

  15. Systems Engineering Model and Training Application for Desktop Environment

    Science.gov (United States)

    May, Jeffrey T.

    2010-01-01

    Provide a graphical user interface based simulator for desktop training, operations and procedure development and system reference. This simulator allows for engineers to train and further understand the dynamics of their system from their local desktops. It allows the users to train and evaluate their system at a pace and skill level based on the user's competency and from a perspective based on the user's need. The simulator will not require any special resources to execute and should generally be available for use. The interface is based on a concept of presenting the model of the system in ways that best suits the user's application or training needs. The three levels of views are Component View, the System View (overall system), and the Console View (monitor). These views are portals into a single model, so changing the model from one view or from a model manager Graphical User Interface will be reflected on all other views.

  16. Methods of the working processes modelling of an internal combustion engine by an ANSYS IC Engine module

    Science.gov (United States)

    Kurchatkin, I. V.; Gorshkalev, A. A.; Blagin, E. V.

    2017-01-01

    This article deals with developed methods of the working processes modelling in the combustion chamber of an internal combustion engine (ICE). Methods includes description of the preparation of a combustion chamber 3-d model, setting of the finite-element mesh, boundary condition setting and solution customization. Aircraft radial engine M-14 was selected for modelling. The cycle of cold blowdown in the ANSYS IC Engine software was carried out. The obtained data were compared to results of known calculation methods. A method of engine’s induction port improvement was suggested.

  17. Semantically-Rigorous Systems Engineering Modeling Using Sysml and OWL

    Science.gov (United States)

    Jenkins, J. Steven; Rouquette, Nicolas F.

    2012-01-01

    The Systems Modeling Language (SysML) has found wide acceptance as a standard graphical notation for the domain of systems engineering. SysML subsets and extends the Unified Modeling Language (UML) to define conventions for expressing structural, behavioral, and analytical elements, and relationships among them. SysML-enabled modeling tools are available from multiple providers, and have been used for diverse projects in military aerospace, scientific exploration, and civil engineering. The Web Ontology Language (OWL) has found wide acceptance as a standard notation for knowledge representation. OWL-enabled modeling tools are available from multiple providers, as well as auxiliary assets such as reasoners and application programming interface libraries, etc. OWL has been applied to diverse projects in a wide array of fields. While the emphasis in SysML is on notation, SysML inherits (from UML) a semantic foundation that provides for limited reasoning and analysis. UML's partial formalization (FUML), however, does not cover the full semantics of SysML, which is a substantial impediment to developing high confidence in the soundness of any conclusions drawn therefrom. OWL, by contrast, was developed from the beginning on formal logical principles, and consequently provides strong support for verification of consistency and satisfiability, extraction of entailments, conjunctive query answering, etc. This emphasis on formal logic is counterbalanced by the absence of any graphical notation conventions in the OWL standards. Consequently, OWL has had only limited adoption in systems engineering. The complementary strengths and weaknesses of SysML and OWL motivate an interest in combining them in such a way that we can benefit from the attractive graphical notation of SysML and the formal reasoning of OWL. This paper describes an approach to achieving that combination.

  18. Genetically engineered mouse models in oncology research and cancer medicine.

    Science.gov (United States)

    Kersten, Kelly; de Visser, Karin E; van Miltenburg, Martine H; Jonkers, Jos

    2017-02-01

    Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune-proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell-intrinsic and cell-extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast-track generation and fine-tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Subsidence characterization and modeling for engineered facilities in Arizona, USA

    Directory of Open Access Journals (Sweden)

    M. L. Rucker

    2015-11-01

    Full Text Available Several engineered facilities located on deep alluvial basins in southern Arizona, including flood retention structures (FRS and a coal ash disposal facility, have been impacted by up to as much as 1.8 m of differential land subsidence and associated earth fissuring. Compressible basin alluvium depths are as deep as about 300 m, and historic groundwater level declines due to pumping range from 60 to more than 100 m at these facilities. Addressing earth fissure-inducing ground strain has required alluvium modulus characterization to support finite element modeling. The authors have developed Percolation Theory-based methodologies to use effective stress and generalized geo-material types to estimate alluvium modulus as a function of alluvium lithology, depth and groundwater level. Alluvial material modulus behavior may be characterized as high modulus gravel-dominated, low modulus sand-dominated, or very low modulus fines-dominated (silts and clays alluvium. Applied at specific aquifer stress points, such as significant pumping wells, this parameter characterization and quantification facilitates subsidence magnitude modeling at its' sources. Modeled subsidence is then propagated over time across the basin from the source(s using a time delay exponential decay function similar to the soil mechanics consolidation coefficient, only applied laterally. This approach has expanded subsidence modeling capabilities on scales of engineered facilities of less than 2 to more than 15 km.

  20. Methods for model selection in applied science and engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2004-10-01

    Mathematical models are developed and used to study the properties of complex systems and/or modify these systems to satisfy some performance requirements in just about every area of applied science and engineering. A particular reason for developing a model, e.g., performance assessment or design, is referred to as the model use. Our objective is the development of a methodology for selecting a model that is sufficiently accurate for an intended use. Information on the system being modeled is, in general, incomplete, so that there may be two or more models consistent with the available information. The collection of these models is called the class of candidate models. Methods are developed for selecting the optimal member from a class of candidate models for the system. The optimal model depends on the available information, the selected class of candidate models, and the model use. Classical methods for model selection, including the method of maximum likelihood and Bayesian methods, as well as a method employing a decision-theoretic approach, are formulated to select the optimal model for numerous applications. There is no requirement that the candidate models be random. Classical methods for model selection ignore model use and require data to be available. Examples are used to show that these methods can be unreliable when data is limited. The decision-theoretic approach to model selection does not have these limitations, and model use is included through an appropriate utility function. This is especially important when modeling high risk systems, where the consequences of using an inappropriate model for the system can be disastrous. The decision-theoretic method for model selection is developed and applied for a series of complex and diverse applications. These include the selection of the: (1) optimal order of the polynomial chaos approximation for non-Gaussian random variables and stationary stochastic processes, (2) optimal pressure load model to be

  1. ISO 9000 and/or Systems Engineering Capability Maturity Model?

    Science.gov (United States)

    Gholston, Sampson E.

    2002-01-01

    For businesses and organizations to remain competitive today they must have processes and systems in place that will allow them to first identify customer needs and then develop products/processes that will meet or exceed the customers needs and expectations. Customer needs, once identified, are normally stated as requirements. Designers can then develop products/processes that will meet these requirements. Several functions, such as quality management and systems engineering management are used to assist product development teams in the development process. Both functions exist in all organizations and both have a similar objective, which is to ensure that developed processes will meet customer requirements. Are efforts in these organizations being duplicated? Are both functions needed by organizations? What are the similarities and differences between the functions listed above? ISO 9000 is an international standard of goods and services. It sets broad requirements for the assurance of quality and for management's involvement. It requires organizations to document the processes and to follow these documented processes. ISO 9000 gives customers assurance that the suppliers have control of the process for product development. Systems engineering can broadly be defined as a discipline that seeks to ensure that all requirements for a system are satisfied throughout the life of the system by preserving their interrelationship. The key activities of systems engineering include requirements analysis, functional analysis/allocation, design synthesis and verification, and system analysis and control. The systems engineering process, when followed properly, will lead to higher quality products, lower cost products, and shorter development cycles. The System Engineering Capability Maturity Model (SE-CMM) will allow companies to measure their system engineering capability and continuously improve those capabilities. ISO 9000 and SE-CMM seem to have a similar objective, which

  2. Model-Based Systems Engineering Pilot Program at NASA Langley

    Science.gov (United States)

    Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

    2012-01-01

    NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

  3. Mathematical Modeling and Simulation Introduction for Scientists and Engineers

    CERN Document Server

    Velten, Kai

    2008-01-01

    This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra—all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently di

  4. Software Engineering Laboratory (SEL) relationships, models, and management rules

    Science.gov (United States)

    Decker, William; Hendrick, Robert; Valett, Jon D.

    1991-01-01

    Over 50 individual Software Engineering Laboratory (SEL) research results, extracted from a review of published SEL documentation, that can be applied directly to managing software development projects are captured. Four basic categories of results are defined and discussed - environment profiles, relationships, models, and management rules. In each category, research results are presented as a single page that summarizes the individual result, lists potential uses of the result by managers, and references the original SEL documentation where the result was found. The document serves as a concise reference summary of applicable research for SEL managers.

  5. Human performance models for computer-aided engineering

    Science.gov (United States)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  6. A content-oriented model for science exhibit engineering

    DEFF Research Database (Denmark)

    Achiam, Marianne

    2013-01-01

    : as a means to operationalize the link between exhibit features and visitor activities; and as a template to transform scientists’ practices in the research context into visitors’ activities in the exhibit context. The resulting model of science exhibit engineering is presented and exemplified, and its......Recently, science museums have begun to review their educational purposes and redesign their pedagogies. At the most basic level, this entails accounting for the performance of individual exhibits, and indeed, in some cases, research indicates shortcomings in exhibit design: While often successful...... implications for science exhibit design are discussed at three levels: the design product, the design process, and the design methodology....

  7. Preclinical Animal Models for Temporomandibular Joint Tissue Engineering.

    Science.gov (United States)

    Almarza, Alejandro J; Brown, Bryan N; Arzi, Boaz; Ângelo, David Faustino; Chung, William; Badylak, Stephen F; Detamore, Michael

    2018-01-02

    There is a paucity of in vivo studies that investigate the safety and efficacy of temporomandibular joint (TMJ) tissue regeneration approaches, in part due to the lack of established animal models. Review of disease models for study of TMJ is presented herein with an attempt to identify relevant preclinical animal models for TMJ tissue engineering, with emphasis on the disc and condyle. Although degenerative joint disease models have been mainly performed on mice, rats, and rabbits, preclinical regeneration approaches must employ larger animal species. There remains controversy regarding the preferred choice of larger animal models between the farm pig, minipig, goat, sheep, and dog. The advantages of the pig and minipig include their well characterized anatomy, physiology, and tissue properties. The advantages of the sheep and goat are their easier surgical access, low cost per animal, and its high tissue availability. The advantage of the dog is that the joint space is confined, so migration of interpositional devices should be less likely. However, each species has limitations as well. For example, the farm pig has continuous growth until about 18 months of age, and difficult surgical access due to the zygomatic arch covering the lateral aspect of joint. The minipig is not widely available and somewhat costly. The sheep and the goat are herbivores, and their TMJs mainly function in translation. The dog is a carnivore, and the TMJ is a hinge joint that can only rotate. Although no species provides the gold standard for all preclinical TMJ tissue engineering approaches, the goat and sheep have emerged as the leading options, with the minipig as the choice when cost is less of a limitation; and with the dog and farm pig serving as acceptable alternatives. Finally, naturally occurring TMJ disorders in domestic species may be harnessed on a preclinical trial basis as a clinically relevant platform for translation.

  8. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  9. Green IT engineering concepts, models, complex systems architectures

    CERN Document Server

    Kondratenko, Yuriy; Kacprzyk, Janusz

    2017-01-01

    This volume provides a comprehensive state of the art overview of a series of advanced trends and concepts that have recently been proposed in the area of green information technologies engineering as well as of design and development methodologies for models and complex systems architectures and their intelligent components. The contributions included in the volume have their roots in the authors’ presentations, and vivid discussions that have followed the presentations, at a series of workshop and seminars held within the international TEMPUS-project GreenCo project in United Kingdom, Italy, Portugal, Sweden and the Ukraine, during 2013-2015 and at the 1st - 5th Workshops on Green and Safe Computing (GreenSCom) held in Russia, Slovakia and the Ukraine. The book presents a systematic exposition of research on principles, models, components and complex systems and a description of industry- and society-oriented aspects of the green IT engineering. A chapter-oriented structure has been adopted for this book ...

  10. Analytical Study of Information Retrieval techniques and Modified Model of Search Engine

    OpenAIRE

    Ms. Leena More

    2015-01-01

    The concept of Information Retrieval is very vast and too many models of search engines are available in the market. In this research various information retrieval techniques used in search engine were studies and modified model of search engine were developed. In web mining most of the web search engines retrieve the documents or information first without knowing the meaning of the keyword and then ask for the relevant meaning of the keyword entered by the users. That means without understan...

  11. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  12. Bone regeneration in sinus lifts: comparing tissue-engineered bone and iliac bone.

    Science.gov (United States)

    Voss, Pit; Sauerbier, Sebastian; Wiedmann-Al-Ahmad, Margit; Zizelmann, Christoph; Stricker, Andres; Schmelzeisen, Rainer; Gutwald, Ralf

    2010-03-01

    Lifting of the sinus floor is a standard procedure for bony augmentation that enables dental implantation. Although cultivated skin and mucosal grafts are often used in plastic and maxillofacial surgery, tissue-engineered bone has not achieved the same success. We present the clinical results of dental implants placed after the insertion of periosteum-derived, tissue-engineered bone grafts in sinus lifts. Periosteal cells were isolated from biopsy specimens of periosteum, resuspended and cultured. The cell suspension was soaked in polymer fleeces. The cell-polymer constructs were transplanted by sinus lift 8 weeks after harvesting. The patients (n=35) had either one or both sides operated on. Seventeen had a one-stage sinus lift with simultaneous implantation (54 implants). In 18 patients the implants were inserted 3 months after augmentation (64 implants). Selected cases were biopsied. A control group (41 patients: one stage=48 implants, two stage=135 implants) had augmentation with autologous bone only. They were followed up clinically and radiologically for at least 24 months. Both implants and augmentation were significantly more successful in the control group. Failure of augmentation of the tissue-engineered bone was more common after large areas had been augmented. Eleven implants were lost in the study group and only one in the control group. Lifting the sinus floor with autologous bone is more reliable than with tissue-engineered transplants. Although lamellar bone can be found in periosteum-derived, tissue-engineered transplants, the range of indications must be limited.

  13. [Genetically engineered mice: mouse models for cancer research].

    Science.gov (United States)

    Szymańska, Hanna

    2007-10-26

    Genetically engineered mice (GEM) have been extensively used to model human cancer. Mouse models mimic the morphology, histopathology, phenotype, and genotype of the corresponding cancer in humans. GEM mice are created by random integration of a transgene into the genome, which results in gene overexpression (transgenic mice); gene deletion (knock-out mice); or targeted insertion of the transgene in a selected locus (knock-in mice). Knock-out may be constitutive, i.e. total inactivation of the gene of interest in any cell, or conditional, i.e. tissue-specific inactivation of the gene. Gene knock-down (RNAi) and humanization of the mouse are more sophisticated models of GEM mice. RNA interference (RNAi) is a mechanism in which double-stranded RNAs inhibits the respective gene expression by inducing degradation of its mRNA. Humanization is based on replacing a mouse gene by its human counterpart. The alterations in genes in GEM have to be heritable. The opportunities provided by employing GEM cancer models are: analysis of the role of specific cancer genes and modifier genes, evaluation of conventional cancer therapies and new drugs, identification of cancer markers of tumor growth, analysis of the influence of the tumor's microenvironment on tumor formation, and the definition of the pre-clinical, discrete steps of tumorigenesis. The validation of mouse models of human cancer is the task of the MMHCC (Mouse Models of Human Cancer Consortium). The GEM models of breast, pancreatic, intestinal and colon, and prostate cancer are the most actively explored. In contrast, the models of brain tumors and ovary, cervical, and skin cancer are in the early stage of investigation.

  14. Integrated tokamak modeling: when physics informs engineering and research planning

    Science.gov (United States)

    Poli, Francesca

    2017-10-01

    Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.

  15. GEO-ENGINEERING MODELING THROUGH INTERNET INFORMATICS (GEMINI)

    Energy Technology Data Exchange (ETDEWEB)

    W. Lynn Watney; John H. Doveton

    2004-05-13

    GEMINI (Geo-Engineering Modeling through Internet Informatics) is a public-domain web application focused on analysis and modeling of petroleum reservoirs and plays (http://www.kgs.ukans.edu/Gemini/index.html). GEMINI creates a virtual project by ''on-the-fly'' assembly and analysis of on-line data either from the Kansas Geological Survey or uploaded from the user. GEMINI's suite of geological and engineering web applications for reservoir analysis include: (1) petrofacies-based core and log modeling using an interactive relational rock catalog and log analysis modules; (2) a well profile module; (3) interactive cross sections to display ''marked'' wireline logs; (4) deterministic gridding and mapping of petrophysical data; (5) calculation and mapping of layer volumetrics; (6) material balance calculations; (7) PVT calculator; (8) DST analyst, (9) automated hydrocarbon association navigator (KHAN) for database mining, and (10) tutorial and help functions. The Kansas Hydrocarbon Association Navigator (KHAN) utilizes petrophysical databases to estimate hydrocarbon pay or other constituent at a play- or field-scale. Databases analyzed and displayed include digital logs, core analysis and photos, DST, and production data. GEMINI accommodates distant collaborations using secure password protection and authorized access. Assembled data, analyses, charts, and maps can readily be moved to other applications. GEMINI's target audience includes small independents and consultants seeking to find, quantitatively characterize, and develop subtle and bypassed pays by leveraging the growing base of digital data resources. Participating companies involved in the testing and evaluation of GEMINI included Anadarko, BP, Conoco-Phillips, Lario, Mull, Murfin, and Pioneer Resources.

  16. Assessing multiparametric drug response in tissue engineered tumor microenvironment models.

    Science.gov (United States)

    Harris, Alexandra R; Yuan, Jessica X; Munson, Jennifer M

    2017-12-16

    The tumor microenvironment is important in promoting treatment resistance of tumor cells via multiple mechanisms. However, studying this interaction often proves difficult. In vivo animal models are costly, time-consuming, and often fail to adequately predict human response to treatment. Conversely, testing drug response on human tumor cells in vitro in 2D cell culture excludes the important contribution of stromal cells and biophysical forces seen in the in vivo tumor microenvironment. Here, we present tissue-engineered models of both human brain and breast tumor microenvironments incorporating key stromal cell populations for assessing multiple mechanisms of therapeutic response using flow cytometry. We show our physiologically-relevant systems used to interrogate a variety of parameters associated with chemotherapeutic efficacy, including cell death, proliferation, drug uptake, and invasion of cancer and stromal cell populations. The use of flow cytometry allows for single cell, quantitative, and fast assessments of multiple outcomes affecting anti-tumor therapy failure. Our system can be modified to add and remove cellular components with ease, thereby enabling the study of individual cellular contributions in the tumor microenvironment. Together, our models and analysis methods illustrate the importance of developing fast, cost-effective, and reproducible methods to model complex human systems in a physiologically-relevant manner that may prove useful for drug screening efforts in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Genetically Engineered ERα positive breast cancer mouse models

    Science.gov (United States)

    Dabydeen, Sarah A.; Furth, Priscilla A.

    2014-01-01

    The majority of human breast cancers are ER+ but this has proven challenging to model in genetically engineered mice. This review summarizes information on twenty-one mouse models that develop ER+ mammary cancer. Where available, information on cancer pathology and gene expression profiles is referenced to assist in understanding which histological subtype of ER+ human cancer each model might represent. Esr1, Ccdn1, prolactin, TGFα, AIB1, Espl1, and Wnt1 over-expression, Pik3ca gain of function, as well as loss of p53 or loss of Stat1 are associated with ER+ mammary cancer. Treatment with the PPARγ agonist efatutazone in a mouse with Brca1 and p53 deficiency and DMBA exposure in combination with an activated myristoylated form of AKT1 also induce ER+ mammary cancer. A spontaneous mutant in nude mice that develops metastatic ER+ mammary cancer is included. Age of cancer development ranges from three to 26 months and the percentages of cancers that are ER+ vary from 21% to 100%. Not all models are characterized as to their estrogen dependency and/or response to anti-hormonal therapy. Strain backgrounds include C57Bl/6, FVB, BALB/c, 129S6/SvEv, CB6F1 and NIH nude. Most models have only been studied on one strain background. In summary while a range of models is available for studies of pathogenesis and therapy of ER+ breast cancers, many could benefit from further characterization and opportunity for development of new models remains. PMID:24481326

  18. D Model Visualization Enhancements in Real-Time Game Engines

    Science.gov (United States)

    Merlo, A.; Sánchez Belenguer, C.; Vendrell Vidal, E.; Fantini, F.; Aliperta, A.

    2013-02-01

    This paper describes two procedures used to disseminate tangible cultural heritage through real-time 3D simulations providing accurate-scientific representations. The main idea is to create simple geometries (with low-poly count) and apply two different texture maps to them: a normal map and a displacement map. There are two ways to achieve models that fit with normal or displacement maps: with the former (normal maps), the number of polygons in the reality-based model may be dramatically reduced by decimation algorithms and then normals may be calculated by rendering them to texture solutions (baking). With the latter, a LOD model is needed; its topology has to be quad-dominant for it to be converted to a good quality subdivision surface (with consistent tangency and curvature all over). The subdivision surface is constructed using methodologies for the construction of assets borrowed from character animation: these techniques have been recently implemented in many entertainment applications known as "retopology". The normal map is used as usual, in order to shade the surface of the model in a realistic way. The displacement map is used to finish, in real-time, the flat faces of the object, by adding the geometric detail missing in the low-poly models. The accuracy of the resulting geometry is progressively refined based on the distance from the viewing point, so the result is like a continuous level of detail, the only difference being that there is no need to create different 3D models for one and the same object. All geometric detail is calculated in real-time according to the displacement map. This approach can be used in Unity, a real-time 3D engine originally designed for developing computer games. It provides a powerful rendering engine, fully integrated with a complete set of intuitive tools and rapid workflows that allow users to easily create interactive 3D contents. With the release of Unity 4.0, new rendering features have been added, including Direct

  19. Participatory modeling - engineering and social sciences in tandem

    Science.gov (United States)

    Class, Holger; Kissinger, Alexander; Knopf, Stefan; Konrad, Wilfried; Noack, Vera; Scheer, Dirk

    2017-04-01

    The modeling of flow and transport processes in the context of engineering in the subsurface often takes place within a field of conflict from different interests, where societal issues are touched or involved. Carbon Capture and Storage, Fracking, or nuclear waste disposal are just a few prominent examples, where engineering (or: natural sciences) and social sciences have a common field of research. It is only consequent for both disciplines to explore methods and tools to achieve best possible mutual benefits. Participatory modeling (PM) is such an idea, where so-called stakeholders can be involved during different phases of the modeling process. This can be accomplished by very different methods of participation and for different reasons (public acceptance, public awareness, transparency, improved understanding through collective learning, etc). Therefore, PM is a generic approach, open for different methods to be used in order to facilitate early expert and stakeholder integration in science development. We have used PM recently in two examples, both in the context of Carbon Capture and Storage. The first one addressed the development and evaluation (by stakeholders) of a screening criterion for site selection. The second one deals with a regional-scale brine migration scenario where stakeholders have been involved in evaluating the general importance of brine migration, the design of a representative geological model for a case study and in the definition of scenarios to be simulated. This contribution aims at summarizing our experiences and share it with the modeling community. References: A Kissinger, V Noack, S Knopf, D Scheer, W Konrad, H Class Characterization of reservoir conditions for CO2 storage using a dimensionless gravitational number applied to the North German Basin, Sustainable Energy Technologies and Assessments 7, 209-220, 2014 D Scheer, W Konrad, H Class, A Kissinger, S Knopf, V Noack Expert involvement in science development: (re

  20. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    Science.gov (United States)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  1. Towards an ontological model defining the social engineering domain

    CSIR Research Space (South Africa)

    Mouton, F

    2014-08-01

    Full Text Available information. Although Social Engineering is an important branch of Information Security, the discipline is not well defined; a number of different definitions appear in the literature. Several concepts in the domain of Social Engineering are defined...

  2. SAFARI engineering model 50 mK cooler

    Science.gov (United States)

    Duband, L.; Duval, J. M.; Luchier, N.

    2014-11-01

    SAFARI is an infrared instrument developed by a European based consortium to be flown in SPICA, a Japanese led mission. The SAFARI detectors are transition edge sensors (TES) and require temperatures down to 50 mK for their operation. For that purpose we have developed a hybrid architecture based on the combination of a 300 mK sorption stage and a small adiabatic demagnetization stage. An engineering model has been designed to provide net heat lifts of 0.4 and 14 μW respectively at 50 and 300 mK, with an overall cycle duration of 48 h and a duty cycle objective of over 75%. The cooler is self-contained, fits in a volume of 156 × 312 × 182 mm and is expected to weigh 5.1 kg. It has been designed to withstand static loads of 120 g and a random vibration level of 21 g RMS.

  3. Application of Process Modeling in a Software- Engineering Course

    Directory of Open Access Journals (Sweden)

    Gabriel Alberto García Mireles

    2001-11-01

    Full Text Available Coordination in a software development project is a critical issue in delivering a successful software product, within the constraints of time, functionality and budget agreed upon with the customer. One of the strategies for approaching this problem consists in the use of process modeling to document, evaluate, and redesign the software development process. The appraisal of the projects done in the Engineering and Methodology course of a program given at the Ensenada Center of Scientific Research and Higher Education (CICESE, from a process perspective, facilitated the identification of strengths and weaknesses in the development process used. This paper presents the evaluation of the practical portion of the course, the improvements made, and the preliminary results of using the process approach in the analysis phase of a software-development project.

  4. A Model of Designing: Understanding Engineering Design Activity

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Aurisicchio, Marco

    2007-01-01

    This research describes an understanding of design activity through design questions. From a number of previous studies two types of questions have been identified: 1) reasoning questions; and 2) strategic questions. Strategic questions are part of an experienced designers approach to solving a d...... solving model. An example of aerospace engineering design is used to illustrate the argument. The research contributes to an understanding of design activity.......This research describes an understanding of design activity through design questions. From a number of previous studies two types of questions have been identified: 1) reasoning questions; and 2) strategic questions. Strategic questions are part of an experienced designers approach to solving...... a design task. The paper describes how designers progress their tasks by asking questions at both a reasoning and strategic level. Transcripts of protocol analysis have been examined to identify both strategic questions and reasoning questions. These are discussed together with their relation to a problem...

  5. Simulation of Road Traffic Applying Model-Driven Engineering

    Directory of Open Access Journals (Sweden)

    Alberto FERNÁNDEZ-ISABEL

    2016-05-01

    Full Text Available Road traffic is an important phenomenon in modern societies. The study of its different aspects in the multiple scenarios where it happens is relevant for a huge number of problems. At the same time, its scale and complexity make it hard to study. Traffic simulations can alleviate these difficulties, simplifying the scenarios to consider and controlling their variables. However, their development also presents difficulties. The main ones come from the need to integrate the way of working of researchers and developers from multiple fields. Model-Driven Engineering (MDE addresses these problems using Modelling Languages (MLs and semi-automatic transformations to organise and describe the development, from requirements to code. This paper presents a domain-specific MDE framework for simulations of road traffic. It comprises an extensible ML, support tools, and development guidelines. The ML adopts an agent-based approach, which is focused on the roles of individuals in road traffic and their decision-making. A case study shows the process to model a traffic theory with the ML, and how to specialise that specification for an existing target platform and its simulations. The results are the basis for comparison with related work.

  6. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration.

    Science.gov (United States)

    Youngstrom, Daniel W; Barrett, Jennifer G

    2016-01-01

    Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems.

  7. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration

    Directory of Open Access Journals (Sweden)

    Daniel W. Youngstrom

    2016-01-01

    Full Text Available Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems.

  8. Integrated modeling tool for performance engineering of complex computer systems

    Science.gov (United States)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar

    1989-01-01

    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  9. Data engineering systems: Computerized modeling and data bank capabilities for engineering analysis

    Science.gov (United States)

    Kopp, H.; Trettau, R.; Zolotar, B.

    1984-01-01

    The Data Engineering System (DES) is a computer-based system that organizes technical data and provides automated mechanisms for storage, retrieval, and engineering analysis. The DES combines the benefits of a structured data base system with automated links to large-scale analysis codes. While the DES provides the user with many of the capabilities of a computer-aided design (CAD) system, the systems are actually quite different in several respects. A typical CAD system emphasizes interactive graphics capabilities and organizes data in a manner that optimizes these graphics. On the other hand, the DES is a computer-aided engineering system intended for the engineer who must operationally understand an existing or planned design or who desires to carry out additional technical analysis based on a particular design. The DES emphasizes data retrieval in a form that not only provides the engineer access to search and display the data but also links the data automatically with the computer analysis codes.

  10. Fault diagnosis for engine air path with neural models and classifier ...

    African Journals Online (AJOL)

    The method uses an independent radial basis function (RBF) neural network model to model engine dynamics, and the modelling errors are used to form the basis for ... The simulation results show that all the simulated faults can be clearly detected and isolated in dynamic conditions throughout the engine operating range.

  11. Progress toward life modeling of thermal barrier coatings for aircraft gas turbine engines

    Science.gov (United States)

    Miller, R. A.

    1987-01-01

    Progress toward developing life models for simulating the behavior of thermal barrier coatings in aircraffft gas turbine engines is discussed. A preliminary laboratory model is described as are current efforts to develop engine-capable models. Current understanding of failure mechanisms is also summarized.

  12. From multiscale modeling to meso-science a chemical engineering perspective

    CERN Document Server

    Li, Jinghai; Wang, Wei; Yang, Ning; Liu, Xinhua; Wang, Limin; He, Xianfeng; Wang, Xiaowei; Wang, Junwu; Kwauk, Mooson

    2013-01-01

    Multiscale modeling is becoming essential for accurate, rapid simulation in science and engineering. This book presents the results of three decades of research on multiscale modeling in process engineering from principles to application, and its generalization for different fields. This book considers the universality of meso-scale phenomena for the first time, and provides insight into the emerging discipline that unifies them, meso-science, as well as new perspectives for virtual process engineering. Multiscale modeling is applied in areas including: multiphase flow and fluid dynamics chemical, biochemical and process engineering mineral processing and metallurgical engineering energy and resources materials science and engineering Jinghai Li is Vice-President of the Chinese Academy of Sciences (CAS), a professor at the Institute of Process Engineering, CAS, and leader of the EMMS (Energy-minimization multiscale) Group. Wei Ge, Wei Wang, Ning Yang and Junwu Wang are professors at the EMMS Group, part of th...

  13. Engineering models for low-NO{sub x} burners

    Energy Technology Data Exchange (ETDEWEB)

    Storm Pedersen, Lars

    1997-08-01

    The present Ph.D. thesis describes a theoretical investigation of NO formation in pulverised coal combustion and an experimental investigation of co-combustion of straw and pulverised coal. The theoretical work has resulted in a simplified mathematical model of a swirling pulverised coal flame able to predict the NO emission and the burnout of coal. In order to simplify the flow pattern of a confined swirling flame, the residence time distribution (RTD) in a swirling pulverised coal flame was determined. This was done by using the solution of a detailed fluid dynamic mathematical model for a 2.2 MW{sub th} and a 12 MW{sub th} pulverised coal flame. From the mathematical solution the RTD was simulated by tracing a number of fluid particles or inert particles. The RTD in the near burner zone was investigated by use of the mathematical model for the 2.2 MW{sub th} and 12 MW{sub th} flame. Results showed that the gas phase in the near burner zone may be approximated as a CSTR and that the mean residence time increased with particle size. In pulverised coal flames, the most important volatile nitrogen component forming NO{sub x} is HCN. To be able to model the nitrogen chemistry in coal flames it is necessary to have an adequate model for HCN oxidation. In order to develop a model for HCN/NH{sub 3}/NO conversion, a systematic reduction of a detailed chemical kinetic model was performed. Based on the simplification of the flow pattern for a swirling flame and the reduced chemistry developed, a chemical engineering model of pulverised coal flame was established. The objectives were to predict the NO emission, the CO emission, and the burnout of char. The effects of co-firing straw and pulverised coal was investigated in a 2.5 MW{sub th} pilot-scale burner and a 250 MW{sub e} utility boiler. In the 2.5 MW{sub th} trial the straw was chopped and fed separately to the burner, whereas in the full-scale experiment the straw was pre-processed as pellets and pulverised with the

  14. Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Francesca Sciandra

    2015-01-01

    Full Text Available In skeletal muscle, dystroglycan (DG is the central component of the dystrophin-glycoprotein complex (DGC, a multimeric protein complex that ensures a strong mechanical link between the extracellular matrix and the cytoskeleton. Several muscular dystrophies arise from mutations hitting most of the components of the DGC. Mutations within the DG gene (DAG1 have been recently associated with two forms of muscular dystrophy, one displaying a milder and one a more severe phenotype. This review focuses specifically on the animal (murine and others model systems that have been developed with the aim of directly engineering DAG1 in order to study the DG function in skeletal muscle as well as in other tissues. In the last years, conditional animal models overcoming the embryonic lethality of the DG knock-out in mouse have been generated and helped clarifying the crucial role of DG in skeletal muscle, while an increasing number of studies on knock-in mice are aimed at understanding the contribution of single amino acids to the stability of DG and to the possible development of muscular dystrophy.

  15. Channel Engineering for Nanotransistors in a Semiempirical Quantum Transport Model

    Directory of Open Access Journals (Sweden)

    Ulrich Wulf

    2017-11-01

    Full Text Available One major concern of channel engineering in nanotransistors is the coupling of the conduction channel to the source/drain contacts. In a number of previous publications, we have developed a semiempirical quantum model in quantitative agreement with three series of experimental transistors. On the basis of this model, an overlap parameter 0 ≤ C ≤ 1 can be defined as a criterion for the quality of the contact-to-channel coupling: A high level of C means good matching between the wave functions in the source/drain and in the conduction channel associated with a low contact-to-channel reflection. We show that a high level of C leads to a high saturation current in the ON-state and a large slope of the transfer characteristic in the OFF-state. Furthermore, relevant for future device miniaturization, we analyze the contribution of the tunneling current to the total drain current. It is seen for a device with a gate length of 26 nm that for all gate voltages, the share of the tunneling current becomes small for small drain voltages. With increasing drain voltage, the contribution of the tunneling current grows considerably showing Fowler–Nordheim oscillations. In the ON-state, the classically allowed current remains dominant for large drain voltages. In the OFF-state, the tunneling current becomes dominant.

  16. Reliability physics and engineering time-to-failure modeling

    CERN Document Server

    McPherson, J W

    2013-01-01

    Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include:  ·       Materials/Device Degradation ·       Degradation Kinetics ·       Time-To-Failure Modeling ·       Statistical Tools ·       Failure-Rate Modeling ·       Accelerated Testing ·       Ramp-To-Failure Testing ·       Important Failure Mechanisms for Integrated Circuits ·       Important Failure Mechanisms for  Mechanical Components ·       Conversion of Dynamic  Stresses into Static Equivalents ·       Small Design Changes Producing Major Reliability Improvements ·       Screening Methods ·       Heat Generation and Dissipation ·       Sampling Plans and Confidence Intervals This textbook includes numerous example problems with solutions. Also, exercise problems along with the answers are included at the end of each chapter. Relia...

  17. Visualizing and modelling complex rockfall slopes using game-engine hosted models

    Science.gov (United States)

    Ondercin, Matthew; Hutchinson, D. Jean; Harrap, Rob

    2015-04-01

    Innovations in computing in the past few decades have resulted in entirely new ways to collect 3d geological data and visualize it. For example, new tools and techniques relying on high performance computing capabilities have become widely available, allowing us to model rockfalls with more attention to complexity of the rock slope geometry and rockfall path, with significantly higher quality base data, and with more analytical options. Model results are used to design mitigation solutions, considering the potential paths of the rockfall events and the energy they impart on impacted structures. Such models are currently implemented as general-purpose GIS tools and in specialized programs. These tools are used to inspect geometrical and geomechanical data, model rockfalls, and communicate results to researchers and the larger community. The research reported here explores the notion that 3D game engines provide a high speed, widely accessible platform on which to build rockfall modelling workflows and to provide a new and accessible outreach method. Taking advantage of the in-built physics capability of the 3D game codes, and ability to handle large terrains, these models are rapidly deployed and generate realistic visualizations of rockfall trajectories. Their utility in this area is as yet unproven, but preliminary research shows that they are capable of producing results that are comparable to existing approaches. Furthermore, modelling of case histories shows that the output matches the behaviour that is observed in the field. The key advantage of game-engine hosted models is their accessibility to the general public and to people with little to no knowledge of rockfall hazards. With much of the younger generation being very familiar with 3D environments such as Minecraft, the idea of a game-like simulation is intuitive and thus offers new ways to communicate to the general public. We present results from using the Unity game engine to develop 3D voxel worlds

  18. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    Science.gov (United States)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  19. Model-Based Fault Management Engineering Tool Suite Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's successful development of next generation space vehicles, habitats, and robotic systems will rely on effective Fault Management Engineering. Our proposed...

  20. Performance analysis and dynamic modeling of a single-spool turbojet engine

    Science.gov (United States)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  1. Numerical modeling of some engineering heat transfer problems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Daniel

    1998-04-01

    Engineering heat transfer problems are very often of a complex nature and most often no analytical solutions exist. One way to create solutions to such problems is to apply numerical methods. This study concerns heat transfer problems with coupled conduction, convection and thermal radiation. Five important but different engineering problems are considered. (1) The transient temperature distribution in a rotating cylinder which is exposed to a time varying incident heat flux, e.g. a nuclear burst, is determined. The cylinder is cooled by mixed convection and thermal radiation. The effects of the leading parameters, such as rotation speed, the cooling parameters and the physical properties of the shell are studied. (2) The cooling of a roll system which is transporting/casting a thin hot plastic film. The leading roll is heated by the hot film, cooled at the interior by forced convection and on the outside by forced convection, thermal radiation and contact with a support roll. The influence of the cooling parameters and the rotation are studied. (3) The heat and mass diffusion in pre-insulated district heating/cooling pipes. The task is to determine the effects of the gas mass transport through the casing of the pipes on the thermal behaviour and effects of condensed water due to the mass diffusion of water vapour. The importance of the density of the casing, the wall thickness of the casing, the thickness of the insulation and the surrounding temperature is revealed. (4) The development of a cooling system for an electrical unit in which a time dependent heat is generated due to the Joule effect. (5) The heat transfer from a rectangular fin in a confined space. The fin is cooled by turbulent forced convection. The turbulence model applied is a low Reynolds k-{epsilon}-model. Predicted results are compared with experimental ones, and a correlation for the Nusselt number is proposed. The effects of thermal radiation for non-participating as well as participating

  2. MSTAR's extensible search engine and model-based inferencing toolkit

    Science.gov (United States)

    Wissinger, John; Ristroph, Robert; Diemunsch, Joseph R.; Severson, William E.; Fruedenthal, Eric

    1999-08-01

    The DARPA/AFRL 'Moving and Stationary Target Acquisition and Recognition' (MSTAR) program is developing a model-based vision approach to Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR). The motivation for this work is to develop a high performance ATR capability that can identify ground targets in highly unconstrained imaging scenarios that include variable image acquisition geometry, arbitrary target pose and configuration state, differences in target deployment situation, and strong intra-class variations. The MSTAR approach utilizes radar scattering models in an on-line hypothesize-and-test operation that compares predicted target signature statistics with features extracted from image data in an attempt to determine a 'best fit' explanation of the observed image. Central to this processing paradigm is the Search algorithm, which provides intelligent control in selecting features to measure and hypotheses to test, as well as in making the decision about when to stop processing and report a specific target type or clutter. Intelligent management of computation performed by the Search module is a key enabler to scaling the model-based approach to the large hypothesis spaces typical of realistic ATR problems. In this paper, we describe the present state of design and implementation of the MSTAR Search engine, as it has matured over the last three years of the MSTAR program. The evolution has been driven by a continually expanding problem domain that now includes 30 target types, viewed under arbitrary squint/depression, with articulations, reconfigurations, revetments, variable background, and up to 30% blocking occlusion. We believe that the research directions that have been inspired by MSTAR's challenging problem domain are leading to broadly applicable search methodologies that are relevant to computer vision systems in many areas.

  3. Model Based Systems Engineering on the Europa Mission Concept Study

    Science.gov (United States)

    Bayer, Todd J.; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; hide

    2012-01-01

    At the start of 2011, the proposed Jupiter Europa Orbiter (JEO) mission was staffing up in expectation of becoming an official project later in the year for a launch in 2020. A unique aspect of the pre-project work was a strong emphasis and investment on the foundations of Model-Based Systems Engineering (MBSE). As so often happens in this business, plans changed: NASA's budget and science priorities were released and together fundamentally changed the course of JEO. As a result, it returned to being a study task whose objective is to propose more affordable ways to accomplish the science. As part of this transition, the question arose as to whether it could continue to afford the investment in MBSE. In short, the MBSE infusion has survived and is providing clear value to the study effort. By leveraging the existing infrastructure and a modest additional investment, striking advances in the capture and analysis of designs using MBSE were achieved. In the process, the need to remain relevant in the new environment has brought about a wave of innovation and progress. The effort has reaffirmed the importance of architecting. It has successfully harnessed the synergistic relationship of architecting to system modeling. We have found that MBSE can provide greater agility than traditional methods. We have also found that a diverse 'ecosystem' of modeling tools and languages (SysML, Mathematica, even Excel) is not only viable, but an important enabler of agility and adaptability. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.

  4. MONITORING AND MODELLING OF AIR POLLUTION PRODUCED BY AIRCRAFT ENGINE EMISSION INSIDE THE ATHENS INTERNATIONAL AIRPORT

    Directory of Open Access Journals (Sweden)

    Oleksander I. Zaporozhets

    2009-04-01

    Full Text Available  Experimental measuring of air pollution inside the airport, produced by aircraft engine emission during accelaration and take-off on the runway. Measurement data were used for verification of modelling results according to complex model «PolEmiCa». It consists of the following basic components: engine emission inventory calculation; transport of the contaminants by engine jets, dispersion of the contaminants in atmosphere due to wind and atmospheric turbulence.

  5. Understanding and modeling users of modern search engines

    NARCIS (Netherlands)

    Chuklin, A.

    2017-01-01

    As search is being used by billions of people, modern search engines are becoming more and more complex. And complexity does not just come from the algorithms. Richer and richer content is being added to search engine result pages: news and sports results, definitions and translations, images and

  6. Semantic Modeling of Requirements: Leveraging Ontologies in Systems Engineering

    Science.gov (United States)

    Mir, Masood Saleem

    2012-01-01

    The interdisciplinary nature of "Systems Engineering" (SE), having "stakeholders" from diverse domains with orthogonal facets, and need to consider all stages of "lifecycle" of system during conception, can benefit tremendously by employing "Knowledge Engineering" (KE) to achieve semantic agreement among all…

  7. Empirical modeling and data analysis for engineers and applied scientists

    CERN Document Server

    Pardo, Scott A

    2016-01-01

    This textbook teaches advanced undergraduate and first-year graduate students in Engineering and Applied Sciences to gather and analyze empirical observations (data) in order to aid in making design decisions. While science is about discovery, the primary paradigm of engineering and "applied science" is design. Scientists are in the discovery business and want, in general, to understand the natural world rather than to alter it. In contrast, engineers and applied scientists design products, processes, and solutions to problems. That said, statistics, as a discipline, is mostly oriented toward the discovery paradigm. Young engineers come out of their degree programs having taken courses such as "Statistics for Engineers and Scientists" without any clear idea as to how they can use statistical methods to help them design products or processes. Many seem to think that statistics is only useful for demonstrating that a device or process actually does what it was designed to do. Statistics courses emphasize creati...

  8. The challenge of musculoskeletal tissue engineering – from cell cultures to large animal models

    Directory of Open Access Journals (Sweden)

    Beier, Justus P.

    2015-08-01

    Full Text Available Engineering functional skeletal muscle tissue still remains a major challenge. So far clinically relevant sizes of functional skeletal muscle tissue could not be engineered yet. One of the obstacles to overcome is the development of a suitable scaffold for muscle tissue engineering in vivo, another is the lack of differentiation in expanded adult muscle precursor cells. Materials and different architectures of scaffolds which are used for engineering functional skeletal muscle are presented here as well as approaches to the differentiation challenge. Finally the translation from cell culture over small to large animal models for engineering axially vascularized musculoskeletal tissues will be described.

  9. Design of personalized search engine based on user-webpage dynamic model

    Science.gov (United States)

    Li, Jihan; Li, Shanglin; Zhu, Yingke; Xiao, Bo

    2013-12-01

    Personalized search engine focuses on establishing a user-webpage dynamic model. In this model, users' personalized factors are introduced so that the search engine is better able to provide the user with targeted feedback. This paper constructs user and webpage dynamic vector tables, introduces singular value decomposition analysis in the processes of topic categorization, and extends the traditional PageRank algorithm.

  10. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    J.C.M. Baeten (Jos); J.M. van de Mortel-Fronczak (Joanna); J.E. Rooda (Jacobus)

    2016-01-01

    htmlabstractIncreasing system complexity, time to market and development costs reduction place higher demands on engineering processes. Formal models play an important role here because they enable the use of various model-based analyses and early integration techniques and tools. Engineering

  11. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    J.C.M. Baeten (Jos); J.M. van de Mortel-Fronczak (Joanna); J.E. Rooda (Jacobus)

    2011-01-01

    htmlabstractDue to increasing system complexity, time-to-market and development costs reduction, there are higher demands on engineering processes. Model-based engineering processes can play a role here because they support system development by enabling the use of various model-based analysis

  12. 77 FR 58970 - Special Conditions: Embraer S.A. Model EMB-550 Airplanes, Sudden Engine Stoppage

    Science.gov (United States)

    2012-09-25

    ... primary structure is metal with composite empennage and control surfaces. The Model EMB-550 airplane is... are electronically controlled using fly-by-wire (FBW) technology. The Model EMB-550 airplane... conditions are proposed: 1. For turbine-engine installations, the engine mounts, pylons, and adjacent...

  13. Increasing Engineering Students' Awareness to Environment through Innovative Teaching of Mathematical Modelling

    Science.gov (United States)

    Klymchuk, Sergiy; Zverkova, Tatyana; Gruenwald, Norbert; Sauerbier, Gabriele

    2008-01-01

    This article presents the results of two studies on using an innovative pedagogical strategy in teaching mathematical modelling and applications to engineering students. Both studies are dealing with introducing non-traditional contexts for engineering students in teaching/learning of mathematical modelling and applications: environment and…

  14. An introduction to network modeling and simulation for the practicing engineer

    CERN Document Server

    Burbank, Jack; Ward, Jon

    2011-01-01

    This book provides the practicing engineer with a concise listing of commercial and open-source modeling and simulation tools currently available including examples of implementing those tools for solving specific Modeling and Simulation examples. Instead of focusing on the underlying theory of Modeling and Simulation and fundamental building blocks for custom simulations, this book compares platforms used in practice, and gives rules enabling the practicing engineer to utilize available Modeling and Simulation tools. This book will contain insights regarding common pitfalls in network Modeling and Simulation and practical methods for working engineers.

  15. Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort

    Science.gov (United States)

    Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.

    2017-01-01

    The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.

  16. Examination of Modeling Languages to Allow Quantitative Analysis for Model-Based Systems Engineering

    Science.gov (United States)

    2014-06-01

    used or translated use by a simulation tool for analysis. This appears to be linked to the software engineering tradition, where, in principle, if...to recognize these mistakes is limited. This is a point for engagement with subject matter experts. They can review the logic that the model is...Experiment (DOE) techniques such as Nearly Orthogonal Latin Hypercubes (NOLH) that have space filling properties as well as genetic algorithms that

  17. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  18. Modeling and adaptive control of a camless engine using neural networks and estimation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-08-09

    A system to control the cylinder air charge (CAC) in a camless internal combustion (IC) engine was recently developed. The performance of an IC engine connected to an adaptive artificial neural network (ANN) based feedback controller was then investigated. A control oriented model for the engine intake process was created based on thermodynamics laws and was validated against engine experimental data. Input-output data at a speed of 1500 RPM was generated and used to train an ANN model for the engine. The inputs were the intake valve lift (IVL) and closing timing (IVC). The output was the CAC. The controller consisted of a feedforward controller, CAC estimator, and on-line ANN parameter estimator. The feedforward controller provided IVL and IVC that satisfied the driver's torque demand and was the inverse of the engine ANN model. The on-line ANN used the error between the CAC measurement from the CAC estimator and its predicted value from the ANN to update the network's parameters. The feedforward controller was therefore adapted since its operation depended on the ANN model. The adaptation scheme improved the ANN prediction accuracy when the engine parts degraded, the speed changed or when modeling errors occurred. The engine controller exhibited good CAC tracking performance. Computer simulation demonstrated the capability of the camless engine controller. 17 refs., 5 figs.

  19. 2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Waters, Jiajia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-25

    Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.

  20. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...... predict specific fuel oil consumption and NOx emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation....

  1. Model-Based Fault Diagnosis for Turboshaft Engines

    National Research Council Canada - National Science Library

    Green, Michael

    1998-01-01

    Tests are described which, when used to augment the existing periodic maintenance and pre-flight checks of T700 engines, can greatly improve the chances of uncovering a problem compared to the current practice...

  2. Common Rail System for GDI Engines Modelling, Identification, and Control

    CERN Document Server

    Fiengo, Giovanni; Palladino, Angelo; Giglio, Veniero

    2013-01-01

    Progressive reductions in vehicle emission requirements have forced the automotive industry to invest in research and development of alternative control strategies. Continual control action exerted by a dedicated electronic control unit ensures that best performance in terms of pollutant emissions and power density is married with driveability and diagnostics. Gasoline direct injection (GDI) engine technology is a way to attain these goals. This brief describes the functioning of a GDI engine equipped with a common rail (CR) system, and the devices necessary to run test-bench experiments in detail. The text should prove instructive to researchers in engine control and students are recommended to this brief as their first approach to this technology. Later chapters of the brief relate an innovative strategy designed to assist with the engine management system; injection pressure regulation for fuel pressure stabilization in the CR fuel line is proposed and validated by experiment. The resulting control scheme ...

  3. Optimal Robust Matching of Engine Models to Test Data

    Science.gov (United States)

    2009-02-28

    CD m • £ i Q. ? CU TJ o a. < < CO n o a. CD >- 6 a, en Q- »- §1 11 m o. c CD a) .a Q. O Q. Q. CO > £ 3 S CO 2 *f E — 3... Doel , D. L., "TEMPER - A Gas Path Analysis Tool for Commercial Jet Engines," Journal of Engineering for Gas Turbines and Power, Vol. 116, pp. 82-89

  4. Reverse-Engineering MAC: A Non-Cooperative Game Model

    OpenAIRE

    Lee, Jang-Won; Tang, Ao; Huang, Jianwei; Chiang, Mung; Calderbank, A. Robert

    2007-01-01

    This paper reverse-engineers backoff-based random-access MAC protocols in ad-hoc networks. We show that the contention resolution algorithm in such protocols is implicitly participating in a non-cooperative game. Each link attempts to maximize a selfish local utility function, whose exact shape is reverse-engineered from the protocol description, through a stochastic subgradient method in which the link updates its persistence probability based on its transmission success or failure. We prove...

  5. A Joint Venture Model for Teaching Required Courses in "Ethics and Engineering" to Engineering Students

    Science.gov (United States)

    Zandvoort, H.; Van Hasselt, G. J.; Bonnet, J. A. B. A. F.

    2008-01-01

    We present our experience, spanning more than 10 years of teaching a course on "ethics and engineering" for a group of MSc programmes in applied sciences at Delft University of Technology. The course is taught by a team of teachers from the faculty of Applied Sciences and from the department of Philosophy of the Faculty of Technology,…

  6. Building information modelling review with potential applications in tunnel engineering of China.

    Science.gov (United States)

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  7. Building information modelling review with potential applications in tunnel engineering of China

    Science.gov (United States)

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  8. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    Science.gov (United States)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  9. PICASSO VISION instrument design, engineering model test results, and flight model development status

    Science.gov (United States)

    Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Akujärvi, Altti; Saari, Heikki; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe

    2016-10-01

    PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT Technical Research Centre of Finland Ltd, Clyde Space Ltd. (UK) and Centre Spatial de Liège (BE). The test campaign for the engineering model of the PICASSO VISION instrument, a miniaturized nanosatellite spectral imager, has been successfully completed. The test results look very promising. The proto-flight model of VISION has also been successfully integrated and it is waiting for the final integration to the satellite platform.

  10. Thermal modeling in an engine cooling system to control coolant flow for fuel consumption improvement

    Science.gov (United States)

    Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung

    2017-04-01

    The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.

  11. Experimental validation of extended NO and soot model for advanced HD diesel engine combustion

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Somers, L.M.T.; Willems, F.P.T.

    2009-01-01

    A computationally efficient engine model is developed based on an extended NO emission model and state-of-the-art soot model. The model predicts exhaust NO and soot emission for both conventional and advanced, high-EGR (up to 50%), heavy-duty DI diesel combustion. Modeling activities have aimed at

  12. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    Science.gov (United States)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  13. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.

    2009-06-01

    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  14. Eliciting and characterizing students' mental models within the context of engineering design

    Science.gov (United States)

    Dankenbring, Chelsey

    Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.

  15. Re-engineering pre-employment check-up systems: a model for improving health services.

    Science.gov (United States)

    Rateb, Said Abdel Hakim; El Nouman, Azza Abdel Razek; Rateb, Moshira Abdel Hakim; Asar, Mohamed Naguib; El Amin, Ayman Mohammed; Gad, Saad abdel Aziz; Mohamed, Mohamed Salah Eldin

    2011-01-01

    The purpose of this paper is to develop a model for improving health services provided by the pre-employment medical fitness check-up system affiliated to Egypt's Health Insurance Organization (HIO). Operations research, notably system re-engineering, is used in six randomly selected centers and findings before and after re-engineering are compared. The re-engineering model follows a systems approach, focusing on three areas: structure, process and outcome. The model is based on six main components: electronic booking, standardized check-up processes, protected medical documents, advanced archiving through an electronic content management (ECM) system, infrastructure development, and capacity building. The model originates mainly from customer needs and expectations. The centers' monthly customer flow increased significantly after re-engineering. The mean time spent per customer cycle improved after re-engineering--18.3 +/- 5.5 minutes as compared to 48.8 +/- 14.5 minutes before. Appointment delay was also significantly decreased from an average 18 to 6.2 days. Both beneficiaries and service providers were significantly more satisfied with the services after re-engineering. The model proves that re-engineering program costs are exceeded by increased revenue. Re-engineering in this study involved multiple structure and process elements. The literature review did not reveal similar re-engineering healthcare packages. Therefore, each element was compared separately. This model is highly recommended for improving service effectiveness and efficiency. This research is the first in Egypt to apply the re-engineering approach to public health systems. Developing user-friendly models for service improvement is an added value.

  16. Review of the Space Mapping Approach to Engineering Optimization and Modeling

    DEFF Research Database (Denmark)

    Bakr, M. H.; Bandler, J. W.; Madsen, Kaj

    2000-01-01

    We review the Space Mapping (SM) concept and its applications in engineering optimization and modeling. The aim of SM is to avoid computationally expensive calculations encountered in simulating an engineering system. The existence of less accurate but fast physically-based models is exploited. S......-based Modeling (SMM). These include Space Derivative Mapping (SDM), Generalized Space Mapping (GSM) and Space Mapping-based Neuromodeling (SMN). Finally, we address open points for research and future development....

  17. SE3000 Summer AY 14 Systems Engineering Colloquium, Total Ownership Cost Modeling [video

    OpenAIRE

    Madachy, Raymond J.

    2014-01-01

    Naval Postgraduate School Graduate School of Engineering & Applied Sciences, Total Ownership Cost Modeling presented by Raymond J. Madachy, Associate Professor of Systems Engineering at the Naval Postgraduate School. Total Ownership Cost (TOC) is the sum cost of system acquisition, development, and operations including direct and indirect costs. In the DoD, cost modeling is needed to enable tradespace analysis of affordability with other system ilities. Parametric cost models will be overv...

  18. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1997-01-01

    control and monitor-ing systems for production cells. The project participants are The Danish Academy of Technical Sciences, the Institute of Manufacturing Engineering at the Technical University of Denmark and ODENSE STEEL SHIPYARD Ltd.The manufacturing environment and the current practice...... SHIPYARD.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing and operating high quality and high functionality cell control solutions for the industry....

  19. Computational fluid dynamics in fire engineering theory, modelling and practice

    CERN Document Server

    Yuen, Kwok Kit

    2009-01-01

    Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the f

  20. Domain engineering product lines, languages, and conceptual models

    CERN Document Server

    Reinhartz-Berger, Iris; Clark, Tony

    2013-01-01

    Domain engineering is a set of activities intended to develop, maintain, and manage the creation and evolution of an area of knowledge suitable for processing by a range of software systems.  It is of considerable practical significance, as it provides methods and techniques that help reduce time-to-market, development costs, and project risks on one hand, and helps improve system quality and performance on a consistent basis on the other. In this book, the editors present a collection of invited chapters from various fields related to domain engineering. The individual chapters pres

  1. Modeling for control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Garcia-Canseco, Eloisa; Alvarez-Aguirre, Alejandro; Scherpen, Jacquelien M. A.

    In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine.

  2. The MDE Diploma: First International Postgraduate Specialization in Model-Driven Engineering

    Science.gov (United States)

    Cabot, Jordi; Tisi, Massimo

    2011-01-01

    Model-Driven Engineering (MDE) is changing the way we build, operate, and maintain our software-intensive systems. Several projects using MDE practices are reporting significant improvements in quality and performance but, to be able to handle these projects, software engineers need a set of technical and interpersonal skills that are currently…

  3. 78 FR 50317 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Science.gov (United States)

    2013-08-19

    ... turbine fuel, or for aircraft equipped with diesel cycle engines that use turbine or diesel type fuels...--this airplane is equipped with an aircraft diesel engine; service with approved fuels only.'' The... Federal Aviation Administration 14 CFR Part 23 Special Conditions: Cessna Aircraft Company, Model J182T...

  4. 78 FR 28719 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Science.gov (United States)

    2013-05-16

    ... cycle engines that use turbine or diesel type fuels, the initial temperature must be 110 F, -0 , +5 or... Test Guide for Certification of Part 23 Airplanes. 7. Powerplant--Fuel system--Fuel tank filler... Administration 14 CFR Part 23 Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine...

  5. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Energy Technology Data Exchange (ETDEWEB)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  6. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Science.gov (United States)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes

    2015-05-01

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  7. Logical diagnosis model turbojet engine including double-circuit intermittent flow of his injuries

    Directory of Open Access Journals (Sweden)

    О.П. Стьопушкіна

    2007-01-01

    Full Text Available  In this article is considered question of the change quantitative and qualitative factors of the technical condition constructive element running part of jet engine. As a result called on experimental studies diagnostic sign were definite sign with provision for intermittent damages and on base this is built expert model of the turbojet double-circuit engine.

  8. 40 CFR 90.615 - Model year restrictions related to imported engines and equipment.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Model year restrictions related to imported engines and equipment. 90.615 Section 90.615 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Importation of...

  9. The Open Academic Model for the Systems Engineering Graduate Program at Stevens Institute of Technology

    Science.gov (United States)

    Lasfer, Kahina

    2012-01-01

    The Systems Engineering Program at Stevens Institute of Technology has developed the Open Academic Model (OAM) to guide its strategic planning and operations since its founding in 2001. Guided by OAM, the Stevens Systems Engineering Program (SSEP) has grown from inception in 2001 into one of the largest in the US. The main objectives of the…

  10. Applications and issues of GIS as tool for civil engineering modeling

    Science.gov (United States)

    Miles, S.B.; Ho, C.L.

    1999-01-01

    A tool that has proliferated within civil engineering in recent years is geographic information systems (GIS). The goal of a tool is to supplement ability and knowledge that already exists, not to serve as a replacement for that which is lacking. To secure the benefits and avoid misuse of a burgeoning tool, engineers must understand the limitations, alternatives, and context of the tool. The common benefits of using GIS as a supplement to engineering modeling are summarized. Several brief case studies of GIS modeling applications are taken from popular civil engineering literature to demonstrate the wide use and varied implementation of GIS across the discipline. Drawing from the case studies, limitations regarding traditional GIS data models find the implementation of civil engineering models within current GIS are identified and countered by discussing the direction of the next generation of GIS. The paper concludes by highlighting the potential for the misuse of GIS in the context of engineering modeling and suggests that this potential can be reduced through education and awareness. The goal of this paper is to promote awareness of the issues related to GIS-based modeling and to assist in the formulation of questions regarding the application of current GIS. The technology has experienced much publicity of late, with many engineers being perhaps too excited about the usefulness of current GIS. An undoubtedly beneficial side effect of this, however, is that engineers are becoming more aware of GIS and, hopefully, the associated subtleties. Civil engineers must stay informed of GIS issues and progress, but more importantly, civil engineers must inform the GIS community to direct the technology development optimally.

  11. Assessment Engineering Task Model Maps, Task Models and Templates as a New Way to Develop and Implement Test Specifications

    Science.gov (United States)

    Luecht, Richard M.

    2013-01-01

    Assessment engineering is a new way to design and implement scalable, sustainable and ideally lower-cost solutions to the complexities of designing and developing tests. It represents a merger of sorts between cognitive task modeling and engineering design principles--a merger that requires some new thinking about the nature of score scales, item…

  12. Ways of Thinking, Ways of Seeing Mathematical and other Modelling in Engineering and Technology

    CERN Document Server

    Dillon, Chris

    2012-01-01

    This fascinating book examines some of the characteristics of technological/engineering models that are likely to be unfamiliar to those who are interested primarily in the history and philosophy of science and mathematics, and which differentiate technological models from scientific and mathematical ones. Themes that will be highlighted include: • the role of language: the models developed for engineering design have resulted in new ways of talking about technological systems • communities of practice: related to the previous point, particular engineering communities have particular ways of sharing and developing knowledge • graphical (re)presentation: engineers have developed many ways of reducing quite complex mathematical models to more simple representations • reification: highly abstract mathematical models are turned into ‘objects’ that can be manipulated almost like components of a physical system • machines: not only the currently ubiquitous digital computer, but also older analogue dev...

  13. Estimation of parasitic losses in a proposed mesoscale resonant engine: Experiment and model

    Science.gov (United States)

    Preetham, B. S.; Anderson, M.; Richards, C.

    2014-02-01

    A resonant engine in which the piston-cylinder assembly is replaced by a flexible cavity is realized at the mesoscale using flexible metal bellows to demonstrate the feasibility of the concept. A four stroke motoring technique is developed and measurements are performed to determine parasitic losses. A non-linear lumped parameter model is developed to evaluate the engine performance. Experimentally, the heat transfer and friction effects are separated by varying the engine speed and operating frequency. The engine energy flow diagram showing the energy distribution among various parasitic elements reveals that the friction loss in the bellows is smaller than the sliding friction loss in a typical piston-cylinder assembly.

  14. Heat engines at optimal power: Low-dissipation versus endoreversible model

    Science.gov (United States)

    Johal, Ramandeep S.

    2017-07-01

    The low-dissipation model and the endoreversible model of heat engines are two of the most commonly studied models of machines in finite-time thermodynamics. In this paper we compare the performance characteristics of these two models under optimal power output. We point out a basic equivalence between them, in the linear response regime.

  15. On Engineering Support for Business Process Modelling and Redesign

    NARCIS (Netherlands)

    Doumeingts, G.; Franken, H.M.; de Weger, M.K.; Browne, J.; Quartel, Dick; Ferreira Pires, Luis

    1997-01-01

    Currently, there is an enormous (research) interest in business process redesign (BPR). Several management-oriented approaches have been proposed showing how to make BPR work. However, detailed descriptions of empirical experience are few. Consistent engineering methodologies to aid and guide a

  16. Thermodynamic modelling of a pistons engine: Calculation of the ...

    African Journals Online (AJOL)

    The internal combustion engines are under development remarkable these last decades, but they represent, currently, a very important source of polluting gas emissions. The nitrogen oxides (NOx) form part of these polluting emissions, and have a harmful effect on human health, as well as the environment. Considering the ...

  17. Can Models Capture the Complexity of the Systems Engineering Process?

    Science.gov (United States)

    Boppana, Krishna; Chow, Sam; de Weck, Olivier L.; Lafon, Christian; Lekkakos, Spyridon D.; Lyneis, James; Rinaldi, Matthew; Wang, Zhiyong; Wheeler, Paul; Zborovskiy, Marat; Wojcik, Leonard A.

    Many large-scale, complex systems engineering (SE) programs have been problematic; a few examples are listed below (Bar-Yam, 2003 and Cullen, 2004), and many others have been late, well over budget, or have failed: Hilton/Marriott/American Airlines system for hotel reservations and flights; 1988-1992; 125 million; "scrapped"

  18. Multilayer Network Modeling of Change Propagation for Engineering Change Management

    Science.gov (United States)

    2010-06-01

    ation 411 PNC C ac 2 C PC Not Predicted & Propagated wI Comunication ENot Predicted & Not Propagated w ConPnCcation 04 PPC 5CPredicted & Propagated w...documentation, and product requirements. Formal change impact analysis allows an engineering firm to keep tabs on their products’ satisfaction of

  19. MODELING OF ELECTRONIC GASOLINE INJECTION PROCESSES IN TWO STROKE ENGINE

    Directory of Open Access Journals (Sweden)

    Hraivoronskyi, Y.

    2013-06-01

    Full Text Available Basic provision of the processes developed mode, occurring in ignition fuel system with electronically controlled two stroke engine with positive ignition are given. Fuel injection process’ calculation results for the case of placing fuel injector into intake system presented.

  20. Identification of Civil Engineering Structures using Vector ARMA Models

    DEFF Research Database (Denmark)

    Andersen, Palle; Brincker, Rune; Kirkegaard, Poul Henning

    1998-01-01

    This paper describes the work which have been carried out in the project B.1: Damage Detection in Structures under Random Loading. The project is a part of the research programme Dynamics of Structures founded by the Danish Technical Research Council. The planned contents of and the requirements ...... Dept. of Building Technology and Structural Engineering, Aalborg University....

  1. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Author Guidelines. The journal publishes original research reports, short communications, and critical reviews in any branch of engineering and allied fields such as applied mathematics, applied physics, applied chemistry and management sciences. It has special focus on the application of physical or mathematical ...

  2. Incorporating Learning Theory into Existing Systems Engineering Models

    Science.gov (United States)

    2013-09-01

    Jossey-Bass. Barker, B. (2003). Determining systems engineering effectiveness: Conference on systems intergration . Hoboken, NJ: Steven Institute of...measuring and predcting the degradation of aging system and how it can be achieved. Georgia Tech Research Institute, Logistic and Maintenance

  3. A Comparison of Different Engineering Models for Computation of Lightning Magnetic Field of Negative First Strokes

    Directory of Open Access Journals (Sweden)

    V. Javor

    2012-11-01

    Full Text Available A comparison of different engineering models results for a lightning magnetic field of negative first strokes is presented in this paper. A new function for representing double-peaked channel-base current is used for lightning stroke modeling. This function includes the initial and subsidiary peak in a current waveform. For experimentally measured currents, a magnetic field is calculated for the three engineering models: transmission line (TL model, TL model with linear decay (MTLL, and TL model with exponential decay (MTLE.

  4. Application for certification 1993 model year heavy-duty diesel engines - Isuzu

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Each year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement or compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  5. Application for certification 1993 model year heavy-duty diesel engines - Mitsubishi Motors Corporation

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Each year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement or compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  6. Computer-Aided Design Methods for Model-Based Nonlinear Engine Control Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional design methods for aircraft turbine engine control systems have relied on the use of linearized models and linear control theory. While these controllers...

  7. Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are...

  8. Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing

    National Research Council Canada - National Science Library

    Qiang Yan; Stephen S. Fong

    2017-01-01

    .... However, most metabolic engineering projects utilize a handful of established model organisms and thus, a challenge for harnessing the potential of novel microbial functions is the ability to either...

  9. A Physics-Based Starting Model for Gas Turbine Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing an integrated starting model for gas turbine engines using a new physics-based...

  10. IDC Re-Engineering Phase 2 Data Model to IDC Schema Mapping.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Montoya, Mark Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandoval, Rudy Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vickers, James Wallace [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This initial draft document contains formative data model content for select areas of Re-Engineering Phase 2 IDC System. The purpose of this document is to facilitate discussion among the stakeholders. It is not intended as a definitive proposal.

  11. Bringing Model Checking Closer to Practical Software Engineering

    CERN Document Server

    AUTHOR|(CDS)2079681; Templon, J A; Willemse, T.A.C.

    Software grows in size and complexity, making it increasingly challenging to ensure that it behaves correctly. This is especially true for distributed systems, where a multitude of components are running concurrently, making it dicult to anticipate all the possible behaviors emerging in the system as a whole. Certain design errors, such as deadlocks and race-conditions, can often go unnoticed when testing is the only form of verication employed in the software engineering life-cycle. Even when bugs are detected in a running software, revealing the root cause and reproducing the behavior can be time consuming (and even impossible), given the lack of control the engineer has over the execution of the concurrent components, as well as the number of possible scenarios that could have produced the problem. This is especially pronounced for large-scale distributed systems such as the Worldwide Large Hadron Collider Computing Grid. Formal verication methods oer more rigorous means of determining whether a system sat...

  12. Modelling and Operation of Diesel Engine Exhaust Gas Cleaning Systems

    DEFF Research Database (Denmark)

    Åberg, Andreas

    Diesel engine exhaust gases contain several harmful substances. The main pollutants are carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), and nitrous gases such as nitrogen oxide (NO) and nitrogen dioxide (NO2) (together NOx). Reducing the emission of these pollutants is of great...... outperformed the other control structures. The results were experimentally verified by implementing the tested controllers on a full-scale engine setup, and the results showed that coupling feedback with ANR based feedforward was yielding better performance. The PD controller showed good performance...... importance due to their effect on urban air quality, and because of new legislation. In modern heavy-duty applications, the exhaust gases are typically treated with four different catalysts: a Diesel Oxidation Catalyst (DOC) which oxidises HC and CO into H2O and CO2, and NO into NO2, a Diesel Particulate...

  13. A Model for Implementing Practical Design in the Education of Mechanical Engineers

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Mouritsen, Ole Ø.; Andersen, Torben Ole

    2006-01-01

    In this paper the PBL model used at Aalborg University in the mechanical engineering is shortly presented. A specific semester with a both theoretical and practical content that allow the students to is presented in detail. It is then used as a reference project for a subsequent discussion on three...... potential concerns with respect to the continued succes of problem and project based learning in mechanical and mechatronics engineering namely: individual assessment, bologna (student exchange) model and research based teaching....

  14. IMPLEMENTASI EDITOR MODEL DATA KONSEPTUAL DAN MODEL DATA FISIK DENGAN ROUND-TRIP ENGINEERING

    Directory of Open Access Journals (Sweden)

    Aldy Sefan Rezanaldy

    2012-01-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Desain model basis data merupakan sebuah fase penting dalam pengembangan sebuah Aplikasi Sistem Informasi. Editor Model Data yang digunakan untuk melakukan desain basis data sangat diperlukan dalam dunia IT. Sebagian Editor yang ada saat ini belum menerapkan konsep round-trip engineering secara real time, sehingga perubahan yang terjadi pada satu data model membutuhkan event update untuk melakukan pembaharuan pada model data yang lainnya. Editor model data ini merupakan editor dengan round-trip engineering. Konversi bolak-balik dilakukan antara data model konseptual dan data model fisik. Editor ini dikembangkan dengan menggunakan C# .NET Framework dan implementasi desain pola pada Object Oriented. Dalam implementasi sebuah editor, yang merupakan bagian terpenting selain berjalannya seluruh fitur yang ada adalah tentang performa dan kenyamanan user ketika menggunakannya. Performa dan kenyamanan user menjadi penilaian tersendiri pada sebuah editor model data. Aplikasi yang dihasilkan diharapkan dapat digunakan untuk melakukan desain basis data dengan menerapkan metode konversi bolak-balik, sehingga tidak diperlukan proses perbaruan dari model data yang satu ke model data yang lain secara manual. Diharapkan dapat

  15. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  16. Selecting appropriate dynamic model for elastomeric engine mounts to approximate experimental FRF data of them

    Directory of Open Access Journals (Sweden)

    Jahani K.

    2010-06-01

    Full Text Available In this paper, the capabilities of different dynamic analytical models to approximate experimentally measured FRFs of elastomeric engine mounts of a passenger car are investigated. Artificial neural networks is used in identifying the dynamic characteristics of each model. Impact hammer test is implemented to extract measured FRFs and harmonic analysis is used to get the counterpart response of the models. Here linear and orthotropic material properties are considered for elastomeric media. The frequency response functions of updated models are compared with experimentally detected ones and advantages and limitations of each model to simulate the real dynamic behaviour of elastomeric engine mounts are discussed

  17. An example of a diesel generator model with fluctuating engine torque for transient analysis using XTAP

    Directory of Open Access Journals (Sweden)

    Orie Sakamoto

    2016-01-01

    Full Text Available In remote site power systems with small diesel generators, weak distribution feeders with diesel generators may suffer from voltage and power fluctuations due to misfiring of the engine cylinder. An electromagnetic transient (EMT program named XTAP is considered to be useful to analyze these phenomena. In this study, a new diesel generator model with example fluctuating engine torque has been developed using XTAP for analyses of small power systems with those diesel engines. The configuration and verification results of the developed model are presented in the paper.

  18. Modelling and Implementation of QoS in Wireless Sensor Networks: A Multiconstrained Traffic Engineering Model

    Directory of Open Access Journals (Sweden)

    Bagula AntoineB

    2010-01-01

    Full Text Available This paper revisits the problem of Quality of Service (QoS provisioning to assess the relevance of using multipath routing to improve the reliability and packet delivery in wireless sensor networks while maintaining lower power consumption levels. Building upon a previous benchmark, we propose a traffic engineering model that relies on delay, reliability, and energy-constrained paths to achieve faster, reliable, and energy-efficient transmission of the information routed by a wireless sensor network. As a step forward into the implementation of the proposed QoS model, we describe the initial steps of its packet forwarding protocol and highlight the tradeoff between the complexity of the model and the ease of implementation. Using simulation, we demonstrate the relative efficiency of our proposed model compared to single path routing, disjoint path routing, and the previously proposed benchmarks. The results reveal that by achieving a good tradeoff between delay minimization, reliability maximization, and path set selection, our model outperforms the other models in terms of energy consumption and quality of paths used to route the information.

  19. Task Models and System Models as A Bridge Between Hci and Software Engineering

    Science.gov (United States)

    Navarre, David; Palanque, Philippe; Winckler, Marco

    This chapter claims that task models per se do not contain sufficient and necessary information to permit automatic generation of interactive systems. Beyond this, we claim that they must not contain sufficient and necessary information otherwise they could no longer be considered as task models. On the contrary we propose a way of exploiting in a synergistic way task models with other models to be built during the development process. This chapter presents a set of tools supporting the development of interactive systems using two different notations. One of these notations called ConcurTaskTree (CTT) is used for task modeling. The other notation called Interactive Cooperative Objects (ICO) is used for system modeling. Even though these two kinds of models represent two different views of the same world (a user interacting with an interactive system), they are built by different people (human factors specialist for the task models and software engineer for the system models) and are used independently. The aim of this chapter is to propose the use of scenarios as a bridge between these two views. On the task modeling side, scenarios are seen as a possible trace of user’s activity. On the system side, scenarios are seen as a trace of user’s actions. This generic approach is presented on a case study in the domain of Air Traffic Control. As both CTT and ICO notations are tool supported (environments are respectively CTTE and PetShop) an integration tool based on this notion of scenarios is presented. Its use on the selected case study is also presented in detail.

  20. Model testing the two-phase scavenging system in a two-stroke petrol engine

    Energy Technology Data Exchange (ETDEWEB)

    Cudina, M. [University of Ljubljana (Slovenia). Faculty of Mechanical Engineering

    2004-11-01

    Due to an inadequate scavenging process two-stroke petrol engines suffer from substantial fuel-specific consumption, as well as from considerable emissions of toxic components in exhaust gases. This paper describes the model testing and evaluation of a new scavenging system in a small two-stroke petrol engine with internal working mixture preparation. The scavenging process is performed by two different gas media in two successive phases and is more sophisticated and effective than the conventional single-phase (Schnuerle) principle. Using the similarity principle and dimensional analysis, a new mathematical model was developed for evaluation of the effectiveness of the scavenging systems. This makes it possible to establish relationships between the most important parameters of the model engine and of the real engine, which are independent of the dimensional parameters. The effectiveness of the scavenging systems was defined by means of qualitative scavenging efficiency. A special testing device for the model engine has been developed and a liquid working media (instead of gaseous) is used. A qualitative as well as a quantitative evaluation of the predicted values and a simulation of the working medium exchange process at different working conditions is possible. A visual observation of the slowed-down scavenging process in a transparent model cylinder was also made. The mathematical model can be applied to any scavenging system of two-stroke engines or to similar periodic events in the process technique. (author)

  1. An assessment of CFD-based wall heat transfer models in piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States)

    2017-04-26

    The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictive submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.

  2. EXAMPLE OF FLOW MODELLING CHARACTERISTICS IN DIESEL ENGINE NOZZLE

    Directory of Open Access Journals (Sweden)

    Dušan KOLARIČ

    2016-03-01

    Full Text Available Modern transport is still based on vehicles powered by internal combustion engines. Due to stricter ecological requirements, the designers of engines are continually challenged to develop more environmentally friendly engines with the same power and performance. Unfortunately, there are not any significant novelties and innovations available at present which could significantly change the current direction of the development of this type of propulsion machines. That is why the existing ones should be continually developed and improved or optimized their performance. By optimizing, we tend to minimize fuel consumption and lower exhaust emissions in order to meet the norms defined by standards (i.e. Euro standards. Those propulsion engines are actually developed to such extent that our current thinking will not be able to change their basic functionality, but possible opportunities for improvement, especially the improvement of individual components, could be introduced. The latter is possible by computational fluid dynamics (CFD which can relatively quickly and inexpensively produce calculations prior to prototyping and implementation of accurate measurements on the prototype. This is especially useful in early stages of development or at optimization of dimensional small parts of the object where the physical execution of measurements is impossible or very difficult. With advances of computational fluid dynamics, the studies on the nozzles and outlet channel injectors have been relieved. Recently, the observation and better understanding of the flow in nozzles at large pressure and high velocity is recently being possible. This is very important because the injection process, especially the dispersion of jet fuel, is crucial for the combustion process in the cylinder and consequently for the composition of exhaust gases. And finally, the chemical composition of the fuel has a strong impact on the formation of dangerous emissions, too. The

  3. Model-integrating software components engineering flexible software systems

    CERN Document Server

    Derakhshanmanesh, Mahdi

    2015-01-01

    In his study, Mahdi Derakhshanmanesh builds on the state of the art in modeling by proposing to integrate models into running software on the component-level without translating them to code. Such so-called model-integrating software exploits all advantages of models: models implicitly support a good separation of concerns, they are self-documenting and thus improve understandability and maintainability and in contrast to model-driven approaches there is no synchronization problem anymore between the models and the code generated from them. Using model-integrating components, software will be

  4. Modeling the Performance of a New Speed Adjustable Compound Supercharging Diesel Engine Working under Plateau Conditions

    Directory of Open Access Journals (Sweden)

    Meng Xia

    2017-05-01

    Full Text Available In order to improve the diesel engine performance under plateau (high altitude conditions, a new Speed Adjustable Compound (SAC supercharging method is proposed. A simulation model based on a six-cylinder V-type turbocharged intercooler diesel engine is built on the GT-POWER platform, and then simulation-based research is carried out. A genetic algorithm (GA is used to identify the best operation parameters, including the supercharger speed and fuel injection quantity under steady state conditions. Transient performance is obtained through starting process simulation of a vehicle with SAC engine on the MATLAB/Simulink GT-POWER co-simulation platform. Both the steady and transient performance of the SAC engine are compared with those of the original engine. Results show that the torque of the SAC engine at full load is significantly increased when the engine speed n < 1600 r/min. The increment of the maximum torque can reach up to 31% at 1000 r/min compared to that of the original engine, while the peak torque is increased by 9%. The fuel consumption deterioration is restricted within 5%. What’s more, the SAC engine can help reducing the acceleration time by 20% during tip-in pedal events during the vehicle starting process.

  5. Engineering models of deflagration-to-detonation transition

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, J.B.; Son, S.F.

    1995-07-01

    For the past two years, Los Alamos has supported research into the deflagration-to-detonation transition (DDT) in damaged energetic materials as part of the explosives safety program. This program supported both a theory/modeling group and an experimentation group. The goal of the theory/modeling group was to examine the various modeling structures (one-phase models, two-phase models, etc.) and select from these a structure suitable to model accidental initiation of detonation in damaged explosives. The experimental data on low-velocity piston supported DDT in granular explosive was to serve as a test bed to help in the selection process. Three theoretical models have been examined in the course of this study: (1) the Baer-Nunziato (BN) model, (2) the Stewart-Prasad-Asay (SPA) model and (3) the Bdzil-Kapila-Stewart model. Here we describe these models, discuss their properties, and compare their features.

  6. Detailed modeling of soot size distribution evolution and pollutant formation inside aircraft and diesel engines

    Science.gov (United States)

    Moniruzzaman, Chowdhury G.

    Combustion emission of soot and pollutant gas species contributes to poor regional air quality near emission sources and to climate change. It is important to understand the formation mechanism and time evolution of these pollutants inside the combustion engine, through detailed modeling of combustion chemistry and microphysics as well as comparison with observation. In this thesis, two multi-zone gas parcel combustion engine models, one for aircraft engines and another for diesel engines, have been developed to study soot size distribution evolution and pollutant formation inside the engines as well as emissions. The models take into account size-resolved (sectional) soot aerosol dynamics (nucleation, growth, and coagulation) and detailed combustion chemistry of jet and diesel fuel. For the aircraft engine, the model considers 362 chemical species, 2657 reversible reactions and 75 aerosol size bins. The model was applied to a CFM56-2-C1 aircraft engine for idle operating conditions. This is the first model to simulate soot size distribution evolution inside an aircraft engine (to our knowledge). The simulated values for major species are generally consistent with measurements. Model simulation shows that, for idle operating conditions, concentrations of most key combustion products don't change significantly in the post-combustor, however, HONO, H2SO4, and HO 2 concentrations change by more than a factor of 10. The sulfur oxidation efficiency (SOE), ([SO3]+[H2SO4])/([SO 2]+[SO3] +[H2SO4]), was found to be 2.1% at the engine exit. For the diesel engine, the multi-zone gas parcel model has been further enhanced by including fuel injection, droplet break-up, fuel evaporation and air entrainment rate. The model considers 283 chemical species, 2137 reversible reactions, and 75 aerosol size bins. The developed model calculates the time evolution of concentrations of these chemical species and soot size distributions inside a diesel engine. This is the first model to

  7. The Validation of Computer-based Models in Engineering: Some Lessons from Computing Science

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2001-01-01

    Full Text Available Questions of the quality of computer-based models and the formal processes of model testing, involving internal verification and external validation, are usually given only passing attention in engineering reports and in technical publications. However, such models frequently provide a basis for analysis methods, design calculations or real-time decision-making in complex engineering systems. This paper reviews techniques used for external validation of computer-based models and contrasts the somewhat casual approach which is usually adopted in this field with the more formal approaches to software testing and documentation recommended for large software projects. Both activities require intimate knowledge of the intended application, a systematic approach and considerable expertise and ingenuity in the design of tests. It is concluded that engineering degree courses dealing with modelling techniques and computer simulation should put more emphasis on model limitations, testing and validation.

  8. Evaluation of LES models for flow over bluff body from engineering ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Results are also discussed keeping in view limitations of LES methodology of modelling for practical problems and current developments. It is concluded that a one-equation model for subgrid kinetic energy is the best choice. Keywords. Subgrid scale stress models; engineering flows; flow over bluff body. 1. Introduction.

  9. Dynamic material characterization by combining ballistic testing and an engineering model

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Wal, R. van der

    2013-01-01

    At TNO several energy-based engineering models have been created for various failure mechanism occurring in ballistic testing of materials, like ductile hole growth, denting, plugging, etc. Such models are also under development for ceramic and fiberbased materials (fabrics). As the models are

  10. Evaluating Educational Software Authoring Environments Using a Model Based on Software Engineering and Instructional Design Principles.

    Science.gov (United States)

    Collis, Betty A.; Gore, Marilyn

    1987-01-01

    This study suggests a new model for the evaluation of educational software authoring systems and applies this model to a particular authoring system, CSR Trainer 4000. The model used is based on an integrated set of software engineering and instructional design principles. (Author/LRW)

  11. The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM)

    Science.gov (United States)

    2012-11-01

    Building Information Modeling ( BIM ) En gi ne er R es ea rc h an...Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac- ceptance throughout the planning, architecture, engineering...the Industry Foundation Class (IFC) definitions to create vendor-neutral data exchanges for use in BIM software tools. Building Information Modeling

  12. Development of braided rope seals for hypersonic engine applications: Flow modeling

    Science.gov (United States)

    Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Du, Guang-Wu; Ko, Frank

    1992-01-01

    A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures new analytical flow models are required. Two such models based on the Kozeny-Carman equations are developed herein and are compared to experimental leakage measurements for simulated pressure and seal gap conditions. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal. The first model treats the seal as a homogeneous fiber bed. The second model divides the seal into two homogeneous fiber beds identified as the core and the sheath of the seal. Flow resistances of each of the main seal elements are combined to determine the total flow resistance. Comparisons between measured leakage rates and model predictions for seal structures covering a wide range of braid architectures show good agreement. Within the experimental range, the second model provides a prediction within 6 to 13 percent of the flow for many of the cases examined. Areas where future model refinements are required are identified.

  13. Closed loop models for analyzing engineering requirements for simulators

    Science.gov (United States)

    Baron, S.; Muralidharan, R.; Kleinman, D.

    1980-01-01

    A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.

  14. Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2

    Science.gov (United States)

    Reitz, R. D.; Rutland, C. J.

    1993-01-01

    A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions.

  15. Modelling for Control of Exhaust Gas Recirculation on Large Diesel Engines

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Zander, Claes-Göran; Pedersen, Nicolai

    2013-01-01

    Exhaust Gas Recirculation (EGR) reduces NOx emissions by reducing O2 concentration for the combustion and is a preferred way to obtain emission regulations that will take effect from 2016. If not properly controlled, reduction of O2 has adverse side eects and proper control requires proper dynamic...... models. While literature is rich on four-stroke automotive engines, this paper considers two-stroke engines and develops a non-linear dynamic model of the exhaust gas system. Parameters are determined by system identication. The paper uses black-box nonlinear model identication and modelling from rst...

  16. Modeling a VR-type piston engine as the power plant

    Science.gov (United States)

    Gorshkalev, A. A.; Kayukov, S. S.; Korneev, S. S.; Urlapkin, V. V.

    2017-02-01

    This article describes existing methods of internal combustion engine calculation. The developed algorithm of diesel engine modeling in ‘AVL FIRE ESE DIESEL’ and ‘LMS Imagine.Lab AMESim’ software is presented. The algorithm includes description of model preparation, boundary condition setting and calculation execution. Obtained results of the modeling show significant enhancement in accuracy in contrast with analytical calculation. The difference between results obtained in different software is caused by a simplified combustion model in ‘LMS Imagine.Lab AMESim’ and a lack of a submodel describing a refrigeration system.

  17. Diesel Engine Cold-Starting Studies: Optically Accessible Engine Experiments and Modeling

    National Research Council Canada - National Science Library

    Henein, Naeim

    1997-01-01

    .... The pre-ignition chemistry showed great sensitivity to the compressed air temperature. KIVA with a modified shell model responds accordingly to the change of inlet air temperatures and fuel injection parameters...

  18. Theory of Covariance Equivalent ARMAV Models of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Andersen, P.; Brincker, Rune; Kirkegaard, Poul Henning

    1996-01-01

    In this paper the theoretical background for using covariance equivalent ARMAV models in modal analysis is discussed. It is shown how to obtain a covariance equivalent ARMA model for a univariate linear second order continous-time system excited by Gaussian white noise. This result is generalized...... for multi-variate systems to an ARMAV model. The covariance equivalent model structure is also considered when the number of channels are different from the number of degrees offreedom to be modelled. Finally, it is reviewed how to estimate an ARMAV model from sampled data....

  19. Theory of Covariance Equivalent ARMAV Models of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Andersen, P.; Brincker, Rune; Kirkegaard, Poul Henning

    In this paper the theoretical background for using covariance equivalent ARMAV models in modal analysis is discussed. It is shown how to obtain a covariance equivalent ARMA model for a univariate linear second order continuous-time system excited by Gaussian white noise. This result is generalized...... for multivariate systems to an ARMAV model. The covariance equivalent model structure is also considered when the number of channels are different from the number of degrees of freedom to be modelled. Finally, it is reviewed how to estimate an ARMAV model from sampled data....

  20. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver

    Energy Technology Data Exchange (ETDEWEB)

    Forristall, R.

    2003-10-01

    This report describes the development, validation, and use of a heat transfer model implemented in Engineering Equation Solver. The model determines the performance of a parabolic trough solar collector's linear receiver, also called a heat collector element. All heat transfer and thermodynamic equations, optical properties, and parameters used in the model are discussed. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.

  1. CFD MODEL OF THE CNG DIRECT INJECTION ENGINE

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż

    2014-09-01

    Full Text Available The paper presents CFD analysis of fuel flow in the CNG injector. The issues such a pressure drop along an injector channel, mass flow through the key sections of the injector geometry, flow rates, the impact of the needle shape on the deflection of the sprayed gas cone and the impact of the wall head are analyzed in the article. The simulation was made in the transient states conditions for full injection process, including the opening and closing of the injector. An injection time of 6 ms, velocity of 0.33 mm/ms and a lift of 0.5 mm were selected for opening and closing of injector based on experimental test. The simulation shows that the volume inside the injector is a kind of fuel accumulator, and the opening process of the needle influence the flow parameters in an inlet cross-section after a certain time, depending on a channel cross section. The calculations allowed to select the ratio of an injector duct cross sectional area to the aperture area of the injection capable of the reducing pressure loss. The unusual location of the injector in the socket of a glow plug in the Andoria ADCR engine makes a stream be impaired by a part of the head. This research result would be useful in developing an injector construction which will be used for an investigation of CNG addition into diesel engine.

  2. How to Overcome Numerical Challenges to Modeling Stirling Engines

    Science.gov (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.

    2004-01-01

    Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.

  3. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  4. Combining engineering and data-driven approaches: Development of a generic fire risk model facilitating calibration

    DEFF Research Database (Denmark)

    De Sanctis, G.; Fischer, K.; Kohler, J.

    2014-01-01

    are not detailed enough. Engineering risk models, on the other hand, may be detailed but typically involve assumptions that may result in a biased risk assessment and make a cost-benefit study problematic. In two related papers it is shown how engineering and data-driven modeling can be combined by developing......Fire risk models support decision making for engineering problems under the consistent consideration of the associated uncertainties. Empirical approaches can be used for cost-benefit studies when enough data about the decision problem are available. But often the empirical approaches...... a generic risk model that is calibrated to observed fire loss data. Generic risk models assess the risk of buildings based on specific risk indicators and support risk assessment at a portfolio level. After an introduction to the principles of generic risk assessment, the focus of the present paper...

  5. Computer-aided modeling for efficient and innovative product-process engineering

    DEFF Research Database (Denmark)

    Heitzig, Martina

    Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy and water. This trend is set to continue due to the substantial benefits computer......-aided methods provide. The key prerequisite of computer-aided productprocess engineering is however the availability of models of different types, forms and application modes. The development of the models required for the systems under investigation tends to be a challenging, time-consuming and therefore cost...... in chemical and biochemical engineering have been solved to illustrate the application of the generic modelling methodology, the computeraided modelling framework and the developed software tool....

  6. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Modeling And Simulation Of The Deaerator For A Seawater Injection System · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ... Modeling Of A Fluid Catalytic Cracking (Fcc) Riser Reactor - The Four-Lump Model · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  7. A 3D Geometry Model Search Engine to Support Learning

    Science.gov (United States)

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  8. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.

    Science.gov (United States)

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T

    2016-05-01

    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.

  9. Engineering Smart Grids: Applying Model-Driven Development from Use Case Design to Deployment

    Directory of Open Access Journals (Sweden)

    Filip Pröstl Andrén

    2017-03-01

    Full Text Available The rollout of smart grid solutions has already started and new methods are deployed to the power systems of today. However, complexity is still increasing as focus is moving from a single system, to a system of systems perspective. The results are increasing engineering efforts and escalating costs. For this reason, new and automated engineering methods are necessary. This paper addresses these needs with a rapid engineering methodology that covers the overall engineering process for smart grid applications—from use case design to deployment. Based on a model-driven development approach, the methodology consists of three main parts: use case modeling, code generation, and deployment. A domain-specific language is introduced supporting the use case design according to the Smart Grid Architecture Model. It is combined with the IEC 61499 distributed control model to improve the function layer design. After a completed use case design, executable code and communication configurations (e.g., IEC 61850 are generated and deployed onto compatible field devices. This paper covers the proposed rapid engineering methodology and a corresponding prototypical implementation which is validated in a laboratory experiment. Compared to other methods the proposed methodology decreases the number of engineering steps and reduces the use case design and implementation complexity.

  10. A Two-Zone Multigrid Model for SI Engine Combustion Simulation Using Detailed Chemistry

    Directory of Open Access Journals (Sweden)

    Hai-Wen Ge

    2010-01-01

    Full Text Available An efficient multigrid (MG model was implemented for spark-ignited (SI engine combustion modeling using detailed chemistry. The model is designed to be coupled with a level-set-G-equation model for flame propagation (GAMUT combustion model for highly efficient engine simulation. The model was explored for a gasoline direct-injection SI engine with knocking combustion. The numerical results using the MG model were compared with the results of the original GAMUT combustion model. A simpler one-zone MG model was found to be unable to reproduce the results of the original GAMUT model. However, a two-zone MG model, which treats the burned and unburned regions separately, was found to provide much better accuracy and efficiency than the one-zone MG model. Without loss in accuracy, an order of magnitude speedup was achieved in terms of CPU and wall times. To reproduce the results of the original GAMUT combustion model, either a low searching level or a procedure to exclude high-temperature computational cells from the grouping should be applied to the unburned region, which was found to be more sensitive to the combustion model details.

  11. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    Science.gov (United States)

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-05-17

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.

  12. CAD, 3D modeling, engineering analysis, and prototype experimentation industrial and research applications

    CERN Document Server

    Zheng Li, Jeremy

    2015-01-01

    This succinct book focuses on computer aided design (CAD), 3-D modeling, and engineering analysis and the ways they can be applied effectively in research and industrial sectors including aerospace, defense, automotive, and consumer products. These efficient tools, deployed for R&D in the laboratory and the field, perform efficiently three-dimensional modeling of finished products, render complex geometrical product designs, facilitate structural analysis and optimal product design, produce graphic and engineering drawings, and generate production documentation. Written with an eye toward green energy installations and novel manufacturing facilities, this concise volume enables scientific researchers and engineering professionals to learn design techniques, control existing and complex issues, proficiently use CAD tools, visualize technical fundamentals, and gain analytic and technical skills. This book also: ·       Equips practitioners and researchers to handle powerful tools for engineering desi...

  13. CFD Modeling of Free-Piston Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.

    2001-01-01

    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  14. Compass & Vernier Type Models in Indo Archaeology: Engineering Heritage

    Science.gov (United States)

    Bhattacharya, Deepak

    2015-09-01

    Two extant, dated, verifiable archaeological members are adduced to have radial type compass features, having scope for fractionation of angles (θ operators) in a constant manner with lookout facilities. The Archaeological Survey of India celebrates their apex achievements in the domain of engineering/survey devices of erstwhile societies. Possible correlation has been drawn between the representatives of the elusive Gola yantra and the Vikhyana yantra (circular instrument & looking device) as referred in Indian history and culture. Dadhi nauti (curd level) has been explained for the first time. Now, all of these are accessible to everyone. This work is the first time report, which relates to historical archaeology of lower date c. 600 AD.

  15. Robots vs animals: Establishing a culture of public engagement and female role modelling in engineering higher education

    OpenAIRE

    Fogg Rogers, L.; Sardo, M.; Boushel, C.

    2017-01-01

    A widespread culture supporting public engagement activities in higher education is desirable but difficult to establish. Drawing on social cognitive theory, this science communication project aimed to enhance culture change in engineering by developing communication skillsets of early career engineers, particularly supporting female engineers as role models. Engineers received training in storytelling to present at live events, enhanced by peer group social persuasion and vicarious modelling...

  16. Aplication re-engineering, the multi-parametrical hierarchical optimal model

    Directory of Open Access Journals (Sweden)

    Spišák Ján

    2004-09-01

    Full Text Available The target of this contribution is to define a new working out way, from re-engineering of production processes coming from the large-dimensional optimalizing problems, with applying the multi-parametrical hierarchical optimal model, builds up from 3 levels ( technology, logistics, economy. The designed working out way comes from generalizing obtained experiences from application the re-engineering in concrete conditions of processes working a processing row material (re-engineering the plant Siderit, Slovmag company and taking in consideration specific conditions of state enterprise experience in Slovak republic.

  17. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  18. Computer Modeling of a Rotating Detonation Engine in a Rocket Configuration

    Science.gov (United States)

    2015-03-01

    in a rocket . In the plateaus, the RDE has extracted as much energy from the fuel as possible, so additional time in the combustion chamber will not...impulse for rocket engines 53 of 150 sec falls below that of existing rocket engines. The nozzle and exhaust were assumed to be ideal, as were the...COMPUTER MODELING OF A ROTATING DETONATION ENGINE IN A ROCKET CONFIGURATION THESIS Nihar N. Shah, 1st Lt, USAF AFIT-ENY-MS-15-M-230 DEPARTMENT OF THE

  19. Modeling and simulation in the systems engineering life cycle core concepts and accompanying lectures

    CERN Document Server

    Loper, Margaret L

    2015-01-01

    This easy to read text/reference provides a broad introduction to the fundamental concepts of modeling and simulation (M&S) and systems engineering, highlighting how M&S is used across the entire systems engineering lifecycle. Each chapter corresponds to a short lecture covering a core topic in M&S or systems engineering.  Topics and features: reviews the full breadth of technologies, methodologies and uses of M&S, rather than just focusing on a specific aspect of the field; presents contributions from renowned specialists in each topic covered; introduces the foundational elements and proce

  20. Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling

    Science.gov (United States)

    Mog, Robert A.

    1997-01-01

    Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.

  1. Integrated Computational Modelling of Thermochemical Surface Engineering of Stainless Steel

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Sonne, Mads Rostgaard; Thorborg, Jesper

    2017-01-01

    evolution are taken into account in the model: concentration-dependent diffusion of nitrogen atoms, a slow surface reaction, elasto-plastic accommodation of lattice expansion and thermal and mechanical influences on thermodynamics (solubility) and diffusion kinetics. The model is one-dimensional and assumes...... and force equilibrium. The model is used to explore the role and to assess the kinetics of the surface reaction....

  2. Modeling of the higher pressure cooling system for transport vehicles engines

    Directory of Open Access Journals (Sweden)

    Jerzy WALENTYNOWICZ

    2010-01-01

    Full Text Available This paper presents a model of the engine cooling system for high coolant temperatures developed through AmeSim software. It presents the results of temperature course simulation, pressure course, and liquid cooling pump efficiency. It shows that it is possible to maintain the assumed constant pressure in the system and obtain it at the elevated liquid temperature leading to an increase in overall engine efficiency.

  3. Lessons from models of pancreatic beta cells for engineering glucose-sensing cells.

    Science.gov (United States)

    Sherman, Arthur

    2010-09-01

    Mathematical models of pancreatic beta cells suggest design principles that can be applied to engineering cells to sense glucose and secrete insulin. Engineering cells can potentially both contribute to future diabetes therapies and generate new insights into beta-cell function. The focus is on ion channels, Ca(2+)handling, and elements of metabolism that combine to produce the varied oscillatory patterns exhibited by beta cells. Copyright 2010. Published by Elsevier Inc.

  4. 3rd International Conference on Modelling and Management of Engineering Processes

    CERN Document Server

    Gericke, Kilian; Szélig, Nikoletta; Vajna, Sándor

    2015-01-01

    Innovative processes for the development of products and services are more and more considered as an organisational capability, which is recognised to be increasingly important for business success in today’s competitive environment. However, management and academia need a more profound understanding of these processes in order to develop improved management approaches to exploit business potentials. This book contains the proceedings of the 3rd International Conference on Modelling and Management of Engineering Processes (MMEP2013) held in Magdeburg, Germany, in November 2013. It includes contributions from international leading researchers in the fields of process modelling and process management. The conference topics were recent trends in modelling and management of engineering processes, potential synergies between different modelling approaches, future challenges for the management of engineering processes as well as future research in these areas.

  5. Remaining Useful Life Prediction of Gas Turbine Engine using Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Ahsan Shazaib

    2017-01-01

    Full Text Available Gas turbine (GT engines are known for their high availability and reliability and are extensively used for power generation, marine and aero-applications. Maintenance of such complex machines should be done proactively to reduce cost and sustain high availability of the GT. The aim of this paper is to explore the use of autoregressive (AR models to predict remaining useful life (RUL of a GT engine. The Turbofan Engine data from NASA benchmark data repository is used as case study. The parametric investigation is performed to check on any effect of changing model parameter on modelling accuracy. Results shows that a single sensory data cannot accurately predict RUL of GT and further research need to be carried out by incorporating multi-sensory data. Furthermore, the predictions made using AR model seems to give highly pessimistic values for RUL of GT.

  6. Rigid-body-spring model numerical analysis of joint performance of engineered cementitious composites and concrete

    Science.gov (United States)

    Khmurovska, Y.; Štemberk, P.; Křístek, V.

    2017-09-01

    This paper presents a numerical investigation of effectiveness of using engineered cementitious composites with polyvinyl alcohol fibers for concrete cover layer repair. A numerical model of a monolithic concaved L-shaped concrete structural detail which is strengthened with an engineered cementitious composite layer with polyvinyl alcohol fibers is created and loaded with bending moment. The numerical analysis employs nonlinear 3-D Rigid-Body-Spring Model. The proposed material model shows reliable results and can be used in further studies. The engineered cementitious composite shows extremely good performance in tension due to the strain-hardening effect. Since durability of the bond can be decreased significantly by its degradation due to the thermal loading, this effect should be also taken into account in the future work, as well as the experimental investigation, which should be performed for validation of the proposed numerical model.

  7. Frequency-domain Model Matching PID Controller Design for Aero-engine

    Science.gov (United States)

    Liu, Nan; Huang, Jinquan; Lu, Feng

    2014-12-01

    The nonlinear model of aero-engine was linearized at multiple operation points by using frequency response method. The validation results indicate high accuracy of static and dynamic characteristics of the linear models. The improved PID tuning method of frequency-domain model matching was proposed with the system stability condition considered. The proposed method was applied to the design of PID controller of the high pressure rotor speed control in the flight envelope, and the control effects were evaluated by the nonlinear model. Simulation results show that the system had quick dynamic response with zero overshoot and zero steadystate error. Furthermore, a PID-fuzzy switching control scheme for aero-engine was designed, and the fuzzy switching system stability was proved. Simulations were studied to validate the applicability of the multiple PIDs fuzzy switching controller for aero-engine with wide range dynamics.

  8. Adaptive control of a jet turboshaft engine driving a variable pitch propeller using multiple models

    Science.gov (United States)

    Ahmadian, Narjes; Khosravi, Alireza; Sarhadi, Pouria

    2017-08-01

    In this paper, a multiple model adaptive control (MMAC) method is proposed for a gas turbine engine. The model of a twin spool turbo-shaft engine driving a variable pitch propeller includes various operating points. Variations in fuel flow and propeller pitch inputs produce different operating conditions which force the controller to be adopted rapidly. Important operating points are three idle, cruise and full thrust cases for the entire flight envelope. A multi-input multi-output (MIMO) version of second level adaptation using multiple models is developed. Also, stability analysis using Lyapunov method is presented. The proposed method is compared with two conventional first level adaptation and model reference adaptive control techniques. Simulation results for JetCat SPT5 turbo-shaft engine demonstrate the performance and fidelity of the proposed method.

  9. The High Level Mathematical Models in Calculating Aircraft Gas Turbine Engine Parameters

    Directory of Open Access Journals (Sweden)

    Yu. A. Ezrokhi

    2017-01-01

    Full Text Available The article describes high-level mathematical models developed to solve special problems arising at later stages of design with regard to calculation of the aircraft gas turbine engine (GTE under real operating conditions. The use of blade row mathematics models, as well as mathematical models of a higher level, including 2D and 3D description of the working process in the engine units and components, makes it possible to determine parameters and characteristics of the aircraft engine under conditions significantly different from the calculated ones.The paper considers application of mathematical modelling methods (MMM for solving a wide range of practical problems, such as forcing the engine by injection of water into the flowing part, estimate of the thermal instability effect on the GTE characteristics, simulation of engine start-up and windmill starting condition, etc. It shows that the MMM use, when optimizing the laws of the compressor stator control, as well as supplying cooling air to the hot turbine components in the motor system, can significantly improve the integral traction and economic characteristics of the engine in terms of its gas-dynamic stability, reliability and resource.It ought to bear in mind that blade row mathematical models of the engine are designed to solve purely "motor" problems and do not replace the existing models of various complexity levels used in calculation and design of compressors and turbines, because in “quality” a description of the working processes in these units is inevitably inferior to such specialized models.It is shown that the choice of the mathematical modelling level of an aircraft engine for solving a particular problem arising in its designing and computational study is to a large extent a compromise problem. Despite the significantly higher "resolution" and information ability the motor mathematical models containing 2D and 3D approaches to the calculation of flow in blade machine

  10. Meteoroid Engineering Model (MEM): A Meteoroid Model for the Inner Solar System

    Science.gov (United States)

    McNamara, Heather A.; Jones, Jim; Kauffman, Billy; Suggs, Robert; Cooke, William; Smith, Steven

    2004-01-01

    In an attempt to overcome some of the deficiencies of existing meteoroid models, NASA's Space Environments and Effects (SEE) Program sponsored a three year research effort at the University of Western Ontario. The resulting understanding of the sporadic meteoroid environment - particularly the nature and distribution of the sporadic sources - were then incorporated into a new Meteoroid Engineering Model (MEM) by members of the Space Environments Team at NASA s Marshall Space Flight Center. This paper discusses some of the revolutionary aspects of MEM which include a) identification of the sporadic radiants with real sources of meteoroids, such as comets, b) a physics-based approach which yields accurate fluxes and directionality for interplanetary spacecraft anywhere from 0.2 astronomical units (AU) to 2 AU, and c) velocity distributions obtained from theory and validated against observation. Use of the model, which gives penetrating fluxes and average impact speeds on the surfaces of a cube-like structure, is also described along with its current limitations and plans for future improvements.

  11. Development of fatigue crack propagation models for engineering applications at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, B.

    1975-05-01

    The value of modelling the fatigue crack propagation process is discussed and current models are examined in the light of increasing knowledge of crack tip deformation. Elevated temperature fatigue is examined in detail as an area in which models could contribute significantly to engineering design. A model is developed which examines the role of time-dependent creep cavitation on the failure process in an interactive creep-fatigue situation. (auth)

  12. Modeling, Design, and Implementation of a Cloud Workflow Engine Based on Aneka

    Directory of Open Access Journals (Sweden)

    Jiantao Zhou

    2014-01-01

    Full Text Available This paper presents a Petri net-based model for cloud workflow which plays a key role in industry. Three kinds of parallelisms in cloud workflow are characterized and modeled. Based on the analysis of the modeling, a cloud workflow engine is designed and implemented in Aneka cloud environment. The experimental results validate the effectiveness of our approach of modeling, design, and implementation of cloud workflow.

  13. Modeling, Design, and Implementation of a Cloud Workflow Engine Based on Aneka

    OpenAIRE

    Jiantao Zhou; Chaoxin Sun; Weina Fu; Jing Liu; Lei Jia; Hongyan Tan

    2014-01-01

    This paper presents a Petri net-based model for cloud workflow which plays a key role in industry. Three kinds of parallelisms in cloud workflow are characterized and modeled. Based on the analysis of the modeling, a cloud workflow engine is designed and implemented in Aneka cloud environment. The experimental results validate the effectiveness of our approach of modeling, design, and implementation of cloud workflow.

  14. Engineered cell and tissue models of pulmonary fibrosis.

    Science.gov (United States)

    Sundarakrishnan, Aswin; Chen, Ying; Black, Lauren D; Aldridge, Bree B; Kaplan, David L

    2017-12-18

    Pulmonary fibrosis includes several lung disorders characterized by scar formation and Idiopathic Pulmonary Fibrosis (IPF) is a particularly severe form of pulmonary fibrosis of unknown etiology with a mean life expectancy of 3years' post-diagnosis. Treatments for IPF are limited to two FDA approved drugs, pirfenidone and nintedanib. Most lead candidate drugs that are identified in pre-clinical animal studies fail in human clinical trials. Thus, there is a need for advanced humanized in vitro models of the lung to improve candidate treatments prior to moving to human clinical trials. The development of 3D tissue models has created systems capable of emulating human lung structure, function, and cell and matrix interactions. The specific models accomplish these features and preliminary studies conducted using some of these systems have shown potential for in vitro anti-fibrotic drug testing. Further characterization and improvements will enable these tissue models to extend their utility for in vitro drug testing, to help identify signaling pathways and mechanisms for new drug targets, and potentially reduce animal models as standard pre-clinical models of study. In the current review, we contrast different in vitro models based on increasing dimensionality (2D, 2.5D and 3D), with added focus on contemporary 3D pulmonary models of fibrosis. Copyright © 2017. Published by Elsevier B.V.

  15. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gani, Rafiqul

    2007-01-01

    Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework...

  16. The use of polyurethane in coastal engineering models

    NARCIS (Netherlands)

    Verhagen, H.J.

    2014-01-01

    In physical model tests there is often a need of preventing stones from moving. This can be achieved by gluing the stones. Applying PBA (Polyurethane Bonded Agregate, e.g. Elastocoast) guarantees no moving stones, a normal permeability and a transportable model.

  17. Developing a model of cognitive lockup for user interface engineering

    NARCIS (Netherlands)

    Mioch, T.; Looije, R.; Neerincx, M.A.

    2010-01-01

    This paper presents the development of a cognitive model of cognitive lockup: the tendency of humans to deal with disturbances sequentially, possibly overseeing crucial data from unattended resources so that serious task failures can appear—e.g., in a cockpit or control centre. The proposed model

  18. Probabilistic model for fatigue crack growth and fracture of welded joints in civil engineering structures

    NARCIS (Netherlands)

    Maljaars, J.; Steenbergen, H.M.G.M.; Vrouwenvelder, A.C.W.M.

    2012-01-01

    This paper presents a probabilistic assessment model for linear elastic fracture mechanics (LEFM). The model allows the determination of the failure probability of a structure subjected to fatigue loading. The distributions of the random variables for civil engineering structures are provided, and

  19. A business process modeling experience in a complex information system re-engineering.

    Science.gov (United States)

    Bernonville, Stéphanie; Vantourout, Corinne; Fendeler, Geneviève; Beuscart, Régis

    2013-01-01

    This article aims to share a business process modeling experience in a re-engineering project of a medical records department in a 2,965-bed hospital. It presents the modeling strategy, an extract of the results and the feedback experience.

  20. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations

    NARCIS (Netherlands)

    Hruban, Ralph H.; Adsay, N. Volkan; Albores-Saavedra, Jorge; Anver, Miriam R.; Biankin, Andrew V.; Boivin, Gregory P.; Furth, Emma E.; Furukawa, Toru; Klein, Alison; Klimstra, David S.; Kloppel, Gunter; Lauwers, Gregory Y.; Longnecker, Daniel S.; Luttges, Jutta; Maitra, Anirban; Offerhaus, G. Johan A.; Pérez-Gallego, Lucía; Redston, Mark; Tuveson, David A.

    2006-01-01

    Several diverse genetically engineered mouse models of pancreatic exocrine neoplasia have been developed. These mouse models have a spectrum of pathologic changes; however, until now, there has been no uniform nomenclature to characterize these changes. An international workshop, sponsored by The

  1. Videogame Construction by Engineering Students for Understanding Modelling Processes: The Case of Simulating Water Behaviour

    Science.gov (United States)

    Pretelín-Ricárdez, Angel; Sacristán, Ana Isabel

    2015-01-01

    We present some results of an ongoing research project where university engineering students were asked to construct videogames involving the use of physical systems models. The objective is to help them identify and understand the elements and concepts involved in the modelling process. That is, we use game design as a constructionist approach…

  2. A digital tool set for systematic model design in process-engineering education

    NARCIS (Netherlands)

    Schaaf, van der H.; Tramper, J.; Hartog, R.J.M.; Vermuë, M.H.

    2006-01-01

    One of the objectives of the process technology curriculum at Wageningen University is that students learn how to design mathematical models in the context of process engineering, using a systematic problem analysis approach. Students find it difficult to learn to design a model and little material

  3. The Spread of European Models of Engineering Education: The Challenges Faced in Emerging Countries

    Science.gov (United States)

    Gardelle, Linda; Cardona Gil, Emmanuel; Benguerna, Mohamed; Bolat, Altangul; Naran, Boldmaa

    2017-01-01

    The major European models of engineering training (the German, the British and the French model) spread throughout the world during the twentieth century. Historical heritage, cultural proximity and languages explain the open expression of faithfulness to one system in some countries. In these countries, the national standards inherited are now…

  4. A Digital Tool Set for Systematic Model Design in Process-Engineering Education

    Science.gov (United States)

    van der Schaaf, Hylke; Tramper, Johannes; Hartog, Rob J.M.; Vermue, Marian

    2006-01-01

    One of the objectives of the process technology curriculum at Wageningen University is that students learn how to design mathematical models in the context of process engineering, using a systematic problem analysis approach. Students find it difficult to learn to design a model and little material exists to meet this learning objective. For these…

  5. Increasing the reliability of ecological models using modern software engineering techniques

    Science.gov (United States)

    Robert M. Scheller; Brian R. Sturtevant; Eric J. Gustafson; Brendan C. Ward; David J. Mladenoff

    2009-01-01

    Modern software development techniques are largely unknown to ecologists. Typically, ecological models and other software tools are developed for limited research purposes, and additional capabilities are added later, usually in an ad hoc manner. Modern software engineering techniques can substantially increase scientific rigor and confidence in ecological models and...

  6. 78 FR 41684 - Special Conditions: Embraer S.A. Model EMB-550 Airplanes, Sudden Engine Stoppage

    Science.gov (United States)

    2013-07-11

    ... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Embraer S.A. Model EMB-550 Airplanes...-tail empennage. The primary structure is metal with composite empennage and control surfaces. The Model... bypass fans capable of producing much larger and more complex dynamic loads. Relative to the engine...

  7. Spreadsheets Grow Up: Three Spreadsheet Engineering Methodologies for Large Financial Planning Models

    OpenAIRE

    Grossman, Thomas A.; Ozluk, Ozgur

    2010-01-01

    Many large financial planning models are written in a spreadsheet programming language (usually Microsoft Excel) and deployed as a spreadsheet application. Three groups, FAST Alliance, Operis Group, and BPM Analytics (under the name "Spreadsheet Standards Review Board") have independently promulgated standardized processes for efficiently building such models. These spreadsheet engineering methodologies provide detailed guidance on design, construction process, and quality control. We summari...

  8. Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts

    Science.gov (United States)

    Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…

  9. Modeling of Commercial Turbofan Engine With Ice Crystal Ingestion: Follow-On

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  10. Computational modeling and engineering in pediatric and congenital heart disease.

    Science.gov (United States)

    Marsden, Alison L; Feinstein, Jeffrey A

    2015-10-01

    Recent methodological advances in computational simulations are enabling increasingly realistic simulations of hemodynamics and physiology, driving increased clinical utility. We review recent developments in the use of computational simulations in pediatric and congenital heart disease, describe the clinical impact in modeling in single-ventricle patients, and provide an overview of emerging areas. Multiscale modeling combining patient-specific hemodynamics with reduced order (i.e., mathematically and computationally simplified) circulatory models has become the de-facto standard for modeling local hemodynamics and 'global' circulatory physiology. We review recent advances that have enabled faster solutions, discuss new methods (e.g., fluid structure interaction and uncertainty quantification), which lend realism both computationally and clinically to results, highlight novel computationally derived surgical methods for single-ventricle patients, and discuss areas in which modeling has begun to exert its influence including Kawasaki disease, fetal circulation, tetralogy of Fallot (and pulmonary tree), and circulatory support. Computational modeling is emerging as a crucial tool for clinical decision-making and evaluation of novel surgical methods and interventions in pediatric cardiology and beyond. Continued development of modeling methods, with an eye towards clinical needs, will enable clinical adoption in a wide range of pediatric and congenital heart diseases.

  11. Towards modeling future energy infrastructures - the ELECTRA system engineering approach

    DEFF Research Database (Denmark)

    Uslar, Mathias; Heussen, Kai

    2016-01-01

    Within this contribution, we provide an overview based on previous work conducted in the ELECTRA project to come up with a consistent method for modeling the ELECTRA WoC approach according to the methods established with the M/490 mandate of the European Commission. We will motivate the use...... of the IEC 62559 use case template as well as needed changes to cope particularly with the aspects of controller conflicts and Greenfield technology modeling. From the original envisioned use of the standards, we show a possible transfer on how to properly deal with a Greenfield approach when modeling....

  12. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  13. Modeling and dynamic control simulation of unitary gas engine heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yang [Department of Thermal Energy Engineering, Tianjin University, Tianjin 300072 (China)], E-mail: Zhaoyang@tju.edu.cn; Haibo Zhao; Zheng Fang [Department of Thermal Energy Engineering, Tianjin University, Tianjin 300072 (China)

    2007-12-15

    Based on the dynamic model of the gas engine heat pump (GEHP) system, an intelligent control simulation is presented to research the dynamic characteristics of the system in the heating operation. The GEHP system simulation model consists of eight models for its components including a natural gas engine, a compressor, a condenser, an expansion valve, an evaporator, a cylinder jacket heat exchanger, an exhaust gas heat exchanger and an auxiliary heater. The intelligent control model is composed of the prediction controller model and the combined controller model. The Runge-Kutta Fehlberg fourth-fifth order algorithms are used to solve the differential equations. The results show that the model is very effective in analyzing the effects of the control system, and the steady state accuracy of the intelligent control scheme is higher than that of the fuzzy controller.

  14. Deployment of e-health services - a business model engineering strategy.

    Science.gov (United States)

    Kijl, Björn; Nieuwenhuis, Lambert J M; Huis in 't Veld, Rianne M H A; Hermens, Hermie J; Vollenbroek-Hutten, Miriam M R

    2010-01-01

    We designed a business model for deploying a myofeedback-based teletreatment service. An iterative and combined qualitative and quantitative action design approach was used for developing the business model and the related value network. Insights from surveys, desk research, expert interviews, workshops and quantitative modelling were combined to produce the first business model and then to refine it in three design cycles. The business model engineering strategy provided important insights which led to an improved, more viable and feasible business model and related value network design. Based on this experience, we conclude that the process of early stage business model engineering reduces risk and produces substantial savings in costs and resources related to service deployment.

  15. 25 Years of Model-Driven Web Engineering: What we achieved, What is missing

    Directory of Open Access Journals (Sweden)

    Gustavo Rossi

    2016-12-01

    Full Text Available Model-Driven Web Engineering (MDWE approaches aim to improve the Web applications development process by focusing on modeling instead of coding, and deriving the running application by transformations from conceptual models to code. The emergence of the Interaction Flow Modeling Language (IFML has been an important milestone in the evolution of Web modeling languages, indicating not only the maturity of the field but also a final convergence of languages. In this paper we explain the evolution of modeling and design approaches since the early years (in the 90’s detailing the forces which drove that evolution and discussing the strengths and weaknesses of some of those approaches. A brief presentation of the IFML is accompanied with a thorough analysis of the most important achievements of the MDWE community as well as the problems and obstacles that hinder the dissemination of model-driven techniques in the Web engineering field.

  16. Engineering of Algorithms for Hidden Markov models and Tree Distances

    DEFF Research Database (Denmark)

    Sand, Andreas

    of the algorithms to exploit the parallel architecture of modern computers. In this PhD dissertation, I present my work with algorithmic optimizations and parallelizations in primarily two areas in algorithmic bioinformatics: algorithms for analyzing hidden Markov models and algorithms for computing distance...... measures between phylogenetic trees. Hidden Markov models is a class of probabilistic models that is used in a number of core applications in bioinformatics such as modeling of proteins, gene finding and reconstruction of species and population histories. I show how a relatively simple parallelization can...... reconstruction methods or different data sets will often suggest slightly different trees. Distance measures for pairs of trees are therefore useful to measure the incongruence between two inferred trees quantitatively and to evaluate the predictive power of different tree reconstruction methods. I present my...

  17. Interactive Model Centric Systems Engineering (IMCSE) Phase 4

    Science.gov (United States)

    2017-03-01

    about a number of  things  including model  ontologies , model meta‐data,  latest  modeling techniques and classes of models, policies on data rights...Fact‐Finding and the Use of Technical Experts, in The  Consensus  Building  Handbook :  A  Comprehensive  Guide  to  Reaching  Agreement,  ed.  L.  E...Severance,  L.  (2004).  The  Psychology  of  Negotiation  and  Mediation, in APA  Handbook  of Industrial and Organized Psychology, Vol 3, pp. 495

  18. Hierarchical Modelling of Flood Risk for Engineering Decision Analysis

    DEFF Research Database (Denmark)

    Custer, Rocco

    to changing flood risk. In the presence of flood protection structures, flood development depends on the state of all protection structures in the system. As such, hazard is a function not only of rainfall and river discharge, but also of protection structures’ fragility. A methodology for flood risk analysis...... and decision analysis for hierarchical flood protection systems is proposed, which allows for joint consideration of hazard models and fragility models of protection structures. In the implementation of the flood risk analysis methodology several challenges are identified, two of which are addressed...... systems, as well as the implementation of the flood risk analysis methodology and the vulnerability modelling approach are illustrated with an example application. In summary, the present thesis provides a characterisation of hierarchical flood protection systems as well as several methodologies to model...

  19. Lattice Boltzmann modeling an introduction for geoscientists and engineers

    CERN Document Server

    Sukop, Michael C

    2005-01-01

    Lattice Boltzmann models have a remarkable ability to simulate single- and multi-phase fluids and transport processes within them. A rich variety of behaviors, including higher Reynolds numbers flows, phase separation, evaporation, condensation, cavitation, buoyancy, and interactions with surfaces can readily be simulated. This book provides a basic introduction that emphasizes intuition and simplistic conceptualization of processes. It avoids the more difficult mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those with more interest in model application than detailed mathematical foundations will find this a powerful "quick start" guide. Example simulations, exercises, and computer codes are included. Working code is provided on the Internet.

  20. NARMAX model identification of a palm oil biodiesel engine using multi-objective optimization differential evolution

    Science.gov (United States)

    Mansor, Zakwan; Zakaria, Mohd Zakimi; Nor, Azuwir Mohd; Saad, Mohd Sazli; Ahmad, Robiah; Jamaluddin, Hishamuddin

    2017-09-01

    This paper presents the black-box modelling of palm oil biodiesel engine (POB) using multi-objective optimization differential evolution (MOODE) algorithm. Two objective functions are considered in the algorithm for optimization; minimizing the number of term of a model structure and minimizing the mean square error between actual and predicted outputs. The mathematical model used in this study to represent the POB system is nonlinear auto-regressive moving average with exogenous input (NARMAX) model. Finally, model validity tests are applied in order to validate the possible models that was obtained from MOODE algorithm and lead to select an optimal model.