WorldWideScience

Sample records for engage neuronal ensembles

  1. Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles

    Science.gov (United States)

    Treue, Stefan

    2018-01-01

    Abstract Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures. PMID:29568798

  2. Modeling task-specific neuronal ensembles improves decoding of grasp

    Science.gov (United States)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more

  3. Bidirectional Modulation of Intrinsic Excitability in Rat Prelimbic Cortex Neuronal Ensembles and Non-Ensembles after Operant Learning.

    Science.gov (United States)

    Whitaker, Leslie R; Warren, Brandon L; Venniro, Marco; Harte, Tyler C; McPherson, Kylie B; Beidel, Jennifer; Bossert, Jennifer M; Shaham, Yavin; Bonci, Antonello; Hope, Bruce T

    2017-09-06

    Learned associations between environmental stimuli and rewards drive goal-directed learning and motivated behavior. These memories are thought to be encoded by alterations within specific patterns of sparsely distributed neurons called neuronal ensembles that are activated selectively by reward-predictive stimuli. Here, we use the Fos promoter to identify strongly activated neuronal ensembles in rat prelimbic cortex (PLC) and assess altered intrinsic excitability after 10 d of operant food self-administration training (1 h/d). First, we used the Daun02 inactivation procedure in male FosLacZ-transgenic rats to ablate selectively Fos-expressing PLC neurons that were active during operant food self-administration. Selective ablation of these neurons decreased food seeking. We then used male FosGFP-transgenic rats to assess selective alterations of intrinsic excitability in Fos-expressing neuronal ensembles (FosGFP + ) that were activated during food self-administration and compared these with alterations in less activated non-ensemble neurons (FosGFP - ). Using whole-cell recordings of layer V pyramidal neurons in an ex vivo brain slice preparation, we found that operant self-administration increased excitability of FosGFP + neurons and decreased excitability of FosGFP - neurons. Increased excitability of FosGFP + neurons was driven by increased steady-state input resistance. Decreased excitability of FosGFP - neurons was driven by increased contribution of small-conductance calcium-activated potassium (SK) channels. Injections of the specific SK channel antagonist apamin into PLC increased Fos expression but had no effect on food seeking. Overall, operant learning increased intrinsic excitability of PLC Fos-expressing neuronal ensembles that play a role in food seeking but decreased intrinsic excitability of Fos - non-ensembles. SIGNIFICANCE STATEMENT Prefrontal cortex activity plays a critical role in operant learning, but the underlying cellular mechanisms are

  4. New technologies for examining neuronal ensembles in drug addiction and fear

    Science.gov (United States)

    Cruz, Fabio C.; Koya, Eisuke; Guez-Barber, Danielle H.; Bossert, Jennifer M.; Lupica, Carl R.; Shaham, Yavin; Hope, Bruce T.

    2015-01-01

    Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. Additionally, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches—Daun02 inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats — that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools — c-fos-tTA mice and inactivation of CREB-overexpressing neurons — that have been used to study the role of neuronal ensembles in conditioned fear. PMID:24088811

  5. New technologies for examining the role of neuronal ensembles in drug addiction and fear.

    Science.gov (United States)

    Cruz, Fabio C; Koya, Eisuke; Guez-Barber, Danielle H; Bossert, Jennifer M; Lupica, Carl R; Shaham, Yavin; Hope, Bruce T

    2013-11-01

    Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. In addition, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches--Daun02 inactivation, FACS sorting of activated neurons and Fos-GFP transgenic rats--that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools--Fos-tTA transgenic mice and inactivation of CREB-overexpressing neurons--that have been used to study the role of neuronal ensembles in conditioned fear.

  6. Changes in Appetitive Associative Strength Modulates Nucleus Accumbens, But Not Orbitofrontal Cortex Neuronal Ensemble Excitability.

    Science.gov (United States)

    Ziminski, Joseph J; Hessler, Sabine; Margetts-Smith, Gabriella; Sieburg, Meike C; Crombag, Hans S; Koya, Eisuke

    2017-03-22

    Cues that predict the availability of food rewards influence motivational states and elicit food-seeking behaviors. If a cue no longer predicts food availability, then animals may adapt accordingly by inhibiting food-seeking responses. Sparsely activated sets of neurons, coined "neuronal ensembles," have been shown to encode the strength of reward-cue associations. Although alterations in intrinsic excitability have been shown to underlie many learning and memory processes, little is known about these properties specifically on cue-activated neuronal ensembles. We examined the activation patterns of cue-activated orbitofrontal cortex (OFC) and nucleus accumbens (NAc) shell ensembles using wild-type and Fos-GFP mice, which express green fluorescent protein (GFP) in activated neurons, after appetitive conditioning with sucrose and extinction learning. We also investigated the neuronal excitability of recently activated, GFP+ neurons in these brain areas using whole-cell electrophysiology in brain slices. Exposure to a sucrose cue elicited activation of neurons in both the NAc shell and OFC. In the NAc shell, but not the OFC, these activated GFP+ neurons were more excitable than surrounding GFP- neurons. After extinction, the number of neurons activated in both areas was reduced and activated ensembles in neither area exhibited altered excitability. These data suggest that learning-induced alterations in the intrinsic excitability of neuronal ensembles is regulated dynamically across different brain areas. Furthermore, we show that changes in associative strength modulate the excitability profile of activated ensembles in the NAc shell. SIGNIFICANCE STATEMENT Sparsely distributed sets of neurons called "neuronal ensembles" encode learned associations about food and cues predictive of its availability. Widespread changes in neuronal excitability have been observed in limbic brain areas after associative learning, but little is known about the excitability changes that

  7. Synchronization dynamics in a small pacemaker neuronal ensemble via a robust adaptive controller

    International Nuclear Information System (INIS)

    Cornejo-Pérez, O.; Solis-Perales, G.C.; Arenas-Prado, J.A.

    2012-01-01

    The synchronization dynamics of a pacemaker neuronal ensemble under the action of a control command is studied herein. The ensemble corresponds to the pyloric central pattern generator of the stomatogastric ganglion of lobster. The desired dynamics is provided by means of an external master neuron and it is induced via a nonlinear controller. Such a controller is composed of a linearizing-like controller and a high gain observer; the controller is able to counteract uncertainties and external perturbations in the controlled system. Numerical simulations of the robust synchronization dynamics of the master neuron and the pacemaker neuronal ensemble are displayed.

  8. Generalized rate-code model for neuron ensembles with finite populations

    International Nuclear Information System (INIS)

    Hasegawa, Hideo

    2007-01-01

    We have proposed a generalized Langevin-type rate-code model subjected to multiplicative noise, in order to study stationary and dynamical properties of an ensemble containing a finite number N of neurons. Calculations using the Fokker-Planck equation have shown that, owing to the multiplicative noise, our rate model yields various kinds of stationary non-Gaussian distributions such as Γ, inverse-Gaussian-like, and log-normal-like distributions, which have been experimentally observed. The dynamical properties of the rate model have been studied with the use of the augmented moment method (AMM), which was previously proposed by the author from a macroscopic point of view for finite-unit stochastic systems. In the AMM, the original N-dimensional stochastic differential equations (DEs) are transformed into three-dimensional deterministic DEs for the means and fluctuations of local and global variables. The dynamical responses of the neuron ensemble to pulse and sinusoidal inputs calculated by the AMM are in good agreement with those obtained by direct simulation. The synchronization in the neuronal ensemble is discussed. The variabilities of the firing rate and of the interspike interval are shown to increase with increasing magnitude of multiplicative noise, which may be a conceivable origin of the observed large variability in cortical neurons

  9. Coherent and intermittent ensemble oscillations emerge from networks of irregular spiking neurons.

    Science.gov (United States)

    Hoseini, Mahmood S; Wessel, Ralf

    2016-01-01

    Local field potential (LFP) recordings from spatially distant cortical circuits reveal episodes of coherent gamma oscillations that are intermittent, and of variable peak frequency and duration. Concurrently, single neuron spiking remains largely irregular and of low rate. The underlying potential mechanisms of this emergent network activity have long been debated. Here we reproduce such intermittent ensemble oscillations in a model network, consisting of excitatory and inhibitory model neurons with the characteristics of regular-spiking (RS) pyramidal neurons, and fast-spiking (FS) and low-threshold spiking (LTS) interneurons. We find that fluctuations in the external inputs trigger reciprocally connected and irregularly spiking RS and FS neurons in episodes of ensemble oscillations, which are terminated by the recruitment of the LTS population with concurrent accumulation of inhibitory conductance in both RS and FS neurons. The model qualitatively reproduces experimentally observed phase drift, oscillation episode duration distributions, variation in the peak frequency, and the concurrent irregular single-neuron spiking at low rate. Furthermore, consistent with previous experimental studies using optogenetic manipulation, periodic activation of FS, but not RS, model neurons causes enhancement of gamma oscillations. In addition, increasing the coupling between two model networks from low to high reveals a transition from independent intermittent oscillations to coherent intermittent oscillations. In conclusion, the model network suggests biologically plausible mechanisms for the generation of episodes of coherent intermittent ensemble oscillations with irregular spiking neurons in cortical circuits. Copyright © 2016 the American Physiological Society.

  10. Dynamical mean-field theory of noisy spiking neuron ensembles: Application to the Hodgkin-Huxley model

    International Nuclear Information System (INIS)

    Hasegawa, Hideo

    2003-01-01

    A dynamical mean-field approximation (DMA) previously proposed by the present author [H. Hasegawa, Phys. Rev E 67, 041903 (2003)] has been extended to ensembles described by a general noisy spiking neuron model. Ensembles of N-unit neurons, each of which is expressed by coupled K-dimensional differential equations (DEs), are assumed to be subject to spatially correlated white noises. The original KN-dimensional stochastic DEs have been replaced by K(K+2)-dimensional deterministic DEs expressed in terms of means and the second-order moments of local and global variables: the fourth-order contributions are taken into account by the Gaussian decoupling approximation. Our DMA has been applied to an ensemble of Hodgkin-Huxley (HH) neurons (K=4), for which effects of the noise, the coupling strength, and the ensemble size on the response to a single-spike input have been investigated. Numerical results calculated by the DMA theory are in good agreement with those obtained by direct simulations, although the former computation is about a thousand times faster than the latter for a typical HH neuron ensemble with N=100

  11. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval.

    Science.gov (United States)

    Sumbre, Germán; Muto, Akira; Baier, Herwig; Poo, Mu-ming

    2008-11-06

    The ability to process temporal information is fundamental to sensory perception, cognitive processing and motor behaviour of all living organisms, from amoebae to humans. Neural circuit mechanisms based on neuronal and synaptic properties have been shown to process temporal information over the range of tens of microseconds to hundreds of milliseconds. How neural circuits process temporal information in the range of seconds to minutes is much less understood. Studies of working memory in monkeys and rats have shown that neurons in the prefrontal cortex, the parietal cortex and the thalamus exhibit ramping activities that linearly correlate with the lapse of time until the end of a specific time interval of several seconds that the animal is trained to memorize. Many organisms can also memorize the time interval of rhythmic sensory stimuli in the timescale of seconds and can coordinate motor behaviour accordingly, for example, by keeping the rhythm after exposure to the beat of music. Here we report a form of rhythmic activity among specific neuronal ensembles in the zebrafish optic tectum, which retains the memory of the time interval (in the order of seconds) of repetitive sensory stimuli for a duration of up to approximately 20 s. After repetitive visual conditioning stimulation (CS) of zebrafish larvae, we observed rhythmic post-CS activities among specific tectal neuronal ensembles, with a regular interval that closely matched the CS. Visuomotor behaviour of the zebrafish larvae also showed regular post-CS repetitions at the entrained time interval that correlated with rhythmic neuronal ensemble activities in the tectum. Thus, rhythmic activities among specific neuronal ensembles may act as an adjustable 'metronome' for time intervals in the order of seconds, and serve as a mechanism for the short-term perceptual memory of rhythmic sensory experience.

  12. Dynamics and Synchronization of Noise Perturbed Ensembles of Periodically Activated neuron Cells

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pankratova, Evgeniya; Mosekilde, Erik

    2008-01-01

    The role of noise for a single neuron and for an ensemble of mutually coupled neurons is investigated. For a single element we show that an increase in noise intensity in the regime of irregular. ring enhances the coherence of the neuronal response. For this regime of spiking a study...... based on the connection graph stability method and through numerical simulation....

  13. Ensembles of gustatory cortical neurons anticipate and discriminate between tastants in a single lick

    Directory of Open Access Journals (Sweden)

    Jennifer R Stapleton

    2007-10-01

    Full Text Available The gustatory cortex (GC processes chemosensory and somatosensory information and is involved in learning and anticipation. Previously we found that a subpopulation of GC neurons responded to tastants in a single lick (Stapleton et al., 2006. Here we extend this investigation to determine if small ensembles of GC neurons, obtained while rats received blocks of tastants on a fixed ratio schedule (FR5, can discriminate between tastants and their concentrations after a single 50 µL delivery. In the FR5 schedule subjects received tastants every fifth (reinforced lick and the intervening licks were unreinforced. The ensemble firing patterns were analyzed with a Bayesian generalized linear model whose parameters included the firing rates and temporal patterns of the spike trains. We found that when both the temporal and rate parameters were included, 12 of 13 ensembles correctly identified single tastant deliveries. We also found that the activity during the unreinforced licks contained signals regarding the identity of the upcoming tastant, which suggests that GC neurons contain anticipatory information about the next tastant delivery. To support this finding we performed experiments in which tastant delivery was randomized within each block and found that the neural activity following the unreinforced licks did not predict the upcoming tastant. Collectively, these results suggest that after a single lick ensembles of GC neurons can discriminate between tastants, that they may utilize both temporal and rate information, and when the tastant delivery is repetitive ensembles contain information about the identity of the upcoming tastant delivery.

  14. Stochastic resonance of ensemble neurons for transient spike trains: Wavelet analysis

    International Nuclear Information System (INIS)

    Hasegawa, Hideo

    2002-01-01

    By using the wavelet transformation (WT), I have analyzed the response of an ensemble of N (=1, 10, 100, and 500) Hodgkin-Huxley neurons to transient M-pulse spike trains (M=1 to 3) with independent Gaussian noises. The cross correlation between the input and output signals is expressed in terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is evaluated by using the denoising method within the WT, by which the noise contribution is extracted from the output signals. Although the response of a single (N=1) neuron to subthreshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the cross correlation and SNR is shown to be much improved by increasing the value of N: a population of neurons plays an indispensable role in the stochastic resonance (SR) for transient spike inputs. It is also shown that in a large-scale ensemble, the transmission fidelity for suprathreshold transient spikes is not significantly degraded by a weak noise which is responsible to SR for subthreshold inputs

  15. Imprinting and recalling cortical ensembles.

    Science.gov (United States)

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.

  16. THE TOPOLOGICAL AND DYNAMIC CHARACTERISTICS OF NEURONIC ENSEMBLES IN THE BRAIN AS PERCOLATING FRACTAL SETS

    Directory of Open Access Journals (Sweden)

    Sergey L’vovich Molchatsky

    2017-10-01

    Full Text Available The objective of the research was to determine of neuronic ensembles in the brain. The research was based that neuronic ensembles of a brain are considered as the percolating clusters. In the basic part of the study the main concern was determination of the following parameters: fractal dimension on a passing threshold df; for geodetic lines on a fractal dθ and for trajectories of particles in a turbulence field dw. In the same part of a research the index of a compendency (θ of neuronic ensembles of animals and the human brain is defined. As well as it was supposed has a negative value θ 1. Numerical calculations with use of results of computer analysis frontal section images of a hypothalamus of a brain of animals and human are shown, that the considered objects can be ranked to the special class of fractal objects. Such class of objects is called asymptotically arcwise connected.

  17. Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Directory of Open Access Journals (Sweden)

    Takahashi Susumu

    2009-09-01

    Full Text Available Abstract Background The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder. Results The activity of small neuronal ensembles (6-18 cells over brief time intervals (2-50 ms contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison. The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals. Conclusion The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.

  18. Dorsal-CA1 Hippocampal Neuronal Ensembles Encode Nicotine-Reward Contextual Associations.

    Science.gov (United States)

    Xia, Li; Nygard, Stephanie K; Sobczak, Gabe G; Hourguettes, Nicholas J; Bruchas, Michael R

    2017-06-06

    Natural and drug rewards increase the motivational valence of stimuli in the environment that, through Pavlovian learning mechanisms, become conditioned stimuli that directly motivate behavior in the absence of the original unconditioned stimulus. While the hippocampus has received extensive attention for its role in learning and memory processes, less is known regarding its role in drug-reward associations. We used in vivo Ca 2+ imaging in freely moving mice during the formation of nicotine preference behavior to examine the role of the dorsal-CA1 region of the hippocampus in encoding contextual reward-seeking behavior. We show the development of specific neuronal ensembles whose activity encodes nicotine-reward contextual memories and that are necessary for the expression of place preference. Our findings increase our understanding of CA1 hippocampal function in general and as it relates to reward processing by identifying a critical role for CA1 neuronal ensembles in nicotine place preference. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex

    Science.gov (United States)

    Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F.; Schnitzer, Mark J.; Anderson, David J.

    2017-10-01

    All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience. Oestrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents. We used microendoscopy to image Esr1+ neuronal activity in the VMHvl of male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male versus female conspecifics. However, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific neuronal ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not to mount or attack conspecifics, ensemble divergence did not occur. However, 30 minutes of sexual experience with a female was sufficient to promote the separation of male and female ensembles and to induce an attack response 24 h later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviours. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a ‘hard-wired’ system.

  20. Single-trial estimation of stimulus and spike-history effects on time-varying ensemble spiking activity of multiple neurons: a simulation study

    International Nuclear Information System (INIS)

    Shimazaki, Hideaki

    2013-01-01

    Neurons in cortical circuits exhibit coordinated spiking activity, and can produce correlated synchronous spikes during behavior and cognition. We recently developed a method for estimating the dynamics of correlated ensemble activity by combining a model of simultaneous neuronal interactions (e.g., a spin-glass model) with a state-space method (Shimazaki et al. 2012 PLoS Comput Biol 8 e1002385). This method allows us to estimate stimulus-evoked dynamics of neuronal interactions which is reproducible in repeated trials under identical experimental conditions. However, the method may not be suitable for detecting stimulus responses if the neuronal dynamics exhibits significant variability across trials. In addition, the previous model does not include effects of past spiking activity of the neurons on the current state of ensemble activity. In this study, we develop a parametric method for simultaneously estimating the stimulus and spike-history effects on the ensemble activity from single-trial data even if the neurons exhibit dynamics that is largely unrelated to these effects. For this goal, we model ensemble neuronal activity as a latent process and include the stimulus and spike-history effects as exogenous inputs to the latent process. We develop an expectation-maximization algorithm that simultaneously achieves estimation of the latent process, stimulus responses, and spike-history effects. The proposed method is useful to analyze an interaction of internal cortical states and sensory evoked activity

  1. Regional Differences in Striatal Neuronal Ensemble Excitability Following Cocaine and Extinction Memory Retrieval in Fos-GFP Mice.

    Science.gov (United States)

    Ziminski, Joseph J; Sieburg, Meike C; Margetts-Smith, Gabriella; Crombag, Hans S; Koya, Eisuke

    2018-03-01

    Learned associations between drugs of abuse and the drug administration environment have an important role in addiction. In rodents, exposure to a drug-associated environment elicits conditioned psychomotor activation, which may be weakened following extinction (EXT) learning. Although widespread drug-induced changes in neuronal excitability have been observed, little is known about specific changes within neuronal ensembles activated during the recall of drug-environment associations. Using a cocaine-conditioned locomotion (CL) procedure, the present study assessed the excitability of neuronal ensembles in the nucleus accumbens core and shell (NAc core and NAc shell ), and dorsal striatum (DS) following cocaine conditioning and EXT in Fos-GFP mice that express green fluorescent protein (GFP) in activated neurons (GFP+). During conditioning, mice received repeated cocaine injections (20 mg/kg) paired with a locomotor activity chamber (Paired) or home cage (Unpaired). Seven to 13 days later, both groups were re-exposed to the activity chamber under drug-free conditions and Paired, but not Unpaired, mice exhibited CL. In a separate group of mice, CL was extinguished by repeatedly exposing mice to the activity chamber under drug-free conditions. Following the expression and EXT of CL, GFP+ neurons in the NAc core (but not NAc shell and DS) displayed greater firing capacity compared to surrounding GFP- neurons. This difference in excitability was due to a generalized decrease in GFP- excitability following CL and a selective increase in GFP+ excitability following its EXT. These results suggest a role for both widespread and ensemble-specific changes in neuronal excitability following recall of drug-environment associations.

  2. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates

    Science.gov (United States)

    Wessberg, Johan; Stambaugh, Christopher R.; Kralik, Jerald D.; Beck, Pamela D.; Laubach, Mark; Chapin, John K.; Kim, Jung; Biggs, S. James; Srinivasan, Mandayam A.; Nicolelis, Miguel A. L.

    2000-11-01

    Signals derived from the rat motor cortex can be used for controlling one-dimensional movements of a robot arm. It remains unknown, however, whether real-time processing of cortical signals can be employed to reproduce, in a robotic device, the kind of complex arm movements used by primates to reach objects in space. Here we recorded the simultaneous activity of large populations of neurons, distributed in the premotor, primary motor and posterior parietal cortical areas, as non-human primates performed two distinct motor tasks. Accurate real-time predictions of one- and three-dimensional arm movement trajectories were obtained by applying both linear and nonlinear algorithms to cortical neuronal ensemble activity recorded from each animal. In addition, cortically derived signals were successfully used for real-time control of robotic devices, both locally and through the Internet. These results suggest that long-term control of complex prosthetic robot arm movements can be achieved by simple real-time transformations of neuronal population signals derived from multiple cortical areas in primates.

  3. Dynamic neuronal ensembles: Issues in representing structure change in object-oriented, biologically-based brain models

    Energy Technology Data Exchange (ETDEWEB)

    Vahie, S.; Zeigler, B.P.; Cho, H. [Univ. of Arizona, Tucson, AZ (United States)

    1996-12-31

    This paper describes the structure of dynamic neuronal ensembles (DNEs). DNEs represent a new paradigm for learning, based on biological neural networks that use variable structures. We present a computational neural element that demonstrates biological neuron functionality such as neurotransmitter feedback absolute refractory period and multiple output potentials. More specifically, we will develop a network of neural elements that have the ability to dynamically strengthen, weaken, add and remove interconnections. We demonstrate that the DNE is capable of performing dynamic modifications to neuron connections and exhibiting biological neuron functionality. In addition to its applications for learning, DNEs provide an excellent environment for testing and analysis of biological neural systems. An example of habituation and hyper-sensitization in biological systems, using a neural circuit from a snail is presented and discussed. This paper provides an insight into the DNE paradigm using models developed and simulated in DEVS.

  4. Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex.

    Science.gov (United States)

    Pilkiw, Maryna; Insel, Nathan; Cui, Younghua; Finney, Caitlin; Morrissey, Mark D; Takehara-Nishiuchi, Kaori

    2017-07-06

    The lateral entorhinal cortex (LEC) is thought to bind sensory events with the environment where they took place. To compare the relative influence of transient events and temporally stable environmental stimuli on the firing of LEC cells, we recorded neuron spiking patterns in the region during blocks of a trace eyeblink conditioning paradigm performed in two environments and with different conditioning stimuli. Firing rates of some neurons were phasically selective for conditioned stimuli in a way that depended on which room the rat was in; nearly all neurons were tonically selective for environments in a way that depended on which stimuli had been presented in those environments. As rats moved from one environment to another, tonic neuron ensemble activity exhibited prospective information about the conditioned stimulus associated with the environment. Thus, the LEC formed phasic and tonic codes for event-environment associations, thereby accurately differentiating multiple experiences with overlapping features.

  5. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    KAUST Repository

    Jolivet, Renaud

    2015-02-26

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  6. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    Science.gov (United States)

    Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.

    2015-01-01

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging. PMID:25719367

  7. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble.

    Directory of Open Access Journals (Sweden)

    Renaud Jolivet

    2015-02-01

    Full Text Available Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS are still debated. To address this question, we developed a detailed biophysical model of the brain's metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  8. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    Marquardt algorithm by varying conditions such as inputs, hidden neurons, initialization, training sets and random Gaussian noise injection to ... Several such ensembles formed the population which was evolved to generate the fittest ensemble.

  9. Neurons in primary motor cortex engaged during action observation.

    Science.gov (United States)

    Dushanova, Juliana; Donoghue, John

    2010-01-01

    Neurons in higher cortical areas appear to become active during action observation, either by mirroring observed actions (termed mirror neurons) or by eliciting mental rehearsal of observed motor acts. We report the existence of neurons in the primary motor cortex (M1), an area that is generally considered to initiate and guide movement performance, responding to viewed actions. Multielectrode recordings in monkeys performing or observing a well-learned step-tracking task showed that approximately half of the M1 neurons that were active when monkeys performed the task were also active when they observed the action being performed by a human. These 'view' neurons were spatially intermingled with 'do' neurons, which are active only during movement performance. Simultaneously recorded 'view' neurons comprised two groups: approximately 38% retained the same preferred direction (PD) and timing during performance and viewing, and the remainder (62%) changed their PDs and time lag during viewing as compared with performance. Nevertheless, population activity during viewing was sufficient to predict the direction and trajectory of viewed movements as action unfolded, although less accurately than during performance. 'View' neurons became less active and contained poorer representations of action when only subcomponents of the task were being viewed. M1 'view' neurons thus appear to reflect aspects of a learned movement when observed in others, and form part of a broadly engaged set of cortical areas routinely responding to learned behaviors. These findings suggest that viewing a learned action elicits replay of aspects of M1 activity needed to perform the observed action, and could additionally reflect processing related to understanding, learning or mentally rehearsing action.

  10. Ensemble response in mushroom body output neurons of the honey bee outpaces spatiotemporal odor processing two synapses earlier in the antennal lobe.

    Directory of Open Access Journals (Sweden)

    Martin F Strube-Bloss

    Full Text Available Neural representations of odors are subject to computations that involve sequentially convergent and divergent anatomical connections across different areas of the brains in both mammals and insects. Furthermore, in both mammals and insects higher order brain areas are connected via feedback connections. In order to understand the transformations and interactions that this connectivity make possible, an ideal experiment would compare neural responses across different, sequential processing levels. Here we present results of recordings from a first order olfactory neuropile - the antennal lobe (AL - and a higher order multimodal integration and learning center - the mushroom body (MB - in the honey bee brain. We recorded projection neurons (PN of the AL and extrinsic neurons (EN of the MB, which provide the outputs from the two neuropils. Recordings at each level were made in different animals in some experiments and simultaneously in the same animal in others. We presented two odors and their mixture to compare odor response dynamics as well as classification speed and accuracy at each neural processing level. Surprisingly, the EN ensemble significantly starts separating odor stimuli rapidly and before the PN ensemble has reached significant separation. Furthermore the EN ensemble at the MB output reaches a maximum separation of odors between 84-120 ms after odor onset, which is 26 to 133 ms faster than the maximum separation at the AL output ensemble two synapses earlier in processing. It is likely that a subset of very fast PNs, which respond before the ENs, may initiate the rapid EN ensemble response. We suggest therefore that the timing of the EN ensemble activity would allow retroactive integration of its signal into the ongoing computation of the AL via centrifugal feedback.

  11. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications

    Science.gov (United States)

    Rigosa, J.; Weber, D. J.; Prochazka, A.; Stein, R. B.; Micera, S.

    2011-08-01

    Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.

  12. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications.

    Science.gov (United States)

    Rigosa, J; Weber, D J; Prochazka, A; Stein, R B; Micera, S

    2011-08-01

    Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.

  13. From music making to speaking: engaging the mirror neuron system in autism.

    Science.gov (United States)

    Wan, Catherine Y; Demaine, Krystal; Zipse, Lauryn; Norton, Andrea; Schlaug, Gottfried

    2010-05-31

    Individuals with autism show impairments in emotional tuning, social interactions and communication. These are functions that have been attributed to the putative human mirror neuron system (MNS), which contains neurons that respond to the actions of self and others. It has been proposed that a dysfunction of that system underlies some of the characteristics of autism. Here, we review behavioral and imaging studies that implicate the MNS (or a brain network with similar functions) in sensory-motor integration and speech representation, and review data supporting the hypothesis that MNS activity could be abnormal in autism. In addition, we propose that an intervention designed to engage brain regions that overlap with the MNS may have significant clinical potential. We argue that this engagement could be achieved through forms of music making. Music making with others (e.g., playing instruments or singing) is a multi-modal activity that has been shown to engage brain regions that largely overlap with the human MNS. Furthermore, many children with autism thoroughly enjoy participating in musical activities. Such activities may enhance their ability to focus and interact with others, thereby fostering the development of communication and social skills. Thus, interventions incorporating methods of music making may offer a promising approach for facilitating expressive language in otherwise nonverbal children with autism. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Critical Listening in the Ensemble Rehearsal: A Community of Learners

    Science.gov (United States)

    Bell, Cindy L.

    2018-01-01

    This article explores a strategy for engaging ensemble members in critical listening analysis of performances and presents opportunities for improving ensemble sound through rigorous dialogue, reflection, and attentive rehearsing. Critical listening asks ensemble members to draw on individual playing experience and knowledge to describe what they…

  15. Analysis and modeling of ensemble recordings from respiratory pre-motor neurons indicate changes in functional network architecture after acute hypoxia

    Directory of Open Access Journals (Sweden)

    Roberto F Galán

    2010-09-01

    Full Text Available We have combined neurophysiologic recording, statistical analysis, and computational modeling to investigate the dynamics of the respiratory network in the brainstem. Using a multielectrode array, we recorded ensembles of respiratory neurons in perfused in situ rat preparations that produce spontaneous breathing patterns, focusing on inspiratory pre-motor neurons. We compared firing rates and neuronal synchronization among these neurons before and after a brief hypoxic stimulus. We observed a significant decrease in the number of spikes after stimulation, in part due to a transient slowing of the respiratory pattern. However, the median interspike interval did not change, suggesting that the firing threshold of the neurons was not affected but rather the synaptic input was. A bootstrap analysis of synchrony between spike trains revealed that, both before and after brief hypoxia, up to 45 % (but typically less than 5 % of coincident spikes across neuronal pairs was not explained by chance. Most likely, this synchrony resulted from common synaptic input to the pre-motor population, an example of stochastic synchronization. After brief hypoxia most pairs were less synchronized, although some were more, suggesting that the respiratory network was “rewired” transiently after the stimulus. To investigate this hypothesis, we created a simple computational model with feed-forward divergent connections along the inspiratory pathway. Assuming that 1 the number of divergent projections was not the same for all presynaptic cells, but rather spanned a wide range and 2 that the stimulus increased inhibition at the top of the network; this model reproduced the reduction in firing rate and bootstrap-corrected synchrony subsequent to hypoxic stimulation observed in our experimental data.

  16. The autism-associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain.

    Science.gov (United States)

    Peng, Y; Lu, Z; Li, G; Piechowicz, M; Anderson, M; Uddin, Y; Wu, J; Qiu, S

    2016-07-01

    The human MET gene imparts a replicated risk for autism spectrum disorder (ASD), and is implicated in the structural and functional integrity of brain. MET encodes a receptor tyrosine kinase, MET, which has a pleiotropic role in embryogenesis and modifies a large number of neurodevelopmental events. Very little is known, however, on how MET signaling engages distinct cellular events to collectively affect brain development in ASD-relevant disease domains. Here, we show that MET protein expression is dynamically regulated and compartmentalized in developing neurons. MET is heavily expressed in neuronal growth cones at early developmental stages and its activation engages small GTPase Cdc42 to promote neuronal growth, dendritic arborization and spine formation. Genetic ablation of MET signaling in mouse dorsal pallium leads to altered neuronal morphology indicative of early functional maturation. In contrast, prolonged activation of MET represses the formation and functional maturation of glutamatergic synapses. Moreover, manipulating MET signaling levels in vivo in the developing prefrontal projection neurons disrupts the local circuit connectivity made onto these neurons. Therefore, normal time-delimited MET signaling is critical in regulating the timing of neuronal growth, glutamatergic synapse maturation and cortical circuit function. Dysregulated MET signaling may lead to pathological changes in forebrain maturation and connectivity, and thus contribute to the emergence of neurological symptoms associated with ASD.

  17. Decoding spikes in a spiking neuronal network

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [Department of Informatics, University of Sussex, Brighton BN1 9QH (United Kingdom); Ding, Mingzhou [Department of Mathematics, Florida Atlantic University, Boca Raton, FL 33431 (United States)

    2004-06-04

    We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs.

  18. Decoding spikes in a spiking neuronal network

    International Nuclear Information System (INIS)

    Feng Jianfeng; Ding, Mingzhou

    2004-01-01

    We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs

  19. Ensemble encoding of nociceptive stimulus intensity in the rat medial and lateral pain systems

    Directory of Open Access Journals (Sweden)

    Woodward Donald J

    2011-08-01

    Full Text Available Abstract Background The ability to encode noxious stimulus intensity is essential for the neural processing of pain perception. It is well accepted that the intensity information is transmitted within both sensory and affective pathways. However, it remains unclear what the encoding patterns are in the thalamocortical brain regions, and whether the dual pain systems share similar responsibility in intensity coding. Results Multichannel single-unit recordings were used to investigate the activity of individual neurons and neuronal ensembles in the rat brain following the application of noxious laser stimuli of increasing intensity to the hindpaw. Four brain regions were monitored, including two within the lateral sensory pain pathway, namely, the ventral posterior lateral thalamic nuclei and the primary somatosensory cortex, and two in the medial pathway, namely, the medial dorsal thalamic nuclei and the anterior cingulate cortex. Neuron number, firing rate, and ensemble spike count codings were examined in this study. Our results showed that the noxious laser stimulation evoked double-peak responses in all recorded brain regions. Significant correlations were found between the laser intensity and the number of responsive neurons, the firing rates, as well as the mass spike counts (MSCs. MSC coding was generally more efficient than the other two methods. Moreover, the coding capacities of neurons in the two pathways were comparable. Conclusion This study demonstrated the collective contribution of medial and lateral pathway neurons to the noxious intensity coding. Additionally, we provide evidence that ensemble spike count may be the most reliable method for coding pain intensity in the brain.

  20. Adaptive Encoding of Outcome Prediction by Prefrontal Cortex Ensembles Supports Behavioral Flexibility.

    Science.gov (United States)

    Del Arco, Alberto; Park, Junchol; Wood, Jesse; Kim, Yunbok; Moghaddam, Bita

    2017-08-30

    The prefrontal cortex (PFC) is thought to play a critical role in behavioral flexibility by monitoring action-outcome contingencies. How PFC ensembles represent shifts in behavior in response to changes in these contingencies remains unclear. We recorded single-unit activity and local field potentials in the dorsomedial PFC (dmPFC) of male rats during a set-shifting task that required them to update their behavior, among competing options, in response to changes in action-outcome contingencies. As behavior was updated, a subset of PFC ensembles encoded the current trial outcome before the outcome was presented. This novel outcome-prediction encoding was absent in a control task, in which actions were rewarded pseudorandomly, indicating that PFC neurons are not merely providing an expectancy signal. In both control and set-shifting tasks, dmPFC neurons displayed postoutcome discrimination activity, indicating that these neurons also monitor whether a behavior is successful in generating rewards. Gamma-power oscillatory activity increased before the outcome in both tasks but did not differentiate between expected outcomes, suggesting that this measure is not related to set-shifting behavior but reflects expectation of an outcome after action execution. These results demonstrate that PFC neurons support flexible rule-based action selection by predicting outcomes that follow a particular action. SIGNIFICANCE STATEMENT Tracking action-outcome contingencies and modifying behavior when those contingencies change is critical to behavioral flexibility. We find that ensembles of dorsomedial prefrontal cortex neurons differentiate between expected outcomes when action-outcome contingencies change. This predictive mode of signaling may be used to promote a new response strategy at the service of behavioral flexibility. Copyright © 2017 the authors 0270-6474/17/378363-11$15.00/0.

  1. Ensemble stacking mitigates biases in inference of synaptic connectivity.

    Science.gov (United States)

    Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N

    2018-01-01

    A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.

  2. Self Organizing Maps to efficiently cluster and functionally interpret protein conformational ensembles

    Directory of Open Access Journals (Sweden)

    Fabio Stella

    2013-09-01

    Full Text Available An approach that combines Self-Organizing maps, hierarchical clustering and network components is presented, aimed at comparing protein conformational ensembles obtained from multiple Molecular Dynamic simulations. As a first result the original ensembles can be summarized by using only the representative conformations of the clusters obtained. In addition the network components analysis allows to discover and interpret the dynamic behavior of the conformations won by each neuron. The results showed the ability of this approach to efficiently derive a functional interpretation of the protein dynamics described by the original conformational ensemble, highlighting its potential as a support for protein engineering.

  3. Loss of Ensemble Segregation in Dentate Gyrus, but Not in Somatosensory Cortex, during Contextual Fear Memory Generalization

    Directory of Open Access Journals (Sweden)

    Marie Yokoyama

    2016-11-01

    Full Text Available The details of contextual or episodic memories are lost and generalized with the passage of time. Proper generalization may underlie the formation and assimilation of semantic memories and enable animals to adapt to ever-changing environments, whereas overgeneralization of fear memory evokes maladaptive fear responses to harmless stimuli, which is a symptom of anxiety disorders such as post-traumatic stress disorder (PTSD. To understand the neural basis of fear memory generalization, we investigated the patterns of neuronal ensemble reactivation during memory retrieval when contextual fear memory expression is generalized using transgenic mice that allowed us to visualize specific neuronal ensembles activated during memory encoding and retrieval. We found preferential reactivations of neuronal ensembles in the primary somatosensory cortex, when mice were returned to the conditioned context to retrieve their memory 1 day after conditioning. In the hippocampal dentate gyrus (DG, exclusively separated ensemble reactivation was observed when mice were exposed to a novel context. These results suggest that the DG as well as the somatosensory cortex were likely to distinguish the two different contexts at the ensemble activity level when memory is not generalized at the behavioral level. However, 9 days after conditioning when animals exhibited generalized fear, the unique reactivation pattern in the DG, but not in the somatosensory cortex, was lost. Our results suggest that the alternations in the ensemble representation within the DG, or in upstream structures that link the sensory cortex to the hippocampus, may underlie generalized contextual fear memory expression.

  4. Detecting bladder fullness through the ensemble activity patterns of the spinal cord unit population in a somatovisceral convergence environment

    Science.gov (United States)

    Park, Jae Hong; Kim, Chang-Eop; Shin, Jaewoo; Im, Changkyun; Koh, Chin Su; Seo, In Seok; Kim, Sang Jeong; Shin, Hyung-Cheul

    2013-10-01

    Objective. Chronic monitoring of the state of the bladder can be used to notify patients with urinary dysfunction when the bladder should be voided. Given that many spinal neurons respond both to somatic and visceral inputs, it is necessary to extract bladder information selectively from the spinal cord. Here, we hypothesize that sensory information with distinct modalities should be represented by the distinct ensemble activity patterns within the neuronal population and, therefore, analyzing the activity patterns of the neuronal population could distinguish bladder fullness from somatic stimuli. Approach. We simultaneously recorded 26-27 single unit activities in response to bladder distension or tactile stimuli in the dorsal spinal cord of each Sprague-Dawley rat. In order to discriminate between bladder fullness and tactile stimulus inputs, we analyzed the ensemble activity patterns of the entire neuronal population. A support vector machine (SVM) was employed as a classifier, and discrimination performance was measured by k-fold cross-validation tests. Main results. Most of the units responding to bladder fullness also responded to the tactile stimuli (88.9-100%). The SVM classifier precisely distinguished the bladder fullness from the somatic input (100%), indicating that the ensemble activity patterns of the unit population in the spinal cord are distinct enough to identify the current input modality. Moreover, our ensemble activity pattern-based classifier showed high robustness against random losses of signals. Significance. This study is the first to demonstrate that the two main issues of electroneurographic monitoring of bladder fullness, low signals and selectiveness, can be solved by an ensemble activity pattern-based approach, improving the feasibility of chronic monitoring of bladder fullness by neural recording.

  5. Response sensitivity of barrel neuron subpopulations to simulated thalamic input.

    Science.gov (United States)

    Pesavento, Michael J; Rittenhouse, Cynthia D; Pinto, David J

    2010-06-01

    Our goal is to examine the relationship between neuron- and network-level processing in the context of a well-studied cortical function, the processing of thalamic input by whisker-barrel circuits in rodent neocortex. Here we focus on neuron-level processing and investigate the responses of excitatory and inhibitory barrel neurons to simulated thalamic inputs applied using the dynamic clamp method in brain slices. Simulated inputs are modeled after real thalamic inputs recorded in vivo in response to brief whisker deflections. Our results suggest that inhibitory neurons require more input to reach firing threshold, but then fire earlier, with less variability, and respond to a broader range of inputs than do excitatory neurons. Differences in the responses of barrel neuron subtypes depend on their intrinsic membrane properties. Neurons with a low input resistance require more input to reach threshold but then fire earlier than neurons with a higher input resistance, regardless of the neuron's classification. Our results also suggest that the response properties of excitatory versus inhibitory barrel neurons are consistent with the response sensitivities of the ensemble barrel network. The short response latency of inhibitory neurons may serve to suppress ensemble barrel responses to asynchronous thalamic input. Correspondingly, whereas neurons acting as part of the barrel circuit in vivo are highly selective for temporally correlated thalamic input, excitatory barrel neurons acting alone in vitro are less so. These data suggest that network-level processing of thalamic input in barrel cortex depends on neuron-level processing of the same input by excitatory and inhibitory barrel neurons.

  6. Peer-Teaching in the Secondary Music Ensemble

    Science.gov (United States)

    Johnson, Erik

    2015-01-01

    Peer-teaching is an instructional technique that has been used by teachers world-wide to successfully engage, exercise and deepen student learning. Yet, in some instances, teachers find the application of peer-teaching in large music ensembles at the secondary level to be daunting. This article is meant to be a practical resource for secondary…

  7. Speaking with a mirror: engagement of mirror neurons via choral speech and its derivatives induces stuttering inhibition.

    Science.gov (United States)

    Kalinowski, Joseph; Saltuklaroglu, Tim

    2003-04-01

    'Choral speech', 'unison speech', or 'imitation speech' has long been known to immediately induce reflexive, spontaneous, and natural sounding fluency, even the most severe cases of stuttering. Unlike typical post-therapeutic speech, a hallmark characteristic of choral speech is the sense of 'invulnerability' to stuttering, regardless of phonetic context, situational environment, or audience size. We suggest that choral speech immediately inhibits stuttering by engaging mirror systems of neurons, innate primitive neuronal substrates that dominate the initial phases of language development due to their predisposition to reflexively imitate gestural action sequences in a fluent manner. Since mirror systems are primordial in nature, they take precedence over the much later developing stuttering pathology. We suggest that stuttering may best be ameliorated by reengaging mirror neurons via choral speech or one of its derivatives (using digital signal processing technology) to provide gestural mirrors, that are nature's way of immediately overriding the central stuttering block. Copyright 2003 Elsevier Science Ltd.

  8. Ensemble stacking mitigates biases in inference of synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Brendan Chambers

    2018-03-01

    Full Text Available A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches. Mapping the routing of spikes through local circuitry is crucial for understanding neocortical computation. Under appropriate experimental conditions, these maps can be used to infer likely patterns of synaptic recruitment, linking activity to underlying anatomical connections. Such inferences help to reveal the synaptic implementation of population dynamics and computation. We compare a number of standard functional measures to infer underlying connectivity. We find that regularization impacts measures

  9. Responses of single neurons and neuronal ensembles in frog first- and second-order olfactory neurons

    Czech Academy of Sciences Publication Activity Database

    Rospars, J. P.; Šanda, Pavel; Lánský, Petr; Duchamp-Viret, P.

    2013-01-01

    Roč. 1536, NOV 6 (2013), s. 144-158 ISSN 0006-8993 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP103/11/0282 Institutional support: RVO:67985823 Keywords : olfaction * spiking activity * neuronal model Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.828, year: 2013

  10. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    Science.gov (United States)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  11. Stochastic resonance in models of neuronal ensembles

    International Nuclear Information System (INIS)

    Chialvo, D.R.; Longtin, A.; Mueller-Gerkin, J.

    1997-01-01

    Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation measures used for the so-called aperiodic stochastic resonance (ASR) scenario does not rely on the cooperative effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying signals is more properly interpreted as linearization by noise. Consequently, the broadening of the open-quotes resonance curveclose quotes in the multineuron stochastic resonance without tuning scenario can also be explained by this linearization. Computation of the input-output correlation as a function of both signal frequency and noise for the model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate and input signal. copyright 1997 The American Physical Society

  12. The Ensembl REST API: Ensembl Data for Any Language.

    Science.gov (United States)

    Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R S; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul

    2015-01-01

    We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. © The Author 2014. Published by Oxford University Press.

  13. Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales.

    Science.gov (United States)

    Kodama, Nathan X; Feng, Tianyi; Ullett, James J; Chiel, Hillel J; Sivakumar, Siddharth S; Galán, Roberto F

    2018-01-12

    In the highly interconnected architectures of the cerebral cortex, recurrent intracortical loops disproportionately outnumber thalamo-cortical inputs. These networks are also capable of generating neuronal activity without feedforward sensory drive. It is unknown, however, what spatiotemporal patterns may be solely attributed to intrinsic connections of the local cortical network. Using high-density microelectrode arrays, here we show that in the isolated, primary somatosensory cortex of mice, neuronal firing fluctuates on timescales from milliseconds to tens of seconds. Slower firing fluctuations reveal two spatially distinct neuronal ensembles, which correspond to superficial and deeper layers. These ensembles are anti-correlated: when one fires more, the other fires less and vice versa. This interplay is clearest at timescales of several seconds and is therefore consistent with shifts between active sensing and anticipatory behavioral states in mice.

  14. Deciphering neuronal population codes for acute thermal pain

    Science.gov (United States)

    Chen, Zhe; Zhang, Qiaosheng; Phuong Sieu Tong, Ai; Manders, Toby R.; Wang, Jing

    2017-06-01

    Objective. Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. Approach. We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. Main results. The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the ‘neuronal threshold’ for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. Significance. Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.

  15. Experimentally determined chaotic phase synchronization in a neuronal system

    OpenAIRE

    Makarenko, Vladimir; Llinás, Rodolfo

    1998-01-01

    Mathematical analysis of the subthreshold oscillatory properties of inferior olivary neurons in vitro indicates that the oscillation is nonlinear and supports low dimensional chaotic dynamics. This property leads to the generation of complex functional states that can be attained rapidly via phase coherence that conform to the category of “generalized synchronization.” Functionally, this translates into neuronal ensemble properties that can support maximum functional permissiveness and that r...

  16. V1 spinal neurons regulate the speed of vertebrate locomotor outputs

    DEFF Research Database (Denmark)

    Gosgnach, Simon; Lanuza, Guillermo M.; Butt, Simon J B

    2006-01-01

    The neuronal networks that generate vertebrate movements such as walking and swimming are embedded in the spinal cord1-3. These networks, which are referred to as central pattern generators (CPGs), are ideal systems for determining how ensembles of neurons generate simple behavioural outputs...... for inhibition in regulating the frequency of the locomotor CPG rhythm, and also suggest that V1 neurons may have an evolutionarily conserved role in controlling the speed of vertebrate locomotor movements....

  17. Ensemble Methods

    Science.gov (United States)

    Re, Matteo; Valentini, Giorgio

    2012-03-01

    Ensemble methods are statistical and computational learning procedures reminiscent of the human social learning behavior of seeking several opinions before making any crucial decision. The idea of combining the opinions of different "experts" to obtain an overall “ensemble” decision is rooted in our culture at least from the classical age of ancient Greece, and it has been formalized during the Enlightenment with the Condorcet Jury Theorem[45]), which proved that the judgment of a committee is superior to those of individuals, provided the individuals have reasonable competence. Ensembles are sets of learning machines that combine in some way their decisions, or their learning algorithms, or different views of data, or other specific characteristics to obtain more reliable and more accurate predictions in supervised and unsupervised learning problems [48,116]. A simple example is represented by the majority vote ensemble, by which the decisions of different learning machines are combined, and the class that receives the majority of “votes” (i.e., the class predicted by the majority of the learning machines) is the class predicted by the overall ensemble [158]. In the literature, a plethora of terms other than ensembles has been used, such as fusion, combination, aggregation, and committee, to indicate sets of learning machines that work together to solve a machine learning problem [19,40,56,66,99,108,123], but in this chapter we maintain the term ensemble in its widest meaning, in order to include the whole range of combination methods. Nowadays, ensemble methods represent one of the main current research lines in machine learning [48,116], and the interest of the research community on ensemble methods is witnessed by conferences and workshops specifically devoted to ensembles, first of all the multiple classifier systems (MCS) conference organized by Roli, Kittler, Windeatt, and other researchers of this area [14,62,85,149,173]. Several theories have been

  18. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas.

    Directory of Open Access Journals (Sweden)

    Sidarta Ribeiro

    2004-01-01

    Full Text Available The discovery of experience-dependent brain reactivation during both slow-wave (SW and rapid eye-movement (REM sleep led to the notion that the consolidation of recently acquired memory traces requires neural replay during sleep. To date, however, several observations continue to undermine this hypothesis. To address some of these objections, we investigated the effects of a transient novel experience on the long-term evolution of ongoing neuronal activity in the rat forebrain. We observed that spatiotemporal patterns of neuronal ensemble activity originally produced by the tactile exploration of novel objects recurred for up to 48 h in the cerebral cortex, hippocampus, putamen, and thalamus. This novelty-induced recurrence was characterized by low but significant correlations values. Nearly identical results were found for neuronal activity sampled when animals were moving between objects without touching them. In contrast, negligible recurrence was observed for neuronal patterns obtained when animals explored a familiar environment. While the reverberation of past patterns of neuronal activity was strongest during SW sleep, waking was correlated with a decrease of neuronal reverberation. REM sleep showed more variable results across animals. In contrast with data from hippocampal place cells, we found no evidence of time compression or expansion of neuronal reverberation in any of the sampled forebrain areas. Our results indicate that persistent experience-dependent neuronal reverberation is a general property of multiple forebrain structures. It does not consist of an exact replay of previous activity, but instead it defines a mild and consistent bias towards salient neural ensemble firing patterns. These results are compatible with a slow and progressive process of memory consolidation, reflecting novelty-related neuronal ensemble relationships that seem to be context- rather than stimulus-specific. Based on our current and previous results

  19. Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise.

    KAUST Repository

    Bressloff, Paul C; Lai, Yi Ming

    2011-01-01

    We extend the theory of noise-induced phase synchronization to the case of a neural master equation describing the stochastic dynamics of an ensemble of uncoupled neuronal population oscillators with intrinsic and extrinsic noise. The master

  20. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon.

    Science.gov (United States)

    Farías, Ginny G; Guardia, Carlos M; De Pace, Raffaella; Britt, Dylan J; Bonifacino, Juan S

    2017-04-04

    The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes.

  1. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon

    Science.gov (United States)

    Farías, Ginny G.; Guardia, Carlos M.; De Pace, Raffaella; Britt, Dylan J.; Bonifacino, Juan S.

    2017-01-01

    The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes. PMID:28320970

  2. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Science.gov (United States)

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  3. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  4. Induction of aversive learning through thermogenetic activation of Kenyon cell ensembles in Drosophila

    Directory of Open Access Journals (Sweden)

    David eVasmer

    2014-05-01

    Full Text Available Drosophila represents a model organism to analyze neuronal mechanisms underlying learning and memory. Kenyon cells of the Drosophila mushroom body are required for associative odor learning and memory retrieval. But is the mushroom body sufficient to acquire and retrieve an associative memory? To answer this question we have conceived an experimental approach to bypass olfactory sensory input and to thermogenetically activate sparse and random ensembles of Kenyon cells directly. We found that if the artifical activation of Kenyon cell ensembles coincides with a salient, aversive stimulus learning was induced The animals adjusted their behavior in a subsequent test situation and actively avoided reactivation of these Kenyon cells. Our results show that Kenyon cell activity in coincidence with a salient aversive stimulus can suffice to form an associative memory. Memory retrieval is characterized by a closed feedback loop between a behavioral action and the reactivation of sparse ensembles of Kenyon cells.

  5. On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles

    KAUST Repository

    Luo, Xiaodong; Hoteit, Ibrahim; Moroz, Irene M.

    2010-01-01

    However, by adopting the Monte Carlo method, the EnSRF also incurs certain sampling errors. One way to alleviate this problem is to introduce certain symmetry to the ensembles, which can reduce the sampling errors and spurious modes in evaluation of the means and covariances of the ensembles [7]. In this contribution, we present two methods to produce symmetric ensembles. One is based on the unscented transform [8, 9], which leads to the unscented Kalman filter (UKF) [8, 9] and its variant, the ensemble unscented Kalman filter (EnUKF) [7]. The other is based on Stirling’s interpolation formula (SIF), which results in the divided difference filter (DDF) [10]. Here we propose a simplified divided difference filter (sDDF) in the context of ensemble filtering. The similarity and difference between the sDDF and the EnUKF will be discussed. Numerical experiments will also be conducted to investigate the performance of the sDDF and the EnUKF, and compare them to a well‐established EnSRF, the ensemble transform Kalman filter (ETKF) [2].

  6. On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles

    KAUST Repository

    Luo, Xiaodong

    2010-09-19

    The ensemble square root filter (EnSRF) [1, 2, 3, 4] is a popular method for data assimilation in high dimensional systems (e.g., geophysics models). Essentially the EnSRF is a Monte Carlo implementation of the conventional Kalman filter (KF) [5, 6]. It is mainly different from the KF at the prediction steps, where it is some ensembles, rather then the means and covariance matrices, of the system state that are propagated forward. In doing this, the EnSRF is computationally more efficient than the KF, since propagating a covariance matrix forward in high dimensional systems is prohibitively expensive. In addition, the EnSRF is also very convenient in implementation. By propagating the ensembles of the system state, the EnSRF can be directly applied to nonlinear systems without any change in comparison to the assimilation procedures in linear systems. However, by adopting the Monte Carlo method, the EnSRF also incurs certain sampling errors. One way to alleviate this problem is to introduce certain symmetry to the ensembles, which can reduce the sampling errors and spurious modes in evaluation of the means and covariances of the ensembles [7]. In this contribution, we present two methods to produce symmetric ensembles. One is based on the unscented transform [8, 9], which leads to the unscented Kalman filter (UKF) [8, 9] and its variant, the ensemble unscented Kalman filter (EnUKF) [7]. The other is based on Stirling’s interpolation formula (SIF), which results in the divided difference filter (DDF) [10]. Here we propose a simplified divided difference filter (sDDF) in the context of ensemble filtering. The similarity and difference between the sDDF and the EnUKF will be discussed. Numerical experiments will also be conducted to investigate the performance of the sDDF and the EnUKF, and compare them to a well‐established EnSRF, the ensemble transform Kalman filter (ETKF) [2].

  7. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    KAUST Repository

    Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.

    2015-01-01

    time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest

  8. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and AN Experimental Ensemble Approach.

    Science.gov (United States)

    Munro, Paul Wesley

    A special form for modification of neuronal response properties is described in which the change in the synaptic state vector is parallel to the vector of afferent activity. This process is termed "parallel modification" and its theoretical and experimental implications are examined. A theoretical framework has been devised to describe the complementary functions of generalization and discrimination by single neurons. This constitutes a basis for three models each describing processes for the development of maximum selectivity (discrimination) and minimum selectivity (generalization) by neurons. Strengthening and weakening of synapses is expressed as a product of the presynaptic activity and a nonlinear modulatory function of two postsynaptic variables--namely a measure of the spatially integrated activity of the cell and a temporal integration (time-average) of that activity. Some theorems are given for low-dimensional systems and computer simulation results from more complex systems are discussed. Model neurons that achieve high selectivity mimic the development of cat visual cortex neurons in a wide variety of rearing conditions. A role for low-selectivity neurons is proposed in which they provide inhibitory input to neurons of the opposite type, thereby suppressing the common component of a pattern class and enhancing their selective properties. Such contrast-enhancing circuits are analyzed and supported by computer simulation. To enable maximum selectivity, the net inhibition to a cell must become strong enough to offset whatever excitation is produced by the non-preferred patterns. Ramifications of parallel models for certain experimental paradigms are analyzed. A methodology is outlined for testing synaptic modification hypotheses in the laboratory. A plastic projection from one neuronal population to another will attain stable equilibrium under periodic electrical stimulation of constant intensity. The perturbative effect of shifting this intensity level

  9. MSEBAG: a dynamic classifier ensemble generation based on `minimum-sufficient ensemble' and bagging

    Science.gov (United States)

    Chen, Lei; Kamel, Mohamed S.

    2016-01-01

    In this paper, we propose a dynamic classifier system, MSEBAG, which is characterised by searching for the 'minimum-sufficient ensemble' and bagging at the ensemble level. It adopts an 'over-generation and selection' strategy and aims to achieve a good bias-variance trade-off. In the training phase, MSEBAG first searches for the 'minimum-sufficient ensemble', which maximises the in-sample fitness with the minimal number of base classifiers. Then, starting from the 'minimum-sufficient ensemble', a backward stepwise algorithm is employed to generate a collection of ensembles. The objective is to create a collection of ensembles with a descending fitness on the data, as well as a descending complexity in the structure. MSEBAG dynamically selects the ensembles from the collection for the decision aggregation. The extended adaptive aggregation (EAA) approach, a bagging-style algorithm performed at the ensemble level, is employed for this task. EAA searches for the competent ensembles using a score function, which takes into consideration both the in-sample fitness and the confidence of the statistical inference, and averages the decisions of the selected ensembles to label the test pattern. The experimental results show that the proposed MSEBAG outperforms the benchmarks on average.

  10. Ensembl 2004.

    Science.gov (United States)

    Birney, E; Andrews, D; Bevan, P; Caccamo, M; Cameron, G; Chen, Y; Clarke, L; Coates, G; Cox, T; Cuff, J; Curwen, V; Cutts, T; Down, T; Durbin, R; Eyras, E; Fernandez-Suarez, X M; Gane, P; Gibbins, B; Gilbert, J; Hammond, M; Hotz, H; Iyer, V; Kahari, A; Jekosch, K; Kasprzyk, A; Keefe, D; Keenan, S; Lehvaslaiho, H; McVicker, G; Melsopp, C; Meidl, P; Mongin, E; Pettett, R; Potter, S; Proctor, G; Rae, M; Searle, S; Slater, G; Smedley, D; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Storey, R; Ureta-Vidal, A; Woodwark, C; Clamp, M; Hubbard, T

    2004-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organize biology around the sequences of large genomes. It is a comprehensive and integrated source of annotation of large genome sequences, available via interactive website, web services or flat files. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. The facilities of the system range from sequence analysis to data storage and visualization and installations exist around the world both in companies and at academic sites. With a total of nine genome sequences available from Ensembl and more genomes to follow, recent developments have focused mainly on closer integration between genomes and external data.

  11. Towards a GME ensemble forecasting system: Ensemble initialization using the breeding technique

    Directory of Open Access Journals (Sweden)

    Jan D. Keller

    2008-12-01

    Full Text Available The quantitative forecast of precipitation requires a probabilistic background particularly with regard to forecast lead times of more than 3 days. As only ensemble simulations can provide useful information of the underlying probability density function, we built a new ensemble forecasting system (GME-EFS based on the GME model of the German Meteorological Service (DWD. For the generation of appropriate initial ensemble perturbations we chose the breeding technique developed by Toth and Kalnay (1993, 1997, which develops perturbations by estimating the regions of largest model error induced uncertainty. This method is applied and tested in the framework of quasi-operational forecasts for a three month period in 2007. The performance of the resulting ensemble forecasts are compared to the operational ensemble prediction systems ECMWF EPS and NCEP GFS by means of ensemble spread of free atmosphere parameters (geopotential and temperature and ensemble skill of precipitation forecasting. This comparison indicates that the GME ensemble forecasting system (GME-EFS provides reasonable forecasts with spread skill score comparable to that of the NCEP GFS. An analysis with the continuous ranked probability score exhibits a lack of resolution for the GME forecasts compared to the operational ensembles. However, with significant enhancements during the 3 month test period, the first results of our work with the GME-EFS indicate possibilities for further development as well as the potential for later operational usage.

  12. Task-dependent changes in cross-level coupling between single neurons and oscillatory activity in multiscale networks.

    Directory of Open Access Journals (Sweden)

    Ryan T Canolty

    Full Text Available Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC or under direct neural control through a brain-machine interface (Brain Control, BC. In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10-45 Hz during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to

  13. Networks of VTA Neurons Encode Real-Time Information about Uncertain Numbers of Actions Executed to Earn a Reward

    Directory of Open Access Journals (Sweden)

    Jesse Wood

    2017-08-01

    Full Text Available Multiple and unpredictable numbers of actions are often required to achieve a goal. In order to organize behavior and allocate effort so that optimal behavioral policies can be selected, it is necessary to continually monitor ongoing actions. Real-time processing of information related to actions and outcomes is typically assigned to the prefrontal cortex and basal ganglia, but also depends on midbrain regions, especially the ventral tegmental area (VTA. We were interested in how individual VTA neurons, as well as networks within the VTA, encode salient events when an unpredictable number of serial actions are required to obtain a reward. We recorded from ensembles of putative dopamine and non-dopamine neurons in the VTA as animals performed multiple cued trials in a recording session where, in each trial, serial actions were randomly rewarded. While averaging population activity did not reveal a response pattern, we observed that different neurons were selectively tuned to low, medium, or high numbered actions in a trial. This preferential tuning of putative dopamine and non-dopamine VTA neurons to different subsets of actions in a trial allowed information about binned action number to be decoded from the ensemble activity. At the network level, tuning curve similarity was positively associated with action-evoked noise correlations, suggesting that action number selectivity reflects functional connectivity within these networks. Analysis of phasic responses to cue and reward revealed that the requirement to execute multiple and uncertain numbers of actions weakens both cue-evoked responses and cue-reward response correlation. The functional connectivity and ensemble coding scheme that we observe here may allow VTA neurons to cooperatively provide a real-time account of ongoing behavior. These computations may be critical to cognitive and motivational functions that have long been associated with VTA dopamine neurons.

  14. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    International Nuclear Information System (INIS)

    Li, Chun-Hsien; Yang, Suh-Yuh

    2015-01-01

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability

  15. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hsien, E-mail: chli@nknucc.nknu.edu.tw [Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444, Taiwan (China); Yang, Suh-Yuh, E-mail: syyang@math.ncu.edu.tw [Department of Mathematics, National Central University, Jhongli District, Taoyuan City 32001, Taiwan (China)

    2015-10-23

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability.

  16. Entropy of network ensembles

    Science.gov (United States)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  17. Ensembl variation resources

    Directory of Open Access Journals (Sweden)

    Marin-Garcia Pablo

    2010-05-01

    Full Text Available Abstract Background The maturing field of genomics is rapidly increasing the number of sequenced genomes and producing more information from those previously sequenced. Much of this additional information is variation data derived from sampling multiple individuals of a given species with the goal of discovering new variants and characterising the population frequencies of the variants that are already known. These data have immense value for many studies, including those designed to understand evolution and connect genotype to phenotype. Maximising the utility of the data requires that it be stored in an accessible manner that facilitates the integration of variation data with other genome resources such as gene annotation and comparative genomics. Description The Ensembl project provides comprehensive and integrated variation resources for a wide variety of chordate genomes. This paper provides a detailed description of the sources of data and the methods for creating the Ensembl variation databases. It also explores the utility of the information by explaining the range of query options available, from using interactive web displays, to online data mining tools and connecting directly to the data servers programmatically. It gives a good overview of the variation resources and future plans for expanding the variation data within Ensembl. Conclusions Variation data is an important key to understanding the functional and phenotypic differences between individuals. The development of new sequencing and genotyping technologies is greatly increasing the amount of variation data known for almost all genomes. The Ensembl variation resources are integrated into the Ensembl genome browser and provide a comprehensive way to access this data in the context of a widely used genome bioinformatics system. All Ensembl data is freely available at http://www.ensembl.org and from the public MySQL database server at ensembldb.ensembl.org.

  18. NYYD Ensemble

    Index Scriptorium Estoniae

    2002-01-01

    NYYD Ensemble'i duost Traksmann - Lukk E.-S. Tüüri teosega "Symbiosis", mis on salvestatud ka hiljuti ilmunud NYYD Ensemble'i CDle. 2. märtsil Rakvere Teatri väikeses saalis ja 3. märtsil Rotermanni Soolalaos, kavas Tüür, Kaumann, Berio, Reich, Yun, Hauta-aho, Buckinx

  19. Temporal characteristics of gustatory responses in rat parabrachial neurons vary by stimulus and chemosensitive neuron type.

    Science.gov (United States)

    Geran, Laura; Travers, Susan

    2013-01-01

    It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of "sweet" (sucrose), "salty" (NaCl), "sour" (citric acid), and "bitter" (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500 ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs.

  20. Causal Interrogation of Neuronal Networks and Behavior through Virally Transduced Ivermectin Receptors.

    Science.gov (United States)

    Obenhaus, Horst A; Rozov, Andrei; Bertocchi, Ilaria; Tang, Wannan; Kirsch, Joachim; Betz, Heinrich; Sprengel, Rolf

    2016-01-01

    The causal interrogation of neuronal networks involved in specific behaviors requires the spatially and temporally controlled modulation of neuronal activity. For long-term manipulation of neuronal activity, chemogenetic tools provide a reasonable alternative to short-term optogenetic approaches. Here we show that virus mediated gene transfer of the ivermectin (IVM) activated glycine receptor mutant GlyRα1 (AG) can be used for the selective and reversible silencing of specific neuronal networks in mice. In the striatum, dorsal hippocampus, and olfactory bulb, GlyRα1 (AG) promoted IVM dependent effects in representative behavioral assays. Moreover, GlyRα1 (AG) mediated silencing had a strong and reversible impact on neuronal ensemble activity and c-Fos activation in the olfactory bulb. Together our results demonstrate that long-term, reversible and re-inducible neuronal silencing via GlyRα1 (AG) is a promising tool for the interrogation of network mechanisms underlying the control of behavior and memory formation.

  1. 'Lazy' quantum ensembles

    International Nuclear Information System (INIS)

    Parfionov, George; Zapatrin, Roman

    2006-01-01

    We compare different strategies aimed to prepare an ensemble with a given density matrix ρ. Preparing the ensemble of eigenstates of ρ with appropriate probabilities can be treated as 'generous' strategy: it provides maximal accessible information about the state. Another extremity is the so-called 'Scrooge' ensemble, which is mostly stingy in sharing the information. We introduce 'lazy' ensembles which require minimal effort to prepare the density matrix by selecting pure states with respect to completely random choice. We consider two parties, Alice and Bob, playing a kind of game. Bob wishes to guess which pure state is prepared by Alice. His null hypothesis, based on the lack of any information about Alice's intention, is that Alice prepares any pure state with equal probability. Then, the average quantum state measured by Bob turns out to be ρ, and he has to make a new hypothesis about Alice's intention solely based on the information that the observed density matrix is ρ. The arising 'lazy' ensemble is shown to be the alternative hypothesis which minimizes type I error

  2. Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds

    OpenAIRE

    Carlin, Michael A.; Elhilali, Mounya

    2013-01-01

    The processing characteristics of neurons in the central auditory system are directly shaped by and reflect the statistics of natural acoustic environments, but the principles that govern the relationship between natural sound ensembles and observed responses in neurophysiological studies remain unclear. In particular, accumulating evidence suggests the presence of a code based on sustained neural firing rates, where central auditory neurons exhibit strong, persistent responses to their prefe...

  3. World Music Ensemble: Kulintang

    Science.gov (United States)

    Beegle, Amy C.

    2012-01-01

    As instrumental world music ensembles such as steel pan, mariachi, gamelan and West African drums are becoming more the norm than the exception in North American school music programs, there are other world music ensembles just starting to gain popularity in particular parts of the United States. The kulintang ensemble, a drum and gong ensemble…

  4. Noise adaptation in integrate-and fire neurons.

    Science.gov (United States)

    Rudd, M E; Brown, L G

    1997-07-01

    The statistical spiking response of an ensemble of identically prepared stochastic integrate-and-fire neurons to a rectangular input current plus gaussian white noise is analyzed. It is shown that, on average, integrate-and-fire neurons adapt to the root-mean-square noise level of their input. This phenomenon is referred to as noise adaptation. Noise adaptation is characterized by a decrease in the average neural firing rate and an accompanying decrease in the average value of the generator potential, both of which can be attributed to noise-induced resets of the generator potential mediated by the integrate-and-fire mechanism. A quantitative theory of noise adaptation in stochastic integrate-and-fire neurons is developed. It is shown that integrate-and-fire neurons, on average, produce transient spiking activity whenever there is an increase in the level of their input noise. This transient noise response is either reduced or eliminated over time, depending on the parameters of the model neuron. Analytical methods are used to prove that nonleaky integrate-and-fire neurons totally adapt to any constant input noise level, in the sense that their asymptotic spiking rates are independent of the magnitude of their input noise. For leaky integrate-and-fire neurons, the long-run noise adaptation is not total, but the response to noise is partially eliminated. Expressions for the probability density function of the generator potential and the first two moments of the potential distribution are derived for the particular case of a nonleaky neuron driven by gaussian white noise of mean zero and constant variance. The functional significance of noise adaptation for the performance of networks comprising integrate-and-fire neurons is discussed.

  5. Reprogramming movements: Extraction of motor intentions from cortical ensemble activity when movement goals change

    Directory of Open Access Journals (Sweden)

    Peter James Ifft

    2012-07-01

    Full Text Available The ability to inhibit unwanted movements and change motor plans is essential for behaviors of advanced organisms. The neural mechanisms by which the primate motor system rejects undesired actions have received much attention during the last decade, but it is not well understood how this neural function could be utilized to improve the efficiency of brain-machine interfaces (BMIs. Here we employed linear discriminant analysis (LDA and a Wiener filter to extract motor plan transitions from the activity of ensembles of sensorimotor cortex neurons. Two rhesus monkeys, chronically implanted with multielectrode arrays in primary motor (M1 and primary sensory (S1 cortices, were overtrained to produce reaching movements with a joystick towards visual targets upon their presentation. Then, the behavioral task was modified to include a distracting target that flashed for 50, 150 or 250 ms (25% of trials each followed by the true target that appeared at a different screen location. In the remaining 25% of trials, the initial target stayed on the screen and was the target to be approached. M1 and S1 neuronal activity represented both the true and distracting targets, even for the shortest duration of the distracting event. This dual representation persisted both when the monkey initiated movements towards the distracting target and then made corrections and when they moved directly towards the second, true target. The Wiener filter effectively decoded the location of the true target, whereas the LDA classifier extracted the location of both targets from ensembles of 50-250 neurons. Based on these results, we suggest developing real-time BMIs that inhibit unwanted movements represented by brain activity while enacting the desired motor outcome concomitantly.

  6. Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing

    KAUST Repository

    Toye, Habib

    2017-05-26

    We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.

  7. Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons

    Directory of Open Access Journals (Sweden)

    Jong-Woo Sohn

    2016-08-01

    Full Text Available Objective: The ventromedial hypothalamic nucleus (VMH regulates energy balance and glucose homeostasis. Leptin and insulin exert metabolic effects via their cognate receptors expressed by the steroidogenic factor 1 (SF1 neurons within the VMH. However, detailed cellular mechanisms involved in the regulation of these neurons by leptin and insulin remain to be identified. Methods: We utilized genetically-modified mouse models and performed patch-clamp electrophysiology experiments to resolve this issue. Results: We identified distinct populations of leptin-activated and leptin-inhibited SF1 neurons. In contrast, insulin uniformly inhibited SF1 neurons. Notably, we found that leptin-activated, leptin-inhibited, and insulin-inhibited SF1 neurons are distinct subpopulations within the VMH. Leptin depolarization of SF1 neuron also required the PI3K p110β catalytic subunit. This effect was mediated by the putative transient receptor potential C (TRPC channel. On the other hand, hyperpolarizing responses of SF1 neurons by leptin and insulin required either of the p110α or p110β catalytic subunits, and were mediated by the putative ATP-sensitive K+ (KATP channel. Conclusions: Our results demonstrate that specific PI3K catalytic subunits are responsible for the acute effects of leptin and insulin on VMH SF1 neurons, and provide insights into the cellular mechanisms of leptin and insulin action on VMH SF1 neurons that regulate energy balance and glucose homeostasis. Author Video: Author Video Watch what authors say about their articles Keywords: Cellular mechanism, Conditional knockout mouse, Patch clamp technique, Functional heterogeneity, Homeostasis

  8. Astrocyte-to-neuron communication through integrin-engaged Thy-1/CBP/Csk/Src complex triggers neurite retraction via the RhoA/ROCK pathway.

    Science.gov (United States)

    Maldonado, H; Calderon, C; Burgos-Bravo, F; Kobler, O; Zuschratter, W; Ramirez, O; Härtel, S; Schneider, P; Quest, A F G; Herrera-Molina, R; Leyton, L

    2017-02-01

    Two key proteins for cellular communication between astrocytes and neurons are αvβ3 integrin and the receptor Thy-1. Binding of these molecules in the same (cis) or on adjacent (trans) cellular membranes induces Thy-1 clustering, triggering actin cytoskeleton remodeling. Molecular events that could explain how the Thy-1-αvβ3 integrin interaction signals have only been studied separately in different cell types, and the detailed transcellular communication and signal transduction pathways involved in neuronal cytoskeleton remodeling remain unresolved. Using biochemical and genetic approaches, single-molecule tracking, and high-resolution nanoscopy, we provide evidence that upon binding to αvβ3 integrin, Thy-1 mobility decreased while Thy-1 nanocluster size increased. This occurred concomitantly with inactivation and exclusion of the non-receptor tyrosine kinase Src from the Thy-1/C-terminal Src kinase (Csk)-binding protein (CBP)/Csk complex. The Src inactivation decreased the p190Rho GTPase activating protein phosphorylation, promoting RhoA activation, cofilin, and myosin light chain II phosphorylation and, consequently, neurite shortening. Finally, silencing the adaptor CBP demonstrated that this protein was a key transducer in the Thy-1 signaling cascade. In conclusion, these data support the hypothesis that the Thy-1-CBP-Csk-Src-RhoA-ROCK axis transmitted signals from astrocytic integrin-engaged Thy-1 (trans) to the neuronal actin cytoskeleton. Importantly, the β3 integrin in neurons (cis) was not found to be crucial for neurite shortening. This is the first study to detail the signaling pathway triggered by αvβ3, the endogenous Thy-1 ligand, highlighting the role of membrane-bound integrins as trans acting ligands in astrocyte-neuron communication. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Localization of atomic ensembles via superfluorescence

    International Nuclear Information System (INIS)

    Macovei, Mihai; Evers, Joerg; Keitel, Christoph H.; Zubairy, M. Suhail

    2007-01-01

    The subwavelength localization of an ensemble of atoms concentrated to a small volume in space is investigated. The localization relies on the interaction of the ensemble with a standing wave laser field. The light scattered in the interaction of the standing wave field and the atom ensemble depends on the position of the ensemble relative to the standing wave nodes. This relation can be described by a fluorescence intensity profile, which depends on the standing wave field parameters and the ensemble properties and which is modified due to collective effects in the ensemble of nearby particles. We demonstrate that the intensity profile can be tailored to suit different localization setups. Finally, we apply these results to two localization schemes. First, we show how to localize an ensemble fixed at a certain position in the standing wave field. Second, we discuss localization of an ensemble passing through the standing wave field

  10. Ensembl 2017

    OpenAIRE

    Aken, Bronwen L.; Achuthan, Premanand; Akanni, Wasiu; Amode, M. Ridwan; Bernsdorff, Friederike; Bhai, Jyothish; Billis, Konstantinos; Carvalho-Silva, Denise; Cummins, Carla; Clapham, Peter; Gil, Laurent; Gir?n, Carlos Garc?a; Gordon, Leo; Hourlier, Thibaut; Hunt, Sarah E.

    2016-01-01

    Ensembl (www.ensembl.org) is a database and genome browser for enabling research on vertebrate genomes. We import, analyse, curate and integrate a diverse collection of large-scale reference data to create a more comprehensive view of genome biology than would be possible from any individual dataset. Our extensive data resources include evidence-based gene and regulatory region annotation, genome variation and gene trees. An accompanying suite of tools, infrastructure and programmatic access ...

  11. Ensemble Sampling

    OpenAIRE

    Lu, Xiuyuan; Van Roy, Benjamin

    2017-01-01

    Thompson sampling has emerged as an effective heuristic for a broad range of online decision problems. In its basic form, the algorithm requires computing and sampling from a posterior distribution over models, which is tractable only for simple special cases. This paper develops ensemble sampling, which aims to approximate Thompson sampling while maintaining tractability even in the face of complex models such as neural networks. Ensemble sampling dramatically expands on the range of applica...

  12. EnsembleGASVR: A novel ensemble method for classifying missense single nucleotide polymorphisms

    KAUST Repository

    Rapakoulia, Trisevgeni; Theofilatos, Konstantinos A.; Kleftogiannis, Dimitrios A.; Likothanasis, Spiridon D.; Tsakalidis, Athanasios K.; Mavroudi, Seferina P.

    2014-01-01

    do not support their predictions with confidence scores. Results: To overcome these limitations, a novel ensemble computational methodology is proposed. EnsembleGASVR facilitates a twostep algorithm, which in its first step applies a novel

  13. EnsembleGraph: Interactive Visual Analysis of Spatial-Temporal Behavior for Ensemble Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Qingya; Guo, Hanqi; Che, Limei; Yuan, Xiaoru; Liu, Junfeng; Liang, Jie

    2016-04-19

    We present a novel visualization framework—EnsembleGraph— for analyzing ensemble simulation data, in order to help scientists understand behavior similarities between ensemble members over space and time. A graph-based representation is used to visualize individual spatiotemporal regions with similar behaviors, which are extracted by hierarchical clustering algorithms. A user interface with multiple-linked views is provided, which enables users to explore, locate, and compare regions that have similar behaviors between and then users can investigate and analyze the selected regions in detail. The driving application of this paper is the studies on regional emission influences over tropospheric ozone, which is based on ensemble simulations conducted with different anthropogenic emission absences using the MOZART-4 (model of ozone and related tracers, version 4) model. We demonstrate the effectiveness of our method by visualizing the MOZART-4 ensemble simulation data and evaluating the relative regional emission influences on tropospheric ozone concentrations. Positive feedbacks from domain experts and two case studies prove efficiency of our method.

  14. Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks

    International Nuclear Information System (INIS)

    Wang Qingyun; Perc, Matjaz; Duan Zhisheng; Chen Guanrong

    2008-01-01

    We study the spatial dynamics of spiral waves in noisy Hodgkin-Huxley neuronal ensembles evoked by different information transmission delays and network topologies. In classical settings of coherence resonance the intensity of noise is fine-tuned so as to optimize the system's response. Here, we keep the noise intensity constant, and instead, vary the length of information transmission delay amongst coupled neurons. We show that there exists an intermediate transmission delay by which the spiral waves are optimally ordered, hence indicating the existence of delay-enhanced coherence of spatial dynamics in the examined system. Additionally, we examine the robustness of this phenomenon as the diffusive interaction topology changes towards the small-world type, and discover that shortcut links amongst distant neurons hinder the emergence of coherent spiral waves irrespective of transmission delay length. Presented results thus provide insights that could facilitate the understanding of information transmission delay on realistic neuronal networks

  15. Impacts of calibration strategies and ensemble methods on ensemble flood forecasting over Lanjiang basin, Southeast China

    Science.gov (United States)

    Liu, Li; Xu, Yue-Ping

    2017-04-01

    Ensemble flood forecasting driven by numerical weather prediction products is becoming more commonly used in operational flood forecasting applications.In this study, a hydrological ensemble flood forecasting system based on Variable Infiltration Capacity (VIC) model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated.The hydrological model is optimized by parallel programmed ɛ-NSGAII multi-objective algorithm and two respectively parameterized models are determined to simulate daily flows and peak flows coupled with a modular approach.The results indicatethat the ɛ-NSGAII algorithm permits more efficient optimization and rational determination on parameter setting.It is demonstrated that the multimodel ensemble streamflow mean have better skills than the best singlemodel ensemble mean (ECMWF) and the multimodel ensembles weighted on members and skill scores outperform other multimodel ensembles. For typical flood event, it is proved that the flood can be predicted 3-4 days in advance, but the flows in rising limb can be captured with only 1-2 days ahead due to the flash feature. With respect to peak flows selected by Peaks Over Threshold approach, the ensemble means from either singlemodel or multimodels are generally underestimated as the extreme values are smoothed out by ensemble process.

  16. The canonical ensemble redefined - 1: Formalism

    International Nuclear Information System (INIS)

    Venkataraman, R.

    1984-12-01

    For studying the thermodynamic properties of systems we propose an ensemble that lies in between the familiar canonical and microcanonical ensembles. We point out the transition from the canonical to microcanonical ensemble and prove from a comparative study that all these ensembles do not yield the same results even in the thermodynamic limit. An investigation of the coupling between two or more systems with these ensembles suggests that the state of thermodynamical equilibrium is a special case of statistical equilibrium. (author)

  17. Ensemble methods for handwritten digit recognition

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Liisberg, Christian; Salamon, P.

    1992-01-01

    Neural network ensembles are applied to handwritten digit recognition. The individual networks of the ensemble are combinations of sparse look-up tables (LUTs) with random receptive fields. It is shown that the consensus of a group of networks outperforms the best individual of the ensemble....... It is further shown that it is possible to estimate the ensemble performance as well as the learning curve on a medium-size database. In addition the authors present preliminary analysis of experiments on a large database and show that state-of-the-art performance can be obtained using the ensemble approach...... by optimizing the receptive fields. It is concluded that it is possible to improve performance significantly by introducing moderate-size ensembles; in particular, a 20-25% improvement has been found. The ensemble random LUTs, when trained on a medium-size database, reach a performance (without rejects) of 94...

  18. Eigenfunction statistics of Wishart Brownian ensembles

    International Nuclear Information System (INIS)

    Shukla, Pragya

    2017-01-01

    We theoretically analyze the eigenfunction fluctuation measures for a Hermitian ensemble which appears as an intermediate state of the perturbation of a stationary ensemble by another stationary ensemble of Wishart (Laguerre) type. Similar to the perturbation by a Gaussian stationary ensemble, the measures undergo a diffusive dynamics in terms of the perturbation parameter but the energy-dependence of the fluctuations is different in the two cases. This may have important consequences for the eigenfunction dynamics as well as phase transition studies in many areas of complexity where Brownian ensembles appear. (paper)

  19. Measuring social interaction in music ensembles.

    Science.gov (United States)

    Volpe, Gualtiero; D'Ausilio, Alessandro; Badino, Leonardo; Camurri, Antonio; Fadiga, Luciano

    2016-05-05

    Music ensembles are an ideal test-bed for quantitative analysis of social interaction. Music is an inherently social activity, and music ensembles offer a broad variety of scenarios which are particularly suitable for investigation. Small ensembles, such as string quartets, are deemed a significant example of self-managed teams, where all musicians contribute equally to a task. In bigger ensembles, such as orchestras, the relationship between a leader (the conductor) and a group of followers (the musicians) clearly emerges. This paper presents an overview of recent research on social interaction in music ensembles with a particular focus on (i) studies from cognitive neuroscience; and (ii) studies adopting a computational approach for carrying out automatic quantitative analysis of ensemble music performances. © 2016 The Author(s).

  20. The Limited Utility of Multiunit Data in Differentiating Neuronal Population Activity.

    Directory of Open Access Journals (Sweden)

    Corey J Keller

    Full Text Available To date, single neuron recordings remain the gold standard for monitoring the activity of neuronal populations. Since obtaining single neuron recordings is not always possible, high frequency or 'multiunit activity' (MUA is often used as a surrogate. Although MUA recordings allow one to monitor the activity of a large number of neurons, they do not allow identification of specific neuronal subtypes, the knowledge of which is often critical for understanding electrophysiological processes. Here, we explored whether prior knowledge of the single unit waveform of specific neuron types is sufficient to permit the use of MUA to monitor and distinguish differential activity of individual neuron types. We used an experimental and modeling approach to determine if components of the MUA can monitor medium spiny neurons (MSNs and fast-spiking interneurons (FSIs in the mouse dorsal striatum. We demonstrate that when well-isolated spikes are recorded, the MUA at frequencies greater than 100Hz is correlated with single unit spiking, highly dependent on the waveform of each neuron type, and accurately reflects the timing and spectral signature of each neuron. However, in the absence of well-isolated spikes (the norm in most MUA recordings, the MUA did not typically contain sufficient information to permit accurate prediction of the respective population activity of MSNs and FSIs. Thus, even under ideal conditions for the MUA to reliably predict the moment-to-moment activity of specific local neuronal ensembles, knowledge of the spike waveform of the underlying neuronal populations is necessary, but not sufficient.

  1. Joys of Community Ensemble Playing: The Case of the Happy Roll Elastic Ensemble in Taiwan

    Science.gov (United States)

    Hsieh, Yuan-Mei; Kao, Kai-Chi

    2012-01-01

    The Happy Roll Elastic Ensemble (HREE) is a community music ensemble supported by Tainan Culture Centre in Taiwan. With enjoyment and friendship as its primary goals, it aims to facilitate the joys of ensemble playing and the spirit of social networking. This article highlights the key aspects of HREE's development in its first two years…

  2. On the number of neurons and time scale of integration underlying the formation of percepts in the brain.

    Science.gov (United States)

    Wohrer, Adrien; Machens, Christian K

    2015-03-01

    All of our perceptual experiences arise from the activity of neural populations. Here we study the formation of such percepts under the assumption that they emerge from a linear readout, i.e., a weighted sum of the neurons' firing rates. We show that this assumption constrains the trial-to-trial covariance structure of neural activities and animal behavior. The predicted covariance structure depends on the readout parameters, and in particular on the temporal integration window w and typical number of neurons K used in the formation of the percept. Using these predictions, we show how to infer the readout parameters from joint measurements of a subject's behavior and neural activities. We consider three such scenarios: (1) recordings from the complete neural population, (2) recordings of neuronal sub-ensembles whose size exceeds K, and (3) recordings of neuronal sub-ensembles that are smaller than K. Using theoretical arguments and artificially generated data, we show that the first two scenarios allow us to recover the typical spatial and temporal scales of the readout. In the third scenario, we show that the readout parameters can only be recovered by making additional assumptions about the structure of the full population activity. Our work provides the first thorough interpretation of (feed-forward) percept formation from a population of sensory neurons. We discuss applications to experimental recordings in classic sensory decision-making tasks, which will hopefully provide new insights into the nature of perceptual integration.

  3. Ensemble Data Mining Methods

    Science.gov (United States)

    Oza, Nikunj C.

    2004-01-01

    Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, Le., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

  4. Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics

    Science.gov (United States)

    Lazarus, S. M.; Holman, B. P.; Splitt, M. E.

    2017-12-01

    A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.

  5. Mechanisms for multiple activity modes of VTA dopamine neurons

    Directory of Open Access Journals (Sweden)

    Andrew eOster

    2015-07-01

    Full Text Available Midbrain ventral segmental area (VTA dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and diffusely release dopamine (DA to their targets. DA neurons display a range of activity modes that vary in frequency and degree of burst firing. Importantly, DA neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Here, we introduce a single compartmental, conductance-based computational model for DA cell activity that captures the behavior of DA neuronal dynamics and examine the multiple factors that underlie DA firing modes: the strength of the SK conductance, the amount of drive, and GABA inhibition. Our results suggest that neurons with low SK conductance fire in a fast firing mode, are correlated with burst firing, and require higher levels of applied current before undergoing depolarization block. We go on to consider the role of GABAergic inhibition on an ensemble of dynamical classes of DA neurons and find that strong GABA inhibition suppresses burst firing. Our studies suggest differences in the distribution of the SK conductance and GABA inhibition levels may indicate subclasses of DA neurons within the VTA. We further identify, that by considering alternate potassium dynamics, the dynamics display burst patterns that terminate via depolarization block, akin to those observed in vivo in VTA DA neurons and in substantia nigra pars compacta DA cell preparations under apamin application. In addition, we consider the generation of transient burst firing events that are NMDA-initiated or elicited by a sudden decrease of GABA inhibition, that is, disinhibition.

  6. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation.

    Directory of Open Access Journals (Sweden)

    Dhakshin S Ramanathan

    Full Text Available Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning.

  7. From music making to speaking: Engaging the mirror neuron system in autism

    OpenAIRE

    Wan, Catherine Y.; Demaine, Krystal; Zipse, Lauryn; Norton, Andrea; Schlaug, Gottfried

    2010-01-01

    Individuals with autism show impairments in emotional tuning, social interactions and communication. These are functions that have been attributed to the putative human mirror neuron system (MNS), which contains neurons that respond to the actions of self and others. It has been proposed that a dysfunction of that system underlies some of the characteristics of autism. Here, we review behavioral and imaging studies that implicate the MNS (or a brain network with similar functions) in sensory-...

  8. Ensembl 2002: accommodating comparative genomics.

    Science.gov (United States)

    Clamp, M; Andrews, D; Barker, D; Bevan, P; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Hubbard, T; Kasprzyk, A; Keefe, D; Lehvaslaiho, H; Iyer, V; Melsopp, C; Mongin, E; Pettett, R; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Birney, E

    2003-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.

  9. The classicality and quantumness of a quantum ensemble

    International Nuclear Information System (INIS)

    Zhu Xuanmin; Pang Shengshi; Wu Shengjun; Liu Quanhui

    2011-01-01

    In this Letter, we investigate the classicality and quantumness of a quantum ensemble. We define a quantity called ensemble classicality based on classical cloning strategy (ECCC) to characterize how classical a quantum ensemble is. An ensemble of commuting states has a unit ECCC, while a general ensemble can have a ECCC less than 1. We also study how quantum an ensemble is by defining a related quantity called quantumness. We find that the classicality of an ensemble is closely related to how perfectly the ensemble can be cloned, and that the quantumness of the ensemble used in a quantum key distribution (QKD) protocol is exactly the attainable lower bound of the error rate in the sifted key. - Highlights: → A quantity is defined to characterize how classical a quantum ensemble is. → The classicality of an ensemble is closely related to the cloning performance. → Another quantity is also defined to investigate how quantum an ensemble is. → This quantity gives the lower bound of the error rate in a QKD protocol.

  10. The semantic similarity ensemble

    Directory of Open Access Journals (Sweden)

    Andrea Ballatore

    2013-12-01

    Full Text Available Computational measures of semantic similarity between geographic terms provide valuable support across geographic information retrieval, data mining, and information integration. To date, a wide variety of approaches to geo-semantic similarity have been devised. A judgment of similarity is not intrinsically right or wrong, but obtains a certain degree of cognitive plausibility, depending on how closely it mimics human behavior. Thus selecting the most appropriate measure for a specific task is a significant challenge. To address this issue, we make an analogy between computational similarity measures and soliciting domain expert opinions, which incorporate a subjective set of beliefs, perceptions, hypotheses, and epistemic biases. Following this analogy, we define the semantic similarity ensemble (SSE as a composition of different similarity measures, acting as a panel of experts having to reach a decision on the semantic similarity of a set of geographic terms. The approach is evaluated in comparison to human judgments, and results indicate that an SSE performs better than the average of its parts. Although the best member tends to outperform the ensemble, all ensembles outperform the average performance of each ensemble's member. Hence, in contexts where the best measure is unknown, the ensemble provides a more cognitively plausible approach.

  11. Quantum ensembles of quantum classifiers.

    Science.gov (United States)

    Schuld, Maria; Petruccione, Francesco

    2018-02-09

    Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.

  12. Graph-based unsupervised segmentation algorithm for cultured neuronal networks' structure characterization and modeling.

    Science.gov (United States)

    de Santos-Sierra, Daniel; Sendiña-Nadal, Irene; Leyva, Inmaculada; Almendral, Juan A; Ayali, Amir; Anava, Sarit; Sánchez-Ávila, Carmen; Boccaletti, Stefano

    2015-06-01

    Large scale phase-contrast images taken at high resolution through the life of a cultured neuronal network are analyzed by a graph-based unsupervised segmentation algorithm with a very low computational cost, scaling linearly with the image size. The processing automatically retrieves the whole network structure, an object whose mathematical representation is a matrix in which nodes are identified neurons or neurons' clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our non invasive measures entitle us to perform a longitudinal analysis during the maturation of a single culture. Such an analysis furnishes the way of individuating the main physical processes underlying the self-organization of the neurons' ensemble into a complex network, and drives the formulation of a phenomenological model yet able to describe qualitatively the overall scenario observed during the culture growth. © 2014 International Society for Advancement of Cytometry.

  13. Linking Neurons to Network Function and Behavior by Two-Photon Holographic Optogenetics and Volumetric Imaging.

    Science.gov (United States)

    Dal Maschio, Marco; Donovan, Joseph C; Helmbrecht, Thomas O; Baier, Herwig

    2017-05-17

    We introduce a flexible method for high-resolution interrogation of circuit function, which combines simultaneous 3D two-photon stimulation of multiple targeted neurons, volumetric functional imaging, and quantitative behavioral tracking. This integrated approach was applied to dissect how an ensemble of premotor neurons in the larval zebrafish brain drives a basic motor program, the bending of the tail. We developed an iterative photostimulation strategy to identify minimal subsets of channelrhodopsin (ChR2)-expressing neurons that are sufficient to initiate tail movements. At the same time, the induced network activity was recorded by multiplane GCaMP6 imaging across the brain. From this dataset, we computationally identified activity patterns associated with distinct components of the elicited behavior and characterized the contributions of individual neurons. Using photoactivatable GFP (paGFP), we extended our protocol to visualize single functionally identified neurons and reconstruct their morphologies. Together, this toolkit enables linking behavior to circuit activity with unprecedented resolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Musical ensembles in Ancient Mesapotamia

    NARCIS (Netherlands)

    Krispijn, T.J.H.; Dumbrill, R.; Finkel, I.

    2010-01-01

    Identification of musical instruments from ancient Mesopotamia by comparing musical ensembles attested in Sumerian and Akkadian texts with depicted ensembles. Lexicographical contributions to the Sumerian and Akkadian lexicon.

  15. PSO-Ensemble Demo Application

    DEFF Research Database (Denmark)

    2004-01-01

    Within the framework of the PSO-Ensemble project (FU2101) a demo application has been created. The application use ECMWF ensemble forecasts. Two instances of the application are running; one for Nysted Offshore and one for the total production (except Horns Rev) in the Eltra area. The output...

  16. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey; Hoel, Haakon; Law, Kody; Nobile, Fabio; Tempone, Raul

    2016-01-01

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  17. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  18. Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity.

    Science.gov (United States)

    Cazé, Romain D; Jarvis, Sarah; Foust, Amanda J; Schultz, Simon R

    2017-09-01

    Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

  19. Serotonergic neurons signal reward and punishment on multiple timescales

    Science.gov (United States)

    Cohen, Jeremiah Y; Amoroso, Mackenzie W; Uchida, Naoshige

    2015-01-01

    Serotonin's function in the brain is unclear. One challenge in testing the numerous hypotheses about serotonin's function has been observing the activity of identified serotonergic neurons in animals engaged in behavioral tasks. We recorded the activity of dorsal raphe neurons while mice experienced a task in which rewards and punishments varied across blocks of trials. We ‘tagged’ serotonergic neurons with the light-sensitive protein channelrhodopsin-2 and identified them based on their responses to light. We found three main features of serotonergic neuron activity: (1) a large fraction of serotonergic neurons modulated their tonic firing rates over the course of minutes during reward vs punishment blocks; (2) most were phasically excited by punishments; and (3) a subset was phasically excited by reward-predicting cues. By contrast, dopaminergic neurons did not show firing rate changes across blocks of trials. These results suggest that serotonergic neurons signal information about reward and punishment on multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.06346.001 PMID:25714923

  20. Multi-Model Ensemble Wake Vortex Prediction

    Science.gov (United States)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  1. Learning causes reorganization of neuronal firing patterns to represent related experiences within a hippocampal schema.

    Science.gov (United States)

    McKenzie, Sam; Robinson, Nick T M; Herrera, Lauren; Churchill, Jordana C; Eichenbaum, Howard

    2013-06-19

    According to schema theory as proposed by Piaget and Bartlett, learning involves the assimilation of new memories into networks of preexisting knowledge, as well as alteration of the original networks to accommodate the new information. Recent evidence has shown that rats form a schema of goal locations and that the hippocampus plays an essential role in adding new memories to the spatial schema. Here we examined the nature of hippocampal contributions to schema updating by monitoring firing patterns of multiple CA1 neurons as rats learned new goal locations in an environment in which there already were multiple goals. Before new learning, many neurons that fired on arrival at one goal location also fired at other goals, whereas ensemble activity patterns also distinguished different goal events, thus constituting a neural representation that linked distinct goals within a spatial schema. During new learning, some neurons began to fire as animals approached the new goals. These were primarily the same neurons that fired at original goals, the activity patterns at new goals were similar to those associated with the original goals, and new learning also produced changes in the preexisting goal-related firing patterns. After learning, activity patterns associated with the new and original goals gradually diverged, such that initial generalization was followed by a prolonged period in which new memories became distinguished within the ensemble representation. These findings support the view that consolidation involves assimilation of new memories into preexisting neural networks that accommodate relationships among new and existing memories.

  2. Ensemble-based Kalman Filters in Strongly Nonlinear Dynamics

    Institute of Scientific and Technical Information of China (English)

    Zhaoxia PU; Joshua HACKER

    2009-01-01

    This study examines the effectiveness of ensemble Kalman filters in data assimilation with the strongly nonlinear dynamics of the Lorenz-63 model, and in particular their use in predicting the regime transition that occurs when the model jumps from one basin of attraction to the other. Four configurations of the ensemble-based Kalman filtering data assimilation techniques, including the ensemble Kalman filter, ensemble adjustment Kalman filter, ensemble square root filter and ensemble transform Kalman filter, are evaluated with their ability in predicting the regime transition (also called phase transition) and also are compared in terms of their sensitivity to both observational and sampling errors. The sensitivity of each ensemble-based filter to the size of the ensemble is also examined.

  3. Monthly ENSO Forecast Skill and Lagged Ensemble Size

    Science.gov (United States)

    Trenary, L.; DelSole, T.; Tippett, M. K.; Pegion, K.

    2018-04-01

    The mean square error (MSE) of a lagged ensemble of monthly forecasts of the Niño 3.4 index from the Climate Forecast System (CFSv2) is examined with respect to ensemble size and configuration. Although the real-time forecast is initialized 4 times per day, it is possible to infer the MSE for arbitrary initialization frequency and for burst ensembles by fitting error covariances to a parametric model and then extrapolating to arbitrary ensemble size and initialization frequency. Applying this method to real-time forecasts, we find that the MSE consistently reaches a minimum for a lagged ensemble size between one and eight days, when four initializations per day are included. This ensemble size is consistent with the 8-10 day lagged ensemble configuration used operationally. Interestingly, the skill of both ensemble configurations is close to the estimated skill of the infinite ensemble. The skill of the weighted, lagged, and burst ensembles are found to be comparable. Certain unphysical features of the estimated error growth were tracked down to problems with the climatology and data discontinuities.

  4. Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis.

    Directory of Open Access Journals (Sweden)

    Eduardo J Izquierdo

    Full Text Available Increased efforts in the assembly and analysis of connectome data are providing new insights into the principles underlying the connectivity of neural circuits. However, despite these considerable advances in connectomics, neuroanatomical data must be integrated with neurophysiological and behavioral data in order to obtain a complete picture of neural function. Due to its nearly complete wiring diagram and large behavioral repertoire, the nematode worm Caenorhaditis elegans is an ideal organism in which to explore in detail this link between neural connectivity and behavior. In this paper, we develop a neuroanatomically-grounded model of salt klinotaxis, a form of chemotaxis in which changes in orientation are directed towards the source through gradual continual adjustments. We identify a minimal klinotaxis circuit by systematically searching the C. elegans connectome for pathways linking chemosensory neurons to neck motor neurons, and prune the resulting network based on both experimental considerations and several simplifying assumptions. We then use an evolutionary algorithm to find possible values for the unknown electrophsyiological parameters in the network such that the behavioral performance of the entire model is optimized to match that of the animal. Multiple runs of the evolutionary algorithm produce an ensemble of such models. We analyze in some detail the mechanisms by which one of the best evolved circuits operates and characterize the similarities and differences between this mechanism and other solutions in the ensemble. Finally, we propose a series of experiments to determine which of these alternatives the worm may be using.

  5. Nested synchrony – a novel cross-scale interaction among neuronal oscillations

    Directory of Open Access Journals (Sweden)

    Simo eMonto

    2012-09-01

    Full Text Available Neuronal interactions form the basis for our brain function, and oscillations and synchrony are the principal candidates for mediating them in the cortical networks. Phase synchrony, where oscillatory neuronal ensembles directly synchronize their phases, enables precise integration between separated brain regions. However, it is unclear how neuronal interactions are dynamically coordinated in space and over time. Cross-scale effects have been proposed to be responsible for linking levels of processing hierarchy and to regulate neuronal dynamics. Most notably, nested oscillations, where the phase of a neuronal oscillation modulates the amplitude of a faster one, may locally integrate neuronal activities in distinct frequency bands. Yet, hierarchical control of inter-areal synchrony could provide a more comprehensive view to the dynamical structure of oscillatory interdependencies in the human brain.In this study, the notion of nested oscillations is extended to a cross-frequency and inter-areal model of oscillatory interactions. In this model, the phase of a slower oscillation modulates inter-areal synchrony in a higher frequency band. This would allow cross-scale integration of global interactions and, thus, offers a mechanism for binding distributed neuronal activities.We show that inter-areal phase synchrony can be modulated by the phase of a slower neuronal oscillation using magnetoencephalography. This effect is the most pronounced at frequencies below 35 Hz. Importantly, changes in oscillation amplitudes did not explain the findings. We expect that the novel cross-frequency interaction could offer new ways to understand the flexible but accurate dynamic organization of ongoing neuronal oscillations and synchrony.

  6. New technique for ensemble dressing combining Multimodel SuperEnsemble and precipitation PDF

    Science.gov (United States)

    Cane, D.; Milelli, M.

    2009-09-01

    The Multimodel SuperEnsemble technique (Krishnamurti et al., Science 285, 1548-1550, 1999) is a postprocessing method for the estimation of weather forecast parameters reducing direct model output errors. It differs from other ensemble analysis techniques by the use of an adequate weighting of the input forecast models to obtain a combined estimation of meteorological parameters. Weights are calculated by least-square minimization of the difference between the model and the observed field during a so-called training period. Although it can be applied successfully on the continuous parameters like temperature, humidity, wind speed and mean sea level pressure (Cane and Milelli, Meteorologische Zeitschrift, 15, 2, 2006), the Multimodel SuperEnsemble gives good results also when applied on the precipitation, a parameter quite difficult to handle with standard post-processing methods. Here we present our methodology for the Multimodel precipitation forecasts applied on a wide spectrum of results over Piemonte very dense non-GTS weather station network. We will focus particularly on an accurate statistical method for bias correction and on the ensemble dressing in agreement with the observed precipitation forecast-conditioned PDF. Acknowledgement: this work is supported by the Italian Civil Defence Department.

  7. Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons

    Science.gov (United States)

    Lücken, Leonhard; Yanchuk, Serhiy; Popovych, Oleksandr V.; Tass, Peter A.

    2013-01-01

    Several brain diseases are characterized by abnormal neuronal synchronization. Desynchronization of abnormal neural synchrony is theoretically compelling because of the complex dynamical mechanisms involved. We here present a novel type of coordinated reset (CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-populations sequentially, i.e., at times equidistantly distributed in a stimulation cycle. This uniform timing pattern seems to be intuitive and actually applies to the neural network models used for the study of CR so far. CR resets the population to an unstable cluster state from where it passes through a desynchronized transient, eventually resynchronizing if left unperturbed. In contrast, we show that the optimal stimulation times are non-uniform. Using the model of weakly pulse-coupled neurons with phase response curves, we provide an approach that enables to determine optimal stimulation timing patterns that substantially maximize the desynchronized transient time following the application of CR stimulation. This approach includes an optimization search for clusters in a low-dimensional pulse coupled map. As a consequence, model-specific non-uniformly spaced cluster states cause considerably longer desynchronization transients. Intriguingly, such a desynchronization boost with non-uniform CR stimulation can already be achieved by only slight modifications of the uniform CR timing pattern. Our results suggest that the non-uniformness of the stimulation times can be a medically valuable parameter in the calibration procedure for CR stimulation, where the latter has successfully been used in clinical and pre-clinical studies for the treatment of Parkinson's disease and tinnitus. PMID:23750134

  8. A Theoretical Analysis of Why Hybrid Ensembles Work

    Directory of Open Access Journals (Sweden)

    Kuo-Wei Hsu

    2017-01-01

    Full Text Available Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles.

  9. Effect of land model ensemble versus coupled model ensemble on the simulation of precipitation climatology and variability

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan

    2017-10-01

    Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.

  10. Coordinated scaling of cortical and cerebellar numbers of neurons

    Directory of Open Access Journals (Sweden)

    Suzana Herculano-Houzel

    2010-03-01

    Full Text Available While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of 4 different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora, Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble.

  11. The hippocampal CA2 ensemble is sensitive to contextual change.

    Science.gov (United States)

    Wintzer, Marie E; Boehringer, Roman; Polygalov, Denis; McHugh, Thomas J

    2014-02-19

    Contextual learning involves associating cues with an environment and relating them to past experience. Previous data indicate functional specialization within the hippocampal circuit: the dentate gyrus (DG) is crucial for discriminating similar contexts, whereas CA3 is required for associative encoding and recall. Here, we used Arc/H1a catFISH imaging to address the contribution of the largely overlooked CA2 region to contextual learning by comparing ensemble codes across CA3, CA2, and CA1 in mice exposed to familiar, altered, and novel contexts. Further, to manipulate the quality of information arriving in CA2 we used two hippocampal mutant mouse lines, CA3-NR1 KOs and DG-NR1 KOs, that result in hippocampal CA3 neuronal activity that is uncoupled from the animal's sensory environment. Our data reveal largely coherent responses across the CA axis in control mice in purely novel or familiar contexts; however, in the mutant mice subject to these protocols the CA2 response becomes uncoupled from CA1 and CA3. Moreover, we show in wild-type mice that the CA2 ensemble is more sensitive than CA1 and CA3 to small changes in overall context. Our data suggest that CA2 may be tuned to remap in response to any conflict between stored and current experience.

  12. Searching for collective behavior in a large network of sensory neurons.

    Directory of Open Access Journals (Sweden)

    Gašper Tkačik

    2014-01-01

    Full Text Available Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such "K-pairwise" models--being systematic extensions of the previously used pairwise Ising models--provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1 estimating its entropy, which constrains the population's capacity to represent visual information; 2 classifying activity patterns into a small set of metastable collective modes; 3 showing that the neural codeword ensembles are extremely inhomogenous; 4 demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.

  13. New concept of statistical ensembles

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    2009-01-01

    An extension of the standard concept of the statistical ensembles is suggested. Namely, the statistical ensembles with extensive quantities fluctuating according to an externally given distribution is introduced. Applications in the statistical models of multiple hadron production in high energy physics are discussed.

  14. A class of energy-based ensembles in Tsallis statistics

    International Nuclear Information System (INIS)

    Chandrashekar, R; Naina Mohammed, S S

    2011-01-01

    A comprehensive investigation is carried out on the class of energy-based ensembles. The eight ensembles are divided into two main classes. In the isothermal class of ensembles the individual members are at the same temperature. A unified framework is evolved to describe the four isothermal ensembles using the currently accepted third constraint formalism. The isothermal–isobaric, grand canonical and generalized ensembles are illustrated through a study of the classical nonrelativistic and extreme relativistic ideal gas models. An exact calculation is possible only in the case of the isothermal–isobaric ensemble. The study of the ideal gas models in the grand canonical and the generalized ensembles has been carried out using a perturbative procedure with the nonextensivity parameter (1 − q) as the expansion parameter. Though all the thermodynamic quantities have been computed up to a particular order in (1 − q) the procedure can be extended up to any arbitrary order in the expansion parameter. In the adiabatic class of ensembles the individual members of the ensemble have the same value of the heat function and a unified formulation to described all four ensembles is given. The nonrelativistic and the extreme relativistic ideal gases are studied in the isoenthalpic–isobaric ensemble, the adiabatic ensemble with number fluctuations and the adiabatic ensemble with number and particle fluctuations

  15. The Ensembl genome database project.

    Science.gov (United States)

    Hubbard, T; Barker, D; Birney, E; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Huminiecki, L; Kasprzyk, A; Lehvaslaiho, H; Lijnzaad, P; Melsopp, C; Mongin, E; Pettett, R; Pocock, M; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Clamp, M

    2002-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the human genome sequence, with confirmed gene predictions that have been integrated with external data sources, and is available as either an interactive web site or as flat files. It is also an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements from sequence analysis to data storage and visualisation. The Ensembl site is one of the leading sources of human genome sequence annotation and provided much of the analysis for publication by the international human genome project of the draft genome. The Ensembl system is being installed around the world in both companies and academic sites on machines ranging from supercomputers to laptops.

  16. Ensemble coding of context-dependent fear memory in the amygdala.

    Science.gov (United States)

    Orsini, Caitlin A; Yan, Chen; Maren, Stephen

    2013-01-01

    After fear conditioning, presenting the conditioned stimulus (CS) alone yields a context-specific extinction memory; fear is suppressed in the extinction context, but renews in any other context. The context-dependence of extinction is mediated by a brain circuit consisting of the hippocampus, prefrontal cortex (PFC) and amygdala. In the present work, we sought to determine at what level of this circuit context-dependent representations of the CS emerge. To explore this question, we used cellular compartment analysis of temporal activity by fluorescent in situ hybridization (catFISH). This method exploits the intracellular expression profile of the immediate early gene (IEG), Arc, to visualize neuronal activation patterns to two different behavioral experiences. Rats were fear conditioned in one context and extinguished in another; 24 h later, they were sequentially exposed to the CS in the extinction context and another context. Control rats were also tested in each context, but were never extinguished. We assessed Arc mRNA expression within the basal amygdala (BA), lateral amygdala (LA), ventral hippocampus (VH), prelimbic cortex (PL) and infralimbic cortex (IL). We observed that the sequential retention tests induced context-dependent patterns of Arc expression in the BA, LA, and IL of extinguished rats; this was not observed in non-extinguished controls. In general, non-extinguished animals had proportionately greater numbers of non-selective (double-labeled) neurons than extinguished animals. Collectively, these findings suggest that extinction learning results in pattern separation, particularly within the BA, in which unique neuronal ensembles represent fear memories after extinction.

  17. Ensemble coding of context-dependent fear memory in the amygdala

    Directory of Open Access Journals (Sweden)

    Caitlin A Orsini

    2013-12-01

    Full Text Available After fear conditioning, presenting the conditioned stimulus (CS alone yields a context-specific extinction memory; fear is suppressed in the extinction context, but renews in any other context. The context-dependence of extinction is mediated by a brain circuit consisting of the hippocampus, prefrontal cortex and amygdala. In the present work, we sought to determine at what level of this circuit context-dependent representations of the CS emerge. To explore this question, we used cellular compartment analysis of temporal activity by fluorescent in situ hybridization (catFISH. This method exploits the intracellular expression profile of the immediate early gene, Arc, to visualize neuronal activation patterns to two different behavioral experiences. Rats were fear conditioned in one context and extinguished in another; twenty-four hours later, they were sequentially exposed to the CS in the extinction context and another context. Control rats were also tested in each context, but were never extinguished. We assessed Arc mRNA expression within the basal amygdala (BA, lateral amygdala (LA, ventral hippocampus (VH, prelimbic cortex (PL and infralimbic cortex (IL. We observed that the sequential retention tests induced context-dependent patterns of Arc expression in the BA, LA, and IL of extinguished rats; this was not observed in non-extinguished controls. In general, non-extinguished animals had proportionately greater numbers of non-selective (double-labeled neurons than extinguished animals. Collectively, these findings suggest that extinction learning results in pattern separation, particularly within the BA, in which unique neuronal ensembles represent fear memories after extinction.

  18. Advanced Atmospheric Ensemble Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Chiswell, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kurzeja, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maze, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Viner, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two release times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.

  19. Layered Ensemble Architecture for Time Series Forecasting.

    Science.gov (United States)

    Rahman, Md Mustafizur; Islam, Md Monirul; Murase, Kazuyuki; Yao, Xin

    2016-01-01

    Time series forecasting (TSF) has been widely used in many application areas such as science, engineering, and finance. The phenomena generating time series are usually unknown and information available for forecasting is only limited to the past values of the series. It is, therefore, necessary to use an appropriate number of past values, termed lag, for forecasting. This paper proposes a layered ensemble architecture (LEA) for TSF problems. Our LEA consists of two layers, each of which uses an ensemble of multilayer perceptron (MLP) networks. While the first ensemble layer tries to find an appropriate lag, the second ensemble layer employs the obtained lag for forecasting. Unlike most previous work on TSF, the proposed architecture considers both accuracy and diversity of the individual networks in constructing an ensemble. LEA trains different networks in the ensemble by using different training sets with an aim of maintaining diversity among the networks. However, it uses the appropriate lag and combines the best trained networks to construct the ensemble. This indicates LEAs emphasis on accuracy of the networks. The proposed architecture has been tested extensively on time series data of neural network (NN)3 and NN5 competitions. It has also been tested on several standard benchmark time series data. In terms of forecasting accuracy, our experimental results have revealed clearly that LEA is better than other ensemble and nonensemble methods.

  20. A Population of Indirect Pathway Striatal Projection Neurons Is Selectively Entrained to Parkinsonian Beta Oscillations.

    Science.gov (United States)

    Sharott, Andrew; Vinciati, Federica; Nakamura, Kouichi C; Magill, Peter J

    2017-10-11

    Classical schemes of basal ganglia organization posit that parkinsonian movement difficulties presenting after striatal dopamine depletion stem from the disproportionate firing rates of spiny projection neurons (SPNs) therein. There remains, however, a pressing need to elucidate striatal SPN firing in the context of the synchronized network oscillations that are abnormally exaggerated in cortical-basal ganglia circuits in parkinsonism. To address this, we recorded unit activities in the dorsal striatum of dopamine-intact and dopamine-depleted rats during two brain states, respectively defined by cortical slow-wave activity (SWA) and activation. Dopamine depletion escalated striatal net output but had contrasting effects on "direct pathway" SPNs (dSPNs) and "indirect pathway" SPNs (iSPNs); their firing rates became imbalanced, and they disparately engaged in network oscillations. Disturbed striatal activity dynamics relating to the slow (∼1 Hz) oscillations prevalent during SWA partly generalized to the exaggerated beta-frequency (15-30 Hz) oscillations arising during cortical activation. In both cases, SPNs exhibited higher incidences of phase-locked firing to ongoing cortical oscillations, and SPN ensembles showed higher levels of rhythmic correlated firing, after dopamine depletion. Importantly, in dopamine-depleted striatum, a widespread population of iSPNs, which often displayed excessive firing rates and aberrant phase-locked firing to cortical beta oscillations, preferentially and excessively synchronized their firing at beta frequencies. Conversely, dSPNs were neither hyperactive nor synchronized to a large extent during cortical activation. These data collectively demonstrate a cell type-selective entrainment of SPN firing to parkinsonian beta oscillations. We conclude that a population of overactive, excessively synchronized iSPNs could orchestrate these pathological rhythms in basal ganglia circuits. SIGNIFICANCE STATEMENT Chronic depletion of dopamine

  1. Neurons for hunger and thirst transmit a negative-valence teaching signal

    Science.gov (United States)

    Gong, Rong; Magnus, Christopher J.; Yu, Yang; Sternson, Scott M.

    2015-01-01

    Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics and dynamics of two separate neuron populations that regulate energy and fluid homeostasis by using cell type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis. PMID:25915020

  2. CNS activation and regional connectivity during pantomime observation: no engagement of the mirror neuron system for deaf signers.

    Science.gov (United States)

    Emmorey, Karen; Xu, Jiang; Gannon, Patrick; Goldin-Meadow, Susan; Braun, Allen

    2010-01-01

    Deaf signers have extensive experience using their hands to communicate. Using fMRI, we examined the neural systems engaged during the perception of manual communication in 14 deaf signers and 14 hearing non-signers. Participants passively viewed blocked video clips of pantomimes (e.g., peeling an imaginary banana) and action verbs in American Sign Language (ASL) that were rated as meaningless by non-signers (e.g., TO-DANCE). In contrast to visual fixation, pantomimes strongly activated fronto-parietal regions (the mirror neuron system, MNS) in hearing non-signers, but only bilateral middle temporal regions in deaf signers. When contrasted with ASL verbs, pantomimes selectively engaged inferior and superior parietal regions in hearing non-signers, but right superior temporal cortex in deaf signers. The perception of ASL verbs recruited similar regions as pantomimes for deaf signers, with some evidence of greater involvement of left inferior frontal gyrus for ASL verbs. Functional connectivity analyses with left hemisphere seed voxels (ventral premotor, inferior parietal lobule, fusiform gyrus) revealed robust connectivity with the MNS for the hearing non-signers. Deaf signers exhibited functional connectivity with the right hemisphere that was not observed for the hearing group for the fusiform gyrus seed voxel. We suggest that life-long experience with manual communication, and/or auditory deprivation, may alter regional connectivity and brain activation when viewing pantomimes. We conclude that the lack of activation within the MNS for deaf signers does not support an account of human communication that depends upon automatic sensorimotor resonance between perception and action.

  3. Rotationally invariant family of Levy-like random matrix ensembles

    International Nuclear Information System (INIS)

    Choi, Jinmyung; Muttalib, K A

    2009-01-01

    We introduce a family of rotationally invariant random matrix ensembles characterized by a parameter λ. While λ = 1 corresponds to well-known critical ensembles, we show that λ ≠ 1 describes 'Levy-like' ensembles, characterized by power-law eigenvalue densities. For λ > 1 the density is bounded, as in Gaussian ensembles, but λ < 1 describes ensembles characterized by densities with long tails. In particular, the model allows us to evaluate, in terms of a novel family of orthogonal polynomials, the eigenvalue correlations for Levy-like ensembles. These correlations differ qualitatively from those in either the Gaussian or the critical ensembles. (fast track communication)

  4. Multisite two-photon imaging of neurons on multielectrode arrays

    Science.gov (United States)

    Potter, Steve M.; Lukina, Natalia; Longmuir, Kenneth J.; Wu, Yan

    2001-04-01

    We wish to understand how neural systems store, recall, and process information. We are using cultured networks of cortical neurons grown on microelectrode arrays as a model system for studying the emergent properties of ensembles of living neurons. We have developed a 2-way communication interface between the cultured network and a computer- generated animal, the Neurally Controlled Animat. Neural activity is used to control the behavior of the Animat, and 2- photon time-lapse imaging is carried out in order to observe the morphological changes that might underlie changes in neural processing. The 2-photon microscope is ideal for repeated imaging over hours or days, with submicron resolution and little photodamage. We have designed a computer-controlled microscope stage that allows imaging several locations in sequence, in order to collect more image data. For the latest progress, see: http://www.caltech.edu/~pinelab/PotterGroup.htm.

  5. Impairment of neural coordination in hippocampal neuronal ensembles after a psychotomimetic dose of dizocilpine.

    Czech Academy of Sciences Publication Activity Database

    Szczurowska, E.; Ahuja, Nikhil; Jiruška, Přemysl; Kelemen, E.; Stuchlík, Aleš

    2018-01-01

    Roč. 81, Feb 2 (2018), s. 275-283 ISSN 0278-5846 R&D Projects: GA ČR(CZ) GA17-04047S Institutional support: RVO:67985823 Keywords : psychosis * MK-801 * neuronal discoordination * hippocampus * Theta rhythm Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.187, year: 2016

  6. Diversity in random subspacing ensembles

    NARCIS (Netherlands)

    Tsymbal, A.; Pechenizkiy, M.; Cunningham, P.; Kambayashi, Y.; Mohania, M.K.; Wöß, W.

    2004-01-01

    Ensembles of learnt models constitute one of the main current directions in machine learning and data mining. It was shown experimentally and theoretically that in order for an ensemble to be effective, it should consist of classifiers having diversity in their predictions. A number of ways are

  7. Squeezing of Collective Excitations in Spin Ensembles

    DEFF Research Database (Denmark)

    Kraglund Andersen, Christian; Mølmer, Klaus

    2012-01-01

    We analyse the possibility to create two-mode spin squeezed states of two separate spin ensembles by inverting the spins in one ensemble and allowing spin exchange between the ensembles via a near resonant cavity field. We investigate the dynamics of the system using a combination of numerical an...

  8. AUC-Maximizing Ensembles through Metalearning.

    Science.gov (United States)

    LeDell, Erin; van der Laan, Mark J; Petersen, Maya

    2016-05-01

    Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maximining metalearning algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also demonstrate that as the level of imbalance in the training data increases, the Super Learner ensemble outperforms the top base algorithm by a larger degree.

  9. Urban runoff forecasting with ensemble weather predictions

    DEFF Research Database (Denmark)

    Pedersen, Jonas Wied; Courdent, Vianney Augustin Thomas; Vezzaro, Luca

    This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice.......This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice....

  10. Extracting neuronal functional network dynamics via adaptive Granger causality analysis.

    Science.gov (United States)

    Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash

    2018-04-24

    Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.

  11. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Haakon

    2016-01-08

    The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.

  12. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Haakon; Chernov, Alexey; Law, Kody; Nobile, Fabio; Tempone, Raul

    2016-01-01

    The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.

  13. Bayesian ensemble refinement by replica simulations and reweighting

    Science.gov (United States)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  14. Protein folding simulations by generalized-ensemble algorithms.

    Science.gov (United States)

    Yoda, Takao; Sugita, Yuji; Okamoto, Yuko

    2014-01-01

    In the protein folding problem, conventional simulations in physical statistical mechanical ensembles, such as the canonical ensemble with fixed temperature, face a great difficulty. This is because there exist a huge number of local-minimum-energy states in the system and the conventional simulations tend to get trapped in these states, giving wrong results. Generalized-ensemble algorithms are based on artificial unphysical ensembles and overcome the above difficulty by performing random walks in potential energy, volume, and other physical quantities or their corresponding conjugate parameters such as temperature, pressure, etc. The advantage of generalized-ensemble simulations lies in the fact that they not only avoid getting trapped in states of energy local minima but also allows the calculations of physical quantities as functions of temperature or other parameters from a single simulation run. In this article we review the generalized-ensemble algorithms. Four examples, multicanonical algorithm, replica-exchange method, replica-exchange multicanonical algorithm, and multicanonical replica-exchange method, are described in detail. Examples of their applications to the protein folding problem are presented.

  15. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    Science.gov (United States)

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  16. Evaluation of medium-range ensemble flood forecasting based on calibration strategies and ensemble methods in Lanjiang Basin, Southeast China

    Science.gov (United States)

    Liu, Li; Gao, Chao; Xuan, Weidong; Xu, Yue-Ping

    2017-11-01

    Ensemble flood forecasts by hydrological models using numerical weather prediction products as forcing data are becoming more commonly used in operational flood forecasting applications. In this study, a hydrological ensemble flood forecasting system comprised of an automatically calibrated Variable Infiltration Capacity model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated. The hydrological model is optimized by the parallel programmed ε-NSGA II multi-objective algorithm. According to the solutions by ε-NSGA II, two differently parameterized models are determined to simulate daily flows and peak flows at each of the three hydrological stations. Then a simple yet effective modular approach is proposed to combine these daily and peak flows at the same station into one composite series. Five ensemble methods and various evaluation metrics are adopted. The results show that ε-NSGA II can provide an objective determination on parameter estimation, and the parallel program permits a more efficient simulation. It is also demonstrated that the forecasts from ECMWF have more favorable skill scores than other Ensemble Prediction Systems. The multimodel ensembles have advantages over all the single model ensembles and the multimodel methods weighted on members and skill scores outperform other methods. Furthermore, the overall performance at three stations can be satisfactory up to ten days, however the hydrological errors can degrade the skill score by approximately 2 days, and the influence persists until a lead time of 10 days with a weakening trend. With respect to peak flows selected by the Peaks Over Threshold approach, the ensemble means from single models or multimodels are generally underestimated, indicating that the ensemble mean can bring overall improvement in forecasting of flows. For

  17. Mature neurons dynamically restrict apoptosis via redundant premitochondrial brakes.

    Science.gov (United States)

    Annis, Ryan P; Swahari, Vijay; Nakamura, Ayumi; Xie, Alison X; Hammond, Scott M; Deshmukh, Mohanish

    2016-12-01

    Apoptotic cell death is critical for the early development of the nervous system, but once the nervous system is established, the apoptotic pathway becomes highly restricted in mature neurons. However, the mechanisms underlying this increased resistance to apoptosis in these mature neurons are not completely understood. We have previously found that members of the miR-29 family of microRNAs (miRNAs) are induced with neuronal maturation and that overexpression of miR-29 was sufficient to restrict apoptosis in neurons. To determine whether endogenous miR-29 alone was responsible for the inhibition of cytochrome c release in mature neurons, we examined the status of the apoptotic pathway in sympathetic neurons deficient for all three miR-29 family members. Unexpectedly, we found that the apoptotic pathway remained largely restricted in miR-29-deficient mature neurons. We therefore probed for additional mechanisms by which mature neurons resist apoptosis. We identify miR-24 as another miRNA that is upregulated in the maturing cerebellum and sympathetic neurons that can act redundantly with miR-29 by targeting a similar repertoire of prodeath BH3-only genes. Overall, our results reveal that mature neurons engage multiple redundant brakes to restrict the apoptotic pathway and ensure their long-term survival. © 2016 Federation of European Biochemical Societies.

  18. Stochastic resonance on Newman-Watts networks of Hodgkin-Huxley neurons with local periodic driving

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, Mahmut [Zonguldak Karaelmas University, Engineering Faculty, Department of Electrical and Electronics Engineering, 67100 Zonguldak (Turkey)], E-mail: mahmutozer2002@yahoo.com; Perc, Matjaz [University of Maribor, Faculty of Natural Sciences and Mathematics, Department of Physics, Koroska cesta 160, SI-2000 Maribor (Slovenia); Uzuntarla, Muhammet [Zonguldak Karaelmas University, Engineering Faculty, Department of Electrical and Electronics Engineering, 67100 Zonguldak (Turkey)

    2009-03-02

    We study the phenomenon of stochastic resonance on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise via voltage-gated ion channels embedded in neuronal membranes. Importantly thereby, the subthreshold periodic driving is introduced to a single neuron of the network, thus acting as a pacemaker trying to impose its rhythm on the whole ensemble. We show that there exists an optimal intensity of intrinsic ion channel noise by which the outreach of the pacemaker extends optimally across the whole network. This stochastic resonance phenomenon can be further amplified via fine-tuning of the small-world network structure, and depends significantly also on the coupling strength among neurons and the driving frequency of the pacemaker. In particular, we demonstrate that the noise-induced transmission of weak localized rhythmic activity peaks when the pacemaker frequency matches the intrinsic frequency of subthreshold oscillations. The implications of our findings for weak signal detection and information propagation across neural networks are discussed.

  19. Ensemble method for dengue prediction.

    Science.gov (United States)

    Buczak, Anna L; Baugher, Benjamin; Moniz, Linda J; Bagley, Thomas; Babin, Steven M; Guven, Erhan

    2018-01-01

    In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.

  20. Ensemble method for dengue prediction.

    Directory of Open Access Journals (Sweden)

    Anna L Buczak

    Full Text Available In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico during four dengue seasons: 1 peak height (i.e., maximum weekly number of cases during a transmission season; 2 peak week (i.e., week in which the maximum weekly number of cases occurred; and 3 total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date.Our approach used ensemble models created by combining three disparate types of component models: 1 two-dimensional Method of Analogues models incorporating both dengue and climate data; 2 additive seasonal Holt-Winters models with and without wavelet smoothing; and 3 simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations.Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week.The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.

  1. Contact planarization of ensemble nanowires

    Science.gov (United States)

    Chia, A. C. E.; LaPierre, R. R.

    2011-06-01

    The viability of four organic polymers (S1808, SC200, SU8 and Cyclotene) as filling materials to achieve planarization of ensemble nanowire arrays is reported. Analysis of the porosity, surface roughness and thermal stability of each filling material was performed. Sonication was used as an effective method to remove the tops of the nanowires (NWs) to achieve complete planarization. Ensemble nanowire devices were fully fabricated and I-V measurements confirmed that Cyclotene effectively planarizes the NWs while still serving the role as an insulating layer between the top and bottom contacts. These processes and analysis can be easily implemented into future characterization and fabrication of ensemble NWs for optoelectronic device applications.

  2. Ensemble forecasting of species distributions.

    Science.gov (United States)

    Araújo, Miguel B; New, Mark

    2007-01-01

    Concern over implications of climate change for biodiversity has led to the use of bioclimatic models to forecast the range shifts of species under future climate-change scenarios. Recent studies have demonstrated that projections by alternative models can be so variable as to compromise their usefulness for guiding policy decisions. Here, we advocate the use of multiple models within an ensemble forecasting framework and describe alternative approaches to the analysis of bioclimatic ensembles, including bounding box, consensus and probabilistic techniques. We argue that, although improved accuracy can be delivered through the traditional tasks of trying to build better models with improved data, more robust forecasts can also be achieved if ensemble forecasts are produced and analysed appropriately.

  3. Reproducing multi-model ensemble average with Ensemble-averaged Reconstructed Forcings (ERF) in regional climate modeling

    Science.gov (United States)

    Erfanian, A.; Fomenko, L.; Wang, G.

    2016-12-01

    Multi-model ensemble (MME) average is considered the most reliable for simulating both present-day and future climates. It has been a primary reference for making conclusions in major coordinated studies i.e. IPCC Assessment Reports and CORDEX. The biases of individual models cancel out each other in MME average, enabling the ensemble mean to outperform individual members in simulating the mean climate. This enhancement however comes with tremendous computational cost, which is especially inhibiting for regional climate modeling as model uncertainties can originate from both RCMs and the driving GCMs. Here we propose the Ensemble-based Reconstructed Forcings (ERF) approach to regional climate modeling that achieves a similar level of bias reduction at a fraction of cost compared with the conventional MME approach. The new method constructs a single set of initial and boundary conditions (IBCs) by averaging the IBCs of multiple GCMs, and drives the RCM with this ensemble average of IBCs to conduct a single run. Using a regional climate model (RegCM4.3.4-CLM4.5), we tested the method over West Africa for multiple combination of (up to six) GCMs. Our results indicate that the performance of the ERF method is comparable to that of the MME average in simulating the mean climate. The bias reduction seen in ERF simulations is achieved by using more realistic IBCs in solving the system of equations underlying the RCM physics and dynamics. This endows the new method with a theoretical advantage in addition to reducing computational cost. The ERF output is an unaltered solution of the RCM as opposed to a climate state that might not be physically plausible due to the averaging of multiple solutions with the conventional MME approach. The ERF approach should be considered for use in major international efforts such as CORDEX. Key words: Multi-model ensemble, ensemble analysis, ERF, regional climate modeling

  4. Conductor gestures influence evaluations of ensemble performance.

    Science.gov (United States)

    Morrison, Steven J; Price, Harry E; Smedley, Eric M; Meals, Cory D

    2014-01-01

    Previous research has found that listener evaluations of ensemble performances vary depending on the expressivity of the conductor's gestures, even when performances are otherwise identical. It was the purpose of the present study to test whether this effect of visual information was evident in the evaluation of specific aspects of ensemble performance: articulation and dynamics. We constructed a set of 32 music performances that combined auditory and visual information and were designed to feature a high degree of contrast along one of two target characteristics: articulation and dynamics. We paired each of four music excerpts recorded by a chamber ensemble in both a high- and low-contrast condition with video of four conductors demonstrating high- and low-contrast gesture specifically appropriate to either articulation or dynamics. Using one of two equivalent test forms, college music majors and non-majors (N = 285) viewed sixteen 30 s performances and evaluated the quality of the ensemble's articulation, dynamics, technique, and tempo along with overall expressivity. Results showed significantly higher evaluations for performances featuring high rather than low conducting expressivity regardless of the ensemble's performance quality. Evaluations for both articulation and dynamics were strongly and positively correlated with evaluations of overall ensemble expressivity.

  5. Strategic neuronal encoding in medial prefrontal cortex of spatial working memory in the T-maze.

    Science.gov (United States)

    Yang, Yang; Mailman, Richard B

    2018-05-02

    Strategic neuronal encoding in the medial prefrontal cortex (mPFC) of the rat was correlated with spatial working memory (sWM) assessed by behavior in the T-maze. Neurons increased their firing rate around choice, with the increase largely occurring before choice as a prospective encode of behavior. This could be classified as sensitive-to-spatial information or sensitive-to-choice outcome. The sensitivity-to-spatial choice was defined by distinct firing rate changes before left- or right-choice. The percentage of left-choice sensitive neurons was not different from the percentage of right-choice sensitive neurons. There was also location-related neuronal activity in which neurons fired at distinct rates when rats were in a left- or right-location. More neurons were sensitive to left-location, as most of them were recorded from rats preferring to enter the right-location. The sensitivity to outcome was defined by a distinct firing rate around correct or error choice. Significantly more neurons were sensitive to error outcome, and, among these, more preferred to encode prospectively, increasing firing in advance of an error outcome. Similar to single neuron activity, the mPFC enhanced its neuronal network as measured by the oscillation of local field potential. The maximum power of oscillation was around choice, and occurred slightly earlier before error versus before correct outcome. Thus, sWM modulation in the mPFC includes not only spatial, but also outcome-related inputs, and neuronal ensembles monitor behavioral outcome to make strategic adjustments ensuring successful task performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Association analysis of schizophrenia on 18 genes involved in neuronal migration

    DEFF Research Database (Denmark)

    Kähler, Anna K; Djurovic, Srdjan; Kulle, Bettina

    2008-01-01

    neuronal function, morphology, and formation of synaptic connections. We have investigated the putative association between SZ and gene variants engaged in the neuronal migration process, by performing an association study on 839 cases and 1,473 controls of Scandinavian origin. Using a gene-wide approach......Several lines of evidence support the theory of schizophrenia (SZ) being a neurodevelopmental disorder. The structural, cytoarchitectural and functional brain abnormalities reported in patients with SZ, might be due to aberrant neuronal migration, since the final position of neurons affects......, tagSNPs in 18 candidate genes have been genotyped, with gene products involved in the neuron-to-glial cell adhesion, interactions with the DISC1 protein and/or rearrangements of the cytoskeleton. Of the 289 markers tested, 19 markers located in genes MDGA1, RELN, ITGA3, DLX1, SPARCL1, and ASTN1...

  7. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Man, Jun [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.

  8. Modality-Driven Classification and Visualization of Ensemble Variance

    Energy Technology Data Exchange (ETDEWEB)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald; Joy, Kenneth I.

    2016-10-01

    Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.g., mean and variance) cannot convey the detailed information encoded in ensemble distributions that are paramount to ensemble analysis; summary statistics provide no information about modality classification and modality persistence. To address this problem, we propose a novel technique that classifies high-variance locations based on the modality of the distribution of ensemble predictions. Additionally, we develop a set of confidence metrics to inform the end-user of the quality of fit between the distribution at a given location and its assigned class. We apply a similar method to time-varying ensembles to illustrate the relationship between peak variance and bimodal or multimodal behavior. These classification schemes enable a deeper understanding of the behavior of the ensemble members by distinguishing between distributions that can be described by a single tendency and distributions which reflect divergent trends in the ensemble.

  9. GHRELIN ACTIVATES HYPOPHYSIOTROPIC CORTICOTROPIN-RELEASING FACTOR NEURONS INDEPENDENTLY OF THE ARCUATE NUCLEUS

    Science.gov (United States)

    Cabral, Agustina; Portiansky, Enrique; Sánchez-Jaramillo, Edith; Zigman, Jeffrey M.; Perello, Mario

    2016-01-01

    Previous work has established that the hormone ghrelin engages the hypothalamic-pituitary-adrenal neuroendocrine axis via activation of corticotropin-releasing factor (CRF) neurons of the hypothalamic paraventricular nucleus (PVN). The neuronal circuitry that mediates this effect of ghrelin is currently unknown. Here, we show that ghrelin-induced activation of PVN CRF neurons involved inhibition of γ-aminobutyric acid (GABA) inputs, likely via ghrelin binding sites that were localized at GABAergic terminals within the PVN. While ghrelin activated PVN CRF neurons in the presence of neuropeptide Y (NPY) receptor antagonists or in arcuate nucleus (ARC)-ablated mice, it failed to do it so in mice with ghrelin receptor expression limited to ARC agouti gene related protein (AgRP)/NPY neurons. These data support the notion that ghrelin activates PVN CRF neurons via inhibition of local GABAergic tone, in an ARC-independent manner. Furthermore, these data suggest that the neuronal circuits mediating ghrelin’s orexigenic action vs. its role as a stress signal are anatomically dissociated. PMID:26874559

  10. Bioactive focus in conformational ensembles: a pluralistic approach

    Science.gov (United States)

    Habgood, Matthew

    2017-12-01

    Computational generation of conformational ensembles is key to contemporary drug design. Selecting the members of the ensemble that will approximate the conformation most likely to bind to a desired target (the bioactive conformation) is difficult, given that the potential energy usually used to generate and rank the ensemble is a notoriously poor discriminator between bioactive and non-bioactive conformations. In this study an approach to generating a focused ensemble is proposed in which each conformation is assigned multiple rankings based not just on potential energy but also on solvation energy, hydrophobic or hydrophilic interaction energy, radius of gyration, and on a statistical potential derived from Cambridge Structural Database data. The best ranked structures derived from each system are then assembled into a new ensemble that is shown to be better focused on bioactive conformations. This pluralistic approach is tested on ensembles generated by the Molecular Operating Environment's Low Mode Molecular Dynamics module, and by the Cambridge Crystallographic Data Centre's conformation generator software.

  11. Demonstrating the value of larger ensembles in forecasting physical systems

    Directory of Open Access Journals (Sweden)

    Reason L. Machete

    2016-12-01

    Full Text Available Ensemble simulation propagates a collection of initial states forward in time in a Monte Carlo fashion. Depending on the fidelity of the model and the properties of the initial ensemble, the goal of ensemble simulation can range from merely quantifying variations in the sensitivity of the model all the way to providing actionable probability forecasts of the future. Whatever the goal is, success depends on the properties of the ensemble, and there is a longstanding discussion in meteorology as to the size of initial condition ensemble most appropriate for Numerical Weather Prediction. In terms of resource allocation: how is one to divide finite computing resources between model complexity, ensemble size, data assimilation and other components of the forecast system. One wishes to avoid undersampling information available from the model's dynamics, yet one also wishes to use the highest fidelity model available. Arguably, a higher fidelity model can better exploit a larger ensemble; nevertheless it is often suggested that a relatively small ensemble, say ~16 members, is sufficient and that larger ensembles are not an effective investment of resources. This claim is shown to be dubious when the goal is probabilistic forecasting, even in settings where the forecast model is informative but imperfect. Probability forecasts for a ‘simple’ physical system are evaluated at different lead times; ensembles of up to 256 members are considered. The pure density estimation context (where ensemble members are drawn from the same underlying distribution as the target differs from the forecasting context, where one is given a high fidelity (but imperfect model. In the forecasting context, the information provided by additional members depends also on the fidelity of the model, the ensemble formation scheme (data assimilation, the ensemble interpretation and the nature of the observational noise. The effect of increasing the ensemble size is quantified by

  12. Ensemble Weight Enumerators for Protograph LDPC Codes

    Science.gov (United States)

    Divsalar, Dariush

    2006-01-01

    Recently LDPC codes with projected graph, or protograph structures have been proposed. In this paper, finite length ensemble weight enumerators for LDPC codes with protograph structures are obtained. Asymptotic results are derived as the block size goes to infinity. In particular we are interested in obtaining ensemble average weight enumerators for protograph LDPC codes which have minimum distance that grows linearly with block size. As with irregular ensembles, linear minimum distance property is sensitive to the proportion of degree-2 variable nodes. In this paper the derived results on ensemble weight enumerators show that linear minimum distance condition on degree distribution of unstructured irregular LDPC codes is a sufficient but not a necessary condition for protograph LDPC codes.

  13. Ensemble atmospheric dispersion calculations for decision support systems

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Potempski, S.; Galkowski, A.; Zelazny, R.

    2003-01-01

    This document describes two approaches to long-range atmospheric dispersion of pollutants based on the ensemble concept. In the first part of the report some experiences related to the exercises undertaken under the ENSEMBLE project of the European Union are presented. The second part is devoted to the implementation of mesoscale numerical prediction models RAMS and atmospheric dispersion model HYPACT on Beowulf cluster and theirs usage for ensemble forecasting and long range atmospheric ensemble dispersion calculations based on available meteorological data from NCEO, NOAA (USA). (author)

  14. Auditory stimuli elicit hippocampal neuronal responses during sleep

    Directory of Open Access Journals (Sweden)

    Ekaterina eVinnik

    2012-06-01

    Full Text Available To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50 percent of the trials, sound stimuli were presented followed by water reward after a 3-second delay. Sound at the water port predicted subsequent reward delivery in 100 percent of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the 2 reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19% and reward delivery (24%. When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. Based on the current findings and the results of previous experiments we propose the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task. During sleep the short-latency responses in hippocampus are intermingled with sustained activity which in the current experiment was detected for 1-2 seconds.

  15. Ensemble-Based Data Assimilation in Reservoir Characterization: A Review

    Directory of Open Access Journals (Sweden)

    Seungpil Jung

    2018-02-01

    Full Text Available This paper presents a review of ensemble-based data assimilation for strongly nonlinear problems on the characterization of heterogeneous reservoirs with different production histories. It concentrates on ensemble Kalman filter (EnKF and ensemble smoother (ES as representative frameworks, discusses their pros and cons, and investigates recent progress to overcome their drawbacks. The typical weaknesses of ensemble-based methods are non-Gaussian parameters, improper prior ensembles and finite population size. Three categorized approaches, to mitigate these limitations, are reviewed with recent accomplishments; improvement of Kalman gains, add-on of transformation functions, and independent evaluation of observed data. The data assimilation in heterogeneous reservoirs, applying the improved ensemble methods, is discussed on predicting unknown dynamic data in reservoir characterization.

  16. Various multistage ensembles for prediction of heating energy consumption

    Directory of Open Access Journals (Sweden)

    Radisa Jovanovic

    2015-04-01

    Full Text Available Feedforward neural network models are created for prediction of daily heating energy consumption of a NTNU university campus Gloshaugen using actual measured data for training and testing. Improvement of prediction accuracy is proposed by using neural network ensemble. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as member of an ensemble. Two conventional averaging methods for obtaining ensemble output are applied; simple and weighted. In order to achieve better prediction results, multistage ensemble is investigated. As second level, adaptive neuro-fuzzy inference system with various clustering and membership functions are used to aggregate the selected ensemble members. Feedforward neural network in second stage is also analyzed. It is shown that using ensemble of neural networks can predict heating energy consumption with better accuracy than the best trained single neural network, while the best results are achieved with multistage ensemble.

  17. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  18. Ensemble Machine Learning Methods and Applications

    CERN Document Server

    Ma, Yunqian

    2012-01-01

    It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face detection and are now being applied in areas as diverse as object trackingand bioinformatics.   Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including various contributions from researchers in leading industrial research labs. At once a solid theoretical study and a practical guide, the volume is a windfall for r...

  19. Popular Music and the Instrumental Ensemble.

    Science.gov (United States)

    Boespflug, George

    1999-01-01

    Discusses popular music, the role of the musical performer as a creator, and the styles of jazz and popular music. Describes the pop ensemble at the college level, focusing on improvisation, rehearsals, recording, and performance. Argues that pop ensembles be used in junior and senior high school. (CMK)

  20. Ensemble Kalman methods for inverse problems

    International Nuclear Information System (INIS)

    Iglesias, Marco A; Law, Kody J H; Stuart, Andrew M

    2013-01-01

    The ensemble Kalman filter (EnKF) was introduced by Evensen in 1994 (Evensen 1994 J. Geophys. Res. 99 10143–62) as a novel method for data assimilation: state estimation for noisily observed time-dependent problems. Since that time it has had enormous impact in many application domains because of its robustness and ease of implementation, and numerical evidence of its accuracy. In this paper we propose the application of an iterative ensemble Kalman method for the solution of a wide class of inverse problems. In this context we show that the estimate of the unknown function that we obtain with the ensemble Kalman method lies in a subspace A spanned by the initial ensemble. Hence the resulting error may be bounded above by the error found from the best approximation in this subspace. We provide numerical experiments which compare the error incurred by the ensemble Kalman method for inverse problems with the error of the best approximation in A, and with variants on traditional least-squares approaches, restricted to the subspace A. In so doing we demonstrate that the ensemble Kalman method for inverse problems provides a derivative-free optimization method with comparable accuracy to that achieved by traditional least-squares approaches. Furthermore, we also demonstrate that the accuracy is of the same order of magnitude as that achieved by the best approximation. Three examples are used to demonstrate these assertions: inversion of a compact linear operator; inversion of piezometric head to determine hydraulic conductivity in a Darcy model of groundwater flow; and inversion of Eulerian velocity measurements at positive times to determine the initial condition in an incompressible fluid. (paper)

  1. Global Ensemble Forecast System (GEFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  2. Adult rat motor neurons do not re-establish electrical coupling during axonal regeneration and muscle reinnervation.

    Directory of Open Access Journals (Sweden)

    Morgana Favero

    Full Text Available Gap junctions (GJs between neurons are present in both the newborn and the adult nervous system, and although important roles have been suggested or demonstrated in a number of instances, in many other cases a full understanding of their physiological role is still missing. GJs are expressed in the rodent lumbar cord at birth and mediate both dye and electrical coupling between motor neurons. This expression has been proposed to mediate: (i fast synchronization of motoneuronal spike activity, in turn linked to the process of refinement of neuromuscular connections, and (ii slow synchronization of locomotor-like oscillatory activity. Soon after birth this coupling disappears. Since in the adult rat regeneration of motor fibers after peripheral nerve injury leads to a recapitulation of synaptic refinement at the target muscles, we tested whether GJs between motor neurons are transiently re-expressed. We found that in conditions of maximal responsiveness of lumbar motor neurons (such as no depression by anesthetics, decerebrate release of activity of subsets of motor neurons, use of temporal and spatial summation by antidromic and orthodromic stimulations, testing of large ensembles of motor neurons no firing is observed in ventral root axons in response to antidromic spike invasion of nearby counterparts. We conclude that junctional coupling between motor neurons is not required for the refinement of neuromuscular innervation in the adult.

  3. Derivation of Mayer Series from Canonical Ensemble

    International Nuclear Information System (INIS)

    Wang Xian-Zhi

    2016-01-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula. (paper)

  4. Derivation of Mayer Series from Canonical Ensemble

    Science.gov (United States)

    Wang, Xian-Zhi

    2016-02-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula.

  5. Ensemble inequivalence: Landau theory and the ABC model

    International Nuclear Information System (INIS)

    Cohen, O; Mukamel, D

    2012-01-01

    It is well known that systems with long-range interactions may exhibit different phase diagrams when studied within two different ensembles. In many of the previously studied examples of ensemble inequivalence, the phase diagrams differ only when the transition in one of the ensembles is first order. By contrast, in a recent study of a generalized ABC model, the canonical and grand-canonical ensembles of the model were shown to differ even when they both exhibit a continuous transition. Here we show that the order of the transition where ensemble inequivalence may occur is related to the symmetry properties of the order parameter associated with the transition. This is done by analyzing the Landau expansion of a generic model with long-range interactions. The conclusions drawn from the generic analysis are demonstrated for the ABC model by explicit calculation of its Landau expansion. (paper)

  6. Regionalization of post-processed ensemble runoff forecasts

    Directory of Open Access Journals (Sweden)

    J. O. Skøien

    2016-05-01

    Full Text Available For many years, meteorological models have been run with perturbated initial conditions or parameters to produce ensemble forecasts that are used as a proxy of the uncertainty of the forecasts. However, the ensembles are usually both biased (the mean is systematically too high or too low, compared with the observed weather, and has dispersion errors (the ensemble variance indicates a too low or too high confidence in the forecast, compared with the observed weather. The ensembles are therefore commonly post-processed to correct for these shortcomings. Here we look at one of these techniques, referred to as Ensemble Model Output Statistics (EMOS (Gneiting et al., 2005. Originally, the post-processing parameters were identified as a fixed set of parameters for a region. The application of our work is the European Flood Awareness System (http://www.efas.eu, where a distributed model is run with meteorological ensembles as input. We are therefore dealing with a considerably larger data set than previous analyses. We also want to regionalize the parameters themselves for other locations than the calibration gauges. The post-processing parameters are therefore estimated for each calibration station, but with a spatial penalty for deviations from neighbouring stations, depending on the expected semivariance between the calibration catchment and these stations. The estimated post-processed parameters can then be used for regionalization of the postprocessing parameters also for uncalibrated locations using top-kriging in the rtop-package (Skøien et al., 2006, 2014. We will show results from cross-validation of the methodology and although our interest is mainly in identifying exceedance probabilities for certain return levels, we will also show how the rtop package can be used for creating a set of post-processed ensembles through simulations.

  7. Pauci ex tanto numero: reducing redundancy in multi-model ensembles

    Science.gov (United States)

    Solazzo, E.; Riccio, A.; Kioutsioukis, I.; Galmarini, S.

    2013-02-01

    We explicitly address the fundamental issue of member diversity in multi-model ensembles. To date no attempts in this direction are documented within the air quality (AQ) community, although the extensive use of ensembles in this field. Common biases and redundancy are the two issues directly deriving from lack of independence, undermining the significance of a multi-model ensemble, and are the subject of this study. Shared biases among models will determine a biased ensemble, making therefore essential the errors of the ensemble members to be independent so that bias can cancel out. Redundancy derives from having too large a portion of common variance among the members of the ensemble, producing overconfidence in the predictions and underestimation of the uncertainty. The two issues of common biases and redundancy are analysed in detail using the AQMEII ensemble of AQ model results for four air pollutants in two European regions. We show that models share large portions of bias and variance, extending well beyond those induced by common inputs. We make use of several techniques to further show that subsets of models can explain the same amount of variance as the full ensemble with the advantage of being poorly correlated. Selecting the members for generating skilful, non-redundant ensembles from such subsets proved, however, non-trivial. We propose and discuss various methods of member selection and rate the ensemble performance they produce. In most cases, the full ensemble is outscored by the reduced ones. We conclude that, although independence of outputs may not always guarantee enhancement of scores (but this depends upon the skill being investigated) we discourage selecting the members of the ensemble simply on the basis of scores, that is, independence and skills need to be considered disjointly.

  8. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad

    2014-08-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  9. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Mayo, T.; Luo, X.; Dawson, C.; Heemink, A. W.; Hoteit, Ibrahim

    2014-01-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  10. HIGH-RESOLUTION ATMOSPHERIC ENSEMBLE MODELING AT SRNL

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.

    2011-05-10

    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  11. Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila.

    Science.gov (United States)

    Tomchik, Seth M

    2013-01-30

    Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.

  12. The Hydrologic Ensemble Prediction Experiment (HEPEX)

    Science.gov (United States)

    Wood, A. W.; Thielen, J.; Pappenberger, F.; Schaake, J. C.; Hartman, R. K.

    2012-12-01

    The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF). With support from the US National Weather Service (NWS) and the European Commission (EC), the HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support in emergency management and water resources sectors. The strategy to meet this goal includes meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. HEPEX has organized about a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Today, the HEPEX mission is to demonstrate the added value of hydrological ensemble prediction systems (HEPS) for emergency management and water resources sectors to make decisions that have important consequences for economy, public health, safety, and the environment. HEPEX is now organised around six major themes that represent core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.

  13. Pauci ex tanto numero: reduce redundancy in multi-model ensembles

    Science.gov (United States)

    Solazzo, E.; Riccio, A.; Kioutsioukis, I.; Galmarini, S.

    2013-08-01

    We explicitly address the fundamental issue of member diversity in multi-model ensembles. To date, no attempts in this direction have been documented within the air quality (AQ) community despite the extensive use of ensembles in this field. Common biases and redundancy are the two issues directly deriving from lack of independence, undermining the significance of a multi-model ensemble, and are the subject of this study. Shared, dependant biases among models do not cancel out but will instead determine a biased ensemble. Redundancy derives from having too large a portion of common variance among the members of the ensemble, producing overconfidence in the predictions and underestimation of the uncertainty. The two issues of common biases and redundancy are analysed in detail using the AQMEII ensemble of AQ model results for four air pollutants in two European regions. We show that models share large portions of bias and variance, extending well beyond those induced by common inputs. We make use of several techniques to further show that subsets of models can explain the same amount of variance as the full ensemble with the advantage of being poorly correlated. Selecting the members for generating skilful, non-redundant ensembles from such subsets proved, however, non-trivial. We propose and discuss various methods of member selection and rate the ensemble performance they produce. In most cases, the full ensemble is outscored by the reduced ones. We conclude that, although independence of outputs may not always guarantee enhancement of scores (but this depends upon the skill being investigated), we discourage selecting the members of the ensemble simply on the basis of scores; that is, independence and skills need to be considered disjointly.

  14. Data assimilation in integrated hydrological modeling using ensemble Kalman filtering

    DEFF Research Database (Denmark)

    Rasmussen, Jørn; Madsen, H.; Jensen, Karsten Høgh

    2015-01-01

    Groundwater head and stream discharge is assimilated using the ensemble transform Kalman filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members...... and estimating parameters requires a much larger ensemble size than just assimilating groundwater head observations. However, the required ensemble size can be greatly reduced with the use of adaptive localization, which by far outperforms distance-based localization. The study is conducted using synthetic data...

  15. Decadal climate predictions improved by ocean ensemble dispersion filtering

    Science.gov (United States)

    Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.

    2017-06-01

    Decadal predictions by Earth system models aim to capture the state and phase of the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-term weather forecasts represent an initial value problem and long-term climate projections represent a boundary condition problem, the decadal climate prediction falls in-between these two time scales. In recent years, more precise initialization techniques of coupled Earth system models and increased ensemble sizes have improved decadal predictions. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure, called ensemble dispersion filter, results in more accurate results than the standard decadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from ocean ensemble dispersion filtering toward the ensemble mean.Plain Language SummaryDecadal predictions aim to predict the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. The ocean memory due to its heat capacity holds big potential skill. In recent years, more precise initialization techniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions. Ensembles are another important aspect. Applying slightly perturbed predictions to trigger the famous butterfly effect results in an ensemble. Instead of evaluating one prediction, but the whole ensemble with its

  16. Ensemble-based Probabilistic Forecasting at Horns Rev

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    2009-01-01

    forecasting methodology. In a first stage, ensemble forecasts of meteorological variables are converted to power through a suitable power curve model. This modelemploys local polynomial regression, and is adoptively estimated with an orthogonal fitting method. The obtained ensemble forecasts of wind power...

  17. DroidEnsemble: Detecting Android Malicious Applications with Ensemble of String and Structural Static Features

    KAUST Repository

    Wang, Wei

    2018-05-11

    Android platform has dominated the Operating System of mobile devices. However, the dramatic increase of Android malicious applications (malapps) has caused serious software failures to Android system and posed a great threat to users. The effective detection of Android malapps has thus become an emerging yet crucial issue. Characterizing the behaviors of Android applications (apps) is essential to detecting malapps. Most existing work on detecting Android malapps was mainly based on string static features such as permissions and API usage extracted from apps. There also exists work on the detection of Android malapps with structural features, such as Control Flow Graph (CFG) and Data Flow Graph (DFG). As Android malapps have become increasingly polymorphic and sophisticated, using only one type of static features may result in false negatives. In this work, we propose DroidEnsemble that takes advantages of both string features and structural features to systematically and comprehensively characterize the static behaviors of Android apps and thus build a more accurate detection model for the detection of Android malapps. We extract each app’s string features, including permissions, hardware features, filter intents, restricted API calls, used permissions, code patterns, as well as structural features like function call graph. We then use three machine learning algorithms, namely, Support Vector Machine (SVM), k-Nearest Neighbor (kNN) and Random Forest (RF), to evaluate the performance of these two types of features and of their ensemble. In the experiments, We evaluate our methods and models with 1386 benign apps and 1296 malapps. Extensive experimental results demonstrate the effectiveness of DroidEnsemble. It achieves the detection accuracy as 95.8% with only string features and as 90.68% with only structural features. DroidEnsemble reaches the detection accuracy as 98.4% with the ensemble of both types of features, reducing 9 false positives and 12 false

  18. Crossover ensembles of random matrices and skew-orthogonal polynomials

    International Nuclear Information System (INIS)

    Kumar, Santosh; Pandey, Akhilesh

    2011-01-01

    Highlights: → We study crossover ensembles of Jacobi family of random matrices. → We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. → We use the method of skew-orthogonal polynomials and quaternion determinants. → We prove universality of spectral correlations in crossover ensembles. → We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we give details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.

  19. Representing Color Ensembles.

    Science.gov (United States)

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2017-10-01

    Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times revealed a striking similarity between the physical distribution of colors and their internal representations. The results demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors in the environment.

  20. Efficient Kernel-Based Ensemble Gaussian Mixture Filtering

    KAUST Repository

    Liu, Bo

    2015-11-11

    We consider the Bayesian filtering problem for data assimilation following the kernel-based ensemble Gaussian-mixture filtering (EnGMF) approach introduced by Anderson and Anderson (1999). In this approach, the posterior distribution of the system state is propagated with the model using the ensemble Monte Carlo method, providing a forecast ensemble that is then used to construct a prior Gaussian-mixture (GM) based on the kernel density estimator. This results in two update steps: a Kalman filter (KF)-like update of the ensemble members and a particle filter (PF)-like update of the weights, followed by a resampling step to start a new forecast cycle. After formulating EnGMF for any observational operator, we analyze the influence of the bandwidth parameter of the kernel function on the covariance of the posterior distribution. We then focus on two aspects: i) the efficient implementation of EnGMF with (relatively) small ensembles, where we propose a new deterministic resampling strategy preserving the first two moments of the posterior GM to limit the sampling error; and ii) the analysis of the effect of the bandwidth parameter on contributions of KF and PF updates and on the weights variance. Numerical results using the Lorenz-96 model are presented to assess the behavior of EnGMF with deterministic resampling, study its sensitivity to different parameters and settings, and evaluate its performance against ensemble KFs. The proposed EnGMF approach with deterministic resampling suggests improved estimates in all tested scenarios, and is shown to require less localization and to be less sensitive to the choice of filtering parameters.

  1. Predictive models of glucose control: roles for glucose-sensing neurones

    Science.gov (United States)

    Kosse, C.; Gonzalez, A.; Burdakov, D.

    2018-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the ‘fast’ senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they

  2. Predictive models of glucose control: roles for glucose-sensing neurones.

    Science.gov (United States)

    Kosse, C; Gonzalez, A; Burdakov, D

    2015-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the 'fast' senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they stimulate

  3. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates

    Science.gov (United States)

    Barz, F.; Livi, A.; Lanzilotto, M.; Maranesi, M.; Bonini, L.; Paul, O.; Ruther, P.

    2017-06-01

    Objective. Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. Approach. System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. Main results. Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm-2. Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. Significance. The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad

  4. Design ensemble machine learning model for breast cancer diagnosis.

    Science.gov (United States)

    Hsieh, Sheau-Ling; Hsieh, Sung-Huai; Cheng, Po-Hsun; Chen, Chi-Huang; Hsu, Kai-Ping; Lee, I-Shun; Wang, Zhenyu; Lai, Feipei

    2012-10-01

    In this paper, we classify the breast cancer of medical diagnostic data. Information gain has been adapted for feature selections. Neural fuzzy (NF), k-nearest neighbor (KNN), quadratic classifier (QC), each single model scheme as well as their associated, ensemble ones have been developed for classifications. In addition, a combined ensemble model with these three schemes has been constructed for further validations. The experimental results indicate that the ensemble learning performs better than individual single ones. Moreover, the combined ensemble model illustrates the highest accuracy of classifications for the breast cancer among all models.

  5. Extension of the GHJW theorem for operator ensembles

    International Nuclear Information System (INIS)

    Choi, Jeong Woon; Hong, Dowon; Chang, Ku-Young; Chi, Dong Pyo; Lee, Soojoon

    2011-01-01

    The Gisin-Hughston-Jozsa-Wootters theorem plays an important role in analyzing various theories about quantum information, quantum communication, and quantum cryptography. It means that any purifications on the extended system which yield indistinguishable state ensembles on their subsystem should have a specific local unitary relation. In this Letter, we show that the local relation is also established even when the indistinguishability of state ensembles is extended to that of operator ensembles.

  6. Skill prediction of local weather forecasts based on the ECMWF ensemble

    Directory of Open Access Journals (Sweden)

    C. Ziehmann

    2001-01-01

    Full Text Available Ensemble Prediction has become an essential part of numerical weather forecasting. In this paper we investigate the ability of ensemble forecasts to provide an a priori estimate of the expected forecast skill. Several quantities derived from the local ensemble distribution are investigated for a two year data set of European Centre for Medium-Range Weather Forecasts (ECMWF temperature and wind speed ensemble forecasts at 30 German stations. The results indicate that the population of the ensemble mode provides useful information for the uncertainty in temperature forecasts. The ensemble entropy is a similar good measure. This is not true for the spread if it is simply calculated as the variance of the ensemble members with respect to the ensemble mean. The number of clusters in the C regions is almost unrelated to the local skill. For wind forecasts, the results are less promising.

  7. Ensemble methods for seasonal limited area forecasts

    DEFF Research Database (Denmark)

    Arritt, Raymond W.; Anderson, Christopher J.; Takle, Eugene S.

    2004-01-01

    The ensemble prediction methods used for seasonal limited area forecasts were examined by comparing methods for generating ensemble simulations of seasonal precipitation. The summer 1993 model over the north-central US was used as a test case. The four methods examined included the lagged-average...

  8. Creating ensembles of decision trees through sampling

    Science.gov (United States)

    Kamath, Chandrika; Cantu-Paz, Erick

    2005-08-30

    A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.

  9. An Efficient Ensemble Learning Method for Gene Microarray Classification

    Directory of Open Access Journals (Sweden)

    Alireza Osareh

    2013-01-01

    Full Text Available The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  10. Sub-Ensemble Coastal Flood Forecasting: A Case Study of Hurricane Sandy

    Directory of Open Access Journals (Sweden)

    Justin A. Schulte

    2017-12-01

    Full Text Available In this paper, it is proposed that coastal flood ensemble forecasts be partitioned into sub-ensemble forecasts using cluster analysis in order to produce representative statistics and to measure forecast uncertainty arising from the presence of clusters. After clustering the ensemble members, the ability to predict the cluster into which the observation will fall can be measured using a cluster skill score. Additional sub-ensemble and composite skill scores are proposed for assessing the forecast skill of a clustered ensemble forecast. A recently proposed method for statistically increasing the number of ensemble members is used to improve sub-ensemble probabilistic estimates. Through the application of the proposed methodology to Sandy coastal flood reforecasts, it is demonstrated that statistics computed using only ensemble members belonging to a specific cluster are more representative than those computed using all ensemble members simultaneously. A cluster skill-cluster uncertainty index relationship is identified, which is the cluster analog of the documented spread-skill relationship. Two sub-ensemble skill scores are shown to be positively correlated with cluster forecast skill, suggesting that skillfully forecasting the cluster into which the observation will fall is important to overall forecast skill. The identified relationships also suggest that the number of ensemble members within in each cluster can be used as guidance for assessing the potential for forecast error. The inevitable existence of ensemble member clusters in tidally dominated total water level prediction systems suggests that clustering is a necessary post-processing step for producing representative and skillful total water level forecasts.

  11. Ensemble Bayesian forecasting system Part I: Theory and algorithms

    Science.gov (United States)

    Herr, Henry D.; Krzysztofowicz, Roman

    2015-05-01

    The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of

  12. Supersymmetry applied to the spectrum edge of random matrix ensembles

    International Nuclear Information System (INIS)

    Andreev, A.V.; Simons, B.D.; Taniguchi, N.

    1994-01-01

    A new matrix ensemble has recently been proposed to describe the transport properties in mesoscopic quantum wires. Both analytical and numerical studies have shown that the ensemble of Laguerre or of chiral random matrices provides a good description of scattering properties in this class of systems. Until now only conventional methods of random matrix theory have been used to study statistical properties within this ensemble. We demonstrate that the supersymmetry method, already employed in the study Dyson ensembles, can be extended to treat this class of random matrix ensembles. In developing this approach we investigate both new, as well as verify known statistical measures. Although we focus on ensembles in which T-invariance is violated our approach lays the foundation for future studies of T-invariant systems. ((orig.))

  13. Prediction of rat behavior outcomes in memory tasks using functional connections among neurons.

    Directory of Open Access Journals (Sweden)

    Hu Lu

    Full Text Available BACKGROUND: Analyzing the neuronal organizational structures and studying the changes in the behavior of the organism is key to understanding cognitive functions of the brain. Although some studies have indicated that spatiotemporal firing patterns of neuronal populations have a certain relationship with the behavioral responses, the issues of whether there are any relationships between the functional networks comprised of these cortical neurons and behavioral tasks and whether it is possible to take advantage of these networks to predict correct and incorrect outcomes of single trials of animals are still unresolved. METHODOLOGY/PRINCIPAL FINDINGS: This paper presents a new method of analyzing the structures of whole-recorded neuronal functional networks (WNFNs and local neuronal circuit groups (LNCGs. The activity of these neurons was recorded in several rats. The rats performed two different behavioral tasks, the Y-maze task and the U-maze task. Using the results of the assessment of the WNFNs and LNCGs, this paper describes a realization procedure for predicting the behavioral outcomes of single trials. The methodology consists of four main parts: construction of WNFNs from recorded neuronal spike trains, partitioning the WNFNs into the optimal LNCGs using social community analysis, unsupervised clustering of all trials from each dataset into two different clusters, and predicting the behavioral outcomes of single trials. The results show that WNFNs and LNCGs correlate with the behavior of the animal. The U-maze datasets show higher accuracy for unsupervised clustering results than those from the Y-maze task, and these datasets can be used to predict behavioral responses effectively. CONCLUSIONS/SIGNIFICANCE: The results of the present study suggest that a methodology proposed in this paper is suitable for analysis of the characteristics of neuronal functional networks and the prediction of rat behavior. These types of structures in cortical

  14. Improving Climate Projections Using "Intelligent" Ensembles

    Science.gov (United States)

    Baker, Noel C.; Taylor, Patrick C.

    2015-01-01

    Recent changes in the climate system have led to growing concern, especially in communities which are highly vulnerable to resource shortages and weather extremes. There is an urgent need for better climate information to develop solutions and strategies for adapting to a changing climate. Climate models provide excellent tools for studying the current state of climate and making future projections. However, these models are subject to biases created by structural uncertainties. Performance metrics-or the systematic determination of model biases-succinctly quantify aspects of climate model behavior. Efforts to standardize climate model experiments and collect simulation data-such as the Coupled Model Intercomparison Project (CMIP)-provide the means to directly compare and assess model performance. Performance metrics have been used to show that some models reproduce present-day climate better than others. Simulation data from multiple models are often used to add value to projections by creating a consensus projection from the model ensemble, in which each model is given an equal weight. It has been shown that the ensemble mean generally outperforms any single model. It is possible to use unequal weights to produce ensemble means, in which models are weighted based on performance (called "intelligent" ensembles). Can performance metrics be used to improve climate projections? Previous work introduced a framework for comparing the utility of model performance metrics, showing that the best metrics are related to the variance of top-of-atmosphere outgoing longwave radiation. These metrics improve present-day climate simulations of Earth's energy budget using the "intelligent" ensemble method. The current project identifies several approaches for testing whether performance metrics can be applied to future simulations to create "intelligent" ensemble-mean climate projections. It is shown that certain performance metrics test key climate processes in the models, and

  15. Generation of scenarios from calibrated ensemble forecasts with a dual ensemble copula coupling approach

    DEFF Research Database (Denmark)

    Ben Bouallègue, Zied; Heppelmann, Tobias; Theis, Susanne E.

    2016-01-01

    the original ensemble forecasts. Based on the assumption of error stationarity, parametric methods aim to fully describe the forecast dependence structures. In this study, the concept of ECC is combined with past data statistics in order to account for the autocorrelation of the forecast error. The new...... approach, called d-ECC, is applied to wind forecasts from the high resolution ensemble system COSMO-DE-EPS run operationally at the German weather service. Scenarios generated by ECC and d-ECC are compared and assessed in the form of time series by means of multivariate verification tools and in a product...

  16. Flood Forecasting Based on TIGGE Precipitation Ensemble Forecast

    Directory of Open Access Journals (Sweden)

    Jinyin Ye

    2016-01-01

    Full Text Available TIGGE (THORPEX International Grand Global Ensemble was a major part of the THORPEX (Observing System Research and Predictability Experiment. It integrates ensemble precipitation products from all the major forecast centers in the world and provides systematic evaluation on the multimodel ensemble prediction system. Development of meteorologic-hydrologic coupled flood forecasting model and early warning model based on the TIGGE precipitation ensemble forecast can provide flood probability forecast, extend the lead time of the flood forecast, and gain more time for decision-makers to make the right decision. In this study, precipitation ensemble forecast products from ECMWF, NCEP, and CMA are used to drive distributed hydrologic model TOPX. We focus on Yi River catchment and aim to build a flood forecast and early warning system. The results show that the meteorologic-hydrologic coupled model can satisfactorily predict the flow-process of four flood events. The predicted occurrence time of peak discharges is close to the observations. However, the magnitude of the peak discharges is significantly different due to various performances of the ensemble prediction systems. The coupled forecasting model can accurately predict occurrence of the peak time and the corresponding risk probability of peak discharge based on the probability distribution of peak time and flood warning, which can provide users a strong theoretical foundation and valuable information as a promising new approach.

  17. Three-model ensemble wind prediction in southern Italy

    Science.gov (United States)

    Torcasio, Rosa Claudia; Federico, Stefano; Calidonna, Claudia Roberta; Avolio, Elenio; Drofa, Oxana; Landi, Tony Christian; Malguzzi, Piero; Buzzi, Andrea; Bonasoni, Paolo

    2016-03-01

    Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.

  18. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila

    Science.gov (United States)

    Aso, Yoshinori; Sitaraman, Divya; Ichinose, Toshiharu; Kaun, Karla R; Vogt, Katrin; Belliart-Guérin, Ghislain; Plaçais, Pierre-Yves; Robie, Alice A; Yamagata, Nobuhiro; Schnaitmann, Christopher; Rowell, William J; Johnston, Rebecca M; Ngo, Teri-T B; Chen, Nan; Korff, Wyatt; Nitabach, Michael N; Heberlein, Ulrike; Preat, Thomas; Branson, Kristin M; Tanimoto, Hiromu; Rubin, Gerald M

    2014-01-01

    Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection. DOI: http://dx.doi.org/10.7554/eLife.04580.001 PMID:25535794

  19. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila.

    Science.gov (United States)

    Aso, Yoshinori; Sitaraman, Divya; Ichinose, Toshiharu; Kaun, Karla R; Vogt, Katrin; Belliart-Guérin, Ghislain; Plaçais, Pierre-Yves; Robie, Alice A; Yamagata, Nobuhiro; Schnaitmann, Christopher; Rowell, William J; Johnston, Rebecca M; Ngo, Teri-T B; Chen, Nan; Korff, Wyatt; Nitabach, Michael N; Heberlein, Ulrike; Preat, Thomas; Branson, Kristin M; Tanimoto, Hiromu; Rubin, Gerald M

    2014-12-23

    Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.

  20. Global Ensemble Forecast System (GEFS) [2.5 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  1. On-line Learning of Unlearnable True Teacher through Mobile Ensemble Teachers

    Science.gov (United States)

    Hirama, Takeshi; Hukushima, Koji

    2008-09-01

    The on-line learning of a hierarchical learning model is studied by a method based on statistical mechanics. In our model, a student of a simple perceptron learns from not a true teacher directly, but ensemble teachers who learn from a true teacher with a perceptron learning rule. Since the true teacher and ensemble teachers are expressed as nonmonotonic and simple perceptrons, respectively, the ensemble teachers go around the unlearnable true teacher with the distance between them fixed in an asymptotic steady state. The generalization performance of the student is shown to exceed that of the ensemble teachers in a transient state, as was shown in similar ensemble-teachers models. Furthermore, it is found that moving the ensemble teachers even in the steady state, in contrast to the fixed ensemble teachers, is efficient for the performance of the student.

  2. An ensemble classifier to predict track geometry degradation

    International Nuclear Information System (INIS)

    Cárdenas-Gallo, Iván; Sarmiento, Carlos A.; Morales, Gilberto A.; Bolivar, Manuel A.; Akhavan-Tabatabaei, Raha

    2017-01-01

    Railway operations are inherently complex and source of several problems. In particular, track geometry defects are one of the leading causes of train accidents in the United States. This paper presents a solution approach which entails the construction of an ensemble classifier to forecast the degradation of track geometry. Our classifier is constructed by solving the problem from three different perspectives: deterioration, regression and classification. We considered a different model from each perspective and our results show that using an ensemble method improves the predictive performance. - Highlights: • We present an ensemble classifier to forecast the degradation of track geometry. • Our classifier considers three perspectives: deterioration, regression and classification. • We construct and test three models and our results show that using an ensemble method improves the predictive performance.

  3. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  4. Development of a regional ensemble prediction method for probabilistic weather prediction

    International Nuclear Information System (INIS)

    Nohara, Daisuke; Tamura, Hidetoshi; Hirakuchi, Hiromaru

    2015-01-01

    A regional ensemble prediction method has been developed to provide probabilistic weather prediction using a numerical weather prediction model. To obtain consistent perturbations with the synoptic weather pattern, both of initial and lateral boundary perturbations were given by differences between control and ensemble member of the Japan Meteorological Agency (JMA)'s operational one-week ensemble forecast. The method provides a multiple ensemble member with a horizontal resolution of 15 km for 48-hour based on a downscaling of the JMA's operational global forecast accompanied with the perturbations. The ensemble prediction was examined in the case of heavy snow fall event in Kanto area on January 14, 2013. The results showed that the predictions represent different features of high-resolution spatiotemporal distribution of precipitation affected by intensity and location of extra-tropical cyclone in each ensemble member. Although the ensemble prediction has model bias of mean values and variances in some variables such as wind speed and solar radiation, the ensemble prediction has a potential to append a probabilistic information to a deterministic prediction. (author)

  5. The Use of Artificial-Intelligence-Based Ensembles for Intrusion Detection: A Review

    Directory of Open Access Journals (Sweden)

    Gulshan Kumar

    2012-01-01

    Full Text Available In supervised learning-based classification, ensembles have been successfully employed to different application domains. In the literature, many researchers have proposed different ensembles by considering different combination methods, training datasets, base classifiers, and many other factors. Artificial-intelligence-(AI- based techniques play prominent role in development of ensemble for intrusion detection (ID and have many benefits over other techniques. However, there is no comprehensive review of ensembles in general and AI-based ensembles for ID to examine and understand their current research status to solve the ID problem. Here, an updated review of ensembles and their taxonomies has been presented in general. The paper also presents the updated review of various AI-based ensembles for ID (in particular during last decade. The related studies of AI-based ensembles are compared by set of evaluation metrics driven from (1 architecture & approach followed; (2 different methods utilized in different phases of ensemble learning; (3 other measures used to evaluate classification performance of the ensembles. The paper also provides the future directions of the research in this area. The paper will help the better understanding of different directions in which research of ensembles has been done in general and specifically: field of intrusion detection systems (IDSs.

  6. Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.

    Science.gov (United States)

    Kelly, David; Majda, Andrew J; Tong, Xin T

    2015-08-25

    The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.

  7. Target-specific M1 inputs to infragranular S1 pyramidal neurons

    Science.gov (United States)

    Fanselow, Erika E.; Simons, Daniel J.

    2016-01-01

    The functional role of input from the primary motor cortex (M1) to primary somatosensory cortex (S1) is unclear; one key to understanding this pathway may lie in elucidating the cell-type specific microcircuits that connect S1 and M1. Recently, we discovered that a subset of pyramidal neurons in the infragranular layers of S1 receive especially strong input from M1 (Kinnischtzke AK, Simons DJ, Fanselow EE. Cereb Cortex 24: 2237–2248, 2014), suggesting that M1 may affect specific classes of pyramidal neurons differently. Here, using combined optogenetic and retrograde labeling approaches in the mouse, we examined the strengths of M1 inputs to five classes of infragranular S1 neurons categorized by their projections to particular cortical and subcortical targets. We found that the magnitude of M1 synaptic input to S1 pyramidal neurons varies greatly depending on the projection target of the postsynaptic neuron. Of the populations examined, M1-projecting corticocortical neurons in L6 received the strongest M1 inputs, whereas ventral posterior medial nucleus-projecting corticothalamic neurons, also located in L6, received the weakest. Each population also possessed distinct intrinsic properties. The results suggest that M1 differentially engages specific classes of S1 projection neurons, thereby regulating the motor-related influence S1 exerts over subcortical structures. PMID:27334960

  8. Learning intrinsic excitability in medium spiny neurons [v2; ref status: indexed, http://f1000r.es/30b

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    2014-02-01

    Full Text Available We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function. We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal modulation on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how modulation and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP. The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic modulation determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.

  9. Quark ensembles with infinite correlation length

    OpenAIRE

    Molodtsov, S. V.; Zinovjev, G. M.

    2014-01-01

    By studying quark ensembles with infinite correlation length we formulate the quantum field theory model that, as we show, is exactly integrable and develops an instability of its standard vacuum ensemble (the Dirac sea). We argue such an instability is rooted in high ground state degeneracy (for 'realistic' space-time dimensions) featuring a fairly specific form of energy distribution, and with the cutoff parameter going to infinity this inherent energy distribution becomes infinitely narrow...

  10. A multi-model ensemble approach to seabed mapping

    Science.gov (United States)

    Diesing, Markus; Stephens, David

    2015-06-01

    Seabed habitat mapping based on swath acoustic data and ground-truth samples is an emergent and active marine science discipline. Significant progress could be achieved by transferring techniques and approaches that have been successfully developed and employed in such fields as terrestrial land cover mapping. One such promising approach is the multiple classifier system, which aims at improving classification performance by combining the outputs of several classifiers. Here we present results of a multi-model ensemble applied to multibeam acoustic data covering more than 5000 km2 of seabed in the North Sea with the aim to derive accurate spatial predictions of seabed substrate. A suite of six machine learning classifiers (k-Nearest Neighbour, Support Vector Machine, Classification Tree, Random Forest, Neural Network and Naïve Bayes) was trained with ground-truth sample data classified into seabed substrate classes and their prediction accuracy was assessed with an independent set of samples. The three and five best performing models were combined to classifier ensembles. Both ensembles led to increased prediction accuracy as compared to the best performing single classifier. The improvements were however not statistically significant at the 5% level. Although the three-model ensemble did not perform significantly better than its individual component models, we noticed that the five-model ensemble did perform significantly better than three of the five component models. A classifier ensemble might therefore be an effective strategy to improve classification performance. Another advantage is the fact that the agreement in predicted substrate class between the individual models of the ensemble could be used as a measure of confidence. We propose a simple and spatially explicit measure of confidence that is based on model agreement and prediction accuracy.

  11. SVM and SVM Ensembles in Breast Cancer Prediction.

    Science.gov (United States)

    Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong

    2017-01-01

    Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.

  12. SVM and SVM Ensembles in Breast Cancer Prediction.

    Directory of Open Access Journals (Sweden)

    Min-Wei Huang

    Full Text Available Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.

  13. Ensemble Data Mining Methods

    Data.gov (United States)

    National Aeronautics and Space Administration — Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve...

  14. Ensemble Network Architecture for Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Xi-liang Chen

    2018-01-01

    Full Text Available The popular deep Q learning algorithm is known to be instability because of the Q-value’s shake and overestimation action values under certain conditions. These issues tend to adversely affect their performance. In this paper, we develop the ensemble network architecture for deep reinforcement learning which is based on value function approximation. The temporal ensemble stabilizes the training process by reducing the variance of target approximation error and the ensemble of target values reduces the overestimate and makes better performance by estimating more accurate Q-value. Our results show that this architecture leads to statistically significant better value evaluation and more stable and better performance on several classical control tasks at OpenAI Gym environment.

  15. Shallow cumuli ensemble statistics for development of a stochastic parameterization

    Science.gov (United States)

    Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs

    2014-05-01

    According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a

  16. Selecting a climate model subset to optimise key ensemble properties

    Directory of Open Access Journals (Sweden)

    N. Herger

    2018-02-01

    Full Text Available End users studying impacts and risks caused by human-induced climate change are often presented with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versatile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded as independent estimates due to the presence of duplicated code and shared development history. Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric, observational product, and pre-processing steps used.

  17. Selecting a climate model subset to optimise key ensemble properties

    Science.gov (United States)

    Herger, Nadja; Abramowitz, Gab; Knutti, Reto; Angélil, Oliver; Lehmann, Karsten; Sanderson, Benjamin M.

    2018-02-01

    End users studying impacts and risks caused by human-induced climate change are often presented with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versatile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded as independent estimates due to the presence of duplicated code and shared development history. Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric, observational product, and pre-processing steps used.

  18. On evaluation of ensemble precipitation forecasts with observation-based ensembles

    Directory of Open Access Journals (Sweden)

    S. Jaun

    2007-04-01

    Full Text Available Spatial interpolation of precipitation data is uncertain. How important is this uncertainty and how can it be considered in evaluation of high-resolution probabilistic precipitation forecasts? These questions are discussed by experimental evaluation of the COSMO consortium's limited-area ensemble prediction system COSMO-LEPS. The applied performance measure is the often used Brier skill score (BSS. The observational references in the evaluation are (a analyzed rain gauge data by ordinary Kriging and (b ensembles of interpolated rain gauge data by stochastic simulation. This permits the consideration of either a deterministic reference (the event is observed or not with 100% certainty or a probabilistic reference that makes allowance for uncertainties in spatial averaging. The evaluation experiments show that the evaluation uncertainties are substantial even for the large area (41 300 km2 of Switzerland with a mean rain gauge distance as good as 7 km: the one- to three-day precipitation forecasts have skill decreasing with forecast lead time but the one- and two-day forecast performances differ not significantly.

  19. Polarized ensembles of random pure states

    Science.gov (United States)

    Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe

    2013-08-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.

  20. An automated approach to network features of protein structure ensembles

    Science.gov (United States)

    Bhattacharyya, Moitrayee; Bhat, Chanda R; Vishveshwara, Saraswathi

    2013-01-01

    Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of β2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html. PMID:23934896

  1. Risk of punishment influences discrete and coordinated encoding of reward-guided actions by prefrontal cortex and VTA neurons

    Science.gov (United States)

    Park, Junchol

    2017-01-01

    Actions motivated by rewards are often associated with risk of punishment. Little is known about the neural representation of punishment risk during reward-seeking behavior. We modeled this circumstance in rats by designing a task where actions were consistently rewarded but probabilistically punished. Spike activity and local field potentials were recorded during task performance simultaneously from VTA and mPFC, two reciprocally connected regions implicated in reward-seeking and aversive behaviors. At the single unit level, we found that ensembles of putative dopamine and non-dopamine VTA neurons and mPFC neurons encode the relationship between action and punishment. At the network level, we found that coherent theta oscillations synchronize VTA and mPFC in a bottom-up direction, effectively phase-modulating the neuronal spike activity in the two regions during punishment-free actions. This synchrony declined as a function of punishment probability, suggesting that during reward-seeking actions, risk of punishment diminishes VTA-driven neural synchrony between the two regions. PMID:29058673

  2. Developing an Ensemble Prediction System based on COSMO-DE

    Science.gov (United States)

    Theis, S.; Gebhardt, C.; Buchhold, M.; Ben Bouallègue, Z.; Ohl, R.; Paulat, M.; Peralta, C.

    2010-09-01

    The numerical weather prediction model COSMO-DE is a configuration of the COSMO model with a horizontal grid size of 2.8 km. It has been running operationally at DWD since 2007, it covers the area of Germany and produces forecasts with a lead time of 0-21 hours. The model COSMO-DE is convection-permitting, which means that it does without a parametrisation of deep convection and simulates deep convection explicitly. One aim is an improved forecast of convective heavy rain events. Convection-permitting models are in operational use at several weather services, but currently not in ensemble mode. It is expected that an ensemble system could reveal the advantages of a convection-permitting model even better. The probabilistic approach is necessary, because the explicit simulation of convective processes for more than a few hours cannot be viewed as a deterministic forecast anymore. This is due to the chaotic behaviour and short life cycle of the processes which are simulated explicitly now. In the framework of the project COSMO-DE-EPS, DWD is developing and implementing an ensemble prediction system (EPS) for the model COSMO-DE. The project COSMO-DE-EPS comprises the generation of ensemble members, as well as the verification and visualization of the ensemble forecasts and also statistical postprocessing. A pre-operational mode of the EPS with 20 ensemble members is foreseen to start in 2010. Operational use is envisaged to start in 2012, after an upgrade to 40 members and inclusion of statistical postprocessing. The presentation introduces the project COSMO-DE-EPS and describes the design of the ensemble as it is planned for the pre-operational mode. In particular, the currently implemented method for the generation of ensemble members will be explained and discussed. The method includes variations of initial conditions, lateral boundary conditions, and model physics. At present, pragmatic methods are applied which resemble the basic ideas of a multi-model approach

  3. The Hydrologic Ensemble Prediction Experiment (HEPEX)

    Science.gov (United States)

    Wood, Andy; Wetterhall, Fredrik; Ramos, Maria-Helena

    2015-04-01

    The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF), and co-sponsored by the US National Weather Service (NWS) and the European Commission (EC). The HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support. HEPEX pursues this goal through research efforts and practical implementations involving six core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. HEPEX has grown through meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. In the last decade, HEPEX has organized over a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Through these interactions and an active online blog (www.hepex.org), HEPEX has built a strong and active community of nearly 400 researchers & practitioners around the world. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.

  4. Dopamine receptor activation reorganizes neuronal ensembles during hippocampal sharp waves in vitro.

    Directory of Open Access Journals (Sweden)

    Takeyuki Miyawaki

    Full Text Available Hippocampal sharp wave (SW/ripple complexes are thought to contribute to memory consolidation. Previous studies suggest that behavioral rewards facilitate SW occurrence in vivo. However, little is known about the precise mechanism underlying this enhancement. Here, we examined the effect of dopaminergic neuromodulation on spontaneously occurring SWs in acute hippocampal slices. Local field potentials were recorded from the CA1 region. A brief (1 min treatment with dopamine led to a persistent increase in the event frequency and the magnitude of SWs. This effect lasted at least for our recording period of 45 min and did not occur in the presence of a dopamine D1/D5 receptor antagonist. Functional multineuron calcium imaging revealed that dopamine-induced SW augmentation was associated with an enriched repertoire of the firing patterns in SW events, whereas the overall tendency of individual neurons to participate in SWs and the mean number of cells participating in a single SW were maintained. Therefore, dopaminergic activation is likely to reorganize cell assemblies during SWs.

  5. An "Ensemble Approach" to Modernizing Extreme Precipitation Estimation for Dam Safety Decision-Making

    Science.gov (United States)

    Cifelli, R.; Mahoney, K. M.; Webb, R. S.; McCormick, B.

    2017-12-01

    To ensure structural and operational safety of dams and other water management infrastructure, water resources managers and engineers require information about the potential for heavy precipitation. The methods and data used to estimate extreme rainfall amounts for managing risk are based on 40-year-old science and in need of improvement. The need to evaluate new approaches based on the best science available has led the states of Colorado and New Mexico to engage a body of scientists and engineers in an innovative "ensemble approach" to updating extreme precipitation estimates. NOAA is at the forefront of one of three technical approaches that make up the "ensemble study"; the three approaches are conducted concurrently and in collaboration with each other. One approach is the conventional deterministic, "storm-based" method, another is a risk-based regional precipitation frequency estimation tool, and the third is an experimental approach utilizing NOAA's state-of-the-art High Resolution Rapid Refresh (HRRR) physically-based dynamical weather prediction model. The goal of the overall project is to use the individual strengths of these different methods to define an updated and broadly acceptable state of the practice for evaluation and design of dam spillways. This talk will highlight the NOAA research and NOAA's role in the overarching goal to better understand and characterizing extreme precipitation estimation uncertainty. The research led by NOAA explores a novel high-resolution dataset and post-processing techniques using a super-ensemble of hourly forecasts from the HRRR model. We also investigate how this rich dataset may be combined with statistical methods to optimally cast the data in probabilistic frameworks. NOAA expertise in the physical processes that drive extreme precipitation is also employed to develop careful testing and improved understanding of the limitations of older estimation methods and assumptions. The process of decision making in the

  6. Ensemble-based forecasting at Horns Rev: Ensemble conversion and kernel dressing

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    . The obtained ensemble forecasts of wind power are then converted into predictive distributions with an original adaptive kernel dressing method. The shape of the kernels is driven by a mean-variance model, the parameters of which are recursively estimated in order to maximize the overall skill of obtained...

  7. Lattice gauge theory in the microcanonical ensemble

    International Nuclear Information System (INIS)

    Callaway, D.J.E.; Rahman, A.

    1983-01-01

    The microcanonical-ensemble formulation of lattice gauge theory proposed recently is examined in detail. Expectation values in this new ensemble are determined by solving a large set of coupled ordinary differential equations, after the fashion of a molecular dynamics simulation. Following a brief review of the microcanonical ensemble, calculations are performed for the gauge groups U(1), SU(2), and SU(3). The results are compared and contrasted with standard methods of computation. Several advantages of the new formalism are noted. For example, no random numbers are required to update the system. Also, this update is performed in a simultaneous fashion. Thus the microcanonical method presumably adapts well to parallel processing techniques, especially when the p action is highly nonlocal (such as when fermions are included)

  8. Exploring and Listening to Chinese Classical Ensembles in General Music

    Science.gov (United States)

    Zhang, Wenzhuo

    2017-01-01

    Music diversity is valued in theory, but the extent to which it is efficiently presented in music class remains limited. Within this article, I aim to bridge this gap by introducing four genres of Chinese classical ensembles--Qin and Xiao duets, Jiang Nan bamboo and silk ensembles, Cantonese ensembles, and contemporary Chinese orchestras--into the…

  9. Polarized ensembles of random pure states

    International Nuclear Information System (INIS)

    Cunden, Fabio Deelan; Facchi, Paolo; Florio, Giuseppe

    2013-01-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise. (paper)

  10. Probabilistic Determination of Native State Ensembles of Proteins

    DEFF Research Database (Denmark)

    Olsson, Simon; Vögeli, Beat Rolf; Cavalli, Andrea

    2014-01-01

    ensembles of proteins by the combination of physical force fields and experimental data through modern statistical methodology. As an example, we use NMR residual dipolar couplings to determine a native state ensemble of the extensively studied third immunoglobulin binding domain of protein G (GB3...

  11. Ensembles of a small number of conformations with relative populations

    Energy Technology Data Exchange (ETDEWEB)

    Vammi, Vijay, E-mail: vsvammi@iastate.edu; Song, Guang, E-mail: gsong@iastate.edu [Iowa State University, Bioinformatics and Computational Biology Program, Department of Computer Science (United States)

    2015-12-15

    In our previous work, we proposed a new way to represent protein native states, using ensembles of a small number of conformations with relative Populations, or ESP in short. Using Ubiquitin as an example, we showed that using a small number of conformations could greatly reduce the potential of overfitting and assigning relative populations to protein ensembles could significantly improve their quality. To demonstrate that ESP indeed is an excellent alternative to represent protein native states, in this work we compare the quality of two ESP ensembles of Ubiquitin with several well-known regular ensembles or average structure representations. Extensive amount of significant experimental data are employed to achieve a thorough assessment. Our results demonstrate that ESP ensembles, though much smaller in size comparing to regular ensembles, perform equally or even better sometimes in all four different types of experimental data used in the assessment, namely, the residual dipolar couplings, residual chemical shift anisotropy, hydrogen exchange rates, and solution scattering profiles. This work further underlines the significance of having relative populations in describing the native states.

  12. On the proper use of Ensembles for Predictive Uncertainty assessment

    Science.gov (United States)

    Todini, Ezio; Coccia, Gabriele; Ortiz, Enrique

    2015-04-01

    Probabilistic forecasting has become popular in the last decades. Hydrological probabilistic forecasts have been based either on uncertainty processors (Krzysztofowic, 1999; Todini, 2004; Todini, 2008) or on ensembles, following meteorological traditional approaches and the establishment of the HEPEX program (http://hepex.irstea.fr. Unfortunately, the direct use of ensembles as a measure of the predictive density is an incorrect practice, because the ensemble measures the spread of the forecast instead of, following the definition of predictive uncertainty, the conditional probability of the future outcome conditional on the forecast. Only few correct approaches are reported in the literature, which correctly use the ensemble to estimate an expected conditional predictive density (Reggiani et al., 2009), similarly to what is done when several predictive models are available as in the BMA (Raftery et al., 2005) or MCP(Todini, 2008; Coccia and Todini, 2011) approaches. A major problem, limiting the correct use of ensembles, is in fact the difficulty of defining the time dependence of the ensemble members, due to the lack of a consistent ranking: in other words, when dealing with multiple models, the ith model remains the ith model regardless to the time of forecast, while this does not happen when dealing with ensemble members, since there is no definition for the ith member of an ensemble. Nonetheless, the MCP approach (Todini, 2008; Coccia and Todini, 2011), essentially based on a multiple regression in the Normal space, can be easily extended to use ensembles to represent the local (in time) smaller or larger conditional predictive uncertainty, as a function of the ensemble spread. This is done by modifying the classical linear regression equations, impliying perfectly observed predictors, to alternative regression equations similar to the Kalman filter ones, allowing for uncertain predictors. In this way, each prediction in time accounts for both the predictive

  13. Ensemble Kalman filtering with one-step-ahead smoothing

    KAUST Repository

    Raboudi, Naila F.

    2018-01-11

    The ensemble Kalman filter (EnKF) is widely used for sequential data assimilation. It operates as a succession of forecast and analysis steps. In realistic large-scale applications, EnKFs are implemented with small ensembles and poorly known model error statistics. This limits their representativeness of the background error covariances and, thus, their performance. This work explores the efficiency of the one-step-ahead (OSA) smoothing formulation of the Bayesian filtering problem to enhance the data assimilation performance of EnKFs. Filtering with OSA smoothing introduces an updated step with future observations, conditioning the ensemble sampling with more information. This should provide an improved background ensemble in the analysis step, which may help to mitigate the suboptimal character of EnKF-based methods. Here, the authors demonstrate the efficiency of a stochastic EnKF with OSA smoothing for state estimation. They then introduce a deterministic-like EnKF-OSA based on the singular evolutive interpolated ensemble Kalman (SEIK) filter. The authors show that the proposed SEIK-OSA outperforms both SEIK, as it efficiently exploits the data twice, and the stochastic EnKF-OSA, as it avoids observational error undersampling. They present extensive assimilation results from numerical experiments conducted with the Lorenz-96 model to demonstrate SEIK-OSA’s capabilities.

  14. Universal critical wrapping probabilities in the canonical ensemble

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-09-01

    Full Text Available Universal dimensionless quantities, such as Binder ratios and wrapping probabilities, play an important role in the study of critical phenomena. We study the finite-size scaling behavior of the wrapping probability for the Potts model in the random-cluster representation, under the constraint that the total number of occupied bonds is fixed, so that the canonical ensemble applies. We derive that, in the limit L→∞, the critical values of the wrapping probability are different from those of the unconstrained model, i.e. the model in the grand-canonical ensemble, but still universal, for systems with 2yt−d>0 where yt=1/ν is the thermal renormalization exponent and d is the spatial dimension. Similar modifications apply to other dimensionless quantities, such as Binder ratios. For systems with 2yt−d≤0, these quantities share same critical universal values in the two ensembles. It is also derived that new finite-size corrections are induced. These findings apply more generally to systems in the canonical ensemble, e.g. the dilute Potts model with a fixed total number of vacancies. Finally, we formulate an efficient cluster-type algorithm for the canonical ensemble, and confirm these predictions by extensive simulations.

  15. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting

    International Nuclear Information System (INIS)

    Tang, Ling; Yu, Lean; Wang, Shuai; Li, Jianping; Wang, Shouyang

    2012-01-01

    Highlights: ► A hybrid ensemble learning paradigm integrating EEMD and LSSVR is proposed. ► The hybrid ensemble method is useful to predict time series with high volatility. ► The ensemble method can be used for both one-step and multi-step ahead forecasting. - Abstract: In this paper, a novel hybrid ensemble learning paradigm integrating ensemble empirical mode decomposition (EEMD) and least squares support vector regression (LSSVR) is proposed for nuclear energy consumption forecasting, based on the principle of “decomposition and ensemble”. This hybrid ensemble learning paradigm is formulated specifically to address difficulties in modeling nuclear energy consumption, which has inherently high volatility, complexity and irregularity. In the proposed hybrid ensemble learning paradigm, EEMD, as a competitive decomposition method, is first applied to decompose original data of nuclear energy consumption (i.e. a difficult task) into a number of independent intrinsic mode functions (IMFs) of original data (i.e. some relatively easy subtasks). Then LSSVR, as a powerful forecasting tool, is implemented to predict all extracted IMFs independently. Finally, these predicted IMFs are aggregated into an ensemble result as final prediction, using another LSSVR. For illustration and verification purposes, the proposed learning paradigm is used to predict nuclear energy consumption in China. Empirical results demonstrate that the novel hybrid ensemble learning paradigm can outperform some other popular forecasting models in both level prediction and directional forecasting, indicating that it is a promising tool to predict complex time series with high volatility and irregularity.

  16. Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure

    Directory of Open Access Journals (Sweden)

    Xiaodong Zeng

    2014-01-01

    Full Text Available A weighted accuracy and diversity (WAD method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases.

  17. Effect of spatially correlated noise on stochastic synchronization in globally coupled FitzHugh-Nagumo neuron systems

    Directory of Open Access Journals (Sweden)

    Yange Shao

    2014-01-01

    Full Text Available The phenomenon of stochastic synchronization in globally coupled FitzHugh-Nagumo (FHN neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation (DMA and direct simulation (DS. Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.

  18. Visualization and classification of physiological failure modes in ensemble hemorrhage simulation

    Science.gov (United States)

    Zhang, Song; Pruett, William Andrew; Hester, Robert

    2015-01-01

    In an emergency situation such as hemorrhage, doctors need to predict which patients need immediate treatment and care. This task is difficult because of the diverse response to hemorrhage in human population. Ensemble physiological simulations provide a means to sample a diverse range of subjects and may have a better chance of containing the correct solution. However, to reveal the patterns and trends from the ensemble simulation is a challenging task. We have developed a visualization framework for ensemble physiological simulations. The visualization helps users identify trends among ensemble members, classify ensemble member into subpopulations for analysis, and provide prediction to future events by matching a new patient's data to existing ensembles. We demonstrated the effectiveness of the visualization on simulated physiological data. The lessons learned here can be applied to clinically-collected physiological data in the future.

  19. Relation between native ensembles and experimental structures of proteins

    DEFF Research Database (Denmark)

    Best, R. B.; Lindorff-Larsen, Kresten; DePristo, M. A.

    2006-01-01

    Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of "high-sequence similarity Protein Data Bank" (HSP) structures and consider the extent to which such ensembles represent the structural...... Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest...... heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein...

  20. On the structure and phase transitions of power-law Poissonian ensembles

    Science.gov (United States)

    Eliazar, Iddo; Oshanin, Gleb

    2012-10-01

    Power-law Poissonian ensembles are Poisson processes that are defined on the positive half-line, and that are governed by power-law intensities. Power-law Poissonian ensembles are stochastic objects of fundamental significance; they uniquely display an array of fractal features and they uniquely generate a span of important applications. In this paper we apply three different methods—oligarchic analysis, Lorenzian analysis and heterogeneity analysis—to explore power-law Poissonian ensembles. The amalgamation of these analyses, combined with the topology of power-law Poissonian ensembles, establishes a detailed and multi-faceted picture of the statistical structure and the statistical phase transitions of these elemental ensembles.

  1. Dissipation induced asymmetric steering of distant atomic ensembles

    Science.gov (United States)

    Cheng, Guangling; Tan, Huatang; Chen, Aixi

    2018-04-01

    The asymmetric steering effects of separated atomic ensembles denoted by the effective bosonic modes have been explored by the means of quantum reservoir engineering in the setting of the cascaded cavities, in each of which an atomic ensemble is involved. It is shown that the steady-state asymmetric steering of the mesoscopic objects is unconditionally achieved via the dissipation of the cavities, by which the nonlocal interaction occurs between two atomic ensembles, and the direction of steering could be easily controlled through variation of certain tunable system parameters. One advantage of the present scheme is that it could be rather robust against parameter fluctuations, and does not require the accurate control of evolution time and the original state of the system. Furthermore, the double-channel Raman transitions between the long-lived atomic ground states are used and the atomic ensembles act as the quantum network nodes, which makes our scheme insensitive to the collective spontaneous emission of atoms.

  2. Skill forecasting from different wind power ensemble prediction methods

    International Nuclear Information System (INIS)

    Pinson, Pierre; Nielsen, Henrik A; Madsen, Henrik; Kariniotakis, George

    2007-01-01

    This paper presents an investigation on alternative approaches to the providing of uncertainty estimates associated to point predictions of wind generation. Focus is given to skill forecasts in the form of prediction risk indices, aiming at giving a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the definition of prediction risk indices is given. Such skill forecasts are based on the dispersion of ensemble members for a single prediction horizon, or over a set of successive look-ahead times. It is shown on the test case of a Danish offshore wind farm how prediction risk indices may be related to several levels of forecast uncertainty (and energy imbalances). Wind power ensemble predictions are derived from the transformation of ECMWF and NCEP ensembles of meteorological variables to power, as well as by a lagged average approach alternative. The ability of risk indices calculated from the various types of ensembles forecasts to resolve among situations with different levels of uncertainty is discussed

  3. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.

    Science.gov (United States)

    Li, Ling-Yun; Xiong, Xiaorui R; Ibrahim, Leena A; Yuan, Wei; Tao, Huizhong W; Zhang, Li I

    2015-07-01

    Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Using ensemble forecasting for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G.; Landberg, L.; Badger, J. [Risoe National Lab., Roskilde (Denmark); Sattler, K.

    2003-07-01

    Short-term prediction of wind power has a long tradition in Denmark. It is an essential tool for the operators to keep the grid from becoming unstable in a region like Jutland, where more than 27% of the electricity consumption comes from wind power. This means that the minimum load is already lower than the maximum production from wind energy alone. Danish utilities have therefore used short-term prediction of wind energy since the mid-90ies. However, the accuracy is still far from being sufficient in the eyes of the utilities (used to have load forecasts accurate to within 5% on a one-week horizon). The Ensemble project tries to alleviate the dependency of the forecast quality on one model by using multiple models, and also will investigate the possibilities of using the model spread of multiple models or of dedicated ensemble runs for a prediction of the uncertainty of the forecast. Usually, short-term forecasting works (especially for the horizon beyond 6 hours) by gathering input from a Numerical Weather Prediction (NWP) model. This input data is used together with online data in statistical models (this is the case eg in Zephyr/WPPT) to yield the output of the wind farms or of a whole region for the next 48 hours (only limited by the NWP model horizon). For the accuracy of the final production forecast, the accuracy of the NWP prediction is paramount. While many efforts are underway to increase the accuracy of the NWP forecasts themselves (which ultimately are limited by the amount of computing power available, the lack of a tight observational network on the Atlantic and limited physics modelling), another approach is to use ensembles of different models or different model runs. This can be either an ensemble of different models output for the same area, using different data assimilation schemes and different model physics, or a dedicated ensemble run by a large institution, where the same model is run with slight variations in initial conditions and

  5. Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting

    Science.gov (United States)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be

  6. Exploring diversity in ensemble classification: Applications in large area land cover mapping

    Science.gov (United States)

    Mellor, Andrew; Boukir, Samia

    2017-07-01

    Ensemble classifiers, such as random forests, are now commonly applied in the field of remote sensing, and have been shown to perform better than single classifier systems, resulting in reduced generalisation error. Diversity across the members of ensemble classifiers is known to have a strong influence on classification performance - whereby classifier errors are uncorrelated and more uniformly distributed across ensemble members. The relationship between ensemble diversity and classification performance has not yet been fully explored in the fields of information science and machine learning and has never been examined in the field of remote sensing. This study is a novel exploration of ensemble diversity and its link to classification performance, applied to a multi-class canopy cover classification problem using random forests and multisource remote sensing and ancillary GIS data, across seven million hectares of diverse dry-sclerophyll dominated public forests in Victoria Australia. A particular emphasis is placed on analysing the relationship between ensemble diversity and ensemble margin - two key concepts in ensemble learning. The main novelty of our work is on boosting diversity by emphasizing the contribution of lower margin instances used in the learning process. Exploring the influence of tree pruning on diversity is also a new empirical analysis that contributes to a better understanding of ensemble performance. Results reveal insights into the trade-off between ensemble classification accuracy and diversity, and through the ensemble margin, demonstrate how inducing diversity by targeting lower margin training samples is a means of achieving better classifier performance for more difficult or rarer classes and reducing information redundancy in classification problems. Our findings inform strategies for collecting training data and designing and parameterising ensemble classifiers, such as random forests. This is particularly important in large area

  7. Reliability of multi-model and structurally different single-model ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Yokohata, Tokuta [National Institute for Environmental Studies, Center for Global Environmental Research, Tsukuba, Ibaraki (Japan); Annan, James D.; Hargreaves, Julia C. [Japan Agency for Marine-Earth Science and Technology, Research Institute for Global Change, Yokohama, Kanagawa (Japan); Collins, Matthew [University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter (United Kingdom); Jackson, Charles S.; Tobis, Michael [The University of Texas at Austin, Institute of Geophysics, 10100 Burnet Rd., ROC-196, Mail Code R2200, Austin, TX (United States); Webb, Mark J. [Met Office Hadley Centre, Exeter (United Kingdom)

    2012-08-15

    The performance of several state-of-the-art climate model ensembles, including two multi-model ensembles (MMEs) and four structurally different (perturbed parameter) single model ensembles (SMEs), are investigated for the first time using the rank histogram approach. In this method, the reliability of a model ensemble is evaluated from the point of view of whether the observations can be regarded as being sampled from the ensemble. Our analysis reveals that, in the MMEs, the climate variables we investigated are broadly reliable on the global scale, with a tendency towards overdispersion. On the other hand, in the SMEs, the reliability differs depending on the ensemble and variable field considered. In general, the mean state and historical trend of surface air temperature, and mean state of precipitation are reliable in the SMEs. However, variables such as sea level pressure or top-of-atmosphere clear-sky shortwave radiation do not cover a sufficiently wide range in some. It is not possible to assess whether this is a fundamental feature of SMEs generated with particular model, or a consequence of the algorithm used to select and perturb the values of the parameters. As under-dispersion is a potentially more serious issue when using ensembles to make projections, we recommend the application of rank histograms to assess reliability when designing and running perturbed physics SMEs. (orig.)

  8. On the forecast skill of a convection-permitting ensemble

    Science.gov (United States)

    Schellander-Gorgas, Theresa; Wang, Yong; Meier, Florian; Weidle, Florian; Wittmann, Christoph; Kann, Alexander

    2017-01-01

    The 2.5 km convection-permitting (CP) ensemble AROME-EPS (Applications of Research to Operations at Mesoscale - Ensemble Prediction System) is evaluated by comparison with the regional 11 km ensemble ALADIN-LAEF (Aire Limitée Adaption dynamique Développement InterNational - Limited Area Ensemble Forecasting) to show whether a benefit is provided by a CP EPS. The evaluation focuses on the abilities of the ensembles to quantitatively predict precipitation during a 3-month convective summer period over areas consisting of mountains and lowlands. The statistical verification uses surface observations and 1 km × 1 km precipitation analyses, and the verification scores involve state-of-the-art statistical measures for deterministic and probabilistic forecasts as well as novel spatial verification methods. The results show that the convection-permitting ensemble with higher-resolution AROME-EPS outperforms its mesoscale counterpart ALADIN-LAEF for precipitation forecasts. The positive impact is larger for the mountainous areas than for the lowlands. In particular, the diurnal precipitation cycle is improved in AROME-EPS, which leads to a significant improvement of scores at the concerned times of day (up to approximately one-third of the scored verification measure). Moreover, there are advantages for higher precipitation thresholds at small spatial scales, which are due to the improved simulation of the spatial structure of precipitation.

  9. Ensemble computing for the petroleum industry

    International Nuclear Information System (INIS)

    Annaratone, M.; Dossa, D.

    1995-01-01

    Computer downsizing is one of the most often used buzzwords in today's competitive business, and the petroleum industry is at the forefront of this revolution. Ensemble computing provides the key for computer downsizing with its first incarnation, i.e., workstation farms. This paper concerns the importance of increasing the productivity cycle and not just the execution time of a job. The authors introduce the concept of ensemble computing and workstation farms. The they discuss how different computing paradigms can be addressed by workstation farms

  10. Ocean Predictability and Uncertainty Forecasts Using Local Ensemble Transfer Kalman Filter (LETKF)

    Science.gov (United States)

    Wei, M.; Hogan, P. J.; Rowley, C. D.; Smedstad, O. M.; Wallcraft, A. J.; Penny, S. G.

    2017-12-01

    Ocean predictability and uncertainty are studied with an ensemble system that has been developed based on the US Navy's operational HYCOM using the Local Ensemble Transfer Kalman Filter (LETKF) technology. One of the advantages of this method is that the best possible initial analysis states for the HYCOM forecasts are provided by the LETKF which assimilates operational observations using ensemble method. The background covariance during this assimilation process is implicitly supplied with the ensemble avoiding the difficult task of developing tangent linear and adjoint models out of HYCOM with the complicated hybrid isopycnal vertical coordinate for 4D-VAR. The flow-dependent background covariance from the ensemble will be an indispensable part in the next generation hybrid 4D-Var/ensemble data assimilation system. The predictability and uncertainty for the ocean forecasts are studied initially for the Gulf of Mexico. The results are compared with another ensemble system using Ensemble Transfer (ET) method which has been used in the Navy's operational center. The advantages and disadvantages are discussed.

  11. REAL - Ensemble radar precipitation estimation for hydrology in a mountainous region

    OpenAIRE

    Germann, Urs; Berenguer Ferrer, Marc; Sempere Torres, Daniel; Zappa, Massimiliano

    2009-01-01

    An elegant solution to characterise the residual errors in radar precipitation estimates is to generate an ensemble of precipitation fields. The paper proposes a radar ensemble generator designed for usage in the Alps using LU decomposition (REAL), and presents first results from a real-time implementation coupling the radar ensemble with a semi-distributed rainfall–runoff model for flash flood modelling in a steep Alpine catchment. Each member of the radar ensemble is a possible realisati...

  12. Non-Boltzmann Ensembles and Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Murthy, K. P. N.

    2016-01-01

    Boltzmann sampling based on Metropolis algorithm has been extensively used for simulating a canonical ensemble and for calculating macroscopic properties of a closed system at desired temperatures. An estimate of a mechanical property, like energy, of an equilibrium system, is made by averaging over a large number microstates generated by Boltzmann Monte Carlo methods. This is possible because we can assign a numerical value for energy to each microstate. However, a thermal property like entropy, is not easily accessible to these methods. The reason is simple. We can not assign a numerical value for entropy, to a microstate. Entropy is not a property associated with any single microstate. It is a collective property of all the microstates. Toward calculating entropy and other thermal properties, a non-Boltzmann Monte Carlo technique called Umbrella sampling was proposed some forty years ago. Umbrella sampling has since undergone several metamorphoses and we have now, multi-canonical Monte Carlo, entropic sampling, flat histogram methods, Wang-Landau algorithm etc . This class of methods generates non-Boltzmann ensembles which are un-physical. However, physical quantities can be calculated as follows. First un-weight a microstates of the entropic ensemble; then re-weight it to the desired physical ensemble. Carry out weighted average over the entropic ensemble to estimate physical quantities. In this talk I shall tell you of the most recent non- Boltzmann Monte Carlo method and show how to calculate free energy for a few systems. We first consider estimation of free energy as a function of energy at different temperatures to characterize phase transition in an hairpin DNA in the presence of an unzipping force. Next we consider free energy as a function of order parameter and to this end we estimate density of states g ( E , M ), as a function of both energy E , and order parameter M . This is carried out in two stages. We estimate g ( E ) in the first stage

  13. Noodles: a tool for visualization of numerical weather model ensemble uncertainty.

    Science.gov (United States)

    Sanyal, Jibonananda; Zhang, Song; Dyer, Jamie; Mercer, Andrew; Amburn, Philip; Moorhead, Robert J

    2010-01-01

    Numerical weather prediction ensembles are routinely used for operational weather forecasting. The members of these ensembles are individual simulations with either slightly perturbed initial conditions or different model parameterizations, or occasionally both. Multi-member ensemble output is usually large, multivariate, and challenging to interpret interactively. Forecast meteorologists are interested in understanding the uncertainties associated with numerical weather prediction; specifically variability between the ensemble members. Currently, visualization of ensemble members is mostly accomplished through spaghetti plots of a single mid-troposphere pressure surface height contour. In order to explore new uncertainty visualization methods, the Weather Research and Forecasting (WRF) model was used to create a 48-hour, 18 member parameterization ensemble of the 13 March 1993 "Superstorm". A tool was designed to interactively explore the ensemble uncertainty of three important weather variables: water-vapor mixing ratio, perturbation potential temperature, and perturbation pressure. Uncertainty was quantified using individual ensemble member standard deviation, inter-quartile range, and the width of the 95% confidence interval. Bootstrapping was employed to overcome the dependence on normality in the uncertainty metrics. A coordinated view of ribbon and glyph-based uncertainty visualization, spaghetti plots, iso-pressure colormaps, and data transect plots was provided to two meteorologists for expert evaluation. They found it useful in assessing uncertainty in the data, especially in finding outliers in the ensemble run and therefore avoiding the WRF parameterizations that lead to these outliers. Additionally, the meteorologists could identify spatial regions where the uncertainty was significantly high, allowing for identification of poorly simulated storm environments and physical interpretation of these model issues.

  14. Ensemble Deep Learning for Biomedical Time Series Classification

    Directory of Open Access Journals (Sweden)

    Lin-peng Jin

    2016-01-01

    Full Text Available Ensemble learning has been proved to improve the generalization ability effectively in both theory and practice. In this paper, we briefly outline the current status of research on it first. Then, a new deep neural network-based ensemble method that integrates filtering views, local views, distorted views, explicit training, implicit training, subview prediction, and Simple Average is proposed for biomedical time series classification. Finally, we validate its effectiveness on the Chinese Cardiovascular Disease Database containing a large number of electrocardiogram recordings. The experimental results show that the proposed method has certain advantages compared to some well-known ensemble methods, such as Bagging and AdaBoost.

  15. Device and Method for Gathering Ensemble Data Sets

    Science.gov (United States)

    Racette, Paul E. (Inventor)

    2014-01-01

    An ensemble detector uses calibrated noise references to produce ensemble sets of data from which properties of non-stationary processes may be extracted. The ensemble detector comprising: a receiver; a switching device coupled to the receiver, the switching device configured to selectively connect each of a plurality of reference noise signals to the receiver; and a gain modulation circuit coupled to the receiver and configured to vary a gain of the receiver based on a forcing signal; whereby the switching device selectively connects each of the plurality of reference noise signals to the receiver to produce an output signal derived from the plurality of reference noise signals and the forcing signal.

  16. Combining 2-m temperature nowcasting and short range ensemble forecasting

    Directory of Open Access Journals (Sweden)

    A. Kann

    2011-12-01

    Full Text Available During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG since 2006 (Haiden et al., 2011, provides short range deterministic forecasts at high temporal (15 min–60 min and spatial (1 km resolution. An INCA Ensemble (INCA-EPS of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting which is running operationally at ZAMG (Wang et al., 2011. The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion for Gaussian distributed continuous

  17. Ketamine-Induced Changes in the Signal and Noise of Rule Representation in Working Memory by Lateral Prefrontal Neurons.

    Science.gov (United States)

    Ma, Liya; Skoblenick, Kevin; Seamans, Jeremy K; Everling, Stefan

    2015-08-19

    Working memory dysfunction is an especially debilitating symptom in schizophrenia. The NMDA antagonist ketamine has been successfully used to model working memory deficits in both rodents and nonhuman primates, but how it affects the strength and the consistency of working memory representations remains unclear. Here we recorded single-neuron activity in the lateral prefrontal cortex of macaque monkeys before and after the administration of subanesthetic doses of ketamine in a rule-based working memory task. The rule was instructed with a color cue before each delay period and dictated the correct prosaccadic or antisaccadic response to a peripheral stimulus appearing after the delay. We found that acute ketamine injections both weakened the rule signal across all delay periods and amplified the trial-to-trial variance in neural activities (i.e., noise), both within individual neurons and at the ensemble level, resulting in impaired performance. In the minority of postinjection trials when the animals responded correctly, the preservation of the signal strength during the delay periods was predictive of their subsequent success. Our findings suggest that NMDA receptor function may be critical for establishing the optimal signal-to-noise ratio in information representation by ensembles of prefrontal cortex neurons. In schizophrenia patients, working memory deficit is highly debilitating and currently without any efficacious treatment. An improved understanding of the pathophysiology of this symptom may provide critical information to treatment development. The NMDA antagonist ketamine, when injected at a subanesthetic dose, produces working memory deficit and other schizophrenia-like symptoms in humans and other animals. Here we investigated the effects of ketamine on the representation of abstract rules by prefrontal neurons, while macaque monkeys held the rules in working memory before responding accordingly. We found that ketamine weakened the signal

  18. Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models.

    Directory of Open Access Journals (Sweden)

    Nikola Simidjievski

    Full Text Available Ensembles are a well established machine learning paradigm, leading to accurate and robust models, predominantly applied to predictive modeling tasks. Ensemble models comprise a finite set of diverse predictive models whose combined output is expected to yield an improved predictive performance as compared to an individual model. In this paper, we propose a new method for learning ensembles of process-based models of dynamic systems. The process-based modeling paradigm employs domain-specific knowledge to automatically learn models of dynamic systems from time-series observational data. Previous work has shown that ensembles based on sampling observational data (i.e., bagging and boosting, significantly improve predictive performance of process-based models. However, this improvement comes at the cost of a substantial increase of the computational time needed for learning. To address this problem, the paper proposes a method that aims at efficiently learning ensembles of process-based models, while maintaining their accurate long-term predictive performance. This is achieved by constructing ensembles with sampling domain-specific knowledge instead of sampling data. We apply the proposed method to and evaluate its performance on a set of problems of automated predictive modeling in three lake ecosystems using a library of process-based knowledge for modeling population dynamics. The experimental results identify the optimal design decisions regarding the learning algorithm. The results also show that the proposed ensembles yield significantly more accurate predictions of population dynamics as compared to individual process-based models. Finally, while their predictive performance is comparable to the one of ensembles obtained with the state-of-the-art methods of bagging and boosting, they are substantially more efficient.

  19. JEnsembl: a version-aware Java API to Ensembl data systems.

    Science.gov (United States)

    Paterson, Trevor; Law, Andy

    2012-11-01

    The Ensembl Project provides release-specific Perl APIs for efficient high-level programmatic access to data stored in various Ensembl database schema. Although Perl scripts are perfectly suited for processing large volumes of text-based data, Perl is not ideal for developing large-scale software applications nor embedding in graphical interfaces. The provision of a novel Java API would facilitate type-safe, modular, object-orientated development of new Bioinformatics tools with which to access, analyse and visualize Ensembl data. The JEnsembl API implementation provides basic data retrieval and manipulation functionality from the Core, Compara and Variation databases for all species in Ensembl and EnsemblGenomes and is a platform for the development of a richer API to Ensembl datasources. The JEnsembl architecture uses a text-based configuration module to provide evolving, versioned mappings from database schema to code objects. A single installation of the JEnsembl API can therefore simultaneously and transparently connect to current and previous database instances (such as those in the public archive) thus facilitating better analysis repeatability and allowing 'through time' comparative analyses to be performed. Project development, released code libraries, Maven repository and documentation are hosted at SourceForge (http://jensembl.sourceforge.net).

  20. Dispersion of aerosol particles in the free atmosphere using ensemble forecasts

    Directory of Open Access Journals (Sweden)

    T. Haszpra

    2013-10-01

    Full Text Available The dispersion of aerosol particle pollutants is studied using 50 members of an ensemble forecast in the example of a hypothetical free atmospheric emission above Fukushima over a period of 2.5 days. Considerable differences are found among the dispersion predictions of the different ensemble members, as well as between the ensemble mean and the deterministic result at the end of the observation period. The variance is found to decrease with the particle size. The geographical area where a threshold concentration is exceeded in at least one ensemble member expands to a 5–10 times larger region than the area from the deterministic forecast, both for air column "concentration" and in the "deposition" field. We demonstrate that the root-mean-square distance of any particle from its own clones in the ensemble members can reach values on the order of one thousand kilometers. Even the centers of mass of the particle cloud of the ensemble members deviate considerably from that obtained by the deterministic forecast. All these indicate that an investigation of the dispersion of aerosol particles in the spirit of ensemble forecast contains useful hints for the improvement of risk assessment.

  1. Orbital magnetism in ensembles of ballistic billiards

    International Nuclear Information System (INIS)

    Ullmo, D.; Richter, K.; Jalabert, R.A.

    1993-01-01

    The magnetic response of ensembles of small two-dimensional structures at finite temperatures is calculated. Using semiclassical methods and numerical calculation it is demonstrated that only short classical trajectories are relevant. The magnetic susceptibility is enhanced in regular systems, where these trajectories appear in families. For ensembles of squares large paramagnetic susceptibility is obtained, in good agreement with recent measurements in the ballistic regime. (authors). 20 refs., 2 figs

  2. Stress affects the neural ensemble for integrating new information and prior knowledge.

    Science.gov (United States)

    Vogel, Susanne; Kluen, Lisa Marieke; Fernández, Guillén; Schwabe, Lars

    2018-06-01

    Prior knowledge, represented as a schema, facilitates memory encoding. This schema-related learning is assumed to rely on the medial prefrontal cortex (mPFC) that rapidly integrates new information into the schema, whereas schema-incongruent or novel information is encoded by the hippocampus. Stress is a powerful modulator of prefrontal and hippocampal functioning and first studies suggest a stress-induced deficit of schema-related learning. However, the underlying neural mechanism is currently unknown. To investigate the neural basis of a stress-induced schema-related learning impairment, participants first acquired a schema. One day later, they underwent a stress induction or a control procedure before learning schema-related and novel information in the MRI scanner. In line with previous studies, learning schema-related compared to novel information activated the mPFC, angular gyrus, and precuneus. Stress, however, affected the neural ensemble activated during learning. Whereas the control group distinguished between sets of brain regions for related and novel information, stressed individuals engaged the hippocampus even when a relevant schema was present. Additionally, stressed participants displayed aberrant functional connectivity between brain regions involved in schema processing when encoding novel information. The failure to segregate functional connectivity patterns depending on the presence of prior knowledge was linked to impaired performance after stress. Our results show that stress affects the neural ensemble underlying the efficient use of schemas during learning. These findings may have relevant implications for clinical and educational settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Ensemble dispersion forecasting - Part 2. Application and evaluation

    DEFF Research Database (Denmark)

    Galmarini, S.; Bianconi, R.; Addis, R.

    2004-01-01

    of the dispersion of ETEX release 1 and the model ensemble is compared with the monitoring data. The scope of the comparison is to estimate to what extent the ensemble analysis is an improvement with respect to the single model results and represents a superior analysis of the process evolution. (C) 2004 Elsevier...

  4. A variational ensemble scheme for noisy image data assimilation

    Science.gov (United States)

    Yang, Yin; Robinson, Cordelia; Heitz, Dominique; Mémin, Etienne

    2014-05-01

    Data assimilation techniques aim at recovering a system state variables trajectory denoted as X, along time from partially observed noisy measurements of the system denoted as Y. These procedures, which couple dynamics and noisy measurements of the system, fulfill indeed a twofold objective. On one hand, they provide a denoising - or reconstruction - procedure of the data through a given model framework and on the other hand, they provide estimation procedures for unknown parameters of the dynamics. A standard variational data assimilation problem can be formulated as the minimization of the following objective function with respect to the initial discrepancy, η, from the background initial guess: δ« J(η(x)) = 1∥Xb (x) - X (t ,x)∥2 + 1 tf∥H(X (t,x ))- Y (t,x)∥2dt. 2 0 0 B 2 t0 R (1) where the observation operator H links the state variable and the measurements. The cost function can be interpreted as the log likelihood function associated to the a posteriori distribution of the state given the past history of measurements and the background. In this work, we aim at studying ensemble based optimal control strategies for data assimilation. Such formulation nicely combines the ingredients of ensemble Kalman filters and variational data assimilation (4DVar). It is also formulated as the minimization of the objective function (1), but similarly to ensemble filter, it introduces in its objective function an empirical ensemble-based background-error covariance defined as: B ≡ )(Xb - )T>. (2) Thus, it works in an off-line smoothing mode rather than on the fly like sequential filters. Such resulting ensemble variational data assimilation technique corresponds to a relatively new family of methods [1,2,3]. It presents two main advantages: first, it does not require anymore to construct the adjoint of the dynamics tangent linear operator, which is a considerable advantage with respect to the method's implementation, and second, it enables the handling of a flow

  5. Ensemble atmospheric dispersion modeling for emergency response consequence assessments

    International Nuclear Information System (INIS)

    Addis, R.P.; Buckley, R.L.

    2003-01-01

    Full text: Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models themselves, as well as differences in the way these models treat the release source term, all may result in differences in the simulated plumes. This talk will address the U.S. participation in the European ENSEMBLE project, and present a perspective an how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave. Meteorological forecasts generated by numerical models from national and multinational meteorological agencies provide individual realizations of three-dimensional, time dependent atmospheric wind fields. These wind fields may be used to drive atmospheric dispersion (transport and diffusion) models, or they may be used to initiate other, finer resolution meteorological models, which in turn drive dispersion models. Many modeling agencies now utilize ensemble-modeling techniques to determine how sensitive the prognostic fields are to minor perturbations in the model parameters. However, the European Union programs RTMOD and ENSEMBLE are the first projects to utilize a WEB based ensemble approach to interpret the output from atmospheric dispersion models. The ensembles produced are different from those generated by meteorological forecasting centers in that they are ensembles of dispersion model outputs from many different atmospheric transport and diffusion models utilizing prognostic atmospheric fields from several different forecast centers. As such, they enable a decision-maker to consider the uncertainty in the plume transport and growth as a result of the differences in the forecast wind fields as well as the differences in the

  6. Benchmarking Commercial Conformer Ensemble Generators.

    Science.gov (United States)

    Friedrich, Nils-Ole; de Bruyn Kops, Christina; Flachsenberg, Florian; Sommer, Kai; Rarey, Matthias; Kirchmair, Johannes

    2017-11-27

    We assess and compare the performance of eight commercial conformer ensemble generators (ConfGen, ConfGenX, cxcalc, iCon, MOE LowModeMD, MOE Stochastic, MOE Conformation Import, and OMEGA) and one leading free algorithm, the distance geometry algorithm implemented in RDKit. The comparative study is based on a new version of the Platinum Diverse Dataset, a high-quality benchmarking dataset of 2859 protein-bound ligand conformations extracted from the PDB. Differences in the performance of commercial algorithms are much smaller than those observed for free algorithms in our previous study (J. Chem. Inf. 2017, 57, 529-539). For commercial algorithms, the median minimum root-mean-square deviations measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers are between 0.46 and 0.61 Å. Commercial conformer ensemble generators are characterized by their high robustness, with at least 99% of all input molecules successfully processed and few or even no substantial geometrical errors detectable in their output conformations. The RDKit distance geometry algorithm (with minimization enabled) appears to be a good free alternative since its performance is comparable to that of the midranked commercial algorithms. Based on a statistical analysis, we elaborate on which algorithms to use and how to parametrize them for best performance in different application scenarios.

  7. Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms

    Science.gov (United States)

    Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin

    2013-01-01

    Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithms based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.

  8. Ensembl Genomes 2016: more genomes, more complexity.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Conductor gestures influence evaluations of ensemble performance

    Directory of Open Access Journals (Sweden)

    Steven eMorrison

    2014-07-01

    Full Text Available Previous research has found that listener evaluations of ensemble performances vary depending on the expressivity of the conductor’s gestures, even when performances are otherwise identical. It was the purpose of the present study to test whether this effect of visual information was evident in the evaluation of specific aspects of ensemble performance, articulation and dynamics. We constructed a set of 32 music performances that combined auditory and visual information and were designed to feature a high degree of contrast along one of two target characteristics: articulation and dynamics. We paired each of four music excerpts recorded by a chamber ensemble in both a high- and low-contrast condition with video of four conductors demonstrating high- and low-contrast gesture specifically appropriate to either articulation or dynamics. Using one of two equivalent test forms, college music majors and nonmajors (N = 285 viewed sixteen 30-second performances and evaluated the quality of the ensemble’s articulation, dynamics, technique and tempo along with overall expressivity. Results showed significantly higher evaluations for performances featuring high rather than low conducting expressivity regardless of the ensemble’s performance quality. Evaluations for both articulation and dynamics were strongly and positively correlated with evaluations of overall ensemble expressivity.

  10. Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.

    Science.gov (United States)

    Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M

    2014-12-01

    In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.

  11. Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms

    Science.gov (United States)

    Janjic, Tijana; Mclaughlin, Dennis; Cohn, Stephen E.; Verlaan, Martin

    2014-01-01

    This paper considers the incorporation of constraints to enforce physically based conservation laws in the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even though the actual states must be nonnegative. In such situations if negative values are set to zero, or a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate non-negativity constraints. Simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. In two examples, an update that includes a non-negativity constraint is able to properly describe the transport of a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be addressed, particularly the need to develop a computationally efficient quadratic programming update for large ensemble.

  12. Momentum distribution functions in ensembles: the inequivalence of microcannonical and canonical ensembles in a finite ultracold system.

    Science.gov (United States)

    Wang, Pei; Xianlong, Gao; Li, Haibin

    2013-08-01

    It is demonstrated in many thermodynamic textbooks that the equivalence of the different ensembles is achieved in the thermodynamic limit. In this present work we discuss the inequivalence of microcanonical and canonical ensembles in a finite ultracold system at low energies. We calculate the microcanonical momentum distribution function (MDF) in a system of identical fermions (bosons). We find that the microcanonical MDF deviates from the canonical one, which is the Fermi-Dirac (Bose-Einstein) function, in a finite system at low energies where the single-particle density of states and its inverse are finite.

  13. An educational model for ensemble streamflow simulation and uncertainty analysis

    Directory of Open Access Journals (Sweden)

    A. AghaKouchak

    2013-02-01

    Full Text Available This paper presents the hands-on modeling toolbox, HBV-Ensemble, designed as a complement to theoretical hydrology lectures, to teach hydrological processes and their uncertainties. The HBV-Ensemble can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI and an ensemble simulation scheme that can be used for teaching uncertainty analysis, parameter estimation, ensemble simulation and model sensitivity. HBV-Ensemble was administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of uncertainty in hydrological modeling.

  14. A Hyper-Heuristic Ensemble Method for Static Job-Shop Scheduling.

    Science.gov (United States)

    Hart, Emma; Sim, Kevin

    2016-01-01

    We describe a new hyper-heuristic method NELLI-GP for solving job-shop scheduling problems (JSSP) that evolves an ensemble of heuristics. The ensemble adopts a divide-and-conquer approach in which each heuristic solves a unique subset of the instance set considered. NELLI-GP extends an existing ensemble method called NELLI by introducing a novel heuristic generator that evolves heuristics composed of linear sequences of dispatching rules: each rule is represented using a tree structure and is itself evolved. Following a training period, the ensemble is shown to outperform both existing dispatching rules and a standard genetic programming algorithm on a large set of new test instances. In addition, it obtains superior results on a set of 210 benchmark problems from the literature when compared to two state-of-the-art hyper-heuristic approaches. Further analysis of the relationship between heuristics in the evolved ensemble and the instances each solves provides new insights into features that might describe similar instances.

  15. Inhomogeneous ensembles of radical pairs in chemical compasses

    Science.gov (United States)

    Procopio, Maria; Ritz, Thorsten

    2016-11-01

    The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.

  16. Enhancing COSMO-DE ensemble forecasts by inexpensive techniques

    Directory of Open Access Journals (Sweden)

    Zied Ben Bouallègue

    2013-02-01

    Full Text Available COSMO-DE-EPS, a convection-permitting ensemble prediction system based on the high-resolution numerical weather prediction model COSMO-DE, is pre-operational since December 2010, providing probabilistic forecasts which cover Germany. This ensemble system comprises 20 members based on variations of the lateral boundary conditions, the physics parameterizations and the initial conditions. In order to increase the sample size in a computationally inexpensive way, COSMO-DE-EPS is combined with alternative ensemble techniques: the neighborhood method and the time-lagged approach. Their impact on the quality of the resulting probabilistic forecasts is assessed. Objective verification is performed over a six months period, scores based on the Brier score and its decomposition are shown for June 2011. The combination of the ensemble system with the alternative approaches improves probabilistic forecasts of precipitation in particular for high precipitation thresholds. Moreover, combining COSMO-DE-EPS with only the time-lagged approach improves the skill of area probabilities for precipitation and does not deteriorate the skill of 2 m-temperature and wind gusts forecasts.

  17. Realization of Deutsch-like algorithm using ensemble computing

    International Nuclear Information System (INIS)

    Wei Daxiu; Luo Jun; Sun Xianping; Zeng Xizhi

    2003-01-01

    The Deutsch-like algorithm [Phys. Rev. A. 63 (2001) 034101] distinguishes between even and odd query functions using fewer function calls than its possible classical counterpart in a two-qubit system. But the similar method cannot be applied to a multi-qubit system. We propose a new approach for solving Deutsch-like problem using ensemble computing. The proposed algorithm needs an ancillary qubit and can be easily extended to multi-qubit system with one query. Our ensemble algorithm beginning with a easily-prepared initial state has three main steps. The classifications of the functions can be obtained directly from the spectra of the ancilla qubit. We also demonstrate the new algorithm in a four-qubit molecular system using nuclear magnetic resonance (NMR). One hydrogen and three carbons are selected as the four qubits, and one of carbons is ancilla qubit. We choice two unitary transformations, corresponding to two functions (one odd function and one even function), to validate the ensemble algorithm. The results show that our experiment is successfully and our ensemble algorithm for solving the Deutsch-like problem is virtual

  18. Spectral statistics in semiclassical random-matrix ensembles

    International Nuclear Information System (INIS)

    Feingold, M.; Leitner, D.M.; Wilkinson, M.

    1991-01-01

    A novel random-matrix ensemble is introduced which mimics the global structure inherent in the Hamiltonian matrices of autonomous, ergodic systems. Changes in its parameters induce a transition between a Poisson and a Wigner distribution for the level spacings, P(s). The intermediate distributions are uniquely determined by a single scaling variable. Semiclassical constraints force the ensemble to be in a regime with Wigner P(s) for systems with more than two freedoms

  19. Multivariate localization methods for ensemble Kalman filtering

    OpenAIRE

    S. Roh; M. Jun; I. Szunyogh; M. G. Genton

    2015-01-01

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of ...

  20. Decimated Input Ensembles for Improved Generalization

    Science.gov (United States)

    Tumer, Kagan; Oza, Nikunj C.; Norvig, Peter (Technical Monitor)

    1999-01-01

    Recently, many researchers have demonstrated that using classifier ensembles (e.g., averaging the outputs of multiple classifiers before reaching a classification decision) leads to improved performance for many difficult generalization problems. However, in many domains there are serious impediments to such "turnkey" classification accuracy improvements. Most notable among these is the deleterious effect of highly correlated classifiers on the ensemble performance. One particular solution to this problem is generating "new" training sets by sampling the original one. However, with finite number of patterns, this causes a reduction in the training patterns each classifier sees, often resulting in considerably worsened generalization performance (particularly for high dimensional data domains) for each individual classifier. Generally, this drop in the accuracy of the individual classifier performance more than offsets any potential gains due to combining, unless diversity among classifiers is actively promoted. In this work, we introduce a method that: (1) reduces the correlation among the classifiers; (2) reduces the dimensionality of the data, thus lessening the impact of the 'curse of dimensionality'; and (3) improves the classification performance of the ensemble.

  1. Tailored Random Graph Ensembles

    International Nuclear Information System (INIS)

    Roberts, E S; Annibale, A; Coolen, A C C

    2013-01-01

    Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.

  2. Deviations from Wick's theorem in the canonical ensemble

    Science.gov (United States)

    Schönhammer, K.

    2017-07-01

    Wick's theorem for the expectation values of products of field operators for a system of noninteracting fermions or bosons plays an important role in the perturbative approach to the quantum many-body problem. A finite-temperature version holds in the framework of the grand canonical ensemble, but not for the canonical ensemble appropriate for systems with fixed particle number such as ultracold quantum gases in optical lattices. Here we present formulas for expectation values of products of field operators in the canonical ensemble using a method in the spirit of Gaudin's proof of Wick's theorem for the grand canonical case. The deviations from Wick's theorem are examined quantitatively for two simple models of noninteracting fermions.

  3. Preferences of and Attitudes toward Treble Choral Ensembles

    Science.gov (United States)

    Wilson, Jill M.

    2012-01-01

    In choral ensembles, a pursuit where females far outnumber males, concern exists that females are being devalued. Attitudes of female choral singers may be negatively affected by the gender imbalance that exists in mixed choirs and by the placement of the mixed choir as the most select ensemble in a program. The purpose of this research was to…

  4. Response properties of neurons in the cat's putamen during auditory discrimination.

    Science.gov (United States)

    Zhao, Zhenling; Sato, Yu; Qin, Ling

    2015-10-01

    The striatum integrates diverse convergent input and plays a critical role in the goal-directed behaviors. To date, the auditory functions of striatum are less studied. Recently, it was demonstrated that auditory cortico-striatal projections influence behavioral performance during a frequency discrimination task. To reveal the functions of striatal neurons in auditory discrimination, we recorded the single-unit spike activities in the putamen (dorsal striatum) of free-moving cats while performing a Go/No-go task to discriminate the sounds with different modulation rates (12.5 Hz vs. 50 Hz) or envelopes (damped vs. ramped). We found that the putamen neurons can be broadly divided into four groups according to their contributions to sound discrimination. First, 40% of neurons showed vigorous responses synchronized to the sound envelope, and could precisely discriminate different sounds. Second, 18% of neurons showed a high preference of ramped to damped sounds, but no preference for modulation rate. They could only discriminate the change of sound envelope. Third, 27% of neurons rapidly adapted to the sound stimuli, had no ability of sound discrimination. Fourth, 15% of neurons discriminated the sounds dependent on the reward-prediction. Comparing to passively listening condition, the activities of putamen neurons were significantly enhanced by the engagement of the auditory tasks, but not modulated by the cat's behavioral choice. The coexistence of multiple types of neurons suggests that the putamen is involved in the transformation from auditory representation to stimulus-reward association. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A note on the multi model super ensemble technique for reducing forecast errors

    International Nuclear Information System (INIS)

    Kantha, L.; Carniel, S.; Sclavo, M.

    2008-01-01

    The multi model super ensemble (S E) technique has been used with considerable success to improve meteorological forecasts and is now being applied to ocean models. Although the technique has been shown to produce deterministic forecasts that can be superior to the individual models in the ensemble or a simple multi model ensemble forecast, there is a clear need to understand its strengths and limitations. This paper is an attempt to do so in simple, easily understood contexts. The results demonstrate that the S E forecast is almost always better than the simple ensemble forecast, the degree of improvement depending on the properties of the models in the ensemble. However, the skill of the S E forecast with respect to the true forecast depends on a number of factors, principal among which is the skill of the models in the ensemble. As can be expected, if the ensemble consists of models with poor skill, the S E forecast will also be poor, although better than the ensemble forecast. On the other hand, the inclusion of even a single skillful model in the ensemble increases the forecast skill significantly.

  6. Ensemble prediction of floods – catchment non-linearity and forecast probabilities

    Directory of Open Access Journals (Sweden)

    C. Reszler

    2007-07-01

    Full Text Available Quantifying the uncertainty of flood forecasts by ensemble methods is becoming increasingly important for operational purposes. The aim of this paper is to examine how the ensemble distribution of precipitation forecasts propagates in the catchment system, and to interpret the flood forecast probabilities relative to the forecast errors. We use the 622 km2 Kamp catchment in Austria as an example where a comprehensive data set, including a 500 yr and a 1000 yr flood, is available. A spatially-distributed continuous rainfall-runoff model is used along with ensemble and deterministic precipitation forecasts that combine rain gauge data, radar data and the forecast fields of the ALADIN and ECMWF numerical weather prediction models. The analyses indicate that, for long lead times, the variability of the precipitation ensemble is amplified as it propagates through the catchment system as a result of non-linear catchment response. In contrast, for lead times shorter than the catchment lag time (e.g. 12 h and less, the variability of the precipitation ensemble is decreased as the forecasts are mainly controlled by observed upstream runoff and observed precipitation. Assuming that all ensemble members are equally likely, the statistical analyses for five flood events at the Kamp showed that the ensemble spread of the flood forecasts is always narrower than the distribution of the forecast errors. This is because the ensemble forecasts focus on the uncertainty in forecast precipitation as the dominant source of uncertainty, and other sources of uncertainty are not accounted for. However, a number of analyses, including Relative Operating Characteristic diagrams, indicate that the ensemble spread is a useful indicator to assess potential forecast errors for lead times larger than 12 h.

  7. Rainfall downscaling of weekly ensemble forecasts using self-organising maps

    Directory of Open Access Journals (Sweden)

    Masamichi Ohba

    2016-03-01

    Full Text Available This study presents an application of self-organising maps (SOMs to downscaling medium-range ensemble forecasts and probabilistic prediction of local precipitation in Japan. SOM was applied to analyse and connect the relationship between atmospheric patterns over Japan and local high-resolution precipitation data. Multiple SOM was simultaneously employed on four variables derived from the JRA-55 reanalysis over the area of study (south-western Japan, and a two-dimensional lattice of weather patterns (WPs was obtained. Weekly ensemble forecasts can be downscaled to local precipitation using the obtained multiple SOM. The downscaled precipitation is derived by the five SOM lattices based on the WPs of the global model ensemble forecasts for a particular day in 2009–2011. Because this method effectively handles the stochastic uncertainties from the large number of ensemble members, a probabilistic local precipitation is easily and quickly obtained from the ensemble forecasts. This downscaling of ensemble forecasts provides results better than those from a 20-km global spectral model (i.e. capturing the relatively detailed precipitation distribution over the region. To capture the effect of the detailed pattern differences in each SOM node, a statistical model is additionally concreted for each SOM node. The predictability skill of the ensemble forecasts is significantly improved under the neural network-statistics hybrid-downscaling technique, which then brings a much better skill score than the traditional method. It is expected that the results of this study will provide better guidance to the user community and contribute to the future development of dam-management models.

  8. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.

    Science.gov (United States)

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. Using extracellular recordings from premotor interneurons and voltage-clamp recordings of ipsilateral segmental motor neurons in 69 isolated nerve cords, we assessed the strength and dynamics of premotor inhibitory synaptic output onto the entire ensemble of heart motor neurons and the associated conduction delays in both coordination modes. We conclude that premotor interneurons establish a stereotypical pattern of intersegmental synaptic connectivity, strengths, and dynamics that is invariant across coordination modes, despite wide variations among preparations. These data coupled with a previous description of the temporal pattern of premotor interneuron activity and relative phasing of motor neuron activity in the two coordination modes enable a direct assessment of how premotor interneurons through their temporal pattern of activity and their spatial pattern of synaptic connectivity, strengths, and dynamics coordinate segmental motor neurons into a functional pattern of activity.

  9. Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.

    Science.gov (United States)

    Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel

    2017-06-01

    Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.

  10. Cluster ensembles, quantization and the dilogarithm

    DEFF Research Database (Denmark)

    Fock, Vladimir; Goncharov, Alexander B.

    2009-01-01

    A cluster ensemble is a pair of positive spaces (i.e. varieties equipped with positive atlases), coming with an action of a symmetry group . The space is closely related to the spectrum of a cluster algebra [ 12 ]. The two spaces are related by a morphism . The space is equipped with a closed -form......, possibly degenerate, and the space has a Poisson structure. The map is compatible with these structures. The dilogarithm together with its motivic and quantum avatars plays a central role in the cluster ensemble structure. We define a non-commutative -deformation of the -space. When is a root of unity...

  11. Nonequilibrium statistical mechanics ensemble method

    CERN Document Server

    Eu, Byung Chan

    1998-01-01

    In this monograph, nonequilibrium statistical mechanics is developed by means of ensemble methods on the basis of the Boltzmann equation, the generic Boltzmann equations for classical and quantum dilute gases, and a generalised Boltzmann equation for dense simple fluids The theories are developed in forms parallel with the equilibrium Gibbs ensemble theory in a way fully consistent with the laws of thermodynamics The generalised hydrodynamics equations are the integral part of the theory and describe the evolution of macroscopic processes in accordance with the laws of thermodynamics of systems far removed from equilibrium Audience This book will be of interest to researchers in the fields of statistical mechanics, condensed matter physics, gas dynamics, fluid dynamics, rheology, irreversible thermodynamics and nonequilibrium phenomena

  12. NeuronBank: a tool for cataloging neuronal circuitry

    Directory of Open Access Journals (Sweden)

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  13. Quantum canonical ensemble: A projection operator approach

    Science.gov (United States)

    Magnus, Wim; Lemmens, Lucien; Brosens, Fons

    2017-09-01

    Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.

  14. Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing

    KAUST Repository

    Toye, Habib; Zhan, Peng; Gopalakrishnan, Ganesh; Kartadikaria, Aditya R.; Huang, Huang; Knio, Omar; Hoteit, Ibrahim

    2017-01-01

    We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation

  15. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.

    Science.gov (United States)

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts: synchronous and peristaltic. Using extracellular techniques, we recorded, in 61 isolated nerve cords, the activity of motor neurons in conjunction with the phase reference premotor heart interneuron, HN(4), and another premotor interneuron that allowed us to assess the coordination mode. These data were then coupled with a previous description of the temporal pattern of premotor interneuron activity in the two coordination modes to synthesize a global phase diagram for the known elements of the CPG and the entire motor neuron ensemble. These average data reveal the stereotypical side-to-side asymmetric patterns of intersegmental coordination among the motor neurons and show how this pattern meshes with the activity pattern of premotor interneurons. Analysis of animal-to-animal variability in this coordination indicates that the intersegmental phase progression of motor neuron activity in the midbody in the peristaltic coordination mode is the most stereotypical feature of the fictive motor pattern. Bilateral recordings from motor neurons corroborate the main features of the asymmetric motor pattern.

  16. Dynamics of intrinsic electrophysiological properties in spinal cord neurones

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1999-01-01

    The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. ....... Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands....

  17. An iterative ensemble Kalman filter for reservoir engineering applications

    NARCIS (Netherlands)

    Krymskaya, M.V.; Hanea, R.G.; Verlaan, M.

    2009-01-01

    The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the

  18. Improving the ensemble-optimization method through covariance-matrix adaptation

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Hof, P.M.J. van den; Jansen, J.D.

    2015-01-01

    Ensemble optimization (referred to throughout the remainder of the paper as EnOpt) is a rapidly emerging method for reservoirmodel-based production optimization. EnOpt uses an ensemble of controls to approximate the gradient of the objective function with respect to the controls. Current

  19. Parallel quantum computing in a single ensemble quantum computer

    International Nuclear Information System (INIS)

    Long Guilu; Xiao, L.

    2004-01-01

    We propose a parallel quantum computing mode for ensemble quantum computer. In this mode, some qubits are in pure states while other qubits are in mixed states. It enables a single ensemble quantum computer to perform 'single-instruction-multidata' type of parallel computation. Parallel quantum computing can provide additional speedup in Grover's algorithm and Shor's algorithm. In addition, it also makes a fuller use of qubit resources in an ensemble quantum computer. As a result, some qubits discarded in the preparation of an effective pure state in the Schulman-Varizani and the Cleve-DiVincenzo algorithms can be reutilized

  20. Fluctuation, stationarity, and ergodic properties of random-matrix ensembles

    International Nuclear Information System (INIS)

    Pandey, A.

    1979-01-01

    The properties of random-matrix ensembles and the application of such ensembles to energy-level fluctuations and strength fluctuations are discussed. The two-point correlation function for complex spectra described by the three standard Gaussian ensembles is calculated, and its essential simplicity, displayed by an elementary procedure that derives from the dominance of binary correlations. The resultant function is exact for the unitary case and a very good approximation to the orthogonal and symplectic cases. The same procedure yields the spectrum for a Gaussian orthogonal ensemble (GOE) deformed by a pairing interaction. Several extensions are given and relationships to other problems of current interest are discussed. The standard fluctuation measures are rederived for the GOE, and their extensions to the unitary and symplectic cases are given. The measures are shown to derive, for the most part, from the two-point function, and new relationships between them are established, answering some long-standing questions. Some comparisons with experimental values are also made. All the cluster functions, and therefore the fluctuation measures, are shown to be stationary and strongly ergodic, thus justifying the use of random matrices for individual spectra. Strength fluctuations in the orthogonal ensemble are also considered. The Porter-Thomas distribution in its various forms is rederived and its ergodicity is established

  1. Convergence of the Square Root Ensemble Kalman Filter in the Large Ensemble Limit

    Czech Academy of Sciences Publication Activity Database

    Kwiatkowski, E.; Mandel, Jan

    2015-01-01

    Roč. 3, č. 1 (2015), s. 1-17 ISSN 2166-2525 R&D Projects: GA ČR GA13-34856S Institutional support: RVO:67985807 Keywords : data assimilation * Lp laws of large numbers * Hilbert space * ensemble Kalman filter Subject RIV: IN - Informatics, Computer Science

  2. Spatio-temporal behaviour of medium-range ensemble forecasts

    Science.gov (United States)

    Kipling, Zak; Primo, Cristina; Charlton-Perez, Andrew

    2010-05-01

    Using the recently-developed mean-variance of logarithms (MVL) diagram, together with the TIGGE archive of medium-range ensemble forecasts from nine different centres, we present an analysis of the spatio-temporal dynamics of their perturbations, and show how the differences between models and perturbation techniques can explain the shape of their characteristic MVL curves. We also consider the use of the MVL diagram to compare the growth of perturbations within the ensemble with the growth of the forecast error, showing that there is a much closer correspondence for some models than others. We conclude by looking at how the MVL technique might assist in selecting models for inclusion in a multi-model ensemble, and suggest an experiment to test its potential in this context.

  3. Microcanonical ensemble and algebra of conserved generators for generalized quantum dynamics

    International Nuclear Information System (INIS)

    Adler, S.L.; Horwitz, L.P.

    1996-01-01

    It has recently been shown, by application of statistical mechanical methods to determine the canonical ensemble governing the equilibrium distribution of operator initial values, that complex quantum field theory can emerge as a statistical approximation to an underlying generalized quantum dynamics. This result was obtained by an argument based on a Ward identity analogous to the equipartition theorem of classical statistical mechanics. We construct here a microcanonical ensemble which forms the basis of this canonical ensemble. This construction enables us to define the microcanonical entropy and free energy of the field configuration of the equilibrium distribution and to study the stability of the canonical ensemble. We also study the algebraic structure of the conserved generators from which the microcanonical and canonical ensembles are constructed, and the flows they induce on the phase space. copyright 1996 American Institute of Physics

  4. Competitive Learning Neural Network Ensemble Weighted by Predicted Performance

    Science.gov (United States)

    Ye, Qiang

    2010-01-01

    Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…

  5. Robust Ensemble Filtering and Its Relation to Covariance Inflation in the Ensemble Kalman Filter

    KAUST Repository

    Luo, Xiaodong

    2011-12-01

    A robust ensemble filtering scheme based on the H∞ filtering theory is proposed. The optimal H∞ filter is derived by minimizing the supremum (or maximum) of a predefined cost function, a criterion different from the minimum variance used in the Kalman filter. By design, the H∞ filter is more robust than the Kalman filter, in the sense that the estimation error in the H∞ filter in general has a finite growth rate with respect to the uncertainties in assimilation, except for a special case that corresponds to the Kalman filter. The original form of the H∞ filter contains global constraints in time, which may be inconvenient for sequential data assimilation problems. Therefore a variant is introduced that solves some time-local constraints instead, and hence it is called the time-local H∞ filter (TLHF). By analogy to the ensemble Kalman filter (EnKF), the concept of ensemble time-local H∞ filter (EnTLHF) is also proposed. The general form of the EnTLHF is outlined, and some of its special cases are discussed. In particular, it is shown that an EnKF with certain covariance inflation is essentially an EnTLHF. In this sense, the EnTLHF provides a general framework for conducting covariance inflation in the EnKF-based methods. Some numerical examples are used to assess the relative robustness of the TLHF–EnTLHF in comparison with the corresponding KF–EnKF method.

  6. Ensemble system for Part-of-Speech tagging

    OpenAIRE

    Dell'Orletta, Felice

    2009-01-01

    The paper contains a description of the Felice-POS-Tagger and of its performance in Evalita 2009. Felice-POS-Tagger is an ensemble system that combines six different POS taggers. When evaluated on the official test set, the ensemble system outperforms each of the single tagger components and achieves the highest accuracy score in Evalita 2009 POS Closed Task. It is shown rst that the errors made from the dierent taggers are complementary, and then how to use this complementary behavior to the...

  7. Learning to Run with Actor-Critic Ensemble

    OpenAIRE

    Huang, Zhewei; Zhou, Shuchang; Zhuang, BoEr; Zhou, Xinyu

    2017-01-01

    We introduce an Actor-Critic Ensemble(ACE) method for improving the performance of Deep Deterministic Policy Gradient(DDPG) algorithm. At inference time, our method uses a critic ensemble to select the best action from proposals of multiple actors running in parallel. By having a larger candidate set, our method can avoid actions that have fatal consequences, while staying deterministic. Using ACE, we have won the 2nd place in NIPS'17 Learning to Run competition, under the name of "Megvii-hzw...

  8. Robust Ensemble Filtering and Its Relation to Covariance Inflation in the Ensemble Kalman Filter

    KAUST Repository

    Luo, Xiaodong; Hoteit, Ibrahim

    2011-01-01

    A robust ensemble filtering scheme based on the H∞ filtering theory is proposed. The optimal H∞ filter is derived by minimizing the supremum (or maximum) of a predefined cost function, a criterion different from the minimum variance used

  9. Time-dependent generalized Gibbs ensembles in open quantum systems

    Science.gov (United States)

    Lange, Florian; Lenarčič, Zala; Rosch, Achim

    2018-04-01

    Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.

  10. Precision bounds for gradient magnetometry with atomic ensembles

    Science.gov (United States)

    Apellaniz, Iagoba; Urizar-Lanz, Iñigo; Zimborás, Zoltán; Hyllus, Philipp; Tóth, Géza

    2018-05-01

    We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.

  11. Embedded random matrix ensembles in quantum physics

    CERN Document Server

    Kota, V K B

    2014-01-01

    Although used with increasing frequency in many branches of physics, random matrix ensembles are not always sufficiently specific to account for important features of the physical system at hand. One refinement which retains the basic stochastic approach but allows for such features consists in the use of embedded ensembles.  The present text is an exhaustive introduction to and survey of this important field. Starting with an easy-to-read introduction to general random matrix theory, the text then develops the necessary concepts from the beginning, accompanying the reader to the frontiers of present-day research. With some notable exceptions, to date these ensembles have primarily been applied in nuclear spectroscopy. A characteristic example is the use of a random two-body interaction in the framework of the nuclear shell model. Yet, topics in atomic physics, mesoscopic physics, quantum information science and statistical mechanics of isolated finite quantum systems can also be addressed using these ensemb...

  12. Understanding ensemble protein folding at atomic detail

    International Nuclear Information System (INIS)

    Wallin, Stefan; Shakhnovich, Eugene I

    2008-01-01

    Although far from routine, simulating the folding of specific short protein chains on the computer, at a detailed atomic level, is starting to become a reality. This remarkable progress, which has been made over the last decade or so, allows a fundamental aspect of the protein folding process to be addressed, namely its statistical nature. In order to make quantitative comparisons with experimental kinetic data a complete ensemble view of folding must be achieved, with key observables averaged over the large number of microscopically different folding trajectories available to a protein chain. Here we review recent advances in atomic-level protein folding simulations and the new insight provided by them into the protein folding process. An important element in understanding ensemble folding kinetics are methods for analyzing many separate folding trajectories, and we discuss techniques developed to condense the large amount of information contained in an ensemble of trajectories into a manageable picture of the folding process. (topical review)

  13. Ensemble-free configurational temperature for spin systems

    Science.gov (United States)

    Palma, G.; Gutiérrez, G.; Davis, S.

    2016-12-01

    An estimator for the dynamical temperature in an arbitrary ensemble is derived in the framework of the conjugate variables theorem. We prove directly that its average indeed gives the inverse temperature and that it is independent of the ensemble. We test this estimator numerically by a simulation of the two-dimensional X Y model in the canonical ensemble. As this model is critical in the whole region of temperatures below the Berezinski-Kosterlitz-Thouless critical temperature TBKT, we use a generalization of Wolff's unicluster algorithm. The numerical results allow us to confirm the robustness of the analytical expression for the microscopic estimator of the temperature. This microscopic estimator has also the advantage that it gives a direct measure of the thermalization process and can be used to compute absolute errors associated with statistical fluctuations. In consequence, this estimator allows for a direct, absolute, and stringent test of the ergodicity of the underlying Markov process, which encodes the algorithm used in a numerical simulation.

  14. Online probabilistic learning with an ensemble of forecasts

    Science.gov (United States)

    Thorey, Jean; Mallet, Vivien; Chaussin, Christophe

    2016-04-01

    Our objective is to produce a calibrated weighted ensemble to forecast a univariate time series. In addition to a meteorological ensemble of forecasts, we rely on observations or analyses of the target variable. The celebrated Continuous Ranked Probability Score (CRPS) is used to evaluate the probabilistic forecasts. However applying the CRPS on weighted empirical distribution functions (deriving from the weighted ensemble) may introduce a bias because of which minimizing the CRPS does not produce the optimal weights. Thus we propose an unbiased version of the CRPS which relies on clusters of members and is strictly proper. We adapt online learning methods for the minimization of the CRPS. These methods generate the weights associated to the members in the forecasted empirical distribution function. The weights are updated before each forecast step using only past observations and forecasts. Our learning algorithms provide the theoretical guarantee that, in the long run, the CRPS of the weighted forecasts is at least as good as the CRPS of any weighted ensemble with weights constant in time. In particular, the performance of our forecast is better than that of any subset ensemble with uniform weights. A noteworthy advantage of our algorithm is that it does not require any assumption on the distributions of the observations and forecasts, both for the application and for the theoretical guarantee to hold. As application example on meteorological forecasts for photovoltaic production integration, we show that our algorithm generates a calibrated probabilistic forecast, with significant performance improvements on probabilistic diagnostic tools (the CRPS, the reliability diagram and the rank histogram).

  15. Improving the ensemble optimization method through covariance matrix adaptation (CMA-EnOpt)

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Hof, P.M.J. van den; Jansen, J.D.

    2013-01-01

    Ensemble Optimization (EnOpt) is a rapidly emerging method for reservoir model based production optimization. EnOpt uses an ensemble of controls to approximate the gradient of the objective function with respect to the controls. Current implementations of EnOpt use a Gaussian ensemble with a

  16. Scalable quantum information processing with atomic ensembles and flying photons

    International Nuclear Information System (INIS)

    Mei Feng; Yu Yafei; Feng Mang; Zhang Zhiming

    2009-01-01

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could much relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.

  17. Statistical Analysis of Protein Ensembles

    Science.gov (United States)

    Máté, Gabriell; Heermann, Dieter

    2014-04-01

    As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  18. Ensemble Forecasts with Useful Skill-Spread Relationships for African meningitis and Asia Streamflow Forecasting

    Science.gov (United States)

    Hopson, T. M.

    2014-12-01

    One potential benefit of an ensemble prediction system (EPS) is its capacity to forecast its own forecast error through the ensemble spread-error relationship. In practice, an EPS is often quite limited in its ability to represent the variable expectation of forecast error through the variable dispersion of the ensemble, and perhaps more fundamentally, in its ability to provide enough variability in the ensembles dispersion to make the skill-spread relationship even potentially useful (irrespective of whether the EPS is well-calibrated or not). In this paper we examine the ensemble skill-spread relationship of an ensemble constructed from the TIGGE (THORPEX Interactive Grand Global Ensemble) dataset of global forecasts and a combination of multi-model and post-processing approaches. Both of the multi-model and post-processing techniques are based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. The methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. A context for these concepts is provided by assessing the constructed ensemble in forecasting district-level humidity impacting the incidence of meningitis in the meningitis belt of Africa, and in forecasting flooding events in the Brahmaputra and Ganges basins of South Asia.

  19. Adiabatic passage and ensemble control of quantum systems

    International Nuclear Information System (INIS)

    Leghtas, Z; Sarlette, A; Rouchon, P

    2011-01-01

    This paper considers population transfer between eigenstates of a finite quantum ladder controlled by a classical electric field. Using an appropriate change of variables, we show that this setting can be set in the framework of adiabatic passage, which is known to facilitate ensemble control of quantum systems. Building on this insight, we present a mathematical proof of robustness for a control protocol-chirped pulse-practised by experimentalists to drive an ensemble of quantum systems from the ground state to the most excited state. We then propose new adiabatic control protocols using a single chirped and amplitude-shaped pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of systems with unknown coupling strengths. These adiabatic control protocols are illustrated by simulations on a four-level ladder.

  20. Conductor and Ensemble Performance Expressivity and State Festival Ratings

    Science.gov (United States)

    Price, Harry E.; Chang, E. Christina

    2005-01-01

    This study is the second in a series examining the relationship between conducting and ensemble performance. The purpose was to further examine the associations among conductor, ensemble performance expressivity, and festival ratings. Participants were asked to rate the expressivity of video-only conducting and parallel audio-only excerpts from a…

  1. Constructing Support Vector Machine Ensembles for Cancer Classification Based on Proteomic Profiling

    Institute of Scientific and Technical Information of China (English)

    Yong Mao; Xiao-Bo Zhou; Dao-Ying Pi; You-Xian Sun

    2005-01-01

    In this study, we present a constructive algorithm for training cooperative support vector machine ensembles (CSVMEs). CSVME combines ensemble architecture design with cooperative training for individual SVMs in ensembles. Unlike most previous studies on training ensembles, CSVME puts emphasis on both accuracy and collaboration among individual SVMs in an ensemble. A group of SVMs selected on the basis of recursive classifier elimination is used in CSVME, and the number of the individual SVMs selected to construct CSVME is determined by 10-fold cross-validation. This kind of SVME has been tested on two ovarian cancer datasets previously obtained by proteomic mass spectrometry. By combining several individual SVMs, the proposed method achieves better performance than the SVME of all base SVMs.

  2. Sequential Ensembles Tolerant to Synthetic Aperture Radar (SAR Soil Moisture Retrieval Errors

    Directory of Open Access Journals (Sweden)

    Ju Hyoung Lee

    2016-04-01

    Full Text Available Due to complicated and undefined systematic errors in satellite observation, data assimilation integrating model states with satellite observations is more complicated than field measurements-based data assimilation at a local scale. In the case of Synthetic Aperture Radar (SAR soil moisture, the systematic errors arising from uncertainties in roughness conditions are significant and unavoidable, but current satellite bias correction methods do not resolve the problems very well. Thus, apart from the bias correction process of satellite observation, it is important to assess the inherent capability of satellite data assimilation in such sub-optimal but more realistic observational error conditions. To this end, time-evolving sequential ensembles of the Ensemble Kalman Filter (EnKF is compared with stationary ensemble of the Ensemble Optimal Interpolation (EnOI scheme that does not evolve the ensembles over time. As the sensitivity analysis demonstrated that the surface roughness is more sensitive to the SAR retrievals than measurement errors, it is a scope of this study to monitor how data assimilation alters the effects of roughness on SAR soil moisture retrievals. In results, two data assimilation schemes all provided intermediate values between SAR overestimation, and model underestimation. However, under the same SAR observational error conditions, the sequential ensembles approached a calibrated model showing the lowest Root Mean Square Error (RMSE, while the stationary ensemble converged towards the SAR observations exhibiting the highest RMSE. As compared to stationary ensembles, sequential ensembles have a better tolerance to SAR retrieval errors. Such inherent nature of EnKF suggests an operational merit as a satellite data assimilation system, due to the limitation of bias correction methods currently available.

  3. Visualizing Confidence in Cluster-Based Ensemble Weather Forecast Analyses.

    Science.gov (United States)

    Kumpf, Alexander; Tost, Bianca; Baumgart, Marlene; Riemer, Michael; Westermann, Rudiger; Rautenhaus, Marc

    2018-01-01

    In meteorology, cluster analysis is frequently used to determine representative trends in ensemble weather predictions in a selected spatio-temporal region, e.g., to reduce a set of ensemble members to simplify and improve their analysis. Identified clusters (i.e., groups of similar members), however, can be very sensitive to small changes of the selected region, so that clustering results can be misleading and bias subsequent analyses. In this article, we - a team of visualization scientists and meteorologists-deliver visual analytics solutions to analyze the sensitivity of clustering results with respect to changes of a selected region. We propose an interactive visual interface that enables simultaneous visualization of a) the variation in composition of identified clusters (i.e., their robustness), b) the variability in cluster membership for individual ensemble members, and c) the uncertainty in the spatial locations of identified trends. We demonstrate that our solution shows meteorologists how representative a clustering result is, and with respect to which changes in the selected region it becomes unstable. Furthermore, our solution helps to identify those ensemble members which stably belong to a given cluster and can thus be considered similar. In a real-world application case we show how our approach is used to analyze the clustering behavior of different regions in a forecast of "Tropical Cyclone Karl", guiding the user towards the cluster robustness information required for subsequent ensemble analysis.

  4. Analyzing the impact of changing size and composition of a crop model ensemble

    Science.gov (United States)

    Rodríguez, Alfredo

    2017-04-01

    The use of an ensemble of crop growth simulation models is a practice recently adopted in order to quantify aspects of uncertainties in model simulations. Yet, while the climate modelling community has extensively investigated the properties of model ensembles and their implications, this has hardly been investigated for crop model ensembles (Wallach et al., 2016). In their ensemble of 27 wheat models, Martre et al. (2015) found that the accuracy of the multi-model ensemble-average only increases up to an ensemble size of ca. 10, but does not improve when including more models in the analysis. However, even when this number of members is reached, questions about the impact of the addition or removal of a member to/from the ensemble arise. When selecting ensemble members, identifying members with poor performance or giving implausible results can make a large difference on the outcome. The objective of this study is to set up a methodology that defines indicators to show the effects of changing the ensemble composition and size on simulation results, when a selection procedure of ensemble members is applied. Ensemble mean or median, and variance are measures used to depict ensemble results among other indicators. We are utilizing simulations from an ensemble of wheat models that have been used to construct impact response surfaces (Pirttioja et al., 2015) (IRSs). These show the response of an impact variable (e.g., crop yield) to systematic changes in two explanatory variables (e.g., precipitation and temperature). Using these, we compare different sub-ensembles in terms of the mean, median and spread, and also by comparing IRSs. The methodology developed here allows comparing an ensemble before and after applying any procedure that changes the ensemble composition and size by measuring the impact of this decision on the ensemble central tendency measures. The methodology could also be further developed to compare the effect of changing ensemble composition and size

  5. An Ensemble of Classifiers based Approach for Prediction of Alzheimer's Disease using fMRI Images based on Fusion of Volumetric, Textural and Hemodynamic Features

    Directory of Open Access Journals (Sweden)

    MALIK, F.

    2018-02-01

    Full Text Available Alzheimer's is a neurodegenerative disease caused by the destruction and death of brain neurons resulting in memory loss, impaired thinking ability, and in certain behavioral changes. Alzheimer disease is a major cause of dementia and eventually death all around the world. Early diagnosis of the disease is crucial which can help the victims to maintain their level of independence for comparatively longer time and live a best life possible. For early detection of Alzheimer's disease, we are proposing a novel approach based on fusion of multiple types of features including hemodynamic, volumetric and textural features of the brain. Our approach uses non-invasive fMRI with ensemble of classifiers, for the classification of the normal controls and the Alzheimer patients. For performance evaluation, ten-fold cross validation is used. Individual feature sets and fusion of features have been investigated with ensemble classifiers for successful classification of Alzheimer's patients from normal controls. It is observed that fusion of features resulted in improved results for accuracy, specificity and sensitivity.

  6. Multi-objective optimization for generating a weighted multi-model ensemble

    Science.gov (United States)

    Lee, H.

    2017-12-01

    Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic

  7. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  8. Impact of ensemble learning in the assessment of skeletal maturity.

    Science.gov (United States)

    Cunha, Pedro; Moura, Daniel C; Guevara López, Miguel Angel; Guerra, Conceição; Pinto, Daniela; Ramos, Isabel

    2014-09-01

    The assessment of the bone age, or skeletal maturity, is an important task in pediatrics that measures the degree of maturation of children's bones. Nowadays, there is no standard clinical procedure for assessing bone age and the most widely used approaches are the Greulich and Pyle and the Tanner and Whitehouse methods. Computer methods have been proposed to automatize the process; however, there is a lack of exploration about how to combine the features of the different parts of the hand, and how to take advantage of ensemble techniques for this purpose. This paper presents a study where the use of ensemble techniques for improving bone age assessment is evaluated. A new computer method was developed that extracts descriptors for each joint of each finger, which are then combined using different ensemble schemes for obtaining a final bone age value. Three popular ensemble schemes are explored in this study: bagging, stacking and voting. Best results were achieved by bagging with a rule-based regression (M5P), scoring a mean absolute error of 10.16 months. Results show that ensemble techniques improve the prediction performance of most of the evaluated regression algorithms, always achieving best or comparable to best results. Therefore, the success of the ensemble methods allow us to conclude that their use may improve computer-based bone age assessment, offering a scalable option for utilizing multiple regions of interest and combining their output.

  9. NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.

    Directory of Open Access Journals (Sweden)

    Joeri Ruyssinck

    Full Text Available One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made

  10. Ensemble of classifiers based network intrusion detection system performance bound

    CSIR Research Space (South Africa)

    Mkuzangwe, Nenekazi NP

    2017-11-01

    Full Text Available This paper provides a performance bound of a network intrusion detection system (NIDS) that uses an ensemble of classifiers. Currently researchers rely on implementing the ensemble of classifiers based NIDS before they can determine the performance...

  11. A Ruby API to query the Ensembl database for genomic features.

    Science.gov (United States)

    Strozzi, Francesco; Aerts, Jan

    2011-04-01

    The Ensembl database makes genomic features available via its Genome Browser. It is also possible to access the underlying data through a Perl API for advanced querying. We have developed a full-featured Ruby API to the Ensembl databases, providing the same functionality as the Perl interface with additional features. A single Ruby API is used to access different releases of the Ensembl databases and is also able to query multi-species databases. Most functionality of the API is provided using the ActiveRecord pattern. The library depends on introspection to make it release independent. The API is available through the Rubygem system and can be installed with the command gem install ruby-ensembl-api.

  12. An Adaptive Approach to Mitigate Background Covariance Limitations in the Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon

    2010-07-01

    A new approach is proposed to address the background covariance limitations arising from undersampled ensembles and unaccounted model errors in the ensemble Kalman filter (EnKF). The method enhances the representativeness of the EnKF ensemble by augmenting it with new members chosen adaptively to add missing information that prevents the EnKF from fully fitting the data to the ensemble. The vectors to be added are obtained by back projecting the residuals of the observation misfits from the EnKF analysis step onto the state space. The back projection is done using an optimal interpolation (OI) scheme based on an estimated covariance of the subspace missing from the ensemble. In the experiments reported here, the OI uses a preselected stationary background covariance matrix, as in the hybrid EnKF–three-dimensional variational data assimilation (3DVAR) approach, but the resulting correction is included as a new ensemble member instead of being added to all existing ensemble members. The adaptive approach is tested with the Lorenz-96 model. The hybrid EnKF–3DVAR is used as a benchmark to evaluate the performance of the adaptive approach. Assimilation experiments suggest that the new adaptive scheme significantly improves the EnKF behavior when it suffers from small size ensembles and neglected model errors. It was further found to be competitive with the hybrid EnKF–3DVAR approach, depending on ensemble size and data coverage.

  13. Adaptive calibration of (u,v)‐wind ensemble forecasts

    DEFF Research Database (Denmark)

    Pinson, Pierre

    2012-01-01

    of sufficient reliability. The original framework introduced here allows for an adaptive bivariate calibration of these ensemble forecasts. The originality of this methodology lies in the fact that calibrated ensembles still consist of a set of (space–time) trajectories, after translation and dilation...... of translation and dilation factors are discussed. Copyright © 2012 Royal Meteorological Society...

  14. Modeling polydispersive ensembles of diamond nanoparticles

    International Nuclear Information System (INIS)

    Barnard, Amanda S

    2013-01-01

    While significant progress has been made toward production of monodispersed samples of a variety of nanoparticles, in cases such as diamond nanoparticles (nanodiamonds) a significant degree of polydispersivity persists, so scaling-up of laboratory applications to industrial levels has its challenges. In many cases, however, monodispersivity is not essential for reliable application, provided that the inevitable uncertainties are just as predictable as the functional properties. As computational methods of materials design are becoming more widespread, there is a growing need for robust methods for modeling ensembles of nanoparticles, that capture the structural complexity characteristic of real specimens. In this paper we present a simple statistical approach to modeling of ensembles of nanoparticles, and apply it to nanodiamond, based on sets of individual simulations that have been carefully selected to describe specific structural sources that are responsible for scattering of fundamental properties, and that are typically difficult to eliminate experimentally. For the purposes of demonstration we show how scattering in the Fermi energy and the electronic band gap are related to different structural variations (sources), and how these results can be combined strategically to yield statistically significant predictions of the properties of an entire ensemble of nanodiamonds, rather than merely one individual ‘model’ particle or a non-representative sub-set. (paper)

  15. Multivariate localization methods for ensemble Kalman filtering

    KAUST Repository

    Roh, S.

    2015-12-03

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (element-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables that exist at the same locations has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.

  16. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2005-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics.The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ = 1/q - 1 in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z bar = 1/(q - 1)N = const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  17. Multivariate localization methods for ensemble Kalman filtering

    KAUST Repository

    Roh, S.

    2015-05-08

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (entry-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.

  18. Multivariate localization methods for ensemble Kalman filtering

    KAUST Repository

    Roh, S.; Jun, M.; Szunyogh, I.; Genton, Marc G.

    2015-01-01

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (entry-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.

  19. Multivariate localization methods for ensemble Kalman filtering

    Science.gov (United States)

    Roh, S.; Jun, M.; Szunyogh, I.; Genton, M. G.

    2015-12-01

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (element-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables that exist at the same locations has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.

  20. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2006-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ=1/(q-1) in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z-bar =1/(q-1)N=const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  1. Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling

    Science.gov (United States)

    Wallach, Daniel; Mearns, Linda O.; Ruane, Alexander C.; Roetter, Reimund P.; Asseng, Senthold

    2016-01-01

    Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.

  2. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  3. Single-particle model of a strongly driven, dense, nanoscale quantum ensemble

    Science.gov (United States)

    DiLoreto, C. S.; Rangan, C.

    2018-01-01

    We study the effects of interatomic interactions on the quantum dynamics of a dense, nanoscale, atomic ensemble driven by a strong electromagnetic field. We use a self-consistent, mean-field technique based on the pseudospectral time-domain method and a full, three-directional basis to solve the coupled Maxwell-Liouville equations. We find that interatomic interactions generate a decoherence in the state of an ensemble on a much faster time scale than the excited-state lifetime of individual atoms. We present a single-particle model of the driven, dense ensemble by incorporating interactions into a dephasing rate. This single-particle model reproduces the essential physics of the full simulation and is an efficient way of rapidly estimating the collective dynamics of a dense ensemble.

  4. Benefits of an ultra large and multiresolution ensemble for estimating available wind power

    Science.gov (United States)

    Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik

    2016-04-01

    In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.

  5. Ensemble models of neutrophil trafficking in severe sepsis.

    Directory of Open Access Journals (Sweden)

    Sang Ok Song

    Full Text Available A hallmark of severe sepsis is systemic inflammation which activates leukocytes and can result in their misdirection. This leads to both impaired migration to the locus of infection and increased infiltration into healthy tissues. In order to better understand the pathophysiologic mechanisms involved, we developed a coarse-grained phenomenological model of the acute inflammatory response in CLP (cecal ligation and puncture-induced sepsis in rats. This model incorporates distinct neutrophil kinetic responses to the inflammatory stimulus and the dynamic interactions between components of a compartmentalized inflammatory response. Ensembles of model parameter sets consistent with experimental observations were statistically generated using a Markov-Chain Monte Carlo sampling. Prediction uncertainty in the model states was quantified over the resulting ensemble parameter sets. Forward simulation of the parameter ensembles successfully captured experimental features and predicted that systemically activated circulating neutrophils display impaired migration to the tissue and neutrophil sequestration in the lung, consequently contributing to tissue damage and mortality. Principal component and multiple regression analyses of the parameter ensembles estimated from survivor and non-survivor cohorts provide insight into pathologic mechanisms dictating outcome in sepsis. Furthermore, the model was extended to incorporate hypothetical mechanisms by which immune modulation using extracorporeal blood purification results in improved outcome in septic rats. Simulations identified a sub-population (about 18% of the treated population that benefited from blood purification. Survivors displayed enhanced neutrophil migration to tissue and reduced sequestration of lung neutrophils, contributing to improved outcome. The model ensemble presented herein provides a platform for generating and testing hypotheses in silico, as well as motivating further experimental

  6. Multi-model ensembles for assessment of flood losses and associated uncertainty

    Science.gov (United States)

    Figueiredo, Rui; Schröter, Kai; Weiss-Motz, Alexander; Martina, Mario L. V.; Kreibich, Heidi

    2018-05-01

    Flood loss modelling is a crucial part of risk assessments. However, it is subject to large uncertainty that is often neglected. Most models available in the literature are deterministic, providing only single point estimates of flood loss, and large disparities tend to exist among them. Adopting any one such model in a risk assessment context is likely to lead to inaccurate loss estimates and sub-optimal decision-making. In this paper, we propose the use of multi-model ensembles to address these issues. This approach, which has been applied successfully in other scientific fields, is based on the combination of different model outputs with the aim of improving the skill and usefulness of predictions. We first propose a model rating framework to support ensemble construction, based on a probability tree of model properties, which establishes relative degrees of belief between candidate models. Using 20 flood loss models in two test cases, we then construct numerous multi-model ensembles, based both on the rating framework and on a stochastic method, differing in terms of participating members, ensemble size and model weights. We evaluate the performance of ensemble means, as well as their probabilistic skill and reliability. Our results demonstrate that well-designed multi-model ensembles represent a pragmatic approach to consistently obtain more accurate flood loss estimates and reliable probability distributions of model uncertainty.

  7. The Ensembl Web site: mechanics of a genome browser.

    Science.gov (United States)

    Stalker, James; Gibbins, Brian; Meidl, Patrick; Smith, James; Spooner, William; Hotz, Hans-Rudolf; Cox, Antony V

    2004-05-01

    The Ensembl Web site (http://www.ensembl.org/) is the principal user interface to the data of the Ensembl project, and currently serves >500,000 pages (approximately 2.5 million hits) per week, providing access to >80 GB (gigabyte) of data to users in more than 80 countries. Built atop an open-source platform comprising Apache/mod_perl and the MySQL relational database management system, it is modular, extensible, and freely available. It is being actively reused and extended in several different projects, and has been downloaded and installed in companies and academic institutions worldwide. Here, we describe some of the technical features of the site, with particular reference to its dynamic configuration that enables it to handle disparate data from multiple species.

  8. Evaluation of LDA Ensembles Classifiers for Brain Computer Interface

    International Nuclear Information System (INIS)

    Arjona, Cristian; Pentácolo, José; Gareis, Iván; Atum, Yanina; Gentiletti, Gerardo; Acevedo, Rubén; Rufiner, Leonardo

    2011-01-01

    The Brain Computer Interface (BCI) translates brain activity into computer commands. To increase the performance of the BCI, to decode the user intentions it is necessary to get better the feature extraction and classification techniques. In this article the performance of a three linear discriminant analysis (LDA) classifiers ensemble is studied. The system based on ensemble can theoretically achieved better classification results than the individual counterpart, regarding individual classifier generation algorithm and the procedures for combine their outputs. Classic algorithms based on ensembles such as bagging and boosting are discussed here. For the application on BCI, it was concluded that the generated results using ER and AUC as performance index do not give enough information to establish which configuration is better.

  9. Kohn-Sham Theory for Ground-State Ensembles

    International Nuclear Information System (INIS)

    Ullrich, C. A.; Kohn, W.

    2001-01-01

    An electron density distribution n(r) which can be represented by that of a single-determinant ground state of noninteracting electrons in an external potential v(r) is called pure-state v -representable (P-VR). Most physical electronic systems are P-VR. Systems which require a weighted sum of several such determinants to represent their density are called ensemble v -representable (E-VR). This paper develops formal Kohn-Sham equations for E-VR physical systems, using the appropriate coupling constant integration. It also derives local density- and generalized gradient approximations, and conditions and corrections specific to ensembles

  10. Verification of Ensemble Forecasts for the New York City Operations Support Tool

    Science.gov (United States)

    Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.

    2012-12-01

    The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble

  11. Distribution of the Largest Eigenvalues of the Levi-Smirnov Ensemble

    International Nuclear Information System (INIS)

    Wieczorek, W.

    2004-01-01

    We calculate the distribution of the k-th largest eigenvalue in the random matrix Levi - Smirnov Ensemble (LSE), using the spectral dualism between LSE and chiral Gaussian Unitary Ensemble (GUE). Then we reconstruct universal spectral oscillations and we investigate an asymptotic behavior of the spectral distribution. (author)

  12. Products of random matrices from fixed trace and induced Ginibre ensembles

    Science.gov (United States)

    Akemann, Gernot; Cikovic, Milan

    2018-05-01

    We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M  ‑  m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.

  13. A Single-column Model Ensemble Approach Applied to the TWP-ICE Experiment

    Science.gov (United States)

    Davies, L.; Jakob, C.; Cheung, K.; DelGenio, A.; Hill, A.; Hume, T.; Keane, R. J.; Komori, T.; Larson, V. E.; Lin, Y.; hide

    2013-01-01

    Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.

  14. ENSEMBLE methods to reconcile disparate national long range dispersion forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, T; Galmarini, S; Bianconi, R; French, S [eds.

    2003-11-01

    ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparate national forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an accidental atmospheric release of radioactive material. A series of new decision-making 'ENSEMBLE' procedures and Web-based software evaluation and exchange tools have been created for real-time reconciliation and harmonisation of real-time dispersion forecasts from meteorological and emergency centres across Europe during an accident. The new ENSEMBLE software tools is available to participating national emergency and meteorological forecasting centres, which may choose to integrate them directly into operational emergency information systems, or possibly use them as a basis for future system development. (au)

  15. ENSEMBLE methods to reconcile disparate national long range dispersion forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, T.; Galmarini, S.; Bianconi, R.; French, S. (eds.)

    2003-11-01

    ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparate national forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an accidental atmospheric release of radioactive material. A series of new decision-making 'ENSEMBLE' procedures and Web-based software evaluation and exchange tools have been created for real-time reconciliation and harmonisation of real-time dispersion forecasts from meteorological and emergency centres across Europe during an accident. The new ENSEMBLE software tools is available to participating national emergency and meteorological forecasting centres, which may choose to integrate them directly into operational emergency information systems, or possibly use them as a basis for future system development. (au)

  16. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    Science.gov (United States)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  17. A study of fuzzy logic ensemble system performance on face recognition problem

    Science.gov (United States)

    Polyakova, A.; Lipinskiy, L.

    2017-02-01

    Some problems are difficult to solve by using a single intelligent information technology (IIT). The ensemble of the various data mining (DM) techniques is a set of models which are able to solve the problem by itself, but the combination of which allows increasing the efficiency of the system as a whole. Using the IIT ensembles can improve the reliability and efficiency of the final decision, since it emphasizes on the diversity of its components. The new method of the intellectual informational technology ensemble design is considered in this paper. It is based on the fuzzy logic and is designed to solve the classification and regression problems. The ensemble consists of several data mining algorithms: artificial neural network, support vector machine and decision trees. These algorithms and their ensemble have been tested by solving the face recognition problems. Principal components analysis (PCA) is used for feature selection.

  18. Tweet-based Target Market Classification Using Ensemble Method

    Directory of Open Access Journals (Sweden)

    Muhammad Adi Khairul Anshary

    2016-09-01

    Full Text Available Target market classification is aimed at focusing marketing activities on the right targets. Classification of target markets can be done through data mining and by utilizing data from social media, e.g. Twitter. The end result of data mining are learning models that can classify new data. Ensemble methods can improve the accuracy of the models and therefore provide better results. In this study, classification of target markets was conducted on a dataset of 3000 tweets in order to extract features. Classification models were constructed to manipulate the training data using two ensemble methods (bagging and boosting. To investigate the effectiveness of the ensemble methods, this study used the CART (classification and regression tree algorithm for comparison. Three categories of consumer goods (computers, mobile phones and cameras and three categories of sentiments (positive, negative and neutral were classified towards three target-market categories. Machine learning was performed using Weka 3.6.9. The results of the test data showed that the bagging method improved the accuracy of CART with 1.9% (to 85.20%. On the other hand, for sentiment classification, the ensemble methods were not successful in increasing the accuracy of CART. The results of this study may be taken into consideration by companies who approach their customers through social media, especially Twitter.

  19. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Science.gov (United States)

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron

  20. Programming in the Zone: Repertoire Selection for the Large Ensemble

    Science.gov (United States)

    Hopkins, Michael

    2013-01-01

    One of the great challenges ensemble directors face is selecting high-quality repertoire that matches the musical and technical levels of their ensembles. Thoughtful repertoire selection can lead to increased student motivation as well as greater enthusiasm for the music program from parents, administrators, teachers, and community members. Common…

  1. A Brief Tutorial on the Ensemble Kalman Filter

    OpenAIRE

    Mandel, Jan

    2009-01-01

    The ensemble Kalman filter (EnKF) is a recursive filter suitable for problems with a large number of variables, such as discretizations of partial differential equations in geophysical models. The EnKF originated as a version of the Kalman filter for large problems (essentially, the covariance matrix is replaced by the sample covariance), and it is now an important data assimilation component of ensemble forecasting. EnKF is related to the particle filter (in this context, a particle is the s...

  2. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid

    Science.gov (United States)

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot. PMID:26998923

  3. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.

    Science.gov (United States)

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.

  4. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.

    Directory of Open Access Journals (Sweden)

    Farhan Dawood

    Full Text Available Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.

  5. A comparison of resampling schemes for estimating model observer performance with small ensembles

    Science.gov (United States)

    Elshahaby, Fatma E. A.; Jha, Abhinav K.; Ghaly, Michael; Frey, Eric C.

    2017-09-01

    In objective assessment of image quality, an ensemble of images is used to compute the 1st and 2nd order statistics of the data. Often, only a finite number of images is available, leading to the issue of statistical variability in numerical observer performance. Resampling-based strategies can help overcome this issue. In this paper, we compared different combinations of resampling schemes (the leave-one-out (LOO) and the half-train/half-test (HT/HT)) and model observers (the conventional channelized Hotelling observer (CHO), channelized linear discriminant (CLD) and channelized quadratic discriminant). Observer performance was quantified by the area under the ROC curve (AUC). For a binary classification task and for each observer, the AUC value for an ensemble size of 2000 samples per class served as a gold standard for that observer. Results indicated that each observer yielded a different performance depending on the ensemble size and the resampling scheme. For a small ensemble size, the combination [CHO, HT/HT] had more accurate rankings than the combination [CHO, LOO]. Using the LOO scheme, the CLD and CHO had similar performance for large ensembles. However, the CLD outperformed the CHO and gave more accurate rankings for smaller ensembles. As the ensemble size decreased, the performance of the [CHO, LOO] combination seriously deteriorated as opposed to the [CLD, LOO] combination. Thus, it might be desirable to use the CLD with the LOO scheme when smaller ensemble size is available.

  6. Weight Distribution for Non-binary Cluster LDPC Code Ensemble

    Science.gov (United States)

    Nozaki, Takayuki; Maehara, Masaki; Kasai, Kenta; Sakaniwa, Kohichi

    In this paper, we derive the average weight distributions for the irregular non-binary cluster low-density parity-check (LDPC) code ensembles. Moreover, we give the exponential growth rate of the average weight distribution in the limit of large code length. We show that there exist $(2,d_c)$-regular non-binary cluster LDPC code ensembles whose normalized typical minimum distances are strictly positive.

  7. One-day-ahead streamflow forecasting via super-ensembles of several neural network architectures based on the Multi-Level Diversity Model

    Science.gov (United States)

    Brochero, Darwin; Hajji, Islem; Pina, Jasson; Plana, Queralt; Sylvain, Jean-Daniel; Vergeynst, Jenna; Anctil, Francois

    2015-04-01

    Theories about generalization error with ensembles are mainly based on the diversity concept, which promotes resorting to many members of different properties to support mutually agreeable decisions. Kuncheva (2004) proposed the Multi Level Diversity Model (MLDM) to promote diversity in model ensembles, combining different data subsets, input subsets, models, parameters, and including a combiner level in order to optimize the final ensemble. This work tests the hypothesis about the minimisation of the generalization error with ensembles of Neural Network (NN) structures. We used the MLDM to evaluate two different scenarios: (i) ensembles from a same NN architecture, and (ii) a super-ensemble built by a combination of sub-ensembles of many NN architectures. The time series used correspond to the 12 basins of the MOdel Parameter Estimation eXperiment (MOPEX) project that were used by Duan et al. (2006) and Vos (2013) as benchmark. Six architectures are evaluated: FeedForward NN (FFNN) trained with the Levenberg Marquardt algorithm (Hagan et al., 1996), FFNN trained with SCE (Duan et al., 1993), Recurrent NN trained with a complex method (Weins et al., 2008), Dynamic NARX NN (Leontaritis and Billings, 1985), Echo State Network (ESN), and leak integrator neuron (L-ESN) (Lukosevicius and Jaeger, 2009). Each architecture performs separately an Input Variable Selection (IVS) according to a forward stepwise selection (Anctil et al., 2009) using mean square error as objective function. Post-processing by Predictor Stepwise Selection (PSS) of the super-ensemble has been done following the method proposed by Brochero et al. (2011). IVS results showed that the lagged stream flow, lagged precipitation, and Standardized Precipitation Index (SPI) (McKee et al., 1993) were the most relevant variables. They were respectively selected as one of the firsts three selected variables in 66, 45, and 28 of the 72 scenarios. A relationship between aridity index (Arora, 2002) and NN

  8. Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall over Northern Tropical Africa

    Science.gov (United States)

    Vogel, Peter; Knippertz, Peter; Fink, Andreas H.; Schlueter, Andreas; Gneiting, Tilmann

    2018-04-01

    Accumulated precipitation forecasts are of high socioeconomic importance for agriculturally dominated societies in northern tropical Africa. In this study, we analyze the performance of nine operational global ensemble prediction systems (EPSs) relative to climatology-based forecasts for 1 to 5-day accumulated precipitation based on the monsoon seasons 2007-2014 for three regions within northern tropical Africa. To assess the full potential of raw ensemble forecasts across spatial scales, we apply state-of-the-art statistical postprocessing methods in form of Bayesian Model Averaging (BMA) and Ensemble Model Output Statistics (EMOS), and verify against station and spatially aggregated, satellite-based gridded observations. Raw ensemble forecasts are uncalibrated, unreliable, and underperform relative to climatology, independently of region, accumulation time, monsoon season, and ensemble. Differences between raw ensemble and climatological forecasts are large, and partly stem from poor prediction for low precipitation amounts. BMA and EMOS postprocessed forecasts are calibrated, reliable, and strongly improve on the raw ensembles, but - somewhat disappointingly - typically do not outperform climatology. Most EPSs exhibit slight improvements over the period 2007-2014, but overall have little added value compared to climatology. We suspect that the parametrization of convection is a potential cause for the sobering lack of ensemble forecast skill in a region dominated by mesoscale convective systems.

  9. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    Science.gov (United States)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In

  10. Regional interdependency of precipitation indices across Denmark in two ensembles of high-resolution RCMs

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Madsen, Henrik; Rosbjerg, Dan

    2013-01-01

    all these methods is that the climate models are independent. This study addresses the validity of this assumption for two ensembles of regional climate models (RCMs) from the Ensemble-Based Predictions of Climate Changes and their Impacts (ENSEMBLES) project based on the land cells covering Denmark....... Daily precipitation indices from an ensemble of RCMs driven by the 40-yrECMWFRe-Analysis (ERA-40) and an ensemble of the same RCMs driven by different general circulation models (GCMs) are analyzed. Two different methods are used to estimate the amount of independent information in the ensembles....... These are based on different statistical properties of a measure of climate model error. Additionally, a hierarchical cluster analysis is carried out. Regardless of the method used, the effective number of RCMs is smaller than the total number of RCMs. The estimated effective number of RCMs varies depending...

  11. Neuronal ensemble for visual working memory via interplay of slow and fast oscillations.

    Science.gov (United States)

    Mizuhara, Hiroaki; Yamaguchi, Yoko

    2011-05-01

    The current focus of studies on neural entities for memory maintenance is on the interplay between fast neuronal oscillations in the gamma band and slow oscillations in the theta or delta band. The hierarchical coupling of slow and fast oscillations is crucial for the rehearsal of sensory inputs for short-term storage, as well as for binding sensory inputs that are represented in spatially segregated cortical areas. However, no experimental evidence for the binding of spatially segregated information has yet been presented for memory maintenance in humans. In the present study, we actively manipulated memory maintenance performance with an attentional blink procedure during human scalp electroencephalography (EEG) recordings and identified that slow oscillations are enhanced when memory maintenance is successful. These slow oscillations accompanied fast oscillations in the gamma frequency range that appeared at spatially segregated scalp sites. The amplitude of the gamma oscillation at these scalp sites was simultaneously enhanced at an EEG phase of the slow oscillation. Successful memory maintenance appears to be achieved by a rehearsal of sensory inputs together with a coordination of distributed fast oscillations at a preferred timing of the slow oscillations. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Ensemble Clustering using Semidefinite Programming with Applications.

    Science.gov (United States)

    Singh, Vikas; Mukherjee, Lopamudra; Peng, Jiming; Xu, Jinhui

    2010-05-01

    In this paper, we study the ensemble clustering problem, where the input is in the form of multiple clustering solutions. The goal of ensemble clustering algorithms is to aggregate the solutions into one solution that maximizes the agreement in the input ensemble. We obtain several new results for this problem. Specifically, we show that the notion of agreement under such circumstances can be better captured using a 2D string encoding rather than a voting strategy, which is common among existing approaches. Our optimization proceeds by first constructing a non-linear objective function which is then transformed into a 0-1 Semidefinite program (SDP) using novel convexification techniques. This model can be subsequently relaxed to a polynomial time solvable SDP. In addition to the theoretical contributions, our experimental results on standard machine learning and synthetic datasets show that this approach leads to improvements not only in terms of the proposed agreement measure but also the existing agreement measures based on voting strategies. In addition, we identify several new application scenarios for this problem. These include combining multiple image segmentations and generating tissue maps from multiple-channel Diffusion Tensor brain images to identify the underlying structure of the brain.

  13. 2 × 2 random matrix ensembles with reduced symmetry: from Hermitian to PT -symmetric matrices

    International Nuclear Information System (INIS)

    Gong Jiangbin; Wang Qinghai

    2012-01-01

    A possibly fruitful extension of conventional random matrix ensembles is proposed by imposing symmetry constraints on conventional Hermitian matrices or parity–time (PT)-symmetric matrices. To illustrate the main idea, we first study 2 × 2 complex Hermitian matrix ensembles with O(2)-invariant constraints, yielding novel level-spacing statistics such as singular distributions, the half-Gaussian distribution, distributions interpolating between the GOE (Gaussian orthogonal ensemble) distribution and half-Gaussian distributions, as well as the gapped-GOE distribution. Such a symmetry-reduction strategy is then used to explore 2 × 2 PT-symmetric matrix ensembles with real eigenvalues. In particular, PT-symmetric random matrix ensembles with U(2) invariance can be constructed, with the conventional complex Hermitian random matrix ensemble being a special case. In two examples of PT-symmetric random matrix ensembles, the level-spacing distributions are found to be the standard GUE (Gaussian unitary ensemble) statistics or the ‘truncated-GUE’ statistics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  14. Single-cell axotomy of cultured hippocampal neurons integrated in neuronal circuits.

    Science.gov (United States)

    Gomis-Rüth, Susana; Stiess, Michael; Wierenga, Corette J; Meyn, Liane; Bradke, Frank

    2014-05-01

    An understanding of the molecular mechanisms of axon regeneration after injury is key for the development of potential therapies. Single-cell axotomy of dissociated neurons enables the study of the intrinsic regenerative capacities of injured axons. This protocol describes how to perform single-cell axotomy on dissociated hippocampal neurons containing synapses. Furthermore, to axotomize hippocampal neurons integrated in neuronal circuits, we describe how to set up coculture with a few fluorescently labeled neurons. This approach allows axotomy of single cells in a complex neuronal network and the observation of morphological and molecular changes during axon regeneration. Thus, single-cell axotomy of mature neurons is a valuable tool for gaining insights into cell intrinsic axon regeneration and the plasticity of neuronal polarity of mature neurons. Dissociation of the hippocampus and plating of hippocampal neurons takes ∼2 h. Neurons are then left to grow for 2 weeks, during which time they integrate into neuronal circuits. Subsequent axotomy takes 10 min per neuron and further imaging takes 10 min per neuron.

  15. A Simple Approach to Account for Climate Model Interdependence in Multi-Model Ensembles

    Science.gov (United States)

    Herger, N.; Abramowitz, G.; Angelil, O. M.; Knutti, R.; Sanderson, B.

    2016-12-01

    Multi-model ensembles are an indispensable tool for future climate projection and its uncertainty quantification. Ensembles containing multiple climate models generally have increased skill, consistency and reliability. Due to the lack of agreed-on alternatives, most scientists use the equally-weighted multi-model mean as they subscribe to model democracy ("one model, one vote").Different research groups are known to share sections of code, parameterizations in their model, literature, or even whole model components. Therefore, individual model runs do not represent truly independent estimates. Ignoring this dependence structure might lead to a false model consensus, wrong estimation of uncertainty and effective number of independent models.Here, we present a way to partially address this problem by selecting a subset of CMIP5 model runs so that its climatological mean minimizes the RMSE compared to a given observation product. Due to the cancelling out of errors, regional biases in the ensemble mean are reduced significantly.Using a model-as-truth experiment we demonstrate that those regional biases persist into the future and we are not fitting noise, thus providing improved observationally-constrained projections of the 21st century. The optimally selected ensemble shows significantly higher global mean surface temperature projections than the original ensemble, where all the model runs are considered. Moreover, the spread is decreased well beyond that expected from the decreased ensemble size.Several previous studies have recommended an ensemble selection approach based on performance ranking of the model runs. Here, we show that this approach can perform even worse than randomly selecting ensemble members and can thus be harmful. We suggest that accounting for interdependence in the ensemble selection process is a necessary step for robust projections for use in impact assessments, adaptation and mitigation of climate change.

  16. Collective behaviors of suprachiasm nucleus neurons under different light—dark cycles

    International Nuclear Information System (INIS)

    Gu Chang-Gui; Liu Zong-Hua; Zhang Xin-Hua

    2014-01-01

    The principal circadian clock in the suprachiasm nucleus (SCN) regulates the circadian rhythm of physiological and behavioral activities of mammals. Except for the normal function of the circadian rhythm, the ensemble of SCN neurons may show two collective behaviors, i.e., a free running period in the absence of a light—dark cycle and an entrainment ability to an external T cycle. Experiments show that both the free running periods and the entrainment ranges may vary from one species to another and can be seriously influenced by the coupling among the SCN neurons. We here review the recent progress on how the heterogeneous couplings influence these two collective behaviors. We will show that in the case of homogeneous coupling, the free running period increases monotonically while the entrainment range decreases monotonically with the increase of the coupling strength. While in the case of heterogenous coupling, the dispersion of the coupling strength plays a crucial role. It has been found that the free running period decreases with the increase of the dispersion while the entrainment ability is enhanced by the dispersion. These findings provide new insights into the mechanism of the circadian clock in the SCN. (topical review - statistical physics and complex systems)

  17. A Separation between Divergence and Holevo Information for Ensembles

    OpenAIRE

    Jain, Rahul; Nayak, Ashwin; Su, Yi

    2007-01-01

    The notion of divergence information of an ensemble of probability distributions was introduced by Jain, Radhakrishnan, and Sen in the context of the ``substate theorem''. Since then, divergence has been recognized as a more natural measure of information in several situations in quantum and classical communication. We construct ensembles of probability distributions for which divergence information may be significantly smaller than the more standard Holevo information. As a result, we establ...

  18. Multimodel hydrological ensemble forecasts for the Baskatong catchment in Canada using the TIGGE database.

    Science.gov (United States)

    Tito Arandia Martinez, Fabian

    2014-05-01

    Adequate uncertainty assessment is an important issue in hydrological modelling. An important issue for hydropower producers is to obtain ensemble forecasts which truly grasp the uncertainty linked to upcoming streamflows. If properly assessed, this uncertainty can lead to optimal reservoir management and energy production (ex. [1]). The meteorological inputs to the hydrological model accounts for an important part of the total uncertainty in streamflow forecasting. Since the creation of the THORPEX initiative and the TIGGE database, access to meteorological ensemble forecasts from nine agencies throughout the world have been made available. This allows for hydrological ensemble forecasts based on multiple meteorological ensemble forecasts. Consequently, both the uncertainty linked to the architecture of the meteorological model and the uncertainty linked to the initial condition of the atmosphere can be accounted for. The main objective of this work is to show that a weighted combination of meteorological ensemble forecasts based on different atmospheric models can lead to improved hydrological ensemble forecasts, for horizons from one to ten days. This experiment is performed for the Baskatong watershed, a head subcatchment of the Gatineau watershed in the province of Quebec, in Canada. Baskatong watershed is of great importance for hydro-power production, as it comprises the main reservoir for the Gatineau watershed, on which there are six hydropower plants managed by Hydro-Québec. Since the 70's, they have been using pseudo ensemble forecast based on deterministic meteorological forecasts to which variability derived from past forecasting errors is added. We use a combination of meteorological ensemble forecasts from different models (precipitation and temperature) as the main inputs for hydrological model HSAMI ([2]). The meteorological ensembles from eight of the nine agencies available through TIGGE are weighted according to their individual performance and

  19. Multimodel ensembles of wheat growth

    DEFF Research Database (Denmark)

    Martre, Pierre; Wallach, Daniel; Asseng, Senthold

    2015-01-01

    , but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24...

  20. Teaching Strategies for Specialized Ensembles.

    Science.gov (United States)

    Teaching Music, 1999

    1999-01-01

    Provides a strategy, from the book "Strategies for Teaching Specialized Ensembles," that addresses Standard 9A of the National Standards for Music Education. Explains that students will identify and describe the musical and historical characteristics of the classical era in music they perform and in audio examples. (CMK)

  1. Limited-area short-range ensemble predictions targeted for heavy rain in Europe

    Directory of Open Access Journals (Sweden)

    K. Sattler

    2005-01-01

    Full Text Available Inherent uncertainties in short-range quantitative precipitation forecasts (QPF from the high-resolution, limited-area numerical weather prediction model DMI-HIRLAM (LAM are addressed using two different approaches to creating a small ensemble of LAM simulations, with focus on prediction of extreme rainfall events over European river basins. The first ensemble type is designed to represent uncertainty in the atmospheric state of the initial condition and at the lateral LAM boundaries. The global ensemble prediction system (EPS from ECMWF serves as host model to the LAM and provides the state perturbations, from which a small set of significant members is selected. The significance is estimated on the basis of accumulated precipitation over a target area of interest, which contains the river basin(s under consideration. The selected members provide the initial and boundary data for the ensemble integration in the LAM. A second ensemble approach tries to address a portion of the model-inherent uncertainty responsible for errors in the forecasted precipitation field by utilising different parameterisation schemes for condensation and convection in the LAM. Three periods around historical heavy rain events that caused or contributed to disastrous river flooding in Europe are used to study the performance of the LAM ensemble designs. The three cases exhibit different dynamic and synoptic characteristics and provide an indication of the ensemble qualities in different weather situations. Precipitation analyses from the Deutsche Wetterdienst (DWD are used as the verifying reference and a comparison of daily rainfall amounts is referred to the respective river basins of the historical cases.

  2. Responses of primate frontal cortex neurons during natural vocal communication.

    Science.gov (United States)

    Miller, Cory T; Thomas, A Wren; Nummela, Samuel U; de la Mothe, Lisa A

    2015-08-01

    The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors. Copyright © 2015 the American Physiological Society.

  3. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.

    Science.gov (United States)

    Adesnik, Hillel

    2018-05-01

    Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  4. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether...... for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various...

  5. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    Science.gov (United States)

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the

  6. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    Science.gov (United States)

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  7. Social stress engages opioid regulation of locus coeruleus norepinephrine neurons and induces a state of cellular and physical opiate dependence.

    Science.gov (United States)

    Chaijale, Nayla N; Curtis, Andre L; Wood, Susan K; Zhang, Xiao-Yan; Bhatnagar, Seema; Reyes, Beverly As; Van Bockstaele, Elisabeth J; Valentino, Rita J

    2013-09-01

    Stress is implicated in diverse psychiatric disorders including substance abuse. The locus coeruleus-norepinephrine (LC-NE) system is a major stress response system that is also a point of intersection between stress neuromediators and endogenous opioids and so may be a site at which stress can influence drug-taking behaviors. As social stress is a common stressor for humans, this study characterized the enduring impact of repeated social stress on LC neuronal activity. Rats were exposed to five daily consecutive sessions of social stress using the resident-intruder model or control manipulation. LC discharge rate recorded 2 days after the last manipulation was decreased in stressed rats compared with controls. By 10 days after the last manipulation, LC rates were comparable between groups. Systemic administration of the opiate antagonist, naloxone, robustly increased LC discharge rate in a manner suggestive of opiate withdrawal, selectively in stressed rats when administered 2 or 10 days after the last manipulation. This was accompanied by behavioral signs of mild opiate withdrawal. Western blot and electron microscopic studies indicated that repeated social stress decreased corticotropin-releasing factor type 1 receptor and increased μ-opioid receptor levels in the LC. Together, the results suggest that repeated social stress engages endogenous opioid modulation of LC activity and induces signs of cellular and physical opiate dependence that endure after the stress. These cellular effects may predispose individuals with a history of repeated social stress to substance abuse behaviors.

  8. The canonical ensemble redefined - 3. Ideal Bose gas

    International Nuclear Information System (INIS)

    Venkataraman, R.

    1984-12-01

    The ideal Bose gas solved in the redefined ensemble formalism exhibits a discontinuity in the specific heat suggesting that Bose-Einstein condensation is a second order phase transition. The deviations from the classical ideal gas behaviour are larger than those predicted by Gibbs ensemble. Below Tsub(c) the pressure is not independent of the volume. For a certain range of values of VT 3 , the peak in black body radiation shows a shift in the frequency scale and this could be detected, at least in principle, experimentally. (author)

  9. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types.

    Science.gov (United States)

    Blum, Allison L; Li, Wanhe; Cressy, Mike; Dubnau, Josh

    2009-08-25

    A common feature of memory and its underlying synaptic plasticity is that each can be dissected into short-lived forms involving modification or trafficking of existing proteins and long-term forms that require new gene expression. An underlying assumption of this cellular view of memory consolidation is that these different mechanisms occur within a single neuron. At the neuroanatomical level, however, different temporal stages of memory can engage distinct neural circuits, a notion that has not been conceptually integrated with the cellular view. Here, we investigated this issue in the context of aversive Pavlovian olfactory memory in Drosophila. Previous studies have demonstrated a central role for cAMP signaling in the mushroom body (MB). The Ca(2+)-responsive adenylyl cyclase RUTABAGA is believed to be a coincidence detector in gamma neurons, one of the three principle classes of MB Kenyon cells. We were able to separately restore short-term or long-term memory to a rutabaga mutant with expression of rutabaga in different subsets of MB neurons. Our findings suggest a model in which the learning experience initiates two parallel associations: a short-lived trace in MB gamma neurons, and a long-lived trace in alpha/beta neurons.

  10. Analogies between random matrix ensembles and the one-component plasma in two-dimensions

    Directory of Open Access Journals (Sweden)

    Peter J. Forrester

    2016-03-01

    Full Text Available The eigenvalue PDF for some well known classes of non-Hermitian random matrices — the complex Ginibre ensemble for example — can be interpreted as the Boltzmann factor for one-component plasma systems in two-dimensional domains. We address this theme in a systematic fashion, identifying the plasma system for the Ginibre ensemble of non-Hermitian Gaussian random matrices G, the spherical ensemble of the product of an inverse Ginibre matrix and a Ginibre matrix G1−1G2, and the ensemble formed by truncating unitary matrices, as well as for products of such matrices. We do this when each has either real, complex or real quaternion elements. One consequence of this analogy is that the leading form of the eigenvalue density follows as a corollary. Another is that the eigenvalue correlations must obey sum rules known to characterise the plasma system, and this leads us to an exhibit of an integral identity satisfied by the two-particle correlation for real quaternion matrices in the neighbourhood of the real axis. Further random matrix ensembles investigated from this viewpoint are self dual non-Hermitian matrices, in which a previous study has related to the one-component plasma system in a disk at inverse temperature β=4, and the ensemble formed by the single row and column of quaternion elements from a member of the circular symplectic ensemble.

  11. Transmitters and pathways mediating inhibition of spinal itch-signaling neurons by scratching and other counterstimuli.

    Directory of Open Access Journals (Sweden)

    Tasuku Akiyama

    Full Text Available Scratching relieves itch, but the underlying neural mechanisms are poorly understood. We presently investigated a role for the inhibitory neurotransmitters GABA and glycine in scratch-evoked inhibition of spinal itch-signaling neurons in a mouse model of chronic dry skin itch. Superficial dorsal horn neurons ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous firing that was significantly attenuated by cutaneous scratching, pinch and noxious heat. Scratch-evoked inhibition was nearly abolished by spinal delivery of the glycine antagonist, strychnine, and was markedly attenuated by respective GABA(A and GABA(B antagonists bicuculline and saclofen. Scratch-evoked inhibition was also significantly attenuated (but not abolished by interruption of the upper cervical spinal cord, indicating the involvement of both segmental and suprasegmental circuits that engage glycine- and GABA-mediated inhibition of spinal itch-signaling neurons by noxious counterstimuli.

  12. A Link-Based Cluster Ensemble Approach For Improved Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    P.Balaji

    2015-01-01

    Full Text Available Abstract It is difficult from possibilities to select a most suitable effective way of clustering algorithm and its dataset for a defined set of gene expression data because we have a huge number of ways and huge number of gene expressions. At present many researchers are preferring to use hierarchical clustering in different forms this is no more totally optimal. Cluster ensemble research can solve this type of problem by automatically merging multiple data partitions from a wide range of different clusterings of any dimensions to improve both the quality and robustness of the clustering result. But we have many existing ensemble approaches using an association matrix to condense sample-cluster and co-occurrence statistics and relations within the ensemble are encapsulated only at raw level while the existing among clusters are totally discriminated. Finding these missing associations can greatly expand the capability of those ensemble methodologies for microarray data clustering. We propose general K-means cluster ensemble approach for the clustering of general categorical data into required number of partitions.

  13. Towards quantum optics and entanglement with electron spin ensembles in semiconductors

    NARCIS (Netherlands)

    van der Wal, Caspar H.; Sladkov, Maksym

    We discuss a technique and a material system that enable the controlled realization of quantum entanglement between spin-wave modes of electron ensembles in two spatially separated pieces of semiconductor material. The approach uses electron ensembles in GaAs quantum wells that are located inside

  14. Preliminary Assessment of Tecplot Chorus for Analyzing Ensemble of CTH Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Agelastos, Anthony Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stevenson, Joel O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Attaway, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, David

    2015-04-01

    The exploration of large parameter spaces in search of problem solution and uncertainty quantifcation produces very large ensembles of data. Processing ensemble data will continue to require more resources as simulation complexity and HPC platform throughput increase. More tools are needed to help provide rapid insight into these data sets to decrease manual processing time by the analyst and to increase knowledge the data can provide. One such tool is Tecplot Chorus, whose strengths are visualizing ensemble metadata and linked images. This report contains the analysis and conclusions from evaluating Tecplot Chorus with an example problem that is relevant to Sandia National Laboratories.

  15. Atom lasers, coherent states, and coherence II. Maximally robust ensembles of pure states

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Vaccaro, John A.

    2002-01-01

    As discussed in the preceding paper [Wiseman and Vaccaro, preceding paper, Phys. Rev. A 65, 043605 (2002)], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρ ss as a stationary ensemble of pure states, is more natural. In the preceding paper we concentrated upon the question of whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ of the bosons in the laser mode, and the excess phase noise ν. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0), the most robust states are coherent states. As the phase noise or phase dispersion is increased through ν or the self-interaction of the bosons χ, respectively, the most robust states become more and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular

  16. Ensemble perception of emotions in autistic and typical children and adolescents

    Directory of Open Access Journals (Sweden)

    Themelis Karaminis

    2017-04-01

    Full Text Available Ensemble perception, the ability to assess automatically the summary of large amounts of information presented in visual scenes, is available early in typical development. This ability might be compromised in autistic children, who are thought to present limitations in maintaining summary statistics representations for the recent history of sensory input. Here we examined ensemble perception of facial emotional expressions in 35 autistic children, 30 age- and ability-matched typical children and 25 typical adults. Participants received three tasks: a an ‘ensemble’ emotion discrimination task; b a baseline (single-face emotion discrimination task; and c a facial expression identification task. Children performed worse than adults on all three tasks. Unexpectedly, autistic and typical children were, on average, indistinguishable in their precision and accuracy on all three tasks. Computational modelling suggested that, on average, autistic and typical children used ensemble-encoding strategies to a similar extent; but ensemble perception was related to non-verbal reasoning abilities in autistic but not in typical children. Eye-movement data also showed no group differences in the way children attended to the stimuli. Our combined findings suggest that the abilities of autistic and typical children for ensemble perception of emotions are comparable on average.

  17. Model dependence and its effect on ensemble projections in CMIP5

    Science.gov (United States)

    Abramowitz, G.; Bishop, C.

    2013-12-01

    Conceptually, the notion of model dependence within climate model ensembles is relatively simple - modelling groups share a literature base, parametrisations, data sets and even model code - the potential for dependence in sampling different climate futures is clear. How though can this conceptual problem inform a practical solution that demonstrably improves the ensemble mean and ensemble variance as an estimate of system uncertainty? While some research has already focused on error correlation or error covariance as a candidate to improve ensemble mean estimates, a complete definition of independence must at least implicitly subscribe to an ensemble interpretation paradigm, such as the 'truth-plus-error', 'indistinguishable', or more recently 'replicate Earth' paradigm. Using a definition of model dependence based on error covariance within the replicate Earth paradigm, this presentation will show that accounting for dependence in surface air temperature gives cooler projections in CMIP5 - by as much as 20% globally in some RCPs - although results differ significantly for each RCP, especially regionally. The fact that the change afforded by accounting for dependence across different RCPs is different is not an inconsistent result. Different numbers of submissions to each RCP by different modelling groups mean that differences in projections from different RCPs are not entirely about RCP forcing conditions - they also reflect different sampling strategies.

  18. A Diagnostics Tool to detect ensemble forecast system anomaly and guide operational decisions

    Science.gov (United States)

    Park, G. H.; Srivastava, A.; Shrestha, E.; Thiemann, M.; Day, G. N.; Draijer, S.

    2017-12-01

    The hydrologic community is moving toward using ensemble forecasts to take uncertainty into account during the decision-making process. The New York City Department of Environmental Protection (DEP) implements several types of ensemble forecasts in their decision-making process: ensemble products for a statistical model (Hirsch and enhanced Hirsch); the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) forecasts based on the classical Ensemble Streamflow Prediction (ESP) technique; and the new NWS Hydrologic Ensemble Forecasting Service (HEFS) forecasts. To remove structural error and apply the forecasts to additional forecast points, the DEP post processes both the AHPS and the HEFS forecasts. These ensemble forecasts provide mass quantities of complex data, and drawing conclusions from these forecasts is time-consuming and difficult. The complexity of these forecasts also makes it difficult to identify system failures resulting from poor data, missing forecasts, and server breakdowns. To address these issues, we developed a diagnostic tool that summarizes ensemble forecasts and provides additional information such as historical forecast statistics, forecast skill, and model forcing statistics. This additional information highlights the key information that enables operators to evaluate the forecast in real-time, dynamically interact with the data, and review additional statistics, if needed, to make better decisions. We used Bokeh, a Python interactive visualization library, and a multi-database management system to create this interactive tool. This tool compiles and stores data into HTML pages that allows operators to readily analyze the data with built-in user interaction features. This paper will present a brief description of the ensemble forecasts, forecast verification results, and the intended applications for the diagnostic tool.

  19. Direct Thy-1/alphaVbeta3 integrin interaction mediates neuron to astrocyte communication.

    Science.gov (United States)

    Hermosilla, Tamara; Muñoz, Daniel; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Muñoz, Nicolás; Nham, Sang-Uk; Schneider, Pascal; Burridge, Keith; Quest, Andrew F G; Leyton, Lisette

    2008-06-01

    Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.

  20. Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise.

    KAUST Repository

    Bressloff, Paul C

    2011-05-03

    We extend the theory of noise-induced phase synchronization to the case of a neural master equation describing the stochastic dynamics of an ensemble of uncoupled neuronal population oscillators with intrinsic and extrinsic noise. The master equation formulation of stochastic neurodynamics represents the state of each population by the number of currently active neurons, and the state transitions are chosen so that deterministic Wilson-Cowan rate equations are recovered in the mean-field limit. We apply phase reduction and averaging methods to a corresponding Langevin approximation of the master equation in order to determine how intrinsic noise disrupts synchronization of the population oscillators driven by a common extrinsic noise source. We illustrate our analysis by considering one of the simplest networks known to generate limit cycle oscillations at the population level, namely, a pair of mutually coupled excitatory (E) and inhibitory (I) subpopulations. We show how the combination of intrinsic independent noise and extrinsic common noise can lead to clustering of the population oscillators due to the multiplicative nature of both noise sources under the Langevin approximation. Finally, we show how a similar analysis can be carried out for another simple population model that exhibits limit cycle oscillations in the deterministic limit, namely, a recurrent excitatory network with synaptic depression; inclusion of synaptic depression into the neural master equation now generates a stochastic hybrid system.

  1. Dynamical predictive power of the generalized Gibbs ensemble revealed in a second quench.

    Science.gov (United States)

    Zhang, J M; Cui, F C; Hu, Jiangping

    2012-04-01

    We show that a quenched and relaxed completely integrable system is hardly distinguishable from the corresponding generalized Gibbs ensemble in a dynamical sense. To be specific, the response of the quenched and relaxed system to a second quench can be accurately reproduced by using the generalized Gibbs ensemble as a substitute. Remarkably, as demonstrated with the transverse Ising model and the hard-core bosons in one dimension, not only the steady values but even the transient, relaxation dynamics of the physical variables can be accurately reproduced by using the generalized Gibbs ensemble as a pseudoinitial state. This result is an important complement to the previously established result that a quenched and relaxed system is hardly distinguishable from the generalized Gibbs ensemble in a static sense. The relevance of the generalized Gibbs ensemble in the nonequilibrium dynamics of completely integrable systems is then greatly strengthened.

  2. Random matrix ensembles for PT-symmetric systems

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria; Mudute-Ndumbe, Steve; Taylor, Matthew

    2015-01-01

    Recently much effort has been made towards the introduction of non-Hermitian random matrix models respecting PT-symmetry. Here we show that there is a one-to-one correspondence between complex PT-symmetric matrices and split-complex and split-quaternionic versions of Hermitian matrices. We introduce two new random matrix ensembles of (a) Gaussian split-complex Hermitian; and (b) Gaussian split-quaternionic Hermitian matrices, of arbitrary sizes. We conjecture that these ensembles represent universality classes for PT-symmetric matrices. For the case of 2 × 2 matrices we derive analytic expressions for the joint probability distributions of the eigenvalues, the one-level densities and the level spacings in the case of real eigenvalues. (fast track communication)

  3. Ensemble singular vectors and their use as additive inflation in EnKF

    Directory of Open Access Journals (Sweden)

    Shu-Chih Yang

    2015-07-01

    Full Text Available Given an ensemble of forecasts, it is possible to determine the leading ensemble singular vector (ESV, that is, the linear combination of the forecasts that, given the choice of the perturbation norm and forecast interval, will maximise the growth of the perturbations. Because the ESV indicates the directions of the fastest growing forecast errors, we explore the potential of applying the leading ESVs in ensemble Kalman filter (EnKF for correcting fast-growing errors. The ESVs are derived based on a quasi-geostrophic multi-level channel model, and data assimilation experiments are carried out under framework of the local ensemble transform Kalman filter. We confirm that even during the early spin-up starting with random initial conditions, the final ESVs of the first analysis with a 12-h window are strongly related to the background errors. Since initial ensemble singular vectors (IESVs grow much faster than Lyapunov Vectors (LVs, and the final ensemble singular vectors (FESVs are close to convergence to leading LVs, perturbations based on leading IESVs grow faster than those based on FESVs, and are therefore preferable as additive inflation. The IESVs are applied in the EnKF framework for constructing flow-dependent additive perturbations to inflate the analysis ensemble. Compared with using random perturbations as additive inflation, a positive impact from using ESVs is found especially in areas with large growing errors. When an EnKF is ‘cold-started’ from random perturbations and poor initial condition, results indicate that using the ESVs as additive inflation has the advantage of correcting large errors so that the spin-up of the EnKF can be accelerated.

  4. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards.

    Science.gov (United States)

    Miyazaki, Kayoko W; Miyazaki, Katsuhiko; Tanaka, Kenji F; Yamanaka, Akihiro; Takahashi, Aki; Tabuchi, Sawako; Doya, Kenji

    2014-09-08

    Serotonin is a neuromodulator that is involved extensively in behavioral, affective, and cognitive functions in the brain. Previous recording studies of the midbrain dorsal raphe nucleus (DRN) revealed that the activation of putative serotonin neurons correlates with the levels of behavioral arousal [1], rhythmic motor outputs [2], salient sensory stimuli [3-6], reward, and conditioned cues [5-8]. The classic theory on serotonin states that it opposes dopamine and inhibits behaviors when aversive events are predicted [9-14]. However, the therapeutic effects of serotonin signal-enhancing medications have been difficult to reconcile with this theory [15, 16]. In contrast, a more recent theory states that serotonin facilitates long-term optimal behaviors and suppresses impulsive behaviors [17-21]. To test these theories, we developed optogenetic mice that selectively express channelrhodopsin in serotonin neurons and tested how the activation of serotonergic neurons in the DRN affects animal behavior during a delayed reward task. The activation of serotonin neurons reduced the premature cessation of waiting for conditioned cues and food rewards. In reward omission trials, serotonin neuron stimulation prolonged the time animals spent waiting. This effect was observed specifically when the animal was engaged in deciding whether to keep waiting and was not due to motor inhibition. Control experiments showed that the prolonged waiting times observed with optogenetic stimulation were not due to behavioral inhibition or the reinforcing effects of serotonergic activation. These results show, for the first time, that the timed activation of serotonin neurons during waiting promotes animals' patience to wait for a delayed reward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Spectral Diagonal Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Kasanický, Ivan; Mandel, Jan; Vejmelka, Martin

    2015-01-01

    Roč. 22, č. 4 (2015), s. 485-497 ISSN 1023-5809 R&D Projects: GA ČR GA13-34856S Grant - others:NSF(US) DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * ensemble Kalman filter * spectral representation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.321, year: 2015

  6. Coherence resonance in globally coupled neuronal networks with different neuron numbers

    International Nuclear Information System (INIS)

    Ning Wei-Lian; Zhang Zheng-Zhen; Zeng Shang-You; Luo Xiao-Shu; Hu Jin-Lin; Zeng Shao-Wen; Qiu Yi; Wu Hui-Si

    2012-01-01

    Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands, we study the coherence resonance due to ion channel noises in globally coupled neuronal networks with different neuron numbers. We confirm that for all neuronal networks with different neuron numbers there exist the array enhanced coherence resonance and the optimal synaptic conductance to cause the maximal spiking coherence. Furthermoremore, the enhancement effects of coupling on spiking coherence and on optimal synaptic conductance are almost the same, regardless of the neuron numbers in the neuronal networks. Therefore for all the neuronal networks with different neuron numbers in the brain, relative weak synaptic conductance (0.1 mS/cm 2 ) is sufficient to induce the maximal spiking coherence and the best sub-threshold signal encoding. (interdisciplinary physics and related areas of science and technology)

  7. Tridiagonal realization of the antisymmetric Gaussian β-ensemble

    International Nuclear Information System (INIS)

    Dumitriu, Ioana; Forrester, Peter J.

    2010-01-01

    The Householder reduction of a member of the antisymmetric Gaussian unitary ensemble gives an antisymmetric tridiagonal matrix with all independent elements. The random variables permit the introduction of a positive parameter β, and the eigenvalue probability density function of the corresponding random matrices can be computed explicitly, as can the distribution of (q i ), the first components of the eigenvectors. Three proofs are given. One involves an inductive construction based on bordering of a family of random matrices which are shown to have the same distributions as the antisymmetric tridiagonal matrices. This proof uses the Dixon-Anderson integral from Selberg integral theory. A second proof involves the explicit computation of the Jacobian for the change of variables between real antisymmetric tridiagonal matrices, its eigenvalues, and (q i ). The third proof maps matrices from the antisymmetric Gaussian β-ensemble to those realizing particular examples of the Laguerre β-ensemble. In addition to these proofs, we note some simple properties of the shooting eigenvector and associated Pruefer phases of the random matrices.

  8. Non-Hermitian Extensions of Wishart Random Matrix Ensembles

    International Nuclear Information System (INIS)

    Akemann, G.

    2011-01-01

    We briefly review the solution of three ensembles of non-Hermitian random matrices generalizing the Wishart-Laguerre (also called chiral) ensembles. These generalizations are realized as Gaussian two-matrix models, where the complex eigenvalues of the product of the two independent rectangular matrices are sought, with the matrix elements of both matrices being either real, complex or quaternion real. We also present the more general case depending on a non-Hermiticity parameter, that allows us to interpolate between the corresponding three Hermitian Wishart ensembles with real eigenvalues and the maximally non-Hermitian case. All three symmetry classes are explicitly solved for finite matrix size N x M for all complex eigenvalue correlations functions (and real or mixed correlations for real matrix elements). These are given in terms of the corresponding kernels built from orthogonal or skew-orthogonal Laguerre polynomials in the complex plane. We then present the corresponding three Bessel kernels in the complex plane in the microscopic large-N scaling limit at the origin, both at weak and strong non-Hermiticity with M - N ≥ 0 fixed. (author)

  9. Geometric integrator for simulations in the canonical ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510 (Mexico); Sanders, David P., E-mail: dpsanders@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510 (Mexico); Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510 (Mexico)

    2016-08-28

    We introduce a geometric integrator for molecular dynamics simulations of physical systems in the canonical ensemble that preserves the invariant distribution in equations arising from the density dynamics algorithm, with any possible type of thermostat. Our integrator thus constitutes a unified framework that allows the study and comparison of different thermostats and of their influence on the equilibrium and non-equilibrium (thermo-)dynamic properties of a system. To show the validity and the generality of the integrator, we implement it with a second-order, time-reversible method and apply it to the simulation of a Lennard-Jones system with three different thermostats, obtaining good conservation of the geometrical properties and recovering the expected thermodynamic results. Moreover, to show the advantage of our geometric integrator over a non-geometric one, we compare the results with those obtained by using the non-geometric Gear integrator, which is frequently used to perform simulations in the canonical ensemble. The non-geometric integrator induces a drift in the invariant quantity, while our integrator has no such drift, thus ensuring that the system is effectively sampling the correct ensemble.

  10. Thermodynamics and kinetics of a molecular motor ensemble.

    Science.gov (United States)

    Baker, J E; Thomas, D D

    2000-10-01

    If, contrary to conventional models of muscle, it is assumed that molecular forces equilibrate among rather than within molecular motors, an equation of state and an expression for energy output can be obtained for a near-equilibrium, coworking ensemble of molecular motors. These equations predict clear, testable relationships between motor structure, motor biochemistry, and ensemble motor function, and we discuss these relationships in the context of various experimental studies. In this model, net work by molecular motors is performed with the relaxation of a near-equilibrium intermediate step in a motor-catalyzed reaction. The free energy available for work is localized to this step, and the rate at which this free energy is transferred to work is accelerated by the free energy of a motor-catalyzed reaction. This thermodynamic model implicitly deals with a motile cell system as a dynamic network (not a rigid lattice) of molecular motors within which the mechanochemistry of one motor influences and is influenced by the mechanochemistry of other motors in the ensemble.

  11. Geometric integrator for simulations in the canonical ensemble

    International Nuclear Information System (INIS)

    Tapias, Diego; Sanders, David P.; Bravetti, Alessandro

    2016-01-01

    We introduce a geometric integrator for molecular dynamics simulations of physical systems in the canonical ensemble that preserves the invariant distribution in equations arising from the density dynamics algorithm, with any possible type of thermostat. Our integrator thus constitutes a unified framework that allows the study and comparison of different thermostats and of their influence on the equilibrium and non-equilibrium (thermo-)dynamic properties of a system. To show the validity and the generality of the integrator, we implement it with a second-order, time-reversible method and apply it to the simulation of a Lennard-Jones system with three different thermostats, obtaining good conservation of the geometrical properties and recovering the expected thermodynamic results. Moreover, to show the advantage of our geometric integrator over a non-geometric one, we compare the results with those obtained by using the non-geometric Gear integrator, which is frequently used to perform simulations in the canonical ensemble. The non-geometric integrator induces a drift in the invariant quantity, while our integrator has no such drift, thus ensuring that the system is effectively sampling the correct ensemble.

  12. Statistical ensembles for money and debt

    Science.gov (United States)

    Viaggiu, Stefano; Lionetto, Andrea; Bargigli, Leonardo; Longo, Michele

    2012-10-01

    We build a statistical ensemble representation of two economic models describing respectively, in simplified terms, a payment system and a credit market. To this purpose we adopt the Boltzmann-Gibbs distribution where the role of the Hamiltonian is taken by the total money supply (i.e. including money created from debt) of a set of interacting economic agents. As a result, we can read the main thermodynamic quantities in terms of monetary ones. In particular, we define for the credit market model a work term which is related to the impact of monetary policy on credit creation. Furthermore, with our formalism we recover and extend some results concerning the temperature of an economic system, previously presented in the literature by considering only the monetary base as a conserved quantity. Finally, we study the statistical ensemble for the Pareto distribution.

  13. Multi-criterion model ensemble of CMIP5 surface air temperature over China

    Science.gov (United States)

    Yang, Tiantian; Tao, Yumeng; Li, Jingjing; Zhu, Qian; Su, Lu; He, Xiaojia; Zhang, Xiaoming

    2018-05-01

    The global circulation models (GCMs) are useful tools for simulating climate change, projecting future temperature changes, and therefore, supporting the preparation of national climate adaptation plans. However, different GCMs are not always in agreement with each other over various regions. The reason is that GCMs' configurations, module characteristics, and dynamic forcings vary from one to another. Model ensemble techniques are extensively used to post-process the outputs from GCMs and improve the variability of model outputs. Root-mean-square error (RMSE), correlation coefficient (CC, or R) and uncertainty are commonly used statistics for evaluating the performances of GCMs. However, the simultaneous achievements of all satisfactory statistics cannot be guaranteed in using many model ensemble techniques. In this paper, we propose a multi-model ensemble framework, using a state-of-art evolutionary multi-objective optimization algorithm (termed MOSPD), to evaluate different characteristics of ensemble candidates and to provide comprehensive trade-off information for different model ensemble solutions. A case study of optimizing the surface air temperature (SAT) ensemble solutions over different geographical regions of China is carried out. The data covers from the period of 1900 to 2100, and the projections of SAT are analyzed with regard to three different statistical indices (i.e., RMSE, CC, and uncertainty). Among the derived ensemble solutions, the trade-off information is further analyzed with a robust Pareto front with respect to different statistics. The comparison results over historical period (1900-2005) show that the optimized solutions are superior over that obtained simple model average, as well as any single GCM output. The improvements of statistics are varying for different climatic regions over China. Future projection (2006-2100) with the proposed ensemble method identifies that the largest (smallest) temperature changes will happen in the

  14. Ensemble Kalman filtering with residual nudging

    KAUST Repository

    Luo, X.; Hoteit, Ibrahim

    2012-01-01

    Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF) by (in effect) adjusting the sample covariances of the estimates in the state space. In this work

  15. Hartree and Exchange in Ensemble Density Functional Theory: Avoiding the Nonuniqueness Disaster.

    Science.gov (United States)

    Gould, Tim; Pittalis, Stefano

    2017-12-15

    Ensemble density functional theory is a promising method for the efficient and accurate calculation of excitations of quantum systems, at least if useful functionals can be developed to broaden its domain of practical applicability. Here, we introduce a guaranteed single-valued "Hartree-exchange" ensemble density functional, E_{Hx}[n], in terms of the right derivative of the universal ensemble density functional with respect to the coupling constant at vanishing interaction. We show that E_{Hx}[n] is straightforwardly expressible using block eigenvalues of a simple matrix [Eq. (14)]. Specialized expressions for E_{Hx}[n] from the literature, including those involving superpositions of Slater determinants, can now be regarded as originating from the unifying picture presented here. We thus establish a clear and practical description for Hartree and exchange in ensemble systems.

  16. Interpolation of property-values between electron numbers is inconsistent with ensemble averaging

    Energy Technology Data Exchange (ETDEWEB)

    Miranda-Quintana, Ramón Alain [Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Havana (Cuba); Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Ayers, Paul W. [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

    2016-06-28

    In this work we explore the physical foundations of models that study the variation of the ground state energy with respect to the number of electrons (E vs. N models), in terms of general grand-canonical (GC) ensemble formulations. In particular, we focus on E vs. N models that interpolate the energy between states with integer number of electrons. We show that if the interpolation of the energy corresponds to a GC ensemble, it is not differentiable. Conversely, if the interpolation is smooth, then it cannot be formulated as any GC ensemble. This proves that interpolation of electronic properties between integer electron numbers is inconsistent with any form of ensemble averaging. This emphasizes the role of derivative discontinuities and the critical role of a subsystem’s surroundings in determining its properties.

  17. On the distribution of eigenvalues of certain matrix ensembles

    International Nuclear Information System (INIS)

    Bogomolny, E.; Bohigas, O.; Pato, M.P.

    1995-01-01

    Invariant random matrix ensembles with weak confinement potentials of the eigenvalues, corresponding to indeterminate moment problems, are investigated. These ensembles are characterized by the fact that the mean density of eigenvalues tends to a continuous function with increasing matrix dimension contrary to the usual cases where it grows indefinitely. It is demonstrated that the standard asymptotic formulae are not applicable in these cases and that the asymptotic distribution of eigenvalues can deviate from the classical ones. (author)

  18. Developing of Thai Classical Music Ensemble in Rattanakosin Period

    OpenAIRE

    Pansak Vandee

    2013-01-01

    The research titled “Developing of Thai Classical Music Ensemble in Rattanakosin Period" aimed 1) to study the history of Thai Classical Music Ensemble in Rattanakosin Period and 2) to analyze changing in each period of Rattanakosin Era. This is the historical and documentary research. The data was collected by in-depth interview those musicians, and academic music experts and field study. The focus group discussion was conducted to analyze and conclude the findings. The research found that t...

  19. Can decadal climate predictions be improved by ocean ensemble dispersion filtering?

    Science.gov (United States)

    Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.

    2017-12-01

    Decadal predictions by Earth system models aim to capture the state and phase of the climate several years inadvance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-termweather forecasts represent an initial value problem and long-term climate projections represent a boundarycondition problem, the decadal climate prediction falls in-between these two time scales. The ocean memorydue to its heat capacity holds big potential skill on the decadal scale. In recent years, more precise initializationtechniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions.Ensembles are another important aspect. Applying slightly perturbed predictions results in an ensemble. Insteadof using and evaluating one prediction, but the whole ensemble or its ensemble average, improves a predictionsystem. However, climate models in general start losing the initialized signal and its predictive skill from oneforecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improvedby a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. Wefound that this procedure, called ensemble dispersion filter, results in more accurate results than the standarddecadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions showan increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with largerensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from oceanensemble dispersion filtering toward the ensemble mean. This study is part of MiKlip (fona-miklip.de) - a major project on decadal climate prediction in Germany.We focus on the Max-Planck-Institute Earth System Model using the low-resolution version (MPI-ESM-LR) andMiKlip's basic initialization strategy as in 2017 published decadal climate forecast: http

  20. A genetic ensemble approach for gene-gene interaction identification

    Directory of Open Access Journals (Sweden)

    Ho Joshua WK

    2010-10-01

    Full Text Available Abstract Background It has now become clear that gene-gene interactions and gene-environment interactions are ubiquitous and fundamental mechanisms for the development of complex diseases. Though a considerable effort has been put into developing statistical models and algorithmic strategies for identifying such interactions, the accurate identification of those genetic interactions has been proven to be very challenging. Methods In this paper, we propose a new approach for identifying such gene-gene and gene-environment interactions underlying complex diseases. This is a hybrid algorithm and it combines genetic algorithm (GA and an ensemble of classifiers (called genetic ensemble. Using this approach, the original problem of SNP interaction identification is converted into a data mining problem of combinatorial feature selection. By collecting various single nucleotide polymorphisms (SNP subsets as well as environmental factors generated in multiple GA runs, patterns of gene-gene and gene-environment interactions can be extracted using a simple combinatorial ranking method. Also considered in this study is the idea of combining identification results obtained from multiple algorithms. A novel formula based on pairwise double fault is designed to quantify the degree of complementarity. Conclusions Our simulation study demonstrates that the proposed genetic ensemble algorithm has comparable identification power to Multifactor Dimensionality Reduction (MDR and is slightly better than Polymorphism Interaction Analysis (PIA, which are the two most popular methods for gene-gene interaction identification. More importantly, the identification results generated by using our genetic ensemble algorithm are highly complementary to those obtained by PIA and MDR. Experimental results from our simulation studies and real world data application also confirm the effectiveness of the proposed genetic ensemble algorithm, as well as the potential benefits of

  1. Noise Controlled Synchronization in Potassium Coupled Neural Models

    DEFF Research Database (Denmark)

    Postnov, D. E.; Ryazanova, L. S.; Zhirin, R. A.

    2007-01-01

    The paper applies biologically plausible models to investigate how noise input to small ensembles of neurons, coupled via the extracellular potassium concentration, can influence their firing patterns. Using the noise intensity and the volume of the extracellular space as control parameters, we......-temporal oscillations in neuronal ensembles....

  2. Ensemble modeling for aromatic production in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Matthew L Rizk

    2009-09-01

    Full Text Available Ensemble Modeling (EM is a recently developed method for metabolic modeling, particularly for utilizing the effect of enzyme tuning data on the production of a specific compound to refine the model. This approach is used here to investigate the production of aromatic products in Escherichia coli. Instead of using dynamic metabolite data to fit a model, the EM approach uses phenotypic data (effects of enzyme overexpression or knockouts on the steady state production rate to screen possible models. These data are routinely generated during strain design. An ensemble of models is constructed that all reach the same steady state and are based on the same mechanistic framework at the elementary reaction level. The behavior of the models spans the kinetics allowable by thermodynamics. Then by using existing data from the literature for the overexpression of genes coding for transketolase (Tkt, transaldolase (Tal, and phosphoenolpyruvate synthase (Pps to screen the ensemble, we arrive at a set of models that properly describes the known enzyme overexpression phenotypes. This subset of models becomes more predictive as additional data are used to refine the models. The final ensemble of models demonstrates the characteristic of the cell that Tkt is the first rate controlling step, and correctly predicts that only after Tkt is overexpressed does an increase in Pps increase the production rate of aromatics. This work demonstrates that EM is able to capture the result of enzyme overexpression on aromatic producing bacteria by successfully utilizing routinely generated enzyme tuning data to guide model learning.

  3. Neuron-derived IgG protects neurons from complement-dependent cytotoxicity.

    Science.gov (United States)

    Zhang, Jie; Niu, Na; Li, Bingjie; McNutt, Michael A

    2013-12-01

    Passive immunity of the nervous system has traditionally been thought to be predominantly due to the blood-brain barrier. This concept must now be revisited based on the existence of neuron-derived IgG. The conventional concept is that IgG is produced solely by mature B lymphocytes, but it has now been found to be synthesized by murine and human neurons. However, the function of this endogenous IgG is poorly understood. In this study, we confirm IgG production by rat cortical neurons at the protein and mRNA levels, with 69.0 ± 5.8% of cortical neurons IgG-positive. Injury to primary-culture neurons was induced by complement leading to increases in IgG production. Blockage of neuron-derived IgG resulted in more neuronal death and early apoptosis in the presence of complement. In addition, FcγRI was found in microglia and astrocytes. Expression of FcγR I in microglia was increased by exposure to neuron-derived IgG. Release of NO from microglia triggered by complement was attenuated by neuron-derived IgG, and this attenuation could be reversed by IgG neutralization. These data demonstrate that neuron-derived IgG is protective of neurons against injury induced by complement and microglial activation. IgG appears to play an important role in maintaining the stability of the nervous system.

  4. A New Method for Determining Structure Ensemble: Application to a RNA Binding Di-Domain Protein.

    Science.gov (United States)

    Liu, Wei; Zhang, Jingfeng; Fan, Jing-Song; Tria, Giancarlo; Grüber, Gerhard; Yang, Daiwen

    2016-05-10

    Structure ensemble determination is the basis of understanding the structure-function relationship of a multidomain protein with weak domain-domain interactions. Paramagnetic relaxation enhancement has been proven a powerful tool in the study of structure ensembles, but there exist a number of challenges such as spin-label flexibility, domain dynamics, and overfitting. Here we propose a new (to our knowledge) method to describe structure ensembles using a minimal number of conformers. In this method, individual domains are considered rigid; the position of each spin-label conformer and the structure of each protein conformer are defined by three and six orthogonal parameters, respectively. First, the spin-label ensemble is determined by optimizing the positions and populations of spin-label conformers against intradomain paramagnetic relaxation enhancements with a genetic algorithm. Subsequently, the protein structure ensemble is optimized using a more efficient genetic algorithm-based approach and an overfitting indicator, both of which were established in this work. The method was validated using a reference ensemble with a set of conformers whose populations and structures are known. This method was also applied to study the structure ensemble of the tandem di-domain of a poly (U) binding protein. The determined ensemble was supported by small-angle x-ray scattering and nuclear magnetic resonance relaxation data. The ensemble obtained suggests an induced fit mechanism for recognition of target RNA by the protein. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. A neuron-astrocyte transistor-like model for neuromorphic dressed neurons.

    Science.gov (United States)

    Valenza, G; Pioggia, G; Armato, A; Ferro, M; Scilingo, E P; De Rossi, D

    2011-09-01

    Experimental evidences on the role of the synaptic glia as an active partner together with the bold synapse in neuronal signaling and dynamics of neural tissue strongly suggest to investigate on a more realistic neuron-glia model for better understanding human brain processing. Among the glial cells, the astrocytes play a crucial role in the tripartite synapsis, i.e. the dressed neuron. A well-known two-way astrocyte-neuron interaction can be found in the literature, completely revising the purely supportive role for the glia. The aim of this study is to provide a computationally efficient model for neuron-glia interaction. The neuron-glia interactions were simulated by implementing the Li-Rinzel model for an astrocyte and the Izhikevich model for a neuron. Assuming the dressed neuron dynamics similar to the nonlinear input-output characteristics of a bipolar junction transistor, we derived our computationally efficient model. This model may represent the fundamental computational unit for the development of real-time artificial neuron-glia networks opening new perspectives in pattern recognition systems and in brain neurophysiology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Data Pre-Analysis and Ensemble of Various Artificial Neural Networks for Monthly Streamflow Forecasting

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2018-05-01

    Full Text Available This paper introduces three artificial neural network (ANN architectures for monthly streamflow forecasting: a radial basis function network, an extreme learning machine, and the Elman network. Three ensemble techniques, a simple average ensemble, a weighted average ensemble, and an ANN-based ensemble, were used to combine the outputs of the individual ANN models. The objective was to highlight the performance of the general regression neural network-based ensemble technique (GNE through an improvement of monthly streamflow forecasting accuracy. Before the construction of an ANN model, data preanalysis techniques, such as empirical wavelet transform (EWT, were exploited to eliminate the oscillations of the streamflow series. Additionally, a theory of chaos phase space reconstruction was used to select the most relevant and important input variables for forecasting. The proposed GNE ensemble model has been applied for the mean monthly streamflow observation data from the Wudongde hydrological station in the Jinsha River Basin, China. Comparisons and analysis of this study have demonstrated that the denoised streamflow time series was less disordered and unsystematic than was suggested by the original time series according to chaos theory. Thus, EWT can be adopted as an effective data preanalysis technique for the prediction of monthly streamflow. Concurrently, the GNE performed better when compared with other ensemble techniques.

  7. Distinct contributions of attention and working memory to visual statistical learning and ensemble processing.

    Science.gov (United States)

    Hall, Michelle G; Mattingley, Jason B; Dux, Paul E

    2015-08-01

    The brain exploits redundancies in the environment to efficiently represent the complexity of the visual world. One example of this is ensemble processing, which provides a statistical summary of elements within a set (e.g., mean size). Another is statistical learning, which involves the encoding of stable spatial or temporal relationships between objects. It has been suggested that ensemble processing over arrays of oriented lines disrupts statistical learning of structure within the arrays (Zhao, Ngo, McKendrick, & Turk-Browne, 2011). Here we asked whether ensemble processing and statistical learning are mutually incompatible, or whether this disruption might occur because ensemble processing encourages participants to process the stimulus arrays in a way that impedes statistical learning. In Experiment 1, we replicated Zhao and colleagues' finding that ensemble processing disrupts statistical learning. In Experiments 2 and 3, we found that statistical learning was unimpaired by ensemble processing when task demands necessitated (a) focal attention to individual items within the stimulus arrays and (b) the retention of individual items in working memory. Together, these results are consistent with an account suggesting that ensemble processing and statistical learning can operate over the same stimuli given appropriate stimulus processing demands during exposure to regularities. (c) 2015 APA, all rights reserved).

  8. Calcium Homeostatasis and Mitochondrial Dysfunction in Dopaminergic Neurons of the Substantia Nigra

    Science.gov (United States)

    2010-03-01

    complex I of the electron transport chain (ETC) [18]; this deficit is specific to PD patients [19] and seems to reflect oxidative damage to complex I...to drive pacemaking, SNc DA neurons also engage ion channels that enable Ca2+ to enter the cyto- plasm [36–38], leading to elevated intracellular Ca2...shown schematically are elements of the tricarboxylic acid (TCA) cycle that produces reducing equivalents for the electron transport chain; complexes I

  9. Dynamics of heterogeneous oscillator ensembles in terms of collective variables

    Science.gov (United States)

    Pikovsky, Arkady; Rosenblum, Michael

    2011-04-01

    We consider general heterogeneous ensembles of phase oscillators, sine coupled to arbitrary external fields. Starting with the infinitely large ensembles, we extend the Watanabe-Strogatz theory, valid for identical oscillators, to cover the case of an arbitrary parameter distribution. The obtained equations yield the description of the ensemble dynamics in terms of collective variables and constants of motion. As a particular case of the general setup we consider hierarchically organized ensembles, consisting of a finite number of subpopulations, whereas the number of elements in a subpopulation can be both finite or infinite. Next, we link the Watanabe-Strogatz and Ott-Antonsen theories and demonstrate that the latter one corresponds to a particular choice of constants of motion. The approach is applied to the standard Kuramoto-Sakaguchi model, to its extension for the case of nonlinear coupling, and to the description of two interacting subpopulations, exhibiting a chimera state. With these examples we illustrate that, although the asymptotic dynamics can be found within the framework of the Ott-Antonsen theory, the transients depend on the constants of motion. The most dramatic effect is the dependence of the basins of attraction of different synchronous regimes on the initial configuration of phases.

  10. Evaluation of bias-correction methods for ensemble streamflow volume forecasts

    Directory of Open Access Journals (Sweden)

    T. Hashino

    2007-01-01

    Full Text Available Ensemble prediction systems are used operationally to make probabilistic streamflow forecasts for seasonal time scales. However, hydrological models used for ensemble streamflow prediction often have simulation biases that degrade forecast quality and limit the operational usefulness of the forecasts. This study evaluates three bias-correction methods for ensemble streamflow volume forecasts. All three adjust the ensemble traces using a transformation derived with simulated and observed flows from a historical simulation. The quality of probabilistic forecasts issued when using the three bias-correction methods is evaluated using a distributions-oriented verification approach. Comparisons are made of retrospective forecasts of monthly flow volumes for a north-central United States basin (Des Moines River, Iowa, issued sequentially for each month over a 48-year record. The results show that all three bias-correction methods significantly improve forecast quality by eliminating unconditional biases and enhancing the potential skill. Still, subtle differences in the attributes of the bias-corrected forecasts have important implications for their use in operational decision-making. Diagnostic verification distinguishes these attributes in a context meaningful for decision-making, providing criteria to choose among bias-correction methods with comparable skill.

  11. Cluster Ensemble-Based Image Segmentation

    Directory of Open Access Journals (Sweden)

    Xiaoru Wang

    2013-07-01

    Full Text Available Image segmentation is the foundation of computer vision applications. In this paper, we propose a new cluster ensemble-based image segmentation algorithm, which overcomes several problems of traditional methods. We make two main contributions in this paper. First, we introduce the cluster ensemble concept to fuse the segmentation results from different types of visual features effectively, which can deliver a better final result and achieve a much more stable performance for broad categories of images. Second, we exploit the PageRank idea from Internet applications and apply it to the image segmentation task. This can improve the final segmentation results by combining the spatial information of the image and the semantic similarity of regions. Our experiments on four public image databases validate the superiority of our algorithm over conventional single type of feature or multiple types of features-based algorithms, since our algorithm can fuse multiple types of features effectively for better segmentation results. Moreover, our method is also proved to be very competitive in comparison with other state-of-the-art segmentation algorithms.

  12. Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting

    Directory of Open Access Journals (Sweden)

    Federico Divina

    2018-04-01

    Full Text Available The ability to predict short-term electric energy demand would provide several benefits, both at the economic and environmental level. For example, it would allow for an efficient use of resources in order to face the actual demand, reducing the costs associated to the production as well as the emission of CO 2 . To this aim, in this paper we propose a strategy based on ensemble learning in order to tackle the short-term load forecasting problem. In particular, our approach is based on a stacking ensemble learning scheme, where the predictions produced by three base learning methods are used by a top level method in order to produce final predictions. We tested the proposed scheme on a dataset reporting the energy consumption in Spain over more than nine years. The obtained experimental results show that an approach for short-term electricity consumption forecasting based on ensemble learning can help in combining predictions produced by weaker learning methods in order to obtain superior results. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that using an ensemble scheme can achieve very accurate predictions, and thus that it is a suitable approach for addressing the short-term load forecasting problem.

  13. Exploiting ensemble learning for automatic cataract detection and grading.

    Science.gov (United States)

    Yang, Ji-Jiang; Li, Jianqiang; Shen, Ruifang; Zeng, Yang; He, Jian; Bi, Jing; Li, Yong; Zhang, Qinyan; Peng, Lihui; Wang, Qing

    2016-02-01

    Cataract is defined as a lenticular opacity presenting usually with poor visual acuity. It is one of the most common causes of visual impairment worldwide. Early diagnosis demands the expertise of trained healthcare professionals, which may present a barrier to early intervention due to underlying costs. To date, studies reported in the literature utilize a single learning model for retinal image classification in grading cataract severity. We present an ensemble learning based approach as a means to improving diagnostic accuracy. Three independent feature sets, i.e., wavelet-, sketch-, and texture-based features, are extracted from each fundus image. For each feature set, two base learning models, i.e., Support Vector Machine and Back Propagation Neural Network, are built. Then, the ensemble methods, majority voting and stacking, are investigated to combine the multiple base learning models for final fundus image classification. Empirical experiments are conducted for cataract detection (two-class task, i.e., cataract or non-cataractous) and cataract grading (four-class task, i.e., non-cataractous, mild, moderate or severe) tasks. The best performance of the ensemble classifier is 93.2% and 84.5% in terms of the correct classification rates for cataract detection and grading tasks, respectively. The results demonstrate that the ensemble classifier outperforms the single learning model significantly, which also illustrates the effectiveness of the proposed approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Evaluation of stability of k-means cluster ensembles with respect to random initialization.

    Science.gov (United States)

    Kuncheva, Ludmila I; Vetrov, Dmitry P

    2006-11-01

    Many clustering algorithms, including cluster ensembles, rely on a random component. Stability of the results across different runs is considered to be an asset of the algorithm. The cluster ensembles considered here are based on k-means clusterers. Each clusterer is assigned a random target number of clusters, k and is started from a random initialization. Here, we use 10 artificial and 10 real data sets to study ensemble stability with respect to random k, and random initialization. The data sets were chosen to have a small number of clusters (two to seven) and a moderate number of data points (up to a few hundred). Pairwise stability is defined as the adjusted Rand index between pairs of clusterers in the ensemble, averaged across all pairs. Nonpairwise stability is defined as the entropy of the consensus matrix of the ensemble. An experimental comparison with the stability of the standard k-means algorithm was carried out for k from 2 to 20. The results revealed that ensembles are generally more stable, markedly so for larger k. To establish whether stability can serve as a cluster validity index, we first looked at the relationship between stability and accuracy with respect to the number of clusters, k. We found that such a relationship strongly depends on the data set, varying from almost perfect positive correlation (0.97, for the glass data) to almost perfect negative correlation (-0.93, for the crabs data). We propose a new combined stability index to be the sum of the pairwise individual and ensemble stabilities. This index was found to correlate better with the ensemble accuracy. Following the hypothesis that a point of stability of a clustering algorithm corresponds to a structure found in the data, we used the stability measures to pick the number of clusters. The combined stability index gave best results.

  15. Inhibitory neurons modulate spontaneous signaling in cultured cortical neurons: density-dependent regulation of excitatory neuronal signaling

    International Nuclear Information System (INIS)

    Serra, Michael; Guaraldi, Mary; Shea, Thomas B

    2010-01-01

    Cortical neuronal activity depends on a balance between excitatory and inhibitory influences. Culturing of neurons on multi-electrode arrays (MEAs) has provided insight into the development and maintenance of neuronal networks. Herein, we seeded MEAs with murine embryonic cortical/hippocampal neurons at different densities ( 1000 cells mm −2 ) and monitored resultant spontaneous signaling. Sparsely seeded cultures displayed a large number of bipolar, rapid, high-amplitude individual signals with no apparent temporal regularity. By contrast, densely seeded cultures instead displayed clusters of signals at regular intervals. These patterns were observed even within thinner and thicker areas of the same culture. GABAergic neurons (25% of total neurons in our cultures) mediated the differential signal patterns observed above, since addition of the inhibitory antagonist bicuculline to dense cultures and hippocampal slice cultures induced the signal pattern characteristic of sparse cultures. Sparsely seeded cultures likely lacked sufficient inhibitory neurons to modulate excitatory activity. Differential seeding of MEAs can provide a unique model for analyses of pertubation in the interaction between excitatory and inhibitory function during aging and neuropathological conditions where dysregulation of GABAergic neurons is a significant component

  16. Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory

    Science.gov (United States)

    Gould, Tim; Kronik, Leeor; Pittalis, Stefano

    2018-05-01

    By studying the lowest excitations of an exactly solvable one-dimensional soft-Coulomb molecular model, we show that components of Kohn-Sham ensembles can be used to describe charge transfer processes. Furthermore, we compute the approximate excitation energies obtained by using the exact ensemble densities in the recently formulated ensemble Hartree-exchange theory [T. Gould and S. Pittalis, Phys. Rev. Lett. 119, 243001 (2017)]. Remarkably, our results show that triplet excitations are accurately reproduced across a dissociation curve in all cases tested, even in systems where ground state energies are poor due to strong static correlations. Singlet excitations exhibit larger deviations from exact results but are still reproduced semi-quantitatively.

  17. ‘Which-way’ collective atomic spin excitation among atomic ensembles by photon indistinguishability

    International Nuclear Information System (INIS)

    Zhang Guowan; Bian Chenglin; Chen, L Q; Ou, Z Y; Zhang Weiping

    2012-01-01

    In spontaneous Raman scattering in an atomic ensemble, a collective atomic spin wave is created in correlation with the Stokes field. When the Stokes photons from two or more such atomic ensembles are made indistinguishable, a ‘which-way’ collective atomic spin excitation is generated among the independent atomic ensembles. We demonstrate this phenomenon experimentally by reading out the atomic spin excitations and observing interference between the read-out beams. When a single-photon projective measurement is made on the indistinguishable Stokes photons, this simple scheme can be used to entangle independent atomic ensembles. Compared to other currently used methods, this scheme can be easily scaled up and has greater efficiency. (paper)

  18. Potentialities of ensemble strategies for flood forecasting over the Milano urban area

    Science.gov (United States)

    Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Homar, Víctor; Romero, Romu; Lombardi, Gabriele; Mancini, Marco

    2016-08-01

    Analysis of ensemble forecasting strategies, which can provide a tangible backing for flood early warning procedures and mitigation measures over the Mediterranean region, is one of the fundamental motivations of the international HyMeX programme. Here, we examine two severe hydrometeorological episodes that affected the Milano urban area and for which the complex flood protection system of the city did not completely succeed. Indeed, flood damage have exponentially increased during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. First, we examine how land-use changes due to urban development have altered the hydrological response to intense rainfalls. Second, we test a flood forecasting system which comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models. Accurate forecasts of deep moist convection and extreme precipitation are difficult to be predicted due to uncertainties arising from the numeric weather prediction (NWP) physical parameterizations and high sensitivity to misrepresentation of the atmospheric state; however, two hydrological ensemble prediction systems (HEPS) have been designed to explicitly cope with uncertainties in the initial and lateral boundary conditions (IC/LBCs) and physical parameterizations of the NWP model. No substantial differences in skill have been found between both ensemble strategies when considering an enhanced diversity of IC/LBCs for the perturbed initial conditions ensemble. Furthermore, no additional benefits have been found by considering more frequent LBCs in a mixed physics ensemble, as ensemble spread seems to be reduced. These findings could help to design the most appropriate ensemble strategies before these hydrometeorological extremes, given the computational

  19. Coherent Rabi Dynamics of a Superradiant Spin Ensemble in a Microwave Cavity

    Science.gov (United States)

    Rose, B. C.; Tyryshkin, A. M.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Thewalt, M. L. W.; Itoh, K. M.; Lyon, S. A.

    2017-07-01

    We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N =3.6 ×1 013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble-cavity polariton resonances of 2 g √{N }=580 kHz (where each spin is coupled with strength g ) in a cavity with a quality factor of 75 000 (γ ≪κ ≈60 kHz , where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T2*=9 μ s ) providing a wide window for viewing the dynamics of the coupled spin-ensemble-cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g √{N }. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π -phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.

  20. Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA.

    Directory of Open Access Journals (Sweden)

    Matthew B Biggs

    2017-03-01

    Full Text Available Genome-scale metabolic network reconstructions (GENREs are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA. We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository.

  1. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Directory of Open Access Journals (Sweden)

    Yoonsik Shim

    2016-10-01

    Full Text Available We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP. The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  2. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Science.gov (United States)

    Shim, Yoonsik; Philippides, Andrew; Staras, Kevin; Husbands, Phil

    2016-10-01

    We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  3. Development of Super-Ensemble techniques for ocean analyses: the Mediterranean Sea case

    Science.gov (United States)

    Pistoia, Jenny; Pinardi, Nadia; Oddo, Paolo; Collins, Matthew; Korres, Gerasimos; Drillet, Yann

    2017-04-01

    Short-term ocean analyses for Sea Surface Temperature SST in the Mediterranean Sea can be improved by a statistical post-processing technique, called super-ensemble. This technique consists in a multi-linear regression algorithm applied to a Multi-Physics Multi-Model Super-Ensemble (MMSE) dataset, a collection of different operational forecasting analyses together with ad-hoc simulations produced by modifying selected numerical model parameterizations. A new linear regression algorithm based on Empirical Orthogonal Function filtering techniques is capable to prevent overfitting problems, even if best performances are achieved when we add correlation to the super-ensemble structure using a simple spatial filter applied after the linear regression. Our outcomes show that super-ensemble performances depend on the selection of an unbiased operator and the length of the learning period, but the quality of the generating MMSE dataset has the largest impact on the MMSE analysis Root Mean Square Error (RMSE) evaluated with respect to observed satellite SST. Lower RMSE analysis estimates result from the following choices: 15 days training period, an overconfident MMSE dataset (a subset with the higher quality ensemble members), and the least square algorithm being filtered a posteriori.

  4. Fidelity estimation between two finite ensembles of unknown pure equatorial qubit states

    Energy Technology Data Exchange (ETDEWEB)

    Siomau, Michael, E-mail: siomau@physi.uni-heidelberg.de [Physikalisches Institut, Heidelberg Universitaet, D-69120 Heidelberg (Germany); Department of Theoretical Physics, Belarussian State University, 220030 Minsk (Belarus)

    2011-09-05

    Suppose, we are given two finite ensembles of pure qubit states, so that the qubits in each ensemble are prepared in identical (but unknown for us) states lying on the equator of the Bloch sphere. What is the best strategy to estimate fidelity between these two finite ensembles of qubit states? We discuss three possible strategies for the fidelity estimation. We show that the best strategy includes two stages: a specific unitary transformation on two ensembles and state estimation of the output states of this transformation. -- Highlights: → We search for the best strategy for the fidelity estimation. → A measurement-based, a cloning-based and a unified strategies are considered. → The last strategy includes a specific unitary transformation and state estimation. → The unified strategy is shown to be the best among the three.

  5. A new deterministic Ensemble Kalman Filter with one-step-ahead smoothing for storm surge forecasting

    KAUST Repository

    Raboudi, Naila

    2016-01-01

    KF-OSA exploits the observation twice. The incoming observation is first used to smooth the ensemble at the previous time step. The resulting smoothed ensemble is then integrated forward to compute a "pseudo forecast" ensemble, which is again updated with the same

  6. Quark ensembles with the infinite correlation length

    Science.gov (United States)

    Zinov'ev, G. M.; Molodtsov, S. V.

    2015-01-01

    A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble.

  7. Quark ensembles with the infinite correlation length

    International Nuclear Information System (INIS)

    Zinov’ev, G. M.; Molodtsov, S. V.

    2015-01-01

    A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble

  8. Quark ensembles with the infinite correlation length

    Energy Technology Data Exchange (ETDEWEB)

    Zinov’ev, G. M. [National Academy of Sciences of Ukraine, Bogoliubov Institute for Theoretical Physics (Ukraine); Molodtsov, S. V., E-mail: molodtsov@itep.ru [Joint Institute for Nuclear Research (Russian Federation)

    2015-01-15

    A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble.

  9. Statistical ensembles and molecular dynamics studies of anisotropic solids. II

    International Nuclear Information System (INIS)

    Ray, J.R.; Rahman, A.

    1985-01-01

    We have recently discussed how the Parrinello--Rahman theory can be brought into accord with the theory of the elastic and thermodynamic behavior of anisotropic media. This involves the isoenthalpic--isotension ensemble of statistical mechanics. Nose has developed a canonical ensemble form of molecular dynamics. We combine Nose's ideas with the Parrinello--Rahman theory to obtain a canonical form of molecular dynamics appropriate to the study of anisotropic media subjected to arbitrary external stress. We employ this isothermal--isotension ensemble in a study of a fcc→ close-packed structural phase transformation in a Lennard-Jones solid subjected to uniaxial compression. Our interpretation of the Nose theory does not involve a scaling of the time variable. This latter fact leads to simplifications when studying the time dependence of quantities

  10. Generation of Exotic Quantum States of a Cold Atomic Ensemble

    DEFF Research Database (Denmark)

    Christensen, Stefan Lund

    Over the last decades quantum effects have become more and more controllable, leading to the implementations of various quantum information protocols. These protocols are all based on utilizing quantum correlation. In this thesis we consider how states of an atomic ensemble with such correlations...... can be created and characterized. First we consider a spin-squeezed state. This state is generated by performing quantum non-demolition measurements of the atomic population difference. We show a spectroscopically relevant noise reduction of -1.7dB, the ensemble is in a many-body entangled state...... — a nanofiber based light-atom interface. Using a dual-frequency probing method we measure and prepare an ensemble with a sub-Poissonian atom number distribution. This is a first step towards the implementation of more exotic quantum states....

  11. Robustness of the far-field response of nonlocal plasmonic ensembles

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Zhaowei

    2016-01-01

    Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size...... distribution. For a normal distribution of free-electron nanoparticles, and within the simple nonlocal hydrodynamic Drude model, both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality...... to a lesser extent when the homogeneous size-dependent broadening of individual nanoparticles is taken into account, either through a local size-dependent damping model or through the Generalized Nonlocal Optical Response theory. The role of ensemble averaging is further explored in realistic distributions...

  12. NCAR's Experimental Real-time Convection-allowing Ensemble Prediction System

    Science.gov (United States)

    Schwartz, C. S.; Romine, G. S.; Sobash, R.; Fossell, K.

    2016-12-01

    Since April 2015, the National Center for Atmospheric Research's (NCAR's) Mesoscale and Microscale Meteorology (MMM) Laboratory, in collaboration with NCAR's Computational Information Systems Laboratory (CISL), has been producing daily, real-time, 10-member, 48-hr ensemble forecasts with 3-km horizontal grid spacing over the conterminous United States (http://ensemble.ucar.edu). These computationally-intensive, next-generation forecasts are produced on the Yellowstone supercomputer, have been embraced by both amateur and professional weather forecasters, are widely used by NCAR and university researchers, and receive considerable attention on social media. Initial conditions are supplied by NCAR's Data Assimilation Research Testbed (DART) software and the forecast model is NCAR's Weather Research and Forecasting (WRF) model; both WRF and DART are community tools. This presentation will focus on cutting-edge research results leveraging the ensemble dataset, including winter weather predictability, severe weather forecasting, and power outage modeling. Additionally, the unique design of the real-time analysis and forecast system and computational challenges and solutions will be described.

  13. Neurons from the adult human dentate nucleus: neural networks in the neuron classification.

    Science.gov (United States)

    Grbatinić, Ivan; Marić, Dušica L; Milošević, Nebojša T

    2015-04-07

    Topological (central vs. border neuron type) and morphological classification of adult human dentate nucleus neurons according to their quantified histomorphological properties using neural networks on real and virtual neuron samples. In the real sample 53.1% and 14.1% of central and border neurons, respectively, are classified correctly with total of 32.8% of misclassified neurons. The most important result present 62.2% of misclassified neurons in border neurons group which is even greater than number of correctly classified neurons (37.8%) in that group, showing obvious failure of network to classify neurons correctly based on computational parameters used in our study. On the virtual sample 97.3% of misclassified neurons in border neurons group which is much greater than number of correctly classified neurons (2.7%) in that group, again confirms obvious failure of network to classify neurons correctly. Statistical analysis shows that there is no statistically significant difference in between central and border neurons for each measured parameter (p>0.05). Total of 96.74% neurons are morphologically classified correctly by neural networks and each one belongs to one of the four histomorphological types: (a) neurons with small soma and short dendrites, (b) neurons with small soma and long dendrites, (c) neuron with large soma and short dendrites, (d) neurons with large soma and long dendrites. Statistical analysis supports these results (pneurons can be classified in four neuron types according to their quantitative histomorphological properties. These neuron types consist of two neuron sets, small and large ones with respect to their perykarions with subtypes differing in dendrite length i.e. neurons with short vs. long dendrites. Besides confirmation of neuron classification on small and large ones, already shown in literature, we found two new subtypes i.e. neurons with small soma and long dendrites and with large soma and short dendrites. These neurons are

  14. Network and Ensemble Enabled Entity Extraction in Informal Text (NEEEEIT) final report

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, Philip W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shead, Timothy M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dunlavy, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-09-01

    This SAND report summarizes the activities and outcomes of the Network and Ensemble Enabled Entity Extraction in Information Text (NEEEEIT) LDRD project, which addressed improving the accuracy of conditional random fields for named entity recognition through the use of ensemble methods.

  15. Neuronal Migration and Neuronal Migration Disorder in Cerebral Cortex

    OpenAIRE

    SUN, Xue-Zhi; TAKAHASHI, Sentaro; GUI, Chun; ZHANG, Rui; KOGA, Kazuo; NOUYE, Minoru; MURATA, Yoshiharu

    2002-01-01

    Neuronal cell migration is one of the most significant features during cortical development. After final mitosis, neurons migrate from the ventricular zone into the cortical plate, and then establish neuronal lamina and settle onto the outermost layer, forming an "inside-out" gradient of maturation. Neuronal migration is guided by radial glial fibers and also needs proper receptors, ligands, and other unknown extracellular factors, requests local signaling (e.g. some emitted by the Cajal-Retz...

  16. Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting.

    Science.gov (United States)

    Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C; Kuznetsov, Alexey

    2016-10-01

    In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca 2+ ) concentration, thus reducing the Ca 2+ -dependent potassium (K + ) current. In this way, the GABA-mediated hyperpolarization replaces Ca 2+ -dependent K + current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. Copyright © 2016 the American Physiological Society.

  17. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  18. A Simple Ensemble Simulation Technique for Assessment of Future Variations in Specific High-Impact Weather Events

    Science.gov (United States)

    Taniguchi, Kenji

    2018-04-01

    To investigate future variations in high-impact weather events, numerous samples are required. For the detailed assessment in a specific region, a high spatial resolution is also required. A simple ensemble simulation technique is proposed in this paper. In the proposed technique, new ensemble members were generated from one basic state vector and two perturbation vectors, which were obtained by lagged average forecasting simulations. Sensitivity experiments with different numbers of ensemble members, different simulation lengths, and different perturbation magnitudes were performed. Experimental application to a global warming study was also implemented for a typhoon event. Ensemble-mean results and ensemble spreads of total precipitation, atmospheric conditions showed similar characteristics across the sensitivity experiments. The frequencies of the maximum total and hourly precipitation also showed similar distributions. These results indicate the robustness of the proposed technique. On the other hand, considerable ensemble spread was found in each ensemble experiment. In addition, the results of the application to a global warming study showed possible variations in the future. These results indicate that the proposed technique is useful for investigating various meteorological phenomena and the impacts of global warming. The results of the ensemble simulations also enable the stochastic evaluation of differences in high-impact weather events. In addition, the impacts of a spectral nudging technique were also examined. The tracks of a typhoon were quite different between cases with and without spectral nudging; however, the ranges of the tracks among ensemble members were comparable. It indicates that spectral nudging does not necessarily suppress ensemble spread.

  19. ENSEMBLE methods to reconcile disparate national long range dispersion forecasts

    OpenAIRE

    Mikkelsen, Torben; Galmarini, S.; Bianconi, R.; French, S.

    2003-01-01

    ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparatenational forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an a...

  20. Good and Bad Neighborhood Approximations for Outlier Detection Ensembles

    DEFF Research Database (Denmark)

    Kirner, Evelyn; Schubert, Erich; Zimek, Arthur

    2017-01-01

    Outlier detection methods have used approximate neighborhoods in filter-refinement approaches. Outlier detection ensembles have used artificially obfuscated neighborhoods to achieve diverse ensemble members. Here we argue that outlier detection models could be based on approximate neighborhoods...... in the first place, thus gaining in both efficiency and effectiveness. It depends, however, on the type of approximation, as only some seem beneficial for the task of outlier detection, while no (large) benefit can be seen for others. In particular, we argue that space-filling curves are beneficial...

  1. A short-range ensemble prediction system for southern Africa

    CSIR Research Space (South Africa)

    Park, R

    2012-10-01

    Full Text Available system for southern Africa R PARK, WA LANDMAN AND F ENGELBRECHT CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: xxxxxxxxxxxxxx@csir.co.za ? www.csir.co.za INTRODUCTION This research has been conducted in order to develop a short-range ensemble... stream_source_info Park_2012.pdf.txt stream_content_type text/plain stream_size 7211 Content-Encoding ISO-8859-1 stream_name Park_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 A short-range ensemble prediction...

  2. Post-processing of multi-model ensemble river discharge forecasts using censored EMOS

    Science.gov (United States)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2014-05-01

    When forecasting water levels and river discharge, ensemble weather forecasts are used as meteorological input to hydrologic process models. As hydrologic models are imperfect and the input ensembles tend to be biased and underdispersed, the output ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, statistical post-processing is required in order to achieve calibrated and sharp predictions. Standard post-processing methods such as Ensemble Model Output Statistics (EMOS) that have their origins in meteorological forecasting are now increasingly being used in hydrologic applications. Here we consider two sub-catchments of River Rhine, for which the forecasting system of the Federal Institute of Hydrology (BfG) uses runoff data that are censored below predefined thresholds. To address this methodological challenge, we develop a censored EMOS method that is tailored to such data. The censored EMOS forecast distribution can be understood as a mixture of a point mass at the censoring threshold and a continuous part based on a truncated normal distribution. Parameter estimates of the censored EMOS model are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over the training dataset. Model fitting on Box-Cox transformed data allows us to take account of the positive skewness of river discharge distributions. In order to achieve realistic forecast scenarios over an entire range of lead-times, there is a need for multivariate extensions. To this end, we smooth the marginal parameter estimates over lead-times. In order to obtain realistic scenarios of discharge evolution over time, the marginal distributions have to be linked with each other. To this end, the multivariate dependence structure can either be adopted from the raw ensemble like in Ensemble Copula Coupling (ECC), or be estimated from observations in a training period. The censored EMOS model has been applied to multi-model ensemble forecasts issued on a

  3. ALTERED HIPPOCAMPAL NEUROGENESIS AND AMYGDALAR NEURONAL ACTIVITY IN ADULT MICE WITH REPEATED EXPERIENCE OF AGGRESSION

    Directory of Open Access Journals (Sweden)

    Dmitriy eSmagin

    2015-12-01

    Full Text Available The repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos positive cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.

  4. Differential Expression of Dopamine D5 Receptors across Neuronal Subtypes in Macaque Frontal Eye Field

    Directory of Open Access Journals (Sweden)

    Adrienne Mueller

    2018-02-01

    Full Text Available Dopamine signaling in the prefrontal cortex (PFC is important for cognitive functions, yet very little is known about the expression of the D5 class of dopamine receptors (D5Rs in this region. To address this, we co-stained for D5Rs, pyramidal neurons (neurogranin+, putative long-range projection pyramidal neurons (SMI-32+, and several classes of inhibitory interneuron (parvalbumin+, calbindin+, calretinin+, somatostatin+ within the frontal eye field (FEF: an area within the PFC involved in the control of visual spatial attention. We then quantified the co-expression of D5Rs with markers of different cell types across different layers of the FEF. We show that: (1 D5Rs are more prevalent on pyramidal neurons than on inhibitory interneurons. (2 D5Rs are disproportionately expressed on putative long-range projecting pyramidal neurons. The disproportionately high expression of D5Rs on long-range projecting pyramidals, compared to interneurons, was particularly pronounced in layers II–III. Together these results indicate that the engagement of D5R-dependent mechanisms in the FEF varies depending on cell type and cortical layer, and suggests that non-locally projecting neurons contribute disproportionately to functions involving the D5R subtype.

  5. SAChES: Scalable Adaptive Chain-Ensemble Sampling.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ray, Jaideep [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ebeida, Mohamed Salah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huang, Maoyi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hou, Zhangshuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ren, Huiying [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-01

    We present the development of a parallel Markov Chain Monte Carlo (MCMC) method called SAChES, Scalable Adaptive Chain-Ensemble Sampling. This capability is targed to Bayesian calibration of com- putationally expensive simulation models. SAChES involves a hybrid of two methods: Differential Evo- lution Monte Carlo followed by Adaptive Metropolis. Both methods involve parallel chains. Differential evolution allows one to explore high-dimensional parameter spaces using loosely coupled (i.e., largely asynchronous) chains. Loose coupling allows the use of large chain ensembles, with far more chains than the number of parameters to explore. This reduces per-chain sampling burden, enables high-dimensional inversions and the use of computationally expensive forward models. The large number of chains can also ameliorate the impact of silent-errors, which may affect only a few chains. The chain ensemble can also be sampled to provide an initial condition when an aberrant chain is re-spawned. Adaptive Metropolis takes the best points from the differential evolution and efficiently hones in on the poste- rior density. The multitude of chains in SAChES is leveraged to (1) enable efficient exploration of the parameter space; and (2) ensure robustness to silent errors which may be unavoidable in extreme-scale computational platforms of the future. This report outlines SAChES, describes four papers that are the result of the project, and discusses some additional results.

  6. Quasi-static ensemble variational data assimilation: a theoretical and numerical study with the iterative ensemble Kalman smoother

    Science.gov (United States)

    Fillion, Anthony; Bocquet, Marc; Gratton, Serge

    2018-04-01

    The analysis in nonlinear variational data assimilation is the solution of a non-quadratic minimization. Thus, the analysis efficiency relies on its ability to locate a global minimum of the cost function. If this minimization uses a Gauss-Newton (GN) method, it is critical for the starting point to be in the attraction basin of a global minimum. Otherwise the method may converge to a local extremum, which degrades the analysis. With chaotic models, the number of local extrema often increases with the temporal extent of the data assimilation window, making the former condition harder to satisfy. This is unfortunate because the assimilation performance also increases with this temporal extent. However, a quasi-static (QS) minimization may overcome these local extrema. It accomplishes this by gradually injecting the observations in the cost function. This method was introduced by Pires et al. (1996) in a 4D-Var context. We generalize this approach to four-dimensional strong-constraint nonlinear ensemble variational (EnVar) methods, which are based on both a nonlinear variational analysis and the propagation of dynamical error statistics via an ensemble. This forces one to consider the cost function minimizations in the broader context of cycled data assimilation algorithms. We adapt this QS approach to the iterative ensemble Kalman smoother (IEnKS), an exemplar of nonlinear deterministic four-dimensional EnVar methods. Using low-order models, we quantify the positive impact of the QS approach on the IEnKS, especially for long data assimilation windows. We also examine the computational cost of QS implementations and suggest cheaper algorithms.

  7. Breaking of ensembles of linear and nonlinear oscillators

    International Nuclear Information System (INIS)

    Buts, V.A.

    2016-01-01

    Some results concerning the study of the dynamics of ensembles of linear and nonlinear oscillators are stated. It is shown that, in general, a stable ensemble of linear oscillator has a limited number of oscillators. This number has been defined for some simple models. It is shown that the features of the dynamics of linear oscillators can be used for conversion of the low-frequency energy oscillations into high frequency oscillations. The dynamics of coupled nonlinear oscillators in most cases is chaotic. For such a case, it is shown that the statistical characteristics (moments) of chaotic motion can significantly reduce potential barriers that keep the particles in the capture region

  8. Arc mRNA induction in striatal efferent neurons associated with response learning.

    Science.gov (United States)

    Daberkow, D P; Riedy, M D; Kesner, R P; Keefe, K A

    2007-07-01

    The dorsal striatum is involved in motor-response learning, but the extent to which distinct populations of striatal efferent neurons are differentially involved in such learning is unknown. Activity-regulated, cytoskeleton-associated (Arc) protein is an effector immediate-early gene implicated in synaptic plasticity. We examined arc mRNA expression in striatopallidal vs. striatonigral efferent neurons in dorsomedial and dorsolateral striatum of rats engaged in reversal learning on a T-maze motor-response task. Male Sprague-Dawley rats learned to turn right or left for 3 days. Half of the rats then underwent reversal training. The remaining rats were yoked to rats undergoing reversal training, such that they ran the same number of trials but ran them as continued-acquisition trials. Brains were removed and processed using double-label fluorescent in situ hybridization for arc and preproenkephalin (PPE) mRNA. In the reversal, but not the continued-acquisition, group there was a significant relation between the overall arc mRNA signal in dorsomedial striatum and the number of trials run, with rats reaching criterion in fewer trials having higher levels of arc mRNA expression. A similar relation was seen between the numbers of PPE(+) and PPE(-) neurons in dorsomedial striatum with cytoplasmic arc mRNA expression. Interestingly, in behaviourally activated animals significantly more PPE(-) neurons had cytoplasmic arc mRNA expression. These data suggest that Arc in both striatonigral and striatopallidal efferent neurons is involved in striatal synaptic plasticity mediating motor-response learning in the T-maze and that there is differential processing of arc mRNA in distinct subpopulations of striatal efferent neurons.

  9. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons.

    Science.gov (United States)

    Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R

    2015-01-21

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.

  10. Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex.

    Science.gov (United States)

    Hennessy, Morgan L; Corcoran, Andrea E; Brust, Rachael D; Chang, YoonJeung; Nattie, Eugene E; Dymecki, Susan M

    2017-02-15

    Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 ( Tac1 ) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1 , referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine -N- oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO 2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO 2 Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei. SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using

  11. Endogenous opioids regulate moment-to-moment neuronal communication and excitability

    Science.gov (United States)

    Winters, Bryony L.; Gregoriou, Gabrielle C.; Kissiwaa, Sarah A.; Wells, Oliver A.; Medagoda, Danashi I.; Hermes, Sam M.; Burford, Neil T.; Alt, Andrew; Aicher, Sue A.; Bagley, Elena E.

    2017-01-01

    Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear. PMID:28327612

  12. Post-eclosion odor experience modifies olfactory receptor neuron coding in Drosophila.

    Science.gov (United States)

    Iyengar, Atulya; Chakraborty, Tuhin Subhra; Goswami, Sarit Pati; Wu, Chun-Fang; Siddiqi, Obaid

    2010-05-25

    Olfactory responses of Drosophila undergo pronounced changes after eclosion. The flies develop attraction to odors to which they are exposed and aversion to other odors. Behavioral adaptation is correlated with changes in the firing pattern of olfactory receptor neurons (ORNs). In this article, we present an information-theoretic analysis of the firing pattern of ORNs. Flies reared in a synthetic odorless medium were transferred after eclosion to three different media: (i) a synthetic medium relatively devoid of odor cues, (ii) synthetic medium infused with a single odorant, and (iii) complex cornmeal medium rich in odors. Recordings were made from an identified sensillum (type II), and the Jensen-Shannon divergence (D(JS)) was used to assess quantitatively the differences between ensemble spike responses to different odors. Analysis shows that prolonged exposure to ethyl acetate and several related esters increases sensitivity to these esters but does not improve the ability of the fly to distinguish between them. Flies exposed to cornmeal display varied sensitivity to these odorants and at the same time develop greater capacity to distinguish between odors. Deprivation of odor experience on an odorless synthetic medium leads to a loss of both sensitivity and acuity. Rich olfactory experience thus helps to shape the ORNs response and enhances its discriminative power. The experiments presented here demonstrate an experience-dependent adaptation at the level of the receptor neuron.

  13. Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2014-11-01

    Full Text Available Tool condition monitoring (TCM plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM, hidden Markov model (HMM and radius basis function (RBF are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability.

  14. Using caching and optimization techniques to improve performance of the Ensembl website

    Directory of Open Access Journals (Sweden)

    Smith James A

    2010-05-01

    Full Text Available Abstract Background The Ensembl web site has provided access to genomic information for almost 10 years. During this time the amount of data available through Ensembl has grown dramatically. At the same time, the World Wide Web itself has become a dramatically more important component of the scientific workflow and the way that scientists share and access data and scientific information. Since 2000, the Ensembl web interface has had three major updates and numerous smaller updates. These have largely been in response to expanding data types and valuable representations of existing data types. In 2007 it was realised that a radical new approach would be required in order to serve the project's future requirements, and development therefore focused on identifying suitable web technologies for implementation in the 2008 site redesign. Results By comparing the Ensembl website to well-known "Web 2.0" sites, we were able to identify two main areas in which cutting-edge technologies could be advantageously deployed: server efficiency and interface latency. We then evaluated the performance of the existing site using browser-based tools and Apache benchmarking, and selected appropriate technologies to overcome any issues found. Solutions included optimization of the Apache web server, introduction of caching technologies and widespread implementation of AJAX code. These improvements were successfully deployed on the Ensembl website in late 2008 and early 2009. Conclusions Web 2.0 technologies provide a flexible and efficient way to access the terabytes of data now available from Ensembl, enhancing the user experience through improved website responsiveness and a rich, interactive interface.

  15. Path planning in uncertain flow fields using ensemble method

    KAUST Repository

    Wang, Tong

    2016-08-20

    An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

  16. An Effective and Novel Neural Network Ensemble for Shift Pattern Detection in Control Charts

    Directory of Open Access Journals (Sweden)

    Mahmoud Barghash

    2015-01-01

    Full Text Available Pattern recognition in control charts is critical to make a balance between discovering faults as early as possible and reducing the number of false alarms. This work is devoted to designing a multistage neural network ensemble that achieves this balance which reduces rework and scrape without reducing productivity. The ensemble under focus is composed of a series of neural network stages and a series of decision points. Initially, this work compared using multidecision points and single-decision point on the performance of the ANN which showed that multidecision points are highly preferable to single-decision points. This work also tested the effect of population percentages on the ANN and used this to optimize the ANN’s performance. Also this work used optimized and nonoptimized ANNs in an ensemble and proved that using nonoptimized ANN may reduce the performance of the ensemble. The ensemble that used only optimized ANNs has improved performance over individual ANNs and three-sigma level rule. In that respect using the designed ensemble can help in reducing the number of false stops and increasing productivity. It also can be used to discover even small shifts in the mean as early as possible.

  17. Reliability of windstorm predictions in the ECMWF ensemble prediction system

    Science.gov (United States)

    Becker, Nico; Ulbrich, Uwe

    2016-04-01

    Windstorms caused by extratropical cyclones are one of the most dangerous natural hazards in the European region. Therefore, reliable predictions of such storm events are needed. Case studies have shown that ensemble prediction systems (EPS) are able to provide useful information about windstorms between two and five days prior to the event. In this work, ensemble predictions with the European Centre for Medium-Range Weather Forecasts (ECMWF) EPS are evaluated in a four year period. Within the 50 ensemble members, which are initialized every 12 hours and are run for 10 days, windstorms are identified and tracked in time and space. By using a clustering approach, different predictions of the same storm are identified in the different ensemble members and compared to reanalysis data. The occurrence probability of the predicted storms is estimated by fitting a bivariate normal distribution to the storm track positions. Our results show, for example, that predicted storm clusters with occurrence probabilities of more than 50% have a matching observed storm in 80% of all cases at a lead time of two days. The predicted occurrence probabilities are reliable up to 3 days lead time. At longer lead times the occurrence probabilities are overestimated by the EPS.

  18. Improving wave forecasting by integrating ensemble modelling and machine learning

    Science.gov (United States)

    O'Donncha, F.; Zhang, Y.; James, S. C.

    2017-12-01

    Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.

  19. Plasticity of the Binding Site of Renin: Optimized Selection of Protein Structures for Ensemble Docking.

    Science.gov (United States)

    Strecker, Claas; Meyer, Bernd

    2018-05-02

    Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.

  20. The thermal insulation difference of clothing ensembles on the dry and perspiration manikins

    International Nuclear Information System (INIS)

    Xiaohong, Zhou; Chunqin, Zheng; Yingming, Qiang; Holmér, Ingvar; Gao, Chuansi; Kuklane, Kalev

    2010-01-01

    There are about a hundred manikin users around the world. Some of them use the manikin such as 'Walter' and 'Tore' to evaluate the comfort of clothing ensembles according to their thermal insulation and moisture resistance. A 'Walter' manikin is made of water and waterproof breathable fabric 'skin', which simulates the characteristics of human perspiration. So evaporation, condensation or sorption and desorption are always accompanied by heat transfer. A 'Tore' manikin only has dry heat exchange by conduction, radiation and convection from the manikin through clothing ensembles to environments. It is an ideal apparatus to measure the thermal insulation of the clothing ensemble and allows evaluation of thermal comfort. This paper compares thermal insulation measured with dry 'Tore' and sweating 'Walter' manikins. Clothing ensembles consisted of permeable and impermeable clothes. The results showed that the clothes covering the 'Walter' manikin absorbed the moisture evaporated from the manikin. When the moisture transferred through the permeable clothing ensembles, heat of condensation could be neglected. But it was observed that heavy condensation occurred if impermeable clothes were tested on the 'Walter' manikin. This resulted in a thermal insulation difference of clothing ensembles on the dry and perspiration manikins. The thermal insulation obtained from the 'Walter' manikin has to be modified when heavy condensation occurs. The modified equation is obtained in this study