WorldWideScience

Sample records for energy-resolved photoelectron angular

  1. Coherent Control of Photoelectron Wavepacket Angular Interferograms

    OpenAIRE

    Hockett, Paul; Wollenhaupt, Matthias; Baumert, Thomas

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the cohere...

  2. Coherent control of photoelectron wavepacket angular interferograms

    International Nuclear Information System (INIS)

    Hockett, P; Wollenhaupt, M; Baumert, T

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light–matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable. (paper)

  3. Coherent control of photoelectron wavepacket angular interferograms

    Science.gov (United States)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  4. Practical scaling law for photoelectron angular distributions

    International Nuclear Information System (INIS)

    Guo Dongsheng; Zhang Jingtao; Xu Zhizhan; Li Xiaofeng; Fu Panming; Freeman, R.R.

    2003-01-01

    A practical scaling law that predicts photoelectron angular distributions (PADs) is derived using angular distribution formulas which explicitly contain spontaneous emission. The scaling law is used to analyze recent PAD measurements in above-threshold ionization, and to predict results of future experiments. Our theoretical and numerical studies show that, in the non-relativistic regime and long-wavelength approximation, the shapes of PADs are determined by only three dimensionless numbers: (1) u p ≡U p /(ℎ/2π)ω, the ponderomotive number (ponderomotive energy in units of laser photon energy); (2) ε b ≡E b /(ℎ/2π)ω, the binding number (atomic binding energy in units of the laser photon energy); (3) j, the absorbed-photon number. The scaling law is shown to be useful in predictions of results from strong-field Kapitza-Dirac effect measurements; specifically, the application of this scaling law to recently reported Kapitza-Dirac diffraction is discussed. Possible experimental tests to verify the scaling law are suggested

  5. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ν less than or equal to 360 eV and laboratory sources, is divided into three parts

  6. Asymmetric photoelectron angular distributions from interfering photoionization processes

    International Nuclear Information System (INIS)

    Yin, Y.; Chen, C.; Elliott, D.S.; Smith, A.V.

    1992-01-01

    We have measured asymmetric photoelectron angular distributions for atomic rubidium. Ionization is induced by a one-photon interaction with 280 nm light and by a two-photon interaction with 560 nm light. Interference between the even- and odd-parity free-electron wave functions allows us to control the direction of maximum electron flux by varying the relative phase of the two laser fields

  7. Angular distributions of photoelectrons from free Na clusters

    International Nuclear Information System (INIS)

    Wopperer, P.; Dinh, P. M.; Faber, B.; Reinhard, P.-G.; Suraud, E.

    2010-01-01

    We explore, from a theoretical perspective, photoelectron angular distributions (PADs) of the Na clusters Na 8 , Na 10 , Na 12 , Na 18 , Na 3 + , Na 11 + , Na 13 + , and Na 19 + . The basis of the description is the time-dependent local-density approximation (TDLDA), augmented by a self-interaction correction (SIC) to describe ionization properties correctly. The scheme is solved on a numerical grid in coordinate space with absorbing bounds. We assume for each cluster system an isotropic ensemble of free clusters and develop for the case of one-photon emission analytical formulas for computing the orientation-averaged PAD on the basis of a few TDLDA-SIC calculations for properly chosen reference orientations. It turns out that all the information in the averaged PAD is contained in one anisotropy parameter. We find that this parameter varies very little with system size, but as a whole is crucially influenced by the detailed ionic structure. We also make comparisons with direct orientation averaging and consider one example reaching outside the perturbative regime.

  8. Time- and energy resolved photoemission electron microscopy-imaging of photoelectron time-of-flight analysis by means of pulsed excitations

    International Nuclear Information System (INIS)

    Oelsner, Andreas; Rohmer, Martin; Schneider, Christian; Bayer, Daniela; Schoenhense, Gerd; Aeschlimann, Martin

    2010-01-01

    The present work enlightens the developments in time- and energy resolved photoemission electron microscopy over the past few years. We describe basic principles of the technique and demonstrate different applications. An energy- and time-filtering photoemission electron microscopy (PEEM) for real-time spectroscopic imaging can be realized either by a retarding field or hemispherical energy analyzer or by using time-of-flight optics with a delay line detector. The latter method has the advantage of no data loss at all as all randomly incoming particles are measured not only by position but also by time. This is of particular interest for pump-probe experiments in the femtosecond and attosecond time scale where space charge processes drastically limit the maximum number of photoemitted electrons per laser pulse. This work focuses particularly on time-of-flight analysis using a novel delay line detector. Time and energy resolved PEEM instruments with delay line detectors enable 4D imaging (x, y, Δt, E Kin ) on a true counting basis. This allows a broad range of applications from real-time observation of dynamic phenomena at surfaces to fs time-of-flight spectro-microscopy and even aberration correction. By now, these time-of-flight analysis instruments achieve intrinsic time resolutions of 108 ps absolute and 13.5 ps relative. Very high permanent measurement speeds of more than 4 million events per second in random detection regimes have been realized using a standard USB2.0 interface. By means of this performance, the time-resolved PEEM technique enables to display evolutions of spatially resolved (<25 nm) and temporal sliced images life on any modern computer. The method allows dynamics investigations of variable electrical, magnetic, and optical near fields at surfaces and great prospects in dynamical adaptive photoelectron optics. For dynamical processes in the ps time scale such as magnetic domain wall movements, the time resolution of the delay line detectors

  9. Photoelectron and ICD electron angular distributions from fixed-in-space neon dimers

    International Nuclear Information System (INIS)

    Jahnke, T; Czasch, A; Schoeffler, M; Schoessler, S; Kaesz, M; Titze, J; Kreidi, K; Grisenti, R E; Staudte, A; Jagutzki, O; Schmidt, L Ph H; Semenov, S K; Cherepkov, N A; Schmidt-Boecking, H; Doerner, R

    2007-01-01

    We report on molecular frame angular distributions of 2s photoelectrons and electrons emitted by interatomic Coulombic decay from neon dimers. We found that the measured angular distribution of the photoelectron strongly depends on the environment of the cluster. The experimental results are in excellent agreement with frozen core Hartree-Fock calculations. The ICD electrons show slight variations in their angular distribution for different kinetic energies

  10. Holographic atom imaging from experimental photoelectron angular distribution patterns

    International Nuclear Information System (INIS)

    Terminello, L.J.; Lapiano-Smith, D.A.; Barton, J.J.; Shirley, D.A.

    1993-11-01

    One of the most challenging areas of materials research is the imaging of technologically relevant materials with microscopic and atomic-scale resolution. As part of the development of these methods, near-surface atoms in single crystals were imaged using core-level photoelectron holograms. The angle-dependent electron diffraction patterns that constitute an electron hologram were two-dimensionally transformed to create a three dimensional, real-space image of the neighboring scattering atoms. They have made use of a multiple-wavenumber, phased-summing method to improve the atom imaging capabilities of experimental photoelectron holography using the Cu(001) and Pt(111) prototype systems. These studies are performed to evaluate the potential of holographic atom imaging methods as structural probes of unknown materials

  11. Observation of elastic scattering effects on photoelectron angular distributions in free Xe clusters

    International Nuclear Information System (INIS)

    Oehrwall, G; Tchaplyguine, M; Gisselbrecht, M; Lundwall, M; Feifel, R; Rander, T; Schulz, J; Marinho, R R T; Lindgren, A; Sorensen, S L; Svensson, S; Bjoerneholm, O

    2003-01-01

    We report an observation of substantial deviations in the photoelectron angular distribution for photoionization of atoms in free Xe clusters compared to the case of photoionization of free atoms. The cross section, however, seems not to vary between the cluster and free atoms. This observation was made in the vicinity of the Xe 4d Cooper minimum, where the atomic angular distribution is known to vary dramatically. The angular distribution of electrons emitted from atoms in the clusters is more isotropic than that of free atoms over the entire kinetic energy range studied. Furthermore, the angular distribution is more isotropic for atoms in the interior of the clusters than for atoms at the surface. We attribute this deviation to elastic scattering of the outgoing photoelectrons. We have investigated two average cluster sizes, ≥ 4000 and 1000 and found no significant differences between these two cases

  12. Projection methods for the analysis of molecular-frame photoelectron angular distributions

    International Nuclear Information System (INIS)

    Grum-Grzhimailo, A.N.; Lucchese, R.R.; Liu, X.-J.; Pruemper, G.; Morishita, Y.; Saito, N.; Ueda, K.

    2007-01-01

    A projection method is developed for extracting the nondipole contribution from the molecular frame photoelectron angular distributions of linear molecules. A corresponding convenient parametric form for the angular distributions is derived. The analysis was performed for the N 1s photoionization of the NO molecule a few eV above the ionization threshold. No detectable nondipole contribution was found for the photon energy of 412 eV

  13. Projection methods for the analysis of molecular-frame photoelectron angular distributions

    International Nuclear Information System (INIS)

    Lucchese, R.R.; Montuoro, R.; Grum-Grzhimailo, A.N.; Liu, X.-J.; Pruemper, G.; Morishita, Y.; Saito, N.; Ueda, K.

    2007-01-01

    The analysis of the molecular-frame photoelectron angular distributions (MFPADs) is discussed within the dipole approximation. The general expressions are reviewed and strategies for extracting the maximum amount of information from different types of experimental measurements are considered. The analysis of the N 1s photoionization of NO is given to illustrate the method

  14. Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon

    International Nuclear Information System (INIS)

    Landers, A. L.; Robicheaux, F.; Bhandary, A.; Jahnke, T.; Schoeffler, M.; Titze, J.; Akoury, D.; Doerner, R.; Osipov, T.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Weber, Th.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.

    2009-01-01

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  15. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Chernysheva, L V [Ioffe Physical-Technical Institute, St-Petersburg 194021 (Russian Federation)

    2006-11-28

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell.

  16. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V

    2006-01-01

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell

  17. Molecular frame photoelectron angular distribution for oxygen 1s photoemission from CO2 molecules

    International Nuclear Information System (INIS)

    Saito, N; Ueda, K; De Fanis, A

    2005-01-01

    We have measured photoelectron angular distributions in the molecular frame (MF-PADs) for O 1s photoemission from CO 2 , using photoelectron-O + -CO + coincidence momentum imaging. Results for the molecular axis at 0, 45 and 90 0 to the electric vector of the light are reported. The major features of the MF-PADs are fairly well reproduced by calculations employing a relaxed-core Hartree-Fock approach. Weak asymmetric features are seen through a plane perpendicular to the molecular axis and attributed to symmetry lowering by anti-symmetric stretching motion. (letter to the editor)

  18. Photoelectron Angular Distributions of Transition Metal Dioxide Anions - a joint experimental and theoretical study

    Science.gov (United States)

    Iordanov, Ivan; Gunaratne, Dasitha; Harmon, Christopher; Sofo, Jorge; Castleman, A. W., Jr.

    2012-02-01

    Angular-resolved photoelectron spectroscopy (PES) studies of the MO2- (M=Ti, Zr, Hf, Co, Rh) clusters are presented for the first time along with theoretical calculations of their properties. We confirm previously reported non-angular PES results for the vertical detachment energies (VDE), vibrational energies and geometric structures of these clusters and further explore the effect of the 'lanthanide contraction' on the MO2- clusters by comparing the electronic spectra of 4d and 5d transition metal dioxides. Angular-resolved PES provides the angular momentum contributions to the HOMO of these clusters and we use theoretical calculations to examine the HOMO and compare to our experimental results. First-principles calculations are done using both density functional theory (DFT) and the coupled-cluster, singles, doubles and triples (CCSD(T)) methods.

  19. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering.

    Science.gov (United States)

    Antonsson, E; Langer, B; Halfpap, I; Gottwald, J; Rühl, E

    2017-06-28

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO 2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO 2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  20. Angular distribution of Xe 5s→epsilonp photoelectrons: Disagreement between experiment and theory

    International Nuclear Information System (INIS)

    Fahlman, A.; Carlson, T.A.; Krause, M.O.

    1983-01-01

    The angular asymmetry parameter β for the Xe 5s→epsilonp photoelectrons has been studied with use of synchrotron radiation (hν = 28--65 eV). The present results show that the relativistic random-phase approximation theory does not satisfactorily describe the Xe 5s photoionization process close to the Cooper minimum and thus require a renewed theoretical approach. The 5s partial photoionization cross section was obtained over the same photon region and the results agree with experimental values found in the literature

  1. Variable Mixed Orbital Character in the Photoelectron Angular Distribution of NO_{2}

    Science.gov (United States)

    Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.

    2017-06-01

    NO_{2} a key component of photochemical smog and an important species in the Earth's atmosphere, is an example of a molecule which exhibits significant mixed orbital character in the HOMO. In photoelectron experiments the geometric properties of the parent anion orbital are reflected in the photoelectron angular distribution (PAD), an area of research that has benefited largely from the ability of velocity-map imaging (VMI) to simultaneously record both the energetic and angular information, with 100% collection efficiency. Photoelectron spectra of NO_{2}^{-}, taken over a range of wavelengths (355nm-520nm) with the ANU's VMI spectrometer, reveal an anomalous jump in the anisotropy parameter near threshold. Consequently, the orbital behavior of NO_{2}^{-} appears to be quite different near threshold compared to detachment at higher photon energies. This surprising effect is due to the Wigner Threshold law, which causes p orbital character to dominate the photodetachment cross-section near threshold, before the mixed s/d orbital character becomes significant at higher electron kinetic energies. By extending recent work on binary character models to form a more general expression, the variable mixed orbital character of NO_{2}^{-} is able to be described. This study provides the first multi-wavelength NO_{2} anisotropy data, which is shown to be in decent agreement with much earlier zero-core model predictions of the anisotropy parameter. K. J. Reed, A. H. Zimmerman, H. C. Andersen, and J. I. Brauman, J. Chem. Phys. 64, 1368, (1976). doi:10.1063/1.432404 D. Khuseynov, C. C. Blackstone, L. M. Culberson, and A. Sanov, J. Chem. Phys. 141, 124312, (2014). doi:10.1063/1.4896241 W. B. Clodius, R. M. Stehman, and S. B. Woo, Phys. Rev. A. 28, 760, (1983). doi:10.1103/PhysRevA.28.760 Research supported by the Australian Research Council Discovery Project Grant DP160102585

  2. Surface topography effects on energy-resolved polar angular distributions of electrons induced in heavy ion-Al collisions: experiments and models

    International Nuclear Information System (INIS)

    Mischler, J.; Banouni, M.; Banazeth, C.; Negre, M.; Benazeth, N.

    1986-01-01

    The influence of the surface topography on the polar angular distributions of secondary electrons emitted in Ar + (and Xe - )-Al collisions was studied. After each set of experiments, the surface target was viewed by scanning electron microscope. Under normal incidence, continuum background and Al L 23 VV Auger electron polar angular distributions were not modified by the topography and closely followed a cosine law. For Al L 23 MM Auger electrons, experimental angular distributions as a function of the emission polar angle theta, either were near a constant law or followed a decreasing law depending on the irradiation conditions. The N(theta) curves calculated from the models showed that the isotropic angular distributions obtained for electrons generated outside the crystal from a flat surface could be strongly modified by the surface topography. (author)

  3. Photoelectron angular distribution parameters for elements Z=55 to Z=100 in the photoelectron energy range 100-5000 eV

    CERN Document Server

    Trzhaskovskaya, M B; Yarzhemsky, V G

    2002-01-01

    Presented here are parameters of the angular distribution of photoelectrons along with the subshell photoionization cross sections for all atoms with 55<=Z<=100 and for atomic shells with binding energies lower than 2000 eV. The parameters are given for nine photoelectron energies in the range 100-5000 eV. Relativistic calculations have been carried out within the quadrupole approximation by the use of the central Dirac-Fock-Slater potential. The effect of the hole resulting in the atomic subshell after photoionization has been taken into account in the framework of the frozen orbital approximation.

  4. Photoelectron angular distributions from strong-field ionization of oriented molecules

    DEFF Research Database (Denmark)

    Holmegaard, Lotte; Hansen, Jonas Lerche; Kalhøj, Line

    2010-01-01

    The combination of ultrafast light sources with detection of molecular-frame photoelectron angular distributions (MFPADs) is setting new standards for detailed interrogation of molecular dynamics. However, until recently measurement of MFPADs relied on determining the molecular orientation after...... ionization, which is limited to species and processes where ionization leads to fragmentation. An alternative is to fix the molecular frame before ionization. The only demonstrations of such spatial orientation involved aligned small linear nonpolar molecules. Here we extend these techniques to the general...... class of polar molecules. Carbonylsulphide and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized 30-fs laser pulses. For carbonylsulphide and benzonitrile oriented in one dimension, the MFPADs exhibit pronounced anisotropies...

  5. Intense Vibronic Modulation of the Chiral Photoelectron Angular Distribution Generated by Photoionization of Limonene Enantiomers with Circularly Polarized Synchrotron Radiation.

    Science.gov (United States)

    Rafiee Fanood, Mohammad M; Ganjitabar, Hassan; Garcia, Gustavo A; Nahon, Laurent; Turchini, Stefano; Powis, Ivan

    2018-04-17

    Photoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV. A rich vibrational structure is seen in the threshold photoelectron spectrum and is interpreted using a variety of computational methods. The corresponding photoelectron circular dichroism-measured in the photoelectron angular distribution as a forward-backward asymmetry with respect to the photon direction-was found to be strongly dependent on the vibronic structure appearing in the photoelectron spectra, with the observed asymmetry even switching direction in between the major vibrational peaks. This effect can be ultimately attributed to the sensitivity of this dichroism to small phase shifts between adjacent partial waves of the outgoing photoelectron. These observations have implications for potential applications of this chiroptical technique, where the enantioselective analysis of monoterpene components is of particular interest. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of spin-orbit activated interchannel coupling on dipole photoelectron angular distribution asymmetry parameters

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Baltenkov, A S [Arifov Institute of Electronics, Tashkent 70125 (Uzbekistan); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States); Manson, S T [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Msezane, A Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2004-02-28

    The effects of spin-orbit induced interchannel coupling on the dipole photoelectron angular asymmetry parameter {beta}{sub 3d} for Xe, Cs and Ba are explored using a modified version of the spin-polarized random phase approximation with exchange (SPRPAE) methodology. For Xe, {beta}{sub 3d{sub 5/2}} is modified somewhat by the interchannel coupling in the vicinity of the 3d{sub 3/2} {yields} {epsilon}f shape resonance, and this effect is significantly more pronounced in Cs where the resonance is larger. In Ba, however, where f-wave orbital collapse has occurred, the shape resonance has moved below threshold and the effect of interchannel coupling on {beta}{sub 3d{sub 5/2}} above the 3d{sub 3/2} threshold is negligible. But below the 3d{sub 3/2} threshold, {beta}{sub 3d{sub 5/2}} is dominated by the huge broad 3d{sub 3/2} {yields} 4f resonance.

  7. Nondipole effects in the angular distribution of photoelectrons from the C K shell of the CO molecule

    International Nuclear Information System (INIS)

    Hosaka, K.; Teramoto, T.; Adachi, J.; Yagishita, A.; Golovin, A. V.; Takahashi, M.; Watanabe, N.; Jahnke, T.; Weber, Th.; Schoeffler, M.; Schmidt, L.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.; Osipov, T.; Prior, M. H.; Landers, A. L.; Semenov, S. K.; Cherepkov, N. A.

    2006-01-01

    Measurements and calculations of a contribution of the nondipole terms in the angular distribution of photoelectrons from the C K shell of randomly oriented CO molecules are reported. In two sets of measurements, the angular distribution in the plane containing the photon polarization and the photon momentum vectors of linearly polarized radiation and the full three-dimensional photoelectron momentum distribution after absorption of circularly polarized light have been measured. Calculations have been performed in the relaxed core Hartree-Fock approximation with a fractional charge. Both theory and experiment show that the nondipole terms are very small in the photon energy region from the ionization threshold of the K shell up to about 70 eV above it

  8. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    Science.gov (United States)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  9. Photoelectron angular distributions for states of any mixed character: An experiment-friendly model for atomic, molecular, and cluster anions

    International Nuclear Information System (INIS)

    Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei

    2014-01-01

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO − photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions

  10. Photoelectron angular distributions for states of any mixed character: An experiment-friendly model for atomic, molecular, and cluster anions

    Science.gov (United States)

    Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei

    2014-09-01

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO- photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  11. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Price, W.C.

    1974-01-01

    A survey is given of the development of x-ray and ultraviolet photoelectron spectroscopy. Applications of photoelectron spectroscopy to studies of atomic electronic configurations are discussed, including photoelectron spectra of hydrides isoelectronic with the inert gases; photoelectron spectra of the halogen derivatives of methane; photoelectron spectra of multiple bonded diatomic molecules; spectra and structure of some multiple bonded polyatomic molecules; spectra and structure of triatomic molecules; and methods of orbital assignment of bands in photoelectron spectra. Physical aspects are considered, including intensities; selection rules; dependence of cross section on photoelectron energy; autoionization; angular distribution of photoelectrons; electron-molecule interactions; and transient species. (26 figures, 54 references) (U.S.)

  12. Inner-shell photoelectron angular distributions from fixed-in-space OCS molecules: comparison between experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, A V [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Institute of Physics, St Petersburg State University, 198504 St Petersburg (Russian Federation); Adachi, J [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Motoki, S [Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, (Japan); Takahashi, M [Institute for Molecular Science, Okazaki 444-8585 (Japan); Yagishita, A [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2005-10-28

    Photoelectron angular distributions (PADs) for O 1s, C 1s and S 2p{sub 1/2}, 2p{sub 3/2} ionization of OCS molecules have been measured in shape resonance regions. These PAD results are compared with the results for O 1s and C 1s ionization of CO molecules, and multi-scattering X{alpha} (MSX{alpha}) calculations. The mechanism of the PAD formation both for parallel and perpendicular transitions differs very significantly in these molecules and a step from a two-centre potential (CO) to a three-centre potential (OCS) plays a principal role in electron scattering and the formation of the resulting PAD. For parallel transitions, it is found that for the S 2p and O 1s ionization the photoelectrons are emitted preferentially in a hemisphere directed to the ionized S and O atom, respectively. In OCS O 1s ionization, the S-C fragment plays the role of a strong 'scatterer' for photoelectrons, and in the shape resonance region most intensities of the PADs are concentrated on the region directed to the O atom. The MSX{alpha} calculations for perpendicular transitions reproduce the experimental data, but not so well as in the case of parallel transitions. The results of PAD, calculated with different l{sub max} on different atomic centres, reveal the important role of the d (l = 2) partial wave for the S atom in the partial wave decompositions of photoelectron wavefunctions.

  13. Magnetometry of buried layers—Linear magnetic dichroism and spin detection in angular resolved hard X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Gloskovskii, Andrei; Stryganyuk, Gregory; Fecher, Gerhard H.; Felser, Claudia; Thiess, Sebastian; Schulz-Ritter, Heiko; Drube, Wolfgang; Berner, Götz; Sing, Michael; Claessen, Ralph; Yamamoto, Masafumi

    2012-01-01

    Highlights: ► Newly commissioned HAXPES instrument at P09 beamline of the PETRA III ring at DESY. ► We report HAXPES studies on buried magnetic nanolayers in a multi-layer sample. ► Linear magnetic dichroism of photoelectrons from buried CoFe–Ir 78 Mn 22 layers. ► Spin-resolved HAXPES measurements on buried magnetic multilayers using Mott detector. - Abstract: The electronic properties of buried magnetic nano-layers were studied using the linear magnetic dichroism in the angular distribution of photoemitted Fe, Co, and Mn 2p electrons from a CoFe–Ir 78 Mn 22 multi-layered sample. The buried layers were probed using hard X-ray photoelectron spectroscopy, HAXPES, at the undulator beamline P09 of the 3rd generation storage ring PETRA III. The results demonstrate that this magnetometry technique can be used as a sensitive element specific probe for magnetic properties suitable for application to buried ferromagnetic and antiferromagnetic magnetic materials and multilayered spintronics devices. Using the same instrument, spin-resolved Fe 2p HAXPES spectra were obtained from the buried layer with good signal quality.

  14. Role of nuclear dynamics in the asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO2

    International Nuclear Information System (INIS)

    Miyabe, S.; Haxton, D. J.; Rescigno, T. N.; McCurdy, C. W.

    2011-01-01

    We report the results of semiclassical calculations of the asymmetric molecular-frame photoelectron angular distributions for C 1s ionization of CO 2 measured with respect to the CO + and O + ions produced by subsequent Auger decay, and show how the decay event can be used to probe ultrafast molecular dynamics of the transient cation. The fixed-nuclei photoionization amplitudes were constructed using variationally obtained electron-molecular-ion scattering wave functions. The amplitudes are then used in a semiclassical manner to investigate their dependence on the nuclear dynamics of the cation. The method introduced here can be used to study other core-level ionization events.

  15. Counterintuitive angular shifts in the photoelectron momentum distribution for atoms in strong few-cycle circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2009-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a three-cycle circularly polarized laser pulse interacting with an atom. The photoelectron momentum distributions show counterintuitive shifts, similar to those observed in a recent experiment (Eckle et al 2008 Science 322 1525...

  16. Energetic and Spatial Bonding Properties from Angular Distributions of Ultraviolet Photoelectrons: Application to the GaAs(110) Surface

    International Nuclear Information System (INIS)

    Fadley, C.S.; Fadley, C.S.; Van Hove, M.A.

    1997-01-01

    Angle-resolved ultraviolet photoemission spectra are interpreted by combining the energetics and spatial properties of the contributing states. One-step calculations are in excellent agreement with new azimuthal experimental data for GaAs(110). Strong variations caused by the dispersion of the surface bands permit an accurate mapping of the electronic structure. The delocalization of the valence states is discussed analogous to photoelectron diffraction. The spatial origin of the electrons is determined, and found to be strongly energy dependent, with uv excitation probing the bonding region. copyright 1997 The American Physical Society

  17. Angular distributions of low kinetic energy photoelectrons in one- and two-photon ionisation of rare gas atoms

    International Nuclear Information System (INIS)

    O'Keeffe, P; Bolognesi, P; Avaldi, L; Richter, R; Moise, A; Cleva, P De; Mihelic, A

    2012-01-01

    The angular distributions of electrons emitted in the photoionisation of rare gas atoms using one and two photons are presented. The one-photon results show that these differential measurements can provide complementary information on the photoionisation event with respect to the measurement of the total absorption cross section while the two photon ionization allows additional parameters to be extracted from the experiments thus permitting a more complete description of the photoionisation dynamics.

  18. Valence and inner-valence shell dissociative photoionization of CO in the 26-33 eV range. II. Molecular-frame and recoil-frame photoelectron angular distributions

    DEFF Research Database (Denmark)

    Lebech, M.; Houver, J.C.; Raseev, G.

    2012-01-01

    Experimental and theoretical results for molecular-frame photoemission are presented for inner-valence shell photoionization of the CO molecule induced by linearly and circularly polarized light. The experimental recoil frame photoelectron angular distributions (RFPADs) obtained from dissociative...... photoionization measurements where the velocities of the ionic fragment and photoelectron were detected in coincidence, are compared to RFPADs computed using the multichannel Schwinger configuration interaction method. The formalism for including a finite lifetime of the predissociative ion state is presented...... for the case of general elliptically polarized light, to obtain the RFPAD rather than the molecular frame photoelectron angular distribution (MFPAD), which would be obtained with the assumption of instantaneous dissociation. We have considered photoionization of CO for the photon energies of 26.0 eV, 29.5 e...

  19. Phase and ellipticity dependence of the photoelectron angular distribution in non-resonant two-photon ionization of atomic hydrogen. I

    Energy Technology Data Exchange (ETDEWEB)

    Faye, M; Wane, S T, E-mail: mamadou.faye@ucad.edu.sn [Departement de Physique, Faculte des Sciences et Techniques, Universite Cheikh Anta Diop, Boulevard Martin Luther King, (Corniche Ouest) BP 5005-Dakar Fann (Senegal)

    2011-03-14

    We study the ellipticity and the dependence on the phase lag (lead) (between the semimajor and the semiminor axes of the field components) of the photoelectron angular distribution (PAD) in the non-resonant two-photon ionization of atomic hydrogen. We establish exact analytical expressions for azimuthal PAD for 3s, 3p and 3d excited initial states, marked by the occurrence of an asymmetric term. This term gives rise to elliptic dichroism (ED), which can be obtained in two ways: either with the left (versus right) ellipticity, or with the phase lag (versus lead); for 3s and 3p initial states, it is shown that the quantum phase of continua is directly related to the phase lag, one-photon below-threshold ionization, and indirectly one photon above. Another important result is that the magnetic sublevels, m = 0, for 3p and m = {+-}1, for 3d, do not contribute to the azimuthal PAD. Our numerical results show, for 3s and 3d, and near-threshold ionization, that the PAD has maxima either along the semimajor or the semiminor axis, while for above-threshold ionization, they are always shifted from these axes. However, the maxima of the corresponding ED coincide with the PAD maxima, while for 3p, they are shifted from the PAD minima. A strong dependence of the ED sign is noted, regardless of the state or the process. However, strong ED signals are obtained for the 3s initial state and below-threshold ionization.

  20. Phase and ellipticity dependence of the photoelectron angular distribution in non-resonant two-photon ionization of atomic hydrogen. I

    International Nuclear Information System (INIS)

    Faye, M; Wane, S T

    2011-01-01

    We study the ellipticity and the dependence on the phase lag (lead) (between the semimajor and the semiminor axes of the field components) of the photoelectron angular distribution (PAD) in the non-resonant two-photon ionization of atomic hydrogen. We establish exact analytical expressions for azimuthal PAD for 3s, 3p and 3d excited initial states, marked by the occurrence of an asymmetric term. This term gives rise to elliptic dichroism (ED), which can be obtained in two ways: either with the left (versus right) ellipticity, or with the phase lag (versus lead); for 3s and 3p initial states, it is shown that the quantum phase of continua is directly related to the phase lag, one-photon below-threshold ionization, and indirectly one photon above. Another important result is that the magnetic sublevels, m = 0, for 3p and m = ±1, for 3d, do not contribute to the azimuthal PAD. Our numerical results show, for 3s and 3d, and near-threshold ionization, that the PAD has maxima either along the semimajor or the semiminor axis, while for above-threshold ionization, they are always shifted from these axes. However, the maxima of the corresponding ED coincide with the PAD maxima, while for 3p, they are shifted from the PAD minima. A strong dependence of the ED sign is noted, regardless of the state or the process. However, strong ED signals are obtained for the 3s initial state and below-threshold ionization.

  1. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    Science.gov (United States)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  2. A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, J. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Karlsruhe Institute of Technology, IEKP, Eggenstein-Leopoldshafen (Germany); Ranitzsch, P.C.O.; Hannen, V.; Ortjohann, H.W.; Rest, O.; Winzen, D.; Zacher, M.; Weinheimer, C. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Beck, M. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Johannes-Gutenberg Universitaet, Institut fuer Physik, Mainz (Germany); Beglarian, A. [Karlsruhe Institute of Technology, IPE, Eggenstein-Leopoldshafen (Germany); Erhard, M.; Groh, S.; Kraus, M. [IEKP, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Schloesser, K.; Thuemmler, T. [Karlsruhe Institute of Technology, IKP, Karlsruhe (Germany); Valerius, K. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Karlsruhe Institute of Technology, IKP, Karlsruhe (Germany); Wierman, K.; Wilkerson, J.F. [University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States)

    2017-06-15

    The KATRIN experiment aims to determine the neutrino mass scale with a sensitivity of 200 meV/c{sup 2} (90% C.L.) by a precision measurement of the shape of the tritium β-spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. To determine the transmission properties of the KATRIN main spectrometer, a mono-energetic and angular-selective electron source has been developed. In preparation for the second commissioning phase of the main spectrometer, a measurement phase was carried out at the KATRIN monitor spectrometer where the device was operated in a MAC-E filter setup for testing. The results of these measurements are compared with simulations using the particle-tracking software ''Kassiopeia'', which was developed in the KATRIN collaboration over recent years. (orig.)

  3. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1976-01-01

    Research activities in photoelectron spectroscopy at Lawrence Radiation Laboratory during 1976 are described. Topics covered include: the orientation of CO on Pt(III) and Ni(III) surfaces from angle-resolved photoemission; photoemission from CO on Pt(III) in the range 40 eV less than or equal to dirac constant ω less than or equal to 150 eV; photoemission studies of electron states at clean surfaces using synchrotron radiation; angle and energy dependent photoemission studies of plasmon loss structure in Al and In; d-orbital directed photoemission from copper; interpretation of angle-resolved x-ray photoemission from valence bands; atomic cross-section effects in soft x-ray photoemission from Ag, Au, and Pt valence bands; x-ray photoelectron spectroscopic studies of the electronic structure of transition metal difluorides; x-ray photoemission investigation of the density of states of B'-NiAl; the electronic structure of SrTiO 3 and some simple related oxides; fluorescence lifetime measurements of np 5 (n+1)S' states in krypton and xenon; Zeeman beats in the resonance fluorescence of the 3P 1 , states in krypton and xenon; lifetime measurements of rare-gas dimers; configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb; glow discharge lamps as electron sources for electron impact excitation; electron impact excitation of electron correlation states in Ca, Sr, and Ba; photoelectron spectroscopy of atomic and molecular bismuth; relativistic effects in the uv photoelectron spectra of group VI diatomic molecules; and relative gas-phase acidities and basicities from a proton potential model

  4. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  5. Computed tomography with energy-resolved detection: a feasibility study

    Science.gov (United States)

    Shikhaliev, Polad M.

    2008-03-01

    The feasibility of computed tomography (CT) with energy-resolved x-ray detection has been investigated. A breast CT design with multi slit multi slice (MSMS) data acquisition was used for this study. The MSMS CT includes linear arrays of photon counting detectors separated by gaps. This CT configuration allows for efficient scatter rejection and 3D data acquisition. The energy-resolved CT images were simulated using a digital breast phantom and the design parameters of the proposed MSMS CT. The phantom had 14 cm diameter and 50/50 adipose/glandular composition, and included carcinoma, adipose, blood, iodine and CaCO3 as contrast elements. The x-ray technique was 90 kVp tube voltage with 660 mR skin exposure. Photon counting, charge (energy) integrating and photon energy weighting CT images were generated. The contrast-to-noise (CNR) improvement with photon energy weighting was quantified. The dual energy subtracted images of CaCO3 and iodine were generated using a single CT scan at a fixed x-ray tube voltage. The x-ray spectrum was electronically split into low- and high-energy parts by a photon counting detector. The CNR of the energy weighting CT images of carcinoma, blood, adipose, iodine, and CaCO3 was higher by a factor of 1.16, 1.20, 1.21, 1.36 and 1.35, respectively, as compared to CT with a conventional charge (energy) integrating detector. Photon energy weighting was applied to CT projections prior to dual energy subtraction and reconstruction. Photon energy weighting improved the CNR in dual energy subtracted CT images of CaCO3 and iodine by a factor of 1.35 and 1.33, respectively. The combination of CNR improvements due to scatter rejection and energy weighting was in the range of 1.71-2 depending on the type of the contrast element. The tilted angle CZT detector was considered as the detector of choice. Experiments were performed to test the effect of the tilting angle on the energy spectrum. Using the CZT detector with 20° tilting angle decreased the

  6. Energy-resolved computed tomography: first experimental results

    International Nuclear Information System (INIS)

    Shikhaliev, Polad M

    2008-01-01

    First experimental results with energy-resolved computed tomography (CT) are reported. The contrast-to-noise ratio (CNR) in CT has been improved with x-ray energy weighting for the first time. Further, x-ray energy weighting improved the CNR in material decomposition CT when applied to CT projections prior to dual-energy subtraction. The existing CT systems use an energy (charge) integrating x-ray detector that provides a signal proportional to the energy of the x-ray photon. Thus, the x-ray photons with lower energies are scored less than those with higher energies. This underestimates contribution of lower energy photons that would provide higher contrast. The highest CNR can be achieved if the x-ray photons are scored by a factor that would increase as the x-ray energy decreases. This could be performed by detecting each x-ray photon separately and measuring its energy. The energy selective CT data could then be saved, and any weighting factor could be applied digitally to a detected x-ray photon. The CT system includes a photon counting detector with linear arrays of pixels made from cadmium zinc telluride (CZT) semiconductor. A cylindrical phantom with 10.2 cm diameter made from tissue-equivalent material was used for CT imaging. The phantom included contrast elements representing calcifications, iodine, adipose and glandular tissue. The x-ray tube voltage was 120 kVp. The energy selective CT data were acquired, and used to generate energy-weighted and material-selective CT images. The energy-weighted and material decomposition CT images were generated using a single CT scan at a fixed x-ray tube voltage. For material decomposition the x-ray spectrum was digitally spilt into low- and high-energy parts and dual-energy subtraction was applied. The x-ray energy weighting resulted in CNR improvement of calcifications and iodine by a factor of 1.40 and 1.63, respectively, as compared to conventional charge integrating CT. The x-ray energy weighting was also applied

  7. Photoelectron spectroscopy of molecular beams

    International Nuclear Information System (INIS)

    Berkowitz, J.

    1974-01-01

    The history of physical science is replete with examples of phenomena initially discovered and investigated by physicists, which have subsequently become tools of the chemist. It is demonstrated in this paper that the field of photoelectron spectroscopy may develop in a reverse fashion. After a brief introduction to the subject, the properties characterized as physical ones, are discussed. These are intensities and angular distributions, from which one can infer transition probabilities and phase shifts. Three separate experiments are described which involve accurate intensity measurements and it is shown how an interpretation of the results by appropriate theory has given new insight into the photoionization process. (B.R.H.)

  8. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  9. Energy-resolved photoemission studies of Be-containing surfaces for fusion; Energievariierte Photoemissionsstudien an berylliumhaltigen Oberflaechen fuer die Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Koeppen, Martin

    2013-02-04

    Fusion research aims at the exploitation of the deuterium-tritium reaction for energy production. Next step on the roadmap is the construction of the experimental reactor ITER. The three elements beryllium, carbon and tungsten are to be used as armour materials for the vacuum vessel. After erosion due to plasma processes, these materials are transported and redeposited together with plasma impurities like oxygen from surface oxides. This leads to the formation of compounds by chemical reactions and diffusive processes, induced both by elevated temperatures and implantation of energetic particles. Due to the complexity of the induced surface processes, a method is required which is capable of both qualitative and quantitative analysis of the involved chemical species. X-ray photoelectron spectroscopy (XPS) provides the chemical analysis. Since diffusive processes play an important role in solid-state reactions, a depth-resolved method is required. In this work, energy-resolved XPS using synchrotron radiation with variable photon energies is extended towards a quantitative depth-resolved analysis. For the quantitative analysis a new model is derived which calculates the depth-resolved composition and the respective composition-dependent electron inelastic mean free path in a self-consistent way. Input is the XPS data which is normalized with all parameters influencing the photoelectron intensities. This fully quantitative model is applied to describe the interaction of energetic oxygen ions with the beryllium-tungsten alloy Be{sub 2}W. Oxygen ions from the plasma are able to interact with plasma facing materials. Formation of Be{sub 2}W is to be expected at the first wall and in the divertor region of ITER. Irradiation of this alloy leads to its decompositions. After decomposition, formation of beryllium oxide BeO is preferred compared to formation of tungsten oxides. Heating to 600K leads to chemical reduction of tungsten oxides. Metallic Be acts as reduction agent

  10. Time and energy resolved runaway measurements in TFR from induced radioactivity

    International Nuclear Information System (INIS)

    1983-09-01

    A time and energy resolved measurement of the radioactivity induced by runaway electrons in proper samples has been developped in TFR. The data give an information on the confinement time of these electrons, which appears to be strongly dependent on the toroidal field, suggesting the onset of a magnetic turbulence at lower fields. Observations showing that the runaway electrons deeply penetrate into the limiter shadow are also reported

  11. Strong eld ionization of naphthalene: angular shifts and molecular potential

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Maurer, Jochen; Christensen, Lauge

    We analyze the photoelectron momentum distributions from strong eld ionization of xed-in-space naphthalene molecules by circularly polarized laser pulses. By direct comparison between experiment and theory, we show that the angular shifts in the photoelectron momentum distributions are very...... sensitive to the exact form of the molecular potential....

  12. Photoelectron spectrometer for high-resolution angular resolved studies

    International Nuclear Information System (INIS)

    Parr, A.C.; Southworth, S.H.; Dehmer, J.L.; Holland, D.M.P.

    1982-01-01

    We report on a new electron spectrometer system designed for use on storage-ring light sources. The system features a large (76 cm dia. x 92 cm long) triply magnetically shielded vacuum chamber and two 10.2 cm mean radius hemispherical electron-energy analyzers. One of the analyzers is fixed and the other is rotatable through about 150 0 . The chamber is pumped by a cryopump and a turbomolecular pump combination so as to enable experiments with a variety of gases under different conditions. The light detection includes both a direct beam monitor and polarization analyzer. The electron detection is accomplished with either a continuous-channel electron multiplier or with multichannel arrays used as area detectors

  13. Angular Momentum

    Science.gov (United States)

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  14. Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    DEFF Research Database (Denmark)

    Boll, Rebecca; Rouzee, Arnaud; Adolph, Marcus

    2014-01-01

    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular...

  15. Imaging photoelectrons formed in strong laser fields

    International Nuclear Information System (INIS)

    Helm, H.; Dyer, M.J.; Saeed, M.; Huestis, D.L.

    1993-01-01

    An instrument capable of characterizing the angular correlation and energy distribution of products from photoionization of single atoms or molecules will be described. An external electric field is used to project individual charged particles generated in multiphoton ionization from the focal volume onto two-dimensional detectors. Digital images are recorded for each laser shot and summed. These images provide a direct view of the angular nodal plants of the photoelectrons and they can be analyzed to represent the spatial and energy distributions in the form of a polar plot, f(E,Θ). We discuss the application of this instrument to short pulse photoionization of rare gases and molecular hydrogen at visible and UV wavelengths at intensities ranging from 10 13 to 10 15 W/cm 2

  16. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  17. Photoelectronic properties of semiconductors

    CERN Document Server

    Bube, Richard H

    1992-01-01

    The interaction between light and electrons in semiconductors forms the basis for many interesting and practically significant properties. This book examines the fundamental physics underlying this rich complexity of photoelectronic properties of semiconductors, and will familiarise the reader with the relatively simple models that are useful in describing these fundamentals. The basic physics is also illustrated with typical recent examples of experimental data and observations. Following introductory material on the basic concepts, the book moves on to consider a wide range of phenomena, including photoconductivity, recombination effects, photoelectronic methods of defect analysis, photoeffects at grain boundaries, amorphous semiconductors, photovoltaic effects and photoeffects in quantum wells and superlattices. The author is Professor of Materials Science and Electrical Engineering at Stanford University, and has taught this material for many years. He is an experienced author, his earlier books having fo...

  18. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  19. Photoelectronic characterization of heterointerfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael Todd

    2012-02-01

    In many devices such as solar cells, light emitting diodes, transistors, etc., the performance relies on the electronic structure at interfaces between materials within the device. The objective of this work was to perform robust characterization of hybrid (organic/inorganic) interfaces by tailoring the interfacial region for photoelectron spectroscopy. Self-assembled monolayers (SAM) were utilized to induce dipoles of various magnitudes at the interface. Additionally, SAMs of molecules with varying dipolar characteristics were mixed into spatially organized structures to systematically vary the apparent work function. Polymer thin films were characterized by depositing films of varying thicknesses on numerous substrates with and without interfacial modifications. Hard X-ray photoelectron spectroscopy (HAXPES) was performed to evaluate a buried interface between indium tin oxide (ITO), treated under various conditions, and poly(3-hexylthiophene) (P3HT). Conducting polymer films were found to be sufficiently conducting such that no significant charge redistribution in the polymer films was observed. Consequently, a further departure from uniform substrates was taken whereby electrically disconnected regions of the substrate presented ideally insulating interfacial contacts. In order to accomplish this novel strategy, interdigitated electrodes were used as the substrate. Conducting fingers of one half of the electrodes were electrically grounded while the other set of electrodes were electronically floating. This allowed for the evaluation of substrate charging on photoelectron spectra (SCOPES) in the presence of overlying semiconducting thin films. Such an experiment has never before been reported. This concept was developed out of the previous experiments on interfacial modification and thin film depositions and presents new opportunities for understanding chemical and electronic changes in a multitude of materials and interfaces.

  20. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  1. Atomic and molecular photoelectron and Auger-electron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Southworth, S.H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were also measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra of the ejected electrons. The double-angle-TOF method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collection efficiency and the elimination of certain systematic errors. An electron spectroscopy study of inner-shell photoexcitation and ionization of Xe, photoelectron angular distributions from H 2 and D 2 , and photoionization cross sections and photoelectron asymmetries of the valence orbitals of NO are reported

  2. Femtosecond x-ray photoelectron diffraction on gas-phase dibromobenzene molecules

    International Nuclear Information System (INIS)

    Rolles, D; Boll, R; Epp, S W; Erk, B; Foucar, L; Hömke, A; Adolph, M; Gorkhover, T; Aquila, A; Chapman, H N; Coppola, N; Delmas, T; Gumprecht, L; Holmegaard, L; Bostedt, C; Bozek, J D; Coffee, R; Decleva, P; Filsinger, F; Johnsson, P

    2014-01-01

    We present time-resolved femtosecond photoelectron momentum images and angular distributions of dissociating, laser-aligned 1,4-dibromobenzene (C 6 H 4 Br 2 ) molecules measured in a near-infrared pump, soft-x-ray probe experiment performed at an x-ray free-electron laser. The observed alignment dependence of the bromine 2p photoelectron angular distributions is compared to density functional theory calculations and interpreted in terms of photoelectron diffraction. While no clear time-dependent effects are observed in the angular distribution of the Br(2p) photoelectrons, other, low-energy electrons show a pronounced dependence on the time delay between the near-infrared laser and the x-ray pulse. (paper)

  3. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  4. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  5. Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains

    Science.gov (United States)

    Crittenden, Christopher M.; Akin, Lucas D.; Morrison, Lindsay J.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2017-06-01

    Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages. [Figure not available: see fulltext.

  6. An online, energy-resolving beam profile detector for laser-driven proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Karsch, L. [OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, 01307 Dresden (Germany)

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  7. Full k-space visualization of photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Rotenberg, E.; Kevan, S.D.; Tonner, B.P.

    1997-01-01

    The development of photoelectron holography has promoted the need for larger photoelectron diffraction data sets in order to improve the quality of real-space reconstructed images (by suppressing transformational artifacts and distortions). The two main experimental and theoretical approaches to holography, the transform of angular distribution patterns for a coarse selection of energies or the transform of energy-scanned profiles for several directions, represent two limits to k-space sampling. The high brightness of third-generation soft x-ray synchrotron sources provides the opportunity to rapidly measure large high-density x-ray photoelectron diffraction (XPD) data sets with approximately uniform k-space sampling. In this abstract, the authors present such a photoelectron data set acquired for Cu 3p emission from Cu(001). Cu(001) is one of the most well-studied systems for understanding photoelectron diffraction structure and for testing photoelectron holography methods. Cu(001) was chosen for this study in part due to the relatively inert and unreconstructed clean surface, and it served to calibrate and fine-tune the operation of a new synchrotron beamline, electron spectrometer and sample goniometer. In addition to Cu, similar open-quotes volumeclose quotes XPD data sets have been acquired for bulk and surface core-level emission from W(110), from reconstructed Si(100) and Si(111) surfaces, and from the adsorbate system of c(2x2) Mn/Ni(100)

  8. Non-destructive Depth Profiling of the Activated Ti-Zr-V Getter by Means of Excitation Energy Resolved Photoelectron Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Pavluch, J.; Zommer, L.; Mašek, K.; Skála, T.; Šutara, F.; Nehasil, V.; Píš, I.; Polyak, Yaroslav

    2010-01-01

    Roč. 26, č. 2 (2010), s. 209-215 ISSN 0910-6340 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-evaporable getter materials * XPS methods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.465, year: 2010

  9. Electron optics development for photo-electron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wannberg, Bjoern [VG Scienta AB, P.O. Box 15120, SE-750 15 Uppsala (Sweden); BW Particle Optics AB, P.O. Box 55, SE-822 22 Alfta (Sweden)], E-mail: bjorn@particleoptics.se

    2009-03-21

    The demand for simultaneous observation of photo-electron distributions in several dimensions has made the hemispherical deflection analyzer (HDA) and the time-of-flight (TOF) analyzer the dominating spectrometer types. Some common limiting factors for resolution and sensitivity are considered. Recent developments of the HDA and its lens system which increase the energy range and angular acceptance are described. The properties of a recently developed angle-resolving TOF system (AR-TOF) are also described. The possibility to avoid integration losses in energy or angular resolution by applying non-linear mappings of the primary data is discussed.

  10. Electron optics development for photo-electron spectrometers

    International Nuclear Information System (INIS)

    Wannberg, Bjoern

    2009-01-01

    The demand for simultaneous observation of photo-electron distributions in several dimensions has made the hemispherical deflection analyzer (HDA) and the time-of-flight (TOF) analyzer the dominating spectrometer types. Some common limiting factors for resolution and sensitivity are considered. Recent developments of the HDA and its lens system which increase the energy range and angular acceptance are described. The properties of a recently developed angle-resolving TOF system (AR-TOF) are also described. The possibility to avoid integration losses in energy or angular resolution by applying non-linear mappings of the primary data is discussed.

  11. High-order multiphoton ionization photoelectron spectroscopy of NO

    International Nuclear Information System (INIS)

    Carman, H.S. Jr.; Compton, R.N.

    1987-01-01

    Photoelectron energy angular distributions of NO following three different high-order multiphoton ionization (MPI) schemes have been measured. The 3 + 3 resonantly enhanced multiphoton ionization (REMPI) via the A 2 Σ + (v=O) level yielded a distribution of electron energies corresponding to all accessible vibrational levels (v + =O-6) of the nascent ion. Angular distributions of electrons corresponding to v + =O and v + =3 were significantly different. The 3 + 2 REMPI via the A 2 Σ + (v=1) level produced only one low-energy electron peak (v + =1). Nonresonant MPI at 532 nm yielded a distribution of electron energies corresponding to both four- and five-photon ionization. Prominent peaks in the five-photon photoelectron spectrum (PES) suggest contributions from near-resonant states at the three-photon level. 4 refs., 3 figs

  12. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  13. Photoelectron emission from thin overlayers

    International Nuclear Information System (INIS)

    Jablonski, A.

    2012-01-01

    Highlights: ► Weak influence of the support on photoemission from an overlayer. ► Accurate description of photoelectron intensity from overlayer by analytical theory. ► Method for overlayer thickness measurements based on analytical formalism. ► Influence of photoelectron elastic scattering on calculated thickness. -- Abstract: Photoelectron signal intensities calculated for a thin overlayer from theoretical models taking elastic photoelectron collisions into account are shown to be very weakly dependent on the substrate material. This result has been obtained for photoelectrons analyzed in XPS spectrometers equipped with typical X-ray sources, i.e. sources of Mg Kα and Al Kα radiation. Low sensitivity to the substrate material is due to the fact that trajectories of photoelectrons emitted in the overlayer and entering the substrate have a low probability to reach the analyzer without energy loss. On the other hand, the signal intensity of photoelectrons emitted in the overlayer is found to be distinctly affected by elastic photoelectron scattering. Consequently, a theoretical model that can accurately describe the photoelectron intensity from an overlayer deposited on any material (e.g. on a substrate of the same material as the overlayer) can be a useful basis for a universal and convenient method for determination of the overlayer thickness. It is shown that the formalism derived from the kinetic Boltzmann equation within the so-called transport approximation satisfies these requirements. This formalism is postulated for use in overlayer-thickness measurements to avoid time-consuming Monte Carlo simulations of photoelectron transport, and also to circumvent problems with determining the effective attenuation lengths for overlayer/substrate systems.

  14. Angle-resolved photoelectron spectroscopy of cyclopropane

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Carlson, Thomas A.; Whitley, T. A.; Grimm, F. A.

    1985-10-01

    The angular distribution parameter, β, determined for the valence orbitals (IP < 18 eV) of cyclopropane in the 10-30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β for photoelectron energies between, 2 and 10 eV above threshold was found to be similar to those found previously for other σ orbitals. The effects of Jahn-Teller splitting on β for the 3e' orbital were found to be small but definitely present. The overall shape and magnitude of the β( hv) curve are, however, sufficiently for the different Jahn-Teller components that, for purposes of orbital assignments using β( hv) curves the shape and magnitude of the curves can be considered associated only with the initial state. Resonance photoionization features at a photon ener of ≈ 18 eV were observed in the 3e' and 3a' 1 orbitals and tentatively assigned to autoionization.

  15. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    Science.gov (United States)

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  16. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nádaždy, V., E-mail: nadazdy@savba.sk; Gmucová, K. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Schauer, F. [Faculty of Education, Trnava University in Trnava, 918 43 Trnava (Slovakia); Faculty of Applied Informatics, Tomas Bata University in Zlin, 760 05 Zlin (Czech Republic)

    2014-10-06

    We introduce an energy resolved electrochemical impedance spectroscopy method to map the electronic density of states (DOS) in organic semiconductor materials. The method consists in measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a frequency where the redox reactions determine the real component of the impedance. The charge transfer resistance value provides direct information about the electronic DOS at the energy given by the electrochemical potential of the electrolyte, which can be adjusted using an external voltage. A simple theory for experimental data evaluation is proposed, along with an explanation of the corresponding experimental conditions. The method allows mapping over unprecedentedly wide energy and DOS ranges. Also, important DOS parameters can be determined directly from the raw experimental data without the lengthy analysis required in other techniques. The potential of the proposed method is illustrated by tracing weak bond defect states induced by ultraviolet treatment above the highest occupied molecular orbital in a prototypical σ-conjugated polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however, limited to a narrow energy range. In addition, good agreement of the DOS values measured on two common π-conjugated organic polymer semiconductors, polyphenylene vinylene and poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy of the proposed method.

  17. Novel energy resolving x-ray pinhole camera on Alcator C-Moda)

    Science.gov (United States)

    Pablant, N. A.; Delgado-Aparicio, L.; Bitter, M.; Brandstetter, S.; Eikenberry, E.; Ellis, R.; Hill, K. W.; Hofer, P.; Schneebeli, M.

    2012-10-01

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of ≈1 cm, an energy resolution of ≈1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009), 10.1107/S0909049509009911] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  18. Stereo photograph of atomic arrangement by circularly-polarized-light two-dimensional photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Daimon, Hiroshi

    2003-01-01

    A stereo photograph of atomic arrangement was obtained for the first time. The stereo photograph was displayed directly on the screen of display-type spherical-mirror analyzer without any computer-aided conversion process. This stereo photography was realized taking advantage of the phenomenon of circular dichroism in photoelectron angular distribution due to the reversal of orbital angular momentum of photoelectrons. The azimuthal shifts of forward focusing peaks in a photoelectron angular distribution pattern taken with left and right helicity light in a special arrangement are the same as the parallaxes in a stereo view of atoms. Hence a stereoscopic recognition of three-dimensional atomic arrangement is possible, when the left eye and the right eye respectively view the two images obtained by left and right helicity light simultaneously. (author)

  19. Photoelectron spectroscopy principles and applications

    CERN Document Server

    Hüfner, Stefan

    1995-01-01

    Photoelectron Spectroscopy presents an up-to-date introduction to the field by treating comprehensively the electronic structures of atoms, molecules, solids and surfaces Brief descriptions are given of inverse photoemission, spin-polarized photoemission and photoelectron diffraction Experimental aspects are considered throughout the book, and the results are carefully interpreted by theory A wealth of measured data is presented in the form of tables for easy use by experimentalists

  20. Molecular frame and recoil frame angular distributions in dissociative photoionization of small molecules

    International Nuclear Information System (INIS)

    Lucchese, R R; Carey, R; Elkharrat, C; Houver, J C; Dowek, D

    2008-01-01

    Photoelectron angular distributions in the dipole approximation can be written with respect to several different reference frames. A brief review of the molecular frame and recoil frame are given. Experimentally, one approach for obtaining such angular distributions is through angle-resolved coincidence measurements of dissociative ionization. If the system dissociates into two heavy fragments, then the recoil frame angular distribution can be measured. Computed molecular frame and recoil frame photoelectron angular distributions are compared to experimental data for the Cl 2p ionization of CH 3 Cl.

  1. Angular anisotropy parameters for sequential two-photon double ionization of helium

    International Nuclear Information System (INIS)

    Ivanov, I A; Kheifets, A S

    2009-01-01

    We evaluate photoelectron angular anisotropy /3-parameters for the process of sequential two-photon double electron ionization of helium within the time-independent lowest order perturbation theory (LOPT). Our results indicate that for the photoelectron energies outside the interval (E slow , E fast ), where E slow = ω - IP He + and E fast ω - IP He , there is a considerable deviation from the dipole angular distribution thus indicating the effect of electron correlation.

  2. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses

    International Nuclear Information System (INIS)

    Bian Xuebin; Yuan, Kai-Jun; Bandrauk, Andre D.; Huismans, Y.; Smirnova, O.; Vrakking, M. J. J.

    2011-01-01

    Time-resolved photoelectron holography from atoms using midinfrared laser pulses is investigated by solving the corresponding time-dependent Schroedinger equation (TDSE) and a classical model, respectively. The numerical simulation of the photoelectron angular distribution of Xe irradiated with a low-frequency free-electron laser source agrees well with the experimental results. Different types of subcycle interferometric structures are predicted by the classical model. Furthermore with the TDSE model it is demonstrated that the holographic pattern is sensitive to the shape of the atomic orbitals. This is a step toward imaging by means of photoelectron holography.

  3. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    Science.gov (United States)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  4. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-01-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  5. Photoelectron photoion molecular beam spectroscopy

    International Nuclear Information System (INIS)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed

  6. Photoelectron antibunching and absorber theory

    International Nuclear Information System (INIS)

    Pegg, D.T.

    1980-01-01

    The recently detected photoelectron antibunching effect is considered to be evidence for the quantised electromagnetic field, i.e. for the existence of photons. Direct-action quantum absorber theory, on the other hand, has been developed on the basis that the quantised field is illusory, with quantisation being required only for atoms. In this paper it is shown that photoelectron antibunching is readily explicable in terms of absorber theory and in fact is directly attributable to the quantum nature of the emitting and detecting atoms alone. The physical nature of the reduction of the wavepacket associated with the detection process is briefly discussed in terms of absorber theory. (author)

  7. Increased photoelectron transmission in High-pressure photoelectron spectrometers using “swift acceleration”

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Mårten O.M.; Karlsson, Patrik G. [VG Scienta AB, Box 15120, 750 15 Uppsala (Sweden); Eriksson, Susanna K. [Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala (Sweden); Hahlin, Maria; Siegbahn, Hans; Rensmo, Håkan [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Kahk, Juhan M.; Villar-Garcia, Ignacio J.; Payne, David J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Åhlund, John, E-mail: john.ahlund@vgscienta.com [VG Scienta AB, Box 15120, 750 15 Uppsala (Sweden)

    2015-06-11

    A new operation mode of a HPXPS (high-pressure X-ray photoelectron spectroscopy) analyzer is evaluated on a HPXPS system fitted with an Al Kα X-ray source. A variety of metal foil samples (gold, silver and copper) were measured in different sample gas environments (N{sub 2} and H{sub 2}O), and a front aperture diameter of 0.8 mm. The new design concept is based upon “swiftly” accelerating the photoelectrons to kinetic energies of several keV after they pass the analyzer front aperture. Compared to the standard mode, in which the front section between the two first apertures is field-free, this gives a wider angular collection and a lower tendency for electron losses in collisions with gas molecules within the analyzer. With the swift-acceleration mode we attain, depending on the experimental conditions, up to about 3 times higher peak intensities in vacuum and about 10 to 20 times higher peak intensities in the 6–9 mbar regime, depending on kinetic energy. These experimental findings agree well with simulated transmission functions for the analyzer. The new mode of operation enables faster data acquisition than the standard mode of operation, particularly valuable in a home laboratory environment. Further demonstrations of performance are highlighted by measurements of the valence band structure in dye-sensitized solar cell photoelectrodes under a 2 mbar H{sub 2}O atmosphere, a molecularly modified surface of interest in photoelectrochemical devices.

  8. Angle-resolved photoelectron spectroscopy of formaldehyde and methanol

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, Thomas A.

    1984-10-01

    Angle-resolved photoelectron spectroscopy was employed to obtain the angular distribution parameter, β, for the valence orbitals (IP < 21.1 eV) of formaldehyde and methanol over the 10-30 eV photon energy range using dispersed polarized synchrotron radiation as the excitation source. It was found that the energy dependence of β in the photoelectron energy range between 2 and 10 eV can be related to the molecular-orbital type from which ionization occurs. This generalized energy behavior is discussed with regard to earlier energy-dependence studies on molecules of different orbital character. Evidence is presented for the presence of resonance photoionization phenomena in formaldehyde in agreement with theoretical cross-section calculations.

  9. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  10. Theoretical investigation of the (e,2e) simulation of photoelectron spectroscopy of polarized atoms

    International Nuclear Information System (INIS)

    Cherepkov, N.A.; Kuznetsov, V.V.

    1992-01-01

    It is shown that the (e, 2e) simulation of the photionization process can be used to perform the complete quantum-mechanical experiment provided the target atoms are polarized. The experimental technique developed earlier for simulation of the photoelectron angular distribution measurements can be used to obtain three additional parameters in the case of polarized atoms. (Author)

  11. Professional AngularJS

    CERN Document Server

    Karpov, Valeri

    2015-01-01

    A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto

  12. Photoelectron spectroscopy an introduction to ultraviolet photoelectron spectroscopy in the gas phase

    CERN Document Server

    Eland, J H D

    2013-01-01

    Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectronspectroscopy in the Gas Phase, Second Edition Photoelectron Spectroscopy: An Introduction to Ultraviolet PhotoelectronSpectroscopy in the Gas Phase, Second Edition aims to give practical approach on the subject of photoelectron spectroscopy, as well as provide knowledge on the interpretation of the photoelectron spectrum. The book covers topics such as the principles and literature of photoelectron microscopy; the main features and analysis of photoelectron spectra; ionization techniques; and energies from the photoelectron spectra. Also covered in the book are topics suc as photoelectron band structure and the applications of photoelectron spectroscopy in chemistry. The text is recommended for students and practitioners of chemistry who would like to be familiarized with the concepts of photoelectron spectroscopy and its importance in the field.

  13. Theory of photoelectron counting statistics

    International Nuclear Information System (INIS)

    Blake, J.

    1980-01-01

    The purpose of the present essay is to provide a detailed analysis of those theoretical aspects of photoelectron counting which are capable of experimental verification. Most of our interest is in the physical phenomena themselves, while part is in the mathematical techniques. Many of the mathematical methods used in the analysis of the photoelectron counting problem are generally unfamiliar to physicists interested in the subject. For this reason we have developed the essay in such a fashion that, although primary interest is focused on the physical phenomena, we have also taken pains to carry out enough of the analysis so that the reader can follow the main details. We have chosen to present a consistently quantum mechanical version of the subject, in that we follow the Glauber theory throughout. (orig./WL)

  14. Liquid microjet for photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Winter, Bernd

    2009-01-01

    Photoelectron spectroscopy from highly volatile liquids, especially from water and aqueous solutions, has recently become possible due to the development of the vacuum liquid microjet in combination of high-brilliance synchrotron radiation. The present status of this rapidly growing field is reported here, with an emphasize on the method's sensitivity for detecting local electronic structure, and for monitoring ultrafast dynamical processes in aqueous solution exploiting core-level resonant excitation.

  15. Liquid microjet for photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Bernd [Helmholtz-Zentrum Berlin fuer Materialien und Energie, and BESSY, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)], E-mail: bernd.winter@bessy.de

    2009-03-21

    Photoelectron spectroscopy from highly volatile liquids, especially from water and aqueous solutions, has recently become possible due to the development of the vacuum liquid microjet in combination of high-brilliance synchrotron radiation. The present status of this rapidly growing field is reported here, with an emphasize on the method's sensitivity for detecting local electronic structure, and for monitoring ultrafast dynamical processes in aqueous solution exploiting core-level resonant excitation.

  16. Angular correlation methods

    International Nuclear Information System (INIS)

    Ferguson, A.J.

    1974-01-01

    An outline of the theory of angular correlations is presented, and the difference between the modern density matrix method and the traditional wave function method is stressed. Comments are offered on particular angular correlation theoretical techniques. A brief discussion is given of recent studies of gamma ray angular correlations of reaction products recoiling with high velocity into vacuum. Two methods for optimization to obtain the most accurate expansion coefficients of the correlation are discussed. (1 figure, 53 references) (U.S.)

  17. Giant spin rotation under quasiparticle-photoelectron conversion: Joint effect of sublattice interference and spin-orbit coupling

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Rashba, E I

    2009-01-01

    Spin- and angular-resolved photoemission spectroscopy is a basic experimental tool for unveiling spin polarization of electron eigenstates in crystals. We prove, by using spin-orbit coupled graphene as a model, that photoconversion of a quasiparticle inside a crystal into a photoelectron can...... be accompanied with a dramatic change in its spin polarization, up to a total spin flip. This phenomenon is typical of quasiparticles residing away from the Brillouin-zone center and described by higher rank spinors and results in exotic patterns in the angular distribution of photoelectrons....

  18. Rotations and angular momentum

    International Nuclear Information System (INIS)

    Nyborg, P.; Froyland, J.

    1979-01-01

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  19. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  20. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M., E-mail: m.h.m.janssen@vu.nl [LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Powis, Ivan [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  1. Magnetic x-ray circular dichroism in spin-polarized photoelectron diffraction

    International Nuclear Information System (INIS)

    Waddill, G.D.; Tobin, J.G.

    1994-01-01

    The first structural determination with spin-polarized, energy-dependent photoelectron diffraction using circularly-polarized x-rays is reported for Fe films on Cu(001). Circularly-polarized x-rays produced spin-polarized photoelectrons from the Fe 2p doublet, and intensity asymmetries in the 2p 3/2 level are observed. Fully spin-specific multiple scattering calculations reproduced the experimentally-determined energy and angular dependences. A new analytical procedure which focuses upon intensity variations due to spin-dependent diffraction is introduced. A sensitivity to local geometric and magnetic structure is demonstrated

  2. An energy resolved electron-ion coincidence study near the S 2p thresholds of the SF6 molecule

    International Nuclear Information System (INIS)

    Kivimaeki, A; Ruiz, J Alvarez; Erman, P; Hatherly, P; Garcia, E Melero; Rachlew, E; Rius i Riu, J; Stankiewicz, M

    2003-01-01

    The fragmentation dynamics of the SF 6 molecule following the excitations of S 2p electrons into unoccupied molecular orbitals has been studied using the energy-resolved electron-ion coincidence technique. Fragmentation patterns were found to depend on the particular excitation and on the electronic state of the molecular ion. The spectator resonant Auger decay at the 2p → 6a 1g resonance induces changes in the ion distributions as compared to direct photoionization. Furthermore, coincidence spectra related to the same Auger structure display different ion abundances at the 2t 2g and 4e g shape resonances. Differences were also found in the Auger decay spectra. These findings give further support for the previously suggested many-electron character of the 4e g shape resonance

  3. Femtosecond photoelectron point projection microscope

    International Nuclear Information System (INIS)

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-01-01

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect

  4. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  5. Multiphoton ionization photoelectron spectroscopy of xenon: Experiment and theory

    International Nuclear Information System (INIS)

    Bajic, S.J.; Compton, R.N.; Tang, X.; L'Huiller, A.; Lambropoulos, P.

    1988-11-01

    Photoelectron energy and angular distributions for resonantly enhanced multiphoton ionization (REMPI) of xenon via the three-photon-allowed 7s[3/2] 1 0 and 5d[3/2] 1 0 states have been studied both experimentally and theoretically. The electron kinetic energy spectra give the probability of leaving Xe + in either the 2 P/sub 1/2/ or 2 P/sub 3/2/ core. The measured branching ratio for leaving each ionic core is used to test the theoretical description of the REMPI process. Measurements of both the angular distributions and the [3+1] REMPI via the 5d state are adequately reproduced by multichannel quantum defect theory. However, measurements of angular distributions for the electrons resulting from [3+1] via the 7s[3/2] 1 0 state into Xe + 2 P/sub 3/2/ (core preserving) or Xe + 2 P/sub 1/2/ (core changing) are in striking disagreement with theory. 1 ref., 2 figs

  6. Photoelectron Spectroscopy of Substituted Phenylnitrenes

    Science.gov (United States)

    Wijeratne, Neloni R.; Da Fonte, Maria; Wenthold, Paul G.

    2009-06-01

    Nitrenes are unusual molecular structures with unfilled electronic valences that are isoelectronic with carbenes. Although, both can be generated by either thermal or photochemical decomposition of appropriate precursors they usually exhibit different reactivities. In this work, we carry out spectroscopic studies of substituted phenylnitrene to determine how the introduction of substituents will affect the reactivity and its thermochemical properties. All studies were carried out by using the newly constructed time-of-flight negative ion photoelectron spectrometer (NIPES) at Purdue University. The 355 nm photoelectron spectra of the o-, m-, and p-chlorophenyl nitrene anions are fairly similar to that measured for phenylnitrene anion. All spectra show low energy triplet state and a high energy singlet state. The singlet state for the meta isomer is well-resolved, with a well defined origin and observable vibrational structure. Whereas the singlet states for the ortho and para isomers have lower energy onsets and no resolved structure. The isomeric dependence suggests that the geometry differences result from the resonance interaction between the nitrogen and the substituent. Quinoidal resonance structures are possible for the open-shell singlet states of the o- and p-chlorinated phenyl nitrenes. The advantages of this type of electronic structures for the open-shell singlet states is that the unpaired electrons can be more localized on separate atoms in the molecules, minimizing the repulsion between. Because the meta position is not in resonance with the nitrenes, substitution at that position should not affect the structure of the open-shell singlet state. The measured electron affinities (EA) of the triplet phenylnitrenes are in excellent agreement with the values predicted by electronic structure calculations. The largest EA, 1.82 eV is found for the meta isomer, with para being the smallest, 1.70 eV.

  7. Optical Angular Momentum

    International Nuclear Information System (INIS)

    Arimondo, Ennio

    2004-01-01

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  8. Angular Accelerating White Light

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2015-08-01

    Full Text Available wavelength dependence. By digitally simulating free-space propagation on the SLM, The authors compare the effects of real and digital propagation on the angular rotation rates of the resulting optical fields for various wavelengths. The development...

  9. Angular trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2013-01-01

    Properties of angular macroparticle traps were investigated in this work. These properties are required to design vacuum arc plasma filters. The correlation between trap geometry parameters and its ability to absorb macroparticles were found. Calculations allow one to predict the behaviour of filtering abilities of separators which contain such traps in their design. Recommendations regarding the use of angular traps in filters of different builds are given.

  10. Complete k-space visualization of x-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Lawrence Berkeley Lab., CA; Rotenberg, E.; Lawrence Berkeley Lab., CA; Kevan, S.D.; Tonner, B.P.

    1996-01-01

    A highly detailed x-ray photoelectron diffraction data set has been acquired for crystalline Cu(001). The data set for bulk Cu 3p emission encompasses a large k-space volume (k = 3--10 angstrom -1 ) with sufficient energy and angular sampling to monitor the continuous variation of diffraction intensities. The evolution of back-scattered intensity oscillations is visualized by energy and angular slices of this volume data set. Large diffraction data sets such as this will provide rigorous experimental tests of real-space reconstruction algorithms and multiple-scattering simulations

  11. Effects of ultrashort laser pulses on angular distributions of photoionization spectra.

    Science.gov (United States)

    Ooi, C H Raymond; Ho, W L; Bandrauk, A D

    2017-07-27

    We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while  odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.

  12. Coulomb-free and Coulomb-distorted recolliding quantum orbits in photoelectron holography

    Science.gov (United States)

    Maxwell, A. S.; Figueira de Morisson Faria, C.

    2018-06-01

    We perform a detailed analysis of the different types of orbits in the Coulomb quantum orbit strong-field approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classification commonly used in Coulomb-corrected models is over-simplified. We identify several types of rescattered orbits, such as those responsible for the low-energy structures reported in the literature, and determine the momentum regions in which they occur. We also find formerly overlooked interference patterns caused by backscattered Coulomb-corrected orbits and assess their effect on photoelectron angular distributions. These orbits improve the agreement of photoelectron angular distributions computed with the CQSFA with the outcome of ab initio methods for high energy phtotoelectrons perpendicular to the field polarization axis.

  13. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    Science.gov (United States)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  14. UV lamp for photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Cardoso, M.J.B.; Landers, R.; Sundaram, V.S.

    1983-01-01

    An UV lamp and a differential pumping system which enables to couple the lamp to an ultra-high vacuum chamber (10 -9 torr) without using windows, are described. The differential between the pressure inside the discharge chamber and the one in de UHV region, which is of 10 8 -10 9 , is achieved with two pumping states separated by pyrex capillaries having an internal diameter of 0.6 mm. In the first stage, a mechanical pump (10 -3 torr) is used; in the second stage, a diffusor pump with a cryogenic trap (N 2 liq - 10 -7 torr) is employed. The lamp produces, when used with high purity He, narrow lines almost clear at 21.2 eV and 40.8 eV, depending on the discharge chamber pressure, thus eliminating the need of a monochromator. As a high voltage source (3 KV), a commercial unit with a good current control was used, ensuring UV beam stability - an essential characteristic for this lamp if it is employed for photoelectron excitation of crystalline samples. (C.L.B.) [pt

  15. Angle resolved photoelectron distribution of the 1{pi} resonance of CO/Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Haarlammert, Thorben; Wegner, Sebastian; Tsilimis, Grigorius; Zacharias, Helmut [Physikalisches Institut, Westfaelische Wilhelms Universitaet, Muenster (Germany); Golovin, Alexander [Institute of Physics, St. Petersburg State University (Russian Federation)

    2009-07-01

    The CO 1{pi} level of a c(4 x 2)-2CO/Pt(111) reconstruction shows a significant resonance when varying the photon energy between h{nu}=23 eV and h{nu}=48 e V. This resonance has not been observed in gas phase measurements or on the Pt(1 10) surface. To investigate the photoelectron distribution of the 1{pi} level high harmonic radiaton has been used. By conversion in rare gases like argon, neon, or helium photon energies of up to 100 eV have been generated at repetition r ates of up to 10 kHz. The single harmonics have been separated and focused by a toroidal grating and directed to the sample surface. A time-of-flight detector with multiple anodes registers the kinetic energies of the emitted photoelectrons and enables the simultaneous detection of multiple emission angles. The angular distributions of photoelectrons emitted from the CO 1{pi} level have been measured for a variety of initial photon energies. Further the angular distributions of the CO 1{pi} level photoelectrons emitted from a CO-Pt{sub 7} cluster have been calculated using the MSX{alpha}-Method which shows good agreement with the ex perimental data.

  16. Photoelectron emission from metal surfaces by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Faraggi, M. N.; Gravielle, M. S.; Silkin, V. M.

    2006-01-01

    Electron emission from metal surfaces produced by short laser pulses is studied within the framework of the distorted-wave formulation. The proposed approach, named surface-Volkov (SV) approximation, makes use of the band-structure based (BSB) model and the Volkov phase to describe the interaction of the emitted electron with the surface and the external electric field, respectively. The BSB model provides a realistic representation of the surface, based on a model potential that includes the main features of the surface band structure. The SV method is applied to evaluate the photoelectron emission from the valence band of Al(111). Angular and energy distributions are investigated for different parameters of the laser pulse, keeping in all cases the carrier frequency larger than the plasmon one

  17. Photoelectron imaging spectroscopy for (2+1) resonance-enhanced multiphoton ionization of atomic bromine

    International Nuclear Information System (INIS)

    Kim, Yong Shin; Jung, Young Jae; Kang, Wee Kyung; Jung, Kyung Hoon

    2002-01-01

    Two-photon resonant third photon ionization of atomic bromine (4p 5 2 P 3/2 and 2 P 1/2 ) has been studied using a photoelectron imaging spectroscopy in the wavelength region 250-278 nm. The technique has yielded simultaneously both relative branching ratios to the three levels of Br + ( 3 P 2 , 3 P 0,1 and 1 D 2 ) with 4p 4 configuration and the angular distributions of outgoing photoelectrons. The product branching ratios reveal a strong propensity to populate particular levels in many cases. Several pathways have been documented for selective formation of Br + ( 3 P 2 ) and Br + ( 3 P 0,1 ) ions. In general, the final ion level distributions are dominated by the preservation of the ion core configuration of a resonant excited state. Some deviations from this simple picture are discussed in terms of the configuration interaction of resonant states and the autoionization in the continuum. The photoelectron angular distributions are qualitatively similar for all transitions, with a positive A 2 anisotropy coefficient of 1.0 - 2.0 and negligible A 4 in most cases, which suggests that the angular distribution is mainly determined by the single-photon ionization process of a resonant excited state induced from the third photon absorption

  18. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hilsabeck, T. J.; Wu, W. [General Atomics, PO Box 85608, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  19. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, E.N., E-mail: Eva.Gimenez@diamond.ac.uk [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom); Astromskas, V. [University of Surrey (United Kingdom); Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom)

    2016-07-11

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e{sup −} collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system. - Highlights: • A high atomic number (CdTe sensor based) photon-counting detector was developed. • Polarization effects affected the image were minimized by regularly refreshing the bias voltage and stabilizing the temperature. • Good spatial resolution and image quality was achieved following this procedure.

  20. Development of wide-band, time and energy resolving, optical photon detectors with application to imaging astronomy

    International Nuclear Information System (INIS)

    Miller, A.J.; Cabrera, B.; Romani, R.W.; Figueroa-Feliciano, E.; Nam, S.W.; Clarke, R.M.

    2000-01-01

    Superconducting transition edge sensors (TESs) are showing promise for the wide-band spectroscopy of individual photons from the mid-infrared (IR), through the optical, and into the near ultraviolet (UV). Our TES sensors are ∼20 μm square, 40 nm thick tungsten (W) films with a transition temperature of about 80 mK. We typically attain an energy resolution of 0.15 eV FWHM over the optical range with relative timing resolution of 100 ns. Single photon events with sub-microsecond risetimes and few microsecond falltimes have been achieved allowing count rates in excess of 30 kHz per pixel. Additionally, tungsten is approximately 50% absorptive in the optical (dropping to 10% in the IR) giving these devices an intrinsically high quantum efficiency. These combined traits make our detectors attractive for fast spectrophotometers and photon-starved applications such as wide-band, time and energy resolved astronomical observations. We present recent results from our work toward the fabrication and testing of the first TES optical photon imaging arrays

  1. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  2. Coincident photoelectron spectroscopy on superconductors

    International Nuclear Information System (INIS)

    Voss, Stefan

    2011-01-01

    Aim of the performed experiments of this thesis was to attempt to detect Cooper pairs as carriers of the superconducting current directly by means of the photoelectric effect. The method of the coincident photoelectron spectroscopy aims thereby at the detection of two coherently emitted electrons by the interaction with a photon. Because electrostatic analyzers typically cover only a very small spatial angle, which goes along with very low coincidence rates, in connection with this thesis a time-of-flight projection system has been developed, which maps nearly the whole spatial angle on a position-resolving detector. The pulsed light source in form of special synchrotron radiation necessary for the measurement has been adjusted so weak, that only single photons could arrive at the sample. Spectroscoped were beside test measurements on silver layers both a lead monocrystal as representative of the classical BCS superconductors and monocrystalline Bi 2 Sr 2 CaCu 2 O 8 from the family of the high-temperature superconductors. With excitation energies up to 40 eV could be shown that sufficiently smooth and clean surfaces in the superconducting phase exhibit within the resolving power of about 0.5 eV no recognizable differences in comparison to the normally conducting phase. Beside these studies furthermore the simple photoemission at the different samples and especially in the case of the lead crystal is treated, because here no comparable results are known. Thereby the whole momentum space is discussed and the Fermi surface established as three-dimensional model, by means of which the measurement results are discussed. in the theoretical descriptions different models for the Cooper-pair production are presented, whereby to the momentum exchange with the crystal a special role is attributed, because this can only occur in direct excitations via discrete lattice vectors.

  3. Numerical solution of the kinetic equation for photoelectrons in the plasmasphere with account for free and trapped zones

    International Nuclear Information System (INIS)

    Khazanov, G.V.; Koen, M.A.; Burenkov, S.I.

    1979-01-01

    Considered is the dinamics of photoelectron fluxes formation in the Earth plasmasphere with account of zone interaction of free and trapped photoelectrons. An algorithm and the results of numerical solution of the equation are presented. The problem of boundary condition choice is discussed. The angular distribution of 10 eV energy photoelectrons at different altitudes of plasmasphere is presented as an example. It is shown that the changes of photoelectron distribution function from bottom of plasmasphere to the top of a force line of the geomagnetic field are within the 1.6 limits. Presented is the estimate of plasmasphere transmittance value and its comparison with the experiment for Mc Ilwain parameter L=2

  4. Calorimetric low-temperature detectors on semiconductor base for the energy-resolving detection of heavy ions

    International Nuclear Information System (INIS)

    Kienlin, A. von.

    1994-01-01

    In the framework of this thesis for the first time calorimetric low-temperature detectors for the energy-resolving detection of heavy ions were developed and successfully applied. Constructed were two different detector types, which work both with a semiconductor thermistor. The temperature increasement effected by a particle incidence is read out. In the first detector type the thermistor was simutaneously used as absorber. The thickness of the germanium crystals was sufficient in order to stop the studied heavy ions completely. In the second type, a composed calorimeter, a sapphire crystal, which was glued on a germanium thermistor, served as absorber for the incident heavy ions. The working point of the calorimeter lies in the temperature range (1.2-4.2 K), which is reachable with a pumped 4 He cryostat. The temperatur increasement of the calorimeter amounts after the incidence of a single α particle about 20-30 μK and that after a heavy ion incidence up to some mK. An absolute energy resolution of 400-500 keV was reached. In nine beam times the calorimeters were irradiated by heavy ions ( 20 Ne, 40 Ar, 136 Xe, 208 Pb, 209 Bi) of different energies (3.6 MeV/nucleon< E<12.5 MeV/nucleon) elastically scattered from gold foils. In the pulse height spectra of the first detector type relatively broad, complex-structurated line shapes were observed. By systematic measurements dependences of the complex line structures on operational parameters of the detector, the detector temperature, and the position of the incident particle could be detected. Together with the results of further experiments a possible interpretation of these phenomena is presented. Contrarily to the complex line structures of the pure germanium thermistor the line shapes in the pulse height spectra, which were taken up in a composite germanium/sapphire calorimeter, are narrow and Gauss-shaped

  5. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    Directory of Open Access Journals (Sweden)

    A. S. Tremsin

    2017-01-01

    Full Text Available Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (∼739 ± 98 kPa and ∼751 ± 154 kPa for two Xe resonances is in relatively good agreement with the pressure value of ∼758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ∼ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  6. Photoelectron studies of machined brass surfaces

    Science.gov (United States)

    Potts, A. W.; Merrison, J. P.; Tournas, A. D.; Yacoot, A.

    UV photoelectron spectroscopy has been used to determine the surface composition of machined brass. The results show a considerable change between the photoelectron surface composition and the bulk composition of the same sample determined by energy-dispersive X-ray fluorescence. On the surface the lead composition is increased by ˜900 G. This is consistent with the important part that lead is believed to play in improving the machinability of this alloy.

  7. Polarization Effects in Attosecond Photoelectron Spectroscopy

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2010-01-01

    following the field instead. We show that polarization effects may lead to an apparent temporal shift that needs to be properly accounted for in the analysis. The effect may be isolated and studied by angle-resolved photoelectron spectroscopy from oriented polar molecules. We also show that polarization...... effects will lead to an apparent temporal shift of 50 as between photoelectrons from a 2p and 1s state in atomic hydrogen....

  8. Angular momentum projected semiclassics

    International Nuclear Information System (INIS)

    Hasse, R.W.

    1986-10-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle- one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space (r, r') the relevant quantities depend on vertical stroker - r 3 vertical stroke instead of vertical stroker - r'vertical stroke and in Wigner space (R, P) they become proportional to the angular momentum constraints δ(vertical strokeRxPvertical stroke/ℎ - l) and δ((RxP) z /ℎ - m). As applications we calculate the single-particle and one particle- one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction. (orig.)

  9. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.

    1982-05-01

    A new technique for performing high resolution molecular photoelectron spectroscopy is described, beginning with its conceptual development, through the construction of a prototypal apparatus, to the initial applications on a particularly favorable molecular system. The distinguishing features of this technique are: (1) the introduction of the sample in the form of a collimated supersonic molecular beam; and (2) the use of an electrostatic deflection energy analyzer which is carefully optimized in terms of sensitivity and resolution. This combination makes it possible to obtain photoelectron spectra at a new level of detail for many small molecules. Three experiments are described which rely on the capability to perform rotationally-resolved photoelectron spectroscopy on the hydrogen molecule and its isotopes. The first is a measurement of the ionic vibrational and rotational spectroscopic constants and the vibrationally-selected photoionization cross sections. The second is a determination of the photoelectron asymmetry parameter, β, for selected rotational transitions. The third is an investigation of the rotational relaxation in a free jet expansion, using photoelectron spectroscopy as a probe of the rotational state population distributions. In the closing chapter an assessment is made of the successes and limitations of the technique, and an indication is given of areas for further improvement in future spectrometers

  10. Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment

    Czech Academy of Sciences Publication Activity Database

    Valerius, K.; Hein, H.; Baumeister, H.; Beck, M.; Bokeloh, K.; Bonn, J.; Gluck, F.; Ortjohann, H.W.; Ostrick, B.; Zbořil, Miroslav; Weinheimer, Ch.

    2011-01-01

    Roč. 6, - (2011), P01002/1-P01002/11 ISSN 1748-0221 R&D Projects: GA MŠk LA318; GA MŠk LC07050 Institutional research plan: CEZ:AV0Z10480505 Keywords : Spectrometers * Photoemission * Detector alignment and calibration methods (lasers, sources, particle-beams) Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.869, year: 2011

  11. Modeling of the angular dependence of plasma etching

    International Nuclear Information System (INIS)

    Guo Wei; Sawin, Herbert H.

    2009-01-01

    An understanding of the angular dependence of etching yield is essential to investigate the origins of sidewall roughness during plasma etching. In this article the angular dependence of polysilicon etching in Cl 2 plasma was modeled as a combination of individual angular-dependent etching yields for ion-initiated processes including physical sputtering, ion-induced etching, vacancy generation, and removal. The modeled etching yield exhibited a maximum at ∼60 degree sign off-normal ion angle at low flux ratio, indicative of physical sputtering. It transformed to the angular dependence of ion-induced etching with the increase in the neutral-to-ion flux ratio. Good agreement between the modeling and the experiments was achieved for various flux ratios and ion energies. The variation of etching yield in response to the ion angle was incorporated in the three-dimensional profile simulation and qualitative agreement was obtained. The surface composition was calculated and compared to x-ray photoelectron spectroscopy (XPS) analysis. The modeling indicated a Cl areal density of 3x10 15 atoms/cm 2 on the surface that is close to the value determined by the XPS analysis. The response of Cl fraction to ion energy and flux ratio was modeled and correlated with the etching yields. The complete mixing-layer kinetics model with the angular dependence effect will be used for quantitative surface roughening analysis using a profile simulator in future work.

  12. Performance of the SRRC scanning photoelectron microscope

    Science.gov (United States)

    Hong, I.-H.; Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Juang, J.-M.; Dann, T.-E.; Klauser, R.; Chuang, T. J.; Chen, C. T.; Tsang, K.-L.

    2001-07-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed.

  13. Performance of the SRRC scanning photoelectron microscope

    International Nuclear Information System (INIS)

    Hong, I.-H.; Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Juang, J.-M.; Dann, T.-E.; Klauser, R.; Chuang, T.J.; Chen, C.T.; Tsang, K.-L.

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed

  14. Performance of the SRRC scanning photoelectron microscope

    CERN Document Server

    Hong, I H; Yin, G C; Wei, D H; Juang, J M; Dann, T E; Klauser, R; Chuang, T J; Chen, C T; Tsang, K L

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed.

  15. Photoelectron spectroscopic and microspectroscopic probes of ferroelectrics

    Science.gov (United States)

    Tǎnase, Liviu C.; Abramiuc, Laura E.; Teodorescu, Cristian M.

    2017-12-01

    This contribution is a review of recent aspects connected with photoelectron spectroscopy of free ferroelectric surfaces, metals interfaced with these surfaces, graphene-like layers together with some exemplifications concerning molecular adsorption, dissociations and desorptions occurring from ferroelectrics. Standard photoelectron spectroscopy is used nowadays in correlation with other characterization techniques, such as piezoresponse force microscopy, high resolution transmission electron spectroscopy, and ferroelectric hysteresis cycles. In this work we will concentrate mainly on photoelectron spectroscopy and spectro-microscopy characterization of ferroelectric thin films, starting from atomically clean ferroelectric surfaces of lead zirco-titanate, then going towards heterostructures using this material in combination with graphene-like carbon layers or with metals. Concepts involving charge accumulation and depolarization near surface will be revisited by taking into account the newest findings in this area.

  16. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  17. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  18. AngularJS directives

    CERN Document Server

    Vanston, Alex

    2013-01-01

    This book uses a practical, step-by-step approach, starting with how to build directives from the ground up before moving on to creating web applications comprised of multiple modules all working together to provide the best user experience possible.This book is intended for intermediate JavaScript developers who are looking to enhance their understanding of single-page web application development with a focus on AngularJS and the JavaScript MVC frameworks.It is expected that readers will understand basic JavaScript patterns and idioms and can recognize JSON formatted data.

  19. Calculated characteristics of multichannel photoelectron multipliers

    International Nuclear Information System (INIS)

    Vasil'chenko, V.G.; Dajkovskij, A.G.; Milova, N.V.; Rakhmatov, V.E.; Rykalin, V.I.

    1990-01-01

    Structural features and main calculated characteristics of some modifications of position-sensitive two-coordinate multichannel photoelectron multipliers (PEM) with plate-type multiplying systems are described. The presented PEM structures are free from direct optical and ion feedbacks, provide coordinate resolution ≅ 1 mm with efficiency of photoelectron detection ≅ 90%. Capabilities for using silicon field-effect photocathodes, providing electron extraction into vacuum, as well as prospects of using multichannel multiplying systems for readout of the data from solid detectors are considered

  20. Introduction to x-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Liesegang, J.; Pigram, P.J.

    1999-01-01

    Full text: XPS is one of several important surface analytical tools. Developed in Sweden in the 1960s, it was originally named by Kai Siegbahn as Electron Spectroscopy for Chemical Analysis or ESCA; and although it is the best method for non-invasively determining the elemental composition of the first 10 nm of any surface, modern XPS systems are capable of much more than elemental chemical analysis. High resolution photoelectron energy analysis (c. 0.2 eV) now permits easy identification of chemical state as well as concentration; angular variation of detection and depth profiling allow quantitative analysis as a function of depth below a sample surface; energy loss mechanisms may be studied; Auger peaks can be measured in an XPS system; and developments in the area of photoelectron imaging allow high resolution (c. 7 μm) mapping of the distribution of elements and their chemical states to be determined spatially on non-homogeneous surfaces. The workshop sessions will outline the link between the physics and chemistry of surfaces and the process of photoemission. The presentation will illustrate the features and capabilities of a newly acquired Kratos (UK) Axis Ultra XPS and Imaging System recently installed in the Centre for Materials and Surface Science at La Trobe University, and its capabilities regarding the foregoing issues. The first part of the presentation will outline the basics of XPS and the second part will illustrate its usefulness, and in particular, will illustrate the power of the instrumentation through the presentation of several applications of both fundamental and industrial significance. Copyright (1999) Australian X-ray Analytical Association Inc

  1. Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing

    Science.gov (United States)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2018-06-01

    The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.

  2. Angular Distribution of GRBs

    Directory of Open Access Journals (Sweden)

    L. G. Balázs

    2012-01-01

    Full Text Available We studied the complete randomness of the angular distribution of BATSE gamma-ray bursts (GRBs. Based on their durations and peak fluxes, we divided the BATSE sample into 5 subsamples (short1, short2, intermediate, long1, long2 and studied the angular distributions separately. We used three methods to search for non-randomness in the subsamples: Voronoi tesselation, minimal spanning tree, and multifractal spectra. To study any non-randomness in the subsamples we defined 13 test-variables (9 from Voronoi tesselation, 3 from the minimal spanning tree and one from the multifractal spectrum. We made Monte Carlo simulations taking into account the BATSE’s sky-exposure function. We tested therandomness by introducing squared Euclidean distances in the parameter space of the test-variables. We recognized that the short1, short2 groups deviate significantly (99.90%, 99.98% from the fully random case in the distribution of the squared Euclidean distances but this is not true for the long samples. In the intermediate group, the squared Euclidean distances also give significant deviation (98.51%.

  3. Perturbed angular correlation

    International Nuclear Information System (INIS)

    Fabris, J.D.

    1977-01-01

    The electric quadrupolar interaction in some hafnium complexes, measured at the metal nucleus level is studied. For that purpose, the technique of γ-γ perturbed angular correlation is used: the frequencies of quadrupolar interaction are compared with some hafnium α-hydroxicarboxilates, namely glycolate, lactate, mandelate and benzylate; the influence of the temperature on the quadrupolar coupling on the hafnium tetramandelate is studied; finally, the effects associated with the capture of thermal neutrons by hafnium tetramandelate are examined locally at the nuclear level. The first group of results shows significant differences in a series of complexes derived from glycolic acid. On the other hand, the substitution of the protons in hafnium tetramandelate structure by some alkaline cations permits to verify a correlation between the variations in the quadrupolar coupling and the electronegativities of the substituent elements. Measurements at high temperatures show that this complex is thermally stable at 100 and 150 0 C. It is possible to see the appearance of two distinct sites for the probe nucleus, after heating the sample at 100 0 C for prolonged time. This fact is attributed to a probable interconversion among the postulated structural isomers for the octacoordinated compounds. Finally, measurements of angular correlation on the irradiated complex show that there is an effective destruction of the target molecule by neutron capture [pt

  4. Galaxy angular momentum

    International Nuclear Information System (INIS)

    Thompson, L.A.

    1974-01-01

    In order to test the theories which purport to explain the origin of galaxy angular momentum, this study presents new data for about 1000 individual galaxies in eight rich clusters. The clusters which are studied include Virgo, A 119, A 400, A 1656 (Coma), A 2147, A 2151 (Hercules), A 2197, and A 2199. Selected samples of these data are used to investigate systematic alignment effects in clusters of galaxies and to investigate the intrinsic ellipticities of E, SO, and spiral galaxies. The following new results are reported: Galaxies in the cluster A 2197 show a significant alignment effect (chi 2 probability less than 0.0002), and the preferential direction of alignment corresponds approximately to the major axis of the overall cluster elongation. None of the other seven clusters show any significant alignment trends. The spiral galaxy samples in four clusters (Virgo, A 1656, A 2151, and A 2197) were large enough to analyze the number distributions of forward and reverse winding spirals. Large and small spiral galaxies have identical ellipticity distributions. Large E and SO galaxies tend to be more spherical, and small E and SO galaxies more flattened. The intrinsic ellipticities of E, SO, and spiral galaxies are the same for galaxies in the ''field'' and for galaxies in rich clusters. Six models of galaxy formation are reviewed, and the major []mphasis is placed on how each model explains the origin of galaxy angular momentum. (Diss. Abstr. Int., B)

  5. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    Energy Technology Data Exchange (ETDEWEB)

    Newberg, John T., E-mail: jnewberg@udel.edu; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia [Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716 (United States); Åhlund, John [Scienta AB, Box 15120, 750 15 Uppsala (Sweden)

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  6. Polarity of wurtzite crystals by photoelectron diffraction

    Czech Academy of Sciences Publication Activity Database

    Bartoš, Igor; Romanyuk, Olexandr

    2014-01-01

    Roč. 315, OCT (2014), s. 506-509 ISSN 0169-4332 Grant - others:AVČR(CZ) M100101201 Institutional support: RVO:68378271 Keywords : wurtzite semiconductors * surface polarity * X-ray photoelectron diffraction * XPD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014 http://www.sciencedirect.com/science/article/pii/S016943321400066X

  7. a near ambient pressure UV photoelectron spectroscopy

    Indian Academy of Sciences (India)

    Manoj Kumar Ghosalya

    2018-03-02

    Mar 2, 2018 ... UV photoelectron spectroscopy (NAP-UPS) investigations. MANOJ KUMAR ... gations led to various models of Ag-O2 interaction to explain its role in the .... charge lamp (for He I and He II excitations) are available as photon ...

  8. Photoelectron spectroscopy of heavy atoms and molecules

    International Nuclear Information System (INIS)

    White, M.G.

    1979-07-01

    The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target

  9. Nondipole effects in attosecond photoelectron streaking

    DEFF Research Database (Denmark)

    Spiewanowski, Maciek; Madsen, Lars Bojer

    2012-01-01

    The influence of nondipole terms on the time delay in photoionization by an extreme-ultraviolet attosecond pulse in the presence of a near-infrared femtosecond laser pulse from 1s, 2s, and 2p states in hydrogen is investigated. In this attosecond photoelectron streaking process, the relative...

  10. Photoelectron spectroscopy of phosphites and phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Findley, G.L.; McGlynn, S.P.

    1981-01-01

    The ultraviolet photoelectron spectra (UPS) of trimethyl and triethyl phosphite, trimethyl and triethyl phosphate and four substituted phosphates are presented. Assignments are based on analogies to the UPS of phosphorus trichloride and phosphoryl trichloride and are substantiated by CNDO/2 computations. The mechanisms of P-O (axial) bond formation is discussed.

  11. Conformational effects in photoelectron circular dichroism

    Science.gov (United States)

    Turchini, S.

    2017-12-01

    Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.

  12. Threshold photoelectron spectroscopy of acetaldehyde and acrolein

    International Nuclear Information System (INIS)

    Yencha, Andrew J.; Siggel-King, Michele R.F.; King, George C.; Malins, Andrew E.R.; Eypper, Marie

    2013-01-01

    Highlights: •High-resolution threshold photoelectron spectrum of acetaldehyde. •High-resolution threshold photoelectron spectrum of acrolein. •High-resolution total photoion yield spectrum of acetaldehyde. •High-resolution total photoion yield spectrum of acrolein. •Determination of vertical ionization potentials in acetaldehyde and acrolein. -- Abstract: High-resolution (6 meV and 12 meV) threshold photoelectron (TPE) spectra of acetaldehyde and acrolein (2-propenal) have been recorded over the valence binding energy region 10–20 eV, employing synchrotron radiation and a penetrating-field electron spectrometer. These TPE spectra are presented here for the first time. All of the band structures observed in the TPE spectra replicate those found in their conventional HeI photoelectron (PE) spectra. However, the relative band intensities are found to be dramatically different in the two types of spectra that are attributed to the different dominant operative formation mechanisms. In addition, some band shapes and their vertical ionization potentials are found to differ in the two types of spectra that are associated with the autoionization of Rydberg states in the two molecules

  13. Photoelectron Spectroscopy in Advanced Placement Chemistry

    Science.gov (United States)

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  14. Near threshold behavior of photoelectron satellite intensities

    International Nuclear Information System (INIS)

    Shirley, D.A.; Becker, U.; Heimann, P.A.; Langer, B.

    1987-09-01

    The historical background and understanding of photoelectron satellite peaks is reviewed, using He(n), Ne(1s), Ne(2p), Ar(1s), and Ar(3s) as case studies. Threshold studies are emphasized. The classification of electron correlation effects as either ''intrinsic'' or ''dynamic'' is recommended. 30 refs., 7 figs

  15. Theory and Application of Photoelectron Diffraction for Complex Oxide Systems

    Science.gov (United States)

    Chassé, Angelika; Chassé, Thomas

    2018-06-01

    X-ray photoelectron diffraction (XPD) has been used to investigate film structures and local sites of surface and dopant atoms in complex oxide materials. We have performed angular-resolved measurements of intensity distribution curves (ADCs) and patterns (ADPs) of elemental core level intensities from binary to quaternary mixed oxide samples and compared them to multiple-scattering cluster (MSC) calculations in order to derive information on structural models and related parameters. MSC calculations permitted to describe both bulk diffraction features of binary oxide MnO(001) and the thickness-dependence of the tetragonal distortion of epitaxial MnO films on Ag(001). XPD was further used to investigate the surface termination of perovskite SrTiO3 and BaTiO3 substrates in order to evaluate influence of different ex situ and in situ preparation procedures on the surface layers, which are crucial for quality of following film growth. Despite the similarity of local environments of Sr (Ba) and Ti atoms in the perovskite film structure an angular region in the ADCs was identified as a fingerprint with the help of MSC simulations which provided clear conclusions on the perovskite oxide surfaces. Dopant sites in quaternary perovskite manganites La1-xCaxMnO3, La1-xSrxMnO3, and La1-xCexMnO3 were studied with polar angle scans of the photoemission intensities of host and dopant atoms. Both direct comparison of experimental ADCs and to the simulations within MSC models confirm the occupation of A sites by the dopants and the structural quality of the complex oxide films.

  16. Classical ultraviolet photoelectron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Salaneck, W.R.

    2009-01-01

    Although X-ray photoelectron spectroscopy of polymers was well established by Clark and coworkers in the 1970s, ultraviolet photoelectron spectroscopy of polymer films, was developed later. Previous to the 1970s, the first attempts to use ultraviolet light on polymer films took the form of appearance potential (valence band edge) measurements. Only some years later could the full valence band region of thin polymer films, including insulating polymers, semiconducting polymers and electrically conducting polymers. The development of what might be termed 'classical ultraviolet photoelectron spectroscopy' of polymer films may be loosely based upon a variety of issues, including adapting thin polymer film technology to ultra high vacuum studies, the widespread use of helium resonance lamps for studies of solid surfaces, the combined advent of practical and sufficient theoretical-computational methods. The advent of, and the use of, easily available synchrotron radiation for multi-photon spectroscopies, nominally in the area of the near UV, is not included in the term 'classical'. At the same time, electrically conducting polymers were discovered, leading to applications of the corresponding semiconducting polymers, which added technologically driven emphasis to this development of ultraviolet photoelectron spectroscopy for polymer materials. This paper traces a limited number of highlights in the evolution of ultraviolet photoelectron spectroscopy of polymers, from the 1970s through to 2008. Also, since this issue is dedicated to Prof. Kazuhiko Seki, who has been a friend and competitor for over two decades, the author relies on some of Prof. Seki's earlier research, unpublished, on who-did-what-first. Prof. Seki's own contributions to the field, however, are discussed in other articles in this issue.

  17. Angular mining conveyor

    Energy Technology Data Exchange (ETDEWEB)

    Sender, A; Mura, A; Liduchowski, L; Zok, P; Skolik, W; Szyngiel, S; Rojek, H; Gajda, B; Major, M; Stanislawski, P; Sliwiok, H; Sikora, J

    1988-10-19

    Angular mining conveyor provided with a drag chain extending along the axis of its path of movement, and a corner member, inside which the drag chain is led in a forced way, characterized in that the drag chain, where its path curves around the corner member, is located by supporting of the vertical links of the chain along the required curved section of the conveyor path around said corner member, and the supporting line of the links is so chosen, that, within the said curved section of the conveyor path, a space is maintained between the vertical end surface of the scrapers and the outer curved surface of the radially inner side wall of a corner trough associated with the corner member, through which corner trough the scrapers pass. 10 figs.

  18. Vibrationally induced inversion of photoelectron forward-backward asymmetry in chiral molecule photoionization by circularly polarized light

    Science.gov (United States)

    Garcia, Gustavo A.; Nahon, Laurent; Daly, Steven; Powis, Ivan

    2013-01-01

    Electron–nuclei coupling accompanying excitation and relaxation processes is a fascinating phenomenon in molecular dynamics. A striking and unexpected example of such coupling is presented here in the context of photoelectron circular dichroism measurements on randomly oriented, chiral methyloxirane molecules, unaffected by any continuum resonance. Here, we report that the forward-backward asymmetry in the electron angular distribution, with respect to the photon axis, which is associated with photoelectron circular dichroism can surprisingly reverse direction according to the ion vibrational mode excited. This vibrational dependence represents a clear breakdown of the usual Franck–Condon assumption, ascribed to the enhanced sensitivity of photoelectron circular dichroism (compared with other observables like cross-sections or the conventional anisotropy parameter-β) to the scattering phase off the chiral molecular potential, inducing a dependence on the nuclear geometry sampled in the photoionization process. Important consequences for the interpretation of such dichroism measurements within analytical contexts are discussed. PMID:23828557

  19. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  20. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Science.gov (United States)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  1. Depth-profiling using X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Pijolat, M.; Hollinger, G.

    1980-12-01

    The possibilities of X-ray photoelectron spectroscopy (or ESCA) for depth-profiling into shallow depths (approximately 10-100 A) have been studied. The method of ion-sputtering removal has first been investigated in order to improve its depth-resolution (approximately 50-150 A). A procedure which eliminates the effects due to the resolution function of the instrumental probe (analysed depth approximately 50 A) has been settled; but it is not yet sufficient, and the sputter - broadening due to the ion-induced damages must be taken into account (broadening function approximately 50 A for approximately 150 A removal). Because of serious difficulties in estimating the broadening function an alternative is to develop non destructive methods, so a new method based on the dependence of the analysed depth with the electron emission angle is presented. The extraction of the concentration profile from angular distribution experiments is achieved, in the framework of a flat-layer model, by minimizing the difference between theoretical and experimental relative intensities. The applicability and limitations of the method are discussed on the basis of computer simulation results. The depth probed is of the order of 3 lambda (lambda being the value of the inelastic mean free path, typically 10-20 A) and the depth-resolution is of the order of lambda/3 [fr

  2. Polarization and dipole effects in hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Novak, M. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Pauly, N., E-mail: nipauly@ulb.ac.be [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer X-rays are unpolarized or linearly polarized. Black-Right-Pointing-Pointer A difference of polarization implies a variation in path travelled by the photoelectrons. Black-Right-Pointing-Pointer We show the influence of the polarization on the partial intensity distributions. Black-Right-Pointing-Pointer We also point out the influence of the dipole approximation. Black-Right-Pointing-Pointer We use Monte Carlo simulations. - Abstract: Hard X-ray photoelectron spectroscopy (HXPS) using X-rays in the 1.5-15 keV energy range generated by synchrotron sources becomes an increasingly important analysis technique due to its potential for bulk sensitive measurements. However, besides their high energy, another characteristic of photons generated by synchrotron sources is their linear polarization while X-rays from Al K{alpha} or Mg K{alpha} for instance are unpolarized. This difference implies a possible variation in total path travelled by the photoelectrons generated by the X-rays inside the medium and consequently a modification of the resulting spectrum shape. We show the influence of the polarization on the partial intensity distributions, namely the number of electrons escaping after n inelastic scattering events, for photoelectron with energies of 0.5, 1, 2, 3, 4 and 5 keV and originating from Si 1s{sub 1/2}, Cu 1s{sub 1/2}, Cu 2p{sub 3/2}, Au 4d{sub 3/2} and Au 4f{sub 7/2} subshells. Moreover, we point out the influence of the dipole approximation leading to an underestimation of the partial intensity distributions due to the neglect of the forward-backward asymmetry of the angular photoelectron distribution.

  3. Angular integrals in d dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, Gabor

    2011-01-15

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications. (orig.)

  4. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Cresswell, A.; Zimmerman, R.L.; Oregon Univ., Eugene

    1986-01-01

    It is argued that the correct expressions for the angular momentum flux carried by gravitational radiation should follow directly from the momentum currents. Following this approach, the authors compute the angular momentum associated with several different choices of energy-momentum prescriptions. (author)

  5. Angular integrals in d dimensions.

    OpenAIRE

    Somogyi, G.

    2011-01-01

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  6. Angular integrals in d dimensions

    International Nuclear Information System (INIS)

    Somogyi, Gabor

    2011-01-01

    We discuss the evaluation of certain d-dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  7. Angular integrals in d dimensions

    Science.gov (United States)

    Somogyi, Gábor

    2011-08-01

    We discuss the evaluation of certain d-dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  8. Angular integrals in d dimensions

    International Nuclear Information System (INIS)

    Somogyi, Gabor

    2011-01-01

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications. (orig.)

  9. Ultraviolet photoelectron spectroscopy of transient species

    International Nuclear Information System (INIS)

    Leeuw, D.M. de.

    1979-01-01

    Transient species are studied in the isolation of the gas phase using ultraviolet photoelectron spectroscopy (PES). A description of the equipment used and a discussion of some theoretical topics, which play a role in the interpretation of PE spectra, are given. Koopmans' theorem, Hartree-Fock-Slater (HFS) calculations and the sum rule are discussed. A versatile ultraviolet PE spectrometer, designed specifically for this purpose, has been built and the construction and performance of this instrument are described. (Auth.)

  10. Angular Momentum in Dwarf Galaxies

    Directory of Open Access Journals (Sweden)

    Del Popolo A.

    2014-06-01

    Full Text Available We study the “angular momentum catastrophe” in the framework of interaction among baryons and dark matter through dynamical friction. By means of Del Popolo (2009 model we simulate 14 galaxies similar to those investigated by van den Bosch, Burkert and Swaters (2001, and calculate the distribution of their spin parameters and the angular momenta. Our model gives the angular momentum distribution which is in agreement with the van den Bosch et al. observations. Our result shows that the “angular momentum catastrophe” can be naturally solved in a model that takes into account the baryonic physics and the exchange of energy and angular momentum between the baryonic clumps and dark matter through dynamical friction.

  11. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    Science.gov (United States)

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  12. Angular momentum of dwarf galaxies

    Science.gov (United States)

    Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter

    2018-05-01

    Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.

  13. AngularJS testing cookbook

    CERN Document Server

    Bailey, Simon

    2015-01-01

    This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book

  14. The threshold photoelectron spectrum of mercury

    International Nuclear Information System (INIS)

    Rojas, H; Dawber, G; Gulley, N; King, G C; Bowring, N; Ward, R

    2013-01-01

    The threshold photoelectron spectrum of mercury has been recorded over the energy range (10–40 eV) which covers the region from the lowest state of the singly charged ion, 5d 10 6s( 2 S 1/2 ), to the double charged ionic state, 5d 9 ( 2 D 3/2 )6s( 1 D 2 ). Synchrotron radiation has been used in conjunction with the penetrating-field threshold-electron technique to obtain the spectrum with high resolution. The spectrum shows many more features than observed in previous photoemission measurements with many of these assigned to satellite states converging to the double ionization limit. (paper)

  15. Photoelectron holography with improved image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.j [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5198 (Japan); Matsui, Fumihiko; Daimon, Hiroshi [Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Hayashi, Kouichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2010-05-15

    Electron holography is a type of atomic structural analysis, and it has unique features such as element selectivity and the ability to analyze the structure around an impurity in a crystal. In this paper, we introduce the measurement system, electron holograms, a theory for the recording process of an electron hologram, and a theory for the reconstruction algorithm. We describe photoelectron holograms, Auger electron holograms, and the inverse mode of an electron hologram. The reconstruction algorithm, scattering pattern extraction algorithm (SPEA), the SPEA with maximum entropy method (SPEA-MEM), and SPEA-MEM with translational operation are also described.

  16. Photoelectron holography with improved image reconstruction

    International Nuclear Information System (INIS)

    Matsushita, Tomohiro; Matsui, Fumihiko; Daimon, Hiroshi; Hayashi, Kouichi

    2010-01-01

    Electron holography is a type of atomic structural analysis, and it has unique features such as element selectivity and the ability to analyze the structure around an impurity in a crystal. In this paper, we introduce the measurement system, electron holograms, a theory for the recording process of an electron hologram, and a theory for the reconstruction algorithm. We describe photoelectron holograms, Auger electron holograms, and the inverse mode of an electron hologram. The reconstruction algorithm, scattering pattern extraction algorithm (SPEA), the SPEA with maximum entropy method (SPEA-MEM), and SPEA-MEM with translational operation are also described.

  17. Angular momentum from tidal torques

    International Nuclear Information System (INIS)

    Barnes, J.; Efstathiou, G.; Cambridge Univ., England)

    1987-01-01

    The origin of the angular momentum of bound objects in large N-body simulations is studied using three sets of models. One model with white-noise initial conditions is analyzed as well as two in which the initial conditions have more power on large scales, as predicted in models with cold dark matter. The growth and distribution of angular momentum in individual objects is studied and it is found that the specific angular momentum distribution of bound clumps increases in a near linear fashion with radius while the orientation of the angular momentum in the inner high-density regions is often poorly correlated with that of the outer parts. It is also found that the dimensionless spin parameter is insensitive to the initial perturbation spectrum and has a median value of about 0.05. 61 references

  18. Lidar Orbital Angular Momentum Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — The recognition in recent decades that electromagnetic fields have angular momentum (AM) in the form of not only polarization (or spin AM) but also orbital (OAM) has...

  19. Carbon K-shell photoionization of CO: Molecular frame angular distributions of normal and conjugate shakeup satellites

    International Nuclear Information System (INIS)

    Jahnke, T.; Titze, J.; Foucar, L.; Wallauer, R.; Osipov, T.; Benis, E.P.; Jagutzki, O.; Arnold, W.; Czasch, A.; Staudte, A.; Schoeffler, M.; Alnaser, A.; Weber, T.; Prior, M.H.; Schmidt-Boecking, H.; Doerner, R.

    2011-01-01

    We have measured the molecular frame angular distributions of photoelectrons emitted from the Carbon K-shell of fixed-in-space CO molecules for the case of simultaneous excitation of the remaining molecular ion. Normal and conjugate shakeup states are observed. Photoelectrons belonging to normal Σ-satellite lines show an angular distribution resembling that observed for the main photoline at the same electron energy. Surprisingly a similar shape is found for conjugate shakeup states with Π-symmetry. In our data we identify shake rather than electron scattering (PEVE) as the mechanism producing the conjugate lines. The angular distributions clearly show the presence of a Σ shape resonance for all of the satellite lines.

  20. Simulation and evaluation of the absorption edge subtraction technique in energy-resolved X-ray radiography applied to the cultural heritage studies

    International Nuclear Information System (INIS)

    Leyva Pernia, Diana; Cabal Rodriguez, Ana E.; Pinnera Hernandez, Ibrahin; Leyva Fabelo, Antonio; Abreu Alfonso, Yamiel; Espen, Piet Van

    2011-01-01

    In this work the mathematical simulation of photon transport in the matter was used to evaluate the potentials of a new energy-resolved X-ray radiography system. The system is intended for investigations of cultural heritage object, mainly painting. The radiographic system uses polychromatic radiation from an X-ray tube and measures the spectrum transmitted through the object with an energy-dispersive X-ray detector on a pixel-by-pixel basis. Manipulation of the data-set obtained allows constructing images with enhanced contrast for certain elements. Here the use of the absorption edge subtraction technique was emphasized. The simulated results were in good agreement with the experimental data.(author)

  1. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  2. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    Science.gov (United States)

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  3. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.; Trevor, D.J.; Lee, Y.T.; Shirley, D.A.

    1981-01-01

    A high-resolution photoelectron spectrometer which uses molecular beam sampling is described. Photons from a rare-gas resonance lamp or UV laser are crossed with the beam from a differentially pumped supersonic nozzle source. The resulting photoelectrons are collected by an electrostatic analyzer of a unique design consisting of a 90 0 spherical sector preanalyzer, a system of lenses, and a 180 0 hemispherical deflector. A multichannel detection system based on dual microchannel plates with a resistive anode position encoder provides an increase in counting efficiency by a factor of 12 over the equivalent single channel detector. The apparatus has demonstrated an instrumental resolution of better than 10 meV FWHM, limited largely by the photon source linewidth. A quadrupole mass spectrometer is used to characterize the composition of the molecular beam. Extensive differential pumping is provided to protect the critical surfaces of the analyzer and mass spectrometer from contamination. Because of the near elimination of Doppler and rotational broadenings, the practical resolution is the highest yet obtained in molecular PES

  4. Uncertainty principle for angular position and angular momentum

    International Nuclear Information System (INIS)

    Franke-Arnold, Sonja; Barnett, Stephen M; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles

    2004-01-01

    The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry

  5. Hybridization and bond-orbital components in site-specific X-ray photoelectron spectra of rutile TiO2

    International Nuclear Information System (INIS)

    Woicik, J.C.; Nelson, E.J.; Kronik, Leeor; Jain, Manish; Chelikowsky, James R.; Heskett, D.; Berman, L.E.; Herman, G.S.

    2002-01-01

    We have determined the Ti and O components of the rutile TiO 2 valence band using the method of site-specific x-ray photoelectron spectroscopy. Comparisons with calculations based on pseudopotentials within the local density approximation reveal the hybridization of the Ti 3d, 4s, and 4p states, and the O 2s and 2p states on each site. These chemical effects are observed due to the large differences between the angular-momentum dependent matrix elements of the photoelectron process

  6. Many-electron effects in photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Martin, R.L.

    1976-06-01

    The deviations from Koopmans' one-electron model of photoionization which lead to satellite structure in the photoelectron spectrum are examined within the formalism of configuration interaction (CI). The mechanisms which contribute to satellite intensity may be classified as continuum state configuration interaction, final ionic state configuration interaction, and initial state configuration interaction. The discussion centers around the last two mechanisms, these being the prime contributors to the satellite intensity well above threshold. Specific examples of theoretical ''spectra'' are presented for the F(1s) region of HF and the 1s region of neon. The agreement between theory and experiment is found to be excellent. In these two instances, initial state configuration interaction contributions increase the satellite intensity and are of nearly equal importance to the final ionic state mixing

  7. Study of niobium oxidation by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Durand, C.

    1985-01-01

    The chemical composition of thin oxide layers, grown on clean niobium, in low oxygen pressure, was studied by a surface analysis method: X-ray Photoelectron Spectroscopy. The purpose of this study was to find the best conditions for the building of Nb/Nb oxide/Pb Josephson junctions, and particularly to minimise the interface thickness during the formation of the insulator film (Nb 2 O 5 ) on the metal (Nb). This interface is essentially formed by the monoxide (NbO) and dioxide (NbO 2 ). Nb 3d XPS core level peak positions and area ratios (obtained by the signal decomposition) of the components of the total peak, were used to determine the presence of the different oxidation states II, IV and V, their relative abundance, oxide thicknesses and their depth distribution. All this information was extracted by a special numerical procedure [fr

  8. Photoelectron spectroscopy of surfaces under humid conditions

    International Nuclear Information System (INIS)

    Bluhm, Hendrik

    2010-01-01

    The interaction of water with surfaces plays a major role in many processes in the environment, atmosphere and technology. Weathering of rocks, adhesion between surfaces, and ionic conductance along surfaces are among many phenomena that are governed by the adsorption of molecularly thin water layers under ambient humidities. The properties of these thin water films, in particular their thickness, structure and hydrogen-bonding to the substrate as well as within the water film are up to now not very well understood. Ambient pressure photoelectron spectroscopy (APXPS) is a promising technique for the investigation of the properties of thin water films. In this article we will discuss the basics of APXPS as well as the particular challenges that are posed by investigations in water vapor at Torr pressures. We will also show examples of the application of APXPS to the study of water films on metals and oxides.

  9. A Photoelectron Spectroscopic Study of Di-t-butylphosphazene

    DEFF Research Database (Denmark)

    Elbel, S.; Ellis, A.; Niecke, E.

    1985-01-01

    Gaseous trans-ButPNBut, generated by mild gas-phase thermolysis of its more stable [2 + 1] cyclodimer, has been characterized by field-ionization mass spectrometry and U.V. photoelectron spectroscopy. The photoelectron spectrum has been assigned based on SCC-Xα model calculations for representat......Gaseous trans-ButPNBut, generated by mild gas-phase thermolysis of its more stable [2 + 1] cyclodimer, has been characterized by field-ionization mass spectrometry and U.V. photoelectron spectroscopy. The photoelectron spectrum has been assigned based on SCC-Xα model calculations...

  10. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  11. Instant AngularJS starter

    CERN Document Server

    Menard, Dan

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is written in an easytoread style, with a strong emphasis on realworld, practical examples. Stepbystep explanations are provided for performing important tasks.This book is for web developers familiar with JavascriptIt doesn't cover the history of AngularJS, and it's not a pitch to convince you that AngularJS is the best framework on the entire web. It's a guide to help you learn everything you need to know about AngularJS in as few pa

  12. Automated Angular Momentum Recoupling Algebra

    Science.gov (United States)

    Williams, H. T.; Silbar, Richard R.

    1992-04-01

    We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.

  13. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    Science.gov (United States)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  14. Non-dipole effects in spin polarization of photoelectrons from 3d electrons of Xe, Cs and Ba

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Cherepkov, N A [State University of Aerospace Instrumentation, St. Petersburg 190000 (Russian Federation); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States); Msezane, A Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States)

    2005-04-28

    The non-dipole contribution to spin polarization of photoelectrons from Xe, Cs and Ba 3d{sub 5/2} and 3d{sub 3/2} levels is calculated. The calculation is carried out within the framework of a modified version of the spin-polarized random phase approximation with exchange. The effects of relaxation of excited electrons due to the 3d-vacancy creation are also accounted for. It is demonstrated that the parameters that characterize the photoelectron angular distribution as functions of the incoming photon energy, although being predictably small, acquire additional peculiarities when the interaction between electrons that belong to the 3d{sub 5/2} and 3d{sub 3/2} components of the spin-orbit doublet is taken into account.

  15. High angular resolution at LBT

    Science.gov (United States)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  16. Angular momentum projection with Pfaffian

    International Nuclear Information System (INIS)

    Oi, M.

    2011-01-01

    Recent developments to rewrite the Onishi formula for an evaluation of the so-called norm overlap kernel necessary in angular momentum projection are to be discussed. The essential ingredients in the development, that is, the Fermion coherent states, the Grassmann numbers, and the Pfaffian, are explained. (author)

  17. Angular overlap model in actinides

    International Nuclear Information System (INIS)

    Gajek, Z.; Mulak, J.

    1991-01-01

    Quantitative foundations of the Angular Overlap Model in actinides based on ab initio calculations of the crystal field effect in the uranium (III) (IV) and (V) ions in various crystals are presented. The calculations justify some common simplifications of the model and fix up the relations between the AOM parameters. Traps and limitations of the AOM phenomenology are discussed

  18. Angular overlap model in actinides

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z.; Mulak, J. (Polska Akademia Nauk, Wroclaw (PL). Inst. Niskich Temperatur i Badan Strukturalnych)

    1991-01-01

    Quantitative foundations of the Angular Overlap Model in actinides based on ab initio calculations of the crystal field effect in the uranium (III) (IV) and (V) ions in various crystals are presented. The calculations justify some common simplifications of the model and fix up the relations between the AOM parameters. Traps and limitations of the AOM phenomenology are discussed.

  19. Scaling laws for photoelectron holography in the midinfrared wavelength regime

    NARCIS (Netherlands)

    Huismans, Y.; Gijsbertsen, A.; Smolkowska, A S; Jungmann, J H; Rouz??e, A.; Logman, P. S W M; L??pine, F.; Cauchy, C.; Zamith, S; Marchenko, T; Bakker, Joost M.; Berden, G.; Redlich, B; Van Der Meer, A. F G; Ivanov, M Yu; Yan, T. M.; Bauer, D.; Smirnova, O; Vrakking, M. J J

    2012-01-01

    Midinfrared strong-field laser ionization offers the promise of measuring holograms of atoms and molecules, which contain both spatial and temporal information of the ion and the photoelectron with subfemtosecond temporal and angstrom spatial resolution. We report on the scaling of photoelectron

  20. Scaling Laws for Photoelectron Holography in the Midinfrared Wavelength Regime

    NARCIS (Netherlands)

    Huismans, Y.; Gijsbertsen, A.; Smolkowska, A. S.; Jungmann, J. H.; Rouzee, A.; Logman, Pswm; Lepine, F.; Cauchy, C.; Zamith, S.; Marchenko, T.; Bakker, J. M.; G. Berden,; Redlich, B.; van der Meer, A. F. G.; Ivanov, M. Y.; Yan, T. M.; Bauer, D.; Smirnova, O.; Vrakking, M. J. J.

    2012-01-01

    Midinfrared strong-field laser ionization offers the promise of measuring holograms of atoms and molecules, which contain both spatial and temporal information of the ion and the photoelectron with subfemtosecond temporal and angstrom spatial resolution. We report on the scaling of photoelectron

  1. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Prior, C.R.

    1977-01-01

    The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state. (author)

  2. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Brown, M. A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Bokhoven, J. A. van [Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  3. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    International Nuclear Information System (INIS)

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-01-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup

  4. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Science.gov (United States)

    Jordan, I.; Huppert, M.; Brown, M. A.; van Bokhoven, J. A.; Wörner, H. J.

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  5. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  6. MOCCA: A 4k-Pixel Molecule Camera for the Position- and Energy-Resolving Detection of Neutral Molecule Fragments at CSR

    Science.gov (United States)

    Gamer, L.; Schulz, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Kempf, S.; Krantz, C.; Novotný, O.; Schwalm, D.; Wolf, A.

    2016-08-01

    We present the design of MOCCA, a large-area particle detector that is developed for the position- and energy-resolving detection of neutral molecule fragments produced in electron-ion interactions at the Cryogenic Storage Ring at the Max Planck Institute for Nuclear Physics in Heidelberg. The detector is based on metallic magnetic calorimeters and consists of 4096 particle absorbers covering a total detection area of 44.8 mathrm {mm} × 44.8 mathrm {mm}. Groups of four absorbers are thermally coupled to a common paramagnetic temperature sensor where the strength of the thermal link is different for each absorber. This allows attributing a detector event within this group to the corresponding absorber by discriminating the signal rise times. A novel readout scheme further allows reading out all 1024 temperature sensors that are arranged in a 32 × 32 square array using only 16+16 current-sensing superconducting quantum interference devices. Numerical calculations taking into account a simplified detector model predict an energy resolution of Δ E_mathrm {FWHM} le 80 mathrm {eV} for all pixels of this detector.

  7. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    wave-function spread. A relativistic rescattering enhancement occurs at 2 x 1018 W/cm2, commensurate with relativistic motion of a classical electron in a single field cycle. The good comparison between the results with available experiments suggests the theory approach is well suited to modeling scattering in the ultrastrong intensity regime. We investigate the elastic scattering process as it changes from strong to ultrastrong fields with the photoelectron angular distributions from Ne, Ar, and Xe. Noble gas species with Hartree-Fock scattering potentials show a reduction in elastic rescattering with the increasing energy of ultrastrong fields. It is found that as one increases the returning photoelectron energy, rescattering becomes the dominating mechanism behind the yield distribution as the emission angle for all the species extends from 0° to 90°. The relativistic effects and the magnetic field do not change the angular distribution until one is well into the Gamma r "1 regime where the Lorentz defection significantly reduces the yield. As we proceed to the highest energy, the angular emission range narrows as the mechanism changes over to backscattering into narrow angles along the electric field.

  8. Laser photoelectron spectrometry of Sc- and Y-

    International Nuclear Information System (INIS)

    Feigerle, C.S.; Herman, Z.; Lineberger, W.C.

    1981-01-01

    The photoelectron spectra of Sc - and Y - have been obtained in a crossed ion- and laser-beam experiment. Analysis of the Sc - spectrum yields two bound terms of 3d4s 2 4p configuration ( 1 D 0 and 3 D 0 ), with EA(Sc) = 0.189 +- 0.020 eV and an excited-state binding energy of 0.042 +- 0.020 eV. Similarly, the (4d5s 2 5p) 1 D 0 ground state of Y - is bound by 0.308 +- 0.012 eV and a (4d5s 2 5p) 3 D 0 excited term is bound by 0.165 +- 0.025 eV. With the determination of the bound electronic configuration of Sc - as 3d4s 2 4p, the order of filling of electron shells of the first transition series negative ions is found to be 4s 2 ep, 3d4s 2 4p, the order of filling of electron shells of the first transition series negative ions is found to be 4s 2 4p, 3d4s 2 4p, followed by 3dsup(k) 4s 2 (k = 3, 4, ..., 10). (orig.)

  9. Photoelectron spectroscopy of the 6-azauracil anion.

    Science.gov (United States)

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  10. On Dunkl angular momenta algebra

    Energy Technology Data Exchange (ETDEWEB)

    Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2015-11-17

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  11. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  12. Dealloying of Cu{sub x}Au studied by hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Parasmani, E-mail: parasmani.rajput@northwestern.edu [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Detlefs, Blanka [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Kolb, Dieter M. [Institute for Electrochemistry, University of Ulm, D-89069 Ulm (Germany); Potdar, Satish [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Zegenhagen, Jörg [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France)

    2013-10-15

    Highlights: ► The shift in binding energy of Cu and Au lines in CuAu alloys is opposite to expected from the nobility of the elements. ► The magnitude of the chemical shifts of the metal lines in CuAu alloys is strongly influenced by finite size effects and disorder. ► Cu 3s and/or Au 4f cross-sections are not well described by theory (Scofield). The Cu 3s photoabsorption cross-section seems to be strongly overestimated. ► We find/confirm that (CuAu) dealloying proceeds into depth like a spinodal decomposition. -- Abstract: We studied pristine and leached ultra-thin Cu{sub x}Au (x ≈ 4) films by hard X-ray photoelectron spectroscopy. The Au 4f and Cu 3s core levels show a shift in binding energy which is opposite to expected from the nobility of the elements, which is explained by charge transfer involving differently screening s and d valence levels of the elements [W. Eberhardt, S.C. Wu, R. Garrett, D. Sondericker, F. Jona, Phys. Rev. B 31 (1985) 8285]. The magnitude of the chemical shifts of the metal lines is strongly influenced by the finite size and disorder of the films. Angular dependent photoelectron emission allowed to assess the alloy composition as a function of depth larger than 5 nm. The potential controlled dealloying proceeds into depth like a spinodal decomposition with Cu going into solution and the remaining Au accumulating in the surface region. The compositional gradient did not lead to a significant broadening of the metal photoelectron lines suggesting a non-local screening mechanism.

  13. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  14. Angular momentum content of galaxies

    International Nuclear Information System (INIS)

    Shaya, E.J.; Tully, R.B.

    1984-01-01

    A schema of galaxy formation is developed in which the environmental influence of large-scale structure plays a dominant role. This schema was motivated by the observation that the fraction of E and S0 galaxies is much higher in clusters than in low-density regions and by an inference that those spirals that are found in clusters probably have fallen in relatively recently from the low-density regions. It is proposed that the tidal field of the Local Supercluster acts to determine the morphology of galaxies through two complementary mechanisms. In the first place, the supercluster can apply torques to protogalaxies. Galaxies which collapsed while expanding away from the central cluster decoupled from the external tidal field and conserved the angular momentum that they acquired before collapse. Galaxies which formed in the cluster while the cluster collapsed continued to feel the tidal field. In the latter case, the spin of outer collapsing layers can be halted and reversed, and tends to cancel the spin of inner layers. The result is a reduction of the total angular momentum content of the galaxy. In addition, the supercluster tidal field can regulate accretion of fresh material onto the galaxies since the field creates a Roche limit about galaxies and material beyond this limit is lost. Any material that has not collapsed onto a galaxy by the time the galaxy falls into a cluster will be tidally stripped. The angular momentum content of that part of the protogalactic cloud which has not yet collapsed . continues to grow linearly with time due to the continued torquing by the supercluster and neighbors. Galaxies at large distances from the cluster core can continue to accrete this high angular momentum material until the present, but galaxies that enter the cluster are cut off from replenishing material

  15. Angular dependence of shallow dose

    International Nuclear Information System (INIS)

    Alvarez, J.L.

    1986-01-01

    The theoretical response of a detector is discussed and compared to measurements of shallow dose with tissue and phantom response detectors. A definite energy dependent angular response of dose and measurement was observed which could not be explained by simple trigonometric arguments. The response is back scatter dependent and must be considered in detector design and dose measurements. It is not possible for standard detectors to follow this response

  16. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, Stephen Edmund [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN-, NCO- and NCS-. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH30H,F + C2H5OH,F + OH and F + H2. A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O(3P, 1D) + HF and F + H2. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H2 system, comparisons with three-dimensional quantum calculations are made.

  17. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound → bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN - , NCO - and NCS - . Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH 3 0H,F + C 2 H 5 OH,F + OH and F + H 2 . A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O( 3 P, 1 D) + HF and F + H 2 . The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H 2 system, comparisons with three-dimensional quantum calculations are made

  18. AngularJS test-driven development

    CERN Document Server

    Chaplin, Tim

    2015-01-01

    This book is for developers who want to learn about AngularJS development by applying testing techniques. You are assumed to have a basic knowledge and understanding of HTML, JavaScript, and AngularJS.

  19. Partial Photoionization Cross Sections and Angular Distributions for Double Excitation of Helium up to the N=13 Threshold

    International Nuclear Information System (INIS)

    Czasch, A.; Schoeffler, M.; Hattass, M.; Schoessler, S.; Jahnke, T.; Weber, Th.; Staudte, A.; Titze, J.; Wimmer, C.; Kammer, S.; Weckenbrock, M.; Voss, S.; Grisenti, R.E.; Jagutzki, O.; Schmidt, L.Ph.H.; Schmidt-Boecking, H.; Doerner, R.; Rost, J.M.; Schneider, T.; Liu, C.-N.

    2005-01-01

    Partial photoionization cross sections σ N (E γ ) and photoelectron angular distributions β N (E γ ) were measured for the final ionic states He + (N>4) in the region between the N=8 and N=13 thresholds (E γ >78.155 eV) using the cold target recoil ion momentum spectroscopy technique (COLTRIMS). Comparison of the experimental data with two independent sets of theoretical predictions reveals disagreement for the branching ratios to the various He N + states. The angular distributions just below the double ionization threshold suggest an excitation process for highly excited N states similar to the Wannier mechanism for double ionization

  20. Negative-Ion source for mass selective photodetachment photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Kaesmaier, R.; Baemann, C.; Drechsler, G.; Boesl, U.

    1995-01-01

    We have designed and constructed a negative ion source for mass spectrometry and mass selective photodetachement photoelectron spectroscopy. The characteristics of the source are high anion densities and a large variety of accessible systems. Thus, mass spectra and photoelectron spectra of large unvolatile moelcules (biomolecules), of metal-organic compounds and of molecule water clusters, especially mentioned in this article, have been measured. Combining mass spectrometry, photoelectron spectroscopy (PES) and high resolution ZEKE (zero kinetic energy)-PES (1) should make the apparatus to an ideal diagnostic tool for structural assignment

  1. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  2. Angular-momentum transport in nuclear collisions

    International Nuclear Information System (INIS)

    Wolschin, G.; Ayik, S.; Noerenberg, W.

    1978-01-01

    Among the various relaxation processes that can be observed in heavy-ion collisions, the dissipation of relative angular momentum into intrinsic angular momentum of the fragments attracts increasing attention. Here we present a transport theoretical description of angular-momentum and mass transport that allows for a transparent interpretation of the data. (orig.) [de

  3. AngularJS web application development

    CERN Document Server

    Darwin, Peter Bacon

    2013-01-01

    The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.

  4. The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Lynch, D.W.

    2004-01-01

    With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals

  5. Spin analysis of photoelectrons by using synchrotron radiation

    International Nuclear Information System (INIS)

    Yagishita, Akira

    1983-03-01

    This report is the proceedings of a workshop on ''Spin analysis of photoelectrons by using synchrotron radiation'' held at National Laboratory for High Energy Physics on October 21, 1982. The purpose of this workshop was to examine the feasibility of the experiment on the spin analysis of photoelectrons at the photon factory which has started the operation in 1982. The workshop covered the following subjects on the spin analysis of photoelectrons and on the detectors for spin polarization; the experiment and the theory on the spin analysis of photoelectrons emitted from gas and solid, the detectors for measuring the spin polarization of electron beam, the test experiment on a Mott detector, and further problems. The proceedings contain five papers related to the above subjects. (Asami, T.)

  6. Valence photoelectron spectrum of KBr: Effects of electron correlation

    International Nuclear Information System (INIS)

    Calo, A.; Huttula, M.; Patanen, M.; Aksela, H.; Aksela, S.

    2008-01-01

    The valence photoelectron spectrum has been measured for molecular KBr. Experimental energies of the main and satellite structures have been compared with the results of ab initio calculations based on molecular orbital theory including configuration and multiconfiguration interaction approaches. Comparison between the experimental KBr spectrum and previously reported Kr valence photoelectron spectrum has also been performed in order to find out if electron correlation is of the same importance in the valence ionized state of KBr as in the corresponding state of Kr

  7. Photoelectron Imaging Spectroscopy as a Window to Unexpected Molecules

    Science.gov (United States)

    Blackstone, Christopher C.

    2017-06-01

    Targeting an anion with the formula CH_{3}O_{3} for exploration with photoelectron imaging spectroscopy, we determine its identity to be dihydroxymethanolate, an anion largely absent in the literature, and the conjugate base of the hypothetical species orthoformic acid. Comparing the observed photoelectron spectrum to CCSD-EOM-IP and CCSD-EOM-SF calculations completed in QChem and Franck-Condon overlap simulations in PESCAL, we are able to determine with confidence the connectivity of the atoms in this molecule.

  8. Electron angular distribution axial channeling

    International Nuclear Information System (INIS)

    Khokonov, A.Kh.; Khokonov, M.Kh.

    1989-01-01

    Angular distributions of ultra-relativistic electrons are calculated in the assumption about presence of statistical equilibrium. Analysis is based on numerical solution of Fokker-Planck type kinetic equation. It is shown that in contrast to case of amorphous medium, the multiple scattering at axial channeling of negative particles results in self-focusing of the initial beam particles and due to it number of electrons moving at an angles to the chain, which are smaller, than critical angle of channeling, may increase by several times as compared to the initial one

  9. Features of atomic images reconstructed from photoelectron, Auger electron, and internal detector electron holography using SPEA-MEM

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.jp [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Matsui, Fumihiko [Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 (Japan)

    2014-08-15

    Highlights: • We develop a 3D atomic image reconstruction algorithm for photoelectron, Auger electron, and internal detector holography. • We examine the shapes of the atomic images reconstructed by using a developed kernel function. • We examine refraction effect at surface, limitation effect of the hologram data, energy resolution effect, and angular resolution effect. • These discussions indicate the experimental requirements to obtain the clear 3D atomic image. - Abstract: Three-dimensional atomic images can be reconstructed from photoelectron, Auger electron, and internal detector electron holograms using a scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM) that utilizes an integral transform. An integral kernel function for the integral transform is the key to clear atomic image reconstruction. We composed the kernel function using a scattering pattern function and estimated its ability. Image distortion caused by multiple scattering was also evaluated. Four types of Auger electron wave functions were investigated, and the effect of these wave function types was estimated. In addition, we addressed refraction at the surface, the effects of data limitation, and energy and angular resolutions.

  10. Molecular photoionisation using synchrotron radiation. Photoelectron photoion coincidence and circular dichroism

    International Nuclear Information System (INIS)

    Garcia-Macias, Gustavo Adolfo

    2002-01-01

    The first ionisation potential of the CF 3 radical has been determined in this work from the appearance potential of the CF 3 + fragment, formed in the photofragmentation of CF 3 Br. In obtaining this value special care has been taken in removing the contributions from second order light and internal energy of the fragmenting parent ion. The resulting ionisation potential was found to be in very good agreement with a number of recent theoretical calculations. The valence photoelectron spectra of three monoterpenes such as limonene, carvone and camphor have been recorded along with their mass spectra taken in coincidence with energy selected photoelectrons, providing information about state selected parent ion fragmentation channels. A new photoelectron spectrometer based on the Alien box design has been studied by ray-tracing simulations. It will include a two dimensional position sensitive detector system consisting in two micro channel plates in a chevron stack and a delay-line anode to encode the impact position. It is currently under construction and it is expected to be commissioned by summer 2002. Continuum molecular scattering calculations have been performed in the optically active carvone. We have looked for circular dichroism in the angular distributions of core and valence photoelectron spectra. The values have been found to be of at least four orders of magnitude bigger than the normal circular dichroism in absorption. Experimental results have been obtained for the circular dichroism in the valence and inner shells of camphor and carvone as a function of photon energy. The experiments were performed in the BESSY II and SACO storage rings in Berlin and Orsay respectively. The core results on camphor show a definite difference between the partial cross-sections of the carbonyl carbon Is orbital when switching the helicity of either the light or the enantiomer. The core results on carvone have yet to be properly analysed and are noisier but the circular

  11. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets.

    Science.gov (United States)

    Faubel, M; Siefermann, K R; Liu, Y; Abel, B

    2012-01-17

    beam qualities) and liquid microjet technology recently enabled the first liquid interface PES experiments in the IR/UV-pump and extreme ultraviolet-probe (EUV-probe) configuration. In this Account, we highlight features of the technology and a number of recent applications, including extreme states of matter and the discovery and detection of short-lived transients of the solvated electron in water. Properties of the EUV radiation, such as its controllable polarization and features of the liquid microjet, will enable unique experiments in the near future. PES measures electron binding energies and angular distributions of photoelectrons, which comprise unique information about electron orbitals and their involvement in chemical bonding. One of the future goals is to use this information to trace molecular orbitals, over time, in chemical reactions or biological transformations.

  12. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    Science.gov (United States)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  13. Angular Positioning Sensor for Space Mechanisms

    Science.gov (United States)

    Steiner, Nicolas; Chapuis, Dominique

    2013-09-01

    Angular position sensors are used on various rotating mechanisms such as solar array drive mechanisms, antenna pointing mechanisms, scientific instruments, motors or actuators.Now a days, potentiometers and encoders are mainly used for angular measurement purposes. Both of them have their own pros and cons.As alternative, Ruag Space Switzerland Nyon (RSSN) is developing and qualifying two innovative technologies of angular position sensors which offer easy implementation, medium to very high lifetime and high flexibility with regards to the output signal shape/type.The Brushed angular position sensor uses space qualified processes which are already flying on RSSN's sliprings for many years. A large variety of output signal shape can be implemented to fulfill customer requirements (digital, analog, customized, etc.).The contactless angular position sensor consists in a new radiation hard Application Specific Integrated Circuit (ASIC) based on the Hall effect and providing the angular position without complex processing algorithm.

  14. Oral candidiasis and angular cheilitis.

    Science.gov (United States)

    Sharon, Victoria; Fazel, Nasim

    2010-01-01

    Candidiasis, an often encountered oral disease, has been increasing in frequency. Most commonly caused by the overgrowth of Candida albicans, oral candidiasis can be divided into several categories including acute and chronic forms, and angular cheilitis. Risk factors for the development of oral candidiasis include immunosuppression, wearing of dentures, pharmacotherapeutics, smoking, infancy and old age, endocrine dysfunction, and decreased salivation. Oral candidiasis may be asymptomatic. More frequently, however, it is physically uncomfortable, and the patient may complain of burning mouth, dysgeusia, dysphagia, anorexia, and weight loss, leading to nutritional deficiency and impaired quality of life. A plethora of antifungal treatments are available. The overall prognosis of oral candidiasis is good, and rarely is the condition life threatening with invasive or recalcitrant disease.

  15. Angular distributions as lifetime probes

    Energy Technology Data Exchange (ETDEWEB)

    Dror, Jeff Asaf; Grossman, Yuval [Department of Physics, LEPP, Cornell University,Ithaca, NY 14853 (United States)

    2014-06-27

    If new TeV scale particles are discovered, it will be important to determine their width. There is, however, a problematic region, where the width is too small to be determined directly, and too large to generate a secondary vertex. For a collection of colored, spin polarized particles, hadronization depolarizes the particles prior to their decay. The amount of depolarization can be used to probe the lifetime in the problematic region. In this paper we apply this method to a realistic scenario of a top-like particle that can be produced at the LHC. We study how depolarization affects the angular distributions of the decay products and derive an equation for the distributions that is sensitive to the lifetime.

  16. Orbital angular momentum in phase space

    International Nuclear Information System (INIS)

    Rigas, I.; Sanchez-Soto, L.L.; Klimov, A.B.; Rehacek, J.; Hradil, Z.

    2011-01-01

    Research highlights: → We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. → We present a simple and useful toolkit for the practitioner. → We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  17. Management of Angular Cheilitis in children

    Directory of Open Access Journals (Sweden)

    Fajriani Fajriani

    2017-04-01

    Full Text Available Objective : Angular cheilitis is a type of oral soft tissue disease that can occur in children and adults, the condition is characterized by cracks and inflammation on both corners of the mouth. Although this disease can not cause severe disorder, it quite disturbs one's activity and physical appearance. Mild Angular cheilitis will recover itself over times. However severe conditions can cause pain and bleeding. This paper aims to inform colleagues about management of angular cheilitis in children.

  18. Management of angular cheilitis for children

    Directory of Open Access Journals (Sweden)

    Fajriani Fajriani

    2016-06-01

    Full Text Available Angular cheilitis is one type of oral soft tissue disease that can occur in both children and adults, the condition is characterized by cracks and inflammation in both corners of the mouth. Although this disease does not cause severe disruption but quite disturbing activity and also one's physical appearance. Angular cheilitis light will disappear on their own over time.Severe conditions that can cause pain and bleading. aims to give feedback on peers about managment angular cheilitis in children.

  19. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    International Nuclear Information System (INIS)

    Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S 2 to S 1 is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S 2 state to the vibrationally hot S 1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S 1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding

  20. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuzhu, E-mail: yuzhu.liu@gmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Knopp, Gregor [Paul Scherrer Institute, Villigen 5232 (Switzerland); Qin, Chaochao [Department of Physics, Henan Normal University, Xinxiang 453007 (China); Gerber, Thomas [Paul Scherrer Institute, Villigen 5232 (Switzerland)

    2015-01-13

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S{sub 2} to S{sub 1} is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S{sub 2} state to the vibrationally hot S{sub 1} state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S{sub 1} state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  1. Photoelectron spectra and electronic structure of some spiroborate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vovna, V.I.; Tikhonov, S.A.; Lvov, I.B., E-mail: lvov.ib@dvfu.ru; Osmushko, I.S.; Svistunova, I.V.; Shcheka, O.L.

    2014-12-15

    Highlights: • The electronic structure of three spiroborate complexes—boron 1,2-dioxyphenylene β-diketonates has been investigated. • UV and X-ray photoelectron spectra have been interpreted. • DFT calculations have been used for interpretation of spectral bands. • The binding energy of nonequivalent carbon and oxygen atoms were measured. • The structure of X-ray photoelectron spectra of the valence electrons is in good agreement with the energies and composition of Kohn–Sham orbitals. - Abstract: The electronic structure of the valence and core levels of three spiroborate complexes – boron 1,2-dioxyphenylene β-diketonates – has been investigated by methods of UV and X-ray photoelectron spectroscopy and quantum chemical density functional theory. The ionization energy of π- and n-orbitals of the dioxyphenylene fragment and β-diketonate ligand were measured from UV photoelectron spectra. This made it possible to determine the effect of substitution of one or two methyl groups by the phenyl in diketone on the electronic structure of complexes. The binding energy of nonequivalent carbon and oxygen atoms were measured from X-ray photoelectron spectra. The results of calculations of the energy of the valence orbitals of complexes allowed us to refer bands observed in the spectra of the valence electrons to the 2s-type levels of carbon and oxygen.

  2. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  3. AngularJS Performance: A Survey Study

    OpenAIRE

    Ramos, Miguel; Valente, Marco Tulio; Terra, Ricardo

    2017-01-01

    AngularJS is a popular JavaScript MVC-based framework to construct single-page web applications. In this paper, we report the results of a survey with 95 professional developers about performance issues of AngularJS applications. We report common practices followed by developers to avoid performance problems (e.g., use of third-party or custom components), the general causes of performance problems in AngularJS applications (e.g., inadequate architecture decisions taken by AngularJS users), a...

  4. Transverse and longitudinal angular momenta of light

    Energy Technology Data Exchange (ETDEWEB)

    Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-26

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

  5. Probing deeper by hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Risterucci, P.; Renault, O., E-mail: olivier.renault@cea.fr; Martinez, E.; Delaye, V. [CEA, LETI, MINATEC Campus, 38054 Grenoble Cedex 09 (France); Detlefs, B. [CEA, LETI, MINATEC Campus, 38054 Grenoble Cedex 09 (France); European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Zegenhagen, J. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Gaumer, C. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France); Grenet, G. [Institut des Nanotechnologies de Lyon (INL), UMR CNRS 5270, Ecole Centrale de Lyon, 36, avenue Guy de Collongue 69 134 Ecully Cedex (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2014-02-03

    We report an hard x-ray photoelectron spectroscopy method combining high excitation energy (15 keV) and improved modelling of the core-level energy loss features. It provides depth distribution of deeply buried layers with very high sensitivity. We show that a conventional approach relying on intensities of the core-level peaks is unreliable due to intense plasmon losses. We reliably determine the depth distribution of 1 ML La in a high-κ/metal gate stack capped with 50 nm a-Si. The method extends the sensitivity of photoelectron spectroscopy to depths beyond 50 nm.

  6. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    Energy Technology Data Exchange (ETDEWEB)

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Antonsson, E. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Physikalische und Theoretische Chemie Institut für Chemie und Biochemie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin (Germany); Neville, J. J. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 6E2 (Canada); Miron, C., E-mail: Catalin.Miron@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Extreme Light Infrastructure - Nuclear Physics (ELI-NP), ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov (Romania)

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  7. Experimental determination of high angular momentum states

    International Nuclear Information System (INIS)

    Barreto, J.L.V.

    1985-01-01

    The current knowledge of the atomic nucleus structure is summarized. A short abstract of the nuclear properties at high angular momentum and a more detailed description of the experimental methods used in the study of high angular momenta is made. (L.C.) [pt

  8. Exposing Library Services with AngularJS

    OpenAIRE

    Jakob Voß; Moritz Horn

    2014-01-01

    This article provides an introduction to the JavaScript framework AngularJS and specific AngularJS modules for accessing library services. It shows how information such as search suggestions, additional links, and availability can be embedded in any website. The ease of reuse may encourage more libraries to expose their services via standard APIs to allow usage in different contexts.

  9. Accelerated rotation with orbital angular momentum modes

    CSIR Research Space (South Africa)

    Schulze, C

    2015-04-01

    Full Text Available . As the angular acceleration takes place in a bounded space, the azimuthal degree of freedom, such fields accelerate periodically as they propagate. Notably, the amount of angular acceleration is not limited by paraxial considerations, may be tailored for large...

  10. Responsive web design with AngularJS

    CERN Document Server

    Patel, Sandeep Kumar

    2014-01-01

    If you are an AngularJS developer who wants to learn about responsive web application development, this book is ideal for you. Responsive Web Design with AngularJS is intended for web developers or designers with a basic knowledge of HTML, CSS, and JavaScript.

  11. Angular momentum projected wave-functions

    International Nuclear Information System (INIS)

    Bengtsson, R.; Haakansson, H.B.

    1978-01-01

    Angular momentum projection has become a vital link between intrinsic model-wavefunctions and the physical states one intends to describe. We discuss in general terms some aspects of angular momentum projection and present results from projection on e.g. cranking wavefunctions. Mass densities and spectroscopic factors are also presented for some cases. (author)

  12. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  13. Perturbed angular correlations and distributions

    International Nuclear Information System (INIS)

    Makaryunas, K.

    1976-01-01

    The present index comprises original works and review papers on the perturbed angular correlations (PAC) and distributions (PAD). The articles published in the Soviet and foreign journals as well as the materials of conferences, monographs and collections published in the USSR and abroad, the preprints produced by various institutes and abstracts of disertations are included from 1948 up to 1973. The whole material compiled in this index is divided into three parts. Part one is a bibliographic index. All papers in this part are divided into three sections. Section one comprises the papers devoted to the theoretical works on PAC, review papers, monographs, materials of conferences. Section two deals with the works of methodical character where correlation spectrometers as well as the treatment of experimental data are described. In section three experimental works with concrete nuclei are compiled. Part two gives the characteristic of works performed with concrete nuclei. This part is presented in the form of the table in which the works are systematized according to the chemical elements and isotopes. The table shows the characteristics of the nuclear levels used in the investigations by PAC as well as brief characteristics of experiments and results obtained. Part three - appendix contains alphabetic index of the authors, the list of the used editions with the abbreviations of the titles of these editions. The lists indicating the dynamic of the quantity of works on PAC and the distribution according to the literature sources are also given

  14. Angular correlation in positron annihilation

    International Nuclear Information System (INIS)

    Arponen, J.; Pajanne, E.

    1978-01-01

    The angular correlation of the two gamma quanta emitted when a thermalized positron annihilates with metallic conduction electrons is investigated by applying the newly developed theory of electron gas as a system of interacting collective excitations. The method leads in a natural way to the appearance of high-momentum components (i.e. pair momentum p>psub(F) in the annihilation radiation already in the case of annihilation with conduction electrons only. The amount of these components is significant approximately (10 %) in a dilute electron gas (like alkali metals), but fairly irrelevant for higher densities. The momentum-dependence of the enhancement factor for a dense system (with rsub(s) approximately equal to 2) agrees well both with the earlier theories due to Kahana and others, and also with recent accurate experimental observations. As rsub(s) increases into the alkali-metal region, the enhancement factor for p< psub(F) becomes relatively more and more constant, in contrast with the trend in the Kahana theory. In this density regime the experimental results seem to vary widely, although most of them desagree with the present prediction. We discuss the possible discrepancy and try to account for the effects of the core annihilation by a simple model. (author)

  15. Unitary bases for x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Patterson, C.W.; Harter, W.G.; Schneider, W.D.

    1979-01-01

    A Gelfand basis is used to derive the coefficients of fractional parentage (CFP's) used to calculate intensities for x-ray photoelectron spectroscopy of atoms. Using associated Gelfand bases, we show that it is easy to derive the Racah CFP relations between particles and holes

  16. Energy- and angled-resolved photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    Energy- and angle-resolved photoelectron detachment spectroscopy is currently being used to investigate the structure of negative ions and their interaction with radiation. Measurements of the electron affinity of the Ca atom and the partial cross sections for photodetachment of the metastable negative ion, He - (1s2s2p 4 P), are reported. 5 refs., 5 figs

  17. Photoelectron diffraction and holography: Present status and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, C.S. [California Univ., Davis, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States); Thevuthasan, S. [California Univ., Davis, CA (United States). Dept. of Physics; Kaduwela, A.P. [Lawrence Berkeley Lab., CA (United States)] [and others

    1993-07-01

    Photoelectron diffraction and photoelectron holography, a newly developed variant of it, can provide a rich range of information concerning surface structure. These methods are sensitive to atomic type, chemical state, and spin state. The theoretical prediction of diffraction patterns is also well developed at both the single scattering and multiple scattering levels, and quantitative fits of experiment to theory can lead to structures with accuracies in the {plus_minus}0.03 {Angstrom} range. Direct structural information can also be derived from forward scattering in scanned-angle measurements at higher energies, path length differences contained in scanned-energy data at lower energies, and holographic inversions of data sets spanning some region in angle and energy space. Diffraction can also affect average photoelectron emission depths. Circular dichroism in core-level emission can be fruitfully interpreted in terms of photoelectron diffraction theory, as can measurements with spin-resolved core-spectra, and studies of surface magnetic structures and phase transitions should be possible with these methods. Synchrotron radiation is a key element of fully utilizing these techniques.

  18. Graphene defect formation by extreme ultraviolet generated photoelectrons

    NARCIS (Netherlands)

    Gao, An; Lee, Christopher James; Bijkerk, Frederik

    2014-01-01

    We have studied the effect of photoelectrons on defect formation in graphene during extreme ultraviolet (EUV) irradiation. Assuming the major role of these low energy electrons, we have mimicked the process by using low energy primary electrons. Graphene is irradiated by an electron beam with energy

  19. Photoelectron spectroscopic studies of some transition metals and alloys

    International Nuclear Information System (INIS)

    McLachlan, A.D.

    1974-01-01

    Photoelectron spectra of polycrystalline samples of Cu, Ag and Au at photon energies of 21.22, 40.81 eV and 1487 eV were measured. The corrected 40.81 eV results were compared to theoretical band structure calculations and monochromatized x-ray photoelectron results. Correlation of hitherto unresolved peaks in the 40.81 eV spectra was observed. Comparison of the relative intensities of the spectral d bands and the theoretical calculations revealed discrepancies which were assigned to matrix element modulation effects in the photoelectron emission process. Experimental measurements and theories of the electronic structure of disordered alloy systems were reviewed. The 21.22 eV and 40.81 eV photoelectron spectra of some AgPd and AgAu alloys were measured. The spectra were compared with previous x-ray photon results, and with theoretical calculations based on the Coherent Potential Approximation (CPA) model of disordered alloy systems. The present results were found to give more clearly defined spectral details, with differences in the comparison reflecting the simplifying assumptions of the CPA calculation. (author)

  20. Characterization of Ge-nanocrystal films with photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bostedt, C.; Buuren, T. van; Willey, T.M.; Nelson, A.J.; Franco, N.; Moeller, T.; Terminello, L.J.

    2003-01-01

    The Ge 3d core-levels of germanium nanocrystal films have been investigated by means of photoelectron spectroscopy. The experiments indicate bulk-like coordinated atoms in the nanocrystals and suggest structured disorder on the nanoparticle surface. The results underline the importance of the surface on the overall electronic structure of this class of nanostructured materials

  1. X-ray and photoelectron spectroscopy of light rare earths

    International Nuclear Information System (INIS)

    Fuggle, J.C.

    1983-01-01

    Core level photoelectron spectroscopy, X-ray absorption spectroscopy, bremsstrahlung isochromat spectroscopy and valence band studies are discussed. Particular emphasis is placed on cerium. Correlation effects, multiplet structure, screening effects and the dynamics of the processes involved are illustrated with selected examples. (Auth.)

  2. Angular momentum conservation for uniformly expanding flows

    International Nuclear Information System (INIS)

    Hayward, Sean A

    2007-01-01

    Angular momentum has recently been defined as a surface integral involving an axial vector and a twist 1-form, which measures the twisting around the spacetime due to a rotating mass. The axial vector is chosen to be a transverse, divergence-free, coordinate vector, which is compatible with any initial choice of axis and integral curves. Then a conservation equation expresses the rate of the change of angular momentum along a uniformly expanding flow as a surface integral of angular momentum densities, with the same form as the standard equation for an axial Killing vector, apart from the inclusion of an effective energy tensor for gravitational radiation

  3. A hemispherical photoelectron spectrometer with 2-dimensional delay-line detector and integrated spin-polarization analysis

    International Nuclear Information System (INIS)

    Plucinski, L.; Oelsner, A.; Matthes, F.; Schneider, C.M.

    2010-01-01

    Photoelectron spectrometers usually allow detection of either spin-resolved energy-distribution curves (EDCs) at single emission angle, or 2D angle-vs.-energy images without spin-resolution. We have combined the two detection schemes into one spectrometer system which permits simultaneous detection of a 1D spin-resolved EDC and a 2D angular map. A state-of-the-art hemispherical analyzer is used as an energy filter. Its original scintillator detector has been replaced by a delay-line-detector (DLD), and part of the electron beam is allowed to pass through to reach the spin-polarized low energy electron diffraction (SPLEED) spin-detector mounted subsequently. The electron-optics between DLD and SPLEED contains a 90 o deflector to feature simultaneous detection of in-plane and out-of-plane spin components. These electron-optics have been optimized for high transmission to reduce acquisition times in the spin-resolved mode.

  4. The PhotoElectron Boundary as observed by MAVEN instruments

    Science.gov (United States)

    Garnier, P.; Steckiewicz, M.; Mazelle, C. X.; Xu, S.; Mitchell, D. L.; Holmberg, M.; Halekas, J. S.; Andersson, L.; Brain, D.; Connerney, J. E. P.; Espley, J. R.; Lillis, R. J.; Luhmann, J. G.; Savaud, J. A.; Jakosky, B. M.

    2017-12-01

    Photoelectron peaks in the 20-30 eV energy range are commonly observed in planetary atmospheres (Earth, Mars, Titan...), produced by the intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons result from the ionization of CO2 and O atmospheric neutrals, and are known to escape the planet down its tail, making them tracers for the atmospheric escape (Frahm et al., 2006). Furthermore, their presence or absence allows us to define the so-called PhotoElectron Boundary (PEB), that separates the sunlit photoelectron-dominated ionosphere from the solar wind controlled environment, as initially observed by the Mars Global Surveyor (MGS) MAG/ER instrument (Mitchell et al. (2000, 2001). We provide here a detailed statistical analysis of the location and properties of the PEB based on the Mars Atmosphere and Volatile Evolution (MAVEN) mission electron and magnetic field data. Our dataset includes 1696 dayside PEB crossings obtained from September 2014 until May 2016 (the observations of escaping photoelectrons in the wake being not included). The PEB appears as mostly sensitive to the solar wind dynamic and crustal magnetic fields pressures, for which a quantitative dependance is derived and compared with two other important boundaries : the bow shock and magnetic pileup boundary. The PEB altitude is highly variable, leading to a variable wake cross section for escape (up to +- 50%), which is important for deriving global escape rates from in situ photoelectron escape rates. The PEB is not always sharp, and is, despite a strong variability, characterized on average by : a magnetic field topology typical for the edge of the Magnetic Pile Up Region above it, more field aligned fluxes above than below, and a clear change of the altitude dependence of both electron fluxes and total density (that appears different from the ionopause). The PEB thus appears as a transition region between two plasma and field configurations which is determined by the

  5. Photoelectron spectroscopic studies of the electronic structure of some metals and ionic solids

    International Nuclear Information System (INIS)

    Poole, R.T.

    1974-01-01

    The source of u.v. radiation used was a d.c. glow discharge in either helium or neon gas. Photons of energy 40.81 eV from a helium discharge were used predominantly for measurements on solid state materials. The design, construction and operating characteristics of the inert gas discharge lamp are presented and the operating characteristics of the lamp were investigated in order to improve progressively the design of the lamp and also to determine under what operating conditions the production of 40.81 eV radiation is maximized. The electron optics of a spherical electrostatic (π/2) -sector, electron energy analyzer and its transmission properties, for monoenergetic and nonmonoenergetic photoelectron sources, under constant resolution mode of operation are presented. In order to perform quantitative measurements energy calibration techniques for solid and gaseous samples and an intensity calibration technique for angular distribution measurements was developed. Measurements of the splittings of the 3d, 4d and 5d bands in some metals in the atomic number range Z = 29 - 83 are compared to free atom values and evidence for crystal field effects is presented. Measurements on eighteen alkali halides are compared with the predictions of the Born model for strongly ionic crystals. (author)

  6. Characterizing edge and stacking structures of exfoliated graphene by photoelectron diffraction

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Ishii, Ryo; Matsuda, Hiroyuki; Morita, Makoto; Kitagawa, Satoshi; Koh, Shinji; Daimon, Hiroshi; Matsushita, Tomohiro

    2013-01-01

    The two-dimensional C 1s photoelectron intensity angular distributions (PIADs) and spectra of exfoliated graphene flakes and crystalline graphite were measured using a focused soft X-ray beam. Suitable graphene samples were selected by thickness characterization using Raman spectromicroscopy after transferring mechanically exfoliated graphene flakes onto a 90-nm-thick SiO 2 film. In every PIAD, a Kagomé interference pattern was observed, particularly clearly in the monolayer graphene PIAD. Its origin is the overlap of the diffraction rings formed by an in-plane C-C bond honeycomb lattice. Thus, the crystal orientation of each sample can be determined. In the case of bilayer graphene, PIAD was threefold-symmetric, while those of monolayer graphene and crystalline graphite were sixfold-symmetric. This is due to the stacking structure of bilayer graphene. From comparisons with the multiple scattering PIAD simulation results, the way of layer stacking as well as the termination types in the edge regions of bilayer graphene flakes were determined. Furthermore, two different C 1s core levels corresponding to the top and bottom layers of bilayer graphene were identified. A chemical shift to a higher binding energy by 0.25 eV for the bottom layer was attributed to interfacial interactions. (author)

  7. Angle-resolved photoelectron spectroscopy of the chloro-substituted methanes

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Carlson, Thomas A.; Grimm, F. A.

    1983-09-01

    The angular distribution parameter, β, was determined for the valence orbitals (IP ' 21.2 eV) of CCl 4, CHCl 3, CH 2Cl 2, and CH 3Cl in the 10-30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β in the photoelectron energy range of 2 to 10 eV for the non-bonding chlorine n(Cl) orbitals of these molecules was found to be similar for all n(Cl) orbitals investigated. The energy dependence of β for the σ orbitals in these molecules was similar to that observed previously for other σ orbitals. The experimental CCl 4 results were compared with theoretical CCl 4 results obtained using the Xα multiple scattering formalism. Theory predicts the existence of two strong shape resonances in each of the valence orbitals of CCl 4. The overall agreement between experiment and theory is evaluated along with the experimental evidence concerning the verification of the predicted shape resonances.

  8. Staggering of angular momentum distribution in fission

    Science.gov (United States)

    Tamagno, Pierre; Litaize, Olivier

    2018-03-01

    We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  9. Amplitude damping channel for orbital angular momentum

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-03-01

    Full Text Available Since the pioneering work on the entanglement of the orbital angular momentum (OAM) states of light, much attention has been devoted to the subject, with particular attention into the quantum aspects of information processing using OAM. Furthermore...

  10. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  11. Orbital-angular-momentum entanglement in turbulence

    CSIR Research Space (South Africa)

    Hamadou Ibrahim, A

    2013-06-01

    Full Text Available The turbulence-induced decay of orbital-angular-momentum (OAM) entanglement between two photons is investigated numerically and experimentally. To compare our resultswith previouswork,we simulate the turbulent atmosphere with a single phase screen...

  12. Staggering of angular momentum distribution in fission

    Directory of Open Access Journals (Sweden)

    Tamagno Pierre

    2018-01-01

    Full Text Available We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  13. QCD angular correlations for muon pair production

    International Nuclear Information System (INIS)

    Kajantie, K.; Raitio, R.; Lindfors, J.

    1978-01-01

    Angular distributions of muons are discussed in the framework of a QCD treatment of muon pair production in hadron-hadron collisions. The predicted angular effects are independent of the infrared behavior of QCD. Measuring them will permit one to determine whether the origin of the large transverse momentum of the pair is in the quark transverse momenta or in a constituent-constituent subprocess. (author)

  14. Mastering AngularJD for .NET developers

    CERN Document Server

    Majid, Mohammad Wadood

    2015-01-01

    This book is envisioned for traditional developers and programmers who want to develop client-side applications using the AngularJS framework and ASP.NET Web API 2 with Visual Studio. .NET developers who have already built web applications or web services and who have a fundamental knowledge of HTML, JavaScript, and CSS and want to explore single-page applications will also find this guide useful. Basic knowledge of AngularJS would be helpful.

  15. Angular Spectra of Polarized Galactic Foregrounds

    OpenAIRE

    Cho, Jung; Lazarian, A.

    2003-01-01

    It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our mod...

  16. Beam Angular Divergence Effects in Ion Implantation

    International Nuclear Information System (INIS)

    Horsky, T. N.; Hahto, S. K.; Bilbrough, D. G.; Jacobson, D. C.; Krull, W. A.; Goldberg, R. D.; Current, M. I.; Hamamoto, N.; Umisedo, S.

    2008-01-01

    An important difference between monomer ion beams and heavy molecular beams is a significant reduction in beam angular divergence and increased on-wafer angular accuracy for molecular beams. This advantage in beam quality stems from a reduction in space-charge effects within the beam. Such improved angular accuracy has been shown to have a significant impact on the quality and yield of transistor devices [1,12]. In this study, B 18 H x + beam current and angular divergence data collected on a hybrid scanned beam line that magnetically scans the beam across the wafer is presented. Angular divergence is kept below 0.5 deg from an effective boron energy of 200 eV to 3000 eV. Under these conditions, the beam current is shown analytically to be limited by space charge below about 1 keV, but by the matching of the beam emittance to the acceptance of the beam line above 1 keV. In addition, results of a beam transport model which includes variable space charge compensation are presented, in which a drift mode B 18 H x + beam is compared to an otherwise identical boron beam after deceleration. Deceleration is shown to introduce significant space-charge blow up resulting in a large on-wafer angular divergence. The divergence effects introduced by wafer charging are also discussed.

  17. Nanoscale photoelectron ionisation detector based on lanthanum hexaboride

    International Nuclear Information System (INIS)

    Zimmer, C.M.; Kunze, U.; Schubert, J.; Hamann, S.; Doll, T.

    2011-01-01

    A nanoscale ioniser is presented exceeding the limitation of conventional photoionisation detectors. It employs accelerated photoelectrons that allow obtaining molecule specificity by the tuning of ionisation energies. The material lanthanum hexaboride (LaB 6 ) is used as air stable photo cathode. Thin films of that material deposited by pulsed laser deposition (PLD) show quantum efficiency (QE) in the range of 10 -5 which is comparable to laser photo stimulation results. A careful treatment of the material yields reasonable low work functions even after surface reoxidation which opens up the possibility of using ultraviolet light emitting diodes (UV LEDs) in replacement of discharge lamps. Schematic diagram of a photoelectron ionisation detector (PeID) operating by an electron emitter based on the photoelectric effect of lanthanum hexaboride. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Photoelectron spectroscopy via electronic spectroscopy of molecular ions

    International Nuclear Information System (INIS)

    Khan, Z.H.

    1990-01-01

    In this work, a new aspect of the correlation between optical and photoelectron spectra is discussed on the basis of which the first ionization potentials of condensed-ring aromatics can be estimated from certain features in the electronic spectra of their positive ions. Furthermore, it is noticed that the first IP's are very sensitive to molecular size as the latter's inclusion in the regression formulas improves the results considerably. Once the first ionization potential for a molecule is determined, its higher IP's may be computed if the lower-energy electronic bands for its cation are known. This procedure is especially useful for such systems whose uv photoelectron spectra are unknown. (author). 11 refs, 10 figs, 1 tab

  19. Effect of plasma instability on F region photoelectron distributions

    International Nuclear Information System (INIS)

    Bloomberg, H.W.

    1975-01-01

    Ionospheric suprathermal photoelectrons have relatively large cross sections for selected energies. In particular, electrons with energies of about 2.5 eV strongly excite nitrogen vibrational modes, while metastable states of oxygen are excited at about 5 eV. Thus an energy distribution based on chemical kinetic considerations give rise to a maximum at around 4 eV in the F region below 250 km. However, rocket experiments have shown that the expected peaks in the flux spectrum are relatively weak. This discrepancy is explained by the development of a linear instability leading to a wave-particle interaction. The linear mode is driven by the photoelectrons near the 4-eV maximum in the presence of a magnetic field. The effect is shown to be ineffective at sufficiently low altitudes, where collisionless theory fails. (auth)

  20. Effect of plasma instability on F region photoelectron distributions

    International Nuclear Information System (INIS)

    Bloomberg, H.W.

    1975-01-01

    Ionospheric suprathermal photoelectrons have relatively large cross sections for selected energies. In particular, electrons with energies of about 2.5 eV strongly excite nitrogen vibrational modes, while metastable states of oxygen are excited at about 5 eV. Thus an energy distribution based on chemical kinetic considerations gives rise to a maximum at around 4 eV in the F region below 250 km. However, rocket experiments have shown that the expected peaks in the flux spectrum are relatively weak. This discrepancy is explained by the development of a linear instability leading to a wave-particle interaction. the linear mode is driven by the photoelectrons near the 4-eV maximum in the presence of a magnetic field. The effect is shown to be ineffective at sufficiently low altitudes, where collisionless theory fails

  1. Effect of collisions on photoelectron sheath in a gas

    Science.gov (United States)

    Sodha, Mahendra Singh; Mishra, S. K.

    2016-02-01

    This paper presents a study of the effect of the collision of electrons with atoms/molecules on the structure of a photoelectron sheath. Considering the half Fermi-Dirac distribution of photo-emitted electrons, an expression for the electron density in the sheath has been derived in terms of the electric potential and the structure of the sheath has been investigated by incorporating Poisson's equation in the analysis. The method of successive approximations has been used to solve Poisson's equation with the solution for the electric potential in the case of vacuum, obtained earlier [Sodha and Mishra, Phys. Plasmas 21, 093704 (2014)], being used as the zeroth order solution for the present analysis. The inclusion of collisions influences the photoelectron sheath structure significantly; a reduction in the sheath width with increasing collisions is obtained.

  2. High resolution photoelectron spectroscopy of clusters of Group V elements

    International Nuclear Information System (INIS)

    Wang, Lai-sheng; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    High resolution HeI (580 angstrom) photoelectron spectra of As 2 , As 4 , and P 4 were obtained with a newly-built high temperature molecular beam source. Vibrational structure was resolved in the photoelectron spectra of the three cluster species. The Jahn-Teller effect is discussed for the 2 E and 2 T 2 states of P 4 + and As 4 + . As a result of the Jahn-Teller effect, the 2 E state splits into two bands, and the 2 T 2 state splits into three bands, in combination with the spin-orbit effect. It was observed that the ν 2 normal vibrational mode was involved in the vibronic interaction of the 2 E state, while both the ν 2 and ν 3 modes were active in the 2 T 2 state. 26 refs., 5 figs., 3 tabs

  3. Molecular photoelectron holography with circularly polarized laser pulses.

    Science.gov (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong

    2014-02-10

    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  4. Operation of a Langmuir Probe in a Photoelectron Plasma

    International Nuclear Information System (INIS)

    Dove, Adrienne; Robertson, Scott; Horanyi, Mihaly; Poppe, Andrew; Wang Xu

    2011-01-01

    Dust transport on the lunar surface is likely facilitated by the variable electric fields that are generated by changing plasma conditions. We have developed an experimental apparatus to study lunar photoelectric phenomena and gain a better understanding of the conditions controlling dust transport. As an initial step, Langmuir probe measurements are used to characterize the photoelectron plasma produced above a Zr surface, and these techniques will be extended to CeO 2 and lunar simulant surfaces.

  5. Total reflection X-ray photoelectron spectroscopy: A review

    International Nuclear Information System (INIS)

    Kawai, Jun

    2010-01-01

    Total reflection X-ray photoelectron spectroscopy (TRXPS) is reviewed and all the published papers on TRXPS until the end of 2009 are included. Special emphasis is on the historical development. Applications are also described for each report. The background reduction is the most important effect of total reflection, but interference effect, relation to inelastic mean free path, change of probing depth are also discussed.

  6. Recent applications of hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Conan; Woicik, Joseph C., E-mail: Joseph.Woicik@NIST.gov [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Rumaiz, Abdul K. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Pianetta, Piero [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-15

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in situ or in operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. Physical considerations that differentiate HAXPES from photoemission measurements utilizing soft x-ray and ultraviolet photon sources are also presented.

  7. Time-resolved photoelectron spectrometry of a dephasing process in pyrazine

    International Nuclear Information System (INIS)

    Pavlov, R.L.; Pavlov, L.I.; Delchev, Ya.I.; Pavlova, S.I.

    2001-01-01

    The first femtosecond time-resolved photoelectron imaging (PEI) is presented. The method is characterized by photoionization of NO and further applied to ultrafast dephasing in pyrazine. Intermediate case behaviour in radiationless transition is clearly observed in time-resolved photoelectron kinetic energy distribution. Femtosecond PEI is with much improved efficiency than conventional photoelectron spectroscopies. It is anticipated that the unifield approach of time-resolved photoelectron and photoion imaging opens the possibility of observing photon-induced dynamics in real time

  8. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics

    International Nuclear Information System (INIS)

    Bodi, Andras; Johnson, Melanie; Gerber, Thomas; Gengeliczki, Zsolt; Sztaray, Balint; Baer, Tomas

    2009-01-01

    An imaging photoelectron photoion coincidence spectrometer at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source is presented and a few initial measurements are reported. Monochromatic synchrotron VUV radiation ionizes the cooled or thermal gas-phase sample. Photoelectrons are velocity focused, with better than 1 meV resolution for threshold electrons, and also act as start signal for the ion time-of-flight analysis. The ions are accelerated in a relatively low, 40-80 V cm -1 field, which enables the direct measurement of rate constants in the 10 3 -10 7 s -1 range. All electron and ion events are recorded in a triggerless multiple-start/multiple-stop setup, which makes it possible to carry out coincidence experiments at >100 kHz event frequencies. As examples, the threshold photoelectron spectrum of the argon dimer and the breakdown diagrams for hydrogen atom loss in room temperature methane and the chlorine atom loss in cold chlorobenzene are shown and discussed.

  9. Angular distributions in quasi-fission reactions

    International Nuclear Information System (INIS)

    Luetzenkirchen, K.; Kratz, J.V.; Lucas, R.; Poitou, J.; Gregoire, C.; Wirth, G.; Bruechle, W.; Suemmerer, K.

    1985-10-01

    Angular distributions for fission-like fragments were measured in the systems 50 Ti, 56 Fe + 208 Pb by applying an off-line KX-ray activation technique. The distributions d 2 sigma/dTHETAdZ exhibit forward-backward asymmetries that are strongly Z-dependent. They result from a process (quasi-fission) which yields nearly symmetric masses in times comparable to the rotational period of the composite system. A method for obtaining the variance of the tilting angular momentum, K 0 2 , from these skewed, differential angular distributions is described. The results indicate that the tilting mode is not fully excited in quasi-fission reactions. The results are compared to the sum of the variances of all statistical spin components, measured via γ-multiplicities. Integration of the angular distributions d 2 sigma/dTHETAdZ over all values of Z yields integral angular distributions dsigma/dTHETA and dsigma/dΩ symmetric around 90 0 . The associated unusually large anisotropies do not at all provide an adequate basis for tests or modifications of the transition state theory. A deconvolution of d 2 sigma/dTHETAdZ is performed with gaussian distributions depending on rotational angles ΔTHETA extending over a range of up to 540 0 . From the mean values a time scale for the evolution of K 0 is calculated. (orig.)

  10. Angular distribution of oriented nucleus fission neutrons

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1982-01-01

    Calculations of anisotropy of angular distribution of oriented 235 U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%

  11. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  12. Angular cheilitis: A clinical and microbial study

    Directory of Open Access Journals (Sweden)

    Nirima Oza

    2017-01-01

    Full Text Available Aims: The aim of the present study was to examine clinical types and microbiological flora isolated from angular chelitis. Materials and Methods: An eroded and/or erythematous, with or without fissure formation, nonvesicular lesion radiating from the angle of the mouth was considered to be angular chelitis. A sample of the present study comprised of 40 patients having unilateral or bilateral angular chelitis and 20 healthy individuals without any lip lesions. Clinical examination was done. In both test and control groups, the sample for microbial analysis was obtained from angle of the mouth. Results: Clinically, four types of angular cheilitis lesions were found, Type I, II, III, and IV. The most common type of lesion found was Type I lesion. Microorganisms isolated from the lesion were Staphylococcus aureus, Candida or Streptococci in 33 (82.5% cases either in pure culture or mixed culture. Among these 33 patients, S. aureus was found in 25 (75.5% cases, Candida in 16 (48.4% cases, and Streptococci in 5 (13.5% cases, respectively. Out of 16 cases positive for Candida, in 13 cases further isolation of Candida was possible. Candida albicans was found in 6 cases and Candida stellastodia in 7 cases. In majority of the dentulous and edentulous patients, S. aureus showed profuse growth. Conclusions: There are microorganisms associated with angular cheilitis.

  13. Data-oriented development with AngularJS

    CERN Document Server

    Waikar, Manoj

    2015-01-01

    This book helps beginner-level AngularJS developers organize AngularJS applications by discussing important AngularJS concepts and best practices. If you are an experienced AngularJS developer but haven't written directives or haven't created custom HTML controls before, then this book is ideal for you.

  14. Angular correlations and high energy evolution

    International Nuclear Information System (INIS)

    Kovner, Alex; Lublinsky, Michael

    2011-01-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N c approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  15. Angular distributions in pre-equilibrium reactions

    International Nuclear Information System (INIS)

    Chatterjee, A.; Gupta, S.K.; Bhabha Atomic Research Centre, Bombay

    1982-10-01

    A new model is proposed for calculating angular distributions in preequilibrium reactions. In this model, as in the model of Feshbach et al. the system consisting of target plus projectile initially branches into two sets of states with either no particle in the continuum (multistep compound states) or with at least one particle in the continuum (multistep direct states). The two chains of states are treated independently by solving two sets of master equations. The multistep compound emission is assumed to be isotropic while the angular distribution of the multistep direct emission is described using the fast particle model of Mantzouranis et al. The angular distributions for 14.6 MeV neutrons calculated using this model are found to be in better agreement with the data than the fast particle model. (author)

  16. Angular momentum alignment in molecular beam scattering

    International Nuclear Information System (INIS)

    Treffers, M.A.

    1985-01-01

    It is shown how the angular momentum alignment in a molecular beam can be determined using laser-induced fluorescence in combination with precession of the angular momenta in a magnetic field. After a general analysis of the method, some results are presented to illustrate the possibilities of the method. Experimental data are presented on the alignment production for Na 2 molecules that made a collision induced angular momentum transition. Magnitude as well as direction of the alignment have been determined for scattering with several scattering partners and for a large number of scattering angles and transitions. The last chapter deals with the total alignment production in a final J-state, i.e. without state selection of the initial rotational state. (orig.)

  17. Collision energy-resolved study of the emission cross-section and the Penning ionization cross-section in the reaction of BrCN with He*(2 3S)

    Science.gov (United States)

    Kanda, Kazuhiro; Yamakita, Yoshihiro; Ohno, Koichi

    2001-12-01

    The dissociative excitation of BrCN producing CN(B 2Σ +) fragment by the collision of He *(2 3S) was investigated by the collision energy-resolved electron and emission spectroscopy using time-of-flight method with a high-intensity He * beam. The Penning electrons ejected from BrCN and the subsequent CN ( B2Σ +- X2Σ +) emission were measured as a function of collision energy in the range of 90-180 meV. The formation of CN ( B2Σ +) is concluded to proceed dominantly via the promotion of an electron from Π-character orbital, by comparison between the collision energy dependence of the partial Penning ionization cross-sections and the CN ( B2Σ +- X2Σ +) emission cross-section.

  18. Ghost Imaging Using Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    赵生妹; 丁建; 董小亮; 郑宝玉

    2011-01-01

    We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.

  19. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure

    International Nuclear Information System (INIS)

    Bergeard, N.; Silly, M.G.; Chauvet, C.; Guzzo, M.; Ricaud, J.P.; Izquierdo, M.; Sirotti, F.; Krizmancic, D.; Guzzo, M.; Stebel, L.; Pittana, P.; Sergo, R.; Cautero, G.; Dufour, G.; Rochet, F.

    2011-01-01

    Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photo emitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station. (authors)

  20. Total angular momentum from Dirac eigenspinors

    International Nuclear Information System (INIS)

    Szabados, Laszlo B

    2008-01-01

    The eigenvalue problem for Dirac operators, constructed from two connections on the spinor bundle over closed spacelike 2-surfaces, is investigated. A class of divergence-free vector fields, built from the eigenspinors, are found, which, for the lowest eigenvalue, reproduce the rotation Killing vectors of metric spheres, and provide rotation BMS vector fields at future null infinity. This makes it possible to introduce a well-defined, gauge invariant spatial angular momentum at null infinity, which reduces to the standard expression in stationary spacetimes. The general formula for the angular momentum flux carried away by the gravitational radiation is also derived

  1. Studying AGN Jets At Extreme Angular Resolution

    Science.gov (United States)

    Bruni, Gabriele

    2016-10-01

    RadioAstron is a 10m antenna orbiting on the Russian Speckt-R spacecraft, launched in 2011. Performing radio interferometry with a global array of ground telescopes, it is providing record angular resolution. The Key Science Project on AGN polarization is exploiting it to study in great detail the configuration of magnetic fields in AGN jets, and understand their formation and collimation. To date, the project has already achieved the highest angular resolution image ever obtained in Astronomy, and detected brightness temperatures exceeding the ones predicted by theory of AGN.

  2. Factorial correlators: angular scaling within QCD jets

    International Nuclear Information System (INIS)

    Peschanski, R.

    2001-01-01

    Factorial correlators measure the amount of dynamical correlation in the multiplicity between two separated phase-space windows. We present the analytical derivation of factorial correlators for a QCD jet described at the double logarithmic (DL) accuracy. We obtain a new angular scaling property for properly normalized correlators between two solid-angle cells or two rings around the jet axis. Normalized QCD factorial correlators scale with the angular distance and are independent of the window size. Scaling violations are expected beyond the DL approximation, in particular from the subject structure. Experimental tests are feasible, and thus would be welcome. (orig.)

  3. Polarization of photoelectrons produced from atoms by synchrotron radiation

    International Nuclear Information System (INIS)

    Hughes, V.W.; Lu, D.C.; Huang, K.N.

    1981-01-01

    The polarization of photoelectrons from stoms has proved to be an important tool for studying correlation effects in atoms, as well as relativistic effects such as the spin-orbit interaction. Extensive experimental and theoretical studies have been made of the Fano effect, which is the production of polarized electrons by photoionization of unpolarized atoms by circularly polarized light. The experiments have dealt mostly with alkali atoms and with photon energies slightly above the ionization thresholds. Measurements that could be made to utilize polarized radiation are discussed

  4. Stability and performance studies of the PITZ photoelectron gun

    International Nuclear Information System (INIS)

    Isaev, Igor

    2018-02-01

    The invention of free electron lasers (FELs) opened new opportunities for the investigation of natural phenomena. However, the operation of a FEL requires high energy, high peak current electron beams with very small transverse emittance which causes extreme requirements for the corresponding electron sources. Besides the high beam quality, the electron sources must have very high operational stability and reliability. One of the electron source types which satisfy FEL requirements is a photoelectron gun. Photoelectron guns combine photoemissive electron generation and direct acceleration in a Radio Frequency (RF) cavity. The Photo Injector Test facility at DESY, Zeuthen site (PITZ), was established as a test stand of the electron source for FELs like FLASH and the European XFEL in Hamburg. The studies of the beam emittance at PITZ showed that the gun is able to produce electron beams with emittance even smaller than it is required by XFEL specifications. But the experiments on the emittance revealed discrepancies between expected gun behavior and observation, such as the difference in optimal parameters for the smallest emittance value, asymmetry of the transverse beam profile and the phase spaces. The work performed at PITZ includes preparation of several RF guns for their subsequent operation at FLASH and the European XFEL. RF conditioning of a gun cavity is one of the major steps of the preparation of a high brightness electron source required for modern FELs. A thorough procedure is applied to increase the peak and average RF power in the gun cavity, including an increase of the repetition rate and RF pulse length combined with a gun solenoid current sweep. The main goals of this thesis are: (1) an attempt of deep understanding of physical processes taking place during operation of a photoelectron gun (conditioning process, parameters adjustments); (2) definition of operational problems sources and explanation of the experimentally obtained results in the gun

  5. Recent developments in photoelectron dynamics using synchrotron radiation

    International Nuclear Information System (INIS)

    Carlson, T.A.; Krause, M.O.; Taylor, J.W.; Keller, P.R.; Piancastelli, M.N.; Grimm, F.A.; Whitley, T.A.

    1982-01-01

    Through a collaborative effort of members of the Oak Ridge National Laboratory and Universities of Wisconsin and Tennessee, a comprehensive study of atoms and molecules using angle-resolved photoelectron spectroscopy and synchrotron radiation is underway at the Synchrotron Radiation Center, Stoughton, Wisconsin. Over 50 molecules and atoms have been investigated. These results, coupled with theory, aim at a better understanding of the dynamics of photoionization and of the wave functions that control these processes. In particular, attention is given to the following topics: metal atomic vapors, generalization of molecular orbital types, autoionization, shape resonances, core shell effects, satellite structure, and the Cooper minimum

  6. Time-resolved photoelectron spectroscopy of nitrobenzene and its aldehydes

    Science.gov (United States)

    Schalk, Oliver; Townsend, Dave; Wolf, Thomas J. A.; Holland, David M. P.; Boguslavskiy, Andrey E.; Szöri, Milan; Stolow, Albert

    2018-01-01

    We report the first femtosecond time-resolved photoelectron spectroscopy study of 2-, 3- and 4-nitrobenzaldehyde (NBA) and nitrobenzene (NBE) in the gas phase upon excitation at 200 nm. In 3- and 4-NBA, the dynamics follow fast intersystem crossing within 1-2 picoseconds. In 2-NBA and NBE, the dynamics are faster (∼ 0.5 ps). 2-NBA undergoes hydrogen transfer similar to solution phase dynamics. NBE either releases NO2 in the excited state or converts internally back to the ground state. We discuss why these channels are suppressed in the other nitrobenzaldehydes.

  7. Electronic structure and photoelectron spectra of boron beta-diketonates

    International Nuclear Information System (INIS)

    Borisenko, A.V.; Vovna, V.I.

    1990-01-01

    Photoelectron spectra and data of semiempirical (MNDO, CNDO/2, CNDO/S, INDO) and nonempirical (with STO-3G basis) methods of calculation were obtained to analyse the electronic structure of boron-containing diketonate cycle and the influence of substitution effect (aromatic substituents in particular) on it. The sequence and the character of upper occupied MO were determined; the nature of bond of the fragment X 2 B + and AA was established; charges of six-membered ion and influence of substituents on their values were determined. 13 refs.; 5 figs.; 4 tabs

  8. Geometry Optimization of DC/RF Photoelectron Gun

    CERN Document Server

    Chen Ping; Yu, David

    2005-01-01

    Pre-acceleration of photoelectrons in a pulsed, high voltage, short, dc gap and its subsequent injection into an rf gun is a promising method to improve electron beam emittance in rf accelerators. Simulation work has been performed in order to optimize the geometric shapes of a dc/rf gun and improve electron beam properties. Variations were made on cathode and anode shapes, dc gap distance, and inlet shape of the rf cavity. Simulations showed that significant improvement on the normalized emittance (< 1 mm-mrad), compared to a dc gun with flat cathode, could be obtained after the geometric shapes of the gun were optimized.

  9. Single-photoelectron noise reduction in scintillation detectors

    International Nuclear Information System (INIS)

    Marvin, T.P.

    1995-10-01

    The 1994--95 search at SLAC for mulicharged particles used four 21 x 21 x 130-cm 3 Bicron 408 scintillation counters to detect a signal at the single-photoelectron level. The competing noise requiring minimization was due to a combination of PM tube (8-inch Thorne EMI 9353KA) afterpulsing and ambient radiation-induced scintillator luminescence. A very slow decay (> 30 μs) component was observed and received particular attention. Efforts to reduce the SPE noise included photomultiplier tube base modifications, detector shielding and cooling, signal amplification, and veto procedures

  10. A photoelectron and TPEPICO investigation of the acetone radical cation.

    Science.gov (United States)

    Rennie, Emma E; Boulanger, Anne-Marie; Mayer, Paul M; Holland, David M P; Shaw, David A; Cooper, Louise; Shpinkova, Larisa G

    2006-07-20

    The valence shell photoelectron spectrum, threshold photoelectron spectrum, and threshold photoelectron photoion coincidence (TPEPICO) mass spectra of acetone have been measured using synchrotron radiation. New vibrational progressions have been observed and assigned in the X 2B2 state photoelectron bands of acetone-h6 and acetone-d6, and the influence of resonant autoionization on the threshold electron yield has been investigated. The dissociation thresholds for fragment ions up to 31 eV have been measured and compared to previous values. In addition, kinetic modeling of the threshold region for CH3* and CH4 loss leads to new values of 78 +/- 2 kJ mol(-1) and 75 +/- 2 kJ mol(-1), respectively, for the 0 K activation energies for these two processes. The result for the methyl loss channel is in reasonable agreement with, but slightly lower than, that of 83 +/- 1 kJ mol(-1) derived in a recent TPEPICO study by Fogleman et al. The modeling accounts for both low-energy dissociation channels at two different ion residence times in the mass spectrometer. Moreover, the effects of the ro-vibrational population distribution, the electron transmission efficiency, and the monochromator band-pass are included. The present activation energies yield a Delta(f)H298 for CH3CO+ of 655 +/- 3 kJ mol(-1), which is 4 kJ mol(-1) lower than that reported by Fogleman et al. The present Delta(f)H298 for CH3CO+ can be combined with the Delta(f)H298 for CH2CO (-47.5 +/- 1.6 kJ mol(-1)) and H+ (1530 kJ mol(-1)) to yield a 298 K proton affinity for ketene of 828 +/- 4 kJ mol(-1), in good agreement with the value (825 kJ mol(-1)) calculated at the G2 level of theory. The measured activation energy for CH4 loss leads to a Delta(f)H298 (CH2CO+*) of 873 +/- 3 kJ mol(-1).

  11. Stability and performance studies of the PITZ photoelectron gun

    Energy Technology Data Exchange (ETDEWEB)

    Isaev, Igor

    2018-02-15

    The invention of free electron lasers (FELs) opened new opportunities for the investigation of natural phenomena. However, the operation of a FEL requires high energy, high peak current electron beams with very small transverse emittance which causes extreme requirements for the corresponding electron sources. Besides the high beam quality, the electron sources must have very high operational stability and reliability. One of the electron source types which satisfy FEL requirements is a photoelectron gun. Photoelectron guns combine photoemissive electron generation and direct acceleration in a Radio Frequency (RF) cavity. The Photo Injector Test facility at DESY, Zeuthen site (PITZ), was established as a test stand of the electron source for FELs like FLASH and the European XFEL in Hamburg. The studies of the beam emittance at PITZ showed that the gun is able to produce electron beams with emittance even smaller than it is required by XFEL specifications. But the experiments on the emittance revealed discrepancies between expected gun behavior and observation, such as the difference in optimal parameters for the smallest emittance value, asymmetry of the transverse beam profile and the phase spaces. The work performed at PITZ includes preparation of several RF guns for their subsequent operation at FLASH and the European XFEL. RF conditioning of a gun cavity is one of the major steps of the preparation of a high brightness electron source required for modern FELs. A thorough procedure is applied to increase the peak and average RF power in the gun cavity, including an increase of the repetition rate and RF pulse length combined with a gun solenoid current sweep. The main goals of this thesis are: (1) an attempt of deep understanding of physical processes taking place during operation of a photoelectron gun (conditioning process, parameters adjustments); (2) definition of operational problems sources and explanation of the experimentally obtained results in the gun

  12. Secondary-electron cascade in attosecond photoelectron spectroscopy from metals

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2009-01-01

    an analytical model based on an approximate solution to Boltzmann's transport equation to account for the amount and energy distribution of these secondary electrons. Our theory is in good agreement with the electron spectrum found in a recent attosecond streaking experiment. To suppress the background and gain......Attosecond spectroscopy is currently restricted to photon energies around 100 eV. We show that under these conditions, electron-electron scatterings, as the photoelectrons leave the metal, give rise to a tail of secondary electrons with lower energies and hence a significant background. We develop...

  13. Precise analysis of the metal package photomultiplier single photoelectron spectra

    International Nuclear Information System (INIS)

    Chirikov-Zorin, I.E.; Fedorko, I.; Sykora, I.; Tokar, S.; Menzione, A.

    2000-01-01

    A deconvolution method based on a sophisticated photomultiplier response function was used to analyse the compact metal package photomultiplier spectra taken in single photoelectron mode. The spectra taken by Hamamtsu R5600 and R5900 photomultipliers have been analysed. The detailed analysis shows that the method appropriately describes the process of charge multiplication in these photomultipliers in a wide range of working regimes and the deconvoluted parameters are established with about 1% accuracy. The method can be used for a detailed analysis of photomultiplier noise and for calibration purposes

  14. Automation of an X-ray photoelectron spectrometer

    International Nuclear Information System (INIS)

    Ashury, M.R.

    2003-02-01

    The Institute of Solid State Physics of the Vienna University of Technology is established with an X-ray Photoelectron Spectrometer Kratos XSAM 800. In its original state the instrument enables measurements of photoelectron spectra in a semiautomatical mode. After mounting of the specimen an eventual surface cleaning by argon ion sputtering is possible. Next steps are setting of x-ray tube high voltage and current, start energy and energy range of spectrum and time of measurement. Data are obtained by an x-t plotter and evaluations are performed from the registration charts. If necessary, measured spectra have to be digitized by means of a scanner. In the Introduction of this thesis the principle of X-ray photoelectron spectrometry is treated including a number of practical examples. It shows that an automation allows an extension of the performance of the instrument. Details are remote controlled experiments, wider energy ranges with improved energy resolution. Furthermore, the digitized data treatment enables background subtration, determination of line positions and integrated signal strengths, and is the detection of lowlevel of lines (the peak with lowamplitude) possible. A further advantage is the computer assisted documentation and comparison of results from different specimens. After this description of the essential requirements different possible solutions of an automation are discussed. Thus, it is decided to develop a completely new hardware for a perfect control of the spectrometer. A further decision is to be made on the most efficient kind of micro processor. From the considerations follows a completely new control board with a transputer as multi tasking processor. The complete control unit consists of a digital system, an analog system and a power unit. The digital system controls settings and spectra accumulation and includes the transputer board, the pc-link card, the i/o-card and the step scanning control board. The analog system controls the

  15. Accuracy of single photoelectron time spread measurement of fast photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.

    1975-01-01

    The accuracy of time spread measurements of fast photomultipliers was investigated, using single photoelectrons. The effect of the finite light pulse width on the measurement accuracy was determined and discussed. Experimental data were obtained on a special measuring system for light pulse widths ranging from 200 psec to 10 nsec, using fast photomultipliers 8850 and C31024 with optimized operating conditions for minimum transit time spread. A modified exponential function expression and curve-fitting parameters are given, which fit closely the experimentally obtained data over a wide dynamic range of light pulse widths. (U.S.)

  16. GaN polarity determination by photoelectron diffraction

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Olexandr; Jiříček, Petr; Paskova, T.; Bieloshapka, Igor; Bartoš, Igor

    2013-01-01

    Roč. 103, č. 9 (2013), "091601-1"-"091601-4" ISSN 0003-6951 R&D Projects: GA ČR(CZ) GBP108/12/G108 Grant - others:AV ČR(CZ) M100101201 Institutional support: RVO:68378271 Keywords : GaN * photoelectron diffraction * wurtzite * surface polarity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.515, year: 2013 http://apl.aip.org/resource/1/applab/v103/i9/p091601_s1?isAuthorized=no

  17. Monochromatization of synchrotron radiation for studies in photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Murty, P.S.

    1981-01-01

    Synchrotron radiation provides a tunable photon source which bridges the wavelength gap between HeI and AlKsub(α) radiation sources in photoelectron spectroscopy. The essential component for using synchrotron radiation is a monochromator. Some design features of the monochromators fabricated at Stanford, U.S.A., and Orsay, France, are described. The Stanford monochromator is a silicon crystal monochromator yielding 8 keV X-ray beam and is used with SPEAR storage ring facility, while the Orsay monochromator is a grazing incidence grating monochromator used for UPS studies. (M.G.B.)

  18. Angular dependent XPS study of surface band bending on Ga-polar n-GaN

    Science.gov (United States)

    Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui

    2018-05-01

    Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.

  19. Canonical three-body angular basis

    International Nuclear Information System (INIS)

    Matveenko, A.V.

    2001-01-01

    Three-body problems are basic for the quantum mechanics of molecular, atomic, or nuclear systems. We demonstrate that their variational solution for rotational states can be greatly simplified. A special choice of coordinates (hyperspherical) and of the kinematics (body-fixed coordinate frame) allows one to choose basis functions in a form that makes the angular coupling trivial. (author)

  20. Probabilistic calculation for angular dependence collision

    International Nuclear Information System (INIS)

    Villarino, E.A.

    1990-01-01

    This collision probabilistic method is broadly used in cylindrical geometry (in one- or two-dimensions). It constitutes a powerful tool for the heterogeneous Response Method where, the coupling current is of the cosine type, that is, without angular dependence at azimuthal angle θ and proportional to μ (cosine of the θ polar angle). (Author) [es

  1. Wigner Functions and Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Mukherjee Asmita

    2015-01-01

    Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  2. Wigner Functions and Quark Orbital Angular Momentum

    OpenAIRE

    Mukherjee, Asmita; Nair, Sreeraj; Ojha, Vikash Kumar

    2014-01-01

    Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  3. A Novel Permanent Magnetic Angular Acceleration Sensor

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2015-07-01

    Full Text Available Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2. Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  4. Angular-momentum-bearing modes in fission

    International Nuclear Information System (INIS)

    Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.

    1989-03-01

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs

  5. Angular and linear momentum of excited ferromagnets

    NARCIS (Netherlands)

    Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.

    2013-01-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist

  6. Angular distribution in ternary cold fission

    International Nuclear Information System (INIS)

    Delion, D.S.; J.W. Goethe Univ., Frankfurt; Sandulescu, A.; J.W. Goethe Univ., Frankfurt; Greiner, W.

    2003-01-01

    We describe the spontaneous ternary cold fission of 252 Cf, accompanied by 4 He, 10 Be and 14 C. The light cluster decays from the first resonant eigenstate in the Coulomb potential plus a harmonic oscillator potential. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. (author)

  7. Heteromodal conceptual processing in the angular gyrus.

    Science.gov (United States)

    Bonner, Michael F; Peelle, Jonathan E; Cook, Philip A; Grossman, Murray

    2013-05-01

    Concepts bind together the features commonly associated with objects and events to form networks in long-term semantic memory. These conceptual networks are the basis of human knowledge and underlie perception, imagination, and the ability to communicate about experiences and the contents of the environment. Although it is often assumed that this distributed semantic information is integrated in higher-level heteromodal association cortices, open questions remain about the role and anatomic basis of heteromodal representations in semantic memory. Here we used combined neuroimaging evidence from functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to characterize the cortical networks underlying concept representation. Using a lexical decision task, we examined the processing of concepts in four semantic categories that varied on their sensory-motor feature associations (sight, sound, manipulation, and abstract). We found that the angular gyrus was activated across all categories regardless of their modality-specific feature associations, consistent with a heteromodal account for the angular gyrus. Exploratory analyses suggested that categories with weighted sensory-motor features additionally recruited modality-specific association cortices. Furthermore, DTI tractography identified white matter tracts connecting these regions of modality-specific functional activation with the angular gyrus. These findings are consistent with a distributed semantic network that includes a heteromodal, integrative component in the angular gyrus in combination with sensory-motor feature representations in modality-specific association cortices. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A.

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ∼70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ∼ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  9. W UMa stars and angular momentum loss

    International Nuclear Information System (INIS)

    Vilhu, O.; Rahunen, T.

    1980-01-01

    The structure and evolution of W UMa stars is still unsolved although considerable progress has been achieved in recent years. The authors aim is to find out whether it is possible to obtain more extreme mass ratios, what is the angular momentum needed and what is the time scale. (Auth.)

  10. On the angular momentum in star formation

    International Nuclear Information System (INIS)

    Horedt, G.P.

    1978-01-01

    The author discusses the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence. Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. The old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds, is developed. It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations the authors find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits. (Auth.)

  11. Analysis of the laser photoelectron spectrum of CH-2

    International Nuclear Information System (INIS)

    Bunker, P.R.; Sears, T.J.

    1985-01-01

    We have simulated the photoelectron spectrum of CH - 2 using the model described previously [Sears and Bunker, J. Chem. Phys. 79, 5265 (1983)]. The optimization of the fit of the simulated spectrum to the recently observed spectrum of Lineberger and co-workers [J. Chem. Phys. 81, 1048 (1984) and preceding paper] has enabled us to determine the rotation-bending energy levels of triplet CH 2 over an energy range of more than 1 eV. It has also enabled us to determine that the rotational temperature of the CH - 2 in the experiment is 220 K and that, for v 2 = 1, the vibrational temperature is 680 K. For CH - 2 we determine that a/sub e/ = 103 0 and that ν 2 = 1230 cm -1 . The singlet--triplet splitting in methylene is determined to be 3150 +- 30 cm -1 (0.3905 +- 0.004 eV, 9.01 +- 0.09 kcal/mol) from the photoelectron spectrum, in excellent agreement with the more accurate value previously obtained from LMR spectroscopy [McKellar et al., J. Chem. Phys. 79, 5251 (1983)] of 3165 +- 20 cm -1 (0.3924 +- 0.0025 eV, 9.05 +- 0.06 kcal/mol), and the electron affinity of triplet CH 2 is determined to be 0.652 +- 0.006 eV

  12. Interpretation of intensities in electron-momentum and photoelectron spectroscopies

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1984-06-01

    Relative intensities for the photoelectron reaction on atoms and molecules are not related to structure calculations in the same way as those for the noncoplanar symmetric (e,2e) reaction. The photoelectron dipole matrix element is dependent on recoil momentum only through its unique relationship to the photon energy and is much harder to calculate for chemically-interesting momenta. Relative intensities for binary (e,2e) reactions are independent of total energy at high enough energies and strongly dependent on symmetry and recoil momentum, for which an intensity profile can be measured for values starting at zero. In comparing with structure calculations, binary (e,2e) intensities for low recoil momentum may be compared directly with pole strengths in calculations of the one-electron Green's function or corresponding configuration-interaction calculations. In the case of states within a single symmetry manifold the relative intensities will be independent of recoil momentum up to some maximum, usually at least a few atomic units

  13. Photoelectron diffraction of magnetic ultrathin films: Fe/Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G. (Lawrence Livermore National Lab., CA (USA)); Wagner, M.K. (Wisconsin Univ., Madison, WI (USA). Dept. of Chemistry); Guo, X.Q.; Tong, S.Y. (Wisconsin Univ., Milwaukee, WI (USA). Dept. of Physics)

    1991-01-03

    The preliminary results of an ongoing investigation of Fe/Cu(001) are presented here. Energy dependent photoelectron diffraction, including the spin-dependent variant using the multiplet split Fe3s state, is being used to investigate the nanoscale structures formed by near-monolayer deposits of Fe onto Cu(001). Core-level photoemission from the Fe3p and Fe3s states has been generated using synchrotron radiation as the tunable excitation source. Tentatively, a comparison of the experimental Fe3p cross section measurements with multiple scattering calculations indicates that the Fe is in a fourfold hollow site with a spacing of 3.6{Angstrom} between it and the atom directly beneath it, in the third layer. This is consistent with an FCC structure. The possibility of utilizing spin-dependent photoelectron diffraction to investigate magnetic ultrathin films will be demonstrated, using our preliminary spectra of the multiplet-split Fe3s os near-monolayer Fe/Cu(001). 18 refs., 10 figs.

  14. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    International Nuclear Information System (INIS)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF 2 as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states

  15. Photoelectron Emission Studies in CsBr at 257 nm

    International Nuclear Information System (INIS)

    Maldonado, Juan R.; Liu, Zhi; Sun, Yun; Pianetta, Piero A.; Pease, Fabian W.

    2006-01-01

    CsBr/Cr photocathodes were found [1,2] to meet the requirements of a multi-electron beam lithography system operating with a light energy of 4.8 eV (257nm). The fact that photoemission was observed with a light energy below the reported 7.3 eV band gap for CsBr was not understood. This paper presents experimental results on the presence of intra-band gap absorption sites (IBAS) in CsBr thin film photo electron emitters, and presents a model based on IBAS to explain the observed photoelectron emission behavior at energies below band gap. A fluorescence band centered at 330 nm with a FWHM of about 0.34 eV was observed in CsBr/Cr samples under 257 nm laser illumination which can be attributed to IBAS and agrees well with previously obtained synchrotron photoelectron spectra[1] from the valence band of CsBr films

  16. Using photoelectron diffraction to determine complex molecular adsorption structures

    International Nuclear Information System (INIS)

    Woodruff, D P

    2010-01-01

    Backscattering photoelectron diffraction, particularly in the energy-scan mode, is now an established technique for determining in a quantitative fashion the local structure of adsorbates on surfaces, and has been used successfully for ∼100 adsorbate phases. The elemental and chemical-state specificity afforded by the characteristic core level photoelectron binding energies means that it has particular advantages for molecular adsorbates, as the local geometry of inequivalent atoms in the molecule can be determined in a largely independent fashion. On the other hand, polyatomic molecules present a general problem for all methods of surface structure determination in that a mismatch of intramolecular distances with interatomic distances on the substrate surface means that the atoms in the adsorbed molecule are generally in low-symmetry sites. The quantities measured experimentally then represent an incoherent sum of the properties of each structural domain that is inequivalent with respect to the substrate point group symmetry. This typically leads to greater ambiguity or precision in the structural solutions. The basic principles of the method are described and illustrated with a simple example involving molecule/substrate bonding through only one constituent atom (TiO 2 -(110)/H 2 O). This example demonstrates the importance of obtaining quantitative local structural information. Further examples illustrate both the successes and the problems of this approach when applied to somewhat more complex molecular adsorbates.

  17. Variation in angular velocity and angular acceleration of a particle in rectilinear motion

    International Nuclear Information System (INIS)

    Mashood, K K; Singh, V A

    2012-01-01

    We discuss the angular velocity and angular acceleration associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a straight line. We present some details of our observations. A formal derivation of ω and α is presented which reveals ‘surprising’ and non-intuitive aspects, namely non-monotonic behaviour with an associated extremum. The special case of constant velocity is studied and we find that angular acceleration associated with it also has an extremum. We discuss a plausible source of difficulty. (paper)

  18. Ultrafast photoelectron spectroscopy of small molecule organic films

    Science.gov (United States)

    Read, Kendall Laine

    As research in the field of ultrafast optics has produced shorter and shorter pulses, at an ever-widening range of frequencies, ultrafast spectroscopy has grown correspondingly. In particular, ultrafast photoelectron spectroscopy allows direct observation of electrons in transient or excited states, regardless of the eventual relaxation mechanisms. High-harmonic conversion of 800nm, femtosecond, Ti:sapphire laser pulses allows excite/probe spectroscopy down into atomic core level states. To this end, an ultrafast, X-UV photoelectron spectroscopic system is described, including design considerations for the high-harmonic generation line, the time of flight detector, and the subsequent data collection electronics. Using a similar experimental setup, I have performed several ultrafast, photoelectron excited state decay studies at the IBM, T. J. Watson Research Center. All of the observed materials were electroluminescent thin film organics, which have applications as the emitter layer in organic light emitting devices. The specific materials discussed are: Alq, BAlq, DPVBi, and Alq doped with DCM or DMQA. Alq:DCM is also known to lase at low photoexcitation thresholds. A detailed understanding of the involved relaxation mechanisms is beneficial to both applications. Using 3.14 eV excite, and 26.7 eV probe, 90 fs laser pulses, we have observed the lowest unoccupied molecular orbital (LUMO) decay rate over the first 200 picoseconds. During this time, diffusion is insignificant, and all dynamics occur in the absence of electron transport. With excitation intensities in the range of 100μJ/cm2, we have modeled the Alq, BAlq, and DPVBi decays via bimolecular singlet-singlet annihilation. At similar excitations, we have modeled the Alq:DCM decay via Förster transfer, stimulated emission, and excimeric formation. Furthermore, the Alq:DCM occupied to unoccupied molecular orbital energy gap was seen to shrink as a function of excite-to-probe delay, in accordance with the

  19. Attosecond photoelectron spectroscopy of electron transport in solids

    International Nuclear Information System (INIS)

    Magerl, Elisabeth

    2011-01-01

    Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference

  20. Attosecond photoelectron spectroscopy of electron transport in solids

    Energy Technology Data Exchange (ETDEWEB)

    Magerl, Elisabeth

    2011-03-31

    Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference

  1. On the inversion problem of the plasma line intensity measurements in terms of photoelectron fluxes

    International Nuclear Information System (INIS)

    Lejeune, G.

    1979-01-01

    Assuming that the unidimensional distribution function of the photoelectron flux can be determined from plasma line intensity measurement, it is shown that the photoelectron flux distribution is not uniquely determined if additional hypotheses are not made. The limitations of the inversion procedure are shown: in particular, plasma line measurements cannot allow the determination of more than the first two Legendre components of the photoelectron flux. Experimental procedures for this determination are finally reviewed. (author)

  2. Measurement of the Photoelectron Detection Efficiency of the HPD Anode

    CERN Document Server

    Carson, L; Soler, P

    2009-01-01

    This paper reports on measurements carried out on the Hybrid Photon Detectors (HPDs) of the LHCb RICH detectors. The purpose of these tests is to determine the photoelectron detection efficiency $\\eta$ of the HPD anode. Knowledge of $\\eta$ is required for an accurate simulation of the RICH detectors. It is found that this efficiency is $(93.3\\pm0.7)\\%$ for a 50 ns digital readout window, and $(87.9\\pm1.4)\\%$ for a 25 ns digital readout window. The 25 ns result exceeds the LHCb-RICH requirement of 85\\%, and is in agreement both with direct $\\eta$ measurements using preseries HPDs, and with indirect measurements from testbeams using preseries and production HPDs.

  3. Theory of photoelectron spectroscopy for organic molecules and their crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, Takashi, E-mail: tfujikawa@faculty.chiba-u.jp; Niki, Kaori; Sakuma, Hiroto

    2015-10-01

    Highlights: • Some specific features in photoemission theory from organic solids are reviewed. • Extrinsic and intrinsic effects are discussed. • Photoemission from extended levels is compared with that from core levels. • First principle many-body theories are discussed on the basis of nonequilibrium Green's functions. - Abstract: In this short review we discuss recent progress in photoemission theory for organic molecules and their crystals. We discuss some important features in Keldysh Green's function theory for the photoemission. We briefly discuss many-body aspects in photoemission from core and extended levels. In particular phonon effects are investigated in more detail since organic solids are typically soft where electron–phonon interaction is important. Debye–Waller factor suppresses the interference effects of photoelectron waves which makes ARPES analyses useless, particularly in high energy region.

  4. Negative ion photoelectron spectroscopy of SeO-

    International Nuclear Information System (INIS)

    Coe, J.V.; Snodgrass, J.T.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H.

    1985-01-01

    Negative ion photoelectron spectroscopy (NIPES) involves a kinetic energy analysis of electrons which are photodetached when a mass selected beam of negative ions is crossed with a fixed frequency laser beam. The photodetachment spectra of SeO - displays transitions from the X 2 PI state of SeO - to both the X 3 Σ - and a 1 Δ states of SeO. The singlet-triplet splitting of SeO is readily observable since selection rules regarding spin do not apply in the bound to free state process of photodetachment. The electron affinity of SeO and the negative ion potential parameters of SeO - have been determined

  5. Selectivity in Ketenimine Cycloadditions. Photoelectron Hel Spectra of Ketenimines

    Science.gov (United States)

    Bernardi, Fernando; Bottoni, Andrea; Ballaglia, Arturo; Distefano, Giuseppe; Dondoni, Alessandro

    1980-05-01

    The first few bands in the photoelectron (Hel) spectra of ketenimines R1R2C-C=NR3(R1,R2=H, CH3, C5H6, CH2=CH; R3=alkyl or aryl group) are assigned to the corresponding molecular orbitals. The assignment is based on SCF-MO calculations made at three different levels (CNDO/2, ab-initio STO-3C and 4-31G) coupled with perturbational molecular orbital analyses. The π-orbitals of the unsaturated substituents are found to interact with one of the two perpendicular π-electron systems of the>C=C=N- residue, the critical factor being the position of attack of the substituent. The relevance of these results on the site selectivity observed in cycloaddition reactions of these species is discussed.

  6. DESIGN OF A DC/RF PHOTOELECTRON GUN

    International Nuclear Information System (INIS)

    YU, D.; NEWSHAM, Y.; SMIRONOV, A.; YU, J.; SMEDLEY, J.; SRINIVASAN RAU, T.; LEWELLEN, J.; ZHOLENTS, A.

    2003-01-01

    An integrated dc/rf photoelectron gun produces a low-emittance beam by first rapidly accelerating electrons at a high gradient during a short (∼1 ns), high-voltage pulse, and then injecting the electrons into an rf cavity for subsequent acceleration. Simulations show that significant improvement of the emittance appears when a high field (∼ 0.5-1 GV/m) is applied to the cathode surface. An adjustable dc gap ((le) 1 mm) which can be integrated with an rf cavity is designed for initial testing at the Injector Test Stand at Argonne National Laboratory using an existing 70-kV pulse generator. Plans for additional experiments of an integrated dc/rf gun with a 250-kV pulse generator are being made

  7. Slow photoelectron imaging spectroscopy of CCO- and CCS-.

    Science.gov (United States)

    Garand, Etienne; Yacovitch, Tara I; Neumark, Daniel M

    2008-08-21

    High-resolution photodetachment spectra of CCO(-) and CCS(-) using slow photoelectron velocity-map imaging spectroscopy are reported. Well-resolved transitions to the neutral X (3)Sigma(-), a (1)Delta, b (1)Sigma(+), and A (3)Pi states are seen for both species. The electron affinities of CCO and CCS are determined to be 2.3107+/-0.0006 and 2.7475+/-0.0006 eV, respectively, and precise term energies for the a (1)Delta, b (1)Sigma(+), and A (3)Pi excited states are also determined. The two low-lying singlet states of CCS are observed for the first time, as are several vibronic transitions within the four bands. Analysis of hot bands finds the spin-orbit orbit splitting in the X (2)Pi ground state of CCO(-) and CCS(-) to be 61 and 195 cm(-1), respectively.

  8. Photoelectron imaging, probe of the dynamics: from atoms... to clusters

    International Nuclear Information System (INIS)

    Lepine, F.

    2003-06-01

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W n - , C n - , C 60 ). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  9. X-ray photoelectron spectra of γ-irradiated perfluorobenzene

    International Nuclear Information System (INIS)

    Sunder, S.; Sagert, N.H.; Wood, D.D.; Miller, N.H.

    1990-01-01

    The effect of γ-radiolysis on perfluorobenzene (PFB) was investigated using low-temperature X-ray photoelectron spectroscopy (XPS). PFB was irradiated in fluorine-passivated nickel cells using Co 60 γ-rays in an Atomic Energy of Canada Limited Gammacell at a dose rate of about 2.6 Gy·s -1 and for a total dose of about 50 kGy. The γ-radiolysis of PFB not only results in cross-linkage but also in the formation of saturated carbon centers in the PFB, as indicated by the presence of CF 2 and CF 3 groups. The relative abundance of CF, CF 2 and CF 3 groups, in the irradiated PFB, was estimated to be about 86, 9 and 5%, respectively

  10. Study of transition metal oxides by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Sarma, D.D.; Vasudevan, S.; Hegde, M.S.

    1979-01-01

    Systematics in the X-ray photoelectron spectra (X.p.e.s.) of Ti, V, Cr, Mn and Nb oxides with the metal ion in different oxidation states as well as of related series of mono-, sesqui- and di-oxides of the first row of transition metals have been investigated in detail. Core level binding energies, spin-orbit splittings and exchange splittings are found to exhibit interesting variations with the oxidation state of the metal or the nuclear charge. The 3d binding energies of the monoxides show a proportionality to Goodenough's (R - RC). Other aspects of interest in the study are the satellite structure and final state effects in the X.p.e.s. of the oxides, and identification of different valence states in oxides of the general formulae Mn02n-1 and M304. The nature of changes in the 3d bands of oxides undergoing metal-insulator transitions is also indicated. (author)

  11. Theory of photoelectron spectroscopy for organic molecules and their crystals

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Niki, Kaori; Sakuma, Hiroto

    2015-01-01

    Highlights: • Some specific features in photoemission theory from organic solids are reviewed. • Extrinsic and intrinsic effects are discussed. • Photoemission from extended levels is compared with that from core levels. • First principle many-body theories are discussed on the basis of nonequilibrium Green's functions. - Abstract: In this short review we discuss recent progress in photoemission theory for organic molecules and their crystals. We discuss some important features in Keldysh Green's function theory for the photoemission. We briefly discuss many-body aspects in photoemission from core and extended levels. In particular phonon effects are investigated in more detail since organic solids are typically soft where electron–phonon interaction is important. Debye–Waller factor suppresses the interference effects of photoelectron waves which makes ARPES analyses useless, particularly in high energy region.

  12. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  13. Global search in photoelectron diffraction structure determination using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Viana, M L [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Muino, R Diez [Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Soares, E A [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Hove, M A Van [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Carvalho, V E de [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil)

    2007-11-07

    Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 x 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.

  14. Multichannel system for angular distribution measurements

    International Nuclear Information System (INIS)

    Burjan, V.; Kroha, V.; Putz, K.

    A description is given of the individual blocks of the spectrometric apparatus used for measuring the angular distribution of particle spectra and excitation functions of (d,p) reactions at an electrostatic accelerator and the U-120 M cyclotron, both operating at the Nuclear Physics Institute of the Czechoslovak Academy of Sciences at Rez. Main attention was devoted to attaining maximum energy resolution at a high measurement efficiency, this by installing 8 independent spectrometric chains allowing simultaneous measurement of angular distribution in 8 points of the beam. The semiconductor detectors were cooled to -40 degC to -60 degC, which significantly reduced the level of inherent detector noise. An energy resolution of 13 keV was attained using Tesla detectors at a particle energy of 11 MeV. A brief review of data processing and software is given. (B.S.)

  15. Quantum entanglement of high angular momenta.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  16. Behavior of nuclei at high angular momentum

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1982-07-01

    The present report begins with a brief overview of nuclear shapes and level structures at high-spin values. The new spectroscopy associated with angular-momentum alignments is described, and some of the exciting possibilities of this spectroscopy are explored. Nuclear moments of inertia are discussed and a somewhat different one is defined, together with a method for measuring it and some early results. Finally a few comments on the future prospects for high-spin physics are offered

  17. Chirality and angular momentum in optical radiation

    Science.gov (United States)

    Coles, Matt M.; Andrews, David L.

    2012-06-01

    This paper develops, in precise quantum electrodynamic terms, photonic attributes of the “optical chirality density,” one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive “superchiral” phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multimode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin-angular momentum of light is engaged in such observations. Furthermore, it is shown that these prominent measures of the helicity of chiral electromagnetic radiation have a common basis in differences between the populations of optical modes associated with angular momenta of opposite sign. Using a calculation of the rate of circular dichroism as an example, with coherent states to model the electromagnetic field, it is discovered that two terms contribute to the differential effect. The primary contribution relates to the difference in left- and right-handed photon populations; the only other contribution, which displays a sinusoidal distance dependence corresponding to the claim of nodal enhancements, is connected with the quantum photon number-phase uncertainty relation. From the full analysis, it appears that the term “superchiral” can be considered redundant.

  18. Adaptive Angular Sampling for SPECT Imaging

    OpenAIRE

    Li, Nan; Meng, Ling-Jian

    2011-01-01

    This paper presents an analytical approach for performing adaptive angular sampling in single photon emission computed tomography (SPECT) imaging. It allows for a rapid determination of the optimum sampling strategy that minimizes image variance in regions-of-interest (ROIs). The proposed method consists of three key components: (a) a set of close-form equations for evaluating image variance and resolution attainable with a given sampling strategy, (b) a gradient-based algor...

  19. Angular distribution of laser ablation plasma

    International Nuclear Information System (INIS)

    Kondo, K.; Kanesue, T.; Dabrowski, R.; Okamura, M.

    2010-01-01

    An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag 1+ which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about ±10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.

  20. Coincident-inclusive electrofission angular correlations

    International Nuclear Information System (INIS)

    Arruda Neto, J.D.T.

    1983-08-01

    A method for the joint analysis of coincident and inclusive electrofission data, in order to minimize effects of the model dependence of data interpretation, is developed. Explicit calculations of the (e,e'f) angular correlations are presented. The potentialities of the method to the study of sub- and near-barrier properties of the fission process, and to the study of the giant resonances fission mode, are discussed. (Author) [pt

  1. Positron annihilation and perturbed angular correlation studies of radiation damage

    International Nuclear Information System (INIS)

    Zhu Jiazheng; Li Anli; Xu Yongjun; Wang Zhiqiang; Zhou Dongmei; Zheng Yongnan; Zhu Shengyun; Iwata, T.

    2002-01-01

    The positron annihilation and perturbed angular correlation techniques have been employed to study radiation damage in Si and Nb. The results obtained by the positron annihilation are consistent with those given by the perturbed angular correlation

  2. Sorting and quantifying orbital angular momentum of laser beams

    CSIR Research Space (South Africa)

    Schulze, C

    2013-10-01

    Full Text Available We present a novel tool for sorting the orbital angular momentum and to determine the orbital angular momentum density of laser beams, which is based on the use of correlation filters....

  3. High Angular Momentum Rydberg Wave Packets

    Science.gov (United States)

    Wyker, Brendan

    2011-12-01

    High angular momentum Rydberg wave packets are studied. Application of carefully tailored electric fields to low angular momentum, high- n (n ˜ 300) Rydberg atoms creates coherent superpositions of Stark states with near extreme values of angular momentum, ℓ. Wave packet components orbit the parent nucleus at rates that depend on their energy, leading to periods of localization and delocalization as the components come into and go out of phase with each other. Monitoring survival probability signals in the presence of position dependent probing leads to observation of characteristic oscillations based on the composition of the wave packet. The discrete nature of electron energy levels is observed through the measurement of quantum revivals in the wave packet localization signal. Time-domain spectroscopy of these signals allows determination of both the population and phase of individual superposition components. Precise manipulation of wave packets is achieved through further application of pulsed electric fields. Decoherence effects due to background gas collisions and electrical noise are also detailed. Quantized classical trajectory Monte-Carlo simulations are introduced and agree remarkably well with experimental results.

  4. Verification of angular dependence in MOSFET detector

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Clayton H.; Shorto, Julian M.B.; Siqueira, Paulo T.D.; Nunes, Maíra G.; Silva Junior, Iremar A.; Yoriyaz, Hélio, E-mail: chsouza@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    In vivo dosimetry is an essential tool for quality assurance programs, being a procedure commonly performed with thermoluminescent dosimeters (TLDs) or diodes. However, a type of dosimeter that has increasing popularity in recent years is the metal-oxide-semiconductor field effect transistor (MOSFET) detector. MOSFET dosimeters fulfill all the necessary characteristics to realize in vivo dosimetry since it has a small size, good precision and feasibility of measurement, as well as easy handling. Nevertheless, its true differential is to allow reading of the dose in real time, enabling immediate intervention in the correction of physical parameters deviations and anticipation of small anatomical changes in a patient during treatment. In order for MOSFET dosimeter to be better accepted in clinical routine, information reporting performance should be available frequently. For this reason, this work proposes to verify reproducibility and angular dependence of a standard sensitivity MOSFET dosimeter (TN-502RD-H) for Cs-137 and Co-60 sources. Experimental data were satisfactory and MOSFET dosimeter presented a reproducibility of 3.3% and 2.7% (1 SD) for Cs-137 and Co-60 sources, respectively. In addition, an angular dependence of up to 6.1% and 16.3% for both radioactive sources, respectively. It is conclusive that MOSFET dosimeter TN-502RD-H has satisfactory reproducibility and a considerable angular dependence, mainly for the Co-60 source. This means that although precise measurements, special attention must be taken for applications in certain anatomical regions in a patient. (author)

  5. Physics from angular projection of rectangular grids

    International Nuclear Information System (INIS)

    Singh, Ashmeet

    2015-01-01

    In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple yet interesting, problem has both scholarly value and applications for data extraction techniques to study the physics of various systems. Our work may help undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential applications in various branches of physical sciences, including crystallography, astrophysics, and bulk properties of materials. (paper)

  6. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  7. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  8. A neural circuit for angular velocity computation

    Directory of Open Access Journals (Sweden)

    Samuel B Snider

    2010-12-01

    Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  9. Continuous particle spectra and their angular distributions

    International Nuclear Information System (INIS)

    Sastry, Ch.V.; Jain, R.K.; Rama Rao, J.; Ernst, J.; Machner, H.

    1996-01-01

    The angular distribution of continuous particle spectra in pre-equilibrium reactions is still an unsolved problem, particularly so at forward angles. In the present work, the angular distributions of alpha particles emitted in (α, α',x) reactions in the target elements gold and rhodium have been studied in detail. Alpha particle beams of energy 60 MeV from the Variable Energy Cyclotron of Calcutta were used in these experiments. The theoretical calculations were done using an extended exciton model of Kalbach incorporated into the Computer Code PRECO-D2. The formalism used in the exciton model was modified to include division of pre equilibrium cross section into multi-step direct (MSD) and multi-step compound (MSC) components. These MSD and MSC cross sections were used to calculate the angular distributions in terms of Legendre polynomials whose coefficients are given by simple phenomenological relations. Even with a reasonable set of parameters, the agreement between theory and experiment was far from satisfactory at forward angles. Similar conclusion was also drawn in the case of continuous particle spectra of deuterons in (d, d'x) reactions at 25 MeV in various targets. (author). 10 refs., 2 figs

  10. Verification of angular dependence in MOSFET detector

    International Nuclear Information System (INIS)

    Souza, Clayton H.; Shorto, Julian M.B.; Siqueira, Paulo T.D.; Nunes, Maíra G.; Silva Junior, Iremar A.; Yoriyaz, Hélio

    2017-01-01

    In vivo dosimetry is an essential tool for quality assurance programs, being a procedure commonly performed with thermoluminescent dosimeters (TLDs) or diodes. However, a type of dosimeter that has increasing popularity in recent years is the metal-oxide-semiconductor field effect transistor (MOSFET) detector. MOSFET dosimeters fulfill all the necessary characteristics to realize in vivo dosimetry since it has a small size, good precision and feasibility of measurement, as well as easy handling. Nevertheless, its true differential is to allow reading of the dose in real time, enabling immediate intervention in the correction of physical parameters deviations and anticipation of small anatomical changes in a patient during treatment. In order for MOSFET dosimeter to be better accepted in clinical routine, information reporting performance should be available frequently. For this reason, this work proposes to verify reproducibility and angular dependence of a standard sensitivity MOSFET dosimeter (TN-502RD-H) for Cs-137 and Co-60 sources. Experimental data were satisfactory and MOSFET dosimeter presented a reproducibility of 3.3% and 2.7% (1 SD) for Cs-137 and Co-60 sources, respectively. In addition, an angular dependence of up to 6.1% and 16.3% for both radioactive sources, respectively. It is conclusive that MOSFET dosimeter TN-502RD-H has satisfactory reproducibility and a considerable angular dependence, mainly for the Co-60 source. This means that although precise measurements, special attention must be taken for applications in certain anatomical regions in a patient. (author)

  11. Single Hit Energy-resolved Laue Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Comley, Andrew J.; Foster, John M. [Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR (United Kingdom)

    2015-05-15

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.

  12. Single Hit Energy-resolved Laue Diffraction

    International Nuclear Information System (INIS)

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew; Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H.; Comley, Andrew J.; Foster, John M.

    2015-01-01

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation

  13. Annealing induced low coercivity, nanocrystalline Co–Fe–Si thin films exhibiting inverse cosine angular variation

    Energy Technology Data Exchange (ETDEWEB)

    Hysen, T., E-mail: hysenthomas@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Al-Harthi, Salim; Al-Omari, I.A. [Department of Physics, Sultan Qaboos University, PC 123, Muscat, Sultanate of Oman (Oman); Geetha, P.; Lisha, R. [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Ramanujan, R.V. [School of Materials Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Sakthikumar, D. [Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama (Japan); Anantharaman, M.R., E-mail: mra@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India)

    2013-09-15

    Co–Fe–Si based films exhibit high magnetic moments and are highly sought after for applications like soft under layers in perpendicular recording media to magneto-electro-mechanical sensor applications. In this work the effect of annealing on structural, morphological and magnetic properties of Co–Fe–Si thin films was investigated. Compositional analysis using X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a native oxide surface layer consisting of oxides of Co, Fe and Si on the surface. The morphology of the as deposited films shows mound like structures conforming to the Volmer–Weber growth model. Nanocrystallisation of amorphous films upon annealing was observed by glancing angle X-ray diffraction and transmission electron microscopy. The evolution of magnetic properties with annealing is explained using the Herzer model. Vibrating sample magnetometry measurements carried out at various angles from 0° to 90° to the applied magnetic field were employed to study the angular variation of coercivity. The angular variation fits the modified Kondorsky model. Interestingly, the coercivity evolution with annealing deduced from magneto-optical Kerr effect studies indicates a reverse trend compared to magetisation observed in the bulk. This can be attributed to a domain wall pinning at native oxide layer on the surface of thin films. The evolution of surface magnetic properties is correlated with morphology evolution probed using atomic force microscopy. The morphology as well as the presence of the native oxide layer dictates the surface magnetic properties and this is corroborated by the apparent difference in the bulk and surface magnetic properties. - Highlights: • The relation between grain size and magnetic properties in Co–Fe–Si thin films obeys the Herzer model. • Angular variation of coercivity is found to obey the Kondorsky model. • The MOKE measurements provide further evidence for domain wall pinning.

  14. Natural roller bearing fault detection by angular measurement of true instantaneous angular speed

    Science.gov (United States)

    Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J. B.; Rémond, D.

    2010-10-01

    The challenge in many production activities involving large mechanical devices like power transmissions consists in reducing the machine downtime, in managing repairs and in improving operating time. Most online monitoring systems are based on conventional vibration measurement devices for gear transmissions or bearings in mechanical components. In this paper, we propose an alternative way of bearing condition monitoring based on the instantaneous angular speed measurement. By the help of a large experimental investigation on two different applications, we prove that localized faults like pitting in bearing generate small angular speed fluctuations which are measurable with optical or magnetic encoders. We also emphasize the benefits of measuring instantaneous angular speed with the pulse timing method through an implicit angular sampling which ensures insensitivity to speed fluctuation. A wide range of operating conditions have been tested for the two applications with varying speed, load, external excitations, gear ratio, etc. The tests performed on an automotive gearbox or on actual operating vehicle wheels also establish the robustness of the proposed methodology. By the means of a conventional Fourier transform, angular frequency channels kinematically related to the fault periodicity show significant magnitude differences related to the damage severity. Sideband effects are evidently seen when the fault is located on rotating parts of the bearing due to load modulation. Additionally, slip effects are also suspected to be at the origin of enlargement of spectrum peaks in the case of double row bearings loaded in a pure radial direction.

  15. 75 FR 63810 - Grant of Authority for Subzone Status; SICK, Inc. (Photo-Electronic Industrial Sensors...

    Science.gov (United States)

    2010-10-18

    ... Status; SICK, Inc. (Photo- Electronic Industrial Sensors); Bloomington, MN Pursuant to its authority... to establish a special- purpose subzone at the photo-electronic industrial sensor manufacturing and... manufacturing and distribution of photo-electronic industrial sensors at the SICK, Inc., facility located in...

  16. Angular dispersion and deflection function for heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bai Zhen; Han Jianlong; Hu Zhengguo; Chinese Academy of Sciences, Beijing

    2007-01-01

    The differential cross sections for elastic scattering products of 17 F on 208 Pb have been measured. The angular dispersion plots of ln(dσ/dθ) versus θ 2 are obtained from the angular distribution of the elastic scattering differential cross sections. Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle. This turning angle can be clarified as nuclear rainbow in classical deflection function. The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena. (authors)

  17. Angular Momentum and Galaxy Formation Revisited

    Science.gov (United States)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf

  18. Observation of atomic arrangement by using photoelectron holography and atomic stereo-photograph

    International Nuclear Information System (INIS)

    Matsushita, Tomohiro; Guo, Fang Zhun; Agui, Akane; Matsui, Fumihiko; Daimon, Hiroshi

    2006-01-01

    Both a photoelectron holography and atomic stereo-photograph are the atomic structure analysis methods on the basis of photoelectron diffraction. They have six special features such as 1) direct determination of atomic structure, 2) measurement of three dimensional atomic arrangements surrounding of specific element in the sample, 3) determination of position of atom in spite of electron cloud, 4) unnecessary of perfect periodic structure, 5) good sensitivity of structure in the neighborhood of surface and 6) information of electron structure. Photoelectron diffraction, the principle and measurement system of photoelectron holography and atomic stereo-photograph is explained. As application examples of atomic stereo-photograph, the single crystal of cupper and graphite are indicated. For examples of photoelectron holography, Si(001)2p and Ge(001)3s are explained. (S.Y.)

  19. The angular momentum of isolated white dwarfs

    Directory of Open Access Journals (Sweden)

    Brassard P.

    2013-03-01

    Full Text Available This is a very brief report on an ongoing program aimed at mapping the internal rotation profiles of stars through asteroseismology. Three years ago, we developed and applied successfully a new technique to the pulsating GW Vir white dwarf PG 1159−035, and were able to infer that it rotates very slowly and rigidly over some 99% of its mass. We applied the same approach to the three other GW Vir pulsators with available rotational splitting data, and found similar results. We discuss the implications of these findings on the question of the angular momentum of white dwarfs resulting from single star evolution.

  20. Projection of angular momentum via linear algebra

    Science.gov (United States)

    Johnson, Calvin W.; O'Mara, Kevin D.

    2017-12-01

    Projection of many-body states with good angular momentum from an initial state is usually accomplished by a three-dimensional integral. We show how projection can instead be done by solving a straightforward system of linear equations. We demonstrate the method and give sample applications to 48Cr and 60Fe in the p f shell. This new projection scheme, which is competitive against the standard numerical quadrature, should also be applicable to other quantum numbers such as isospin and particle number.

  1. Angular Position Tracking Control of a Quadcopter

    OpenAIRE

    T. V. Glazkov; A. E. Golubev

    2017-01-01

    The paper dwells on tracking the quad-copter angular position with desired quality parameters of transient processes. The aerial vehicle is considered as a rigid body with six degrees of freedom.  A full rigid body quad-copter mathematical model is considered without the assumption of smallness of the Euler angles.Among the most well known methods of non-linear stabilization are feedback linearization and backstepping. The backstepping approach allows us to have an effective solution of the s...

  2. Optical communication beyond orbital angular momentum

    CSIR Research Space (South Africa)

    Trichili, A

    2016-06-01

    Full Text Available :27674 | DOI: 10.1038/srep27674 www.nature.com/scientificreports Optical communication beyond orbital angular momentum Abderrahmen Trichili1, Carmelo Rosales-Guzmán2, Angela Dudley2,3, Bienvenu Ndagano2, Amine Ben Salem1, Mourad Zghal1,4 & Andrew Forbes2 Mode....rosalesguzman@wits.ac.za) received: 29 March 2016 Accepted: 24 May 2016 Published: 10 June 2016 OPEN www.nature.com/scientificreports/ 2Scientific RepoRts | 6:27674 | DOI: 10.1038/srep27674 Results Consider a LG mode in cylindrical coordinates, at its waist plane (z = 0), described...

  3. Angular momentum in multi-step photoionization

    International Nuclear Information System (INIS)

    Yoshida, Tadashi; Adachi, Hajime; Kuwako, Akira; Nittoh, Koichi; Araki, Yoshio; Watanabe, Takashi; Yoguchi, Itaru.

    1995-01-01

    The effect of the angular momenta on the multi-step laser-ionization efficiency was investigated numerically for cases with and without the hyperfine interactions. For either cases the ionization efficiency proved to depend appreciably on the values of J in the excitation ladder. In this respect, we elaborated a simple and efficient method of determining J, which was based on the laser polarization dependence of the excitation rate. Application of this method to a couple of real excitation ladders proved its usefulness and reliability. (author)

  4. Statistical analysis of angular correlation measurements

    International Nuclear Information System (INIS)

    Oliveira, R.A.A.M. de.

    1986-01-01

    Obtaining the multipole mixing ratio, δ, of γ transitions in angular correlation measurements is a statistical problem characterized by the small number of angles in which the observation is made and by the limited statistic of counting, α. The inexistence of a sufficient statistics for the estimator of δ, is shown. Three different estimators for δ were constructed and their properties of consistency, bias and efficiency were tested. Tests were also performed in experimental results obtained in γ-γ directional correlation measurements. (Author) [pt

  5. Time-dependent angularly averaged inverse transport

    International Nuclear Information System (INIS)

    Bal, Guillaume; Jollivet, Alexandre

    2009-01-01

    This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. Such measurement settings find applications in medical and geophysical imaging. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain

  6. Angular momentum effects in subbarrier fusion

    International Nuclear Information System (INIS)

    Halbert, M.L.; Beene, J.R.; Hensley, D.C.; Honkanen, K.; Semkow, T.M.; Abenante, V.; Sarantites, D.G.; Li, Z.

    1987-01-01

    The authors discuss angular-momentum distributions σ l for the compound nucleus 164 Yb deduced from measurements of γ-ray multiplicity for all significant evaporation residues from fusion of 64 Ni and 100 Mo and 16 O + 148 Sm. At the lowest bombarding energies the σ l extend to higher l values than do predictions that include coupling of the principal inelastic channels, even if the coupling strengths are increased to match the experimental excitation function. Likewise, σ l from an energy-dependent real potential fitted to the excitation function fails to reproduce the experimental σ l distribution. No effects attributed to superdeformation were observed

  7. Energy flow in angularly dispersive optical systems

    International Nuclear Information System (INIS)

    Ware, M.; Dibble, W. E.; Glasgow, S. A.; Peatross, J.

    2001-01-01

    Light-pulse propagation in angularly dispersive systems is explored in the context of a center-of-mass definition of energy arrival time. In this context the time of travel is given by a superposition of group delays weighted by the spectral content of the pulse. With this description the time of travel from one point to the next for a pulse is found to be completely determined by the spectral content, independent of the state of chirp. The effect of sensor orientation on arrival time is also considered. [copyright] 2001 Optical Society of America

  8. Angular Speed of a Compact Disc

    Science.gov (United States)

    Sawicki, Mikolaj ``Mik''

    2006-09-01

    A spinning motion of a compact disc in a CD player offers an interesting and challenging problem in rotational kinematics with a nonconstant angular acceleration that can be incorporated into a typical introductory physics class for engineers and scientists. It can be used either as an example presented during the lecture, emphasizing application of calculus, or as a homework assignment that could be handled easily with the help of a spreadsheet, thus eliminating the calculus aspect altogether. I tried both approaches, and the spreadsheet study was favored by my students.

  9. Renormalized multiple-scattering theory of photoelectron diffraction

    International Nuclear Information System (INIS)

    Biagini, M.

    1993-01-01

    The current multiple-scattering cluster techniques for the calculation of x-ray photoelectron and Auger-electron diffraction patterns consume much computer time in the intermediate-energy range (200--1000 eV); in fact, because of the large value of the electron mean free path and of the large forward-scattering amplitude at such energies, the electron samples a relatively large portion of the crystal, so that the number of paths to be considered becomes dramatically high. An alternative method is developed in the present paper: instead of calculating the individual contribution from each single path, the scattering matrix of each plane parallel to the surface is calculated with a renormalization process that calculates every scattering event in the plane up to infinite order. Similarly the scattering between two planes is calculated up to infinite order, and the double-plane scattering matrix is introduced. The process may then be applied to the calculation of a larger set of atomic layers. The advantage of the method is that a relatively small number of internuclear vectors have been used to obtain convergence in the calculation

  10. Core level photoelectron spectroscopy probed heterogeneous xenon/neon clusters

    International Nuclear Information System (INIS)

    Pokapanich, Wandared; Björneholm, Olle; Öhrwall, Gunnar; Tchaplyguine, Maxim

    2017-01-01

    Binary rare gas clusters; xenon and neon which have a significant contrariety between sizes, produced by a co-expansion set up and have been studied using synchrotron radiation based x-ray photoelectron spectroscopy. Concentration ratios of the heterogeneous clusters; 1%, 3%, 5% and 10% were controlled. The core level spectra were used to determine structure of the mixed cluster and analyzed by considering screening mechanisms. Furthermore, electron binding energy shift calculations demonstrated cluster aggregation models which may occur in such process. The results showed that in the case of low mixing ratios of 3% and 5% of xenon in neon, the geometric structures exhibit xenon in the center and xenon/neon interfaced in the outer shells. However, neon cluster vanished when the concentration of xenon was increased to 10%. - Highlights: • Co-expansion setup is suitable for producing binary Xe/Ne clusters. • Appropriate temperature, pressure, and mixing ratios should be strictly controlled. • Low mixing ratio, Xe formed in the core and Xe/Ne interfacing in the outer shell. • High mixing ratio, only pure Xe clusters were detected.

  11. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Radu, T., E-mail: Teodora.Radu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania); Iacovita, C. [Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349, Cluj-Napoca (Romania); Benea, D. [Faculty of Physics, Babes Bolyai University, 400271, Cluj-Napoca (Romania); Turcu, R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania)

    2017-05-31

    Highlights: • Characterization of three types of iron oxides magnetic nanoparticles. • A correlation between valence band XPS and the degree of iron oxidation is proposed. • Theoretical contributions of Fe in tetragonal and octahedral environment are shown. - Abstract: We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe{sub 3}O{sub 4}) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe{sub 2}O{sub 3} (by oxygen dissociation) which in turn was transformed into α-Fe{sub 2}O{sub 3}. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  12. X-ray-excited Auger and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Weightman, P.

    1982-01-01

    This article reviews developments in the understanding of x-ray-excited Auger and photoelectron spectra in the light of theoretical developments in atomic, molecular and solid-state physics. After reviewing progress in XPS and AES separately emphasis is placed on the inter-relationship between the two fields: Auger rates, for example, are the dominant contribution to core-level XPS linewidths and by combining XPS and AES it is possible to deduce information about Coster-Kronig processes which are difficult to study directly. An account is given of how the combination of measurements of environmentally dependent shifts in XPS and AES energies allows one to isolate initial- and final-state contributions which can then be related to the results of other experimental techniques. There is a brief discussion of many-electron effects and a discussion of how the combination of XPS and AES spectra involving valence levels enables the effects of hole-state localisation to be studied. (author)

  13. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Science.gov (United States)

    Leader, Elliot

    2018-04-01

    The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.

  14. Transfer of chirality from adsorbed chiral molecules to the substrates highlighted by circular dichroism in angle-resolved valence photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Contini, G.; Turchini, S.; Sanna, Simone

    2012-01-01

    Studies of self-assembled chiral molecules on achiral metallic surfaces have mostly focused on the determination of the geometry of adsorbates and their electronic structure. The aim of this paper is to provide direct information on the chirality character of the system and on the chirality...... transfer from molecules to substrate by means of circular dichroism in the angular distribution of valence photoelectrons for the extended domain of the chiral self-assembled molecular structure, formed by alaninol adsorbed on Cu(100). We show, by the dichroic behavior of a mixed molecule–copper valence...... state, that the presence of molecular chiral domains induces asymmetry in the interaction with the substrate and locally transfers the chiral character to the underlying metal atoms participating in the adsorption process; combined information related to the asymmetry of the initial electronic state...

  15. Angle-resolved environmental X-ray photoelectron spectroscopy: A new laboratory setup for photoemission studies at pressures up to 0.4 Torr

    International Nuclear Information System (INIS)

    Mangolini, F.; Wabiszewski, G. E.; Egberts, P.; Åhlund, J.; Backlund, K.; Karlsson, P. G.; Adiga, V. P.; Streller, F.; Wannberg, B.; Carpick, R. W.

    2012-01-01

    The paper presents the development and demonstrates the capabilities of a new laboratory-based environmental X-ray photoelectron spectroscopy system incorporating an electrostatic lens and able to acquire spectra up to 0.4 Torr. The incorporation of a two-dimensional detector provides imaging capabilities and allows the acquisition of angle-resolved data in parallel mode over an angular range of 14° without tilting the sample. The sensitivity and energy resolution of the spectrometer have been investigated by analyzing a standard Ag foil both under high vacuum (10 −8 Torr) conditions and at elevated pressures of N 2 (0.4 Torr). The possibility of acquiring angle-resolved data at different pressures has been demonstrated by analyzing a silicon/silicon dioxide (Si/SiO 2 ) sample. The collected angle-resolved spectra could be effectively used for the determination of the thickness of the native silicon oxide layer.

  16. Orbital angular momentum of general astigmatic modes

    International Nuclear Information System (INIS)

    Visser, Jorrit; Nienhuis, Gerard

    2004-01-01

    We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere

  17. [Sensitivity of four representative angular cephalometric measures].

    Science.gov (United States)

    Xü, T; Ahn, J; Baumrind, S

    2000-05-01

    Examined the sensitivity of four representative cephalometric angles to the detection of different vectors of craniofacial growth. Landmark coordinate data from a stratified random sample of 48 adolescent subjects were used to calculate conventional values for changes between the pretreatment and end-of-treatment lateral cephalograms. By modifying the end-of-treatment coordinate values appropriately, the angular changes could be recalculated reflecting three hypothetical situations: Case 1. What if there were no downward landmark displacement between timepoints? Case 2. What if there were no forward landmark displacement between timepoints? Case 3. What if there were no Nasion change? These questions were asked for four representative cephalometric angles: SNA, ANB, NAPg and UI-SN. For Case 1, the associations (r) between the baseline and the modified measure for the three angles were very highly significant (P < 0.001) with r2 values no lower than 0.94! For Case 2, however, the associations were much weaker and no r value reached significance. These angular measurements are less sensitive for measuring downward landmark displacement than they are for measuring forward landmark displacement.

  18. Electromagnetic angular positioner based on DC micromotor

    Directory of Open Access Journals (Sweden)

    Bodnicki Maciej

    2018-01-01

    Full Text Available The presented works concerned launching of an angular positioner powered by an electromagnetic actuator, designed for performing angular micromovements within a range of few microradians. The principle of operation is based on balancing the electromagnetic torque of the motor with a torque that is twisting a compliant element. As electrodynamic actuators have no distinguished controlled positions, therefore in typical positioning systems desired positions are obtained applying a closed-loop position control. Usually, such systems employ also a feedback (dumping related to velocity of the moving elements, what simplifies forming of dynamics of the system. The design of the physical model employs a DC micromotor, whose rotor is coupled with a torsional torquemeter. A feedback signal is generated by resistive strain gauges. The paper presents a mathematical model of the positioning system, results of simulation study as well as results of experimental study. The simulation study indicates that it is possible to select such design features and such type of the micoromotor that a high dynamics of positioning is ensured.

  19. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Cleary, Joseph

    2018-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of four telescopes designed to measure the polarization of the Cosmic Microwave Background. CLASS aims to detect the B-mode polarization from primordial gravitational waves predicted by cosmic inflation theory, as well as the imprint left by reionization upon the CMB E-mode polarization. This will be achieved through a combination of observing strategy and state-of-the-art instrumentation. CLASS is observing 70% of the sky to characterize the CMB at large angular scales, which will measure the entire CMB power spectrum from the reionization peak to the recombination peak. The four telescopes operate at frequencies of 38, 93, 145, and 217 GHz, in order to estimate Galactic synchrotron and dust foregrounds while avoiding atmospheric absorption. CLASS employs rapid polarization modulation to overcome atmospheric and instrumental noise. Polarization sensitive cryogenic detectors with low noise levels provide CLASS the sensitivity required to constrain the tensor-to-scalar ratio down to levels of r ~ 0.01 while also measuring the optical depth the reionization to sample-variance levels. These improved constraints on the optical depth to reionization are required to pin down the mass of neutrinos from complementary cosmological data. CLASS has completed a year of observations at 38 GHz and is in the process of deploying the rest of the telescope array. This poster provides an overview and update on the CLASS science, hardware and survey operations.

  20. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    Science.gov (United States)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  1. Development of a superconducting radio frequency photoelectron injector

    International Nuclear Information System (INIS)

    Arnold, A.; Buettig, H.; Janssen, D.; Kamps, T.; Klemz, G.; Lehmann, W.D.; Lehnert, U.; Lipka, D.; Marhauser, F.; Michel, P.; Moeller, K.; Murcek, P.; Schneider, Ch.; Schurig, R.; Staufenbiel, F.; Stephan, J.; Teichert, J.; Volkov, V.; Will, I.; Xiang, R.

    2007-01-01

    A superconducting radio frequency (RF) photoelectron injector (SRF gun) is under development at the Research Center Dresden-Rossendorf. This project aims mainly at replacing the present thermionic gun of the superconducting electron linac ELBE. Thereby the beam quality is greatly improved. Especially, the normalized transverse emittance can be reduced by up to one order of magnitude depending on the operating conditions. The length of the electron bunches will be shortened by about two orders of magnitude making the present bunchers in the injection beam line dispensable. The maximum obtainable bunch charge of the present thermionic gun amounts to 80pC. The SRF gun is designed to deliver also higher bunch charge values up to 2.5nC. Therefore, this gun can be used also for advanced facilities such as energy recovery linacs (ERLs) and soft X-ray FELs. The SRF gun is designed as a 312 cell cavity structure with three cells basically TESLA cells supplemented by a newly developed gun cell and a choke filter. The exit energy is projected to be 9.5MeV. In this paper, we present a description of the design of the SRF gun with special emphasis on the physical and technical problems arising from the necessity of integrating a photocathode into the superconducting cavity structure. Preparation, transfer, cooling and alignment of the photocathode are discussed. In designing the SRF gun cryostat for most components wherever possible the technical solutions were adapted from the ELBE cryostat in some cases with major modifications. As concerns the status of the project the design is finished, most parts are manufactured and the gun is being assembled. Some of the key components are tested in special test arrangements such as cavity warm tuning, cathode cooling, the mechanical behavior of the tuners and the effectiveness of the magnetic screening of the cavity

  2. Coincident photoelectron spectroscopy on superconductors; Koinzidente Photoelektronenspektroskopie an Supraleitern

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Stefan

    2011-07-01

    Aim of the performed experiments of this thesis was to attempt to detect Cooper pairs as carriers of the superconducting current directly by means of the photoelectric effect. The method of the coincident photoelectron spectroscopy aims thereby at the detection of two coherently emitted electrons by the interaction with a photon. Because electrostatic analyzers typically cover only a very small spatial angle, which goes along with very low coincidence rates, in connection with this thesis a time-of-flight projection system has been developed, which maps nearly the whole spatial angle on a position-resolving detector. The pulsed light source in form of special synchrotron radiation necessary for the measurement has been adjusted so weak, that only single photons could arrive at the sample. Spectroscoped were beside test measurements on silver layers both a lead monocrystal as representative of the classical BCS superconductors and monocrystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} from the family of the high-temperature superconductors. With excitation energies up to 40 eV could be shown that sufficiently smooth and clean surfaces in the superconducting phase exhibit within the resolving power of about 0.5 eV no recognizable differences in comparison to the normally conducting phase. Beside these studies furthermore the simple photoemission at the different samples and especially in the case of the lead crystal is treated, because here no comparable results are known. Thereby the whole momentum space is discussed and the Fermi surface established as three-dimensional model, by means of which the measurement results are discussed. in the theoretical descriptions different models for the Cooper-pair production are presented, whereby to the momentum exchange with the crystal a special role is attributed, because this can only occur in direct excitations via discrete lattice vectors.

  3. Untangling Galaxy Components - The Angular Momentum Parameter

    Science.gov (United States)

    Tabor, Martha; Merrifield, Michael; Aragon-Salamanca, Alfonso

    2017-06-01

    We have developed a new technique to decompose Integral Field spectral data cubes into separate bulge and disk components, allowing us to study the kinematic and stellar population properties of the individual components and how they vary with position. We present here the application of this method to a sample of fast rotator early type galaxies from the MaNGA integral field survey, and demonstrate how it can be used to explore key properties of the individual components. By extracting ages, metallicities and the angular momentum parameter lambda of the bulges and disks, we show how this method can give us new insights into the underlying structure of the galaxies and discuss what this can tell us about their evolution history.

  4. Angular biasing in implicit Monte-Carlo

    International Nuclear Information System (INIS)

    Zimmerman, G.B.

    1994-01-01

    Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise

  5. Angular filter refractometry analysis using simulated annealing.

    Science.gov (United States)

    Angland, P; Haberberger, D; Ivancic, S T; Froula, D H

    2017-10-01

    Angular filter refractometry (AFR) is a novel technique used to characterize the density profiles of laser-produced, long-scale-length plasmas [Haberberger et al., Phys. Plasmas 21, 056304 (2014)]. A new method of analysis for AFR images was developed using an annealing algorithm to iteratively converge upon a solution. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on the minimization of the χ 2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in an average uncertainty in the density profile of 5%-20% in the region of interest.

  6. Intrinsic Orbital Angular Momentum States of Neutrons

    Science.gov (United States)

    Cappelletti, Ronald L.; Jach, Terrence; Vinson, John

    2018-03-01

    It has been shown that single-particle wave functions, of both photons and electrons, can be created with a phase vortex, i.e., an intrinsic orbital angular momentum (OAM). A recent experiment has claimed similar success using neutrons [C. W. Clark et al., Nature, 525, 504 (2015), 10.1038/nature15265]. We show that their results are insufficient to unambiguously demonstrate OAM, and they can be fully explained as phase contrast interference patterns. Furthermore, given the small transverse coherence length of the neutrons in the original experiment, the probability that any neutron was placed in an OAM state is vanishingly small. We highlight the importance of the relative size of the coherence length, which presents a unique challenge for neutron experiments compared to electron or photon work, and we suggest improvements for the creation of neutron OAM states.

  7. Nuclear scissors modes and hidden angular momenta

    Energy Technology Data Exchange (ETDEWEB)

    Balbutsev, E. B., E-mail: balbuts@theor.jinr.ru; Molodtsova, I. V. [Joint Institute for Nuclear Research (Russian Federation); Schuck, P. [Université Paris-Sud, Institut de Physique Nucléaire, IN2P3–CNRS (France)

    2017-01-15

    The coupled dynamics of low-lying modes and various giant resonances are studied with the help of the Wigner Function Moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. The method is based on Time-Dependent Hartree–Fock–Bogoliubov equations. The model of the harmonic oscillator including spin–orbit potential plus quadrupole–quadrupole and spin–spin interactions is considered. New low-lying spin-dependent modes are analyzed. Special attention is paid to the scissors modes. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theory allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes.

  8. Angular Spectrum Simulation of Pulsed Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2009-01-01

    frequencies must be performed. Combining it with Field II, the generation of non-linear simulation for any geometry with any excitation array transducer becomes feasible. The purpose of this paper is to make a general pulsed simulation software using the modified ASA. Linear and phased array transducers......The optimization of non-linear ultrasound imaging should in a first step be based on simulation, as this makes parameter studies considerably easier than making transducer prototypes. Such a simulation program should be capable of simulating non-linear pulsed fields for arbitrary transducer...... geometries for any kind of focusing and apodization. The Angular Spectrum Approach (ASA) is capable of simulating monochromatic non-linear acoustic wave propagation. However, for ultrasound imaging the time response of each specific point in space is required, and a pulsed ASA simulation with multi temporal...

  9. Angular momentum of dark matter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, Paul H., E-mail: paul.h.frampton@gmail.com

    2017-04-10

    We provide strongly suggestive evidence that the halo constituents of dark matter are Primordial Intermediate-Mass Black Holes (PIMBHs). PIMBHs are described by a Kerr metric with two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at PIMBH detection by microlensing. Nevertheless J does play a central role in understanding their previous lack of detection, especially by CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for PIMBHs with J non-vanishing and that, provided almost no dark matter black holes originate from stellar collapse, excessive CMB distortion is avoided.

  10. Angular reduction in multiparticle matrix elements

    International Nuclear Information System (INIS)

    Lehman, D.R.; Parke, W.C.

    1989-01-01

    A general method for reduction of coupled spherical harmonic products is presented. When the total angular coupling is zero, the reduction leads to an explicitly real expression in the scalar products of the unit vector arguments of the spherical harmonics. For nonscalar couplings, the reduction gives Cartesian tensor forms for the spherical harmonic products; tensors built from the physical vectors in the original expression. The reduction for arbitrary couplings is given in closed form, making it amenable to symbolic manipulation on a computer. The final expressions do not depend on a special choice of coordinate axes, nor do they contain azimuthal quantum number summations, or do they have complex tensor terms for couplings to a scalar; consequently, they are easily interpretable from the properties of the physical vectors they contain

  11. Angular discretization errors in transport theory

    International Nuclear Information System (INIS)

    Nelson, P.; Yu, F.

    1992-01-01

    Elements of the information-based complexity theory are computed for several types of information and associated algorithms for angular approximations in the setting of a on-dimensional model problem. For point-evaluation information, the local and global radii of information are computed, a (trivial) optimal algorithm is determined, and the local and global error of a discrete ordinates algorithm are shown to be infinite. For average cone-integral information, the local and global radii of information are computed, the local and global error tends to zero as the underlying partition is indefinitely refined. A central algorithm for such information and an optimal partition (of given cardinality) are described. It is further shown that the analytic first-collision source method has zero error (for the purely absorbing model problem). Implications of the restricted problem domains suitable for the various types of information are discussed

  12. Topological photonic orbital-angular-momentum switch

    Science.gov (United States)

    Luo, Xi-Wang; Zhang, Chuanwei; Guo, Guang-Can; Zhou, Zheng-Wei

    2018-04-01

    The large number of available orbital-angular-momentum (OAM) states of photons provides a unique resource for many important applications in quantum information and optical communications. However, conventional OAM switching devices usually rely on precise parameter control and are limited by slow switching rate and low efficiency. Here we propose a robust, fast, and efficient photonic OAM switch device based on a topological process, where photons are adiabatically pumped to a target OAM state on demand. Such topological OAM pumping can be realized through manipulating photons in a few degenerate main cavities and involves only a limited number of optical elements. A large change of OAM at ˜10q can be realized with only q degenerate main cavities and at most 5 q pumping cycles. The topological photonic OAM switch may become a powerful device for broad applications in many different fields and motivate a topological design of conventional optical devices.

  13. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J

    2017-01-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  14. Angular Position Tracking Control of a Quadcopter

    Directory of Open Access Journals (Sweden)

    T. V. Glazkov

    2017-01-01

    Full Text Available The paper dwells on tracking the quad-copter angular position with desired quality parameters of transient processes. The aerial vehicle is considered as a rigid body with six degrees of freedom.  A full rigid body quad-copter mathematical model is considered without the assumption of smallness of the Euler angles.Among the most well known methods of non-linear stabilization are feedback linearization and backstepping. The backstepping approach allows us to have an effective solution of the stabilization problems with uncertainties available in the system. However, in synthesis of the feedback through backstepping, there is still an urgent issue: how to ensure desirable quality of transients in the closed-loop system. The paper presents a solution of this problem using as an example the tracking a given (programmed change of the angular position of a quad-copter.The control algorithms obtained in this paper are implemented using the Rolling Spider MATLAB Toolbox (ROSMAT tool package on the Parrot Rolling Spider quad-copter. A numerical simulation and experiments have shown the efficiency of obtained control laws, with the transient processes taking into account the desired quality indicators. However, the experiments showed that lack of terms in the mathematical model to describe the aerodynamic effects, resulted in the instability of the quad-copter flight near the obstacle (the effect of the reflected airflow.Further research can be aimed at solving the control problem in question using a mathematical model of the quad-copter motion that takes into account various aerodynamic effects.One of the potential application areas for the theoretical results, obtained in the paper, is to solve the problems of automatic control of unmanned aerial vehicles.

  15. Supramolecular architectures constructed using angular bipyridyl ligands

    International Nuclear Information System (INIS)

    Barnett, Sarah Ann

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO 3 ) 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO 3 ) 2 and Zn(NO 3 ) 2 . Whereas Zn(NO 3 ) 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO 3 ) 2 , including the first example of a doubly parallel interpenetrated 4.8 2 net. 4,7-phenanthroline, was reacted with various metal(ll) nitrates as well as cobalt(ll) and copper(ll) halides. The ability of 4,7-phenanthroline to act as both a N-donor ligand and a hydrogen bond acceptor has been discussed. Reactions of CuSCN with pyrimidine yield an unusual three-dimensional structure in which polymeric propagation is not a result of ligand bridging. The reaction of CuSCN with dpt yielded structural supramolecular isomers. (author)

  16. Angular momentum of circularly polarized light in dielectric media

    OpenAIRE

    Mansuripur, Masud

    2014-01-01

    A circularly polarized plane-wave is known to have no angular momentum when examined through Maxwell's equations. This, however, contradicts the experimentally observed facts, where finite segments of plane waves are known to be capable of imparting angular momentum to birefringent platelets. Using a superposition of four plane-waves propagating at slightly different angles to a common direction, we derive an expression for the angular momentum density of a single plane-wave in the limit when...

  17. Orbital angular momentum exchange in post-collision interaction

    International Nuclear Information System (INIS)

    van der Burgt, P.J.M.; van Eck, J.; Heideman, H.G.M.

    1985-01-01

    The authors study the exchange of orbital angular mementum between the scattered and the ejected electron. The angular distribution of electrons ejected by the He (2s 2 ) 2 S autoionizing state after its excitation via the He (2s2p 2 ) 2 D resonance is measured. Taking into accout interference with electrons from the direct ionization of helium, the authors are able to show that the measured anisotropic angular distribution is the result of an orbital angular momentum exchange during the post-collision interaction

  18. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Directory of Open Access Journals (Sweden)

    Elliot Leader

    2018-04-01

    Full Text Available The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam. Keywords: Photon, Angular momentum, Laser optics, Particle physics

  19. Photoelectron spectroscopy on doped organic semiconductors and related interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olthof, Selina Sandra

    2010-06-08

    Using photoelectron spectroscopy, we show measurements of energy level alignment of organic semiconducting layers. The main focus is on the properties and the influence of doped layers. The investigations on the p-doping process in organic semiconductors show typical charge carrier concentrations up to 2.10{sup 20} cm{sup -3}. By a variation of the doping concentration, an over proportional influence on the position of the Fermi energy is observed. Comparing the number of charge carriers with the amount of dopants present in the layer, it is found that only 5% of the dopants undergo a full charge transfer. Furthermore, a detailed investigation of the density of states beyond the HOMO onset reveals that an exponentially decaying density of states reaches further into the band gap than commonly assumed. For an increasing amount of doping, the Fermi energy gets pinned on these states which suggests that a significant amount of charge carriers is present there. The investigation of metal top and bottom contacts aims at understanding the asymmetric current-voltage characteristics found for some symmetrically built device stacks. It can be shown that a reaction between the atoms from the top contact with the molecules of the layer leads to a change in energy level alignment that produces a 1.16 eV lower electron injection barrier from the top. Further detailed investigations on such contacts show that the formation of a silver top contact is dominated by diffusion processes, leading to a broadened interface. However, upon insertion of a thin aluminum interlayer this diffusion can be stopped and an abrupt interface is achieved. Furthermore, in the case of a thick silver top contact, a monolayer of molecules is found to oat on top of the metal layer, almost independent on the metal layer thickness. Finally, several device stacks are investigated, regarding interface dipoles, formation of depletion regions, energy alignment in mixed layers, and the influence of the built

  20. Evaluation of Photoelectron Therapy Effect on Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    bahram Mofid

    2007-10-01

    Full Text Available Mofid B1, Navabpoor M2, Alizadeh Azimi M3 1. Assistant professor, Department of Radiotherapy, Faculty of Para-Medicine, Shahid Beheshti University of medical sciences 2. Instructor, Department of Technology of radiology, Faculty of Para-Medicine, Shahid Beheshti University of medical sciences Abstract Background: Photoelectron therapy method has been usad successfully, on the body phantom, cancer cells culture and animals. In this method, drugs containing x-Ray opaque factors–with high atomic numbers–are injected into the patient’s vein. After appropriate drug accumulation, about at least ten percent of the total injected amounts, 200kev. up to 300kev. of localized x-Ray beams is radiated to the site of the tumor. The Ethic Committee of Shahid Beheshti University of Medical Education and Health Services authorized the implementation of this new cancer treatment method, initially only on the group of patients who suffered from hepato-cellular carcinoma. Hepato cellular carcinoma is one of the most current malignancies of liver. In some cases, in addition to surgery, several approaches exist to come near the aim of predominating hepato-cellular carcinoma such as chemotherapy, current Radiation Therapy, Radio-Frequency application (RF, Trans-Artepical Chemo Embolization, (TACE, and Percutaneous Ethanol Injection (PEI. The effectiveness of the above-mentioned methods is about 10%-47%, applied alone or along side each other. Materials and methods: This study was a clinical-trial one. In this study, first, lipiodol (an x-ray opaque material with a high atomic number was transferred into the main vessel terminating to the tumor by angio-catheterization. Then,200kev. up to 250kev. of localized x-ray was radiated to the site of the tumor in one session. The drug volume was proportionally selected to the volume of the tumor, and the irradiation intensity was between 400 to 600cent.Gy. the beam energy absorption capacity of this drug is as times as

  1. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    International Nuclear Information System (INIS)

    Pascal, Mathieu

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed azimuth. The tilt of the molecule with respect to the surface and the degree to which the surface is relaxed have also been investigated. The adsorption of methyl on Cu(111) was studied using either azomethane or methyl iodide to prepare the surface layers. At saturation coverage the preferred adsorption site is the fcc threefold hollow site, whereas at half saturation coverage ∼ 30 % of the methyl species occupy the hop threefold hollow sites. Best agreement between theory and experiment corresponded to a methyl group adsorbed with C 3v symmetry. The height of the C above the surface in a pure methyl layer was 1.66 ± 0.02 A, but was reduced to 1.62 ± 0.02 A in the presence of co-adsorbed iodine, suggesting that iodine increases the strength of adsorption. Iodine was also found to occupy the fee threefold hollow sites with a Cu-l bondlength of 2.61 ± 0.02 A. (author)

  2. A study of the valence shell photoelectron and photoabsorption spectra of CF3SF5

    International Nuclear Information System (INIS)

    Holland, D M P; Shaw, D A; Walker, I C; McEwen, I J; Apra, E; Guest, M F

    2005-01-01

    The outer valence shell photoelectron spectrum of CF 3 SF 5 has been studied experimentally and theoretically. Synchrotron radiation has been used to record angle-resolved outer valence shell photoelectron spectra of CF 3 SF 5 in the photon energy range 18-60 eV. These spectra have allowed photoelectron asymmetry parameters and branching ratios to be derived. The Outer Valence Green's Function approach has been employed to calculate the molecular orbital configuration and associated binding energies. A charge distribution analysis has also been obtained. Assignments have been proposed for the peaks observed in the photoelectron spectrum. The absolute photoabsorption cross section of CF 3 SF 5 has been measured from threshold to 40 eV, and strongly resembles that of SF 6 . Assignments, involving intravalence transitions, have been proposed for some of the principal features appearing in the photoabsorption spectrum of CF 3 SF 5

  3. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    Science.gov (United States)

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-06-03

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  4. Renner-Teller effects in the photoelectron spectra of CNC, CCN, and HCCN.

    Science.gov (United States)

    Coudert, Laurent H; Gans, Bérenger; Garcia, Gustavo A; Loison, Jean-Christophe

    2018-02-07

    The line intensity of photoelectron spectra when either the neutral or cationic species display a Renner-Teller coupling is derived and applied to the modeling of the photoelectron spectra of CNC, CCN, and HCCN. The rovibronic energy levels of these three radicals and of their cations are investigated starting from ab initio results. A model treating simultaneously the bending mode and the overall rotation is developed to deal with the quasilinearity problem in CNC + , CCN + , and HCCN and accounts for the large amplitude nature of their bending mode. This model is extended to treat the Renner-Teller coupling in CNC, CCN, and HCCN + . Based on the derived photoelectron line intensity, the photoelectron spectra of all three molecules are calculated and compared to the experimental ones.

  5. Carbon-13 spin lattice relaxation and photoelectron spectroscopy of some aromatic sulphides and sulphones

    International Nuclear Information System (INIS)

    Mellink, W.A.

    1978-01-01

    Carbon-13 NMR spectroscopy and photoelectron spectroscopy have been used to study the electronic structure of symmetric dithienothiophenes and corresponding sulphones. The physical data obtained from both spectroscopic techniques have been interpreted with the aid of quantum mechanical calculations. (Auth.)

  6. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom.......Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  7. Simulated photoelectron intensities at the aqueous solution–air interface for flat and cylindrical (microjet) geometries

    Science.gov (United States)

    Olivieri, Giorgia; Parry, Krista M.; Powell, Cedric J.; Tobias, Douglas J.

    2017-01-01

    Ion spatial distributions at the aqueous-air/vacuum interface are accessible by energy-dependent X-ray photoelectron spectroscopy (XPS). Here we quantify the difference between a flat surface and a cylindrical shaped microjet on the energy-dependent information depth of the XPS experiment and on the simulated photoelectron intensities using solutions of pure water and of 1 mol/L NaI as examples. PMID:28203664

  8. Intramolecular dynamics due to electron transitions: from photoelectron spectroscopy to Femtochemistry

    International Nuclear Information System (INIS)

    Gadzuk, J.W.

    1999-01-01

    Select spectroscopic and chemical physics problems associated with atomic motion triggered by electronic transitions are the topics of this paper. The story starts with the initial stimulation provided by Dick Brundle's photoelectron spectroscopy studies of adsorbed molecules and continues to contemporary examples in photoelectron spectroscopy and Femtochemistry, all of which are theoretically modelled within a unified framework of time-dependent, driven oscillators and decaying states. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Whole-body angular momentum during stair ascent and descent.

    Science.gov (United States)

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Learning web development with Bootstrap and AngularJS

    CERN Document Server

    Radford, Stephen

    2015-01-01

    Whether you know a little about Bootstrap or AngularJS, or you're a complete beginner, this book will enhance your capabilities in both frameworks and you'll build a fully functional web app. A working knowledge of HTML, CSS, and JavaScript is required to fully get to grips with Bootstrap and AngularJS.

  11. Schmidt decomposition for non-collinear biphoton angular wave functions

    International Nuclear Information System (INIS)

    Fedorov, M V

    2015-01-01

    Schmidt modes of non-collinear biphoton angular wave functions are found analytically. The experimentally realizable procedure for their separation is described. Parameters of the Schmidt decomposition are used to evaluate the degree of the biphoton's angular entanglement. (paper)

  12. Isotropic gates in large gamma detector arrays versus angular distributions

    International Nuclear Information System (INIS)

    Iacob, V.E.; Duchene, G.

    1997-01-01

    The quality of the angular distribution information extracted from high-fold gamma-gamma coincidence events is analyzed. It is shown that a correct quasi-isotropic gate setting, available at the modern large gamma-ray detector arrays, essentially preserves the quality of the angular information. (orig.)

  13. Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-01-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…

  14. Angular momentum dependence of the distribution of shell model eigenenergies

    International Nuclear Information System (INIS)

    Yen, M.K.

    1974-01-01

    In the conventional shell model calculation the many-particle energy matrices are constructed and diagonalized for definite angular momentum and parity. However the resulting set of eigenvalues possess a near normal behavior and hence a simple statistical description is possible. Usually one needs only about four parameters to capture the average level densities if the size of the set is not too small. The parameters are essentially moments of the distribution. But the difficulty lies in the yet unsolved problem of calculating moments in the fixed angular momentum subspace. We have derived a formula to approximate the angular momentum projection dependence of any operator averaged in a shell model basis. This approximate formula which is a truncated series in Hermite polynomials has been proved very good numerically and justified analytically for large systems. Applying this formula to seven physical cases we have found that the fixed angular momentum projection energy centroid, width and higher central moments can be obtained accurately provided for even-even nuclei the even and odd angular momentum projections are treated separately. Using this information one can construct the energy distribution for fixed angular momentum projection assuming normal behavior. Then the fixed angular momentum level densities are deduced and spectra are extracted. Results are in reasonably good agreement with the exact values although not as good as those obtained using exact fixed angular momentum moments. (Diss. Abstr. Int., B)

  15. Rotational speedups accompanying angular deceleration of a superfluid

    International Nuclear Information System (INIS)

    Campbell, L.J.

    1979-01-01

    Exact calculations of the angular deceleration of superfluid vortex arrays show momentary speedups in the angular velocity caused by coherent, multiple vortex loss at the boundary. The existence and shape of the speedups depend on the vortex friction, the deceleration rate, and the pattern symmetry. The phenomenon resembles, in several ways, that observed in pulsars

  16. Structure determination by photoelectron diffraction of small molecules on surfaces

    International Nuclear Information System (INIS)

    Booth, N.A.

    1998-05-01

    The synchrotron radiation based technique of Photoelectron Diffraction (PhD) has been applied to three adsorption systems. Structure determinations, are presented for each system which involve the adsorption of small molecules on the low index {110} plane of single crystal Cu and Ni substrates. For the NH 3 -Cu(110) system PhD was successful in determining a N-Cu bondlength of 2.05 ± 0.03 A as well as values for the anisotropic vibrational amplitudes of the N and an expansion of the 1st to 2nd Cu substrate layer spacing from the bulk value of 0.08 ± 0.08 A. The most significant and surprising structural parameter determined for this system was that the N atom occupies an asymmetric adsorption site. Rather than being situated in the expected high symmetry atop site the N atom was found to be offset parallel to the surface by 0.37 ± 0.12 A in the [001] azimuth. In studying the glycine-Cu(110) system the adsorption structure of an amino-acid has been quantified. The local adsorption geometries of all the atoms involved in the molecule to surface bond have been determined. The glycine molecule is found to be bonded to the surface via both its amino and carboxylate functional groups. The molecule straddles two [11-bar0] rows of the Cu substrate. The two O atoms are found to be in identical sites both approximately atop Cu atoms on the [11-bar0] rows offset parallel to the surface by 0.80 ± 0.05 A in the [001] azimuth, the O-Cu bondlength was found to be 2.03 ± 0.05 A. The N atom was also found to adsorb in an approximately atop geometry but offset parallel to the surface by 0.24 ± 0.10A in the [11-bar0] direction, the N-Cu bondlength was found to be 2.05± 0.05 A. PhD was unsuccessful in determining the positions of the two C atoms that form a bridge between the two functional groups bonded to the surface due to difficulties in separating the two inequivalent contributions to the final intensity modulation function. For the CN-Ni(110) system both PhD and Near Edge

  17. Angular correlations near the Fermi energy

    International Nuclear Information System (INIS)

    Fox, D.; Cebra, D.A.; Karn, J.

    1988-01-01

    Angular correlations between light particles have been studied to probe the extent to which a thermally equilibrated system is formed in heavy ion collisions near the Fermi energy. Single-light-particle inclusive energy spectra and two-particle large-angle correlations were measured for 40 and 50 MeV/nucleon C+C, Ag, and Au. The single-particle inclusive energy spectra are well fit by a three moving source parametrization. Two-particle large-angle correlations are shown to be consistent with emission from a thermally equilibrated source when the effects of momentum conservation are considered. Single-particle inclusive spectra and light-particle correlations at small relative momentum were measured for 35 MeV/nucleon N+Ag. Source radii were extracted from the two-particle correlation functions and were found to be consistent with previous measurements using two-particle correlations and the coalescence model. The temperature of the emitting source was extracted from the relative populations of states using the quantum statistical model and was found to be 4.8/sub -2.4//sup +2.8/ MeV, compared to the 14 MeV temperature extracted from the slopes of the kinetic energy spectra

  18. A new CMOS Hall angular position sensor

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, R.S.; Drljaca, P. [Swiss Federal Inst. of Tech., Lausanne (Switzerland); Schott, C.; Racz, R. [SENTRON AG, Zug (Switzerland)

    2001-06-01

    The new angular position sensor consists of a combination of a permanent magnet attached to a shaft and of a two-axis magnetic sensor. The permanent magnet produces a magnetic field parallel with the magnetic sensor plane. As the shaft rotates, the magnetic field also rotates. The magnetic sensor is an integrated combination of a CMOS Hall integrated circuit and a thin ferromagnetic disk. The CMOS part of the system contains two or more conventional Hall devices positioned under the periphery of the disk. The ferromagnetic disk converts locally a magnetic field parallel with the chip surface into a field perpendicular to the chip surface. Therefore, a conventional Hall element can detect an external magnetic field parallel with the chip surface. As the direction of the external magnetic field rotates in the chip plane, the output voltage of the Hall element varies as the cosine of the rotation angle. By placing the Hall elements at the appropriate places under the disk periphery, we may obtain the cosine signals shifted by 90 , 120 , or by any other angle. (orig.)

  19. Nuclear structure at high angular momentum

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1976-08-01

    There is considerable interest in high angular-momentum states of nuclei, and some recent progress in three areas is discussed. Part I considers transitional nuclei, where two types of rotational bands--decoupled and strongly coupled--are found to occur very frequently. These can be described by several collective models, but the required potential-energy surfaces seem to differ somewhat from those calculated microscopically. In Part II the processes that might cause backbending (irregularities in the rotational levels of certain nuclei) are discussed, and alignment of individual nucleons now seems to be the cause in most cases. The mixing of the ground band with this aligned band can be studied in some detail using Coulomb excitation with very heavy ions. Part III deals with the very high-spin states where effective moments of inertia have been obtained for spins up to 50h. Also structure has been seen in the spectra around these spin values which can be tentatively related to calculated shell effects. 74 references, 61 figures

  20. CLASS: The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; hide

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  1. Angular velocity and centripetal acceleration relationship

    Science.gov (United States)

    Monteiro, Martín; Cabeza, Cecilia; Marti, Arturo C.; Vogt, Patrik; Kuhn, Jochen

    2014-05-01

    During the last few years, the growing boom of smartphones has given rise to a considerable number of applications exploiting the functionality of the sensors incorporated in these devices. A sector that has unexpectedly taken advantage of the power of these tools is physics teaching, as reflected in several recent papers. In effect, the use of smartphones has been proposed in several physics experiments spanning mechanics, electromagnetism, optics, oscillations, and waves, among other subjects. Although mechanical experiments have received considerable attention, most of them are based on the use of the accelerometer. An aspect that has received less attention is the use of rotation sensors or gyroscopes. An additional advance in the use of these devices is given by the possibility of obtaining data using the accelerometer and the gyroscope simultaneously. The aim of this paper is to consider the relation between the centripetal acceleration and the angular velocity. Instead of using a formal laboratory setup, in this experiment a smartphone is attached to the floor of a merry-go-round, found in many playgrounds. Several experiments were performed with the roundabout rotating in both directions and with the smart-phone at different distances from the center. The coherence of the measurements is shown.

  2. Angular-momentum effects in subbarrier fusion

    International Nuclear Information System (INIS)

    Halbert, M.L.; Beene, J.R.

    1993-01-01

    It has been known since about 1980 that fusion of heavy ions is greatly enhanced below the Coulomb barrier compared with normal barrier-penetration expectations. The excitation function for fusion of 64 Ni + 100 Mo measured in collaboration with a group at Washington University shows the effect clearly. The barrier energy is about 142 MeV; the lowest point is at about 90% of the barrier energy. The dotted curve is the prediction of a one-dimensional-barrier-penetration calculation of a type that reproduces the fusion of light projectiles very well. Several theoretical approaches have been successful in explaining the enhancement seen in much of the excitation-function data, but it cannot be said that a full understanding of the physics is in hand even after more than a decade of hard work. In fact, the reasonable success of several rather different models shows that the underlying phenomena are not well understood. Other types of data might be helpful in distinguishing among the many different theoretical approaches. An important kind of information not measured in most of the experiments is the dependence on ell, the angular momentum of the fusing system. We obtained such information on the cross sections, σ ell, as a function of ell for the fusion of 64 Ni and 100 Mo using the Spin Spectrometer. This paper will first review the experimental method and data and then present results from a more sophisticated analysis of the same data

  3. Cyclic transformation of orbital angular momentum modes

    International Nuclear Information System (INIS)

    Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2016-01-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states. (paper)

  4. Angular momentum transport by tidal acoustic wave

    International Nuclear Information System (INIS)

    Sakurai, T.

    1976-01-01

    An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed. (Auth.)

  5. Angular momentum transport by tidal acoustic wave

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T [Kyoto Univ. (Japan). Faculty of Engineering

    1976-05-01

    An analytical expression of the braking torque on a Jacobian ellipsoid rotating steadily in an enviromental gas is given, based on the assumption that the ellipsoid rotates around its shortest principal axis with an angular momentum slightly larger than that at the bifurcation point of the Maclaurin spheroid. This braking torque is effected by the gravitational interaction between the ellipsoid matter and a spiral density configuration in the environmental gas. This spiral configuration which is called a tidal acoustic wave, is caused by the zone of silence effect in a supersonic flow. With respect to a coordinates system rotating with the ellipsoid, a supersonic region appears outside a certain radius. In this supersonic region, the effect of the non-axisymmetric fluctuation in the ellipsoid potential propagates along the downstream branches of the Mach waves. This one-sided response of the supersonic part causes the tidal acoustic wave. The discussion is restricted to the equatorial plane, and an acoustic approximation of the basic equations is used under the assumption that the self-gravity effect of the environmental gas is negligable in comparison to the main gravity of the ellipsoid. The results are applied to the pre- and post-Main sequence phases of a rotating star, and relating astrophysical problems are discussed.

  6. Angular distributions of sputtered particles from NiTi alloy

    International Nuclear Information System (INIS)

    Neshev, I.; Hamishkeev, V.; Chernysh, V.S.; Postnikov, S.; Mamaev, B.

    1993-01-01

    The angular distributions of sputtered Ni and Ti from a polycrystalline NiTi (50-50%) alloy are investigated by Auger electron spectroscopy and Rutherford backscattering spectroscopy. A difference in the angular distributions is observed with Ni being sputtered preferentially near the surface normal. A computer program for the calculation of the angular distributions of constituents sputtered from binary targets is created and used. The mechanisms responsible for the observed differences in the angular distributions are discussed. It is found that the collisional cascade theory is not directly applicable to the results of the constituents' angular distributions obtained in the presence of oxygen. The fitted coefficients of bombardment-induced segregation are found to be greater than the experimentally obtained ones. (author)

  7. Jet angularity measurements for single inclusive jet production

    Science.gov (United States)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  8. Photon beam polarization and non-dipolar angular distributions

    International Nuclear Information System (INIS)

    Peshkin, M.

    1996-01-01

    Angular distributions of ejecta from unoriented atoms and molecules depend upon the polarization state of the incident x-rays as well as upon the dynamics of the physical systems being studied. I recommend a simple geometrical way of looking at the polarization and its effects upon angular distributions. The polarization is represented as a vector in a parameter space that faithfully represents the polarization of the beam. The simple dependence of the angular dependence of the angular distributions on the polarization vector enables easy extraction of the dynamical information contained in those angular distributions. No new physical results emerge from this geometrical approach, but known consequences of the symmetries appear in an easily visualized form that I find pleasing and that has proved to be useful for planning experiments and for analyzing data

  9. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  10. Modelling Photoelectron Production in the Enceladus Plume and Comparison with Observations by CAPS-ELS

    Science.gov (United States)

    Taylor, S. A.; Coates, A. J.; Jones, G.; Wellbrock, A.; Waite, J. H., Jr.

    2016-12-01

    The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer (CAPS) measures electrons in the energy range 0.6-28,000 eV with an energy resolution of 16.7%. ELS has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are found during Enceladus encounters in the energetic particle shadow where the spacecraft is shielded from penetrating radiation by the moon [Coates et al, 2013]. Observable is a population of photoelectrons at 20-30eV, which are seen at other bodies in the solar system and are usually associated with ionisation by the strong solar He II (30.4 nm) line. We have identified secondary peaks at 40-50eV detected by ELS which are also interpreted as a warmer population of photoelectrons created through the ionisation of neutrals in the Enceladus torus. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data using automated fitting procedures. This has yielded estimates for electron temperature and density as well as a spacecraft potential estimate which is corrected for.

  11. DEVELOPMENT OF NEXT-GENERATION DETECTORS AND INSTRUMENTATION FOR PHOTOELECTRON SPECTROSCOPY, DIFFRACTION AND HOLOGRAPHY

    International Nuclear Information System (INIS)

    Charles S. Fadley, Principal Investigator

    2005-01-01

    We have developed a new multichannel detector for use in photoelectron spectroscopy (as well as other types of high-count-rate spectroscopy) that will operate at rates of up to 1 GHz. Such detectors are crucial to the full utilization of the high-brightness radiation generated by third-generation synchrotron radiation sources. In addition, new software and hardware has been developed to permit rapidly and accurately scanning photoelectron spectra that will be accumulated in as little as a 200 micros. A versatile next-generation sample goniometer permitting equally rapid scanning of specimen angles or photon energies for angle-resolved photoemission studies, photoelectron diffraction, and photoelectron holography measurements, and cooling to below 10K has also been designed and constructed. These capabilities have been incorporated into a unique photoelectron spectrometer/diffractometer at the Advanced Light Source of the Lawrence Berkeley National Laboratory; this experimental system includes ultrahigh energy resolution, in situ rotation, variable polarization, and optional spin detection. This overall system is now being used in studies of a variety of problems including magnetic metals and oxides; metal/metal, metal/metal oxide, and metal-oxide/metal-oxide multilayers; and systems exhibiting giant and colossal magnetoresistance

  12. A simple model for determining photoelectron-generated radiation scaling laws

    International Nuclear Information System (INIS)

    Dipp, T.M.

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using a simple model to determine fundamental scaling laws. The model is one-dimensional (small-spot) and uses monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. Simple steady-state radiation, frequency, and maximum orbital distance equations were derived using small-spot radiation equations, a sin 2 type modulation function, and simple photoelectron dynamics. The result is a system of equations for various scaling laws, which, along with model and user constraints, are simultaneously solved using techniques similar to linear programming. Typical conductors illuminated by low-power sources producing photons with energies less than 5.0 eV are readily modeled by this small-spot, steady-state analysis, which shows they generally produce low efficiency (η rsL -10.5 ) pure photoelectron-induced radiation. However, the small-spot theory predicts that the total conversion efficiency for incident photon power to photoelectron-induced radiated power can go higher than 10 -5.5 for typical real conductors if photons having energies of 15 eV and higher are used, and should go even higher still if the small-spot limit of this theory is exceeded as well. Overall, the simple theory equations, model constraint equations, and solution techniques presented provide a foundation for understanding, predicting, and optimizing the generated radiation, and the simple theory equations provide scaling laws to compare with computational and laboratory experimental data

  13. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  14. Angular absorption of iridium - ICW12 needles: practical considerations

    International Nuclear Information System (INIS)

    Szymczyk, W.; Lesiak, J.

    1984-01-01

    An analysis was made of two potential sources of error in Ir 192 dosimetry: the effect of angular absorption and the differences in the ionization constants found in literature. Corrections for selfabsorption in the ICW12 iridium source were determined from measurements and calculations. It was found that the decrease in the dose caused by the angular absorption in the central therapeutic area of a typical implantation can exceed 5 percent. The need for employing the concept of ''constant exposure rate'' is stressed as well as that for using angular absorption in the form of absorption. 13 refs., 6 figs., 1 tab. (author)

  15. Nuclear spin measurement using the angular correlation method

    International Nuclear Information System (INIS)

    Schapira, J.-P.

    The double angular correlation method is defined by a semi-classical approach (Biendenharn). The equivalence formula in quantum mechanics are discussed for coherent and incoherent angular momentum mixing; the correlations are described from the density and efficiency matrices (Fano). The ambiguities in double angular correlations can be sometimes suppressed (emission of particles with a high orbital momentum l), using triple correlations between levels with well defined spin and parity. Triple correlations are applied to the case where the direction of linear polarization of γ-rays is detected [fr

  16. Measurement crankshaft angular speed of an OM403 engine

    Directory of Open Access Journals (Sweden)

    Biočanin Stojko

    2017-01-01

    Full Text Available In this paper, the methodology of the measurement of the angular speed of the crankshaft of a ten-cylinder diesel OM403 engine is presented, with regular and irregular engine operation. The angular velocity was measured under laboratory conditions, on already installed measuring equipment from the laboratory and on the break of a well known brand-Schenck, by using an optoelectronic incremental rotary encoder, a data acquisition module and the LabVIEW software for synchronization and management of the measuring equipment. The goal of this paper is to give a practical contribution to researches of measuring of crankshaft angular speed of the crankshaft engine OM 403.

  17. On Angular Sampling Methods for 3-D Spatial Channel Models

    DEFF Research Database (Denmark)

    Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum

    2015-01-01

    This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....... The random pairing method, which uses only twenty sinusoids in the ray-based model for generating the channels, presents good results if the spatial channel cluster is with a small elevation angle spread. For spatial clusters with large elevation angle spreads, however, the random pairing method would fail...... and the other two methods should be considered....

  18. Notes on the quantum theory of angular momentum

    CERN Document Server

    Feenberg, Eugene

    1999-01-01

    This classic, concise text has served a generation of physicists as an exceptionally useful guide to the mysteries of angular momenta and Clebsch-Gordon Coefficients. Derived from notes originally prepared to assist graduate students in reading research papers on atomic, molecular, and nuclear structure, the text first reviews the basic elements of quantum theory. It then examines the development of the fundamental commutation relations for angular momentum components and vector operators, and the ways in which matrix elements and eigenvalues of the angular momentum operators are worked out f

  19. LETTER TO THE EDITOR: Observation of photo-double ionization of carbon monoxide below the adiabatic double-ionization potential by threshold-photoelectron - photoelectron coincidence spectroscopy

    Science.gov (United States)

    Thompson, David B.; Dawber, Grant; Gulley, Nicola; MacDonald, Michael A.; King, George C.

    1997-03-01

    The production of 0953-4075/30/5/004/img8 and 0953-4075/30/5/004/img9 ion pairs in carbon monoxide at photon energies below the adiabatic double-ionization threshold of 41.25 eV has been probed in a threshold-photoelectron - photoelectron coincidence (TPEPECO) experiment using tunable VUV radiation and a sensitive electron spectrometer. The TPEPECO spectra provide evidence of 0953-4075/30/5/004/img10 production that does not involve creation and dissociation of a molecular dication, but instead results from complete dissociation of a molecular cation followed by autoionization of the atomic oxygen fragment. Furthermore, an electron - electron coincidence signal has been detected at photon energies as low as 36.5 eV, well below the previously measured onset for 0953-4075/30/5/004/img10 production.

  20. Photoelectron spectra as a probe of double-core resonsance in two-electron atoms

    International Nuclear Information System (INIS)

    Grobe, R.; Haan, S.L.; Eberly, J.H.

    1996-01-01

    The authors calculate photoelectron spectra for a two-electron atom under the influence of two external driving fields, using an essential states formalism. They focus on the regime of so-called coherence transfer, in which electron-electron correlation transfers field-induced photo-coherence from one electron to the other. In the case studied here, two laser fields are resonant with coupled atomic transitions, in the manner familiar from three-level dark-state spectroscopy. Dynamical two electron effects are monitored via the photoelectron energy spectrum. The authors show that the distribution of the photoelectron energies can be singly, doubly or triply peaked depending on the relative laser intensities. The electron spectra are independent of the turn-on sequence of the fields

  1. Transient photoelectron spectroscopy of the dissociative Br2(1Piu) state.

    Science.gov (United States)

    Strasser, Daniel; Goulay, Fabien; Leone, Stephen R

    2007-11-14

    Photodissociation of bromine on the Br2(1Piu) state is probed with ultrafast extreme ultraviolet (53.7 nm) single-photon ionization. Time-resolved photoelectron spectra show simultaneously the depletion of ground state bromine molecules as well as the rise of Br(2P3/2) products due to 402.5 nm photolysis. A partial photoionization cross-section ratio of atomic versus molecular bromine is obtained. Transient photoelectron spectra of a dissociative wave packet on the excited state are presented in the limit of low-power-density, single-photon excitation to the dissociative state. Transient binding energy shifts of "atomic-like" photoelectron peaks are observed and interpreted as photoionization of nearly separated Br atom pairs on the Br2(1Piu) state to repulsive dissociative ionization states.

  2. Dissociative photoionization of the NO molecule studied by photoelectron-photon coincidence technique

    International Nuclear Information System (INIS)

    Kivimaeki, A.; Alvarez-Ruiz, J.; Coreno, M.; Simone, M. de; Moise, A.; Partanen, L.; Richter, R.; Stankiewicz, M.

    2010-01-01

    Low-energy photoelectron-vacuum ultraviolet (VUV) photon coincidences have been measured using synchrotron radiation excitation in the inner-valence region of the nitric oxide molecule. The capabilities of the coincidence set-up were demonstrated by detecting the 2s -1 → 2p -1 radiative transitions in coincidence with the 2s photoelectron emission in Ne. In NO, the observed coincidence events are attributed to dissociative photoionization with excitation, whereby photoelectron emission is followed by fragmentation of excited NO + ions into O + + N* or N + + O* and VUV emission from an excited neutral fragment. The highest coincidence rate occurs with the opening of ionization channels which are due to correlation satellites of the 3σ photoionization. The decay time of VUV photon emission was also measured, implying that specific excited states of N atoms contribute significantly to observed VUV emission.

  3. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Medhurst, L.J.

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N{sub 2} and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N{sub 2}, C{sub 2}H{sub 4}, and CH{sub 3}Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies.

  4. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Medhurst, Laura Jane [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N2 and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N2, C2H4, and CH3Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies.

  5. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    International Nuclear Information System (INIS)

    Medhurst, L.J.

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N 2 and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N 2 , C 2 H 4 , and CH 3 Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies

  6. Efficient and tunable high-order harmonic light sources for photoelectron spectroscopy at surfaces

    International Nuclear Information System (INIS)

    Chiang, Cheng-Tien; Huth, Michael; Trützschler, Andreas; Schumann, Frank O.; Kirschner, Jürgen; Widdra, Wolf

    2015-01-01

    Highlights: • An overview of photoelectron spectroscopy using high-order harmonics is presented. • Photoemission spectra on Ag(0 0 1) using megahertz harmonics are shown. • A gas recycling system for harmonic generation is presented. • Non-stop operation of megahertz harmonics up to 76 h is demonstrated. • The bandwidth and pulse duration of the harmonics are discussed. - Abstract: With the recent progress in high-order harmonic generation (HHG) using femtosecond lasers, laboratory photoelectron spectroscopy with an ultrafast, widely tunable vacuum-ultraviolet light source has become available. Despite the well-established technique of HHG-based photoemission experiments at kilohertz repetition rates, the efficiency of these setups can be intrinsically limited by the space-charge effects. Here we present recent developments of compact HHG light sources for photoelectron spectroscopy at high repetition rates up to megahertz, and examples for angle-resolved photoemission experiments are demonstrated.

  7. New method for evaluating effective recovery time and single photoelectron response in silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Grodzicka, Martyna, E-mail: m.grodzicka@ncbj.gov.pl; Szczęśniak, Tomasz; Moszyński, Marek; Szawłowski, Marek; Grodzicki, Krystian

    2015-05-21

    The linearity of a silicon photomultiplier (SiPM) response depends on the number of APD cells and its effective recovery time and it is related to the intensity and duration of the detected light pulses. The aim of this study was to determine the effective recovery time on the basis of the measured SiPM response to light pulses of different durations. A closer analysis of the SiPM response to the light pulses shorter than the effective recovery time of APD cells led to a method for the evaluation of the single photoelectron response of the devices where the single photoelectron peak cannot be clearly measured. This is necessary in the evaluation of the number of fired APD cells (or the number of photoelectrons) in measurements with light pulses of various durations. Measurements were done with SiPMs manufactured by two companies: Hamamatsu and SensL.

  8. Visible sub-band gap photoelectron emission from nitrogen doped and undoped polycrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Elfimchev, S., E-mail: sergeyel@tx.technion.ac.il; Chandran, M.; Akhvlediani, R.; Hoffman, A.

    2017-07-15

    Highlights: • Nitrogen related centers in diamond film are mainly responsible for visible sub-band-gap photoelectron emission. • The influence of film thickness and substrate on the measured photoelectron emission yields was not found. • Nanocrystalline diamonds have low electron emission yields most likely because of high amount of defects. • Visible sub-band gap photoelectron emission may increase with temperature due to electron trapping/detrapping processes. - Abstract: In this study the origin of visible sub-band gap photoelectron emission (PEE) from polycrystalline diamond films is investigated. The PEE yields as a function of temperature were studied in the wavelengths range of 360–520 nm. Based on the comparison of electron emission yields from diamond films deposited on silicon and molybdenum substrates, with different thicknesses and nitrogen doping levels, we suggested that photoelectrons are generated from nitrogen related centers in diamond. Our results show that diamond film thickness and substrate material have no significant influence on the PEE yield. We found that nanocrystalline diamond films have low electron emission yields, compared to microcrystalline diamond, due to the presence of high amount of defects in the former, which trap excited electrons before escaping into the vacuum. However, the low PEE yield of nanocrystalline diamond films was found to increase with temperature. The phenomenon was explained by the trap assisted photon enhanced thermionic emission (ta-PETE) model. According to the ta-PETE model, photoelectrons are trapped by shallow traps, followed by thermal excitation at elevated temperatures and escape into the vacuum. Activation energies of trap levels were estimated for undoped nanocrystalline, undoped microcrystalline and N-doped diamond films using the Richardson-Dushman equation, which gives 0.13, 0.39 and 0.04 eV, respectively. Such low activation energy of trap levels makes the ta-PETE process very

  9. The angular momentum dependence of complex fragment emission

    International Nuclear Information System (INIS)

    Sobtka, L.G.; Sarantites, D.G.; Li, Z.

    1987-01-01

    Large fragment (A > 4) production at high angular momentum is studied via the reaction, 200 MeV 45 Sc + 65 Cu. Comparisons of the fragment yields from this reaction (high angular momentum) to those from 93 Nb + Be (low angular momentum) are used to verify the strong angular momentum dependence of large fragment production predicted by equilibrium models. Details of the coincident γ-ray distributions not only confirm a rigidly rotating intermediate but also indicate that the widths of the primary L-wave distributions decrease with increasing symmetry in the decay channel. These data are used to test the asymmetry and L-wave dependence of emission barriers calculated from a rotating, finite range corrected, liquid drop model. 21 refs., 10 figs

  10. Manifest rotation symmetric expressions for angular momentum eigenfunctions

    International Nuclear Information System (INIS)

    Eeg, J.O.; Wroldsen, J.

    1983-01-01

    Manifest rotation symmetric expressions for eigenfunctions for spin s, orbital angular momentum l and total angular momentum j = l+s, .... , /l-s/ in terms of (2j+1) x (2s+1) multipole transition matrices (MTM) is given. These matrices, which are irreducible tensor matrices, have an algebra together with ordinary spin matrices for spin s and spin j. Explicit expressions for MTM's and their algebra are given for angular momenta <-3. By means of some examples it is shown that within this formalism angular integrations in central field problems will be simplified considerably. Thus the formalism turns out to be very useful for instance for calculations within the MIT-bag and also within spin-spin interactions in atomic physics. (Auth.)

  11. The INCAS Project: An Innovative Contact-Less Angular Sensor

    Science.gov (United States)

    Ghislanzoni, L.; Di Cintio, A.; Solimando, M.; Parzianello, G.

    2013-09-01

    Angular Positions sensors are widely used in all spacecrafts, including re-entry vehicles and launchers, where mechanisms and pointing-scanning devices are required. The main applications are on mechanisms for TeleMeasure (TM) related to the release and deployment of devices, or on rotary mechanisms such as Solar Array Drive Mechanism (SADM) and Antenna Pointing Mechanism (APM). Longer lifetime (up to 7- 10 years) is becoming a new driver for the coming missions and contact technology sensors often incur in limitations due to the wear of the contacting parts [1].A Self-Compensating Absolute Angular Encoder was developed and tested in the frame of an ESA's ARTES 5.2 project, named INCAS (INnovative Contact-less Angular Sensor). More in particular, the INCAS sensor addresses a market need for contactless angular sensors aimed at replacing the more conventional rotary potentiometers, while featuring the same level of accuracy performances and extending the expected lifetime.

  12. Electronic orbital angular momentum and magnetism of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ji, E-mail: ji.luo@upr.edu

    2014-10-01

    Orbital angular momentum (OAM) of graphene electrons in a perpendicular magnetic field is calculated and corresponding magnetic moment is used to investigate the magnetism of perfect graphene. Variation in magnetization demonstrates its decrease with carrier-doping, plateaus in a large field, and de Haas–van Alphen oscillation. Regulation of graphene's magnetism by a parallel electric field is presented. The OAM originates from atomic-scale electronic motion in graphene lattice, and vector hopping interaction between carbon atomic orbitals is the building element. A comparison between OAM of graphene electrons, OAM of Dirac fermions, and total angular momentum of the latter demonstrates their different roles in graphene's magnetism. Applicability and relation to experiments of the results are discussed. - Highlights: • Orbital angular momentum of graphene electrons is calculated. • Orbital magnetic moment of graphene electrons is obtained. • Variation in magnetization of graphene is calculated. • Roles of different kinds of angular momentum are investigated.

  13. Efficient evaluation of angular power spectra and bispectra

    Science.gov (United States)

    Assassi, Valentin; Simonović, Marko; Zaldarriaga, Matias

    2017-11-01

    Angular statistics of cosmological observables are hard to compute. The main difficulty is due to the presence of highly-oscillatory Bessel functions which need to be integrated over. In this paper, we provide a simple and fast method to compute the angular power spectrum and bispectrum of any observable. The method is based on using an FFTlog algorithm to decompose the momentum-space statistics onto a basis of power-law functions. For each power law, the integrals over Bessel functions have a simple analytical solution. This allows us to efficiently evaluate these integrals, independently of the value of the multipole l. In particular, this method significantly speeds up the evaluation of the angular bispectrum compared to existing methods. To illustrate our algorithm, we compute the galaxy, lensing and CMB temperature angular power spectrum and bispectrum.

  14. Phase-space distributions and orbital angular momentum

    Directory of Open Access Journals (Sweden)

    Pasquini B.

    2014-06-01

    Full Text Available We review the concept of Wigner distributions to describe the phase-space distributions of quarks in the nucleon, emphasizing the information encoded in these functions about the quark orbital angular momentum.

  15. Helicons in uniform fields. II. Poynting vector and angular momenta

    Science.gov (United States)

    Stenzel, R. L.; Urrutia, J. M.

    2018-03-01

    The orbital and spin angular momenta of helicon modes have been determined quantitatively from laboratory experiments. The current density is obtained unambiguously from three dimensional magnetic field measurements. The only approximation made is to obtain the electric field from Hall Ohm's law which is usually the case for low frequency whistler modes. This allows the evaluation of the Poynting vector from which the angular momentum is obtained. Comparing two helicon modes (m = 0 and m = 1), one can separate the contribution of angular momentum of a rotating and non-rotating wave field. The orbital angular momentum is important to assess the wave-particle interaction by the transverse Doppler shift of rotating waves which has not been considered so far.

  16. Genetic characterization of angular leaf spot resistance in selected ...

    African Journals Online (AJOL)

    Mr Tryphone

    2015-10-28

    Oct 28, 2015 ... Angular leaf spot disease (ALS) caused by Pseudocercospora griseola is one ... Author(s) agree that this article remains permanently open access under the terms ... that results in shrivelled seeds of reduced size and quality.

  17. prevalence of angular leaf spot disease and sources of resistance

    African Journals Online (AJOL)

    USER

    2017-02-17

    Feb 17, 2017 ... Angular leaf spot (Pseudocercospora griseola Crous U, Brown) is one of the ..... Incidence of six foliar bean diseases in two agro ecological zones of eastern Democratic Republic of .... use of poor quality farmer-saved seed.

  18. Angular distributions of ions channeled in the Si crystals

    International Nuclear Information System (INIS)

    Petrovic, S.; Korica, S.; Kokkoris, M.; Neskovic, N.

    2002-01-01

    In this study we analyze the angular distributions of Ne 10+ ions channeled in the Si crystals. The ion energy is 60 MeV and the crystal thickness is varied from 286 to 3435 nm. This thickness range corresponds to the reduced crystal thickness range from 0.5 to 6, i.e. from the second to the twelfth rainbow cycle. The angular distributions were obtained via the numerical solution of the ion equations of motion and the computer simulation method. The analysis shows that the angular distribution has a periodic behavior. We also analyze the transmission patterns corresponding to the angular distributions. These patterns should be compared to the experimental patterns obtainable by a two-dimensional position sensitive detector. We demonstrate that, when the ion beam divergence is sufficiently large, i.e. much larger than the critical angle for channeling, the channeling star effect occurs in the transmission patterns

  19. Angular Momentum Transport in Quasi-Keplerian Accretion Disks ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi &. Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, ...

  20. The mass and angular momentum of reconstructed metric perturbations

    Science.gov (United States)

    van de Meent, Maarten

    2017-06-01

    We prove a key result regarding the mass and angular momentum content of linear vacuum perturbations of the Kerr metric obtained through the formalism developed by Chrzarnowski, Cohen, and Kegeles (CCK). More precisely, we prove that the Abbott-Deser mass and angular momentum integrals of any such perturbation vanish when that perturbation was obtained from a regular Fourier mode of the Hertz potential. As a corollary we obtain a generalization of previous results on the completion of the ‘no string’ radiation gauge metric perturbation generated by a point particle. We find that for any bound orbit around a Kerr black hole, the mass and angular momentum perturbations completing the CCK metric are simply the energy and angular momentum of the particle ‘outside’ the orbit and vanish ‘inside’ the orbit.

  1. Design and Implementation of a Digital Angular Rate Sensor

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2010-10-01

    Full Text Available With the aim of detecting the attitude of a rotating carrier, the paper presents a novel, digital angular rate sensor. The sensor consists of micro-sensing elements (gyroscope and accelerometer, signal processing circuit and micro-processor (DSP2812. The sensor has the feature of detecting three angular rates of a rotating carrier at the same time. The key techniques of the sensor, including sensing construction, sensing principles, and signal processing circuit design are presented. The test results show that the sensor can sense rolling, pitch and yaw angular rate at the same time and the measurement error of yaw (or pitch angular rate and rolling rate of the rotating carrier is less than 0.5%.

  2. Large-uncertainty intelligent states for angular momentum and angle

    International Nuclear Information System (INIS)

    Goette, Joerg B; Zambrini, Roberta; Franke-Arnold, Sonja; Barnett, Stephen M

    2005-01-01

    The equality in the uncertainty principle for linear momentum and position is obtained for states which also minimize the uncertainty product. However, in the uncertainty relation for angular momentum and angular position both sides of the inequality are state dependent and therefore the intelligent states, which satisfy the equality, do not necessarily give a minimum for the uncertainty product. In this paper, we highlight the difference between intelligent states and minimum uncertainty states by investigating a class of intelligent states which obey the equality in the angular uncertainty relation while having an arbitrarily large uncertainty product. To develop an understanding for the uncertainties of angle and angular momentum for the large-uncertainty intelligent states we compare exact solutions with analytical approximations in two limiting cases

  3. The Effects of Isokinetic Strength Training on Strength at Different Angular Velocities: a Pilot Study

    Directory of Open Access Journals (Sweden)

    Tuğba Kocahan

    2017-09-01

    Conclusion: It was shown that angular velocity is important in isokinetic training, and that training at high angular velocities provides strength increases at lower angular velocities, but would not increase strength at angular velocities above the training level. For this reason, it is thought that in the preparation of an isokinetic strength training protocol, angular velocities need to be taken into account. For any athlete, the force at the angular velocity required in her/his sports branch needs to be considered.

  4. X-ray photoelectron spectroscopy study of β-BaB2O4 optical surface

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Kesler, V.G.; Kokh, A.E.; Pokrovsky, L.D.

    2004-01-01

    An X-ray photoelectron spectroscopy (XPS) study has been performed for (0 0 1) BaB 2 O 4 . The crystal surface has been polished mechanically and cleaned by chemical etching. In XPS observation, depth profiling has been produced by sputtering with Ar + 3 keV ions. Photoelectron binding energies of original element core levels and valence band have been measured as a function of sputtering time. The persistence of binding energies of barium and boron core levels and valence band structure has been found. For O 1 s core level the formation of new spectral components with lower binding energies has been revealed

  5. The adsorption of mercury on tungsten (100) studied by ultra-violet photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Egelhoff, W.F. Jr.; Perry, D.L.; Linnett, J.W.

    1976-01-01

    In recent years, photoelectron spectroscopy has been applied to the study of adsorption on several metal surfaces. A popular choice of substrate has been the 100 face of single crystal tungsten, since adsorption on this surface has been well-characterised by a wide variety of experimental techniques. In this letter a study of the adsorption of mercury on W(100) by ultra-violet photoelectron spectroscopy (UPS) is reported. These results, seen in the context of previous UPS studies of chemisorption, show a number of interesting features. (Auth.)

  6. Photoelectron interference fringes by super intense x-ray laser pulses

    International Nuclear Information System (INIS)

    Toyota, Koudai; Morishita, Toru; Watanabe, Shinichi; Tolstikhin, Oleg I

    2009-01-01

    The photoelectron spectra of H - produced by circularly polarized strong high-frequency laser pulses are theoretically studied. An oscillating substructure in the above-threshold ionization (ATI) peaks is observed, which extends the validity of the earlier findings in the 1D calculations [K. Toyota et al., Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. Its origin is due to an interference between a pair of photoelectron wave packets created in the rising and falling part of the pulse, which appears clearly in the stabilization regime.

  7. A Very Fast and Angular Momentum Conserving Tree Code

    International Nuclear Information System (INIS)

    Marcello, Dominic C.

    2017-01-01

    There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.

  8. Existence of black holes due to concentration of angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Khuri, Marcus A. [Department of Mathematics, Stony Brook University,Stony Brook, NY 11794 (United States)

    2015-06-29

    We present a general sufficient condition for the formation of black holes due to concentration of angular momentum. This is expressed in the form of a universal inequality, relating the size and angular momentum of bodies, and is proven in the context of axisymmetric initial data sets for the Einstein equations which satisfy an appropriate energy condition. A brief comparison is also made with more traditional black hole existence criteria based on concentration of mass.

  9. Gamma-gamma angular correlation measurement in the 100 Ru

    International Nuclear Information System (INIS)

    Kenchian, G.

    1990-01-01

    An angular correlation automatic spectrometer with two Ge(Li) detectors has been developed. The spectrometer moves automatically, controlled by a microcomputer. The gamma-gamma directional angular correlations of coincidence transitions have been measured in 100 Ru nuclide, following the β + and electron capture of 100 Rh. The 100 Rh source has been produced with 100 Ru(p,n) 100 Rh reaction, using the proton beam of the Cyclotron Accelerator insiding in 100 Ru isotope. (author)

  10. A Very Fast and Angular Momentum Conserving Tree Code

    Energy Technology Data Exchange (ETDEWEB)

    Marcello, Dominic C., E-mail: dmarce504@gmail.com [Department of Physics and Astronomy, and Center for Computation and Technology Louisiana State University, Baton Rouge, LA 70803 (United States)

    2017-09-01

    There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.

  11. Analytical scheme calculations of angular momentum coupling and recoupling coefficients

    Science.gov (United States)

    Deveikis, A.; Kuznecovas, A.

    2007-03-01

    We investigate the Scheme programming language opportunities to analytically calculate the Clebsch-Gordan coefficients, Wigner 6j and 9j symbols, and general recoupling coefficients that are used in the quantum theory of angular momentum. The considered coefficients are calculated by a direct evaluation of the sum formulas. The calculation results for large values of quantum angular momenta were compared with analogous calculations with FORTRAN and Java programming languages.

  12. Analytical scheme calculations of angular momentum coupling and recoupling coefficients

    International Nuclear Information System (INIS)

    Deveikis, A.; Kuznecovas, A.

    2007-01-01

    We investigate the Scheme programming language opportunities to analytically calculate the Clebsch-Gordan coefficients, Wigner 6j and 9j symbols, and general recoupling coefficients that are used in the quantum theory of angular momentum. The considered coefficients are calculated by a direct evaluation of the sum formulas. The calculation results for large values of quantum angular momenta were compared with analogous calculations with FORTRAN and Java programming languages

  13. Orbital and angular motion construction for low thrust interplanetary flight

    Science.gov (United States)

    Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.

    2016-11-01

    Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.

  14. Spatial Angular Compounding for Elastography without the Incompressibility Assumption

    OpenAIRE

    Rao, Min; Varghese, Tomy

    2005-01-01

    Spatial-angular compounding is a new technique that enables the reduction of noise artifacts in ultrasound elastography. Previous results using spatial angular compounding, however, were based on the use of the tissue incompressibility assumption. Compounded elastograms were obtained from a spatially-weighted average of local strain estimated from radiofrequency echo signals acquired at different insonification angles. In this paper, we present a new method for reducing the noise artifacts in...

  15. Diffraction by a plane angular sector, a new derivation

    DEFF Research Database (Denmark)

    Hansen, Thokild B.

    1990-01-01

    An alternative derivation is given for the exact solution to the scattering problem in which a Hertz dipole illuminates a perfectly conducting plane angular sector. Specifically, the Ohm-Rayleigh method is used rather than that of Satterwhite (1969)......An alternative derivation is given for the exact solution to the scattering problem in which a Hertz dipole illuminates a perfectly conducting plane angular sector. Specifically, the Ohm-Rayleigh method is used rather than that of Satterwhite (1969)...

  16. Shape coexistence in 72Kr at finite angular momentum

    International Nuclear Information System (INIS)

    Almehed, Daniel; Walet, Niels R.

    2004-01-01

    We investigate shape coexistence in a rotating nucleus. We concentrate on the case of 72 Kr which exhibits an interesting interplay between prolate and oblate shaped states as a function of angular momentum. The calculation uses the local harmonic version of the method of self-consistent adiabatic large-amplitude collective motion. We analyse how the collective behaviour of the system changes with angular momentum and we focus on the role of non-axial shapes

  17. Spin and intrinsic angular momentum; application to the electromagnetic field

    International Nuclear Information System (INIS)

    Paillere, P.

    1993-05-01

    Within the framework of the field theory governed by a Lagrangian, function of the tensor quantities and their covariant first derivatives, and starting with the third order intrinsic angular momentum tensor obtained from a variational principle, the intrinsic angular momentum vector of the electromagnetic field in vacuum is determined. This expression leads to spin matrices for the electromagnetic field, with unity as eigenvalue, thus allowing to bridge the gap between continuous physics and quantum physics. 6 refs

  18. Effects of angular misalignment on optical klystron undulator radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, G., E-mail: gmishra_dauniv@yahoo.co.in; Prakash, Bramh; Gehlot, Mona

    2015-11-21

    In this paper ,we analyze the important effects of optical klystron undulator radiation with an angular offset of the relativistic electron beam in the second undulator section. An anlytical expression for the undulator radiation is obtained through a transparent and simple procedure.It is shown that the effects of the angular offset is more severe for longer undulator lengths and with higher dispersive field strengths.Both these effects are less pronounced for undulators with large K values.

  19. Angular momentum of circularly polarized light in dielectric media

    Science.gov (United States)

    Mansuripur, Masud

    2005-07-01

    A circularly polarized plane-wave is known to have no angular momentum when examined through Maxwell’s equations. This, however, contradicts the experimentally observed facts, where finite segments of plane waves are known to be capable of imparting angular momentum to birefringent platelets. Using a superposition of four plane-waves propagating at slightly different angles to a common direction, we derive an expression for the angular momentum density of a single plane-wave in the limit when the propagation directions of the four beams come into alignment. We proceed to use this four-beam technique to analyze the conservation of angular momentum when a plane-wave enters a dielectric slab from the free space. The angular momentum of the beam is shown to decrease upon entering the dielectric medium, by virtue of the fact that the incident beam exerts a torque on the slab surface at the point of entry. When the beam leaves the slab, it imparts an equal but opposite torque to the exit facet, thus recovering its initial angular momentum upon re-emerging into the free-space. Along the way, we derive an expression for the outward-directed force of a normally incident, finite-diameter beam on a dielectric surface; the possible relationship between this force and the experimentally observed bulging of a liquid surface under intense illumination is explored.

  20. Investigation of angular and axial smoothing of PET data

    International Nuclear Information System (INIS)

    Daube-Witherspoon, M.E.; Carson, R.E.

    1996-01-01

    Radial filtering of emission and transmission data is routinely performed in PET during reconstruction in order to reduce image noise. Angular smoothing is not typically done, due to the introduction of a non-uniform resolution loss; axial filtering is also not usually performed on data acquired in 2D mode. The goal of this paper was to assess the effects of angular and axial smoothing on noise and resolution. Angular and axial smoothing was incorporated into the reconstruction process on the Scanditronix PC2048-15B brain PET scanner. In-plane spatial resolution and noise reduction were measured for different amounts of radial and angular smoothing. For radial positions away from the center of the scanner, noise reduction and degraded tangential resolution with no loss of radial resolution were seen. Near the center, no resolution loss was observed, but there was also no reduction in noise for angular filters up to a 7 degrees FWHM. These results can be understood by considering the combined effects of smoothing projections across rows (angles) and then summing (backprojecting). Thus, angular smoothing is not optimal due to its anisotropic noise reduction and resolution degradation properties. However, uniform noise reduction comparable to that seen with radial filtering can be achieved with axial smoothing of transmission data. The axial results suggest that combined radial and axial transmission smoothing could lead to improved noise characteristics with more isotropic resolution degradation