WorldWideScience

Sample records for energy hydrogen ion

  1. A high-flux low-energy hydrogen ion beam using an end-Hall ion source

    NARCIS (Netherlands)

    Veldhoven, J. van; Sligte, E. te; Janssen, J.P.B.

    2016-01-01

    Most ion sources that produce high-flux hydrogen ion beams perform best in the high energy range (keV). Alternatively, some plasma sources produce very-lowenergy ions (<< 10 eV). However, in an intermediate energy range of 10-200 eV, no hydrogen ion sources were found that produce high-flux beams.

  2. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  3. Experimental investigations of hydrogen cluster ions

    International Nuclear Information System (INIS)

    Lumig, H.A. van.

    1978-01-01

    Experiments to obtain information about the structure and stability of small hydrogen cluster ions have been performed. Attenuation and fragmentation measurements are presented of hydrogen cluster ions colliding with nitrogen, argon, hydrogen and helium over fixed energy ranges. The total collision and differential fragmentation cross sections are tabulated. (C.F.)

  4. Study of high energy ion loss during hydrogen minority heating in TFTR

    International Nuclear Information System (INIS)

    Park, J.; Zweben, S.J.

    1994-03-01

    High energy ion loss during hydrogen minority ICRF heating is measured and compared with the loss of the D-D fusion products. During H minority heating a relatively large loss of high energy ions is observed at 45 degrees below the outer midplane, with or without simultaneous NBI heating. This increase is most likely due to a loss of the minority tail protons, a possible model for this process is described

  5. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  6. Investigation of the energy loss and the charge state of high energy heavy ions in a hydrogen plasma

    International Nuclear Information System (INIS)

    Dietrich, K.G.

    1991-07-01

    For heavy ions with energy of 1.4 to 5.9 MeV/u the energy loss and charge state after transmission through a totally ionized hydrogen plasma are investigated. Plasma target was a Z-pinch device incorporated in the beam optics of the accelerator by a pumping system. In the 20 cm long pinch hydrogen plasmas with densities up to 1.5x10 19 cm -3 and temperatures above 5 eV are produced, with ionization efficiency higher than 99%. The ions pass the plasma on the symmetry axis of the plasma column through small apertures in the electrodes. The energy loss was measured by time-of-flight method, the plasma density by interferometry along the pinch axis. For the first time the ion charge after transmission through the plasma has been determined by a charge spectrometer being a combination of a dipole magnet and a position sensitive detector with high time resolution. A growth of the average charge of heavy ions in plasma higher than the equilibrium charge in cold gas was discovered, caused by a reduction of electron capture by fast heavy ions in ionized matter. The electron loss rates in plasma and cold gas are equal. (orig./AH) [de

  7. Low energy cross section data for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions with atoms and molecules

    International Nuclear Information System (INIS)

    Okuno, Kazuhiko

    2007-04-01

    Systematic cross section measurements for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions in low energy collisions with atoms and molecules have been performed continuously by the identical apparatus installed with an octo-pole ion beam guide (OPIG) since 1980 till 2004. Recently, all of accumulated cross section data for a hundred collision systems has been entered into CMOL and CHART of the NIFS atomic and molecular numerical database together with some related cross section data. In this present paper, complicated ion-molecule reactions in hydrogen systems are revealed and the brief outlines of specific properties in low energy charge transfer collisions of multiply charged ions with atoms and molecules are introduced. (author)

  8. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  9. Low-energy hydrogen flux measurements at the TORTUR tokamak with negative ion conversion

    International Nuclear Information System (INIS)

    Toledo, Wiebo van.

    1990-01-01

    The interaction of a tokamak plasma with the vessel wall is one of the most important subjects in thermonuclear research. The information about this interaction is not complete without direct detection of the outward stream of low-energy, down to a few electronvolts, neutral hydrogen or deuterium atoms. The detection of these atoms is the subject of this thesis. An appropriate method to analyse the atoms which are emitted from the edge plasma is to use a time-of-flight analyser. This kind of apparatus selects particles according to their velocities with-out distinguishing between different masses. If these analysers use the Daly-method the lowest measurable energy of the hydrogen atoms is approximately 25 electronvolts. To increase the detection efficiency a new detection method was developed. This new method uses the conversion of hydrogen atoms into H- ions on a cesiated tungsten surface. By this conversion the lowest measurable energy is decreased down to 5 electron-volt. (author). 93 refs.; 44 figs.; 7 tabs

  10. Sputtering of carbon using hydrogen ion beams with energies of 60–800 eV

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, Dmitry S., E-mail: dmitrisidoroff@rambler.ru [Nizhny Novgorod State University, 23 Gagarina Avenue, Nizhny Novgorod, Nizhny Novgorod Region 603950 (Russian Federation); Chkhalo, Nikolay I., E-mail: chkhalo@ipm.sci-nnov.ru [Institute for Physics of Microstructures RAS, Academicheskaya Str. 7, Afonino, Nizhny Novgorod Region, Kstovsky District, Kstovo Region 603087 (Russian Federation); Mikhailenko, Mikhail S.; Pestov, Alexey E.; Polkovnikov, Vladimir N. [Institute for Physics of Microstructures RAS, Academicheskaya Str. 7, Afonino, Nizhny Novgorod Region, Kstovsky District, Kstovo Region 603087 (Russian Federation)

    2016-11-15

    This article presents the result of a study on the sputtering of carbon films by low-energy hydrogen ions. In particular, the etching rate and surface roughness were measured. The range of energies where the sputtering switches from pure chemical to a combination of chemical and physical mechanisms was determined. It is shown that Sigmund’s theory for ion etching does not work well for fields of energy less than 150 eV and that it accurately describes the dependence of a sputtering coefficient on ion energy for energies greater than 300 eV. A strong smoothing effect for the surface of carbon film was also found. This result is interesting in itself and for its significance for the manufacture of super-smooth surfaces for X-ray applications.

  11. Effect of helium ion bombardment on hydrogen behaviour in stainless steel

    International Nuclear Information System (INIS)

    Guseva, M.I.; Stolyarova, V.G.; Gorbatov, E.A.

    1987-01-01

    The effect of helium ion bombardment on hydrogen behaviour in 12Kh18N10T stainless steel is investigated. Helium and hydrogen ion bombardment was conducted in the ILU-3 ion accelerator; the fluence and energy made up 10 16 -5x10 17 cm -2 , 30 keV and 10 16 -5x10 18 cm -2 , 10 keV respectively. The method of recoil nuclei was used for determination of helium and hydrogen content. Successive implantation of helium and hydrogen ions into 12Kh18N10T stainless steel results in hydrogen capture by defects formed by helium ions

  12. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    International Nuclear Information System (INIS)

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-01-01

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies

  13. Effect of low-energy hydrogen ion implantation on dendritic web silicon solar cells

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Rai-Choudhury, P.; Fonash, S. J.; Singh, R.

    1986-01-01

    The effect of a low-energy (0.4 keV), short-time (2-min), heavy-dose (10 to the 18th/sq cm) hydrogen ion implant on dendritic web silicon solar cells and material was investigated. Such an implant was observed to improve the cell open-circuit voltage and short-circuit current appreciably for a number of cells. In spite of the low implant energy, measurements of internal quantum efficiency indicate that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. This is supported by the observation that the measured minority-carrier diffusion length in the base did not change when the emitter was removed. In some cases, a threefold increase of the base diffusion length was observed after implantation. The effects of the hydrogen implantation were not changed by a thermal stress test at 250 C for 111 h in nitrogen. It is speculated that hydrogen enters the bulk by traveling along dislocations, as proposed recently for edge-defined film-fed growth silicon ribbon.

  14. Hydrogen microscopy and analysis of DNA repair using focused high energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Dollinger, G. [Universitaet der Bundeswehr Muenchen, LRT 2, Werner Heisenberg Weg 39, D-85579 Neubiberg (Germany)]. E-mail: guenther.dollinger@unibw.de; Bergmaier, A. [Universitaet der Bundeswehr Muenchen, LRT 2, Werner Heisenberg Weg 39, D-85579 Neubiberg (Germany); Hauptner, A. [Physik Department E 12, Technische Universitaet Muenchen, D-85748 Garching (Germany); Dietzel, S. [Department Biologie II, Ludwigs-Maximilians-Universitaet Muenchen, Grosshaderner Str. 2, 82152 Planegg-Martinsried (Germany); Drexler, G.A. [Strahlenbiologisches Institut, LMU Muenchen, Schillerstr. 42, D-80336 Muenchen und Institut fuer Strahlenbiologie, GSF-Forschungszentrum, D-85764 Neuherberg (Germany); Greubel, C. [Physik Department E 12, Technische Universitaet Muenchen, D-85748 Garching (Germany); Hable, V. [Universitaet der Bundeswehr Muenchen, LRT 2, Werner Heisenberg Weg 39, D-85579 Neubiberg (Germany); Reichart, P. [School of Physics, University of Melbourne, Victoria 3010 (Australia); Kruecken, R. [Physik Department E 12, Technische Universitaet Muenchen, D-85748 Garching (Germany); Cremer, T. [Department Biologie II, Ludwigs-Maximilians-Universitaet Muenchen, Grosshaderner Str. 2, 82152 Planegg-Martinsried (Germany); Friedl, A.A. [Strahlenbiologisches Institut, LMU Muenchen, Schillerstr. 42, D-80336 Muenchen und Institut fuer Strahlenbiologie, GSF-Forschungszentrum, D-85764 Neuherberg (Germany)

    2006-08-15

    The ion microprobe SNAKE (Supraleitendes Nanoskop fuer Angewandte Kernphysikalische Experimente) at the Munich 14 MV tandem accelerator achieves beam focussing by a superconducting quadrupole doublet and can make use of a broad range of ions and ion energies, i.e. 4-28 MeV protons or up to 250 MeV gold ions. Due to these ion beams, SNAKE is particularly attractive for ion beam analyses in various fields. Here we describe two main applications of SNAKE. One is the unique possibility to perform three-dimensional hydrogen microscopy by elastic proton-proton scattering utilizing high energy proton beams. The high proton energies allow the analysis of samples with a thickness in the 100 {mu}m range with micrometer resolution and a sensitivity better than 1 ppm. In a second application, SNAKE is used to analyse protein dynamics in cells by irradiating live cells with single focussed ions. Fluorescence from immunostained protein 53BP1 is used as biological track detector after irradiation of HeLa cells. It is used to examine the irradiated region in comparison with the targeted region. Observed patterns of fluorescence foci agree reasonably well with irradiation patterns, indicating an overall targeting accuracy of about 2 {mu}m while the beam spot size is less than 0.5 {mu}m in diameter. This performance shows successful adaptation of SNAKE for biological experiments where cells are targeted on a sub-cellular level by energetic ions.

  15. Small-angle scattering of ions or atoms by atomic hydrogen

    International Nuclear Information System (INIS)

    Franco, V.

    1982-01-01

    A theory for small-angle scattering of arbitrary medium- or high-energy atoms or ions by atomic hydrogen is described. Results are obtained in terms of the known closed-form and easily calculable Glauber-approximation scattering amplitudes for electron-hydrogen collisions and for collisions between the nucleus (treated as one charged particle) of the ion or atom and the hydrogen atom, and in terms of the transition form factor of the arbitrary ion or atom. Applications are made to the angular differential cross sections for the excitation of atomic hydrogen to its n = 2 states by singly charged ground-state helium ions having velocities of roughly between 1/2 and 1 a.u. The differential cross sections are obtained in terms of electron-hydrogen amplitudes and the known He + ground-state form factor. Comparisons are made with other calculations and with recent measurements. The results are in good agreement with the data. It is seen that the effect of the He + electron is to produce significant constructive interference at most energies

  16. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    Science.gov (United States)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  17. Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage.

    Science.gov (United States)

    Wang, Xianfu; Xie, Yiming; Tang, Kai; Wang, Chao; Yan, Chenglin

    2018-05-11

    Hydrogen ions are ideal charge carriers for rechargeable batteries due to their small ionic radius and wide availability. However, little attention has been paid to hydrogen-ion storage devices because they generally deliver relatively low Coulombic efficiency as a result of the hydrogen evolution reaction that occurs in an aqueous electrolyte. Herein, we successfully demonstrate that hydrogen ions can be electrochemically stored in an inorganic molybdenum trioxide (MoO 3 ) electrode with high Coulombic efficiency and stability. The as-obtained electrode exhibits ultrafast hydrogen-ion storage properties with a specific capacity of 88 mA hg -1 at an ultrahigh rate of 100 C. The redox reaction mechanism of the MoO 3 electrode in the hydrogen-ion cell was investigated in detail. The results reveal a conversion reaction of the MoO 3 electrode into H 0.88 MoO 3 during the first hydrogen-ion insertion process and reversible intercalation/deintercalation of hydrogen ions between H 0.88 MoO 3 and H 0.12 MoO 3 during the following cycles. This study reveals new opportunities for the development of high-power energy storage devices with lightweight elements. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sputtering of solid nitrogen and oxygen by keV hydrogen ions

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Stenum, B.

    1994-01-01

    Electronic sputtering of solid nitrogen and oxygen by keV hydrogen ions has been studied at two low-temperature setups. The yield of the sputtered particles has been determined in the energy regime 4-10 keV for H+, H-2+ and H-3+ ions. The yield for oxygen is more than a factor of two larger than...... that for nitrogen. The energy distributions of the sputtered N2 and O2 molecules were measured for hydrogen ions in this energy regime as well. The yields from both solids turn out to depend on the sum of the stopping power of all atoms in the ion. The yield increases as a quadratic function of the stopping power...

  19. Collisions of low-energy multicharged ions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Crandall, D.H.

    1981-01-01

    Experimental measurements of cross sections for collisions of multiply charged ions with atoms at the lowest attainable collision energies are reported. Emphasis is on electron capture from hydrogen atoms by multiply charged ions at energies below 1 keV/amu. The principal effort is the development of a merged-ion-atom-beams apparatus for studies down to 1 eV/amu relative energy

  20. Monte Carlo calculation of energy loss of hydrogen and helium ions transmitted under channelling conditions in silicon single crystal

    International Nuclear Information System (INIS)

    El Bounagui, O.; Erramli, H.

    2010-01-01

    In this work, we report on calculations of the electronic channelling energy loss of hydrogen and helium ions along Si and Si axial directions for the low energy range by using the Monte Carlo simulation code. Simulated and experimental data are compared for protons and He ions in the and axis of silicon. A reasonable agreement was found. Computer simulation was also employed to study the angular dependence of energy loss for 0.5, 0.8, 1, and 2 MeV channelled 4 He ions transmitted through a silicon crystal of 3 μm thickness along the axis.

  1. Microanalysis on the Hydrogen Ion Irradiated 50 wt pct TiC-C Films

    Institute of Scientific and Technical Information of China (English)

    Hui JIANG; Yaoguang LIU; Ningkang HUANG

    2007-01-01

    The 50 wt pct TiC-C films were prepared on stainless steel substrates by using a technique of ion beam mixing.These films were irradiated by hydrogen ion beam with a dose of 1×1018 ions/cm2 and an energy of 5 keV.Microanalysis of X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) were used to analyze the films before and after hydrogen ion irradiation and to study the mechanism of hydrogen resistance.

  2. Ion beam analysis of hydrogen retained in carbon nanotubes and carbon films

    International Nuclear Information System (INIS)

    McDaniel, F.D.; Holland, O.W.; Naab, F.U.; Mitchell, L.J.; Dhoubhadel, M.; Duggan, J.L.

    2006-01-01

    Carbon nanotubes (CNTs) are studied as a possible hydrogen storage medium for future energy needs. Typically, hydrogen is stored in the CNTs by exposure of the material to a high-pressure H 2 atmosphere at different temperatures. The maximum hydrogen concentrations stored following this method and measured using ion beam analysis do not exceed 1 wt.%. Introduction of defects by ion irradiation (i.e. implantation) prior to high-pressure H 2 treatment, offers an alternative method to activate H adsorption and enhance the chemisorption of hydrogen. This is a preliminary work where hydrogen was introduced into single-wall nanotubes and carbon films by low-energy (13.6 keV) hydrogen ion implantation. Elastic recoil detection was used to measure the quantity and depth distribution of hydrogen retained in the carbonaceous materials. Results show that there are substantial differences in the measured profiles between the CNT samples and the vitreous carbon. On another hand, only ∼43% of the implanted hydrogen in the CNTs is retained in the region where it should be located according to the SRIM simulations for a solid carbon sample

  3. Determination of Hydrogen Density by Swift Heavy Ions.

    Science.gov (United States)

    Xu, Ge; Barriga-Carrasco, M D; Blazevic, A; Borovkov, B; Casas, D; Cistakov, K; Gavrilin, R; Iberler, M; Jacoby, J; Loisch, G; Morales, R; Mäder, R; Qin, S-X; Rienecker, T; Rosmej, O; Savin, S; Schönlein, A; Weyrich, K; Wiechula, J; Wieser, J; Xiao, G Q; Zhao, Y T

    2017-11-17

    A novel method to determine the total hydrogen density and, accordingly, a precise plasma temperature in a lowly ionized hydrogen plasma is described. The key to the method is to analyze the energy loss of swift heavy ions interacting with the respective bound and free electrons of the plasma. A slowly developing and lowly ionized hydrogen theta-pinch plasma is prepared. A Boltzmann plot of the hydrogen Balmer series and the Stark broadening of the H_{β} line preliminarily defines the plasma with a free electron density of (1.9±0.1)×10^{16}  cm^{-3} and a free electron temperature of 0.8-1.3 eV. The temperature uncertainty results in a wide hydrogen density, ranging from 2.3×10^{16} to 7.8×10^{18}  cm^{-3}. A 108 MHz pulsed beam of ^{48}Ca^{10+} with a velocity of 3.652  MeV/u is used as a probe to measure the total energy loss of the beam ions. Subtracting the calculated energy loss due to free electrons, the energy loss due to bound electrons is obtained, which linearly depends on the bound electron density. The total hydrogen density is thus determined as (1.9±0.7)×10^{17}  cm^{-3}, and the free electron temperature can be precisely derived as 1.01±0.04  eV. This method should prove useful in many studies, e.g., inertial confinement fusion or warm dense matter.

  4. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  5. Bound states of hydrogen-like ions in Debye plasma

    International Nuclear Information System (INIS)

    Li Bowen; Jiang Jun; Kang Weimin; Yang Ningxuan; Dong Chenzhong

    2009-01-01

    The plasma screening effects on the energy levels and wave functions of hydrogen-like ions were estimated by using Debye model. The effects on n l(n=1-4, l=0-3) energy levels and wave functions of hydrogen and Fe 25+ ion versus screening lengths λ have been analyzed. Furthermore, the screening effects versus quantum number n and l has been analyzed. The results show that the screening effects increasing as n increasing and decreasing as l increasing. Last, the Eigenergies of isoelectronic series change against screening parameter λ has been discussed, it's shown that the plasma screening effects are decreasing as nuclear charge increasing. (authors)

  6. New approach for the electronic energies of the hydrogen molecular ion

    International Nuclear Information System (INIS)

    Scott, Tony C.; Aubert-Frecon, Monique; Grotendorst, Johannes

    2006-01-01

    Herein, we present analytical solutions for the electronic energy eigenvalues of the hydrogen molecular ion H 2 + , namely the one-electron two-fixed-center problem. These are given for the homonuclear case for the countable infinity of discrete states when the magnetic quantum number m is zero, i.e., for 2 Σ + states. In this case, these solutions are the roots of a set of two coupled three-term recurrence relations. The eigensolutions are obtained from an application of experimental mathematics using Computer Algebra as its principal tool and are vindicated by numerical and algebraic demonstrations. Finally, the mathematical nature of the eigenenergies is identified

  7. Chemical Bonding States of TiC Films before and after Hydrogen Ion Irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    TiC films deposited by rf magnetron sputtering followed by Ar+ ion bombardment were irradiated with a hydrogen ion beam. X-ray photoelectron spectroscopy (XPS) was used for characterization of the chemical bonding states of C and Ti elements of the TiC films before and after hydrogen ion irradiation, in order to understand the effect of hydrogen ion irradiation on the films and to study the mechanism of hydrogen resistance of TiC films. Conclusions can be drawn that ion bombardment at moderate energy can cause preferential physical sputtering of carbon atoms from the surface of low atomic number (Z) material. This means that ion beam bombardment leads to the formation of a non-stoichiometric composition of TiC on the surface.TiC films prepared by ion beam mixing have the more excellent characteristic of hydrogen resistance. One important cause, in addition to TiC itself, is that there are many vacant sites in TiC created by ion beam mixing.These defects can easily trap hydrogen and effectively enhance the effect of hydrogen resistance.

  8. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  9. Collisions of antiprotons with hydrogen molecular ions

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2009-01-01

    Time-dependent close-coupling calculations of the ionization and excitation cross section for antiproton collisions with molecular hydrogen ions are performed in an impact energy range from 0.5 keV to 10 MeV. The Born-Oppenheimer and Franck-Condon approximations as well as the impact parameter...

  10. Surface generation of negative hydrogen ion beams

    International Nuclear Information System (INIS)

    Bommel, P.J.M. van.

    1984-01-01

    This thesis describes investigations on negative hydrogen ion sources at the ampere level. Formation of H - ions occurs when positive hydrogen ions capture two electrons at metal surfaces. The negative ionization probability of hydrogen at metal surfaces increases strongly with decreasing work function of the surface. The converters used in this study are covered with cesium. Usually there are 'surface plasma sources' in which the hydrogen source plasma interacts with a converter. In this thesis the author concentrates upon investigating a new concept that has converters outside the plasma. In this approach a positive hydrogen ion beam is extracted from the plasma and is subsequently reflected from a low work function converter surface. (Auth.)

  11. Trapping of hydrogen isotopes in molybdenum and niobium predamaged by ion implantation

    International Nuclear Information System (INIS)

    Bottiger, J.; Picraux, S.T.; Rud, N.; Laursen, T.

    1977-01-01

    The trapping of hydrogen isotopes at defects in Mo and Nb have been studied. Ion beams of 11- and 18-keV He + , 55-keV O + and Ne + , and 500-keV Bi + were used to create defects. Subsequently H or D was injected at room temperature by use of molecular beams of 16-keV H + 2 and D + 2 . Appreciable enhancements were observed in the amount of H and D retained within the near-surface region of predamaged samples compared to samples with no prior damage. The total amount of D retained within the near-surface region was measured by means of the nuclear reaction D( 3 He,p) 4 He, and H depth profiles were measured via a resonance in the nuclear reaction 1 H( 19 F,αγ) 16 O. The H profiles correlate with the predicted predamaging ion profiles; however, appreciable tails to deeper depths for the hydrogen profiles are observed for the heavier predamaging ions. For a given predamage ion fluence, the amount of trapped deuterium increases linearly with incident deuterium fluence until a saturation in the enhancement is reached. The amount of deuterium trapped when saturation occurs increases with increasing predamage fluence. The experiments indicate that lighter ions, which create fewer primary displacements, are more effective per displacement in trapping hydrogen. An appreciable release of hydrogen is obtained upon annealing at 200 and 300 degreeC, and a preannealing experiment indicates this is due to detrapping rather than to any loss of traps. These temperatures suggest a much higher binding energy for the trapped hydrogen isotopes (approx.1.5 eV) than the available evidence gives for simple H-defect binding energies (approximately-less-than0.3 eV). The detailed trapping mechanism is not known. However, it is suggested on the basis of the high binding energies and the high concentrations of hydrogen which can be trapped that clusters of hydrogen may be formed

  12. Working group report on ion-impact excitation: Recommended database for ion-impact excitation of atomic hydrogen

    International Nuclear Information System (INIS)

    Fritsch, W.; Olson, R.E.; Schartner, K.H.; Belkic, D.S.

    1989-01-01

    This report discusses (i) proton impact excitation, and (ii) excitation by ion collisions (from helium ions to iron ions) of atomic hydrogen, both for H(1s) and H(n>1), where where n = the principal quantum number, in the energy range from 1 keV/amu to 2 MeV/amu and 10 MeV/amu, respectively. For the range of ions considered, a few generic plots are given for the total cross section as a function of E/q, where E is the beam energy, for different values q (ion charge in units of proton charge) and different final principal quantum numbers. 12 refs, 3 figs

  13. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Velasco, A.J. [Universidad de Pamplona, Pamplona (Colombia); Dougar-Jabon, V.D. [Universidad Industrial de Santander, Bucaramanga (Colombia)

    2004-07-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H{sup -} and D{sup -} ion production involves the process of high Rydberg state excitation. (authors)

  14. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    International Nuclear Information System (INIS)

    Chacon Velasco, A.J.; Dougar-Jabon, V.D.

    2004-01-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H - and D - ion production involves the process of high Rydberg state excitation. (authors)

  15. Secondary Electron Emission from Solid Hydrogen and Deuterium Resulting from Incidence of keV Electrons and Hydrogen Ions

    DEFF Research Database (Denmark)

    Sørensen, H.

    1977-01-01

    are small, in contrast to what is expected for insulating materials. One explanation is that the secondary electrons lose energy inside the target material by exciting vibrational and rotational states of the molecules, so that the number of electrons that may escape as secondary electrons is rather small....... The losses to molecular states will be largest for hydrogen, so that the SEE coefficients are smallest for solid hydrogen, as was observed. For the incidence of ions, the values of δ for the different molecular ions agree when the number of secondary electrons per incident atom is plotted versus the velocity...... or the stopping power of the incident particles. Measurements were also made for oblique incidence of H+ ions on solid deuterium for angles of incidence up to 75°. A correction could be made for the emission of secondary ions by also measuring the current calorimetrically. At largest energies, the angular...

  16. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  17. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  18. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  19. Ion-induced emission of charged particles from solid hydrogen and deuterium

    International Nuclear Information System (INIS)

    Borgesen, P.; Schou, J.; Sorensen, H.

    1980-01-01

    Measurements have been made of the emission of both positive and negative particles from solid hydrogen and deuterium for normal incidence of H + , H + 2 , H + 3 , D 2 H + , D + 3 and He + ions up to 10 keV. For positive particles the emission coefficient increased with increasing energy of incidence to reach a value of 0.08 per atom for 10 keV H + onto hydrogen. Apparently the positive particles are sputtered ones. The negative particles emitted are predominantly electrons. The emission coefficient per incident atom as a function of the velocity of the incident particle agress fairly well with results published earlier for incidence of hydrogen and deuterium ions. However, systematic differences of up to 10% are now observed between the coefficients for the different types of ions. (orig.)

  20. Low energy ion-molecule reactions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, J.M. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  1. Simulations of negative hydrogen ion sources

    Science.gov (United States)

    Demerdjiev, A.; Goutev, N.; Tonev, D.

    2018-05-01

    The development and the optimisation of negative hydrogen/deuterium ion sources goes hand in hand with modelling. In this paper a brief introduction on the physics and types of different sources, and on the Kinetic and Fluid theories for plasma description is made. Examples of some recent models are considered whereas the main emphasis is on the model behind the concept and design of a matrix source of negative hydrogen ions. At the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences a new cyclotron center is under construction which opens new opportunities for research. One of them is the development of plasma sources for additional proton beam acceleration. We have applied the modelling technique implemented in the aforementioned model of the matrix source to a microwave plasma source exemplifying a plasma filled array of cavities made of a dielectric material with high permittivity. Preliminary results for the distribution of the plasma parameters and the φ component of the electric field in the plasma are obtained.

  2. Electron capture by Ne3+ ions from atomic hydrogen

    International Nuclear Information System (INIS)

    Rejoub, R.; Bannister, M.E.; Havener, C.C.; Savin, D.W.; Verzani, C.J.; Wang, J.G.; Stancil, P.C.

    2004-01-01

    Using the Oak Ridge National Laboratory ion-atom merged-beam apparatus, absolute total electron-capture cross sections have been measured for collisions of Ne 3+ ions with hydrogen (deuterium) atoms at energies between 0.07 and 826 eV/u. Comparison to previous measurements shows large discrepancies between 50 and 400 eV/u. Previously published molecular-orbital close-coupling (MOCC) calculations were performed over limited energy ranges, but show good agreement with the present measurements. Here MOCC calculations are presented for energies between 0.01 and 1000 eV/u for collisions with both H and D. For energies below ∼1 eV/u, an enhancement in the magnitude of both the experimental and theoretical cross sections is observed which is attributed to the ion-induced dipole attraction between the reactants. Below ∼4 eV/u, the present calculations show a significant target isotope effect

  3. Electron capture by Ne3+ ions from atomic hydrogen

    Science.gov (United States)

    Rejoub, R.; Bannister, M. E.; Havener, C. C.; Savin, D. W.; Verzani, C. J.; Wang, J. G.; Stancil, P. C.

    2004-05-01

    Using the Oak Ridge National Laboratory ion-atom merged-beam apparatus, absolute total electron-capture cross sections have been measured for collisions of Ne3+ ions with hydrogen (deuterium) atoms at energies between 0.07 and 826 eV/u . Comparison to previous measurements shows large discrepancies between 50 and 400 eV/u . Previously published molecular-orbital close-coupling (MOCC) calculations were performed over limited energy ranges, but show good agreement with the present measurements. Here MOCC calculations are presented for energies between 0.01 and 1000 eV/u for collisions with both H and D. For energies below ˜1 eV/u , an enhancement in the magnitude of both the experimental and theoretical cross sections is observed which is attributed to the ion-induced dipole attraction between the reactants. Below ˜4 eV/u , the present calculations show a significant target isotope effect.

  4. Perturbation approach to the self-energy of non-S hydrogenic states

    International Nuclear Information System (INIS)

    Le Bigot, Eric-Olivier; Jentschura, Ulrich D.; Mohr, Peter J.; Indelicato, Paul; Soff, Gerhard

    2003-01-01

    We present results on the self-energy correction to the energy levels of hydrogen and hydrogenlike ions. The self-energy represents the largest QED correction to the relativistic (Dirac-Coulomb) energy of a bound electron. We focus on the perturbation expansion of the self-energy of non-S states, and provide estimates of the so-called A 60 perturbation coefficient, which can be viewed as a relativistic Bethe logarithm. Precise values of A 60 are given for many P, D, F, and G states, while estimates are given for other states. These results can be used in high-precision spectroscopy experiments in hydrogen and hydrogenlike ions. They yield the best available estimate of the self-energy correction of many atomic states

  5. Silicon surface damage caused by reactive ion etching in fluorocarbon gas mixtures containing hydrogen

    International Nuclear Information System (INIS)

    Norstroem, H.; Blom, H.; Ostling, M.; Nylandsted Larsen, A.; Keinonen, J.; Berg, S.

    1991-01-01

    For selective etching of SiO 2 on silicon, gases or gas mixtures containing hydrogen are often used. Hydrogen from the glow discharge promotes the formation of a thin film polymer layer responsible for the selectivity of the etching process. The reactive ion etch (RIE) process is known to create damage in the silicon substrate. The influence of hydrogen on the damage and deactivation of dopants is investigated in the present work. The distribution of hydrogen in silicon, after different etching and annealing conditions have been studied. The influence of the RIE process on the charge carrier concentration in silicon has been investigated. Various analytical techniques like contact resistivity measurements, four point probe measurements, and Hall measurements have been used to determine the influence of the RIE process on the electrical properties of processed silicon wafers. The hydrogen profile in as-etched and post annealed wafers was determined by the 1 H( 15 N,αγ) 12 C nuclear reaction. The depth of the deactivated surface layer is discussed in terms of the impinging hydrogen ion energy, i.e., the possibility of H + ions to pick up an energy equal to the peak-to-peak voltage of the rf signal

  6. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  7. Plasma-surface interaction in negative hydrogen ion sources

    Science.gov (United States)

    Wada, Motoi

    2018-05-01

    A negative hydrogen ion source delivers more beam current when Cs is introduced to the discharge, but a continuous operation of the source reduces the beam current until more Cs is added to the source. This behavior can be explained by adsorption and ion induced desorption of Cs atoms on the plasma grid surface of the ion source. The interaction between the ion source plasma and the plasma grid surface of a negative hydrogen ion source is discussed in correlation to the Cs consumption of the ion source. The results show that operation with deuterium instead of hydrogen should require more Cs consumption and the presence of medium mass impurities as well as ions of the source wall materials in the arc discharge enlarges the Cs removal rate during an ion source discharge.

  8. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen

    International Nuclear Information System (INIS)

    Can, C.; Gray, T.J.; Varghese, S.L.; Hall, J.M.; Tunnell, L.N.

    1985-01-01

    Electron-capture cross sections for low-velocity (10 6 --10 7 cm/s) highly charged Ne/sup q/+ (2< or =q< or =7) and Ar/sup q/+ (2< or =q< or =10)= projectiles incident on molecular- and atomic-hydrogen targets have been measured. A recoil-ion source that used the collisions of fast heavy ions (1 MeV/amu) with target gas atoms was utilized to produce slow highly charged ions. Atomic hydrogen was produced by dissociating hydrogen molecules in a high-temperature oven. Measurements and analysis of the data for molecular- and atomic-hydrogen targets are discussed in detail. The measured absolute cross sections are compared with published data and predictions of theoretical models

  9. Transport of negative hydrogen and deuterium ions in RF-driven ion sources

    International Nuclear Information System (INIS)

    Gutser, R; Wuenderlich, D; Fantz, U

    2010-01-01

    Negative hydrogen ion sources are major components of neutral beam injection systems for plasma heating in future large-scale fusion experiments such as ITER. In order to fulfill the requirements of the ITER neutral beam injection, a high-performance, large-area RF-driven ion source for negative ions is being developed at the MPI fuer Plasmaphysik. Negative hydrogen ions are mainly generated on a converter surface by impinging neutral particles and positive ions under the influence of magnetic fields and the plasma sheath potential. The 3D transport code TrajAn has been applied in order to obtain the total and spatially resolved extraction probabilities for H - and D - ions under identical plasma parameters and the realistic magnetic field topology of the ion source. A comparison of the isotopes shows a lower total extraction probability in the case of deuterium ions, caused by a different transport effect. The transport calculation shows that distortions of the spatial distributions of ion birth and extraction by the magnetic electron suppression field are present for both negative hydrogen and deuterium ions.

  10. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    Science.gov (United States)

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1030–1048. PMID:24283926

  11. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    International Nuclear Information System (INIS)

    Borodi, Gheorghe

    2008-01-01

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO 2 + with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H 2 densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH + , CH 2 + , and CH 4 + have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  12. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Borodi, Gheorghe

    2008-12-09

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO{sub 2}{sup +} with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H{sub 2} densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH{sup +}, CH{sub 2}{sup +}, and CH{sub 4}{sup +} have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  13. Profiling hydrogen in materials using ion beams

    International Nuclear Information System (INIS)

    Ziegler, J.F.; Wu, C.P.; Williams, P.

    1977-01-01

    Over the last few years many ion beam techniques have been reported for the profiling of hydrogen in materials. Nine of these were evaluated using similar samples of hydrogen ion-implanted into silicon. When possible the samples were analyzed using two or more techniques to confirm the ion-implanted accuracy. The results of this analysis which has produced a consensus profile of H in silicon which is useful as a calibration standard are reported. The analytical techniques used have capabilities ranging from very high depth resolution (approximately 50 A) and high sensitivity (less than 1 ppM) to deep probes for hydrogen which can sample throughout thin sheets

  14. The Effects of Hydrogen Band EMIC Waves on Ring Current H+ Ions

    Science.gov (United States)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu

    2017-12-01

    Hydrogen band electromagnetic ion cyclotron (EMIC) waves have received much attention recently because they are found to frequently span larger spatial areas than the other band EMIC waves. Using test particle simulations, we study the nonlinear effects of hydrogen band EMIC waves on ring current H+ ions. A dimensionless parameter R is used to characterize the competition between wave-induced and adiabatic motions. The results indicate that there are three regimes of wave-particle interactions for typical 35 keV H+ ions at L = 5: diffusive (quasi-linear) behavior when αeq ≤ 35° (R ≥ 2.45), the nonlinear phase trapping when 35° < αeq < 50° (0.75 < R < 2.45), and both the nonlinear phase bunching and phase trapping when αeq ≥ 50° (R ≤ 0.75). The phase trapping can transport H+ ions toward large pitch angle, while the phase bunching has the opposite effect. The phase-trapped H+ ions can be significantly accelerated (from 35 keV to over 500 keV) in about 4 min and thus contribute to the formation of high energy components of ring current ions. The results suggest that the effect of hydrogen band EMIC waves is not ignorable in the nonlinear acceleration and resonance scattering of ring current H+ ions.

  15. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  16. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    International Nuclear Information System (INIS)

    Doi, K; Tawada, Y; Kato, S; Sasao, M; Kenmotsu, T; Wada, M; Lee, H T; Ueda, Y; Tanaka, N; Kisaki, M; Nishiura, M; Matsumoto, Y; Yamaoka, H

    2016-01-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H + beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions. (paper)

  17. A spin-filter polarimeter for low energy hydrogen and deuterium ion beams

    International Nuclear Information System (INIS)

    Lemieux, S.K.; Clegg, T.B.; Karwowski, H.J.; Thompson, W.J.; Crosson, E.R.

    1993-01-01

    An efficient polarimeter which reveals populations of individual hyperfine states of nuclear-spin-polarized H ± (or D ± ) ion beams has been tested. This device is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of hydrogen (or deuterium) atoms, created when the incident, polarized ion beams undergo electron pickup in cesium vapour. Used on a polarized ion source, its efficiency faciy facilitates both rapid optimization and continual monitoring of parameters that affect the beam polarization. With such sources, and perhaps in applications with polarized gas jet targets, the device has potential for an absolute accuracy of better than 2%. (orig.)

  18. Hydrogenic fast-ion diagnostic using Balmer-alpha light

    International Nuclear Information System (INIS)

    Heidbrink, W W; Burrell, K H; Luo, Y; Pablant, N A; Ruskov, E

    2004-01-01

    Hydrogenic fast-ion populations are common in toroidal magnetic fusion devices, especially in devices with neutral beam injection. As the fast ions orbit around the device and pass through a neutral beam, some fast ions neutralize and emit Balmer-alpha light. The intensity of this emission is weak compared with the signals from the injected neutrals, the warm (halo) neutrals and the cold edge neutrals, but, for a favourable viewing geometry, the emission is Doppler shifted away from these bright interfering signals. Signals from fast ions are detected in the DIII-D tokamak. When the electron density exceeds ∼7 x 10 19 m -3 , visible bremsstrahlung obscures the fast-ion signal. The intrinsic spatial resolution of the diagnostic is ∼5 cm for 40 keV amu -1 fast ions. The technique is well suited for diagnosis of fast-ion populations in devices with fast-ion energies (∼30 keV amu -1 ), minor radii (∼0.6 m) and plasma densities (∼ 20 m -3 ) that are similar to those of DIII-D

  19. Hydrogen energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F J; Braun, C [eds.

    1977-09-01

    The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

  20. Hydrogen retention in ion irradiated steels

    International Nuclear Information System (INIS)

    Hunn, J.D.; Lewis, M.B.; Lee, E.H.

    1998-01-01

    In the future 1--5 MW Spallation Neutron Source, target radiation damage will be accompanied by high levels of hydrogen and helium transmutation products. The authors have recently carried out investigations using simultaneous Fe/He,H multiple-ion implantations into 316 LN stainless steel between 50 and 350 C to simulate the type of radiation damage expected in spallation neutron sources. Hydrogen and helium were injected at appropriate energy and rate, while displacement damage was introduced by nuclear stopping of 3.5 MeV Fe + , 1 microm below the surface. Nanoindentation measurements showed a cumulative increase in hardness as a result of hydrogen and helium injection over and above the hardness increase due to the displacement damage alone. TEM investigation indicated the presence of small bubbles of the injected gases in the irradiated area. In the current experiment, the retention of hydrogen in irradiated steel was studied in order to better understand its contribution to the observed hardening. To achieve this, the deuterium isotope ( 2 H) was injected in place of natural hydrogen ( 1 H) during the implantation. Trapped deuterium was then profiled, at room temperature, using the high cross-section nuclear resonance reaction with 3 He. Results showed a surprisingly high concentration of deuterium to be retained in the irradiated steel at low temperature, especially in the presence of helium. There is indication that hydrogen retention at spallation neutron source relevant target temperatures may reach as high as 10%

  1. Investigations on Cs-free alternative materials for negative hydrogen ion formation

    Energy Technology Data Exchange (ETDEWEB)

    Kurutz, Uwe

    2017-01-19

    Neutral beam injection (NBI) represents a main auxiliary heating and current drive system for thermonuclear fusion devices. For ITER, a total heating power of up to 33 MW will be delivered for up to one hour pulses at particle energies of up to 1 MeV by two NBI systems. The respective ion sources will therefore have to allow for the extraction and acceleration of negative hydrogen ions at a current density of 200 A/m{sup 2} from a low pressure low temperature hydrogen plasma. Also for the succeeding demonstration reactor DEMO the application of NBI is currently discussed. Respective systems will, however, have to fulfil even higher demands, like higher powers (up to 135 MW), longer pulse lengths (2 h or even cw operation), and more restrictive constrains regarding the reliability and stability. Today efficient NBI negative hydrogen ion sources are based mainly on the conversion of positive hydrogen ions and/or hydrogen atoms at a grid surface coated with caesium. Cs is used for reducing the grid's work function which significantly enhances the particle conversion probability. However, the alkali metal is chemically very reactive and easily forms compounds with residual gas impurities. Furthermore, complex redistribution dynamics of the deposited Cs layer is given. This inherently links the application of Cs with a temporal and spatial non-stability of the negative ion yield, which contradicts the required reliability of a DEMO NBI system. Thus, for DEMO, Cs-free alternative materials for negative ion formation are investigated within this work at a flexible laboratory experiment. An ECR discharge is used which provides comparable parameters (pressure, densities, particle fluxes and -energies) to the NBI ion sources. Negative ion formation is measured above different material samples via laser photodetachment together with global plasma parameters using a Langmuir probe and optical emission spectroscopy. The plasma parameters are used for modelling the

  2. Investigations on Cs-free alternative materials for negative hydrogen ion formation

    International Nuclear Information System (INIS)

    Kurutz, Uwe

    2017-01-01

    Neutral beam injection (NBI) represents a main auxiliary heating and current drive system for thermonuclear fusion devices. For ITER, a total heating power of up to 33 MW will be delivered for up to one hour pulses at particle energies of up to 1 MeV by two NBI systems. The respective ion sources will therefore have to allow for the extraction and acceleration of negative hydrogen ions at a current density of 200 A/m 2 from a low pressure low temperature hydrogen plasma. Also for the succeeding demonstration reactor DEMO the application of NBI is currently discussed. Respective systems will, however, have to fulfil even higher demands, like higher powers (up to 135 MW), longer pulse lengths (2 h or even cw operation), and more restrictive constrains regarding the reliability and stability. Today efficient NBI negative hydrogen ion sources are based mainly on the conversion of positive hydrogen ions and/or hydrogen atoms at a grid surface coated with caesium. Cs is used for reducing the grid's work function which significantly enhances the particle conversion probability. However, the alkali metal is chemically very reactive and easily forms compounds with residual gas impurities. Furthermore, complex redistribution dynamics of the deposited Cs layer is given. This inherently links the application of Cs with a temporal and spatial non-stability of the negative ion yield, which contradicts the required reliability of a DEMO NBI system. Thus, for DEMO, Cs-free alternative materials for negative ion formation are investigated within this work at a flexible laboratory experiment. An ECR discharge is used which provides comparable parameters (pressure, densities, particle fluxes and -energies) to the NBI ion sources. Negative ion formation is measured above different material samples via laser photodetachment together with global plasma parameters using a Langmuir probe and optical emission spectroscopy. The plasma parameters are used for modelling the inherently

  3. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    Science.gov (United States)

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  4. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  5. Softening of metals under hydrogen ion irradiation

    International Nuclear Information System (INIS)

    Guseva, M.I.; Korshunov, S.N.; Martynenko, Yu.V.; Skorlupkin, I.D.

    2005-01-01

    Experimental study results are presented on steel type 18-10 creep under hydrogen ion irradiation. The Irradiation of annealed specimens is accomplished by 15 keV H 2 + ions with a dose up to 10 22 m -2 at current density of 0.6 A/m 2 at temperatures of 570-770 K. Creep tests show that the irradiation at T = 770 K results in a sharp increase of creep rate. At t 570 K the effect of ion-induced creep in steel 18-10 is not observed. The model is proposed which explains the ion-induced creep by accumulation of hydrogen along grain boundaries, their weakening and removal of obstacles to sliding [ru

  6. External-field shifts in precision spectroscopy of hydrogen molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [INRNE, Bulgarian Academy of Sciences (Bulgaria); Korobov, Vladimir [Joint Institute for Nuclear Research (Russian Federation); Schiller, Stephan [Heinrich-Heine-Universitat Dusseldorf, Institut fur Experimentalphysik (Germany)

    2015-08-15

    The Effective Hamiltonian of the hydrogen molecular ions is a convenient tool for the evaluation of the shift of the energy levels of the ro-vibrational states and the frequencies of the transitions between them, due to external electric and magnetic fields. Using the Effective Hamiltonian, composite frequencies of suppressed susceptibility to external fields are constructed.

  7. Uptake of hydrogen from some carbon fibres examined by Secondary Ion Mass Spectrometry

    International Nuclear Information System (INIS)

    Madronero, A.; Aguado, J.; Blanco, J.M.; Lopez, A.

    2011-01-01

    The use of carbonaceous materials for hydrogen storage is not as simple as it may seem. Hydrogen atoms have different bonding energies and are incorporated into different types of these materials. Therefore, it is particularly important to distinguish between the surfacial atoms and those that are embedded in the bulk of the sample. SIMS spectrograph with periodical interruptions of the ion beam enables us to appreciate that at room temperature and in high vacuum, some outgassing of the surfacial hydrogen takes place.

  8. Visualization of hydrogen in steels by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Takai, Kenichi

    2000-01-01

    Secondary ion mass spectrometry (SIMS) enables us to visualize hydrogen trapping sites in steels. Information about the hydrogen trapping sites in high-strength steels by SIMS is very important to discuss environmental embrittlement mechanism for developing steels with a high resistance to the environmental embrittlement. Secondary ion image analysis by SIMS has made possible to visualize the hydrogen and deuterium trapping sites in the steels. Hydrogen in tempered martensite steels containing Ca tends to accumulate on inclusions, at grain boundaries, and in segregation bands. Visualization of hydrogen desorption process by secondary ion image analysis confirms that the bonding between the inclusions and the hydrogen is strong. Cold-drawn pearlite steels trap hydrogen along cold-drawing direction. Pearlite phase absorbs the hydrogen more than ferrite phase does. This article introduces the principle of SIMS, its feature, analysis method, and results of hydrogen visualization in steels. (author)

  9. The charge spectrum of positive ions in a hydrogen aurora

    Science.gov (United States)

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  10. Numerical simulation on multi-peak magnetic field configuration for negative hydrogen ion source

    International Nuclear Information System (INIS)

    Wang Xiaomin; Yang Chao; Liu Dagang; Wang Xueqiong

    2011-01-01

    Based on the magnetic charge model, the numerical algorithm of three-dimensional permanent magnets was derived by the finite difference method. Then combining the full three-dimensional particle-in-cell/Monte Carlo algorithm (PIC/MCC), two multi-peak magnetic field configurations, external magnetic filter and tent-shaped filter, were analyzed respectively, and their influences on electron energy distribution were compared. The simulation results show that both configurations can confine the diffusion of particles and can extract negative hydrogen ions; their electron energy distributions are basically similar, presenting double energy state, which are consistent with the basic mechanism of plasma discharge. The former configuration is stronger in confining and can produce more particles, whose total number is approximately four times that of the latter. The tent-shaped magnetic filter can efficiently prevent electron drift caused by inhomogeneous longitudinal magnetic field, leading to more uniform spatial distribution of negative hydrogen ions. The results of simulation are consistent with those from the foreign experiment. (authors)

  11. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  12. Electron capture by multicharged ions from hydrogen atoms at eV energies

    International Nuclear Information System (INIS)

    Havener, C.C.; Nesnidal, M.P.; Porter, M.R.; Phaneuf, R.A.

    1990-01-01

    To quantitatively study electron capture during collisions of multiply charged ions with neutral atoms at near-thermal energies, keV-energy multicharged ion beams are merged with ground-state beams of H or D atoms of chosen velocity such that collisions in the relative energy range 1--1000 eV/amu result. Recent data for O 3+ , O 4+ + H(D) are presented and compared with theoretical predictions. Recently completed modifications to the apparatus are described that will provide a significant improvement in signal-to-background and angular collection. These improvements will allow measurements to be extended to lower energies, where effects due to the ion-induced dipole attraction may be evident

  13. Experimental investigation of the formation of negative hydrogen ions in collisions between positive ions and atomic or molecular targets

    International Nuclear Information System (INIS)

    Lattouf, Elie

    2013-01-01

    The formation of the negative hydrogen ion (H - ) in collisions between a positive ion and a neutral atomic or molecular target is studied experimentally at impact energies of a few keV. The doubly-differential cross sections for H - formation are measured as a function of the kinetic energy and emission angle for the collision systems OH + + Ar and O + + H 2 O at 412 eV/a.m.u. These H - ions can be emitted at high energies (keV) in hard quasi-elastic two-body collisions involving a large momentum transfer to the H center. However, H - anions are preferentially emitted at low energy (eV) due to soft many-body (≥ 2) collisions resulting in a low momentum transfer. The formation of H - ions by electron capture follows excitation or ionization of the molecule. The molecular fragmentation dynamics is modeled to simulate the emission of H - ions. The overall good agreement between the simulation and the experiment leads to the understanding of most of the experimental observations. (author) [fr

  14. Interaction of He+2 ions with hydrogen molecules

    International Nuclear Information System (INIS)

    Afrosimov, V.V.; Leiko, G.A.; Panov, M.N.

    1980-01-01

    Cross sections for all elementary reactions involving a change in charge state in He +2 -H 2 collisions have been measured for He +2 kinetic energies in the range E=1.2--100 keV. Measurements were carried out by distinguishing an individual collision by a coincidence method and by simultaneously analyzing the charge states of the fast and slow particles. Furthermore, in the same event, the electronic states of the particles after the collision were determined by analyzing the kinetic energies of the resulting ions. The elementary reactions involving the formation of He + ions in the ground and excited states were studied. The reactions involving transitions in the hydrogen molecule to the 1ssigma/sub g/ and 2psigma/sub u/ states of H 2 + ions, and reactions in which wto protons are formed, were also studied. At E>15 keV, the largest cross section is that corresponding to one-electron capture: He +2 +H 2 →He + +H 2 + (this cross section is sigma=8.3 x 10 -16 cm 2 at E=50 keV). In this reaction, 90--98% of the He + ions are formed in excited states with principal quantum number n=2. At E + ion predominates, accompanied by the simultaneous dissociation of the H 2 + ion: He +2 +H 2 →He + (1s)+H + H+H0+e - . The cross section for this exothermic capture with dissociation (the energy released is ΔEapprox. =+36.3--3.8 eV) increases with decreasing energy E. At E>15 keV, an endothermic pathway is predominant: →He + (2s,2p)+H + +H+0+e - (the energy expended, ΔE, is more than 3.2 eV). The existence of two capture reactions with dissociation - exothermic and endothermic - leads to a minimum in the cross section for this reaction, at Eapprox. =15 keV. Ionization reactions and ionization with dissociation have the smallest cross sections

  15. Extended defects and hydrogen interactions in ion implanted silicon

    Science.gov (United States)

    Rangan, Sanjay

    The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful. In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (TED at low anneal temperatures (550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (˜850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant. In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 x 1020 cm-3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for

  16. Energy measurement of fast ions trapped in the toroidal magnetic field ripple of Tore Supra during ICRF heating

    International Nuclear Information System (INIS)

    Basiuk, V.; Becoulet, A.; Grisolia, C.; Hutter, T.; Mayaux, G.; Martin, G.; Saoutic, B.; Vartanian, S.

    1995-01-01

    Direct losses of ions trapped in the toroidal field ripple of Tore Supra using two techniques were made. The first (DRIPPLE I) correlates the ion loss current measured by an electric probe with the ion loss power measured by a calorimeter. As the calorimeter integrates over all particle energies and time, it yields only the averaged lost ion energy. The second technique (DRIPPLE II), still under development, is a Faraday cup positioned and filtered so as to select ions by their Larmor radius. The currents measured are small (1-100 nA), and improvements in instrumentation are needed to take full advantage of the data, but the preliminary results are still useful. During ICRH (hydrogen minority regime, resonance on axis) a direct correlation between the lost ion mean energy and the density of hydrogen was seen. The energy increased when the hydrogen minority density decreased. Moreover, the line averaged density and the lower hybrid heating (LH) had also an effect on fast ion losses. (authors). 3 refs., 7 figs

  17. Analytic description of the chemical erosion of graphite by hydrogen ions

    International Nuclear Information System (INIS)

    Roth, J.; Garcia-Rosales, C.

    1996-01-01

    One main concern about the use of graphite as a plasma facing material is the enhanced erosion, under hydrogen bombardment due to hydrocarbon formation. In view of the lifetime evaluation of plasma exposed carbon components and of impurity production in present and future machines such as ITER, an analytical expression for the erosion yield by chemical sputtering for the relevant energies, temperatures and incident fluxes is of special importance. An extrapolation to fluxes and energies relevant for high density divertor plasmas has not been possible up to now on the basis of semiempirical fits to laboratory data. Starting from a short review of the existing empirical formulas, recent detailed investigations of the atomistic processes for the thermally activated hydrocarbon emission are described, which enable the formulation of an improved analytical description including the ion flux as a parameter. The chemical erosion of graphite by hydrogen bombardment results from two processes: the thermally activated hydrocarbon emission, Y therm , and a surface process at low energies and low temperatures resulting from the kinetic ejection of surface hydrocarbon complexes from collisional energy transfer, Y surf . The new analytic description can be fitted well to the existing data for ion beam erosion, and extrapolation to divertor relevant fluxes is possible. At high ion fluxes the maximum of chemical erosion is shifted to higher temperatures, where annealing of damaged structures leads to a stronger reduction of Y therm than previously estimated. There are no data on a possible flux dependence of Y surf , leaving still some uncertainty in extrapolation. (author). 46 refs, 10 figs, 1 tab

  18. Composition and energy spectrum variations of auroral ions

    International Nuclear Information System (INIS)

    Lynch, J.; Leach, R.; Pulliam, D.; Scherb, F.

    1977-01-01

    We have detected H + ,O + , and He ++ ions with E/q up to 20 keV/charge in a hydrogen aurora over Churchill, Manitoba, during the flight of a Javelin sounding rocket on February 11, 1975, We observed several examples of different types of ion events. One type consisted of bursts of H + and O + ions which arrived simultaneously at all energies within the range of the E/q analyzer. These events were apparently of local origin (distance + ions (O + /H + approximately-greater-than30%). A second type of event consisted of bursts of enhanced H + counting rates but no O + ions. The dispersion in time of the energy spectrum was consistent with an injection and acceleration site located at about 20 R/sub E/ from the earth. An enhancement of the He ++ counting rates was associated with these events, but the He ++ data are of limited statistical significance. A third type of event, consisting of short bursts of H + ions with wide energy spreads, was observed in association with an event in which the energy of the H + ions showed time dispersion. We interpret these short H + bursts as due to ions trapped in traveling waves generated by an explosive injection of plasma in the earth's magnetotail

  19. High brilliance multicusp ion source for hydrogen microscopy at SNAKE

    Energy Technology Data Exchange (ETDEWEB)

    Moser, M., E-mail: marcus.moser@unibw.de [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Reichart, P. [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Carli, W. [Maier-Leibniz-Laboraturium der LMU und TU Muenchen, 85478 Garching (Germany); Greubel, C.; Peeper, K. [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Hartung, P. [Maier-Leibniz-Laboraturium der LMU und TU Muenchen, 85478 Garching (Germany); Dollinger, G. [Universitaet der Bundeswehr Muenchen, Institut fuer Angewandte Physik und Messtechnik, LRT2, Department fuer Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany)

    2012-02-15

    In order to improve the lateral resolution of the 3D hydrogen microscopy by proton-proton scattering at the Munich microprobe SNAKE, we have installed a new multicusp ion source for negative hydrogen ions manufactured by HVEE at the Munich 14 MV tandem accelerator that boosts the proton beam brilliance with the potential to reduce the beam diameter at the focal plane of SNAKE. We measured a beam brilliance B = 27 A m{sup -2} rad{sup -2} eV{sup -1} directly behind the ion source that is at the space charge limit for conventional ion sources. After preacceleration to in total 180 keV beam energy we measure a slightly reduced beam brilliance of B = 10 {mu}A mm{sup -2} mrad{sup -2} MeV{sup -1}. For injection into the tandem accelerator, the extracted H{sup -}-current of the multicusp source of 1 mA is reduced to about 10 {mu}A because of radiation safety regulations and heating problems at the object slits of SNAKE. Due to beam oscillations and influences of the terminal stripper of the tandem we measured a reduced beam brilliance of 0.8 {mu}A mm{sup -2} mrad{sup -2} MeV{sup -1} in front of SNAKE at 25 MeV but still being nearly 10 times larger than measured with any other ion source.

  20. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  1. Intense negative hydrogen ion source for neutral injection into tokamaks

    International Nuclear Information System (INIS)

    Prelec, K.; Sluyters, T.

    1975-01-01

    In this scheme negative ions are extracted from a plasma source, accelerated to the required energy and then neutralized by stripping in a gas, metal vapor or plasma jet. One of the most promising direct extraction sources is the magnetron source, operating in the mixed hydrogen-cesium mode. In the present source cathode current densities are up to 20 A/cm 2 at arc voltages between 100 V and 150 V. In order to utilize the discharge more efficiently multislit extraction geometry was adopted. Highest currents were obtained by using six slits, with a total extraction area of 1.35 cm 2 . At an extraction voltage of 18 kV negative hydrogen ion currents close to 1 A were obtained, which corresponds to current densities of about 0.7 A/cm 2 at the extraction aperture. Pulse length was 10-20 ms and the repetition rate 0.1 Hz. The total extracted current was usually 2-3 times the H - current

  2. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  3. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  4. Detailed calculation of low-energy positron scattering by the hydrogen molecular ion

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Carr, J.M.; Franklin, C.P.

    1996-01-01

    Detailed calculations are made using the Kohn method of positron scattering by the hydrogen molecular ion below the positronium formation threshold at 9.45 eV. Phase shifts from the two-centre Coulomb value are obtained for the lowest partial wave of Σ g + symmetry using a very flexible trial function containing a large number of short-range correlation functions. The convergence of the results with respect to both the linear and non-linear parameters is explored. (author)

  5. Analysis of hydrogen distribution on Mg-Ni alloy surface by scanning electron-stimulated desorption ion microscope (SESDIM)

    International Nuclear Information System (INIS)

    Yamaga, Atsushi; Hibino, Kiyohide; Suzuki, Masanori; Yamada, Masaaki; Tanaka, Kazuhide; Ueda, Kazuyuki

    2008-01-01

    Hydrogen distribution and behavior on a Mg-Ni alloy surface are studied by using a time-of-flight electron-stimulated desorption (TOF-ESD) microscopy and a scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX). The desorbed hydrogen ions are energy-discriminated and distinguished into two characters in the adsorbed states, which belong to Mg 2 Ni grains and the other to oxygen-contaminated Mg phase at the grain boundaries. Adsorbed hydrogen is found to be stable up to 150 deg. C, but becomes thermally unstable around at 200 deg. C

  6. Effect of argon ion sputtering of surface on hydrogen permeation through vanadium

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Namba, Takashi; Yoneoka, Toshiaki; Kanno, Masayoshi; Shida, Koji.

    1983-01-01

    In order to measure the hydrogen permeation rate through V with atomically cleaned surface, an Ar ion sputtering apparatus has been installed in the hydrogen permeability measuring system. The permeation rate of the initial specimen was found to be increased by about one order of magnitude after Ar ion sputtering of its upstream side surface. Repeating of such a sputter-cleaning was not so much effective in increasing the steady state permeation rate as the initial sputtering was, but it accelerated the transient response rate by a factor of 2 or 3. The transient response rate was also accelerated by the increase of hydrogen pressure, but this effect tended to be diminished by the sputter-cleaning of specimen surface. The surface impurity layer on the downstream side of specimen was also inferred to act as a diffusion barrier affecting the steady state permeation rate. The present value of activation energy for hydrogen permeation through V at temperatures below 873K was the smallest one ever obtained, showing that the surface effect was minimized in the present study on account of the surface sputter-cleaning in addition to the ultra high vacuum system. (author)

  7. Surface studies with high-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stensgaard, Ivan [Aarhus Univ. (Denmark). Inst. of Physics

    1992-07-01

    High-energy ion scattering is an extremely useful technique for surface studies. Three methods for surface composition analysis (Rutherford backscattering, nuclear-reaction analysis and elastic recoil detection) are discussed. Directional effects in ion-beam surface interactions (shadowing and blocking) form the basis for surface structure analysis with high-energy ion beams and these phenomena are addressed in some detail. It is shown how surface relaxation and reconstruction, as well as positions of adsorbed atoms, can be determined by comparison with computer simulations. A special technique called transmission channelling is introduced and shown to be particularly well suited for studies of adsorption positions, even of hydrogen. Recent developments in the field are demonstrated by discussing a large number of important (experimental) applications which also include surface dynamics and melting, as well as epitaxy and interface structure. (author).

  8. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  9. National hydrogen energy roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  10. Formation of hydrogen negative ions by surface and volume processes with application to negative ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1979-01-01

    During the last few decades interest in negative-hydrogen ion sources has been directed mainly toward synchrotron and other particle accelerator applications, with emphasis on high current densities delivered for short pulses. But within the last several years there has been an awareness in the magnetic fusion program of the future need for negative ions as a means for generating high energy neutral beams, beams with energies above a few hundred keV. Negative ions seem to be the only effective intermediary for efficiently producing such beams. Although methods for generating negative ion beams have relied upon synchrotron concepts, the requirements for fusion are very different: here one is interested in more moderate current densities, up to 100 m A cm -2 , but with continuous operation. Proposed source modules would accelerate of the order of 10 A of beam current and deliver several megawatts of beam power. Both H - and D - beams are being considered for application in different reactor systems. The conceptualization of negative ion sources is now in a very volatile stage. But of the great variety of proposals that have been offered to date, three general areas appear ready for development. These are: first, the double charge exchange method for converting a positive ion beam into a negative ion beam; second, electron-volume processes wherein low energy electrons interacting with molecular species lead to negative ion products via dissociative attachment or recombination; and third, generation of negative ions in surface interactions, principally via desorption and backscattering. Both our qualitative and our quantitative understanding of these processes diminishes as one proceeds from the first through the third. The physics of these three methods is considered in detail

  11. Direct cryosorption pumping of an energetic hydrogen ion beam

    International Nuclear Information System (INIS)

    Schwenterly, S.W.; Ryan, P.M.; Tsai, C.C.

    1979-01-01

    Cryosorption pumps (CSP) are a prime candidate for the pumping of helium and deuterium-tritium (D-T) in tokamak divertor systems and may also see service in neutral beam injectors. However, the ability of a CSP to take high energy ions escaping from a plasma or neutral beam has not previously been demonstrated. In this study we arranged a 10-cm ion source of the type used in the Oak Ridge Tokamak (ORMAK) to inject a beam of ions directly into the inlet of a CSP. The pump contained two chevron baffles at 100K and 15K as well as a 15K cryosorption surface covered with a type 5A molecular sieve. The cryosurfaces were cooled by a closed-cycle helium refrigerator. For hydrogen ion pulses up to 11.5-keV energy and 1.3-A current, the pressure maintained during the pulse was only a few percent higher than that maintained with an equal flow of cold neutral gas. Pulse lengths of 100-300 ms were used. Calorimetric measurements showed that 40-60% of the I-V power was incident on the pump inlet. Cool-down and regeneration behavior of the pump will also be discussed

  12. An online low energy gaseous ion source

    International Nuclear Information System (INIS)

    Jin Shuoxue; Guo Liping; Peng Guoliang; Zhang Jiaolong; Yang Zheng; Li Ming; Liu Chuansheng; Ju Xin; Liu Shi

    2010-01-01

    The accumulation of helium and/or hydrogen in nuclear materials may cause performance deterioration of the materials. In order to provide a unique tool to investigate the He-and/or H-caused problems, such as interaction of helium with hydrogen and defects, formation of gas bubbles and its evolution, and the related effects, we designed a low energy (≤ 20 keV) cold cathode Penning ion source, which will be interfaced to a 200 kV transmission electron microscope (TEM), for monitoring continuously the evolution of micro-structure during the He + or H + ion implantation. Studies on discharge voltage-current characteristics of the ion source, and extraction and focusing of the ion beam were performed. The ion source works stably with 15-60 mA of the discharge current.Under the gas pressure of 5 x 10 -3 Pa and 1.5 x 10 -2 Pa, the discharge voltage are about 380 V and 320 V, respectively. The extracted ion current under lower gas pressure is greater than that under higher gas pressure, and it increases with the discharge current and extraction voltage. The ion lens consisting of three equal-diameter metal cylinder focus the ion beam effectively, so that the beam density at the 150 cm away from the lens exit increases by a over one order of magnitude. For ion beams of around 10 keV, the measured beam density is about 200 nA · cm -2 , which is applicable for ion implantation and in situ TEM observation for many kinds of nuclear materials. (authors)

  13. Summary of the FY 1988 Sunshine Project results. Hydrogen energy; 1988 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1988 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include development of power-supplying materials for electrolysis at high current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on alloy molding/processing techniques, hydrogen-storing metallic materials, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  14. Summary of the FY 1989 Sunshine Project results. Hydrogen energy; 1989 nendo sunshine keikaku seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-04-01

    Outlined herein are the results of researches on hydrogen energy as part of the FY 1989 Sunshine Project results. Researches on the techniques for producing hydrogen by electrolysis of water using a polymer electrolyte include those on the SPE electrolysis at high temperature and current density, and basic studies on the electrolysis using an OH ion conducting type polymer electrolyte. Researches on the techniques for producing hydrogen by electrolysis with hot steam include development of the materials, techniques for processing these materials, and electrolysis performance tests. Researches on the techniques for transporting hydrogen by metal hydrides include development of hydrogen-occluding alloys of high bulk density, and techniques for evaluating characteristics of metal hydrides. Researches on the techniques for storing hydrogen include those on hydrogen-storing metallic materials, alloy molding/processing techniques, and new hydrogen-storing materials. Researches on the techniques for utilizing hydrogen include those on energy conversion techniques using hydrogen-occluding alloys, and hydrogen-fueled motors. Researches on the techniques for safety-related measures include those on prevention of embrittlement of the system materials by hydrogen. (NEDO)

  15. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  16. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  17. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  18. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    Science.gov (United States)

    Cernusca, S.; Winter, HP.; Aumayr, F.; Díez Muiño, R.; Juaristi, J. I.

    2003-04-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to "projectile molecular effects" (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  19. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  20. Low energy RBS-channeling measurement system with the use of a time-of-flight scattered ion detector

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masataka; Kobayashi, Naoto; Hayashi, Nobuyuki [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1996-07-01

    We have developed a low energy Rutherford backscattering spectrometry-ion channeling measurement system for the analysis of thin films and solid surfaces with the use of several tens keV hydrogen ions and a time-of-flight particle energy spectrometer. For the detection of the scattered ions new TOF spectrometer has been developed, which consists of two micro-channel-plate detectors. The pulsing of the primary ion beam is not necessary for this type of TOF measurement, and it is possible to observe continues scattered ion beams. The dimension of whole system is very compact compared to the conventional RBS-channeling measurement system with the use of MeV He ions. The energy resolution, {delta} E/E, for 25 keV H{sup +} was 4.1%, which corresponds to the depth resolution of 4.8 nm for silicon. The depth resolution of our system is better than that of conventional RBS system with MeV helium ions and solid state detectors. We have demonstrated the ion channeling measurement by this system with 25 keV hydrogen ions. The system can be available well to the analysis of thin films and solid surfaces with the use of the ion channeling effect. The observation of the reaction between Fe and hydrogen terminated silicon surface was also demonstrated. (J.P.N.)

  1. The creation of strongly coupled plasmas using an intense heavy ion beam: low-entropy compression of hydrogen and the problem of hydrogen metallization

    CERN Document Server

    Tahir, N A; Shutov, A; Varentsov, D; Udrea, S; Hoffmann, Dieter H H; Juranek, H; Redmer, R; Portugues, R F; Lomonosov, I V; Fortov, V E

    2003-01-01

    Intense heavy ion beams deposit energy very efficiently over extended volumes of solid density targets, thereby creating large samples of strongly coupled plasmas. Intense beams of energetic heavy ions are therefore an ideal tool to research this interesting field. It is also possible to design experiments using special beam-target geometries to achieve low-entropy compression of samples of matter. This type of experiments is of particular interest for studying the problem of hydrogen metallization. In this paper we present a design study of such a proposed experiment that will be carried out at the future heavy ion synchrotron facility SIS100, at the Gesellschaft fuer Schwerionenforschung, Darmstadt. This study has been done using a two-dimensional hydrodynamic computer code. The target consists of a solid hydrogen cylinder that is enclosed in a thick shell of lead whose one face is irradiated with an ion beam which has an annular (ring shaped) focal spot. The beam intensity and other parameters are consider...

  2. Guiding of slow neon and molecular hydrogen ions through nanocapillaries in PET

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Hellhammer, R.; Sobocinski, P.; Pesic, Z.D.; Bundesmann, J.; Sulik, B.; Shah, M.B.; Dunn, K.; Pedregosa, J.; McCullough, R.W.

    2005-01-01

    The transmission profiles of atomic 3keV Ne 7+ ions and molecular 1keV H 2 + and H 3 + ions passing through nanocapillaries were studied. Capillaries with a diameter of 100nm and a length of 10μm in insulating PET polymers were used. The high aspect ratio of 100 is achieved by the method of etching ion tracks produced by high-energy xenon impact. The angular distributions of the transmitted projectiles show that the majority of ions are transported in their initial charge state along the capillary axis even when the capillaries are tilted with respect to the incident beam direction. This result indicates ion-guiding, which is produced by charge-up effects influencing the ion trajectories in a self-supporting manner. The guiding effects are found to be different for highly charged neon and singly charged molecular hydrogen. Negligible fragmentation of the molecular ions was observed

  3. Use of nuclear reactions and ion channeling techniques for depth profiling hydrogen isotopes in solids

    International Nuclear Information System (INIS)

    Appleton, B.R.

    1979-01-01

    Hydrogen has always played a preeminent role in materials science because it so readily alters the physical and chemical properties of materials. However, it is often difficult to determine its role because it is one of the most elusive constituents to detect. More recently hydrogen detection has become necessary in numerous energy-related fields. In fusion energy one must understand plasma particle (hydrogen isotope) recycling, trapping and reemission, as well as the effects of hydrogen on the materials properties of first wall structures in plasma devices (i.e., hydrogen embrittlement, sputtering, blistering, etc.). In geology the presence of hydrogen in various forms alters the mechanical properties of many minerals in the earth's crust and enters directly into studies of tectonic processes. Evaluation of hydrogen in moon rocks increases our understanding of solar wind activity. In solar energy, hydrogen plays an important role in amorphous silicon used in fabricating solar cells. Detection of hydrogen is clearly important in the fossil fuel area. Many of the conventional elemental analysis techniques are not directly applicable to hydrogen determination and others can only detect hydrogen when it is in combination with other elements (i.e., H 2 O, OH, etc.). In this paper we discuss the use of ion beam techniques for obtaining quantitative depth information on hydrogen in materials and discuss the application of these techniques to several problems important in some of the areas mentioned

  4. Ion energy recovery experiment based on magnetic electro suppression

    International Nuclear Information System (INIS)

    Kim, J.; Stirling, W.L.; Dagenhart, W.K.; Barber, G.C.; Ponte, N.S.

    1980-05-01

    A proof-of-principle experiment on direct recovery of residual hydrogen ions based on a magnetic electron suppression scheme is described. Ions extracted from a source plasma a few kilovolts above the ground potential (approx. 20 A) are accelerated to 40 keV by a negative potential maintained on a neutralizer gas cell. As the residual ions exit the gas cell, they are deflected from the neutral beam by a magnetic field that also suppresses gas cell electrons and then recovered on a ground-potential surface. Under optimum conditions, a recovery efficiency (the ratio of the net recovered current to the available full-energy ion current) of 80% +- 20% has been obtained. Magnetic suppression of the beam plasma electrons was rather easily achieved; however, handling the fractional-energy ions originating from molecular species (H 2 + and H 3 + ) proved to be extremely important to recovery efficiency

  5. Formation of negative hydrogen ion: polarization electron capture and nonthermal shielding.

    Science.gov (United States)

    Ki, Dae-Han; Jung, Young-Dae

    2012-09-07

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H(-)) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  6. Formation of negative hydrogen ion: Polarization electron capture and nonthermal shielding

    International Nuclear Information System (INIS)

    Ki, Dae-Han; Jung, Young-Dae

    2012-01-01

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H − ) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  7. Wind Energy and Transport Synergy: Electric Vehicle or Hydrogen Vehicle?; Sinergia Energia Eolica Transporte: vehiculo electrico o vehiculo de hidrogeno?

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, I.

    2009-07-01

    This article briefly analyzes the potential uses of hydrogen as a form of energy from wind power. It also briefly describes the different experiences gained in wind energy-based hydrogen production by water hydrolysis, and finally it concludes with a brief analysis of the competition between hydrogen and the new ion-lithium batteries used in motor vehicles as potential solutions to support wind energy management. (Author)

  8. Hydrogen in energy transition

    International Nuclear Information System (INIS)

    2016-02-01

    This publication proposes a rather brief overview of challenges related to the use of hydrogen as an energy vector in the fields of transports and of energy storage to valorise renewable energies. Processes (steam reforming of natural gas or bio-gas, alkaline or membrane electrolysis, biological production), installation types (centralised or decentralised), raw materials and/or energy (natural gas, water, bio-gas, electricity, light), and their respective industrial maturity are indicated. The role of hydrogen to de-carbonate different types of transports is described (complementary energy for internal combustion as well as electrical vehicles) as well as its role in the valorisation and integration of renewable energies. The main challenges faced by the hydrogen sector are identified and discussed, and actions undertaken by the ADEME are indicated

  9. Periodic orbits of the hydrogen molecular ion and their quantization

    International Nuclear Information System (INIS)

    Duan, Y.; Yuan, J.; Bao, C.

    1995-01-01

    In a classical study of the hydrogen molecular ion beyond the Born-Oppenheimer approximation (BOA), we have found that segments of trajectories resemble that of the Born-Oppenheimer approximation periodic orbits. The importance of this fact to the classical understanding of chemical bonding leads us to a systematic study of the periodic orbits of the planar hydrogen molecular ion within the BOA. Besides introducing a classification scheme for periodic orbits, we discuss the convergence properties of families of periodic orbits and their bifurcation patterns according to their types. Semiclassical calculations of the density of states based on these periodic orbits yield results in agreement with the exact quantum eigenvalues of the hydrogen molecular ion system

  10. Stuart Energy's experiences in developing 'Hydrogen Energy Station' infrastructure

    International Nuclear Information System (INIS)

    Crilly, B.

    2004-01-01

    'Full text:' With over 50 years experience, Stuart Energy is the global leader in the development, manufacture and integration of multi-use hydrogen infrastructure products that use the Company's proprietary IMET hydrogen generation water electrolysis technology. Stuart Energy offers its customers the power of hydrogen through its integrated Hydrogen Energy Station (HES) that provides clean, secure and distributed hydrogen. The HES can be comprised of five modules: hydrogen generation, compression, storage, fuel dispensing and / or power generation. This paper discusses Stuart Energy's involvement with over 10 stations installed in recent years throughout North America, Asia and Europe while examining the economic and environmental benefits of these systems. (author)

  11. Enhancing Hydrogen Diffusion in Silica Matrix by Using Metal Ion Implantation to Improve the Emission Properties of Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    J. Bornacelli

    2014-01-01

    Full Text Available Efficient silicon-based light emitters continue to be a challenge. A great effort has been made in photonics to modify silicon in order to enhance its light emission properties. In this aspect silicon nanocrystals (Si-NCs have become the main building block of silicon photonic (modulators, waveguide, source, and detectors. In this work, we present an approach based on implantation of Ag (or Au ions and a proper thermal annealing in order to improve the photoluminescence (PL emission of Si-NCs embedded in SiO2. The Si-NCs are obtained by ion implantation at MeV energy and nucleated at high depth into the silica matrix (1-2 μm under surface. Once Si-NCs are formed inside the SiO2 we implant metal ions at energies that do not damage the Si-NCs. We have observed by, PL and time-resolved PL, that ion metal implantation and a subsequent thermal annealing in a hydrogen-containing atmosphere could significantly increase the emission properties of Si-NCs. Elastic Recoil Detection measurements show that the samples with an enhanced luminescence emission present a higher hydrogen concentration. This suggests that ion metal implantation enhances the hydrogen diffusion into silica matrix allowing a better passivation of surface defects on Si NCs.

  12. Hydrogen - A new green energy

    International Nuclear Information System (INIS)

    Barnu, Franck

    2013-01-01

    A set of articles proposes an overview of the role hydrogen might have as energy in the energy transition policy, a review of different areas of research related to the hydrogen sector, and presentations of some remarkable innovations in different specific fields. Hydrogen might be an asset in energy transition because production modes (like electrolysis) result in an almost carbon-free or at least low-carbon hydrogen production. Challenges and perspectives are evoked: energy storage for intermittent energies (the MYRTE platform), the use of a hydrogen-natural mix (GRHYD program), the development of fuel cells for transport applications, and co-generation (Japan is the leader). Different French research organisations are working on different aspects and areas: the H2E program by Air Liquide, fuel cell technologies by GDF Suez, power electrolyzers and cells by Areva. Some aspects and research areas are more specifically detailed: high temperature electrolysis (higher efficiencies, synthesis of methane from hydrogen), fuel cells (using less platinum, and using ceramics for high temperatures), the perspective of solid storage solutions (hydrogen bottles in composite materials, development of 'hydrogen sponges', search for new hydrides). Innovations concern a project car, storage and production (Greenergy Box), the McPhy Energy storage system, an electric bicycle with fuel cell, easy to transport storage means by Air Liquide and Composites Aquitaine, development of energy autonomy, fuel cells for cars, electrolyzers using the Proton Exchange Membrane or PEM technology

  13. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    Science.gov (United States)

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  14. Plasma diagnostic tools for optimizing negative hydrogen ion sources

    International Nuclear Information System (INIS)

    Fantz, U.; Falter, H.D.; Franzen, P.; Speth, E.; Hemsworth, R.; Boilson, D.; Krylov, A.

    2006-01-01

    The powerful diagnostic tool of optical emission spectroscopy is used to measure the plasma parameters in negative hydrogen ion sources based on the surface mechanism. Results for electron temperature, electron density, atomic-to-molecular hydrogen density ratio, and gas temperature are presented for two types of sources, a rf source and an arc source, which are currently under development for a neutral beam heating system of ITER. The amount of cesium in the plasma volume is obtained from cesium radiation: the Cs neutral density is five to ten orders of magnitude lower than the hydrogen density and the Cs ion density is two to three orders of magnitude lower than the electron density in front of the grid. It is shown that monitoring of cesium lines is very useful for monitoring the cesium balance in the source. From a line-ratio method negative ion densities are determined. In a well-conditioned source the negative ion density is of the same order of magnitude as the electron density and correlates with extracted current densities

  15. Low-energy charge transfer for collisions of Si3+ with atomic hydrogen

    Science.gov (United States)

    Bruhns, H.; Kreckel, H.; Savin, D. W.; Seely, D. G.; Havener, C. C.

    2008-06-01

    Cross sections of charge transfer for Si3+ ions with atomic hydrogen at collision energies of ≈40-2500eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results.

  16. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    International Nuclear Information System (INIS)

    Nakano, H.; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-01-01

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure

  17. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  18. Hydrogen atom and the H+2 and HeH++ molecular ions inside prolate spheroidal boxes

    International Nuclear Information System (INIS)

    Ley-Koo, E.; Cruz, S.A.

    1981-01-01

    We formulate the exact solution of the Schroedinger equation for systems of one electron in the Coulomb field of one or two fixed nuclei at the foci inside prolate spheroidal boxes. Numerical results are obtained for the energy eigenvalues and eigenfunctions of the lowest states of the hydrogen atom and the H + 2 and HeH ++ molecular ions for boxes of different sizes and eccentricities. We also evaluate the hyperfine splitting of atomic hydrogen and of H + 2

  19. Micro structure processing on plastics by accelerated hydrogen molecular ions

    Science.gov (United States)

    Hayashi, H.; Hayakawa, S.; Nishikawa, H.

    2017-08-01

    A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.

  20. Control of entanglement following the photoionization of trapped, hydrogen-like ions

    International Nuclear Information System (INIS)

    Radtke, Thomas; Fritzsche, Stephan; Surzhykov, Andrey

    2005-01-01

    Density matrix theory is applied to re-investigate the entanglement in the spin state of pairs of electrons following the photoionization of trapped, hydrogen-like ions. For the ionization of one out of two non-interacting atoms, in particular, we analyzed how the entanglement between the electrons is changed owing to their interaction with the radiation field. Detailed calculations on the concurrence of the final spin-state of the electrons have been performed for the photoionization of hydrogen as well as for hydrogen-like Xe 53+ and U 91+ ions. From these computations it is shown that the degree of entanglement, which is quite well preserved for neutral hydrogen, will be strongly affected by relativistic and non-dipole effects of the radiation field as the nuclear charge of the ions is increased

  1. Procedure for reducing hydrogen ion concentration in acidic anion eluate

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1992-01-01

    A procedure is suggested for reducing the concentration of hydrogen ions in the acidic anionic eluate formed during the separation of uranium. The procedure involves anex elution, precipitation, filtration, precipitate rinsing, and anex rinsing. The procedure is included in the uranium elution process and requires at least one ion exchanger column and at least one tank in the continuous or discontinuous mode. Sparing the neutralizing agent by reducing the hydrogen ion concentration in the acidic anionic eluate is a major asset of this procedure. (Z.S.). 1 fig

  2. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    Science.gov (United States)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  3. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    International Nuclear Information System (INIS)

    Cernusca, S.; Winter, H.P.; Aumayr, F.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials

  4. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    CERN Document Server

    Cernusca, S; Aumayr, F; Diez-Muino, R; Juaristi, J I

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  5. Defect generation/passivation by low energy hydrogen implant for silicon solar cells

    International Nuclear Information System (INIS)

    Sopori, B.L.; Zhou, T.Q.; Rozgonyi, G.A.

    1990-01-01

    Low energy ion implant is shown to produce defects in silicon. These defects include surface damage, hydrogen agglomeration, formation of platelets with (111) habit plane and decoration of dislocations. Hydrogen also produces an inversion type of surface on boron doped silicon. These effects indicate that a preferred approach for passivation is to incorporate hydrogen from the back side of the cell. A backside H + implant technique is described. The results show that degree of passivation differs for various devices. A comparison of the defect structures of hydrogenated devices indicates that the structure and the distribution of defects in the bulk of the material plays a significant role in determining the degree of passivation

  6. Computer Simulations of Resonant Coherent Excitation of Heavy Hydrogen-Like Ions Under Planar Channeling

    Science.gov (United States)

    Babaev, A. A.; Pivovarov, Yu L.

    2010-04-01

    Resonant coherent excitation (RCE) of relativistic hydrogen-like ions is investigated by computer simulations methods. The suggested theoretical model is applied to the simulations of recent experiments on RCE of 390 MeV/u Ar17+ ions under (220) planar channeling in a Si crystal performed by T.Azuma et al at HIMAC (Tokyo). Theoretical results are in a good agreement with these experimental data and clearly show the appearance of the doublet structure of RCE peaks. The simulations are also extended to greater ion energies in order to predict the new RCE features at the future accelerator facility FAIR OSI and as an example, RCE of II GeV/u U91+ ions is considered in detail.

  7. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  8. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  9. Storing Renewable Energy in the Hydrogen Cycle.

    Science.gov (United States)

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  10. The hydrogen: a clean and durable energy; L'hydrogene: une energie propre et durable

    Energy Technology Data Exchange (ETDEWEB)

    Alleau, Th. [Association Francaise de l' Hydrogene (France); Nejat Veziroglu, T. [Clean Energy Research Institute, University of Miami (United States); Lequeux, G. [Commission europeenne, DG de la Recherche, Bruxelles (Belgium)

    2000-07-01

    All the scientific experts agree, the hydrogen will be the energy vector of the future. During this conference day on the hydrogen, the authors recalled the actual economic context of the energy policy with the importance of the environmental policy and the decrease of the fossil fuels. The research programs and the attitudes of the France and the other countries facing the hydrogen are also discussed, showing the great interest for this clean and durable energy. They underline the importance of an appropriate government policy, necessary to develop the technology of the hydrogen production, storage and use. (A.L.B.)

  11. Electron stripping cross sections for light impurity ions in colliding with atomic hydrogens relevant to fusion research

    International Nuclear Information System (INIS)

    Tawara, H.

    1992-04-01

    Electron stripping (ionization) cross sections for impurity (carbon) ions with various charge states in collisions with atomic hydrogens have been surveyed. It has been found that these data are relatively limited both in collision energy and charge state and, in particular those necessary for high energy neutral beam injection (NBI) heating in fusion plasma research are scarce. Some relevant cross sections for carbon ions, C q+ (q = 0-5) have been estimated, based upon the existing data, empirical behavior and electron impact ionization data. (author)

  12. The creation of strongly coupled plasmas using an intense heavy ion beam: low-entropy compression of hydrogen and the problem of hydrogen metallization

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N A [Institut fuer Theoretische Physik, Universitaet Frankfurt, Postfach 11 19 32, 60054 Frankfurt (Germany); Piriz, A R [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Shutov, A [Institute for Problems in Chemical Physics Research, Chernogolovka, Russia (Russian Federation); Varentsov, D [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgarten Str. 9, 64289 Darmstadt (Germany); Udrea, S [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgarten Str. 9, 64289 Darmstadt (Germany); Hoffmann, D H H [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgarten Str. 9, 64289 Darmstadt (Germany); Juranek, H [Fachbereich Physik, Universitaet Rostock, 18051 Rostock (Germany); Redmer, R [Fachbereich Physik, Universitaet Rostock, 18051 Rostock (Germany); Portugues, R F [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Lomonosov, I [Institute for Problems in Chemical Physics Research, Chernogolovka, Russia (Russian Federation); Fortov, V E [Institute for Problems in Chemical Physics Research, Chernogolovka, Russia (Russian Federation)

    2003-06-06

    Intense heavy ion beams deposit energy very efficiently over extended volumes of solid density targets, thereby creating large samples of strongly coupled plasmas. Intense beams of energetic heavy ions are therefore an ideal tool to research this interesting field. It is also possible to design experiments using special beam-target geometries to achieve low-entropy compression of samples of matter. This type of experiments is of particular interest for studying the problem of hydrogen metallization. In this paper we present a design study of such a proposed experiment that will be carried out at the future heavy ion synchrotron facility SIS100, at the Gesellschaft fuer Schwerionenforschung, Darmstadt. This study has been done using a two-dimensional hydrodynamic computer code. The target consists of a solid hydrogen cylinder that is enclosed in a thick shell of lead whose one face is irradiated with an ion beam which has an annular (ring shaped) focal spot. The beam intensity and other parameters are considered to be the same as expected at the future SIS100 facility. The simulations show that due to multiple shock reflection between the cylinder axis and the lead-hydrogen boundary, one can achieve up to 20 times solid density in hydrogen while keeping the temperature as low as a few thousand K. The corresponding pressure is of the order of 10 Mbar. These values of the physical parameters lie within the range of theoretically predicted values for hydrogen metallization. We have also carried out a parameter study of this problem by varying the target and beam parameters over a wide range. It has been found that the results are very insensitive to such changes in the input parameters.

  13. The creation of strongly coupled plasmas using an intense heavy ion beam: low-entropy compression of hydrogen and the problem of hydrogen metallization

    International Nuclear Information System (INIS)

    Tahir, N A; Piriz, A R; Shutov, A; Varentsov, D; Udrea, S; Hoffmann, D H H; Juranek, H; Redmer, R; Portugues, R F; Lomonosov, I; Fortov, V E

    2003-01-01

    Intense heavy ion beams deposit energy very efficiently over extended volumes of solid density targets, thereby creating large samples of strongly coupled plasmas. Intense beams of energetic heavy ions are therefore an ideal tool to research this interesting field. It is also possible to design experiments using special beam-target geometries to achieve low-entropy compression of samples of matter. This type of experiments is of particular interest for studying the problem of hydrogen metallization. In this paper we present a design study of such a proposed experiment that will be carried out at the future heavy ion synchrotron facility SIS100, at the Gesellschaft fuer Schwerionenforschung, Darmstadt. This study has been done using a two-dimensional hydrodynamic computer code. The target consists of a solid hydrogen cylinder that is enclosed in a thick shell of lead whose one face is irradiated with an ion beam which has an annular (ring shaped) focal spot. The beam intensity and other parameters are considered to be the same as expected at the future SIS100 facility. The simulations show that due to multiple shock reflection between the cylinder axis and the lead-hydrogen boundary, one can achieve up to 20 times solid density in hydrogen while keeping the temperature as low as a few thousand K. The corresponding pressure is of the order of 10 Mbar. These values of the physical parameters lie within the range of theoretically predicted values for hydrogen metallization. We have also carried out a parameter study of this problem by varying the target and beam parameters over a wide range. It has been found that the results are very insensitive to such changes in the input parameters

  14. X-ray spectroscopy of hydrogen-like ions in an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Tarbutt, M.R.; Crosby, D.; Silver, J.D. [Univ. of Oxford, Clarendon Lab. (United Kingdom); Myers, E.G. [Dept. of Physics, Florida State Univ., Tallahassee, FL (United States); Nakamura, N.; Ohtani, S. [ICORP, JST, Chofu, Tokyo (Japan)

    2001-07-01

    The X-ray emission from highly charged hydrogen-like ions in an electron beam ion trap is free from the problems of satellite contamination and Doppler shifts inherent in fast-beam sources. This is a favourable situation for the measurement of ground-state Lamb shifts in these ions. We present recent progress toward this goal, and discuss a method whereby wavelength comparison between transitions in hydrogenlike ions of different nuclear charge Z, enable the measurement of QED effects without requiring an absolute calibration.

  15. Characteristics of a high-power RF source of negative hydrogen ions for neutral beam injection into controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.; Ivanov, A. A.; Kondakov, A. A.; Sanin, A. L.; Sotnikov, O. Z., E-mail: O.Z.Sotnikov@inp.nsk.su; Shikhovtsev, I. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2017-01-15

    An injector of hydrogen atoms with an energy of 0.5–1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.

  16. A manganese-hydrogen battery with potential for grid-scale energy storage

    Science.gov (United States)

    Chen, Wei; Li, Guodong; Pei, Allen; Li, Yuzhang; Liao, Lei; Wang, Hongxia; Wan, Jiayu; Liang, Zheng; Chen, Guangxu; Zhang, Hao; Wang, Jiangyan; Cui, Yi

    2018-05-01

    Batteries including lithium-ion, lead-acid, redox-flow and liquid-metal batteries show promise for grid-scale storage, but they are still far from meeting the grid's storage needs such as low cost, long cycle life, reliable safety and reasonable energy density for cost and footprint reduction. Here, we report a rechargeable manganese-hydrogen battery, where the cathode is cycled between soluble Mn2+ and solid MnO2 with a two-electron reaction, and the anode is cycled between H2 gas and H2O through well-known catalytic reactions of hydrogen evolution and oxidation. This battery chemistry exhibits a discharge voltage of 1.3 V, a rate capability of 100 mA cm-2 (36 s of discharge) and a lifetime of more than 10,000 cycles without decay. We achieve a gravimetric energy density of 139 Wh kg-1 (volumetric energy density of 210 Wh l-1), with the theoretical gravimetric energy density of 174 Wh kg-1 (volumetric energy density of 263 Wh l-1) in a 4 M MnSO4 electrolyte. The manganese-hydrogen battery involves low-cost abundant materials and has the potential to be scaled up for large-scale energy storage.

  17. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  18. CR-39 nuclear track detector application for the diagnostics of low energy high power ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Opekounov, M S; Pechenkin, S A; Remnev, G E [Nuclear Physics Institute, Tomsk (Russian Federation); Ivonin, I V [Siberian Physical-Technical Institute, Tomsk (Russian Federation)

    1997-12-31

    The results of investigation of the spectral composition of ion beams generated by the magneto-insulated ion diode of the MUK-M and TEMP accelerators. The energy and mass characteristics of the accelerated ion beam were determined by a Thomson spectrometer with a CR-39 plate detector (MOM - Atomki Nuclear Track Detector, Type MA-ND/p). The accelerated ion energy was from 40 to 240 keV. The ion current density range was from 1 to 10 A/cm{sup 2}. The mass composition contained hydrogen, nitrogen, carbon and aluminum ions. The individual track analysis showed the track form, depth and diameter in dependence on the ion mass and energy. (author). 2 figs., 5 refs.

  19. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  20. Hydrogen: a clean energy for tomorrow?

    International Nuclear Information System (INIS)

    Artero, V.; Guillet, N.; Fruchart, D.; Fontecave, M.

    2011-01-01

    Hydrogen has a strong energetic potential. In order to exploit this potential and transform this energy into electricity, two chemical reactions could be used which do not release any greenhouse effect gas: hydrogen can be produced by water electrolysis, and then hydrogen and oxygen can be combined to produce water and release heat and electricity. Hydrogen can therefore be used to store energy. In Norway, the exceeding electricity produced by wind turbines in thus stored in fuel cells, and the energy of which is used when the wind weakens. About ten dwellings are thus supplied with only renewable energy. Similar projects are being tested in Corsica and in the Reunion Island. The main challenges for this technology are its cost, its compactness and its durability. The article gives an overview of the various concepts, apparatus and systems involved in hydrogen and energy production. Some researches are inspired by bacteria which produce hydrogen with enzymes. The objective is to elaborate better catalysts. Another explored perspective is the storage of solid hydrogen

  1. Ion cyclotron resonance study of reactions of ions with hydrogen atoms

    International Nuclear Information System (INIS)

    Karpas, Z.; Anicich, V.; Huntress, W.T. Jr.

    1979-01-01

    Reactions of H 2 + , HeH + , and CO 2 + ions with hydrogen atoms, and the reactions of D 2 + , CO 2 + , CO + , N 2 + and HCN + with deuterium atoms, were studied using ion cyclotron resonance techniques. These reactions proceed predominantly via a charge transfer mechanism. The rate constants measured are: 6.4, 9.1, 1.1, 5.0, 0.84, 0.90, 1.2, and 0.37 x 10 -10 cm 3 /sec, respectively. Hydrocarbon ions of the types CH/sub n/ + and C 2 H/sub n/ + , where n=2--4, do not react with H or D atoms

  2. Clean energy and the hydrogen economy.

    Science.gov (United States)

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  3. Effects of Hydrogen Ion Implantation on TiC-C Coating of Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui-qian; LIU Yao-guang; HUANG Ning-kang

    2008-01-01

    Titanium carbide coatings are widely used as various wear-resistant material.The hydrogen erosion resistance of TiC-C films and the effect of hydrogen participation on TiC-C films were studied.Seventy-five percent TiC-C films are prepared on stainless steel surface by using ion mixing,where TiC-C films are deposited by rf magnetron sputtering followed by argon ion bombardment.The samples are then submitted to hydrogen ion implantation at 1.2×10-3 Pa.Characterization for the 75% TiC-C films was done with SIMS,XRD,AES,and XPS.Secondary ion mass spectroscopy (SIMS) was used to analyze hydrogen concentration variation with depth,X-Ray diffraction (XRD) was used to identify the phases,and Auger electron spectra (AES) as well as X-ray photoelectron spectra (XPS) were used to check the effects of hydrogen on shifts of chemical bonding states of C and Ti in the TiC-C films.It is found that TiC-C films on stainless steel surface can prevent hydrogen from entering stainless steel.

  4. Ejection dynamics of hydrogen molecular ions from methanol in intense laser fields

    International Nuclear Information System (INIS)

    Okino, T; Furukawa, Y; Liu, P; Ichikawa, T; Itakura, R; Hoshina, K; Yamanouchi, K; Nakano, H

    2006-01-01

    The ejection of hydrogen molecular ions from two-body Coulomb explosion processes of methanol (CH 3 OH, CD 3 OH and CH 3 OD) in an intense laser field (800 nm, 60 fs, 0.2 PW cm -2 ) is investigated by a coincidence momentum imaging method. From the coincidence momentum maps, the ejection processes of hydrogen molecular ions, CH 3 OH 2+ → H m + + CH (3-m) OH + (m = 2, 3), CD 3 OH 2+ → D m + + CH (3-m) OH + (m = 2, 3) and CH 3 OD 2+ → H m + + CH (3-m) OD + (m = 2, 3), are identified. Based on the results obtained with isotopically substituted methanol, the isotope effect on the ejection process of hydrogen molecular ions is discussed. Furthermore, the ejection of H/D exchanged hydrogen molecular ions (HD + , HD 2 + and H 2 D + ) is identified, and the timescales for the H/D exchanging processes are estimated from the extent of anisotropy in the ejection directions

  5. Hydrogen and oxygen behaviors on Porous-Si surfaces observed using a scanning ESD ion microscope

    International Nuclear Information System (INIS)

    Itoh, Yuki; Ueda, Kazuyuki

    2004-01-01

    A scanning electron-stimulated desorption (ESD) ion microscope (SESDIM) measured the 2-D images of hydrogen and oxygen distribution on solid surfaces. A primary electron beam at 600 eV, with a pulse width of 220 ns, resulted in ion yields of H + and O + . This SESDIM is applied to the surface analysis of Porous-Si (Po-Si) partially covered with SiN films. During the heating of a specimen of the Po-Si at 800 deg. C under ultra-high-vacuum (UHV) conditions, the components of the surface materials were moved or diffused by thermal decomposition accompanied by a redistribution of hydrogen and oxygen. After cyclic heating of above 800 deg. C, the dynamic behaviors of H + and O + accompanied by the movements of the SiN layers were observed as images of H + and O + . This was because the H + and O + ions have been identified as composite materials by their kinetic energies

  6. Study on the hydrogen negative ion in low pressure discharges

    International Nuclear Information System (INIS)

    Bruneteau, A.M.

    1983-07-01

    A new use of negative hydrogen ions is the production of intense fast neutral atom beams useful in plasma heating in thermonuclear heating. That is one of the reasons that started this study. The density of negative hydrogen ions in diffusion, and multipole-type low pressure (10 -3 - 10-2 Torr) discharges is deduced from the various formation and destruction processes of the species present in these discharges. The H - ions are essentially produced by dissociative attachment to vibrationally excited molecules and destroyed by processes the relative importance of which is discussed as a function of the discharge parameters. The experimental study of the density of the H - ions, measured by photodetachment, as a function of these parameters, coroborates the theoretical model [fr

  7. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action*

    Science.gov (United States)

    Piatnytskyi, Dmytro V.; Zdorevskyi, Oleksiy O.; Perepelytsya, Sergiy M.; Volkov, Sergey N.

    2015-11-01

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene

  8. Generation of H-, D- ions on composite surfaces with application to surface/plasma ion source systems

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.; Wimmer, E.; Freeman, A.J.; Chubb, S.R.

    1983-01-01

    We review some salient features of the experimental and theoretical data pertaining to hydrogen negative ion generation on minimum-work-function composite surfaces consisting of Cs/transition metal substrates. Cesium or hydrogen ion bombardment of a cesium-activated negatively-biased electrode exposed to a cesium-hydrogen discharge results in the release of hydrogen negative ions. These ions originate through desorbtion of hydrogen particles by incident cesium ions, desorbtion by incident hydrogen ions, and by backscattering of incident hydrogen. Each process is characterized by a specific energy and angular distribution. The calculation of ion formation in the crystal selvage region is discussed for different approximations to the surface potential. An ab initio, all-electron, local density functional model for the composite surface electronics is discussed

  9. The Effect of Ion Energy and Substrate Temperature on Deuterium Trapping in Tungsten

    Science.gov (United States)

    Roszell, John Patrick Town

    Tungsten is a candidate plasma facing material for next generation magnetic fusion devices such as ITER and there are major operational and safety issues associated with hydrogen (tritium) retention in plasma facing components. An ion gun was used to simulate plasma-material interactions under various conditions in order to study hydrogen retention characteristics of tungsten thus enabling better predictions of hydrogen retention in ITER. Thermal Desorption Spectroscopy (TDS) was used to measure deuterium retention from ion irradiation while modelling of TDS spectra with the Tritium Migration Analysis Program (TMAP) was used to provide information about the trapping mechanisms involved in deuterium retention in tungsten. X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were used to determine the depth resolved composition of specimens used for irradiation experiments. Carbon and oxygen atoms will be among the most common contaminants within ITER. C and O contamination in polycrystalline tungsten (PCW) specimens even at low levels (˜0.1%) was shown to reduce deuterium retention by preventing diffusion of deuterium into the bulk of the specimen. This diffusion barrier was also responsible for the inhibition of blister formation during irradiations at 500 K. These observations may provide possible mitigation techniques for problems associated with tritium retention and mechanical damage to plasma facing components caused by hydrogen implantation. Deuterium trapping in PCW and single crystal tungsten (SCW) was studied as a function of ion energy and substrate temperature. Deuterium retention was shown to decrease with decreasing ion energy below 100 eV/D+. Irradiation of tungsten specimens with 10 eV/D+ ions was shown to retain up to an order of magnitude less deuterium than irradiation with 500 eV/D+ ions. Furthermore, the retention mechanism for deuterium was shown to be consistent across the entire energy range studied (10-500 e

  10. Development of the negative ion source at the National Laboratory for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Akira [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-02-01

    On formation of direct high frequency chopped negative hydrogen ion beam from surface forming type negative hydrogen ion source, incident acceleration due to proton synchrotron was tried for a forming experiment and its application. By overlapping a high frequency pulse onto a bias DC voltage of convertor electrode, control of formation of negative hydrogen ion with high speed RF pulse of 2 MHz could be realized. And, incidence into 12 GeV proton accelerator to catch RF particles with waiting bucket system due to booster synchrotron, was effective for control of longitudinal emittance in the booster synchrotron. As a result, controls of the beam width and shape emitted from the booster synchrotron were possible. On application of high speed chopped negative hydrogen ion beam to accelerator, improvement of beam capture efficiency to the accelerated RF bucket, control of longitudinal emittance of accelerated beam, beam measurement at incidence into the accelerator and so forth were conducted. In this paper, results of the high speed chopped beam formation experiment using surface plasma forming type negative ion source and application of high speed beam chopping method synchronized with high frequency pulse at the National Laboratory of High Energy Physics are described. (G.K.)

  11. Quantum effects on the formation of negative hydrogen ion by polarization electron capture in partially ionized dense hydrogen plasmas

    International Nuclear Information System (INIS)

    Jung, Young-Dae; Kato, Daiji

    2009-05-01

    The quantum effects on the formation of the negative hydrogen ion (H - ) by the polarization electron capture process are investigated in partially ionized dense hydrogen plasmas. It is shown that the quantum effect strongly suppresses the electron capture radius as well as the cross section for the formation of the negative hydrogen ion. In addition, it has been found that the electron capture position is receded from the center of the projectile with decreasing the quantum effect of the plasma. (author)

  12. Influence of dense plasma on the energy levels and transition properties in highly charged ions

    Science.gov (United States)

    Chen, Zhan-Bin; Hu, Hong-Wei; Ma, Kun; Liu, Xiao-Bin; Guo, Xue-Ling; Li, Shuang; Zhu, Bo-Hong; Huang, Lian; Wang, Kai

    2018-03-01

    The studies of the influence of plasma environments on the level structures and transition properties for highly charged ions are presented. For the relativistic treatment, we implemented the multiconfiguration Dirac-Fock method incorporating the ion sphere (IS) model potential, in which the plasma screening is taken into account as a modified interaction potential between the electron and the nucleus. For the nonrelativistic treatment, analytical solutions of the Schrödinger equation with two types of the IS screened potential are proposed. The Ritz variation method is used with hydrogenic wave function as a trial wave function that contains two unknown variational parameters. Bound energies are derived from an energy equation, and the variational parameters are obtained from the minimisation condition of the expectation value of the energy. Numerical results for hydrogen-like ions in dense plasmas are presented as examples. A detailed analysis of the influence of relativistic effects on the energy levels and transition properties is also reported. Our results are compared with available results in the literature showing a good quantitative agreement.

  13. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Nuclear generated hydrogen has important potential advantages over other sources that will be considered for a growing hydrogen share in a future world energy economy. Still, there are technical uncertainties in nuclear hydrogen processes that need to be addressed through a vigorous research and development effort. Safety issues as well as hydrogen storage and distribution are important areas of research to be undertaken to support a successful hydrogen economy in the future. The hydrogen economy is gaining higher visibility and stronger political support in several parts of the

  14. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  15. Low Energy Charge Transfer for Collisions of Si3+ with Atomic Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bruhns, H. [Columbia University; Kreckel, H. [Columbia University; Savin, D. W. [Columbia University; Seely, D. G. [Albion College; Havener, Charles C [ORNL

    2008-01-01

    Cross sections of charge transfer for Si{sup 3+} ions with atomic hydrogen at collision energies of {approx} 40-2500 eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results.

  16. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    Science.gov (United States)

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  17. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  18. State-selective charge transfer cross sections for light ion impact of atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D. R. [University of North Texas; Stancil, Phillip C. [University of Georgia, Athens; Havener, C. C. [Oak Ridge National Laboratory (ORNL)

    2015-01-01

    Owing to the utility of diagnosing plasma properties such as impurity concentration and spatial distribution, and plasma temperature and rotation, by detection of photon emission following capture of electrons from atomic hydrogen to excited states of multiply charged ions, new calculations of state-selective charge transfer involving light ions have been carried out using the atomic orbital close-coupling and the classical trajectory Monte Carlo methods. By comparing these with results of other approaches applicable in a lower impact energy regime, and by benchmarking them using key experimental data, knowledge of the cross sections can be made available across the range parameters needed by fusion plasma diagnostics.

  19. Stand alone solution for generation and storage of hydrogen and electric energy

    International Nuclear Information System (INIS)

    Gany, Alon; Elitzur, Shani; Valery

    2015-01-01

    A novel method enabling safe, simple, and controllable production, storage, and use of hydrogen as well as compact electric energy storage and generation via hydrogen- oxygen fuel cells has been developed. The technology indicates, in our opinion, a significant milestone in the search for practical utilization of hydrogen as an alternative energy source. It consists of an original thermal-chemical treatment / activation of aluminum powders to react spontaneously with water to produce hydrogen at regular conditions according to the reaction Al+3H 2 O=Al (OH) 3 +3/2H 2 . Only about 1-2% of lithium, based activator is applied, and any type of water including tap water, sea water and waste water may be used, making the method attractive for variety of applications. 11% of hydrogen compared to the aluminum mass can be obtained, and our experiments reveal 90% reaction yield and more. The technology has a clear advantage over batteries, providing specific electric energy of over 2 kW h/kg Al, 5-10 times greater than that of commonly used lithium-ion batteries. Combined with a fuel cell it may be particularly beneficial for stand-alone electric power generators, where there is no access to the grid. Such applications include emergency generators (e.g., in hospitals), electricity backup systems, and power generation in remote communication posts. Automotive applications may be considered as well. The technology provides green electric energy and quiet operation as well as additional heat energy resulting mainly from the exothermic aluminum-water reaction. (full text)

  20. Determination of the diffusion coefficient of hydrogen ion in hydrogels.

    Science.gov (United States)

    Schuszter, Gábor; Gehér-Herczegh, Tünde; Szűcs, Árpád; Tóth, Ágota; Horváth, Dezső

    2017-05-17

    The role of diffusion in chemical pattern formation has been widely studied due to the great diversity of patterns emerging in reaction-diffusion systems, particularly in H + -autocatalytic reactions where hydrogels are applied to avoid convection. A custom-made conductometric cell is designed to measure the effective diffusion coefficient of a pair of strong electrolytes containing sodium ions or hydrogen ions with a common anion. This together with the individual diffusion coefficient for sodium ions, obtained from PFGSE-NMR spectroscopy, allows the determination of the diffusion coefficient of hydrogen ions in hydrogels. Numerical calculations are also performed to study the behavior of a diffusion-migration model describing ionic diffusion in our system. The method we present for one particular case may be extended for various hydrogels and diffusing ions (such as hydroxide) which are relevant e.g. for the development of pH-regulated self-healing mechanisms and hydrogels used for drug delivery.

  1. Dynamic plasma screening effects on electron capture process in hydrogenic ion fully stripped ion collisions in dense plasmas

    International Nuclear Information System (INIS)

    Jung, Y.

    1997-01-01

    In dense plasmas, dynamic plasma screening effects are investigated on electron capture from hydrogenic ions by past fully stripped ions. The classical Bohr Lindhard model has been applied to obtain the electron capture probability. The interaction potential in dense plasmas is represented in terms of the longitudinal dielectric function. The classical straight-line trajectory approximation is applied to the motion of the projectile ion in order to visualize the electron capture probability as a function of the impact parameter, projectile energy, and plasma parameters. The electron capture probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the plasma electron thermal velocity, the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low energy projectiles. It is found that the static screening formula obtained by the Debye Hueckel model overestimates the plasma screening effects on the electron capture processes in dense plasmas. copyright 1997 American Institute of Physics

  2. The Energy Efficiency of Onboard Hydrogen Storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vestbø, Andreas Peter; Li, Qingfeng

    2007-01-01

    A number of the most common ways of storing hydrogen are reviewed in terms of energy efficiency. Distinction is made between energy losses during regeneration and during hydrogen liberation. In the latter case, the energy might have to be provided by part of the released hydrogen, and the true...

  3. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    International Nuclear Information System (INIS)

    Diaz-Valdes, J.; Gutierrez, F.A.; Matamala, A.R.; Denton, C.D.; Vargas, P.; Valdes, J.E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H 2 + , immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35a.u. from the first atomic layer of the solid

  4. Can Cu(II) ions be doped into the crystal structure of potassium hydrogen tartrate?

    OpenAIRE

    Srinivasan, Bikshandarkoil R.; Remesh, H.

    2015-01-01

    The differing binding preferences of the hydrogen tartrate ligand (HC4H4O6)- namely {\\mu}7-octadentate mode for potassium ion and bidentate mode for cupric ion rules out the doping (incorporation) of any Cu(II) ion into the crystal structure of potassium hydrogen tartrate. Hence, the claim of growth of copper doped potassium hydrogen tartrate viz. K0.96Cu0.04C4H5O6 by Mathivanan and Haris, Indian J Pure App Phys 51 (2013) 851-859 is untenable.

  5. Prospects for hydrogen in the German energy system

    International Nuclear Information System (INIS)

    Hake, J.-F.; Linssen, J.; Walbeck, M.

    2006-01-01

    The focus of the paper concerns the current discussion on the contribution of the hydrogen economy to a 'sustainable energy system'. It considers whether advantages for the environmental situation and energy carrier supply can be expected from the already visible future characteristics of hydrogen as a new secondary energy carrier. Possible production paths for hydrogen from hydrocarbon-based, renewable or carbon-reduced/-free primary energy carriers are evaluated with respect to primary energy use and CO 2 emissions from the fuel cycle. Hydrogen has to be packaged by compression or liquefaction, transported by surface vehicles or pipelines, stored and transferred to the end user. Whether generated by electrolysis or by reforming, and even if produced locally at filling stations, the gaseous or liquid hydrogen has to undergo these market processes before it can be used by the customer. In order to provide an idea of possible markets with special emphasis on the German energy sector, a technical systems analysis of possible hydrogen applications is performed for the stationary, mobile and portable sector. Furthermore, different 'business as usual' scenarios are analysed for Germany, Europe and the World concerning end energy use in different sectors. The very small assumed penetration of hydrogen in the analysed scenarios up to the year 2050 indicates that the hydrogen economy is a long-term option. With reference to the assumed supply paths and analysed application possibilities, hydrogen can be an option for clean energy use if hydrogen can be produced with carbon-reduced or -free primary energy carriers like renewable energy or biomass. However, the energetic use of hydrogen competes with the direct use of clean primary energy and/or with the use of electric energy based on renewable primary energy. As a substitution product for other secondary energy carriers hydrogen is therefore under pressure of costs and/or must have advantages in comparison to the use of

  6. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  7. E parallel B energy-mass spectrograph for measurement of ions and neutral atoms

    International Nuclear Information System (INIS)

    Funsten, H.O.; McComas, D.J.; Scime, E.E.

    1997-01-01

    Real-time measurement of plasma composition and energy is an important diagnostic in fusion experiments. The Thomson parabola spectrograph described here utilizes an electric field parallel to a magnetic field (E parallel B) and a two-dimensional imaging detector to uniquely identify the energy-per-charge and mass-per-charge distributions of plasma ions. An ultrathin foil can be inserted in front of the E parallel B filter to convert neutral atoms to ions, which are subsequently analyzed using the E parallel B filter. Since helium exiting an ultrathin foil does not form a negative ion and hydrogen isotopes do, this spectrograph allows unique identification of tritium ions and neutrals even in the presence of a large background of 3 He. copyright 1997 American Institute of Physics

  8. Scanning ion microscopy with low energy lithium ions

    International Nuclear Information System (INIS)

    Twedt, Kevin A.; Chen, Lei; McClelland, Jabez J.

    2014-01-01

    Using an ion source based on photoionization of laser-cooled lithium atoms, we have developed a scanning ion microscope with probe sizes of a few tens of nanometers and beam energies from 500 eV to 5 keV. These beam energies are much lower than the typical operating energies of the helium ion microscope or gallium focused ion beam systems. We demonstrate how low energy can be advantageous in ion microscopy when detecting backscattered ions, due to a decreased interaction volume and the potential for surface sensitive composition analysis. As an example application that demonstrates these advantages, we non-destructively image the removal of a thin residual resist layer during plasma etching in a nano-imprint lithography process. - Highlights: • We use an ion source based on photoionization of laser-cooled lithium atoms. • The ion source makes possible a low energy (500 eV to 5 keV) scanning ion microscope. • Low energy is preferred for ion microscopy with backscattered ions. • We use the microscope to image a thin resist used in nano-imprint lithography

  9. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  10. Hydrogen energy for the transportation sector in China

    International Nuclear Information System (INIS)

    Zong Qiangmao

    2006-01-01

    Hydrogen is a promising energy carrier for providing a clean, reliable and affordable energy supply. This paper provides a blueprint for the hydrogen energy in the transportation sector in the future of China. This paper is divided into three parts. The first part answers this question: why is China interested in hydrogen energy? The second part describes the possibility of a hydrogen fuel cell engine and a hydrogen internal-combustion engine in the transportation in China in the near future. The final part describes the production of hydrogen in China. (author)

  11. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  12. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  13. Industrial view of Hydrogen Energy

    International Nuclear Information System (INIS)

    Francois Jackow

    2006-01-01

    Industrial Gases Companies have been mastering Hydrogen production, distribution, safe handling and applications for several decades for a wide range of gas applications. This unique industrial background positioned these companies to play a key role in the emerging Hydrogen Energy market, which can rely, at early stage of development, on already existing infrastructure, logistics and technical know-how. Nevertheless, it is important to acknowledge that Hydrogen Energy raised specific challenges which are not totally addressed by industrial gas activities. The main difference is obviously in the final customer profile, which differs significantly from the qualified professional our industry is used to serve. A non professional end-user, operating with Hydrogen at home or on board of his family car, has to be served with intrinsically safe and user-friendly solutions that exceed by far the industrial specifications already in place. Another significant challenge is that we will need breakthroughs both in terms of products and infrastructure, with development time frame that may require several decades. The aim of this presentation is to review how a company like Air Liquide, worldwide leader already operating more than 200 large hydrogen production sites, is approaching this new Hydrogen Energy market, all along the complete supply chain from production to end-users. Our contributions to the analysis, understanding and deployment of this new Energy market, will be illustrated by the presentation of Air Liquide internal development's as well as our participation in several national and European projects. (author)

  14. Nuclear energy in the hydrogen economy

    International Nuclear Information System (INIS)

    Bertel, E.; Lee, K.S.; Nordborg, C.

    2004-01-01

    In the framework of a sustainable development, the hydrogen economy is envisaged as an alternative scenario in substitution to the fossil fuels. After a presentation of the hydrogen economy advantages, the author analyzes the nuclear energy a a possible energy source for hydrogen production since nuclear reactors can produce both the heat and electricity required for it. (A.L.B.)

  15. Achievement report on research and development in the Sunshine Project in fiscal 1977. Hydrogen energy; 1977 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-04-01

    This paper summarizes achievements in the Sunshine Project related to hydrogen energy in fiscal 1977. In the electrolytic process in hydrogen manufacturing technologies, new composite materials are developed in relation with membranes and electrodes as the high temperature and pressure water decomposition method. A bench-scale water decomposition tank using organic polymer ion exchange membranes is fabricated on a trial basis and tested for studying solid electrolyte decomposition method. In hydrogen manufacturing technologies using thermo-chemical process, discussions are being given on cycles of iron systems, iodine systems and hybrid systems (mixture of thermo and photo chemistry and electrochemistry). For hydrogen transporting and storing technologies, metal hydrides most suitable for hydrogen storage are developed, and storage systems are studied. In hydrogen combustion, elucidation is made on fundamental conditions for mixed and single combustion technologies suitable for prevention of reverse ignition and suppression of NOx generation. Studies are also being made on fuel cells using aqueous solution and solid electrolytes. Studies on hydrogen fueled engines are also described. In hydrogen safety assuring technologies, discussions are being given on prevention of explosion disasters, prevention of embrittlement of materials due to hydrogen and criteria for safety assuring technologies. Descriptions are given also on studies on total hydrogen energy systems and hydrogen fueled automobiles. (NEDO)

  16. Fundamental hydrogen interactions with beryllium : a magnetic fusion perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. (Sandia National Laboratories, Albuquerque, NM); Felter, Thomas E.; Whaley, Josh A.; Kolasinski, Robert D.; Bartelt, Norman Charles

    2012-03-01

    Increasingly, basic models such as density functional theory and molecular dynamics are being used to simulate different aspects of hydrogen recycling from plasma facing materials. These models provide valuable insight into hydrogen diffusion, trapping, and recombination from surfaces, but their validation relies on knowledge of the detailed behavior of hydrogen at an atomic scale. Despite being the first wall material for ITER, basic single crystal beryllium surfaces have been studied only sparsely from an experimental standpoint. In prior cases researchers used electron spectroscopy to examine surface reconstruction or adsorption kinetics during exposure to a hydrogen atmosphere. While valuable, these approaches lack the ability to directly detect the positioning of hydrogen on the surface. Ion beam techniques, such as low energy ion scattering (LEIS) and direct recoil spectroscopy (DRS), are two of the only experimental approaches capable of providing this information. In this study, we applied both LEIS and DRS to examine how hydrogen binds to the Be(0001) surface. Our measurements were performed using an angle-resolved ion energy spectrometer (ARIES) to probe the surface with low energy ions (500 eV - 3 keV He{sup +} and Ne{sup +}). We were able to obtain a 'scattering maps' of the crystal surface, providing insight on how low energy ions are focused along open surface channels. Once we completed a characterization of the clean surface, we dosed the sample with atomic hydrogen using a heated tungsten capillary. A distinct signal associated with adsorbed hydrogen emerged that was consistent with hydrogen residing between atom rows. To aid in the interpretation of the experimental results, we developed a computational model to simulate ion scattering at grazing incidence. For this purpose, we incorporated a simplified surface model into the Kalypso molecular dynamics code. This approach allowed us to understand how the incident ions interacted with the

  17. Conference on hydrogen-energy in France and Germany

    International Nuclear Information System (INIS)

    Bodineau, Luc; Menzen, Georg; Arnold, Peter Erich; Mauberger, Pascal; Roentzsch, Lars; Poggi, Philippe; Gervais, Thierry; Schneider, Guenther; Colomar, David; Buenger, Ulrich; Nieder, Babette; Zimmer, Rene; Jeanne, Fabrice; Le Grand, Jean-Francois

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on hydrogen-energy in France and Germany. In the framework of this French-German exchange of experience, about 200 participants exchanged views on the different perspectives for use of hydrogen, in particular in transportation and energy storage applications. The technical production, transport and storage means were addressed too, as well as the technological models and the conditions for a large-scale industrial deployment. The economic prospects of hydrogen-energy in tomorrow's energy mix were also considered during the conference. This document brings together the available presentations (slides) made during this event: 1 - Hydrogen energy and Fuel Cells in France Today, and prospective (Luc Bodineau); 2 - The situation of energy Policy in Germany and the challenges for the Hydrogen Technology (Georg Menzen); 3 - Unlocking the Hydrogen Potential for Transport and Industry (Peter Erich Arnold); 4 - Hydrogen, a new energy for our planet - Hydrogen storage possibilities: example of solid storage (Pascal Mauberger); 5 - Innovative Materials and Manufacturing Technologies for H 2 Production and H 2 Storage (Lars Roentzsch); 6 - Scientific development and industrial strategy: experience feedback from the Myrte platform and energy transition-related perspectives (Philippe Poggi, Thierry Gervais); 7 - 'Power to Gas' - Important partner for renewables with big impact potential (Guenther Schneider) 8 - Developing a Hydrogen Infrastructure for Transport in France and Germany - A Comparison (David Colomar, Ulrich Buenger); 9 - H 2 and Fuel-Cells as Key Technologies for the Transition to Renewable energies - The example of Herten (Babette Nieder); 10 - Social acceptance of hydrogen mobility in Germany (Rene Zimmer); 11 - Hydrogen - A development opportunity for regions? (Fabrice Jeanne)

  18. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  19. Hydrogen energy economy: More than utopia

    International Nuclear Information System (INIS)

    Weber, R.

    1992-01-01

    Under the pressure of increasing climate changes in the last years the attitude towards hydrogen technology has changed. Germany has taken a leading position in hydrogen research. Above all there is not only government-sponsored research but also industrial research. It is even assumed that an energy economy on the basis of solar energy as well as of hydrogen is technically possible. If the fact that the total power of all cars in the FRG amounts to 200.000 MW - twice as much as all power stations - is taken into consideration it should be possible to produce in large-scale production decentralized solar or hydrogen energy converters at similar kilowatt rates. (BWI) [de

  20. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  1. Applications of heavy-ion reactions on hydrogen isotopes

    International Nuclear Information System (INIS)

    Evers, E.J.

    1987-01-01

    This thesis describes various aspects of 'inverse' reactions between the lightest nuclides, hydrogen and deuterium, and heavy ions in the range from carbon to phosphorus. The reactions studied in this thesis always result in one light ejectile and one excited heavy nucleus. Coincidence experiments have been performed in which both the emitted light particle and the gamma radiation emitted by the excited heavy nucleus produced, are detected. Ch. 1 describes the system built for the acquisition of data obtained in such coincidence experiments. Ch. 2 describes precision measurements of nuclear lifetimes and stopping powers. Coincident Doppler shift attenuation (DSA) experiments were performed with the reaction 2 H( 31 P,pγ) 32 P at E( 31 P 7+ )=50 MeV and thin Ti 2 H targets on Au, Ag and Cu backings. Mean lifetimes of the E x =513, 1150, 1323 and 1755 levels were determined with experimental stopping powers of Forster et al. These lifetimes were used as input in further analysis of the experimental data and of an additional experiment with a target on Mg backing to determine a consistent set of stopping power data for P ions with a velocity in the range 0-8(c/137) in the four materials mentioned. Ch.'s 3 and 4 deal with narrow resonances in reactions of nitrogen and fluorine beams with hydrogen targets. In Ch. 3 a method is described for the calibration of analyzing-magnet systems of heavy-ions accelerators. Ch. 4 describes an experiment to investigate the hydrogen concentration in silicon nitride films using a resonant inverse nuclear reaction. This method turns out to be a very suitable one for determining hydrogen concentration profiles with a good depth resolution over a large depth. 69 refs.; 23 figs.; 7 tabs

  2. Hydrogen energy technology

    International Nuclear Information System (INIS)

    Morovic, T.; Pilhar, R.; Witt, B.

    1988-01-01

    A comprehensive assessment of different energy systems from the economic point of view has to be based on data showing all relevant costs incurred and benefits drawn by the society from the use of such energy systems, i.e. internal costs and benefits visible to the energy consumer as prices paid for power supplied, as well as external costs and benefits. External costs or benefits of energy systems cover among other items employment or wage standard effects, energy-induced environmental impacts, public expenditure for pollution abatement and mitigation of risks and effects of accidents, and the user costs connected with the exploitation of reserves, which are not rated high enough to really reflect and demonstrate the factor of depletion of non-renewable energy sources, as e.g. fossil reserves. Damage to the natural and social environment induced by anthropogenous air pollutants up to about 90% counts among external costs of energy conversion and utilisation. Such damage is considered to be the main factor of external energy costs, while the external benefits of energy systems currently are rated to be relatively unsignificant. This means that an internalisation of external costs would drive up current prices of non-renewable energy sources, which in turn would boost up the economics of renewable energy sources, and the hydrogen produced with their energy. Other advantages attributed to most of the renewable energy sources and to hydrogen energy systems are better environmental compatibility, and no user costs. (orig.) [de

  3. Effect of Cesium and Xenon Seeding in Negative Hydrogen Ion Sources

    International Nuclear Information System (INIS)

    Bacal, M.; Brunteau, A.M.; Deniset, C.; Elizarov, L.I.; Sube, F.; Tontegode, A.Y.; Whealton, J.H.

    1999-01-01

    It is well known that cesium seeding in volume hydrogen negative ion sources leads to a large reduction of the extracted electron current and in some cases to the enhancement of the negative ion current. The cooling of the electrons due to the addition of this heavy impurity was proposed as a possible cause of the mentioned observations. In order to verify this assumption, the authors seeded the hydrogen plasma with xenon, which has an atomic weight almost equal to that of cesium. The plasma properties were studied in the extraction region of the negative ion source Camembert III using a cylindrical electrostatic probe while the negative ion relative density was studied using laser photodetachment. It is shown that the xenon mixing does not enhance the negative ion density and leads to the increase of the electron density, while the cesium seeding reduces the electron density

  4. Extraction of negative lithium ions from a lithium-containing hydrogen plasma

    International Nuclear Information System (INIS)

    Wada, M.; Sasao, M.

    1996-01-01

    Negative lithium ions (Li - ) were extracted from a 6-cm-diam 7-cm-long negative hydrogen ion (H - ) source to simulate the condition of Li - extraction from a Li vapor introduced ion source for the neutral beam heating. The amount of the Li - current extracted from a hydrogen plasma with Li vapor was comparable to that extracted from a pure Li plasma. However, the amount of the H - current decreased as the H 2 gas pressure in the source decreased due to a getter-pump effect of Li during the introduction of Li vapor. A heat shield installed to keep a high wall temperature was effective in mitigating the pressure decrease. However, the H - current extracted from the ion source equipped with the heat shield became 20% of the original value, as Li vapor was injected into the ion source. copyright 1996 American Institute of Physics

  5. Improved beam-energy calibration technique for heavy ion accelerators

    International Nuclear Information System (INIS)

    Ferrero, A.M.J.; Garcia, A.; Gil, Salvador

    1989-01-01

    A simple technique for beam energy calibration of heavy-ion accelerators is presented. A thin hydrogenous target was bombarded with 12 C and 19 F, and the energies of the protons knocked out, elastically were measured at several angles using two detectors placed at equal angles on opposite sides of the beam. The use of these two detectors cancels the largest errors due to uncertainties in the angle and position at which the beam hits the target. An application of this energy calibration method to an electrostatic accelerator is described and the calibration constant of the analyzing magnet was obtained with an estimated error of 0.4 (Author) [es

  6. Slow positron beam study of hydrogen ion implanted ZnO thin films

    International Nuclear Information System (INIS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-01-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×10 15 and 1×10 16 ions cm −2 . Zn vacancy and OH bonding (V Zn +OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process. - Highlights: • Hydrogen introduced by ion implantation can form hydrogen-related defect complex. • V Zn +OH defect complex is identified by positron annihilation and IR spectroscopy. • Irradiation defects suppress the luminescence process

  7. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  8. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X.

    2017-06-01

    To eliminate the adverse impacts of hydrogen evolution on the capacity of iron-chromium redox flow batteries (ICRFBs) during the long-term operation and ensure the safe operation of the battery, a rebalance cell that reduces the excessive Fe(III) ions at the positive electrolyte by using the hydrogen evolved from the negative electrolyte is designed, fabricated and tested. The effects of the flow field, hydrogen concentration and H2/N2 mixture gas flow rate on the performance of the hydrogen-ferric ion rebalance cell have been investigated. Results show that: i) an interdigitated flow field based rebalance cell delivers higher limiting current densities than serpentine flow field based one does; ii) the hydrogen utilization can approach 100% at low hydrogen concentrations (≤5%); iii) the apparent exchange current density of hydrogen oxidation reaction in the rebalance cell is proportional to the square root of the hydrogen concentration at the hydrogen concentration from 1.3% to 50%; iv) a continuous rebalance process is demonstrated at the current density of 60 mA cm-2 and hydrogen concentration of 2.5%. Moreover, the cost analysis shows that the rebalance cell is just approximately 1% of an ICRFB system cost.

  9. Progress of the ''batman'' RF source for negative hydrogen ions

    International Nuclear Information System (INIS)

    Frank, P.; Heinemann, B.; Kraus, W.; Probst, F.; Speth, E.; Vollmer, O.; Bucalossi, J.; Trainham, R.

    1998-01-01

    The aim of a collaboration between CEA Cadarache and IPP Garching is to investigate the ability of an rf source to produce negative-ion current densities compatible with ITER NBI requirements (20 mA/cm 2 D-). A standard PlNI-size rf source developed for ASDEX-Upgrade and a three-grid extraction system form the basis of BATMAN (Bavarian Test Machine for Negative Ions). In the case of a pure hydrogen plasma a current density of 5.5 mA/cm 2 at elevated pressure (2.4 Pa) can be reached. Adding small amounts of argon ( 2 . In the low pressure range (0.7 Pa) the negative ion yield is strongly reduced, but with an admixture of argon and a cesium injection the current density is higher approx. by a factor 8 (4 mA/cm 2 ) compared to the pure hydrogen discharge. The negative ion yield shows a saturation with increasing rf power. (author)

  10. Numerical analysis on the ion species ratios in a steady state hydrogen plasma

    International Nuclear Information System (INIS)

    Fukumasa, Osamu; Saeki, Setsuo; Osaki, Katashi; Sakiyama, Satoshi; Itatani, Ryohei.

    1984-07-01

    Ion species ratios in a hydrogen plasma are calculated systematically as a function of plasma parameters, i.e. the electron density, the electron temperature, the pressure of hydrogen gas and the plasma volume. Furthermore, in the present analysis, the recombination factor for hydrogen atoms at the wall surface of a vacuum vessel is treated as another plasma parameter. The most significant point is that ion species ratios depend strongly not only on plasma parameters, but also on the recombination factor. The proton ratio increases with decreasing value of the recombination factor. Primary electrons also play an important role for ion species ratios, and the presence of primary electrons causes the proton ratio to decrease. (author)

  11. Hydrogen, energy vector of the future?

    International Nuclear Information System (INIS)

    Perrin, J.; Deschamps, J.F.

    2004-01-01

    In the framework of a sustainable development with a reduction of the greenhouse gases emissions, the hydrogen seems a good solution because its combustion produces only water. From the today hydrogen industrial market, the authors examine the technological challenges and stakes of the hydrogen-energy. They detail the hydrogen production, distribution and storage and compare with the petrol and the natural gas. Then they explain the fuel cells specificity and realize a classification of the energy efficiency of many associations production-storage-distribution-use. a scenario of transition is proposed. (A.L.B.)

  12. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dougar-Jabon, V.D. [Industrial Univ. of Santander, Bucaramanga (Colombia)

    2001-04-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D{sup -}, is close to the production of negative ions of light hydrogen isotope, H{sup -}. The comparison of the experimental data with the calculated ones shows that the most probable process of the H{sup -} and D{sup -} ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  13. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.

    2001-01-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D - , is close to the production of negative ions of light hydrogen isotope, H - . The comparison of the experimental data with the calculated ones shows that the most probable process of the H - and D - ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  14. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Hatano, Yuji; Shimada, Masashi; Buchenauer, Dean; Kolasinski, Robert; Merrill, Brad; Kondo, Sosuke; Hinoki, Tatsuya; Alimov, Vladimir Kh.

    2016-01-01

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  15. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yasuhisa, E-mail: syoya@ipc.shizuoka.ac.jp [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Shimada, Masashi [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Buchenauer, Dean; Kolasinski, Robert [Sandia National Laboratories, Livermore, CA 94551 (United States); Merrill, Brad [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Kondo, Sosuke; Hinoki, Tatsuya [Kyoto University, Gokasho, Uji 611-0011 (Japan); Alimov, Vladimir Kh. [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan)

    2016-12-15

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  16. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  17. High effective heterogeneous plasma vortex reactor for production of heat energy and hydrogen

    Science.gov (United States)

    Belov, N. K.; Zavershinskii, I. P.; Klimov, A. I.; Molevich, N. E.; Porfiriev, D. P.; Tolkunov, B. N.

    2018-03-01

    This work is a continuation of our previous studies [1-10] of physical parameters and properties of a long-lived heterogeneous plasmoid (plasma formation with erosive nanoclusters) created by combined discharge in a high-speed swirl flow. Here interaction of metal nanoclusters with hydrogen atoms is studied in a plasma vortex reactor (PVR) with argon-water steam mixture. Metal nanoclusters were created by nickel cathode’s erosion at combined discharge on. Dissociated hydrogen atoms and ions were obtained in water steam by electric discharge. These hydrogen atoms and ions interacted with metal nanoclusters, which resulted in the creation of a stable plasmoid in a swirl gas flow. This plasmoid has been found to create intensive soft X-ray radiation. Plasma parameters of this plasmoid were measured by optical spectroscopy method. It has been obtained that there is a high non-equilibrium plasmoid: Te > TV >> TR. The measured coefficient of energy performance of this plasmoid is about COP = 2÷10. This extra power release in plasmoid is supposed to be connected with internal excited electrons. The obtained experimental results have proved our suggestion.

  18. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    WINTEC

    Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. A NAG. 1. , D CHAKRABORTY and A CHANDRA*. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016. 1. Present address: Department of Chemistry and Chemical Engineering,.

  19. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  20. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897 (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Fujiwara, Y.; Sakakita, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan)

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  1. Hydrogen: energy transition under way

    International Nuclear Information System (INIS)

    Franc, Pierre-Etienne; Mateo, Pascal

    2015-01-01

    Written by a representative of Air Liquide with the help of a free lance journalist, this book proposes an overview of the technological developments for the use of hydrogen as a clean energy with its ability to store primary energy (notably that produced by renewable sources), and its capacity of energy restitution in combination with a fuel cell with many different applications (notably mobility-related applications). The authors outline that these developments are very important in a context of energy transition. They also outline what is left to be done, notably economically and financially, for hydrogen to play its role in the energy revolution which is now under way

  2. Dynamics of the reaction of the N+ ion with hydrogen isotopes and helium

    International Nuclear Information System (INIS)

    Ruska, W.E.W.

    1976-01-01

    Molecular beam techniques were used to study the reactive and non-reactive scattering of the nitrogen positive ion from hydrogen isotopes and helium, at energies above the stability limit for spectator stripping. Reactive scattering was observed from H 2 and HD targets. Non-reactive scattering was observed from H 2 and D 2 targets, and from He at one energy. A correlation diagram for the system is presented and compared with the available a priori calculations. Two surfaces are expected to lead to reaction. One is a 3 A 2 - 3 PI surface, the other, a 3 B 1 - 3 Σ - surface. Collinear approaches are expected to be most reactive on the 3 B 1 - 3 Σ - surface; noncollinear, on the 3 A 1 - 3 PI surface. Theoretical models are presented in which an incident hard sphere A, representing the projectile ion, strikes one of a pair of hard spheres B-C representing the B hydrogen molecule. After an impulsive A-B collision, an impulsive B-C collision may take place. The relative energy of A to B is then examined, and a reactive event is considered to have occurred if the energy is less than the dissociation energy for the A-B molecule. This model is treated both in the collinear case and in three dimensions. A graphical technique for the collinear case is summarized and applied to reaction on the 3 B 1 - 3 Σ - surface. An integral equation for the three-dimensional case is developed. A synthesis of two treatments, representing the behavior of the system on both reactive surfaces, and considering the charge-exchange channel, correctly predicts the observed product distribution. Predictions are also presented for the as yet unobserved case of reactive scattering from a D 2 target

  3. Calculation of von Neumann entropy for hydrogen and positronium negative ions

    International Nuclear Information System (INIS)

    Lin, Chien-Hao; Ho, Yew Kam

    2014-01-01

    In the present work, we carry out calculations of von Neumann entropies and linear entropies for the hydrogen negative ion and the positronium negative ion. We concentrate on the spatial (electron–electron orbital) entanglement in these ions by using highly correlated Hylleraas functions to represent their ground states, and to take care of correlation effects. We apply the Schmidt decomposition method on the partial-wave expanded two-electron wave functions, and from which the one-particle reduced density matrix can be obtained, leading to the quantifications of linear entropy and von Neumann entropy in the H − and Ps − ions. - Highlights: • We calculate von Neumann entropies and linear entropies for hydrogen and positronium negative ions. • We employ highly correlated Hylleraas functions to take into account of correlation effects. • Spatial (electron–electron orbital) entanglement is quantified using the Schmidt decomposition method. • The eigenvalues of the one-particle reduced density matrix are calculated

  4. Theoretical examination of the trapping of ion-implanted hydrogen in metals

    International Nuclear Information System (INIS)

    Myers, S.M.; Nordlander, P.; Besenbacher, F.; Norskov, J.K.

    1986-01-01

    Theoretical analysis of the defect trapping of ion-implanted hydrogen in metals has been extended in two respects. A new transport formalism has been developed which takes account not only of the diffusion, trapping, and surface release of the hydrogen, which were included in earlier treatments, but also the diffusion, recombination, agglomeration, and surface annihilation of the vacancy and interstitial traps. In addition, effective-medium theory has been used to examine multiple hydrogen occupancy of the vacancy, and, for the fcc structure, appreciable binding enthalpies relative to the solution site have been found for occupancies of up to six. These extensions have been employed to model the depth distribution of ion-implanted hydrogen in Ni and Al during linear ramping of temperature, and the results have been used to interpret previously published data from these metals. The agreement between theory and experiment is good for both systems. In the case of Ni, the two experimentally observed hydrogen-release stages are both accounted for in terms of trapping at vacancies with a binding enthalpy that depends upon occupancy in accord with effective-medium theory

  5. Energy conversion using hydrogen PEM fuel cells

    International Nuclear Information System (INIS)

    Stoenescu, D.; Patularu, L.; Culcer, M.; Lazar, R.; Mirica, D.; Varlam, M.; Carcadea, E.; Stefanescu, I.

    2004-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (naphthalene, natural gas, methanol, coal, biomass), solar cells power, etc. It can be burned or chemically reacted having a high yield of energy conversion and is a non-polluted fuel. This paper presents the results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system consisting in a catalytic methane reforming plant for hydrogen production and three synthesis gas purification units in order to get pure hydrogen with a CO level lower than 10 ppm that finally feeds a hydrogen fuel stock. (authors)

  6. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    International Nuclear Information System (INIS)

    Gupta, P.; Becker, H.-W.; Williams, G.V.M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-01-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C_3H_6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  7. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: a.markwitz@gns.cri.nz [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)

    2017-03-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  8. Hydrogen: Its Future Role in the Nation's Energy Economy.

    Science.gov (United States)

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by

  9. A future, intense source of negative hydrogen ions

    Science.gov (United States)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  10. Risoe energy report 3. Hydrogen and its competitors

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H; Feidenhans' l, R; Soenderberg Petersen, L [eds.

    2004-10-01

    Interest in the hydrogen economy has grown rapidly in recent years. Countries with long traditions of activity in hydrogen research and development have now been joined by a large number of newcomers. The main reason for this surge of interest is that the hydrogen economy may be an answer to the two main challenges facing the world in the years to come: climate change and the need for security of energy supplies. Both these challenges require the development of new, highly-efficient energy technologies that are either carbon-neutral or low emitting technologies. Another reason for the growing interest in hydrogen is the strong need for alternative fuels, especially in the transport sector. Alternative fuels could serve as links between the power system and the transport sector, to facilitate the uptake of emerging technologies and increase the flexibility and robustness of the energy system as a whole. This Risoe Energy Report provides a perspective on energy issues at global, regional and national levels. The following pages provide a critical examination of the hydrogen economy and its alternatives. The report explains the current R and D situation addresses the challenges facing the large-scale use of hydrogen, and makes some predictions for the future. The current and future role of hydrogen in energy systems is explored at Danish, European and global levels. The report discusses the technologies for producing, storing and converting hydrogen, the role of hydrogen in the transport sector and in portable electronics, hydrogen infrastructure and distribution systems, and environmental and safety aspects of the hydrogen economy. (BA)

  11. Characteristics and dynamics of the boundary layer in RF-driven sources for negative hydrogen ions

    International Nuclear Information System (INIS)

    Wimmer, Christian

    2014-01-01

    The design of the neutral beam injection system of the upcoming ITER fusion device is based on the IPP (Max-Planck-Institut fuer Plasmaphysik, Garching) prototype source for negative hydrogen ions. The latter consists of a driver, in which hydrogen (or deuterium) molecules are dissociated in a large degree in a hydrogen plasma; the plasma expands then towards the plasma grid, on which negative hydrogen ions are formed by conversion of atoms or positive ions by the surface process and are extracted in the following accompanied by the co-extraction of electrons via a three grid system. Electrons are removed out of the extracted beam prior full acceleration using deflection magnets, bending them onto the second grid. The thermal load limits the tolerable amount of co-extracted electrons. A magnetic filter field in the expansion chamber reduces the electron temperature and density, on the one hand in order to minimize the destruction process of negative hydrogen ions by electron collisions and on the other hand in order to reduce the co-extracted electron current density. Caesium is evaporated into the source for an effective production of negative hydrogen ions, lowering the work function of the plasma grid. Due to the high chemical reactivity of caesium, the high vacuum condition in the source and the plasma-wall interaction, complex redistribution processes of Cs take place in the ion source. The boundary layer is the plasma volume between the magnetic filter field and the plasma grid, in which the most important physics of the negative ion source takes place: the production of negative hydrogen ions at the plasma grid, their transport through the plasma and the following extraction. A deeper understanding of the plasma and Cs dynamics in the boundary layer is desirable in order to achieve a stable long-pulse operation as well as to identify possible future improvements. For this reason, the boundary layer of the prototype source has been characterized in this work

  12. High-ion temperature experiments with negative-ion-based NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Tsumori, K.; Ikeda, K.; Oka, Y.; Osakabe, M.; Nagaoka, K.; Goto, M.; Miyazawa, J.; Masuzaki, S.; Ashikawa, N.; Yokoyama, M.; Narihara, K.; Yamada, I.; Kubo, S.; Shimozuma, T.; Inagaki, S.; Tanaka, K.; Peterson, B.J.; Ida, K.; Kaneko, O.; Komori, A.; Murakami, S.

    2005-01-01

    High-Z plasmas have been produced with Ar- and/or Ne-gas fuelling to increase the ion temperature in the LHD plasmas heated with the high-energy negative-ion-based NBI. Although the electron heating is dominant in the high-energy NBI heating, the direct ion heating power is much enhanced effectively in low-density plasmas due to both an increase in the beam absorption (ionisation) power and a reduction of the ion density in the high-Z plasmas. Intensive Ne- and/or Ar-glow discharge cleaning works well to suppress dilution of the high-Z plasmas with the wall-absorbed hydrogen. As a result, the ion temperature increases with an increase in the ion heating power normalized by the ion density, and reaches 10 keV. An increase in the ion temperature is also observed with an addition of the centrally focused ECRH to the low-density and high-Z NBI plasma, suggesting improvement of the ion transport. The results obtained in the high-Z plasma experiments with the high-energy NBI heating indicate that an increase in the direct ion heating power and improvement of the ion transport are essential to the ion temperature rise, and that a high-ion temperature would be obtained as well in hydrogen plasmas with low-energy positive-NBI heating which is planed in near future in LHD. (author)

  13. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  14. Public understanding of hydrogen energy: A theoretical approach

    International Nuclear Information System (INIS)

    Sherry-Brennan, Fionnguala; Devine-Wright, Hannah; Devine-Wright, Patrick

    2010-01-01

    The aim of this paper was to investigate public understanding of hydrogen energy using a particular social-psychological theory, namely, the theory of social representations to explore how processes of understanding generated lay knowledge of hydrogen energy. Using a free association method for data collection and multidimensional scaling for analysis, the results enabled the identification of themes in the data such as energy, environment, community, science, and technology, and people and place, around which understanding was based. Processes of representation, such as anchoring to pre-existing knowledge, were seen as essential in guiding understanding. The results indicated that there were diverse influences involved in understanding and, although risk perception of hydrogen was acknowledged, community concerns were seen to override any negative effect of focussing on risk. The role of emotion in decision-making was highlighted as positive emotional responses to the Promoting Unst's Renewable Energy (PURE), a local hydrogen storage project, resulted in hydrogen energy generally being positively evaluated despite acknowledged risks posed by hydrogen such as its explosiveness and flammability. Recommendations for policy include recognising that the combination of expert and lay knowledge plays an important role in public acceptance or rejection of hydrogen energy.

  15. Public understanding of hydrogen energy. A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Sherry-Brennan, Fionnguala; Devine-Wright, Hannah; Devine-Wright, Patrick [Manchester Architecture Research Centre (MARC), University of Manchester, Humanities Bridgeford Street, Oxford Road, Manchester M13 9PL (United Kingdom)

    2010-10-15

    The aim of this paper was to investigate public understanding of hydrogen energy using a particular social-psychological theory, namely, the theory of social representations to explore how processes of understanding generated lay knowledge of hydrogen energy. Using a free association method for data collection and multidimensional scaling for analysis, the results enabled the identification of themes in the data such as energy, environment, community, science, and technology, and people and place, around which understanding was based. Processes of representation, such as anchoring to pre-existing knowledge, were seen as essential in guiding understanding. The results indicated that there were diverse influences involved in understanding and, although risk perception of hydrogen was acknowledged, community concerns were seen to override any negative effect of focussing on risk. The role of emotion in decision-making was highlighted as positive emotional responses to the Promoting Unst's Renewable Energy (PURE), a local hydrogen storage project, resulted in hydrogen energy generally being positively evaluated despite acknowledged risks posed by hydrogen such as its explosiveness and flammability. Recommendations for policy include recognising that the combination of expert and lay knowledge plays an important role in public acceptance or rejection of hydrogen energy. (author)

  16. Public understanding of hydrogen energy: A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Sherry-Brennan, Fionnguala, E-mail: fionnguala@manchester.ac.u [Manchester Architecture Research Centre (MARC), University of Manchester, Humanities Bridgeford Street, Oxford Road, Manchester M13 9PL (United Kingdom); Devine-Wright, Hannah; Devine-Wright, Patrick [Manchester Architecture Research Centre (MARC), University of Manchester, Humanities Bridgeford Street, Oxford Road, Manchester M13 9PL (United Kingdom)

    2010-10-15

    The aim of this paper was to investigate public understanding of hydrogen energy using a particular social-psychological theory, namely, the theory of social representations to explore how processes of understanding generated lay knowledge of hydrogen energy. Using a free association method for data collection and multidimensional scaling for analysis, the results enabled the identification of themes in the data such as energy, environment, community, science, and technology, and people and place, around which understanding was based. Processes of representation, such as anchoring to pre-existing knowledge, were seen as essential in guiding understanding. The results indicated that there were diverse influences involved in understanding and, although risk perception of hydrogen was acknowledged, community concerns were seen to override any negative effect of focussing on risk. The role of emotion in decision-making was highlighted as positive emotional responses to the Promoting Unst's Renewable Energy (PURE), a local hydrogen storage project, resulted in hydrogen energy generally being positively evaluated despite acknowledged risks posed by hydrogen such as its explosiveness and flammability. Recommendations for policy include recognising that the combination of expert and lay knowledge plays an important role in public acceptance or rejection of hydrogen energy.

  17. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A. [High Temperature Gasdynamics Laboratory, Stanford University, Stanford, California 94305 (United States)

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  18. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    International Nuclear Information System (INIS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions

  19. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Science.gov (United States)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  20. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    Science.gov (United States)

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  1. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  2. A comparison of hydrogen with alternate energy forms from coal and nuclear energy

    International Nuclear Information System (INIS)

    Cox, K.E.

    1976-01-01

    Alternate energy forms that can be produced from coal and nuclear energy have been analyzed on efficiency, economic and end-use grounds. These forms include hydrogen, methane, electricity, and EVA-ADAM, a 'chemical heat pipe' approach to energy transmission. The EVA-ADAM system for nuclear heat appears to be economically competitive with the other energy carriers except over very large distances. The cost of hydrogen derived from coal is approximately equal to that of methane derived from the same source when compared on an equal BTU basis. Thermochemically derived hydrogen from nuclear energy shows a break-even range with hydrogen derived from coal at coal costs of from Pound33 to 80/ton depending on the cost of nuclear heat. Electricity and electrolytically derived hydrogen are the most expensive energy carriers and electricity's use should be limited to applications involving work rather than heat. Continued work in thermochemical hydrogen production schemes should be supported as an energy option for the future. (author)

  3. Hydrogen formation under gamma and heavy ions irradiation of geopolymers

    International Nuclear Information System (INIS)

    Chupin, F.; Dannoux-Papin, A.; D'Espinose de Lacaillerie, J.B.; Ngono Ravache, Y.

    2015-01-01

    This study examines the behavior under irradiation of geo-polymer which is not yet well known and attempts to highlight the importance of water radiolysis. For their use as embedding matrices, stability under ionizing radiation as well as low hydrogen gas released must be demonstrated. Different formulations of geo-polymers have been irradiated either with γ-rays ( 60 Co sources) or 75 MeV 36 Ar ions beams and the production of hydrogen released has been quantified. This paper presents the results of gas analysis in order to identify important structural parameters that influence confined water radiolysis. Indeed, a correlation between pore size, water content on one side, and the hydrogen production radiolytic yield (G(H 2 )) on the other side, has been demonstrated. For the 75 MeV 36 Ar ions irradiation, the effect of porosity has not been well emphasized. For both, the results have revealed the water content influence. (authors)

  4. Hydrogen energy - Abundant, efficient, clean: A debate over the energy-system-of-change

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Carl-Jochen [International Association for Hydrogen Energy (IAHE), c/o ENERGON Carl-Jochen Winter e.K., Obere St.-Leonhardstr. 9, 88662 Ueberlingen (Germany)

    2009-07-15

    Both secondary energies, electricity and hydrogen, have much in common: they are technology driven; both are produced from any available primary energy; once produced both are environmentally and climatically clean over the entire length of their respective conversion chains, from production to utilization; they are electrochemically interchangeable via electrolyses and fuel cells; both rely on each other, e.g., when electrolyzers and liquefiers need electricity or when electricity-providing low temperature fuel cells need hydrogen; in cases of secondary energy transport over longer distances they compete with each other; in combined fossil fuel cycles both hydrogen and electricity are produced in parallel exergetically highly efficiently; hydrogen in addition to electricity helps exergizing the energy system and, thus, maximizing the available technical work. There are dissimilarities, too: electricity transports information, hydrogen does not; hydrogen stores and transports energy, electricity does not (in macroeconomic terms). The most obvious dissimilarity is their market presence, both in capacities and in availability: Electricity is globally ubiquitous (almost), whilst hydrogen energy is still used in only selected industrial areas and in much smaller capacities. The article describes in 15 chapters, 33 figures, 3 tables, and 2 Annexes the up-and-coming hydrogen energy economy, its environmental and climatic relevance, its exergizing influence on the energy system, its effect on decarbonizing fossil fueled power plants, the introduction of the novel non-heat-engine-related electrochemical energy converter fuel cell in portable electronics, in stationary and mobile applications. Hydrogen guarantees environmentally and climatically clean transportation on land, in air and space, and at sea. Hydrogen facilitates the electrification of vehicles with practically no range limits. (author)

  5. Hydrogen energy stations: along the roadside to the hydrogen economy

    International Nuclear Information System (INIS)

    Clark, W.W.; Rifkin, J.; O'Connor, T.; Swisher, J.; Lipman, T.; Rambach, G.

    2005-01-01

    Hydrogen has become more than an international topic of discussion within government and among industry. With the public announcements from the European Union and American governments and an Executive Order from the Governor of California, hydrogen has become a ''paradigm change'' targeted toward changing decades of economic and societal behaviours. The public demand for clean and green energy as well as being ''independent'' or not located in political or societal conflict areas, has become paramount. The key issues are the commitment of governments through public policies along with corporations. Above all, secondly, the advancement of hydrogen is regional as it depends upon infrastructure and fuel resources. Hence, the hydrogen economy, to which the hydrogen highway is the main component, will be regional and creative. New jobs, businesses and opportunities are already emerging. And finally, the costs for the hydrogen economy are critical. The debate as to hydrogen being 5 years away from being commercial and available in the marketplace versus needing more research and development contradicts the historical development and deployment of any new technology be it bio-science, flat panel displays, computers or mobile phones. The market drivers are government regulations and standards soon thereafter matched by market forces and mass production. Hydrogen is no different. What this paper does is describes is how the hydrogen highway is the backbone to the hydrogen economy by becoming, with the next five years, both regional and commercial through supplying stationary power to communities. Soon thereafter, within five to ten years, these same hydrogen stations will be serving hundreds and then thousands of hydrogen fuel powered vehicles. Hydrogen is the fuel for distributed energy generation and hence positively impacts the future of public and private power generators. The paradigm has already changed. (author)

  6. Note: Development of ESS Bilbao's proton ion source: Ion Source Hydrogen Positive

    International Nuclear Information System (INIS)

    Miracoli, R.; Feuchtwanger, J.; Arredondo, I.; Belver, D.; Gonzalez, P. J.; Corres, J.; Djekic, S.; Echevarria, P.; Eguiraun, M.; Garmendia, N.; Muguira, L.

    2014-01-01

    The Ion Source Hydrogen positive is a 2.7 GHz off-resonance microwave discharge ion source. It uses four coils to generate an axial magnetic field in the plasma chamber around 0.1 T that exceeds the ECR resonance field. A new magnetic system was designed as a combination of the four coils and soft iron in order to increase the reliability of the source. The description of the simulations of the magnetic field and the comparison with the magnetic measurements are presented. Moreover, results of the initial commissioning of the source for extraction voltage until 50 kV will be reported

  7. Micro hydrogen for portable power : generating opportunities for hydrogen and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A new fuel cell technology for portable applications was reviewed. Success for the fuel cell industry will be achieved primarily by supplanting lithium-ion batteries, and fuel cells for portable applications have clear advantages to batteries in addition to their known environmental benefits. Micro hydrogen {sup TM} is the integrated combination of hydrogen fuel cell, hydrogen storage and delivery, fluidic interconnects and power conditioning electronics required for creating high energy density portable power sources. The small size, low heat production, environmental sustainability and refueling flexibility of the systems provides enormous economic opportunities for the use of micro hydrogen in cell phone technology, personal digital assistants and other electronic gadgets. Details of a trial to test and evaluate micro hydrogen fuel cell powered bike lights were presented. Further programs are planned for external demonstrations of high-beam search and rescue lighting, flashlights for security personnel and portable hydrogen power sources that will be used by multiple organizations throughout British Columbia. It was concluded that fuel cell technology must match the lithium-ion battery's performance by providing fast recharge, high energy density, and adaptability. Issues concerning refueling and portable and disposable cartridges for micro hydrogen systems were also discussed. 8 figs.

  8. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    International Nuclear Information System (INIS)

    S, Honey; S, Naseem; A, Ishaq; M, Maaza; M T, Bhatti; D, Wan

    2016-01-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H + ) ion beam irradiation. Ag-NWs are irradiated under H +  ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H + ion beam-induced welding of Ag-NWs at intersecting positions. H +  ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H +  ion beam, and networks are optically transparent. Morphology also remains stable under H +  ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H +  ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. (paper)

  9. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  10. Ionization of one-electron oxygen and fluorine projectiles by molecular hydrogen

    International Nuclear Information System (INIS)

    Tipping, T.N.; Sanders, J.M.; Hall, J.; Shinpaugh, J.L.; Lee, D.H.; McGuire, J.H.; Richard, P.

    1988-01-01

    Cross sections for projectile ionization have been measured for hydrogenlike oxygen and fluorine ions incident on a molecular-hydrogen target over a projectile energy range of 0.5--2.5 MeV/amu. The experimental cross sections are compared to the plane-wave Born approximation (PWBA) and to the Glauber-approximation cross sections all of which were calculated for atomic hydrogen and multiplied by 2. The PWBA calculations have a projectile energy dependence similar to the measured cross sections but slightly underestimate them. The Glauber approximation also underestimates the measured projectile-ionization cross sections when the hydrogen target electrons are neglected, while it overestimates the measured cross sections when the effects of the hydrogen target electrons are included. The measured projectile-ionization cross sections for hydrogenlike ions incident on molecular hydrogen are approximately a factor of 2 smaller than previously reported projectile-ionization cross sections for hydrogenlike ions incident on helium. No cross sections are available for atomic hydrogen in this velocity and ion-charge regime

  11. A new type of hydrogen generator-HHEG (high-compressed hydrogen energy generator)

    International Nuclear Information System (INIS)

    Harada, H.; Tojima, K.; Takeda, M.; Nakazawa, T.

    2004-01-01

    'Full text:' We have developed a new type of hydrogen generator named HHEG (High-compressed Hydrogen Energy Generator). HHEG can produce 35 MPa high-compressed hydrogen for fuel cell vehicle without any mechanical compressor. HHEG is a kind of PEM(proton exchange membrane)electrolysis. It was well known that compressed hydrogen could be generated by water electrolysis. However, the conventional electrolysis could not generate 35 MPa or higher pressure that is required for fuel cell vehicle, because electrolysis cell stack is destroyed in such high pressure. In HHEG, the cell stack is put in high-pressure vessel and the pressure difference of oxygen and hydrogen that is generated by the cell stack is always kept at nearly zero by an automatic compensator invented by Mitsubishi Corporation. The cell stack of HHEG is not so special one, but it is not broken under such high pressure, because the automatic compensator always offsets the force acting on the cell stack. Hydrogen for fuel cell vehicle must be produce by no emission energy such as solar and atomic power. These energies are available as electricity. So, water electrolysis is the only way of producing hydrogen fuel. Hydrogen fuel is also 35 MPa high-compressed hydrogen and will become 70 MPa in near future. But conventional mechanical compressor is not useful for such high pressure hydrogen fuel, because of the short lifetime and high power consumption. Construction of hydrogen station network is indispensable in order to come into wide use of fuel cell vehicles. For such network contraction, an on-site type hydrogen generator is required. HHEG can satisfy above these requirements. So we can conclude that HHEG is the only way of realizing the hydrogen economy. (author)

  12. New perspectives on renewable energy systems based on hydrogen

    International Nuclear Information System (INIS)

    Bose, T. K.; Agbossou, K.; Benard, P.; St-Arnaud, J-M.

    1999-01-01

    Current hydrocarbon-based energy systems, current energy consumption and the push towards the utilization of renewable energy sources, fuelled by global warming and the need to reduce atmospheric pollution are discussed. The consequences of climatic change and the obligation of Annex B countries to reduce their greenhouse gas emissions in terms of the Kyoto Protocols are reviewed. The role that renewable energy sources such as hydrogen, solar and wind energy could play in avoiding the most catastrophic consequences of rapidly growing energy consumption and atmospheric pollution in the face of diminishing conventional fossil fuel resources are examined. The focus is on hydrogen energy as a means of storing and transporting primary energy. Some favorable characteristics of hydrogen is its abundance, the fact that it can be produced utilizing renewable or non-renewable sources, and the further fact that its combustion produces three times more energy per unit of mass than oil, and six times more than coal. The technology of converting hydrogen into energy, storing energy in the form of hydrogen, and its utilization, for example in the stabilization of wind energy by way of electrolytic conversion to hydrogen, are described. Development at Hydro-Quebec's Institute of Research of a hydrogen-based autonomous wind energy system to produce electricity is also discussed. 2 tabs., 11 refs

  13. Hydrogen energy and sustainability: overview and the role for nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2008-01-01

    This paper discusses the role of nuclear power in hydrogen energy and sustainability. Hydrogen economy is based on hydrogen production, packaging (compression, liquefaction, hydrides), distribution (pipelines, road, rail, ship), storage (pressure and cryogenic containers), transfer and finally hydrogen use

  14. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tafticht, T.; Agbossou, K. [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  15. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    T Tafticht; K Agbossou

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  16. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    Tafticht, T.; Agbossou, K.

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  17. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    T Tafticht; K Agbossou [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  18. Effect of hydrogen ion beam treatment on Si nanocrystal/SiO_2 superlattice-based memory devices

    International Nuclear Information System (INIS)

    Fu, Sheng-Wen; Chen, Hui-Ju; Wu, Hsuan-Ta; Chuang, Bing-Ru; Shih, Chuan-Feng

    2016-01-01

    Graphical abstract: - Highlights: • Memory window and retention properties are improved employing HIBAS technique. • The O/Si ratio and radiative recombination are changed by HIBAS. • Memory properties are affected not only by Si NCs and O/Si ratio but also the RDCs. • The mechanism of hydrogen ion beam alters the memory properties is investigated. - Abstract: This study presents a novel route for synthesizing silicon-rich oxide (SRO)/SiO_2 superlattice-based memory devices with an improved memory window and retention properties. The SiO_2 and SRO superlattices are deposited by reactive sputtering. Specifically, the hydrogen ion beam is used to irradiate the SRO layer immediately after its deposition in the vacuum chamber. The use of the hydrogen ion beam was determined to increase oxygen content and the density of the Si nanocrystals. The memory window increased from 16 to 25.6 V, and the leakage current decreased significantly by two orders, to under ±20 V, for the hydrogen ion beam-prepared devices. This study investigates the mechanism into how hydrogen ion beam treatment alters SRO films and influences memory properties.

  19. Is there room for hydrogen in energy transition?

    International Nuclear Information System (INIS)

    Beeker, Etienne

    2014-08-01

    As Germany decided to use hydrogen to store huge quantities of renewable energies, this report aims at assessing the opportunities associated with hydrogen in the context of energy transition. The author addresses the various techniques and technologies of hydrogen production, and proposes a prospective economic analysis of these processes: steam reforming, alkaline electrolysis, polymer electrolyte membrane (PEM) electrolysis, and other processes still at R and D level. He gives an overview of existing and potential uses of hydrogen in industry, in energy storage (power-to-gas, power-to-power, methanation) and in mobility (hydrogen-mobility could be a response to hydrocarbon shortage, but the cost is still very high, and issues like hydrogen distribution must be addressed), and also evokes their emergence potential

  20. Solar Hydrogen Energy Systems Science and Technology for the Hydrogen Economy

    CERN Document Server

    Zini, Gabriele

    2012-01-01

    It is just a matter of time when fossil fuels will become unavailable or uneconomical to retrieve. On top of that, their environmental impact is already too severe. Renewable energy sources can be considered as the most important substitute to fossil energy, since they are inexhaustible and have a very low, if none, impact on the environment. Still, their unevenness and unpredictability are drawbacks that must be dealt with in order to guarantee a reliable and steady energy supply to the final user. Hydrogen can be the answer to these problems. This book presents the readers with the modeling, functioning and implementation of solar hydrogen energy systems, which efficiently combine different technologies to convert, store and use renewable energy. Sources like solar photovoltaic or wind, technologies like electrolysis, fuel cells, traditional and advanced hydrogen storage are discussed and evaluated together with system management and output performance. Examples are also given to show how these systems are ...

  1. Hydrogen energy strategies and global stability and unrest

    International Nuclear Information System (INIS)

    Midilli, A.; Dincer, I.; Rosen, M.A.

    2004-01-01

    This paper focuses on hydrogen energy strategies and global stability and unrest. In order to investigate the strategic relationship between these concepts, two empirical relations that describe the effects of fossil fuels on global stability and global unrest are developed. These relations incorporate predicted utilization ratios for hydrogen energy from non-fossil fuels, and are used to investigate whether hydrogen utilization can reduce the negative global effects related to fossil fuel use, eliminate or reduce the possibilities of global energy conflicts, and contribute to achieving world stability. It is determined that, if utilization of hydrogen from non-fossil fuels increases, for a fixed usage of petroleum, coal and natural gas, the level of global unrest decreases. However, if the utilization ratio of hydrogen energy from non-fossil fuels is lower than 100%, the level of global stability decreases as the symptoms of global unrest increase. It is suggested that, to reduce the causes of global unrest and increase the likelihood of global stability in the future, hydrogen energy should be widely and efficiently used, as one component of plans for sustainable development. (author)

  2. Experimental measurements of negative hydrogen ion production from surfaces

    International Nuclear Information System (INIS)

    Graham, W.G.

    1977-09-01

    Experimental measurements of the production of H - from surfaces bombarded with hydrogen are reviewed. Some measurements of H + and H 0 production from surfaces are also discussed with particular emphasis on work which might be relevant to ion source applications

  3. Investigation of low-resistivity from hydrogenated lightly B-doped diamond by ion implantation

    Directory of Open Access Journals (Sweden)

    Cui Xia Yan et al

    2008-01-01

    Full Text Available We have implanted boron (B ions (dosage: 5×1014 cm-2 into diamond and then hydrogenated the sample by implantating hydrogen ions at room temperature. A p-type diamond material with a low resistivity of 7.37 mΩ cm has been obtained in our experiment, which suggests that the hydrogenation of B-doped diamond results in a low-resistivity p-type material. Interestingly, inverse annealing, in which carrier concentration decreased with increasing annealing temperature, was observed at annealing temperatures above 600 °C. In addition, the formation mechanism of a low-resistivity material has been studied by density functional theory calculation using a plane wave method.

  4. Hydrogen ion (Ph), ammonia, dissolved oxygen and nitrite ...

    African Journals Online (AJOL)

    Hydrogen ion (pH), dissolved oxygen, ammonia and nitrite concentrations were studied monthly in two systems (re-circulatory and semi-intensive of 3 m2 sizes) each for six months. The systems were each stocked with 200 g of Clarias gariepinus fingerlings. Results showed that all parameters were within acceptable limits ...

  5. A feature of negative hydrogen ion production in the Uramoto-type sheet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jimbo, Kouichi [Kyoto Univ., Uji (Japan). Inst. of Atomic Energy

    1997-02-01

    It seems that negative hydrogen ions H{sup -} are formed directly from atomic hydrogens H. When the chamber was biased more negative against the anode potential at constant are power, forming a much deeper electrostatic well in the Uramoto-type sheet plasma negative ion source, more negative hydrogen ion currents were extracted. The chamber potential V{sub B} was biased down to -100V in the 150V discharge. The negative ion current J{sup -} was evaluated by the JAERI-probe measurement. J{sup -} increases linearly with the chamber current I{sub B}. The largest J{sup -} value was obtained at absolute value of |V{sub prob,f}|=15V and absolute value of |V{sub B}|=100V; the discharge was not operated for absolute value of |V{sub B}|>100V. We speculate the following collisional (three-body) electron attachment to H as a possible production process for H{sup -}; e+e+H{yields}e+H{sup -}. This process may explain the linear increase of J{sup -} with absolute value of |V{sub prob,f}|. (S.Y.)

  6. Radiation-induced segregation at grain boundaries in AL-6XN stainless steels irradiated by hydrogen ions

    Science.gov (United States)

    Long, Yunxiang; Zheng, Zhongcheng; Guo, Liping; Zhang, Weiping; Shen, Zhenyu; Tang, Rui

    2018-04-01

    The effect of high concentration of hydrogen on the segregation of radiation-induced segregation (RIS) in AL-6XN stainless steels has been investigated by transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy. Specimens were irradiated with 100 keV H2+ ions from 1 dpa to 5 dpa at 380 °C to investigated the dose dependence of grain boundary RIS. A specimen was irradiated to 5 dpa at 290 °C to study the effect of irradiation temperature. The trends of Cr depletion and Ni enrichment with irradiation dose is similar to that of other austenitic steels reported in the literatures, but the higher concentration of hydrogen made the RIS profile wider. An abnormal phenomenon that the degree of RIS increased with decreasing irradiation temperature was found, indicating that with the retention of hydrogen in the steels, temperature dependence of RIS is dominated by the quantity of retained hydrogen, rather than by thermal segregation processes.

  7. Integrating hydrogen into Canada's energy future

    International Nuclear Information System (INIS)

    Rivard, P.

    2006-01-01

    This presentation outlines the steps in integrating of hydrogen into Canada's energy future. Canada's hydrogen and fuel cell investment is primarily driven by two government commitments - climate change commitments and innovation leadership commitments. Canada's leading hydrogen and fuel cell industry is viewed as a long-term player in meeting the above commitments. A hydrogen and fuel cell national strategy is being jointly developed to create 'Win-Wins' with industry

  8. Energy Reflection Coefficients for 5-10 keV He Ions Incident on Au, Ag, and Cu

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.; Littmark, U.

    1978-01-01

    The calorimetric deuterium-film method was used for measurements of the energy reflection coefficient γ for normal incidence of 5-10 keV He ions on Cu, Ag and Au. A theoretical calculation of γ by means of transport theory gives fair agreement with the experimental results. The experimental data...... the experimental and theoretical results for the He ions are in acceptable agreement with other experimental and theoretical results. For He ions, the experimental γ-values are 20-30% above the values for hydrogen ions for the same value of ε...

  9. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.

  10. A global survey of hydrogen energy research, development and policy

    International Nuclear Information System (INIS)

    Solomon, Barry D.; Banerjee, Abhijit

    2006-01-01

    Several factors have led to growing interest in a hydrogen energy economy, especially for transportation. A successful transition to a major role for hydrogen will require much greater cost-effectiveness, fueling infrastructure, consumer acceptance, and a strategy for its basis in renewable energy feedstocks. Despite modest attention to the need for a sustainable hydrogen energy system in several countries, in most cases in the short to mid term hydrogen will be produced from fossil fuels. This paper surveys the global status of hydrogen energy research and development (R and D) and public policy, along with the likely energy mix for making it. The current state of hydrogen energy R and D among auto, energy and fuel-cell companies is also briefly reviewed. Just two major auto companies and two nations have specific targets and timetables for hydrogen fuel cells or vehicle production, although the EU also has an aggressive, less specific strategy. Iceland and Brazil are the only nations where renewable energy feedstocks are envisioned as the major or sole future source of hydrogen. None of these plans, however, are very certain. Thus, serious questions about the sustainability of a hydrogen economy can be raised

  11. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  12. Auroral ion beams and ion acoustic wave generation by fan instability

    Energy Technology Data Exchange (ETDEWEB)

    Vaivads, A

    1996-04-01

    Satellite observations indicate that efficient energy transport among various plasma particles and between plasma waves and plasma particles is taking place in auroral ion beam regions. These observations show that two characteristic wave types are associated with the auroral ion beam regions: electrostatic hydrogen cyclotron waves with frequencies above hydrogen gyrofrequency, and low frequency waves with frequencies below hydrogen gyrofrequency. We speculate that the low frequency waves can be ion acoustic waves generated through the fan instability. The presence of a cold background ion component is necessary for the onset of this instability. A cold ion component has been directly observed and has been indirectly suggested from observations of solitary wave structures. The wave-particle interaction during the development of the fan instability results in an efficient ion beam heating in the direction perpendicular to the ambient magnetic field. The fan instability development and the ion beam heating is demonstrated in a numerical particle simulation. 23 refs, 16 figs.

  13. Volume generation of negative ions in high density hydrogen discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1983-01-01

    A parametric survey is made of a high-density tandem two-chamber hydrogen negative ion system. The optimum extracted negative ion current densities are sensitive to the atom concentration in the discharge and to the system scale length. For scale lengths ranging from 10 cm to 0.1 cm optimum current densities range from of order 1 to 100 mA cm -2 , respectively

  14. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  15. Very High Energy Neutron Scattering from Hydrogen

    International Nuclear Information System (INIS)

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  16. Influence of hydrogen-ion concentration exponent on undrained shear behaviour of bentonites; Bentonaito no hihaisui sendan kyodo ni oyobosu suiso ion nodo shisu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, T [Kiso Jiban Consultants Co. Ltd., Tokyo (Japan); Tokida, M [Nagano National College of Technology, Nagano (Japan)

    1994-12-21

    Because there is a report example that the yield stress of a landslide clay increases along with a decrease of a hydrogen-ion concentration exponent, it is thought that a shear strength of the landslide clay depends on the hydrogen-ion concentration exponent. Furthermore, when the soil stabilization method by lime is applied to the soft ground and high organic earth, it is pointed out that the hydrogen-ion concentration exponent will become one of the harmful factors. Accordingly, it is understood that revealing an influence of a hydrogen-ion concentration exponent affects on the characteristics of an earth is one of the important factors, to evaluate a strength, deformation and so forth of the viscous ground. In this study, in order to examine an influence of a hydrogen-ion concentration exponent affecting on an undrained shear behavior of the bentonites, for the artificially adjusted bentonite specimens with 5 kinds of different pH, the isotropic consolidated undrained triaxial compression tests were performed, and consequently an influence of pH affecting on the engineering characteristics of the bentonites was made clear quantitatively. 28 refs., 16 figs., 5 tabs.

  17. Hypothesis for the mechanism of negative ion production in the surface-plasma negative hydrogen ion source

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1975-01-01

    An analysis of the surface-plasma negative hydrogen ion source has shown that the tungsten cathode supports approximately a monolayer of cesium. The backscattering of protons from the cathode as energetic neutrals and the subsequent backscattering of these neutrals from the anode provides for a flux of energetic atoms incident upon the cathode which is comparable to the ion flux. A hypothesis is proposed for the generation of negative ions during the collision of these energetic atoms with the cathode. Several mechanisms for negative ion production by proton collision with the surface are discussed. (U.S.)

  18. Energy Systems With Renewable Hydrogen Compared to Direct Use of Renewable Energy in Austria

    International Nuclear Information System (INIS)

    Gerfried Jungmeier; Kurt Konighofer; Josef Spitzer; R Haas; A Ajanovic

    2006-01-01

    The current Austrian energy system has a renewable energy share of 20% - 11% hydropower and 9 % biomass - of total primary energy consumption. Whereas a possible future introduction of renewable hydrogen must be seen in the context of current energy policies in Austria e.g. increase of energy efficiency and use of renewable energy, reduction of greenhouse gas emissions. The aim of the research project is a life cycle based comparison of energy systems with renewable hydrogen from hydropower, wind, photovoltaic and biomass compared to the direct use of renewable energy for combined heat and power applications and transportation services. In particular this paper focuses on the main question, if renewable energy should be used directly or indirectly via renewable hydrogen. The assessment is based on a life cycle approach to analyse the energy efficiency, the material demand, the greenhouse gas emissions and economic aspects e.g. energy costs and some qualitative aspects e.g. energy service. The overall comparison of the considered energy systems for transportation service and combined heat and electricity application shows, that renewable hydrogen might be beneficial mainly for transportation services, if the electric vehicle will not be further developed to a feasibly wide-spread application for transportation service in future. For combined heat and electricity production there is no advantage of renewable hydrogen versus the direct use of renewable energy. Conclusions for Austria are therefore: 1) renewable hydrogen is an interesting energy carrier and might play an important role in a future sustainable Austrian energy system; 2) renewable hydrogen applications look most promising in the transportation sector; 3) renewable hydrogen applications will be of low importance for combined heat and electricity applications, as existing technologies for direct use of renewable energy for heat and electricity are well developed and very efficient; 4) In a future '100

  19. Hydrogen role in a carbon-free energy mix

    International Nuclear Information System (INIS)

    2014-02-01

    Among the energy storage technologies under development today, there is today an increasing interest towards the hydrogen-based ones. Hydrogen generation allows to store electricity, while its combustion can supply electrical, mechanical or heat energy. The French Atomic Energy Commission (CEA) started to work on hydrogen technologies at the end of the 1990's in order to reinforce its economical interest. The development of these technologies is one of the 34 French industrial programs presented in September 2013 by the French Minister of productive recovery. This paper aims at identifying the hydrogen stakes in a carbon-free energy mix and at highlighting the remaining technological challenges to be met before reaching an industrial development level

  20. Economic Dispatch of Hydrogen Systems in Energy Spot Markets

    DEFF Research Database (Denmark)

    You, Shi; Nørgård, Per Bromand

    2015-01-01

    of energy spot markets. The generic hydrogen system is comprised of an electrolysis for hydrogen production, a hydrogen storage tank and a fuel cell system for cogeneration of electricity and heat. A case study is presented with information from practical hydrogen systems and the Nordic energy markets...

  1. Wind-To-Hydrogen Energy Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the

  2. Energy Levels of Hydrogen and Deuterium

    Science.gov (United States)

    SRD 142 NIST Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  3. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  4. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  5. Development of a solar-hydrogen hybrid energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Gamboa, S.A.; Vejar, Set; Campos, J.

    2009-01-01

    Full text: The details of the development of a PV-hydrogen hybrid energy system is presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operate as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations has been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  6. A Hydrogen Ion-Selective Sensor Based on Non-Plasticised Methacrylic-acrylic Membranes

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2002-08-01

    Full Text Available A methacrylic-acrylic polymer was synthesised for use as a non-plasticised membrane for hydrogen ion-selective sensor incorporating tridodecylamine as an ionophore. The copolymer consisted of methyl methacrylate and n-butyl acrylate monomers in a ratio of 2:8. Characterisation of the copolymer using FTNMR demonstrated that the amount of each monomer incorporated during solution polymerisation was found to be similar to the amount used in the feed before polymerisation. The glass transition temperature of the copolymer determined by differential scanning calorimetry was -30.9 ºC. Potentiometric measurements conducted showed a linear pH response range of 4.3 – 9.6 with the response slope of 56.7 mV/decade. The selectivity of the sensors towards hydrogen ions was similar to other plasticiser based membrane electrodes and the logarithmic selectivity coefficients for discrimination against interference cations is close to –9.7. However, the incorporation of a lipophilic anion as membrane additive is essential in ensuring optimum performance of the hydrogen ion sensor.

  7. Effect of cesium seeding on hydrogen negative ion volume production

    International Nuclear Information System (INIS)

    Bacal, M.; Balghiti-Sube, F. El; Elizarov, L. I.; Tontegode, A. J.

    1998-01-01

    The effect of cesium vapor partial pressure on the plasma parameters has been studied in the dc hybrid negative ion source ''CAMEMBERT III.'' The cesium vapor pressure was varied up to 10 -5 Torr and was determined by a surface ionization gauge in the absence of the discharge. The negative ion relative density measured by laser photodetachment in the center of the plasma extraction region increases by a factor of four when the plasma is seeded with cesium. However the plasma density and the electron temperature (determined using a cylindrical electrostatic probe) are reduced by the cesium seeding. As a result, the negative ion density goes up by a factor of two at the lowest hydrogen pressure studied. The velocity of the directed negative ion flow to the plasma electrode, determined from two-laser beam photodetachment experiments, appears to be affected by the cesium seeding. The variation of the extracted negative ion and electron currents versus the plasma electrode bias will also be reported for pure hydrogen and cesium seeded plasmas. The cesium seeding leads to a dramatic reduction of the electron component, which is consistent with the reduced electron density and temperature. The negative ion current is enhanced and a goes through a maximum at plasma electrode bias lower than 1 V. These observations lead to the conclusion that the enhancement of pure volume production occurs in this type of plasma. Possible mechanisms for this type of volume process will be discussed

  8. Overview of the US-Japan collaborative investigation on hydrogen isotope retention in neutron-irradiated and ion-damaged tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Masashi, E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID (United States); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan); Oya, Y. [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Oda, T. [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo (Japan); Hara, M. [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan); Cao, G. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI (United States); Kobayashi, M. [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Sokolov, M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Watanabe, H. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Tyburska-Pueschel, B. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI (United States); Institute fuer Plasmaphysik, EURATOM Association, Garching (Germany); Ueda, Y. [Graduate School of Engineering, Osaka University, Osaka (Japan); Calderoni, P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID (United States); Okuno, K. [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan)

    2012-08-15

    The effect of neutron-irradiation damage has been mainly simulated using high-energy ion bombardment. A recent MIT report (PSFC/RR-10-4, An assessment of the current data affecting tritium retention and its use to project towards T retention in ITER, Lipschultz et al., 2010) summarizes the observations from high-energy ion bombardment studies and illustrates the saturation trend in deuterium concentration due to damage from ion irradiation in tungsten and molybdenum above 1 displacement per atom (dpa). While this prior database of results is quite valuable for understanding the behavior of hydrogen isotopes in plasma facing components (PFCs), it does not encompass the full range of effects that must be considered in a practical fusion environment due to short penetration depth, damage gradient, high damage rate, and high primary knock-on atom (PKA) energy spectrum of the ion bombardment. In addition, neutrons change the elemental composition via transmutations, and create a high radiation environment inside PFCs, which influences the behavior of hydrogen isotope in PFCs, suggesting the utilization of fission reactors is necessary for neutron-irradiation. Under the framework of the US-Japan TITAN program, tungsten samples (99.99 at.% purity from A.L.M.T. Co.) were irradiated by fission neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory (ORNL), at 50 and 300 Degree-Sign C to 0.025, 0.3, and 2.4 dpa, and the investigation of deuterium retention in neutron-irradiated tungsten was performed in the Tritium Plasma Experiment (TPE), the unique high-flux linear plasma facility that can handle tritium, beryllium and activated materials. This paper reports the recent results from the comparison of ion-damaged tungsten via various ion species (2.8 MeV Fe{sup 2+}, 20 MeV W{sup 2+}, and 700 keV H{sup -}) with that from neutron-irradiated tungsten to identify the similarities and differences among them.

  9. Hydrogen permeation modification of 4140 steel by ion nitriding with pulsed plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzoni, P.; Ortiz, M. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Bruehl, S.P.; Gomez, B.J.A.; Feugeas, J.N. [Inst. de Fisica Rosario (UNR-CONICET), Rosario (Argentina); Nosei, L. [Inst. de Mecanica Aplicada y Estructuras (UNR), Rosario (Argentina)

    1998-11-10

    It is widely known that the hydrogen in steel produces embrittlement. This effect may cause the failure of the elements (confining walls, mechanical parts, etc.) whose surfaces are in contact with this gas or with processes in which hydrogen is continuously generated. In this work it is shown that the ion nitriding of the surface of AISI 4140 is a good mechanism to act as a barrier against hydrogen permeation in its bulk. The ion nitriding was performed using a square wave DC glow discharge. The development of a compound layer of iron nitrides was observed as the cause of the hydrogen permeation reduction. For equal duration of treatment, thicker compound layers were developed in higher discharge/post-discharge ratios in the square wave of the applied voltage onto the sample (cathode), with a greater reduction of hydrogen permeation coefficient as a consequence. Nevertheless, the permeation was not reduced to zero in any of the treatment conditions used. The results of the analysis of the permeation tests and the image of the photomicrographs showed that the existence of cracks, fractures, failures, etc. in the compound layer (pre-existing in the AISI 4140 steel) could be the cause of the residual hydrogen permeation. This can be attributed to the movement of the hydrogen through these defects diffusing through the original {alpha}-Fe phase of the non-treated steel. (orig.) 11 refs.

  10. Reaction of O+, CO+, and CH+ ions with atomic hydrogen

    International Nuclear Information System (INIS)

    Federer, W.; Villinger, H.; Howorka, F.; Lindinger, W.; Tosis, P.; Bassi, D.; Ferguson, E.

    1984-01-01

    Rate coefficients for reactions of the ions O + , CO + , and CH + with atomic hydrogen have been measured for the first time at 300 K. This provides basic data for the ion chemistry of planetary atmospheres, cometary atmospheres, and interstellar molecular clouds. The O + +H measurement supports quantal calculations of this reaction. The CO + +H reaction provides an example of partial spin nonconservation in a charge-transfer reaction occurring in a deep potential well. Reactions of the same ions with H 2 that have been measured elsewhere are also reported

  11. Hydrogen passivation of silicon sheet solar cells

    International Nuclear Information System (INIS)

    Tsuo, Y.S.; Milstein, J.B.

    1984-01-01

    Significant improvements in the efficiencies of dendritic web and edge-supported-pulling silicon sheet solar cells have been obtained after hydrogen ion beam passivation for a period of ten minutes or less. We have studied the effects of the hydrogen ion beam treatment with respect to silicon material damage, silicon sputter rate, introduction of impurities, and changes in reflectance. The silicon sputter rate for constant ion beam flux of 0.60 +- 0.05 mA/cm 2 exhibits a maximum at approximately 1400-eV ion beam energy

  12. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    Science.gov (United States)

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  13. Hydrogen molecular ions for improved determination of fundamental constants

    NARCIS (Netherlands)

    Karr, J.-P.; Hilico, L.; Koelemeij, J.C.J.; Korobov, V.I.

    2016-01-01

    The possible use of high-resolution rovibrational spectroscopy of the hydrogen molecular ions H-2(+) and HD+ for an independent determination of several fundamental constants is analyzed. While these molecules had been proposed for the metrology of nuclear-to-electron mass ratios, we show that they

  14. Energy: the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Bocheris, J O.M.

    1977-01-01

    The author argues that nuclear and solar energy should begin replacing conventional fossil sources as soon as possible because oil, gas and even coal supplies will be depleted within decades. A hydrogen economy would introduce major technical problems but its chief benefits are that it permits energy storage in a post fossil fuel era when electricity is expected to play a major role. It can be converted to electricity, cleanly and efficiently with fuel cells and in liquid form can be burnt as jet fuel. Hydrogen can also be burnt in internal combustion engines although less efficiently in fuel cells. However, although hydrogen is clean and efficient, technical development is still needed to reduce its cost and to cope with safety problems. The book contains a wealth of technical information and is a valuable reference on a topic of growing importance.

  15. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion ...

  16. An improved value for the electron affinity of the negative hydrogen ion

    International Nuclear Information System (INIS)

    Scherk, L.R.

    1979-01-01

    An expression is derived for the lifetime of a negative ion in a weak and static electric field. Using this expression, existing experimental data are analyzed to improve the empirical value of the electron affinity of the negative hydrogen ion by an order of magnitude. (author)

  17. An overview of negative hydrogen ion sources for accelerators

    Science.gov (United States)

    Faircloth, Dan; Lawrie, Scott

    2018-02-01

    An overview of high current (>1 mA) negative hydrogen ion (H-) sources that are currently used on particle accelerators. The current understanding of how H- ions are produced is summarised. Issues relating to caesium usage are explored. The different ways of expressing emittance and beam currents are clarified. Source technology naming conventions are defined and generalised descriptions of each source technology are provided. Examples of currently operating sources are outlined, with their current status and future outlook given. A comparative table is provided.

  18. Preface: photosynthesis and hydrogen energy research for sustainability.

    Science.gov (United States)

    Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2017-09-01

    Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO 2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.

  19. Medium energy ion scattering (MEIS)

    International Nuclear Information System (INIS)

    Dittmann, K.; Markwitz, A.

    2009-01-01

    This report gives an overview about the technique and experimental study of medium energy ion scattering (MEIS) as a quantitative technique to determine and analyse the composition and geometrical structure of crystalline surfaces and near surface-layers by measuring the energy and yield of the backscattered ions. The use of a lower energy range of 50 to 500 keV accelerated ions impinging onto the target surface and the application of a high-resolution electrostatic energy analyser (ESA) makes medium energy ion scattering spectroscopy into a high depth resolution and surface-sensitive version of RBS with less resulting damage effects. This report details the first steps of research in that field of measurement technology using medium energetic backscattered ions detected by means of a semiconductor radiation detector instead of an ESA. The study of medium energy ion scattering (MEIS) has been performed using the 40 keV industrial ion implanter established at GNS Sciences remodelled with supplementary high voltage insulation for the ion source in order to apply voltages up to 45 kV, extra apertures installed in the beamline and sample chamber in order to set the beam diameter accurately, and a semiconductor radiation detector. For measurement purposes a beam of positive charged helium ions accelerated to an energy of about 80 keV has been used impinging onto target surfaces of lead implanted into silicon (PbSi), scandium implanted into aluminium (ScAl), aluminium foil (Al) and glassy carbon (C). First results show that it is possible to use the upgraded industrial implanter for medium energy ion scattering. The beam of 4 He 2+ with an energy up to 88 keV has been focussed to 1 mm in diameter. The 5 nA ion beam hit the samples under 2 x 10 -8 mbar. The results using the surface barrier detector show scattering events from the samples. Cooling of the detector to liquid nitrogen temperatures reduced the electronic noise in the backscattering spectrum close to zero. A

  20. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  1. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  2. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  3. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrogen energy network start-up scenario

    International Nuclear Information System (INIS)

    Weingartner, S.; Ellerbrock, H.

    1994-01-01

    Hydrogen is widely discussed as future fuel and energy storage medium either to replace conventional fuels for automobiles, aircrafts and ships or to avoid the necessity of bulky battery systems for electricity storage, especially in connection with solar power systems. These discussions however started more than 25 years ago and up to now hydrogen has failed to achieve a major break-through towards wider application as energy storage medium in civil markets. The main reason is that other fuels are cheaper and very well implemented in our daily life. A study has been performed at Deutsche Aerospace in order to evaluate the boundary conditions, either political or economical, which would give hydrogen the necessary push, i.e. advantage over conventional fuels. The main goal of this study was to identify critical influence factors and specific start-up scenarios which would allow an economical and practically realistic use of hydrogen as fuel and energy medium in certain niche markets outside the space industry. Method and major results of this study are presented in detail in the paper. Certain niche markets could be identified, where with little initial governmental support, either by funding, tax laws or legislation, hydrogen can compete with conventional fuels. This however requires a scenario where a lot of small actions have to be taken by a high variety of institutions and industries which today are not interconnected with each other, i.e. it requires a new cooperative and proactive network between e.g. energy utilities, car industries, those who have a sound experience with hydrogen (space industry, chemical industry) and last, but certainly not the least, the government. Based on the developed scenario precise recommendations are drawn as conclusions

  5. 18th world hydrogen energy conference 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This CD-ROM contains lectures, power points slides and posters presented on the 18th World Hydrogen Energy Conference. The topics of the conference are: (A). Fuel Cell Basics: 1. Electrochemistry of PEM Fuell Cells; 2. PEM/HT-PEM Fuel Cells: Electrolytes, Stack Components; 3. Direct Fuel Cells; 4. High-Temperature Fuel Cells; 5. Advanced Modelling (B). Existing and Emerging Markets: 1. Off-Grid Power Supply and Premium Power Generation; 2. Space and Aeronautic Applications; 3. APUs for LDV, Trucks, Ships and Airplanes; 4. Portable Applications and Light Traction. (C). Stationary Applications: 1. High-Temperature Fuel Cells; 2. Fuell Cells for Buildings. (D). Transportation Applications: 1. Fuel-Cell Power Trains; 3. Hydrogen Internal Combustion Engines; 4. Systems Analysis and Well-to-Wheel Studies; 5. Demonstration Projects, Costs and Market Introduction; 6 Electrification in Transportation Systems. (E). Fuel Infrastructures: 1. Hydrogen Distribution Technologies; 2. Hydrogen Deployment; 3. Fuel Provision for Early Market Applications. (G). Hydrogen Production Technologies: 1a. Photobiological Hydrogen Production; 1b. Fermentative Hydrogen Production; 1c. The HYVOLUTION Project. (H). Thermochemical Cycles: 3a. Hydrogen from Renewable Electricity; 3b. High-Temperature Electrolysis; 3c Alcaline Electrolysis; 3d PEM Electrolysis; 4a Reforming and Gasification-Fossil Energy Carriers; 4b Reforming and Gasification-Biomass; 5. Hydrogen-Separation Membranes; 6. Hydrogen Systems Assessment;.7. Photocatalysis (I). Storages: 1. Physical Hydrogen Storage; 2a. Metal Hydrides; 2b. Complex Hydrides; 3. Adsorption Technologies; (J). Strategic Analyses: 1. Research + Development Target and Priorities; 2. Life-Cycle Assessment and Economic Impact; 3. Socio-Economic Studies; 4. Education and Public Awareness; 5. Market Introduction; 7. Regional Activities; 8. The Zero Regio Project. (K). Safety Issues: 1. Vehicle and Infrastructural Safety; 2. Regulations, Codes, Standards and Test

  6. 18th world hydrogen energy conference 2010. Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    This CD-ROM contains lectures, power points slides and posters presented on the 18th World Hydrogen Energy Conference. The topics of the conference are: (A). Fuel Cell Basics: 1. Electrochemistry of PEM Fuell Cells; 2. PEM/HT-PEM Fuel Cells: Electrolytes, Stack Components; 3. Direct Fuel Cells; 4. High-Temperature Fuel Cells; 5. Advanced Modelling (B). Existing and Emerging Markets: 1. Off-Grid Power Supply and Premium Power Generation; 2. Space and Aeronautic Applications; 3. APUs for LDV, Trucks, Ships and Airplanes; 4. Portable Applications and Light Traction. (C). Stationary Applications: 1. High-Temperature Fuel Cells; 2. Fuell Cells for Buildings. (D). Transportation Applications: 1. Fuel-Cell Power Trains; 3. Hydrogen Internal Combustion Engines; 4. Systems Analysis and Well-to-Wheel Studies; 5. Demonstration Projects, Costs and Market Introduction; 6 Electrification in Transportation Systems. (E). Fuel Infrastructures: 1. Hydrogen Distribution Technologies; 2. Hydrogen Deployment; 3. Fuel Provision for Early Market Applications. (G). Hydrogen Production Technologies: 1a. Photobiological Hydrogen Production; 1b. Fermentative Hydrogen Production; 1c. The HYVOLUTION Project. (H). Thermochemical Cycles: 3a. Hydrogen from Renewable Electricity; 3b. High-Temperature Electrolysis; 3c Alcaline Electrolysis; 3d PEM Electrolysis; 4a Reforming and Gasification-Fossil Energy Carriers; 4b Reforming and Gasification-Biomass; 5. Hydrogen-Separation Membranes; 6. Hydrogen Systems Assessment;.7. Photocatalysis (I). Storages: 1. Physical Hydrogen Storage; 2a. Metal Hydrides; 2b. Complex Hydrides; 3. Adsorption Technologies; (J). Strategic Analyses: 1. Research + Development Target and Priorities; 2. Life-Cycle Assessment and Economic Impact; 3. Socio-Economic Studies; 4. Education and Public Awareness; 5. Market Introduction; 7. Regional Activities; 8. The Zero Regio Project. (K). Safety Issues: 1. Vehicle and Infrastructural Safety; 2. Regulations, Codes, Standards and Test

  7. Charge transfer of O3+ ions with atomic hydrogen

    International Nuclear Information System (INIS)

    Wang, J.G.; Stancil, P.C.; Turner, A.R.; Cooper, D.L.

    2003-01-01

    Charge transfer processes due to collisions of ground state O 3+ (2s 2 2p 2 P) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with existing experimental and theoretical data shows our results to be in better agreement with the measurements than the previous calculations, although problems with some of the state-selective measurements are noted. Our calculations demonstrate that rotational coupling is not important for the total cross section, but for state-selective cross sections, its relevance increases with energy. For the ratios of triplet to singlet cross sections, significant departures from a statistical value are found, generally in harmony with experiment

  8. Charge transfer of O3+ ions with atomic hydrogen

    Science.gov (United States)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-01-01

    Charge transfer processes due to collisions of ground state O3+(2s22p 2P) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with existing experimental and theoretical data shows our results to be in better agreement with the measurements than the previous calculations, although problems with some of the state-selective measurements are noted. Our calculations demonstrate that rotational coupling is not important for the total cross section, but for state-selective cross sections, its relevance increases with energy. For the ratios of triplet to singlet cross sections, significant departures from a statistical value are found, generally in harmony with experiment.

  9. Scenarios for multi-unit inertial fusion energy plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    This work describes: (a) the motivation for considering fusion in general, and Inertial Fusion Energy (IFE) in particular, to produce hydrogen fuel powering low-emission vehicles; (b) the general requirements for any fusion electric plant to produce hydrogen by water electrolysis at costs competitive with present consumer gasoline fuel costs per passenger mile, for advanced car architectures meeting President Clinton's 80 mpg advanced car goal, and (c) a comparative economic analysis for the potential cost of electricity (CoE) and corresponding cost of hydrogen (CoH) from a variety of multi-unit IFE plants with one to eight target chambers sharing a common driver and target fab facility. Cases with either heavy-ion or diode-pumped, solid-state laser drivers are considered, with ''conventional'' indirect drive target gains versus ''advanced, e.g. Fast Ignitor'' direct drive gain assumptions, and with conventional steam balance-of-plant (BoP) versus advanced MHD plus steam combined cycle BoP, to contrast the potential economics under ''conventional'' and ''advanced'' IFE assumptions, respectively

  10. Sputtering of solid deuterium by He-ions

    DEFF Research Database (Denmark)

    Schou, Jørgen; Stenum, B.; Pedrys, R.

    2001-01-01

    Sputtering of solid deuterium by bombardment of 3He+ and 4He+ ions was studied. Some features are similar to hydrogen ion bombardment of solid deuterium, but for the He-ions a significant contribution of elastic processes to the total yield can be identified. The thin-film enhancement is more pro...... pronounced than that for hydrogen projectiles in the same energy range....

  11. Green energy and hydrogen research at University of Waterloo

    International Nuclear Information System (INIS)

    Fowler, M.

    2006-01-01

    This paper summarises Green Energy and Hydrogen Research at the University of Waterloo in Canada. Green energy includes solar, wind, bio fuels, hydrogen economy and conventional energy sources with carbon dioxide sequestration

  12. Changes of structural and hydrogen desorption properties of MgH2 indused by ion irradiation

    Directory of Open Access Journals (Sweden)

    Kurko Sandra V.

    2010-01-01

    Full Text Available Changes in structural and hydrogen desorption properties of MgH2 induced by ion irradiation have been investigated. MgH2 powder samples have been irradiated with 45 keV B3+ and 120 keV Ar8+ions, with ion fluence of 1015 ions/cm2. The effects of ion irradiation are estimated by numerical calculations using SRIM package. The induced material modifications and their consequences on hydrogen dynamics in the system are investigated by XRD, particle size distribution and TPD techniques. Changes of TPD spectra with irradiation conditions suggest that there are several mechanisms involved in desorption process which depend on defect concentration and their interaction and ordering. The results confirmed that the near-surface area of MgH2 and formation of a substoichiometric MgHx (x<2 play a crucial role in hydrogen kinetics and that various concentrations of induced defects substantially influence H diffusion and desorption kinetics in MgH2. The results also confirm that there is possibility to control the thermodynamic parameters by controlling vacancies concentration in the system.

  13. Hydrogen absorption kinetics of niobium with an ion-plated nickel overlayer

    International Nuclear Information System (INIS)

    Nakamura, K.

    1981-01-01

    The hydrogen absorption rate for nickel-ion-plated niobium was measured as a function of hydrogen pressure and temperature. The observed absorption curves of c(mean)/csub(e) against time (c(mean) and csub(e) are the mean and equilibrium hydrogen concentrations respectively) exhibited a marked hydrogen pressure dependence below 628 K but this was less marked above 723 K. The results were analysed on the basis of the proposed model that the rate-determining step is the hydrogen permeation through the nickel overlayer and that the permeation is driven by the hydrogen activity difference between the two interfaces, namely the H 2 -Ni and Ni-Nb interfaces. The marked pressure dependence can be attributed to the fact that the hydrogen activity coefficient in nickel is constant and that in niobium it varies markedly with concentration, i.e. with hydrogen pressure and temperature. It was also found that the change in the nickel overlayer structure caused by the dilatation of bulk niobium during hydrogen absorption enhances the hydrogen absorption rates. The temperature dependence of the hydrogen absorption rate is also discussed in comparison with that for tantalum with a vacuum-deposited nickel overlayer. (Auth.)

  14. Some aspects of hydrogen as a long-term energy carrier

    International Nuclear Information System (INIS)

    Quakernaat, J.; De Jong, K.P.; Van Wechem, H.M.H.; Okken, P.A.; Lako, P.; Ybema, J.R.

    1994-11-01

    Hydrogen as a secondary energy carrier received extensive and worldwide attention some ten to fifteen years ago. The developments in the energy market since then have reduced the interest in hydrogen. However, the increased concern for the environment and new technical options have brought hydrogen to the centre of attention once again. These considerations led to the organization of the National Hydrogen Seminar, held on 19 November 1993 at ECN, Petten, Netherlands. Eight experts in the field of hydrogen illustrated the possibilities and prospects of the production, storage and use of hydrogen as an energy carrier. In this report three of these contributions are presented, for which separate abstracts have been prepared. The first paper is on hydrogen in a global long-term perspective, in the second paper carbon is considered as a hydrogen carrier or as a disappearing skeleton, and in the third paper attention is paid to the cost effective integration of hydrogen in energy systems with CO 2 constraints

  15. Space- and time-resolved measurements of ion energy distributions by neutral beam injection in TORTUR II

    International Nuclear Information System (INIS)

    Brocken, H.J.B.M.

    1981-10-01

    A method is described for the space- and time-resolved analysis of ion energy distributions in a plasma. A well-collimated neutral hydrogen beam is used to enhance the charge-exchange processes. The method is used in the TORTUR II tokamak to study the space and time evolution of the ion temperature profile of the plasma. The analytical background and the technique are described in detail. Examples of measurements on TORTUR II are presented

  16. Hourly energy management for grid-connected wind-hydrogen systems

    International Nuclear Information System (INIS)

    Bernal-Agustin, Jose L.; Dufo-Lopez, Rodolfo

    2008-01-01

    This paper is a complete technical-economic analysis of the hourly energy management of the energy generated in wind-hydrogen systems. Wind power generation depends on the unpredictable nature of the wind. If the wind-power penetration becomes high in the Spanish electrical grid, energy management will be necessary for some wind farms. A method is proposed in this paper to adjust the generation curve to the demand curve, consisting of the generation of hydrogen and storing it in a hydrogen tank during off-peak (low demand) hours, while during the rest of the hours (peak hours, high demand) the stored hydrogen can be used to generate electricity. After revising the results obtained in this paper, for the current values of efficiency of the electricity-hydrogen-electricity conversion (approximately 30%) and due to the high cost of the hydrogen components, for a wind-hydrogen system to be economically viable the price of the sale of the energy generated by the fuel cell would be very high (approximately 171 cEUR/kWh). (author)

  17. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  18. Binding energies of cluster ions

    International Nuclear Information System (INIS)

    Parajuli, R.; Matt, S.; Scheier, P.; Echt, O.; Stamatovic, A.; Maerk, T.D.

    2002-01-01

    The binding energy of charged clusters may be measured by analyzing the kinetic energy released in the metastable decay of mass selected parent ions. Using finite heat bath theory to determine the binding energies of argon, neon, krypton, oxygen and nitrogen from their respective average kinetic energy released were carried out. A high-resolution double focussing two-sector mass spectrometer of reversed Nier-Johnson type geometry was used. MIKE ( mass-analysed ion kinetic energy) were measured to investigate decay reactions of mass-selected ions. For the inert gases neon (Ne n + ), argon (Ar n + ) and krypton (Kr n + ), it is found that the binding energies initially decrease with increasing size n and then level off at a value above the enthalpy of vaporization of the condensed phase. Oxygen cluster ions shown a characteristic dependence on cluster size (U-shape) indicating a change in the metastable fragmentation mechanism when going from the dimer to the decamer ion. (nevyjel)

  19. Role of Helium-Hydrogen ratio on energetic interchange mode behaviour and its effect on ion temperature and micro-turbulence in LHD

    Science.gov (United States)

    Michael, C. A.; Tanaka, K.; Akiyama, T.; Ozaki, T.; Osakabe, M.; Sakakibara, S.; Yamaguchi, H.; Murakami, S.; Yokoyama, M.; Shoji, M.; Vyacheslavov, L. N.; LHD Experimental Group

    2018-04-01

    In the Large helical device, a change of energetic particle mode is observed as He concentration is varied in ion-ITB type experiments, having constant electron density and input heating power but with a clear increase of central ion temperature in He rich discharges. This activity consists of bursty, but damped energetic interchange modes (EICs, Du et al 2015 Phys. Rev. Lett. 114 155003), whose occurrence rate is dramatically lower in the He-rich discharges. Mechanisms are discussed for the changes in drive and damping of the modes with He concentration. These EIC bursts consist of marked changes in the radial electric field, which is derived from the phase velocity of turbulence measured with the 2D phase contrast imaging (PCI) system. Similar bursts are detected in edge fast ion diagnostics. Ion thermal transport by gyro-Bohm scaling is recognised as a contribution to the change in ion temperature, though fast ion losses by these EIC modes may also contribute to the ion temperature dependence on He concentration, most particularly controlling the height of an ‘edge-pedestal’ in the Ti profile. The steady-state level of fast ions is shown to be larger in helium rich discharges on the basis of a compact neutral particle analyser (CNPA), and the fast-ion component of the diamagnetic stored energy. These events also have an influence on turbulence and transport. The large velocity shear induced produced during these events transiently improves confinement and suppresses turbulence, and has a larger net effect when bursts are more frequent in hydrogen discharges. This exactly offsets the increased gyro-Bohm related turbulence drive in hydrogen which results in the same time-averaged turbulence level in hydrogen as in helium.

  20. Energy Accumulation by Hydrogen Technologies

    Directory of Open Access Journals (Sweden)

    Jiřina Čermáková

    2012-01-01

    Full Text Available Photovoltaic power plants as a renewable energy source have been receiving rapidly growing attention in the Czech Republic and in the other EU countries. This rapid development of photovoltaic sources is having a negative effect on the electricity power system control, because they depend on the weather conditions and provide a variable and unreliable supply of electric power. One way to reduce this effect is by accumulating electricity in hydrogen. The aim of this paper is to introduce hydrogen as a tool for regulating photovoltaic energy in island mode. A configuration has been designed for connecting households with the photovoltaic hybrid system, and a simulation model has been made in order to check the validity of this system. The simulation results provide energy flows and have been used for optimal sizing of real devices. An appropriate system can deliver energy in a stand-alone installation.

  1. Hydrogen energy - the end of the beginning

    International Nuclear Information System (INIS)

    Stuart, A. K.

    1997-01-01

    Financial barriers to the widespread use of hydrogen energy were the principal messages contained in this banquet address. These barriers include the cost for the hydrogen, cost for the supply infrastructure and the cost of developing and building the special vehicles and appliances to use hydrogen. Some hopeful signs that hydrogen energy is emerging include Ballard's buses, early fuel cell private vehicle refueling station and remote energy systems which will be commercialized within the next ten years. The optimism is based on the effects of deregulation of the electric utility industry in the US now spreading to Canada and other countries, the appearance of effective direct hydrogen fuel cell vehicles under strong industrial sponsorship, and the near-term availability of electrolysis for hydrogen production at a fraction of present capital cost. Each of these reasons for optimism were elaborated in some detail. However, the main force behind the hydrogen solution for transportation is the environmental benefit, i.e. the potential of some one billion automobiles around the world running on an environmentally benign fuel, and the potential effect of that fact on global warming. The likely effects of continuing as before is no longer considered a viable option even by the greatest of skeptics of greenhouse gas emissions, a fact that will make the demand for 'clean' vehicles progressively more pressing with the passage of time. By increasing the hydrogen-to-carbon ratio in upgrading heavy hydrocarbons, the petroleum industry itself is showing the way to factor global warming issues into process choices. By going one step further and obtaining the hydrogen from non-fossil sources, the environmental benefits will be multiplied several fold

  2. Technology selection for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Siti Alimah; Erlan Dewita

    2008-01-01

    The NPP can either be used to produce electricity, or as heat source for non-electric applications (cogeneration). High Temperature Reactor (HTR) with high outlet coolant temperature around 900~1000 o C, is a reactor type potential for cogeneration purposes such as hydrogen production and other chemical industry processes that need high heat. Considering the national energy policy that a balanced arrangement of renewable and unrenewable natural resources has to be made to keep environmental conservation for the sake of society prosperity in the future, hydrogen gas production using nuclear heat is an appropriate choice. Hydrogen gas is a new energy which is environmentally friendly that it is a prospecting alternative energy source in the future. Within the study, a comparison of three processes of hydrogen gas production covering electrolysis, steam reforming and sulfur-iodine cycle, have been conducted. The parameters that considered are the production cost, capital cost and energy cost, technological status, the independence of fossil fuel, the environmental friendly aspect, as well as the efficiency and the independence of corrosion-resistance material. The study result showed that hydrogen gas production by steam reforming is a better process compared to electrolysis and sulfur-iodine process. Therefore, steam reforming process can be a good choice for hydrogen gas production using nuclear energy in Indonesia. (author)

  3. Dynamics of the reaction of the N/sup +/ ion with hydrogen isotopes and helium

    Energy Technology Data Exchange (ETDEWEB)

    Ruska, W.E.W.

    1976-06-28

    Molecular beam techniques were used to study the reactive and non-reactive scattering of the nitrogen positive ion from hydrogen isotopes and helium, at energies above the stability limit for spectator stripping. Reactive scattering was observed from H/sub 2/ and HD targets. Non-reactive scattering was observed from H/sub 2/ and D/sub 2/ targets, and from He at one energy. A correlation diagram for the system is presented and compared with the available a priori calculations. Two surfaces are expected to lead to reaction. One is a /sup 3/A/sub 2/ - /sup 3/PI surface, the other, a /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface. Collinear approaches are expected to be most reactive on the /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface; noncollinear, on the /sup 3/A/sub 1/ - /sup 3/PI surface. Theoretical models are presented in which an incident hard sphere A, representing the projectile ion, strikes one of a pair of hard spheres B-C representing the B hydrogen molecule. After an impulsive A-B collision, an impulsive B-C collision may take place. The relative energy of A to B is then examined, and a reactive event is considered to have occurred if the energy is less than the dissociation energy for the A-B molecule. This model is treated both in the collinear case and in three dimensions. A graphical technique for the collinear case is summarized and applied to reaction on the /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface. An integral equation for the three-dimensional case is developed. A synthesis of two treatments, representing the behavior of the system on both reactive surfaces, and considering the charge-exchange channel, correctly predicts the observed product distribution. Predictions are also presented for the as yet unobserved case of reactive scattering from a D/sub 2/ target.

  4. Antiproton-hydrogen scattering at low-eV energies

    International Nuclear Information System (INIS)

    Morgan Jr., D.L.

    1993-01-01

    In the scattering of negative particles other than the electron by atoms at lab-frame energies around 10 eV, an elastic process termed 'brickwall scattering' might lead to a high probability for scattering angles around 180deg. For an antiproton slowing in hydrogen, this backward scattering would result in the loss of nearly all of its energy in a single collision, since it and a hydrogen atom have nearly the same mass. Such energy loss would have a significant effect on the energy distribution of antiprotons at energies where capture by the protons of hydrogen is possible and might, thereby, affect the capture rate and the distribution of capture states. In the semiclassical treatment of the problem with an adiabatic potential energy, brickwall scattering is indeed present, and with a substantial cross section. However, this model appears to underestimate inelastic processes. Based on calculations for negative muons on hydrogen atoms, these processes appear to occur for about the same impact parameters as brickwall scattering and thus substantially reduce its effect. (orig.)

  5. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  6. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  7. Hydrogen inventory in gallium

    International Nuclear Information System (INIS)

    Mazayev, S.N.; Prokofiev, Yu.G.

    1994-01-01

    Investigations of hydrogen inventory in gallium (99.9%) were carried out after saturation both from molecular phase and from glow discharge plasma at room temperature, 370 and 520 K. Saturation took place during 3000 s under hydrogen pressure of 20 Pa, and ion flux was about 1x10 15 ions/cm 2 s with an energy about 400 eV during discharge. Hydrogen concentration in Ga at room temperature and that for 370 K by the saturation from gaseous phase was (2-3)x10 14 cm -3 Pa -1/2 . Hydrogen concentration at temperature 520 K increased by five times. Inventory at room temperature for irradiation from discharge was 7x10 16 cm -3 at the dose about 3x10 18 ions/cm 2 . It was more than inventory at temperature 520 K by four times and more than maximum inventory from gaseous phase at 520 K by a factor of 10. Inventory increased when temperature decreased. Diffusion coefficient D=0.003 exp(-2300/RT) cm 2 /s, was estimated from temperature dependence. ((orig.))

  8. Ion-ion interaction and energy transfer of 4+ transuranium ions in cerium tetrafluoride

    International Nuclear Information System (INIS)

    Liu, G.K.; Beitz, J.V.

    1990-01-01

    Dynamics of excited 5f electron states of the transuranium ions Cm 4+ and Bk 4+ in CeF 4 are compared. Based on time- and wavelength-resolved laser-induced fluorescence, excitation energy transfer processes have been probed. Depending on concentration and electronic energy level structure of the studied 4+ transuranium ion, the dominant energy transfer mechanisms were identified as cross relaxation, exciton-exciton annihilation, and trapping. Energy transfer rates derived from the fitting of the observed fluorescence decays to theoretical models, based on electric multipolar ion-ion interactions, are contrasted with prior studies of 4f states of 3+ lanthanide and 3d states of transition metal ions. 16 refs., 1 tab

  9. Trapping and re-emission of energetic hydrogen and helium ions in materials

    International Nuclear Information System (INIS)

    Yamaguchi, Sadae

    1981-01-01

    The experimental results on the trapping and re-emission of energetic hydrogen and helium ions in materials are explained. The trapping of deuterium and helium in graphite saturates at the concentration of 10 18 ions/cm 2 . The trapping rate of hydrogen depends on the kinds of target materials. In the case of the implantation in Mo over 3 x 10 16 H/cm 2 , hydrogen is hardly trapped. On the other hand, the trapping of hydrogen in Ti, Zr and Ta which form solid solution is easily made. The hydrogen in these metals can diffuse toward the inside of metals. The deuterium retained in 316 SS decreased with time. The trapping rate reached saturation more rapidly at higher implantation temperature. The effective diffusion constant for the explanation of the re-emission process is 1/100 as small as the ordinary value. The radiation damage due to helium irradiation affects on the trapping of deuterium in Mo. The temperature dependence of the trapping rate can be explained by the diffusion model based on the Sievert's law. The re-emission of helium was measured at various temperature. At low temperature, the re-emission was low at first, then the rate increased. At high temperature, the re-emission rate was high from the beginning. (Kato, T.)

  10. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  11. OTEC to hydrogen fuel cells - A solar energy breakthrough

    Science.gov (United States)

    Roney, J. R.

    Recent advances in fuel cell technology and development are discussed, which will enhance the Ocean Thermal Energy Conversion (OTEC)-hydrogen-fuel cell mode of energy utilization. Hydrogen obtained from the ocean solar thermal resources can either be liquified or converted to ammonia, thus providing a convenient mode of transport, similar to that of liquid petroleum. The hydrogen fuel cell can convert hydrogen to electric power at a wide range of scale, feeding either centralized or distributed systems. Although this system of hydrogen energy production and delivery has been examined with respect to the U.S.A., the international market, and especially developing countries, may represent the greatest opportunity for these future generating units.

  12. Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons

    Science.gov (United States)

    Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.

    2008-10-01

    We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.

  13. Fiscal 1976 Sunshine Project research report. Interim report (hydrogen energy); 1976 nendo chukan hokokushoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-11-01

    This report summarizes the Sunshine Project research interim reports on hydrogen energy of every organizations. The report includes research items, laboratories, institutes and enterprises concerned, research targets, research plans, and progress conditions. The research items are as follows. (1) Hydrogen production technology (electrolysis, high- temperature high-pressure water electrolysis, 4 kinds of thermochemical techniques, direct thermolysis). (2) Hydrogen transport and storage technology (2 kinds of solidification techniques). (3) Hydrogen use technology (combustion technology, fuel cell, solid electrolyte fuel cell, fuel cell power system, hydrogen fuel engine). (4) Hydrogen safety measures technology (disaster preventive technology for gaseous and liquid hydrogen, preventing materials from embrittlement due to hydrogen, hydrogen refining, transport and storage systems, their safety technology). (5) Hydrogen energy system (hydrogen energy system, hydrogen use subsystems, peripheral technologies). (NEDO)

  14. Activation of erbium films for hydrogen storage

    International Nuclear Information System (INIS)

    Brumbach, Michael T.; Ohlhausen, James A.; Zavadil, Kevin R.; Snow, Clark S.; Woicik, Joseph C.

    2011-01-01

    Hydriding of metals can be routinely performed at high temperature in a rich hydrogen atmosphere. Prior to the hydrogen loading process, a thermal activation procedure is required to promote facile hydrogen sorption into the metal. Despite the wide spread utilization of this activation procedure, little is known about the chemical and electronic changes that occur during activation and how this thermal pretreatment leads to increased rates of hydrogen uptake. This study utilized variable kinetic energy X-ray photoelectron spectroscopy to interrogate the changes during in situ thermal annealing of erbium films, with results confirmed by time-of-flight secondary ion mass spectrometry and low energy ion scattering. Activation can be identified by a large increase in photoemission between the valence band edge and the Fermi level and appears to occur over a two stage process. The first stage involves desorption of contaminants and recrystallization of the oxide, initially impeding hydrogen loading. Further heating overcomes the first stage and leads to degradation of the passive surface oxide leading to a bulk film more accessible for hydrogen loading.

  15. Ion beam investigation of hydrogen implanted in magnesium

    International Nuclear Information System (INIS)

    Chami, A.-C.

    1977-01-01

    The diffusion mechanism for hydrogen implanted in magnesium was investigated by nuclear reaction analysis or channeling. The hydrogen introduced is then in the presence of radiation defects created by implantation. The H( 11 B,α) reaction used allowed the profiles of implanted hydrogen to be drawn. The Winterbon calculations derived from LSS theory (Lindhard, Scharff, Schiott) were used. LSS profiles folding and the excitation curve unfolding give very same results. An analysis of the profile of the defects and the evaluation of the total number of Frenkel pairs produced show that the defects are isolated when low energy light elements are implanted, and hydrogen interactions are effected through point defects. A channeling analysis shows that hydrogen occupies tetrahedral sites as far as the temperature remains lower that the migration temperature (about 100K). Beyonds this temperature, the hydrogen migrates and is trapped on motionless defects [fr

  16. Novel Hydrogen Compounds from a Potassium Carbonate Electrolytic Cell

    International Nuclear Information System (INIS)

    Mills, Randell L.

    2000-01-01

    Novel compounds containing hydrogen in new hydride and polymeric states that demonstrate novel hydrogen chemistry have been isolated following the electrolysis of a K 2 CO 3 electrolyte with the production of excess energy. Inorganic hydride clusters K[KH KHCO 3 ] n + and hydrogen polymer ions such as OH 23 + and H 16 - were identified by time-of-flight secondary ion mass spectroscopy. The presence of compounds containing new states of hydrogen was confirmed by X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and proton nuclear magnetic resonance spectroscopy

  17. The potential role of hydrogen energy in India and Western Europe

    International Nuclear Information System (INIS)

    Ruijven, Bas van; Hari, Lakshmikanth; Vuuren, Detlef P. van; Vries, Bert de

    2008-01-01

    We used the TIMER energy model to explore the potential role of hydrogen in the energy systems of India and Western Europe, looking at the impacts on its main incentives: climate policy, energy security and urban air pollution. We found that hydrogen will not play a major role in both regions without considerable cost reductions, mainly in fuel cell technology. Also, energy taxation policy is essential for hydrogen penetration and India's lower energy taxes limit India's capacity to favour hydrogen. Once available to the (European) energy system, hydrogen can decrease the cost of CO 2 emission reduction by increasing the potential for carbon capture technology. However, climate policy alone is insufficient to speed up the transition. Hydrogen diversifies energy imports; especially for Europe it decreases oil imports, while increasing imports of coal and natural gas. For India, it provides an opportunity to decrease oil imports and use indigenous coal resources in the transport sector. Hydrogen improves urban air quality by shifting emissions from urban transport to hydrogen production facilities. However, for total net emissions we found a sensitive trade-off between lower emissions at end-use (in transport) and higher emissions from hydrogen production, depending on local policy for hydrogen production facilities

  18. Development and characterization of a solar-hydrogen energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Vejar, S.; Gonzalez, E.; Perez, M.; Gamboa, S.A.

    2009-01-01

    'Full text': The details of the development of a PV-hydrogen hybrid energy system are presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operates as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW of power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1 kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet, and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations have been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  19. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  20. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  1. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions (1)could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion-ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component--positive ions, negative ions, and electrons--can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed

  2. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One Li

  3. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Science.gov (United States)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  4. Improved beam extraction for a negative hydrogen ion source for the LHC injector chain upgrade, Linac4

    CERN Document Server

    Midttun, Øystein; Scrivens, Richard

    In the scope of an upgrade of the injector chain of CERN’s accelerator complex, a new linear accelerator, Linac4, is under construction. This accelerator will replace the existing 50 MeV proton linac, Linac2. By increasing the beam energy to 160 MeV, Linac4 makes it possible to double the brightness in the PSB, and ultimately increase the luminosity in the LHC. Linac4 will accelerate beams of negative hydrogen (H-) to be injected into the PSB by multi-turn, charge exchange injection. The ion source was initially based on the non-caesiated RF-volume source from DESY. However, the beam extraction from this source could not handle the 45 keV beam energy required by the RFQ. A new beam extraction system has therefore been designed, via IBSimu simulations [1], to extract and transport the H- ion beam respecting the Linac4 requirements. Key features of the extraction system is a tuneable puller voltage to adapt the extraction field to the ion and electron beam currents, and a magnetized Einzel lens to dump the co...

  5. Atomic processes in hydrogen and deuterium negative ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1992-01-01

    A knowledge of the atomic processes active in a hydrogen negative ion discharge and their respective rates is an essential component of the interpretation, modeling, and enhancement of negative ion systems. The generation of the cross sections and rate processes appropriate to this problem has been a principal activity at several laboratories. In this paper is discussed those collision processes that are of major importance for the destruction of the vibrationally excited molecules generated in the discharge, processes that are essential to the valuation of the optimization procedure that is to be discussed in this paper

  6. A collisional radiative model of hydrogen plasmas developed for diagnostic purposes of negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Iordanova, Snejana, E-mail: snejana@phys.uni-sofia.bg; Paunska, Tsvetelina [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria)

    2016-02-15

    A collisional radiative model of low-pressure hydrogen plasmas is elaborated and applied in optical emission spectroscopy diagnostics of a single element of a matrix source of negative hydrogen ions. The model accounts for the main processes determining both the population densities of the first ten states of the hydrogen atom and the densities of the positive hydrogen ions H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +}. In the calculations, the electron density and electron temperature are varied whereas the atomic and molecular temperatures are included as experimentally obtained external parameters. The ratio of the H{sub α} to H{sub β} line intensities is calculated from the numerical results for the excited state population densities, obtained as a solution of the set of the steady-state rate balance equations. The comparison of measured and theoretically obtained ratios of line intensities yields the values of the electron density and temperature as well as of the degree of dissociation, i.e., of the parameters which have a crucial role for the volume production of the negative ions.

  7. The populations of excited levels of hydrogen-like and helium-like ions in plasmas traversed by neutral hydrogen beams

    International Nuclear Information System (INIS)

    Spence, J.; Summers, H.P.

    1985-01-01

    This paper examines the populations of levels of impurity ions in a spartially homogeneous plasma containing primarily thermal electrons and protons and monoenergetic neutral hydrogen atoms. Of special concern is the role of recombination which may include the radiative, three-body and dielectronic process together with charge exchange capture from neutral hydrogen beams. The influence of these primary processes on the population is modified by radiative transitions and redistributive transitions due to collisions with electrons and protons in the plasma. The behaviour of the populations of the ions C 5+ , C 4+ and Ar 16+ with variation of plasma parameters is explored in the present work. A bundled principal quantum level picture and a more elaborate LS resolved picture are used which allow investigation of the expected spectral emission and its sensitivity to uncertainty in the primary rates. The variation of the impurity ion spectrum in transiently recombining or ionising conditions is also considered. (orig.)

  8. Perspectives of a hydrogen-based energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Czakainski, M.

    1989-06-01

    In view of the depletion of fossil fuel resources, and of their environmental effects, research is going on worldwide to find alternative energy sources. Hydrogen has been raising high hopes in recent years and has made a career as a candidate substitute for fossil fuels. There is hydropower or solar energy for electrolytic production of hydrogen which by a catalytic, environmentally friendly process is re-convertable into water. Experimental facilities exist for testing the hydrogen technology, but it is too early now to give any prognosis on the data of technical maturity and commercial feasibility of the technology. The et team invited some experts for a discussion on the pros and cons of hydrogen technology, and on questions such as siting of installations, infrastructure, and economics. (orig./UA).

  9. Hydrogen, an energy carrier with a future

    International Nuclear Information System (INIS)

    Zimmer, K.H.

    1975-01-01

    The inefficient use, associated with pollutants, of the fossil energy carriers coal, crude oil and natural gas, will deplete resources, if the energy demand increases exponentially, in the not-too-distant future. That is the reason why the hydrogen-energy concept gains in importance. This requires drastic changes in structure in a lot of technological fields. This task is only to be mastered if there is cooperation between all special fields, in order to facilitate the economical production, distribution and utilization of hydrogen. (orig.) [de

  10. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    International Nuclear Information System (INIS)

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-01-01

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV

  11. Scaling relations in elastic scattering cross sections between multiply charged ions and hydrogen

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    1991-01-01

    Differential elastic scattering cross sections of bare ions from hydrogen are calculated using the eikonal approximation. The results satisfy a scaling relation involving the scattering angle, the ion charge and a factor related to the ion mass. A semiclassical explanation in terms of a distant collision hypothesis for small scattering angle is proposed. A unified picture of related scaling rules found in direct processes is discussed. (author)

  12. Photoluminescence and reflectivity studies of high energy light ions irradiated polymethyl methacrylate films

    Science.gov (United States)

    Bharti, Madhu Lata; Singh, Fouran; Ramola, R. C.; Joshi, Veena

    2017-11-01

    The self-standing films of non-conducting polymethyl methacrylate (PMMA) were irradiated in vacuum using high energy light ions (HELIs) of 50 MeV Lithium (Li+3) and 80 MeV Carbon (C+5) at various ion dose to induce the optical changes in the films. Upon HELI irradiation, films exhibit a significant enhancement in optical reflectivity at the highest dose. Interestingly, the photoluminescence (PL) emission band with green light at (514.5 nm) shows a noticeable increase in the intensity with increasing ion dose for both ions. However, the rate of increase in PL intensity is different for both HELI and can be correlated with the linear energy transfer by these ions in the films. Origin of PL is attributed to the formation of carbon cluster and hydrogenated amorphous carbon in the polymer films. HAC clusters act as PL active centres with optical reflectivity. Most of the harmful radiation like UV are absorbed by the material and is becoming opaque after irradiation and this PL active material are useful in fabrication of optoelectronic devices, UV-filter, back-lit components in liquid crystal display systems, micro-components for integrate optical circuits, diffractive elements, advanced materials and are also applicable to the post irradiation laser treatment by means of ion irradiation.

  13. Scattering of Femtosecond Laser Pulses on the Negative Hydrogen Ion

    Science.gov (United States)

    Astapenko, V. A.; Moroz, N. N.

    2018-05-01

    Elastic scattering of ultrashort laser pulses (USLPs) on the negative hydrogen ion is considered. Results of calculations of the USLP scattering probability are presented and analyzed for pulses of two types: the corrected Gaussian pulse and wavelet pulse without carrier frequency depending on the problem parameters.

  14. Improving corrosion resistance of magnesium-based alloys by surface modification with hydrogen by electrochemical ion reduction (EIR) and by plasma immersion ion implantation (PIII)

    Energy Technology Data Exchange (ETDEWEB)

    Bakkar, A. [Institut fuer Materialpruefung und Werkstofftechnik, Dr. Doelling und Dr. Neubert GmbH, Freiberger Strasse 1, 38678 Clausthal (Germany); Department of Metallurgy and Materials Engineering, Suez Canal University, P.O. Box 43721, Suez (Egypt); Neubert, V. [Institut fuer Materialpruefung und Werkstofftechnik, Dr. Doelling und Dr. Neubert GmbH, Freiberger Strasse 1, 38678 Clausthal (Germany)]. E-mail: volkmar.neubert@tu-clausthal.de

    2005-05-01

    Magnesium-based hydrides are well known that they have a high hydrogen-storage capacity. In this study, two different methods have been provided for hydrogen surface modification of high purity magnesium (hp Mg) and AZ91 magnesium alloy. One was electrochemical ion reduction (EIR) of hydrogen from an alkaline electrolyte on such Mg-based cathode. The other was plasma immersion ion implantation (PIII or PI{sup 3}) into Mg-based substrate. The depth profile of H-modified surfaces was described by Auger electron spectroscopy (AES) and by secondary ion mass spectrometry (SIMS) measurements. Corrosion testing was carried out in Avesta cell by potentiodynamic polarisation in chloride-containing aqueous solutions of pH 7 and pH 12. A greatly significant improvement in the corrosion resistance of H-modified surfaces was verified.

  15. Improving corrosion resistance of magnesium-based alloys by surface modification with hydrogen by electrochemical ion reduction (EIR) and by plasma immersion ion implantation (PIII)

    International Nuclear Information System (INIS)

    Bakkar, A.; Neubert, V.

    2005-01-01

    Magnesium-based hydrides are well known that they have a high hydrogen-storage capacity. In this study, two different methods have been provided for hydrogen surface modification of high purity magnesium (hp Mg) and AZ91 magnesium alloy. One was electrochemical ion reduction (EIR) of hydrogen from an alkaline electrolyte on such Mg-based cathode. The other was plasma immersion ion implantation (PIII or PI 3 ) into Mg-based substrate. The depth profile of H-modified surfaces was described by Auger electron spectroscopy (AES) and by secondary ion mass spectrometry (SIMS) measurements. Corrosion testing was carried out in Avesta cell by potentiodynamic polarisation in chloride-containing aqueous solutions of pH 7 and pH 12. A greatly significant improvement in the corrosion resistance of H-modified surfaces was verified

  16. Towards sustainable energy systems: The related role of hydrogen

    International Nuclear Information System (INIS)

    Hennicke, Peter; Fischedick, Manfred

    2006-01-01

    The role of hydrogen in long run sustainable energy scenarios for the world and for the case of Germany is analysed, based on key criteria for sustainable energy systems. The possible range of hydrogen within long-term energy scenarios is broad and uncertain depending on assumptions on used primary energy, technology mix, rate of energy efficiency increase and costs degression ('learning effects'). In any case, sustainable energy strategies must give energy efficiency highest priority combined with an accelerated market introduction of renewables ('integrated strategy'). Under these conditions hydrogen will play a major role not before 2030 using natural gas as a bridge to renewable hydrogen. Against the background of an ambitious CO 2 -reduction goal which is under discussion in Germany the potentials for efficiency increase, the necessary structural change of the power plant system (corresponding to the decision to phase out nuclear energy, the transformation of the transportation sector and the market implementation order of renewable energies ('following efficiency guidelines first for electricity generation purposes, than for heat generation and than for the transportation sector')) are analysed based on latest sustainable energy scenarios

  17. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  18. About connection between atomic and hydrogen energy power

    International Nuclear Information System (INIS)

    Avdeeva, M.Zh.; Vecher, A.A.; Pan'kov, V.V.

    2008-01-01

    Possible interaction between atomic and hydrogen energy power has been discussed. The analysis of the result held shows that the electrical energy produced by the atomic reactor during the of-load hours can be involved into the process of obtaining hydrogen by electrolysis. In order to optimize the transportation and storage of hydrogen it is proposed to convert it into ammonia. The direct uses of ammonia as a fuel into the internal combustion engine and fuel cells are examined. (authors)

  19. A procedure for reducing the concentration of hydrogen ions in acid anionic eluate and equipment therefore

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1989-01-01

    The method is described of reducing the concentration of hydrogen ions in acid anionic eluate produced in the separation of uranium or other metals, in which anion exchanger elution, precipitation, filtration and precipitate and anion exchanger washing are used. The technological line for such elution comprises at least one ion exchange column and at least one container. They together form the first and the second stages of preparation of the acid anion elution solution, the sorption-elution separation of hydrogen ions on an cation exchanger being inserted between them. The preparation of the solution is divide into two stages. In the first stage, the acid and part of the solution for the preparation of the acid anion elution solution are supplied. The resulting enriched acid elution solution is fe onto the cation exchanger where the hydrogen ion concentration i reduced. It is then carried into the second stage where it is mixed with the remaining part of the solution. (B.S.)

  20. Hydrogen economy and nuclear energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2004-01-01

    Global energy outlooks based on present trends, such as WETO study, give little optimism about fulfilling Kyoto commitments in controlling CO2 emissions and avoiding unwanted climate consequences. Whilst the problem of radioactive waste has a prominence in public, in spite of already adequate technical solutions of safe storage for future hundreds and thousands of years, there s generally much less concern with influence of fossil fuels on global climate. In addition to electricity production, process heat and transportation are approximately equal contributors to CO2 emission. Fossil fuels in transportation present also a local pollution problem in congested regions. Backed by extensive R and D, hydrogen economy is seen as the solution, however, often without much thought where from the hydrogen in required very large quantities may come. With welcome contributions from alternative sources, nuclear energy is the only source of energy capable of producing hydrogen in very large amounts, without parallel production of CO2. Future high temperature reactors could do this most efficiently. In view of the fact that nuclear weapon proliferation is not under control, extrapolation from the present level of nuclear power to the future level required by serious attempts to reduce global CO2 emission is a matter of justified concern. Finding the sites for many hundreds of new reactors would, alone, be a formidable problem in developed regions with high population density. What is generally less well understood and not validated is that the production of nuclear hydrogen allows the required large increases of nuclear power without the accompanied increase of proliferation risks. Unlike electricity, hydrogen can be economically shipped or transported by pipelines to places very far from the place of production. Thus, nuclear production of hydrogen can be located and concentrated at few remote, controllable sites, far from the population centers and consumption regions. At such

  1. A study of low-energy ion induced radiolysis of thiol-containing amino acid cysteine in the solid and aqueous solution states

    Energy Technology Data Exchange (ETDEWEB)

    Ke Zhigang [Key Laboratory of Ion Beam Bio-engineering, Institute of Plasma Physics of Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1126, Hefei 230031 (China); Huang Qing, E-mail: huangq@ipp.ac.c [Key Laboratory of Ion Beam Bio-engineering, Institute of Plasma Physics of Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1126, Hefei 230031 (China); Dang Bingrong [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Lu Yilin [Key Laboratory of Ion Beam Bio-engineering, Institute of Plasma Physics of Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1126, Hefei 230031 (China); Department of Physics, Anhui University, Hefei 230031 (China); Yuan Hang; Zhang Shuqing; Yu Zengliang [Key Laboratory of Ion Beam Bio-engineering, Institute of Plasma Physics of Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1126, Hefei 230031 (China)

    2010-09-15

    The radiolysis of cysteine under plasma discharge and irradiation of low-energy ion beam was investigated. The damage of cysteine in aqueous solution under discharge was assessed via the acid ninhydrin reagent and the yield of cystine produced from the reaction was analyzed by FTIR. In addition, the generation of hydrogen sulfide was also identified. The destruction of solid cysteine under low-energy ion beam irradiation was estimated via monitoring IR bands of different functional groups (-SH, -NH{sub 3}, -COO{sup -}) of cysteine, and the production of cystine from ion-irradiated solid cysteine after dissolution in water was also verified. These results may help us to understand the inactivation of sulphydryl enzymes under direct and indirect interaction with the low-energy ion irradiation.

  2. Optical and thermal energy discharge from tritiated solid hydrogen

    International Nuclear Information System (INIS)

    Magnotta, F.; Mapoles, E.R.; Collins, G.W.; Souers, P.C.

    1991-01-01

    The authors are investigating mechanisms of energy storage and release in tritiated solid hydrogens, by a variety of techniques including ESR, NMR and thermal and optical emission. The nuclear decay of a triton in solid hydrogen initiates the conversion of nuclear energy into stored chemical energy by producing unpaired hydrogen atoms which are trapped within the molecular lattice. The ability to store large quantities of atoms in this manner has been demonstrated and can serve as a basis for new forms of high energy density materials. This paper presents preliminary results of a study of the optical emission from solid hydrogen containing tritium over the visible and near infrared (NIR) spectral regions. Specifically, they have studied optical emission from DT and T 2 using CCD, silicon diode and germanium diode arrays. 8 refs., 6 figs

  3. Chemistry of radio-frequency source of negative hydrogen ions; Chemia radio-frekvencneho zdroja negativnych ionov vodika

    Energy Technology Data Exchange (ETDEWEB)

    Skoviera, J.; Cernusak, I. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra fyzikalnej a teoretickej chemie, 84215 Bratislava (Slovakia)

    2013-04-16

    International Thermonuclear Experimental Reactor (ITER) is a prototype of nuclear fusion reactor Tokamak currently build in Cadarache. It will use as one of primary plasma heating components a radiofrequency driven negative ion source of deuterium. The purpose of cesium evaporated in the part of this ion source is to react with free electrons which can incidentally destroy generated hydrogen ions and are co-extracted with the hydrogen beam. Goal of this work is to investigate majority of processes which might have impact on hydrogen anion in either formative or destructive way associated with cesium. Generally the caesium dynamics is very complex in such sources and the interplay of the individual contributions and their control to establish optimum caesium coverage of the plasma grid is still an open issue. (authors)

  4. Absorption of hydrogen in vanadium, enhanced by ion bombardment; Ionenbeschussunterstuetzte Absorption des Wasserstoffs in Vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, H.; Lammers, M. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany); Mueller, K.H. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany)]|[Paderborn Univ. (Gesamthochschule), Soest (Germany). Fachbereich 16 - Elektrische Energietechnik; Kiss, G.; Kemeny, Z. [Technical Univ. Budapest (Hungary)

    1998-12-31

    Prior to hydrogen implantation into vanadium, the vanadium specimen usually is exposed to an activation process and is then heated at 1 atm hydrogen to temperatures between 500 and 600 C, subsequently cooled down in several steps. Within this temperature range, hydrogen solubility increases with declining temperature. A decisive factor determining hydrogen absorption is the fact that at temperatures above 250 C, oxygen desorbs from the material surface and thus no longer inhibits hydrogen absorption. Therefore a different approach was chosen for the experiments reported: Hydrogen absorption under UHV conditions at room temperature. After the usual activation process, the vanadium surface was cleaned by 5 keV Ar{sup +} ion bombardment. Thus oxygen absorption at the specimen surface (and new reactions with oxygen from the remaining gas) could be avoided, or removed. By means of thermal desorption mass spectrometry (TDMS), hydrogen absorption as a function of argon ion dose was analysed. TDMS measurements performed for specimens treated by ion bombardment prior to H{sup 2} exposure showed two H{sup 2} desorption peaks, in contrast to the profiles measured with specimens not exposed to ion bombardment. It is assumed that the ion bombardment disturbs the crystal structure so that further sites for hydrogen absorption are produced. (orig./CB) [Deutsch] Bei der Beladung von Vandium mit Wasserstoff wird ueblicherweise die Probe nach einer Aktivierungsprozedur bei 1 atm Wasserstoff auf Temperaturen im Bereich von 500 bis 600 C hochgeheizt und danach schrittweise abgekuehlt. In diesem Temperaturbereich nimmt die Wasserstoffloeslichkeit mit abnehmender Temperatur zu. Entscheidend fuer die Beladung ist aber auch die Tatsache, dass bei Temperaturen groesser 250 C Sauerstoff von der Oberflaeche desorbiert und dadurch die Absorption von Wasserstoff nicht mehr blockieren kann. Im Rahmen der hier beschriebenen Untersuchungen sollte die Wasserstoffbeladung unter UHV-Bedingungen bei

  5. The US Department of Energy hydrogen baseline survey: assessing knowledge and opinions about hydrogen technology

    International Nuclear Information System (INIS)

    Christy Cooper; Tykey Truett; R L Schmoyer

    2006-01-01

    To design and maintain its education program, the United States Department of Energy (DOE) Hydrogen Program conducted a statistically-valid national survey to measure knowledge and opinions of hydrogen among key target audiences. The Hydrogen Baseline Knowledge Survey provides a reference for designing the DOE hydrogen education strategy and will be used in comparisons with future surveys to measure changes in knowledge and opinions over time. The survey sampled four U.S. populations: (1) public; (2) students; (3) state and local government officials; and (4) potential large-scale hydrogen end-users in three business categories. Questions measured technical understanding of hydrogen and opinions about hydrogen safety. Other questions assessed visions of the likelihood of future hydrogen applications and sources of energy information. Several important findings were discovered, including a striking lack of technical understanding across all survey groups, as well as a strong correlation between technical knowledge and opinions about safety: those who demonstrated an understanding of hydrogen technologies expressed the least fear of its safe use. (authors)

  6. A local energy market for electricity and hydrogen

    DEFF Research Database (Denmark)

    Xiao, Yunpeng; Wang, Xifan; Pinson, Pierre

    2017-01-01

    The proliferation of distributed energy resources entails efficient market mechanisms in distribution-level networks. This paper establishes a local energy market (LEM) framework in which electricity and hydrogen are traded. Players in the LEM consist of renewable distributed generators (DGs......), loads, hydrogen vehicles (HVs), and a hydrogen storage system (HSS) operated by a HSS agent (HSSA). An iterative LEM clearing method is proposed based on the merit order principle. Players submit offers/bids with consideration of their own preferences and profiles according to the utility functions...

  7. Enhancing optical gains in Si nanocrystals via hydrogenation and cerium ion doping

    International Nuclear Information System (INIS)

    Wang, Dong-Chen; Li, Yan-Li; Song, Sheng-Chi; Guo, Wen-Ping; Lu, Ming; Chen, Jia-Rong

    2014-01-01

    We report optical gain enhancements in Si nanocrystals (Si-NCs) via hydrogenation and Ce 3+ ion doping. Variable stripe length technique was used to obtain gains. At 0.3 W/cm 2 pumping power density of pulsed laser, net gains were observed together with gain enhancements after hydrogenation and/or Ce 3+ ion doping; gains after loss corrections were between 89.52 and 341.95 cm −1 ; and the photoluminescence (PL) lifetime was found to decrease with the increasing gain enhancement. At 0.04 W/cm 2 power density, however, no net gain was found and the PL lifetime increased with the increasing PL enhancement. The results were discussed according to stimulated and spontaneous excitation and de-excitation mechanisms of Si-NCs.

  8. Characterization of electron cyclotron resonance hydrogen plasmas

    International Nuclear Information System (INIS)

    Outten, C.A.

    1990-01-01

    Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential (V p ), electron density (N e ), electron temperature (T e ), ion energy (T i ), and ion fluence. Langmuir probe results showed that at 17 cm downstream from the ECR chamber the plasma characteristics are approximately constant across the center 7 cm of the plasma for 50 Watts of absorbed power. These results gave V p = 30 ± 5 eV, N e = 1 x 10 8 cm -3 , and T e = 10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that T i ≤ 50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1 x 10 16 /cm 2 -sec. at a pressure of 1 x 10 -4 Torr and for 50 Watts of absorbed power. 19 refs

  9. Position Of Hydrogen Energy In Latvian Economics

    International Nuclear Information System (INIS)

    Vanags, M.; Kleperis, J.

    2007-01-01

    Full text: World energy resources are based on fossil fuels mostly (coal, oil, gas) which don't regenerate and will be run low after 30-80 years. Therefore it is necessary to elaborate alternative energy sources today. Also Latvia's energy balance is based mostly on the burning of fossil fuels and importing it from neighbor countries. One from much outstanding alternative energy sources is hydrogen. Hydrogen itself is a very important and most common element in the universe. Only hydrogen obtained from water and burnt in fuel cell back to water will be the renewed and sustainable fuel. There are hundred years old history of hydrogen related researches in Latvia, and there are researchers nowadays here trying to incorporate Latvia in the Hydrogen Society. The power supply in Latvia is based on local resources - water, wind, biogas (partly from waste), wood, peat, and on imported resources (natural gas, natural liquid gas, oil products (including heavy black oil) and coal. Total demand for electricity in Latvia only partly (63% in 2002) is covered with that produced on the site. If energy for heating in Latvia is produced from fossil fuels mostly (natural gas and heavy oil), than more than half of electricity produced in Latvia are based on local renewable resources. The water resources for the production of electricity in Latvia are almost exhausted - there are 3 large HEPS on Daugava River and more than 100 small HEPS on different rivers all over the Latvia. The building of small power stations in Latvia was accelerated very much after introduction of 'double tariff' for electricity from renewable, but from 2003 this time is over. Unfortunately directly power stations on small rivers made very big ecological distress on country side and no more expansion is welcome. The landfill gas in Latvia is a new resource and would result in additional capacity of 50 MW energy. Nowadays two projects started to realize for gas extraction from Getlini (Riga) and Grobina (Liepaja

  10. Influence of nonionic surfactants on the potentiometric response of hydrogen ion-selective polymeric membrane electrodes.

    Science.gov (United States)

    Espadas-Torre, C; Bakker, E; Barker, S; Meyerhoff, M E

    1996-05-01

    The influence of poly(ethylene oxide)-based nonionic surfactants (i.e., Triton X-100 and Brij 35) in the sample phase on the response properties of hydrogen ion-selective polymeric membrane electrodes containing mobile (lipophilic amines) or covalently bound (aminated-poly-(vinyl chloride)) hydrogen ion carriers is reported. In the presence of these nonionic surfactants, membrane electrode response toward interfering cation activity (e.g., Na+) in the sample phase is increased substantially and the pH measuring range shortened. The degree of cation interference for pH measurements is shown to correlate with the basicity of the hydrogen ion carrier doped within the membrane phase. The observed deterioration in selectivity arises from the partitioning of the surfactant into the membrane and concomitant extraction of metal cations by the surfactants in the organic phase. The effect of nonionic surfactants on pH electrodes prepared with aminated-PVC membranes is shown to be more complex, with additional large shifts in EMF values apparently arising from multidentate interactions between the surfactant molecules and the polymeric amine in the membrane, leading to a change in the apparent pKa values for the amine sites. The effects induced by nonionic surfactants on the EMF response function of hydrogen ion-selective polymeric membrane electrodes are modeled, and experimental results are shown to correlate well with theoretical predictions.

  11. Andromede project: Surface analysis and modification with probes from hydrogen to nano-particles in the MeV energy range

    International Nuclear Information System (INIS)

    Eller, Michael J.; Cottereau, Evelyne; Rasser, Bernard; Verzeroli, Elodie; Agnus, Benoit; Gaubert, Gabriel; Donzel, Xavier; Delobbe, Anne; Della-Negra, Serge

    2015-01-01

    The Andromede project is the center of a multi-disciplinary team which will build a new instrument for surface modification and analysis using the impact of probes from hydrogen to nano-particles (Au 400 +4 ) in the MeV range. For this new instrument a series of atomic, polyatomic, molecular and nano-particle ion beams will be delivered using two ion sources in tandem, a liquid metal ion source and an electron cyclotron resonance source. The delivered ion beams will be accelerated to high energy with a 4 MeV van de Graaff type accelerator. By using a suite of probes in the MeV energy range, ion beam analysis techniques, MeV atomic and cluster secondary ion mass spectrometry can all be performed in one location. A key feature of the instrument is its ability to produce an intense beam for injection into the accelerator. The commissioning of the two sources shows that intense beams from atomic ions to nano-particles can be delivered for subsequent acceleration. The calculations and measurements for the two sources are presented.

  12. Linac4 low energy beam measurements with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  13. Strategy for a sustainable development in the UAE through hydrogen energy

    Energy Technology Data Exchange (ETDEWEB)

    Kazim, Ayoub [Dubai Knowledge Village, P.O. Box 73000 Dubai (United Arab Emirates)

    2010-10-15

    Recently, it has been reported that United Arab Emirates is considered one of the highest energy consumers per capita in the world. Consequently, environmental pollution and carbon emission has been a major challenge facing the country over the past several years due to unprecedented high economic growth rate and abnormal population increase. Utilization of hydrogen energy to fulfill UAE's energy needs would be one of the key measures that the country could undertake to achieve a sustainable development and without any major environmental consequences. Hydrogen energy, which is an energy carrier, is consider by many scientists and researchers a major player in fulfilling the global energy demand due to its attractive features such as being environmentally clean, storable, transportable and inexhaustible. It can be used as a fuel in the proton exchange membrane (PEM) fuel cell, which is an electrochemical device that generates electric power and it can be utilized in various applications. Production of hydrogen energy can be carried out either through utilizing conventional resources or by renewable resources. Conventional resources such as crude oil and natural gas can produce hydrogen by steam-reformation while hydrogen can be produced from coal through gasification. On the other hand, hydrogen production through renewable resources can be achieved through biomass gasification, solar-hydrogen, wind-hydrogen and hydropower electrolysis process. Other renewable resources such as geothermal, wave, tidal and ocean thermal energy conversion (OTEC) can also contribute into hydrogen production but at a marginal level. In this report, a roadmap to achieve a sustainable development in the UAE through utilization of hydrogen energy is presented. The report highlights the potentials of energy resources that the country possesses with respect to both conventional and non-conventional energy and determines major resources that could significantly contribute to production

  14. Charge transfer between hydrogen(deuterium) ions and atoms in metal vapors

    International Nuclear Information System (INIS)

    Alvarez T, I.; Cisneros G, C.

    1981-01-01

    The current state of the experiments on charge transfer between hydrogen (deuterium) ions and atoms in metal vapors are given. Emphasis is given to describing different experimental techniques. The results of calculations if available, are compared with existing experimental data. (author)

  15. Coupled-channel calculations of partial capture cross sections in multiply charged ion collisions with hydrogen

    International Nuclear Information System (INIS)

    Hansen, J.P.; Taulbjerg, K.; University of Tennessee, Knoxville, Tennessee 37996)

    1989-01-01

    Partial cross sections for electron capture in 1--50-keV collisions of Ar 6+ and Ar 8+ with atomic hydrogen have been calculated using an atomic expansion including two complete principal shells of final states (n=4,5 for Ar 6+ and n=5,6 for Ar 8+ ). The qualitative structure of the results is in good accord with a reaction window picture. The results for Ar 6+ ions are in agreement with published experimental data when precaution is taken with respect to uncertainties in absolute normalization of the data and with respect to a proper analysis of translation energy spectra at lower impact energies. The limited experimental data for Ar 8+ do not agree with the present results

  16. First high energy hydrogen cluster beams

    International Nuclear Information System (INIS)

    Gaillard, M.J.; Genre, R.; Hadinger, G.; Martin, J.

    1993-03-01

    The hydrogen cluster accelerator of the Institut de Physique Nucleaire de Lyon (IPN Lyon) has been upgraded by adding a Variable Energy Post-accelerator of RFQ type (VERFQ). This operation has been performed in the frame of a collaboration between KfK Karlsruhe, IAP Frankfurt and IPN Lyon. The facility has been designed to deliver beams of mass selected Hn + clusters, n chosen between 3 and 49, in the energy range 65-100 keV/u. For the first time, hydrogen clusters have been accelerated at energies as high as 2 MeV. This facility opens new fields for experiments which will greatly benefit from a velocity range never available until now for such exotic projectiles. (author) 13 refs.; 1 fig

  17. Study of the anti-hydrogen atom and ion formation in the collisions antiproton-positronium

    International Nuclear Information System (INIS)

    Comini, Pauline

    2014-01-01

    The future CERN experiment called GBAR intends to measure the gravitational acceleration of antimatter on Earth using cold (neV) anti-hydrogen atoms undergoing a free fall. The experiment scheme first needs to cool anti-hydrogen positive ions, obtained thanks to two consecutive reactions occurring when an antiproton beam collides with a dense positronium cloud.The present thesis studies these two reactions in order to optimise the production of the anti-ions. The total cross sections of both reactions have been computed in the framework of a perturbation theory model (Continuum Distorted Wave - Final State), in the range 0 to 30 keV antiproton kinetic energy; several excited states of positronium have been investigated. These cross sections have then been integrated to a simulation of the interaction zone where antiprotons collide with positronium; the aim is to find the optimal experimental parameters for GBAR. The results suggest that the 2P, 3D or, to a lower extend, 1S states of positronium should be used, respectively with 2, less than 1 or 6 keV antiprotons. The importance of using short pulses of antiprotons has been underlined; the positronium will have to be confined in a tube of 20 mm length and 1 mm diameter. In the prospect of exciting the 1S-3D two-photon transition in positronium at 410 nm, a pulsed laser system had already been designed. It consists in the frequency doubling of an 820 nm pulsed titanium-sapphire laser. The last part of the thesis has been dedicated to the realisation of this laser system, which delivers short pulses (9 ns) of 4 mJ energy at 820 nm. (author) [fr

  18. Hydrogen and nuclear energy

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Hancox, W.T.; Pendergast, D.R.

    1999-01-01

    The current world-wide emphasis on reducing greenhouse gas (GHG) emissions provides an opportunity to revisit how energy is produced and used, consistent with the need for human and economic growth. Both the scale of the problem and the efforts needed for its resolution are extremely large. We argue that GHG reduction strategies must include a greater penetration of electricity into areas, such as transportation, that have been the almost exclusive domain of fossil fuels. An opportunity for electricity to displace fossil fuel use is through electrolytic production of hydrogen. Nuclear power is the only large-scale commercially proven non-carbon electricity generation source, and it must play a key role. As a non-carbon power source, it can also provide the high-capacity base needed to stabilize electricity grids so that they can accommodate other non-carbon sources, namely low-capacity factor renewables such as wind and solar. Electricity can be used directly to power standalone hydrogen production facilities. In the special case of CANDU reactors, the hydrogen streams can be preprocessed to recover the trace concentrations of deuterium that can be re-oxidized to heavy water. World-wide experience shows that nuclear power can achieve high standards of public safety, environmental protection and commercially competitive economics, and must . be an integral part of future energy systems. (author)

  19. Slow positron beam study of hydrogen ion implanted ZnO thin films

    Science.gov (United States)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  20. Energy conversion, storage and transportation by means of hydrogen

    International Nuclear Information System (INIS)

    Friedlmeier, G; Mateos, P; Bolcich, J.C.

    1988-01-01

    Data concerning the present consumption of energy indicate that the industrialized countries (representing 25% of the world's population) consume almost 75% of the world's energy production, while the need for energy aimed at maintaining the growth of non-industrialized countries increases day after day. Since estimations indicate that the fossil reverses will exhaust within frightening terms, the production of hydrogen from fossil fuels and, fundamentally, from renewable sources constitute a response to future energy demand. The production of hydrogen from water is performed by four different methods: direct thermal, thermochemical, electrolysis and photolysis. Finally, different ways of storaging and using hydrogen are proposed. (Author)

  1. Calculations on Electron Capture in Low Energy Ion-Molecule Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Stancil, P.C. [Oak Ridge National Lab., TN (United States); Zygelman, B. [W.M. Keck Lab. for Computational Physics, Univ. of Nevada, Las Vegas, NV (United States); Kirby, K. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    1997-12-31

    Recent progress on the application of a quantal, molecular-orbital, close-coupling approach to the calculation of electron capture in collisions of multiply charged ions with molecules is discussed. Preliminary results for single electron capture by N{sup 2+} with H{sub 2} are presented. Electron capture by multiply charged ions colliding with H{sub 2} is an important process in laboratory and astrophysical plasmas. It provides a recombination mechanism for multiply charged ions in x-ray ionized astronomical environments which may have sparse electron and atomic hydrogen abundances. In the divertor region of a tokamak fusion device, charge exchange of impurity ions with H{sub 2} plays a role in the ionization balance and the production of radiative energy loss leading to cooling, X-ray and ultraviolet auroral emission from Jupiter is believed to be due to charge exchange of O and S ions with H{sub 2} in the Jovian atmosphere. Solar wind ions interacting with cometary molecules may have produced the x-rays observed from Comet Hyakutake. In order to model and understand the behavior of these environments, it is necessary to obtain total, electronic state-selective (ESS), and vibrational (or rotational) state-selective (VSS) capture cross sections for collision energies as low as 10 meV/amu to as high as 100 keV/amu in some instances. Fortunately, charge transfer with molecular targets has received considerable experimental attention. Numerous measurements have been made with flow tubes, ion traps, and ion beams. Flow tube and ion trap studies generally provide information on rate coefficients for temperatures between 800 K and 20,000 K. In this article, we report on the progress of our group in implementing a quantum-mechanical Molecular Orbital Close Coupling (MOCC) approach to the study of electron capture by multiply charged ions in collisions with molecules. We illustrate this with a preliminary investigation of Single Electron Capture (SEC) by N{sup 2+} with H

  2. The potential impact of hydrogen energy use on the atmosphere

    Science.gov (United States)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  3. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  4. High-energy elastic recoil detection heavy ions for light element analysis

    International Nuclear Information System (INIS)

    Goppelt-Langer, P.; Yamamoto, S.; Takeshita, H.; Aoki, Y.; Naramoto, H.

    1994-01-01

    The detection of light and medium heavy elements in not homogeneous solids is a severe problem in ion beam analysis. Heavy elements can be detected by the well established Rutherford backscattering technique (RBS). In a homogeneous host material most impurities can be easily analyzed by secondary ion mass spectroscopy (SIMS). Some isotopes ( 3 He, 6 Li, 10 B) can be measured by nuclear reaction analysis (NRA) using thermal neutrons inducing (n, p) or (n, α) reactions. Others can be detected by energetic ion beams by nuclear reactions (e.g. 15 N( 1 H, αγ) 12 C for analysis of hydrogen). A high content of H, D or T can be also determined by elastic recoil detection using an energetic He beam. The latter technique has been developed to a universal method for detection of light and heavy elements in any target, using a high energetic heavy ion beam and a detector system, which is able to identify the recoils and delivers energy and position of the particles. (author)

  5. Ion source parameters and hydrogen scrambling in the ECD of selectively deuterated peptides

    DEFF Research Database (Denmark)

    Duchateau, Magalie; Jørgensen, Thomas J. D.; Robine, Ophélie

    2014-01-01

    (the ability to obtain deuterium levels of individual residues). An essential prerequisite for this approach is that the level of hydrogen scrambling is negligible. The occurrence of hydrogen scrambling depends critically on the extent of vibrational excitation in the mass spectrometer. In particular......, the desolvation process in the electrospray ion source is likely to induce scrambling at standard operating conditions. Consequently, finding experimental conditions that minimize hydrogen scrambling to a negligible level is thus pivotal for the application of electron-based fragmentation in HDX-MS/MS experiments...

  6. A renewable energy and hydrogen scenario for northern Europe

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2008-01-01

    renewable energy supply system is demonstrated with the use of the seasonal reservoir-based hydrocomponents in the northern parts of the region. The outcome of the competition between biofuels and hydrogen in the transportation sector is dependent on the development of viable fuel cells and on efficient......A scenario based entirely on renewable energy with possible use of hydrogen as an energy carrier is constructed for a group of North European countries. Temporal simulation of the demand-supply matching is carried out for various system configurations. The role of hydrogen technologies for energy...... of energy trade between the countries, due to the different endowments of different countries with particular renewable energy sources, and to the particular benefit that intermittent energy sources, such as wind and solar, can derive from exchange of power. The establishment of a smoothly functioning...

  7. Charge transfer to the continuum by heavy ions in atomic hydrogen

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1981-01-01

    Design and installation of an atomic hydrogen target for measurements of charge transfer to the continuum by heavy ions are discussed. The design consists of a tungsten gas cell operated at temperatures of 2500 to 2600 0 K. Initial testing is underway

  8. Gas-phase ion/molecule isotope-exchange reactions: methodology for counting hydrogen atoms in specific organic structural environments by chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Hunt, D.F.; Sethi, S.K.

    1980-01-01

    Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D 2 O, EtOD, or ND 3 as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND 3 , D 2 O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables

  9. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, D.; Kurutz, U.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg (Germany)

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines

  10. Negative ion beam processes

    International Nuclear Information System (INIS)

    Hayward, T.D.; Lawrence, G.P.; Bentley, R.F.; Malanify, J.J.; Jackson, J.A.

    1975-06-01

    Los Alamos Scientific Laboratory fiscal year 1975 work on production of intense, very bright, negative hydrogen (H - ), ion beams and conversion of a high-energy (a few hundred MeV) negative beam into a neutral beam are described. The ion source work has used a cesium charge exchange source that has produced H - ion beams greater than or equal to 10 mA (about a factor of 10 greater than those available 1 yr ago) with a brightness of 1.4 x 10 9 A/m 2 -rad 2 (about 18 times brighter than before). The high-energy, neutral beam production investigations have included measurements of the 800-MeV H - -stripping cross section in hydrogen gas (sigma/sub -10/, tentatively 4 x 10 -19 cm 2 ), 3- to 6-MeV H - -stripping cross sections in a hydrogen plasma (sigma/sub -10/, tentatively 2 to 4 x 10 -16 cm 2 ), and the small-angle scattering that results from stripping an 800-MeV H - ion beam to a neutral (H 0 ) beam in hydrogen gas. These last measurements were interrupted by the Los Alamos Meson Physics Facility shutdown in December 1974, but should be completed early in fiscal year 1976 when the accelerator resumes operation. Small-angle scattering calculations have included hydrogen gas-stripping, plasma-stripping, and photodetachment. Calculations indicate that the root mean square angular spread of a 390-MeV negative triton (T - ) beam stripped in a plasma stripper may be as low as 0.7 μrad

  11. Performance Limitations in High-Energy Ion Colliders

    CERN Document Server

    Fischer, Wolfram

    2005-01-01

    High-energy ion colliders (hadron colliders operating with species other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. However, the experiments also expect flexibility with frequent changes in the collision energy, lattice configuration, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams, attention must be paid to space charge, charge exchange, and intra-beam scattering effects. The latter leads to luminosity lifetimes of only a few hours for heavy ions. Ultimately cooling at full energy is needed to overcome this effect. Currently, the Relativistic Heavy Ion Collider at BNL is the only operating high-energy ion collider. The Large Hadron Collider, under construction at CERN, will also run with heavy ions.

  12. Design of laser-aided diagnostics for the negative hydrogen ion source SPIDER

    International Nuclear Information System (INIS)

    Pasqualotto, R

    2012-01-01

    ITER nuclear fusion experiment requires additional heating via neutral beams by means of two injectors, delivering 16.5 MW each, up to one hour. This power level results from the neutralization of negative deuterium ions generated by an RF source and accelerated to 1 MeV. Such specifications have never been simultaneously achieved so far and therefore a test facility is being constructed at Consorzio RFX, to demonstrate the feasibility of a prototype neutral beam injector. The facility will host two experimental devices: SPIDER, a 100 kV negative hydrogen/deuterium RF source, full size prototype of the ITER source, and MITICA, a prototype of the full ITER injector. SPIDER will be devoted to optimize the extracted negative ion current density and its spatial uniformity and to minimize the co-extracted electron current. Negative hydrogen is mainly produced by conversion of hydrogen particles at the cesium coated surface of the plasma grid. The interplay of these two species is fundamental to understand and optimize the source performance. Two laser-aided diagnostics play an important role in measuring the negative hydrogen and cesium density: cavity ring down spectroscopy and laser absorption spectroscopy. Cavity ring down spectroscopy will use the photo-detachment process to measure the absolute line-of-sight integrated negative ion density in the extraction region of the source. Laser absorption spectroscopy will be employed to measure the line integrated neutral cesium density, allowing to study the cesium distribution in the source volume, during both the plasma and the vacuum phases. In this paper, the design of the laser-aided diagnostic systems on SPIDER is presented, supported by a review of results obtained in other operating experiments.

  13. The production of He-3 and heavy ion enrichment in He-3-rich flares by electromagnetic hydrogen cyclotron waves

    Science.gov (United States)

    Temerin, M.; Roth, I.

    1992-01-01

    A new model is presented for the production of He-3 and heavy ion enrichments in He-3-rich flares using a direct single-stage mechanism. In analogy with the production of electromagnetic hydrogen cyclotron waves in earth's aurora by electron beams, it is suggested that such waves should exist in the electron acceleration region of impulsive solar flares. Both analytic and test-particle models of the effect of such waves in a nonuniform magnetic field show that these waves can selectively accelerate He-3 and heavy ions to MeV energies in a single-stage process, in contrast to other models which require a two-stage mechanism.

  14. Measurements of low energy auroral ions

    International Nuclear Information System (INIS)

    Urban, A.

    1981-01-01

    This paper summarizes ion measurements in the energy range 0.1 to 30 keV observed during the campaigns 'Substorm Phenomena' and 'Porcupine'. For a clear survey of the physical processes during extraordinary events, sometimes ion measurements of higher energies are also taken into account. Generally, the pitch angle distributions were isotropic during all flights except some remarkable events. In general the ion and electron flux intensities correlated, but sometimes revealed a spectral anti-correlation. Acceleration of the ions by an electrostatic field aligned parallel to the magnetic field could be identified accompanied by intense electron precipitation. On the other hand deceleration of the ions was observed in other field-aligned current sheets which are indicated by the electron and magnetic field measurements. Temporal successive monoenergetic ion variations pointed to energy dispersion and to the location of the source region at 9 Rsub(E). Furthermore, ion fluxes higher than those of the electrons were measured at pitch angles parallel to the magnetic field. The integral down-going number and energy flux of the ions contributed to the total particle or energy influx between 65% and less than 7% and did not clearly characterize the geophysical launch conditions or auroral activities. (author)

  15. Precise atomic-scale investigations of material sputtering process by light gas ions in pre-threshold energy region

    CERN Document Server

    Suvorov, A L

    2002-01-01

    Foundation and prospects of the new original technique of the sputtering yield determination of electro-conducting materials and sub-atomic layers on their surface by light gas ions the pre-threshold energy region (from 10 to 500 eV) are considered. The technique allows to identify individual surface vacancies, i.e., to count individual sputtered atoms directly. A short review of the original results obtained by using the developed techniques is given. Data are presented and analyzed concerning energy thresholds of the sputtering onset and energy dependences of sputtering yield in the threshold energy region for beryllium, tungsten, tungsten oxide, alternating tungsten-carbon layers, three carbon materials as well as for sub-atomic carbon layers on surface of certain metals at their bombardment by hydrogen, deuterium and/or helium ions

  16. Meeting report - Which role for hydrogen in the energy system?

    International Nuclear Information System (INIS)

    Dupre La Tour, Stephane; Raimondo, E.

    2015-01-01

    Before giving some general information about the activities of the SFEN, about some events regarding the energy sector, and about meetings to come, a contribution is proposed on the role of hydrogen in the energy system. The author recalls the industrial methods used to produce hydrogen (water electrolysis, reforming of fossil fuels), indicates the main applications (fuel cells, power-to-gas, industrial applications, fuel for transport). He discusses the potential of hydrogen as a good energy vector for the future. Required technical advances are identified, as well as potential industrial applications. The competitiveness of the different hydrogen production technologies is discussed, and the different uses are more precisely described and discussed (principle of fuel cell, French researches on hybrid vehicle, application to heavy vehicles, perspectives for air transport). Other technological issues are briefly addressed: direct injection of hydrogen in gas distribution network or production of synthetic methane, combined hydrolysis of CO 2 and H 2 O, hydrogen storage. After having outlined some remaining questions about the exploitation of hydrogen as energy vector, the author proposes some guidelines for the future: development of tools to analyse the competitiveness of hydrogen uses, improvement of existing technologies in terms of performance and costs, development of breakthrough technologies

  17. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    International Nuclear Information System (INIS)

    Quint, W.; Dilling, J.; Djekic, S.; Haeffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schoenfelder, J.; Sikler, G.; Valenzuela, T.; Verdu, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy

  18. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... DEPARTMENT OF ENERGY Notice of Availability Hydrogen Energy California's Integrated Gasification... Energy (DOE) announces the availability of the Hydrogen Energy California's Integrated Gasification... potential environmental impacts associated with the Hydrogen Energy California's (HECA) Integrated...

  19. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    International Nuclear Information System (INIS)

    Sulaiman, A; Inambao, F; Bright, G

    2014-01-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future

  20. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    Science.gov (United States)

    Sulaiman, A.; Inambao, F.; Bright, G.

    2014-07-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future.

  1. Distribution of implanted hydrogen in amorphous silicon dioxide a-SiO2

    International Nuclear Information System (INIS)

    Mokrushin, A.D.; Agafonov, Yu.A.; Zinenko, V.I.; Pustovit, A.N.

    2004-01-01

    Hydrogen SIMS distributions are measured in quartz glasses implanted by different doses of H 2 + ions with energy 40 keV. There are two features in distributions: the availability of intensive peak close to the surface and near-constant dependence at large depth up to ions range. These peculiarities are perhaps attributable to the radiation induced diffusion of hydrogen atoms back to the surface via which ions are implanted [ru

  2. The US department of energy's research and development plans for the use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Henderson, A.D.; Pickard, P.S.; Park, C.V.; Kotek, J.F.

    2004-01-01

    The potential of hydrogen as a transportation fuel and for stationary power applications has generated significant interest in the United States. President George W. Bush has set the transition to a 'hydrogen economy' as one of the Administration's highest priorities. A key element of an environmentally-conscious transition to hydrogen is the development of hydrogen production technologies that do not emit greenhouse gases or other air pollutants. The Administration is investing in the development of several technologies, including hydrogen production through the use of renewable fuels, fossil fuels with carbon sequestration, and nuclear energy. The US Department of Energy's Office of Nuclear Energy, Science and Technology initiated the Nuclear Hydrogen Initiative to develop hydrogen production cycles that use nuclear energy. The Nuclear Hydrogen Initiative has completed a Nuclear Hydrogen R and D Plan to identify candidate technologies, assess their viability, and define the R and D required to enable the demonstration of nuclear hydrogen production by 2016. This paper gives a brief overview of the Nuclear Hydrogen Initiative, describes the purposes of the Nuclear Hydrogen R and D Plan, explains the methodology followed to prepared the plan, presents the results, and discusses the path forward for the US programme to develop technologies which use nuclear energy to produce hydrogen. (author)

  3. Influence of copper single crystal structures on the reflection of low energy hydrogen and helium ions

    International Nuclear Information System (INIS)

    Feijen, H.H.W.

    1975-01-01

    A theoretical basis for the 'wedge-focussing' phenomenon is outlined. Investigations have been made to check up to what extent proton reflection can be simulated by using H 2 + or H 3 + as incident ions and analysing the reflected protons. The results of an experimental study of the influence of surface semi-channels on the reflection of low energy ( + , H 2 + and He + ions from copper single crystals with attention to the wedge-focussing effect are presented (G.T.H.)

  4. WE-NET Hydrogen Energy Symposium proceedings; WE-NET suiso energy symposium koen yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-24

    The research and development of WE-NET (World Energy Network) was started in 1993 as a NEDO (New Energy and Industrial Technology Development Organization) project in the New Sunshine Program of Agency of Industrial Science and Technology, Ministry of International Trade and Industry, and aims to contribute to the improvement of global environment and to ease the difficult energy supply/demand situation. The ultimate goal of WE-NET is the construction of a global-scale clean energy network in which hydrogen will be produced from renewable energies such as water and sunshine for distribution to energy consuming locations. Experts are invited to the Symposium from the United States, Germany, and Canada. Information is collected from the participants on hydrogen energy technology development in the three countries, the result of the Phase I program of WE-NET is presented to hydrogen energy scientists in Japan, and views and opinions on the project are collected from them. Accommodated in the above-named publication are 30 essays and three special lectures delivered at the Symposium. (NEDO)

  5. Measuring hydrogen-isotope distribution profiles

    International Nuclear Information System (INIS)

    Poppe, C.H.

    1977-01-01

    A new nondestructive technique was developed for measuring the depth distribution of hydrogen isotopes absorbed or implanted near the surface of any material. The method allows real-time study of the inventory and diffusion of hydrogen, deuterium, and tritium. Briefly, the technique involves bombarding the surface with a monoenergetic beam of ions chosen for their ability to react with the hydrogen isotope in question and produce fast neutrons. The energy distribution of the neutrons is a sensitive indicator of the energy of the bombarding particles at the instant of reaction, and hence of the depth of the reaction sites below he surface of the material. A sensitivity of one part per million was obtained for tritium in copper. The technique is applicable to several energy-related materials problems. 5 figures

  6. Ground-state populations of atomic hydrogen and hydrogen-like ions in nonthermal plasmas, and collisional-radiative recombination and ionization coefficients

    International Nuclear Information System (INIS)

    Drawin, H.W.; Emard, F.

    1978-01-01

    The populations of atomic hydrogen and hydrogen-like ions have been calculated using a collisional-radiative model. The global collisional-radiative excitation coefficients rsub(j)sup((0)) and rsub(j)sup((1)) valid for homogeneous-stationary and/or quasi-homogeneous quasi-stationary plasmas were published recently. The present paper contains in tabulated form the ground state populations and Saha decrements for the homogeneous stationary state, and the collisional-radiative recombination and ionization coefficients. (Auth.)

  7. Renewable based hydrogen energy projects in remote and island communities

    International Nuclear Information System (INIS)

    Miles, S.; Gillie, M.

    2009-01-01

    Task 18 working group of the International Energy Agency's Hydrogen Implementing Agreement has been evaluating and documenting experiences with renewable based hydrogen energy projects in remote and island communities in the United Kingdom, Canada, Norway, Iceland, Gran Canaria, Spain and New Zealand. The objective was to examine the lessons learned from existing projects and provide recommendations regarding the effective development of hydrogen systems. In order to accomplish this task, some of the drivers behind the niche markets where hydrogen systems have already been developed, or are in the development stages, were studied in order to determine how these could be expanded and modified to reach new markets. Renewable based hydrogen energy projects for remote and island communities are currently a key niche market. This paper compared various aspects of these projects and discussed the benefits, objectives and barriers facing the development of a hydrogen-based economy

  8. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuldyuld@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  9. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    International Nuclear Information System (INIS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L.D.

    2013-01-01

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells

  10. Demonstration of Hydrogen Energy Network and Fuel Cells in Residential Homes

    International Nuclear Information System (INIS)

    Hirohisa Aki; Tetsuhiko Maeda; Itaru Tamura; Akeshi Kegasa; Yoshiro Ishikawa; Ichiro Sugimoto; Itaru Ishii

    2006-01-01

    The authors proposed the setting up of an energy interchange system by establishing energy networks of electricity, hot water, and hydrogen in residential homes. In such networks, some homes are equipped with fuel cell stacks, fuel processors, hydrogen storage devices, and large storage tanks for hot water. The energy network enables the flexible operation of the fuel cell stacks and fuel processors. A demonstration project has been planned in existing residential homes to evaluate the proposal. The demonstration will be presented in a small apartment building. The building will be renovated and will be equipped with a hydrogen production facility, a hydrogen interchange pipe, and fuel cell stacks with a heat recovery device. The energy flow process from hydrogen production to consumption in the homes will be demonstrated. This paper presents the proposed energy interchange system and demonstration project. (authors)

  11. Hybrid Hydrogen and Mechanical Distributed Energy Storage

    Directory of Open Access Journals (Sweden)

    Stefano Ubertini

    2017-12-01

    Full Text Available Effective energy storage technologies represent one of the key elements to solving the growing challenges of electrical energy supply of the 21st century. Several energy storage systems are available, from ones that are technologically mature to others still at a research stage. Each technology has its inherent limitations that make its use economically or practically feasible only for specific applications. The present paper aims at integrating hydrogen generation into compressed air energy storage systems to avoid natural gas combustion or thermal energy storage. A proper design of such a hybrid storage system could provide high roundtrip efficiencies together with enhanced flexibility thanks to the possibility of providing additional energy outputs (heat, cooling, and hydrogen as a fuel, in a distributed energy storage framework. Such a system could be directly connected to the power grid at the distribution level to reduce power and energy intermittence problems related to renewable energy generation. Similarly, it could be located close to the user (e.g., office buildings, commercial centers, industrial plants, hospitals, etc.. Finally, it could be integrated in decentralized energy generation systems to reduce the peak electricity demand charges and energy costs, to increase power generation efficiency, to enhance the security of electrical energy supply, and to facilitate the market penetration of small renewable energy systems. Different configurations have been investigated (simple hybrid storage system, regenerate system, multistage system demonstrating the compressed air and hydrogen storage systems effectiveness in improving energy source flexibility and efficiency, and possibly in reducing the costs of energy supply. Round-trip efficiency up to 65% can be easily reached. The analysis is conducted through a mixed theoretical-numerical approach, which allows the definition of the most relevant physical parameters affecting the system

  12. Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy.

    Science.gov (United States)

    Donald, William A; Leib, Ryan D; O'Brien, Jeremy T; Williams, Evan R

    2009-06-08

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M(H(2)O)(24)(2+)(g) + e(-)(g)-->M(H(2)O)(24)(+)(g) and 2) M(H(2)O)(24)(2+)(g) + e(-)(g)-->MOH(H(2)O)(23)(+)(g) + H(g) and the hydrogen atom affinities of MOH(H(2)O)(23)(+)(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e(-)(g) (standard deviation of 0.02 V) and a real proton solvation free energy of -265 kcal mol(-1) are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution.

  13. Recombination and dissociative recombination of H2+ and H3+ ions on surfaces with application to hydrogen negative ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1988-12-01

    A four-step model for recombination and dissociative recombination of H 2 + and H 3 + ions on metal surfaces is discussed. Vibrationally excited molecules, H 2 (v''), from H 3 + recombination are produced in a broad spectrum that enhances the excited level distribution. The application of this latter process to hydrogen negative ion discharges is discussed. 5 refs., 3 figs., 1 tab

  14. Ion source based on Penning discharge for production of doubly charged helium ions

    Directory of Open Access Journals (Sweden)

    V. I. Voznyi

    2017-11-01

    Full Text Available The article presents the results of operation of ion source with Penning discharge developed in the IAP of NAS of Ukraine to produce doubly charged helium ions He2+ beam and to increase the energy of accelerated ions up to 3.2 MeV. This energy is necessary for ERDA channel when measuring hydrogen concentration in the structural materials used in nuclear engineering. The ion source parameters are the following: discharge voltage is 6 kV, discharge current is 0.8 - 1.2 mA, the current of singly charged helium ions He+ 24 μA, the current of doubly charged helium ions He2+ 0.5 μA.

  15. Hydrogen in tungsten as plasma-facing material

    Science.gov (United States)

    Roth, Joachim; Schmid, Klaus

    2011-12-01

    Materials facing plasmas in fusion experiments and future reactors are loaded with high fluxes (1020-1024 m-2 s-1) of H, D and T fuel particles at energies ranging from a few eV to keV. In this respect, the evolution of the radioactive T inventory in the first wall, the permeation of T through the armour into the coolant and the thermo-mechanical stability after long-term exposure are key parameters determining the applicability of a first wall material. Tungsten exhibits fast hydrogen diffusion, but an extremely low solubility limit. Due to the fast diffusion of hydrogen and the short ion range, most of the incident ions will quickly reach the surface and recycle into the plasma chamber. For steady-state operation the solute hydrogen for the typical fusion reactor geometry and wall conditions can reach an inventory of about 1 kg. However, in short-pulse operation typical of ITER, solute hydrogen will diffuse out after each pulse and the remaining inventory will consist of hydrogen trapped in lattice defects, such as dislocations, grain boundaries and irradiation-induced traps. In high-flux areas the hydrogen energies are too low to create displacement damage. However, under these conditions the solubility limit will be exceeded within the ion range and the formation of gas bubbles and stress-induced damage occurs. In addition, simultaneous neutron fluxes from the nuclear fusion reaction D(T,n)α will lead to damage in the materials and produce trapping sites for diffusing hydrogen atoms throughout the bulk. The formation and diffusive filling of these different traps will determine the evolution of the retained T inventory. This paper will concentrate on experimental evidence for the influence different trapping sites have on the hydrogen inventory in W as studied in ion beam experiments and low-temperature plasmas. Based on the extensive experimental data, models are validated and applied to estimate the contribution of different traps to the tritium inventory in

  16. Effect of heating on the behaviors of hydrogen in C-TiC films with auger electron spectroscopy and secondary ion mass spectroscopy analyses

    International Nuclear Information System (INIS)

    Zou, Y.; Wang, L.W.; Huang, N.K.

    2007-01-01

    C-TiC films with a content of 75% TiC were prepared with magnetron sputtering deposition followed by Ar + ion bombardment. Effect of heating on the behaviors of hydrogen in C-TiC films before and after heating was studied with Auger Electron Spectroscopy and Secondary Ion Mass Spectroscopy (SIMS) analyses. SIMS depth profiles of hydrogen after H + ion implantation and thermal treatment show different hydrogen concentrations in C-TiC coatings and stainless steel. SIMS measurements show the existence of TiH, TiH 2 , CH 3 , CH 4 , C 2 H 2 bonds in the films after H + ion irradiation and the changes in the Ti LMM, Ti LMV and C KLL Auger line shape reveal that they have a good hydrogen retention ability after heating up to the temperature 393 K. All the results show that C-TiC coatings can be used as a hydrogen retainer or hydrogen permeable barrier on stainless steel to protect it from hydrogen brittleness

  17. Smooth feeding-in of wind energy via hydrogen

    International Nuclear Information System (INIS)

    Lehmann, J.; Sponholz, C.; Luschtinetz, O.U.T.; Miege, A.; Sandlass, H.

    2006-01-01

    For the northern part of Germany the harvest of wind energy became characteristic. 1,018 GW have been installed by 2004. A higher electricity production with re-powered wind parks on shore and new off shore parks is planned. The estimated production could reach 50 GW by 2020. On the other hand, more than 20 30 % discontinuous electricity related to the demand could bring instabilities of the net. Unfortunately the demand in North-Germany is a relatively small one and the net is weak. There are three possibilities to protect the net: 1. Reconstruction of the net, especially net extension 2. Improvement of the prognosis of wind and electricity consumption as well 3. A net management, which shuts up wind parks during less demand periods Point 2 and 3 are related with the stand by of back-up power, power delivered by conventional power stations or storage power stations (for example storage by water pumping). The proposal is as follows: Wind parks should be connected with a loop from electrolysis, gas storage and reconversion of hydrogen into electricity. In this way a park will be able to feed electricity into the net according to the actual demand and controlled by the demand. Going into detail a wind farm can run according to four scenarios. The first one is the conventional wind park, which causes the problems mentioned above. The electrical energy output follows the natural wind yield and the grid has to be adapted to the wind power feed-in. One solution for a temporal decoupling of wind yield and electricity output is a combination of windmills with a storage loop as shown in scenario II and IV. The system of scenario II de-couples the fluctuating input (wind) and the constant output (electricity). The advantage of this system is that the electrical output is constant and independent of the actual wind speed. For this reason this wind park acts as a constant power plant within the grid. Scenario Ill, the grid adapted feed-in, extends the former scenario with a

  18. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.; Ravishankar, T.N.; Ramakrishnappa, T.; Nagaraju, Doddahalli H.; Krishna Pai, Ranjith

    2015-01-01

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic

  19. A renewable energy based hydrogen demonstration park in Turkey. HYDEPARK

    Energy Technology Data Exchange (ETDEWEB)

    Ilhan, Niluefer; Ersoez, Atilla [TUEBITAK Marmara Research Center Energy Institute, Gebze Kocaeli (Turkey); Cubukcu, Mete [Ege Univ., Bornova, Izmir (Turkey). Solar Energy Inst.

    2010-07-01

    The main goal of this national project is to research hydrogen technologies and renewable energy applications. Solar and wind energy are utilized to obtain hydrogen via electrolysis, which can either be used in the fuel cell or stored in cylinders for further use. The management of all project work packages was carried by TUeBITAK Marmara Research Center (MRC) Energy Institute (EI) with the support of the collaborators. The aim of this paper is to present the units of the renewable energy based hydrogen demonstration park, which is in the demonstration phase now and share the experimental results. (orig.)

  20. A novel non-sequential hydrogen-pulsed deep reactive ion etching of silicon

    International Nuclear Information System (INIS)

    Gharooni, M; Mohajerzadeh, A; Sandoughsaz, A; Khanof, S; Mohajerzadeh, S; Asl-Soleimani, E

    2013-01-01

    A non-sequential pulsed-mode deep reactive ion etching of silicon is reported that employs continuous etching and passivation based on SF 6 and H 2 gases. The passivation layer, as an important step for deep vertical etching of silicon, is feasible by hydrogen pulses in proper time-slots. By adjusting the etching parameters such as plasma power, H 2 and SF 6 flows and hydrogen pulse timing, the process can be controlled for minimum underetch and high etch-rate at the same time. High-aspect-ratio features can be realized with low-density plasma power and by controlling the reaction chemistry. The so-called reactive ion etching lag has been minimized by operating the reactor at higher pressures. X-ray photoelectron spectroscopy and scanning electron microscopy have been used to study the formation of the passivation layer and the passivation mechanism. (paper)

  1. Aggregation control of quantum dots through ion-mediated hydrogen bonding shielding.

    Science.gov (United States)

    Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; He, Xiaoxiao; Wang, Qing; Huang, Jin; Liu, Yan

    2012-06-26

    Nanoparticle stabilization against detrimental aggregation is a critical parameter that needs to be well controlled. Herein, we present a facile and rapid ion-mediated dispersing technique that leads to hydrophilic aggregate-free quantum dots (QDs). Because of the shielding of the hydrogen bonds between cysteamine-capped QDs, the presence of F(-) ions disassembled the aggregates of QDs and afforded their high colloidal stability. The F(-) ions also greatly eliminated the nonspecific adsorption of the QDs on glass slides and cells. Unlike the conventional colloidal stabilized method that requires the use of any organic ligand and/or polymer for the passivation of the nanoparticle surface, the proposed approach adopts the small size and large diffusion coefficient of inorganic ions as dispersant, which offers the disaggregation a fast reaction dynamics and negligible influence on their intrinsic surface functional properties. Therefore, the ion-mediated dispersing strategy showed great potential in chemosensing and biomedical applications.

  2. Potential of hydrogen production from wind energy in Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M. A.; Harijan, K.; Memon, M.

    2007-01-01

    The transport sector consumes about 34% of the total commercial energy consumption in Pakistan. About 97% of fuel used in this sector is oil and the remaining 3% is CNG and electricity. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is serious strain on the country's economy. The production, transportation and consumption of fossil fuels also degrade the environment. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply in the transport sector. Sindh, the second largest province of Pakistan, has about 250 km long coastline. The estimated average annual wind speed at 50 m height at almost all sites is about 6-7 m/s, indicating that Sindh has the potential to effectively utilize wind energy source for power generation and hydrogen production. A system consisting of wind turbines coupled with electrolyzers is a promising design to produce hydrogen. This paper presents an assessment of the potential of hydrogen production from wind energy in the coastal area of Sindh, Pakistan. The estimated technical potential of wind power is 386 TWh per year. If the wind electricity is used to power electrolyzers, 347.4 TWh hydrogen can be produced annually, which is about 1.2 times the total energy consumption in the transport sector of Pakistan in 2005. The substitution of oil with renewable hydrogen is essential to increase energy independence, improve domestic economies, and reduce greenhouse gas and other harmful emissions

  3. High energy heavy ions: techniques and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1985-04-01

    Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 μsec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab

  4. Li2 NH-LiBH4 : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction.

    Science.gov (United States)

    Wang, Han; Cao, Hujun; Zhang, Weijin; Chen, Jian; Wu, Hui; Pistidda, Claudio; Ju, Xiaohua; Zhou, Wei; Wu, Guotao; Etter, Martin; Klassen, Thomas; Dornheim, Martin; Chen, Ping

    2018-01-26

    Complex hydrides have played important roles in energy storage area. Here a complex hydride made of Li 2 NH and LiBH 4 was synthesized, which has a structure tentatively indexed using an orthorhombic cell with a space group of Pna2 1 and lattice parameters of a=10.121, b=6.997, and c=11.457 Å. The Li 2 NH-LiBH 4 sample (in a molar ratio of 1:1) shows excellent hydrogenation kinetics, starting to absorb H 2 at 310 K, which is more than 100 K lower than that of pristine Li 2 NH. Furthermore, the Li + ion conductivity of the Li 2 NH-LiBH 4 sample is about 1.0×10 -5  S cm -1 at room temperature, and is higher than that of either Li 2 NH or LiBH 4 at 373 K. Those unique properties of the Li 2 NH-LiBH 4 complex render it a promising candidate for hydrogen storage and Li ion conduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    Science.gov (United States)

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Mass spectrometric study of the negative and positive secondary ions emitted from ethanol microdroplets by MeV-energy heavy ion impact

    Science.gov (United States)

    Kitajima, Kensei; Majima, Takuya; Nishio, Tatsuya; Oonishi, Yoshiki; Mizutani, Shiori; Kohno, Jun-ya; Saito, Manabu; Tsuchida, Hidetsugu

    2018-06-01

    We have investigated the negative and positive secondary ions emitted from ethanol droplets by 4.0-MeV C3+ impact to reveal the characteristic features of the reaction processes induced by fast heavy ions at the liquid ethanol surface. Analysis of the secondary ions was performed by time-of-flight mass spectrometry for microdroplet targets in a high vacuum environment. Fragment ions, deprotonated cluster ions, and trace amounts of the reaction product ions are observed in the negative secondary ions. The main fragment anions are C2HmO- (m = 1, 3, and 5) and C2H- generated by loss of hydrogen and oxygen atoms. The reaction product anions include deprotonated glycols, larger alcohols, and their dehydrated and dehydrogenated forms generated by secondary reactions between fragments and radicals. Furthermore, C3Hm- (m = 0-2) and C4Hm- (m = 0 and 1) are observed, which could be produced through a plasma state generated in the heavy ion track. Deprotonated ethanol cluster ions, [(EtOH)n - H]-, are observed up to about n = 25. [(EtOH)n - H]- have smaller kinetic energies than the protonated cluster ions (EtOH)nH+. This probably represents the effect of the positive Coulomb potential transiently formed in the ion track. We also discuss the size distributions and structures of the water- and CH2OH-radical-attached ethanol cluster ions.

  7. The pumping of hydrogen and helium by sputter-ion pumps

    International Nuclear Information System (INIS)

    Welch, K.M.; Pate, D.J.; Todd, R.J.

    1992-01-01

    The pumping of hydrogen in diode and triode sputter-ion pumps is discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium or titanium alloy anodes is also shown to measurably impact on the speed of these pumps at.very low pressures. This stems from the fact that hydrogen is x10 6 more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Lastly, quantitative data are given for the He speeds and capacities of both noble and conventional diode and triode pumps. The effectiveness of various pump regeneration procedures, subsequent to the pumping of He, is reported.These included bakeout and N 2 glow discharge cleaning. The comparative desorption of He with the subsequent pumping of N 2 is reported on. The N 2 speed of these pumps was used as the benchmark for defining the size of the pumps vs. their respective He speeds

  8. Data on inelastic processes in low-energy potassium-hydrogen and rubidium-hydrogen collisions

    Science.gov (United States)

    Yakovleva, S. A.; Barklem, P. S.; Belyaev, A. K.

    2018-01-01

    Two sets of rate coefficients for low-energy inelastic potassium-hydrogen and rubidium-hydrogen collisions were computed for each collisional system based on two model electronic structure calculations, performed by the quantum asymptotic semi-empirical and the quantum asymptotic linear combinations of atomic orbitals (LCAO) approaches, followed by quantum multichannel calculations for the non-adiabatic nuclear dynamics. The rate coefficients for the charge transfer (mutual neutralization, ion-pair formation), excitation and de-excitation processes are calculated for all transitions between the five lowest lying covalent states and the ionic states for each collisional system for the temperature range 1000-10 000 K. The processes involving higher lying states have extremely low rate coefficients and, hence, are neglected. The two model calculations both single out the same partial processes as having large and moderate rate coefficients. The largest rate coefficients correspond to the mutual neutralization processes into the K(5s 2S) and Rb(4d 2D) final states and at temperature 6000 K have values exceeding 3 × 10-8 cm3 s-1 and 4 × 10-8 cm3 s-1, respectively. It is shown that both the semi-empirical and the LCAO approaches perform equally well on average and that both sets of atomic data have roughly the same accuracy. The processes with large and moderate rate coefficients are likely to be important for non-LTE modelling in atmospheres of F, G and K-stars, especially metal-poor stars.

  9. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W. [Accelerator Engineering Corporation, Chiba (Japan); Biri, S.; Rácz, R. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Kato, Y. [Graduate School of Engineering, Osaka University, Osaka (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe (Japan)

    2016-02-15

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  10. A manual of recommended practices for hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, W.; Leach, S. [W. Hoagland and Associates, Boulder, CO (United States)

    1997-12-31

    Technologies for the production, distribution, and use of hydrogen are rapidly maturing and the number and size of demonstration programs designed to showcase emerging hydrogen energy systems is expanding. The success of these programs is key to hydrogen commercialization. Currently there is no comprehensive set of widely-accepted codes or standards covering the installation and operation of hydrogen energy systems. This lack of codes or standards is a major obstacle to future hydrogen demonstrations in obtaining the requisite licenses, permits, insurance, and public acceptance. In a project begun in late 1996 to address this problem, W. Hoagland and Associates has been developing a Manual of Recommended Practices for Hydrogen Systems intended to serve as an interim document for the design and operation of hydrogen demonstration projects. It will also serve as a starting point for some of the needed standard-setting processes. The Manual will include design guidelines for hydrogen procedures, case studies of experience at existing hydrogen demonstration projects, a bibliography of information sources, and a compilation of suppliers of hydrogen equipment and hardware. Following extensive professional review, final publication will occur later in 1997. The primary goal is to develop a draft document in the shortest possible time frame. To accomplish this, the input and guidance of technology developers, industrial organizations, government R and D and regulatory organizations and others will be sought to define the organization and content of the draft Manual, gather and evaluate available information, develop a draft document, coordinate reviews and revisions, and develop recommendations for publication, distribution, and update of the final document. The workshop, Development of a Manual of Recommended Practices for Hydrogen Energy Systems, conducted on March 11, 1997 in Alexandria, Virginia, was a first step.

  11. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    Science.gov (United States)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  12. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  13. Role of nuclear produced hydrogen for global environment and energy

    International Nuclear Information System (INIS)

    Tashimo, M.; Kurosawa, A.; Ikeda, K.

    2004-01-01

    Sustainability on economical growth, energy supply and environment are major issues for the 21. century. Within this context, one of the promising concepts is the possibility of nuclear-produced hydrogen. In this study, the effect of nuclear-produced hydrogen on the environment is discussed, based on the output of the computer code 'Grape', which simulates the effects of the energy, environment and economy in 21. century. Five cases are assumed in this study. The first case is 'Business as usual by Internal Combustion Engine (ICE)', the second 'CO 2 limited to 550 ppm by ICE', the third 'CO 2 limited to 550 ppm by Hybrid Car', the fourth 'CO 2 limited to 550 ppm by Fuel Cell Vehicle (FCV) with Hydrogen produced by conventional Steam Methane Reforming (SMR)' and the fifth 'CO 2 limited to 550 ppm by FCV with Nuclear Produced-Hydrogen'. The energy used for transportation is at present about 25% of the total energy consumption in the world and is expected to be the same in the future, if there is no improvement of energy efficiency for transportation. On this point, the hybrid car shows the much better efficiency, about 2 times better than traditional internal combustion engines. Fuel Cell powered Vehicles are expected to be a key to resolving the combined issue of the environment and energy in this century. The nuclear-produced hydrogen is a better solution than conventional hydrogen production method using steam methane reforming. (author)

  14. A hydrogen economy - an answer to future energy problems

    International Nuclear Information System (INIS)

    Seifritz, W.

    1975-01-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems. (Auth.)

  15. Ion Mobility Spectrometry-Mass Spectrometry Coupled with Gas-Phase Hydrogen/Deuterium Exchange for Metabolomics Analyses

    Science.gov (United States)

    Maleki, Hossein; Karanji, Ahmad K.; Majuta, Sandra; Maurer, Megan M.; Valentine, Stephen J.

    2018-02-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate ( in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract.

  16. Determination of the stability of the uranyl ion sipped in τ-hydrogen phosphate of zirconium in sodic form

    International Nuclear Information System (INIS)

    Ordonez R, E.; Fernandez V, S.M.; Drot, R.; Simoni, E.

    2005-01-01

    The stability of the uranyl sipped in the zirconium τ-hydrogen phosphate in sodic form (τ-NaZrP), was carried out characterizing the complexes formed by Laser spectroscopy in the visible region and by X-ray photoelectron spectroscopy. The material was prepared by a new synthesis technique working in nitrogen atmosphere and to low temperatures. The sorption of the uranyl ion was made in acid media with concentrations of 10 -4 and 10 -5 of uranyl nitrate and with ion forces of 0.1 and 0.5 M of NaClO 4 . The spectra of induced fluorescence with laser (TRLFS) show that the uranyl is fixed in very acid media in three well differentiated species, to pH less acid, the specie of long half life disappears and are only those of short half life. The results of the binding energy obtained by XPS indicate that the binding energy of the uranyl confer it a stable character to the complex formed in the τ-NaZP, that makes to this material appropriate to retain to the uranyl in solution to high ion forces and in acid media. (Author)

  17. Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byung Du [School of Electrical and Electronic Engineering, 50, Yonsei University, Seoul 120-749 (Korea, Republic of); Park, Jin-Seong [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, K. B., E-mail: kbchung@dongguk.edu [Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2014-10-20

    Device performance of InGaZnO (IGZO) thin film transistors (TFTs) are investigated as a function of hydrogen ion irradiation dose at room temperature. Field effect mobility is enhanced, and subthreshold gate swing is improved with the increase of hydrogen ion irradiation dose, and there is no thermal annealing. The electrical device performance is correlated with the electronic structure of IGZO films, such as chemical bonding states, features of the conduction band, and band edge states below the conduction band. The decrease of oxygen deficient bonding and the changes in electronic structure of the conduction band leads to the improvement of device performance in IGZO TFT with an increase of the hydrogen ion irradiation dose.

  18. Hydrogen energy and fuel cells. A vision of our future

    International Nuclear Information System (INIS)

    2003-01-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  19. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  20. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  1. Negative hydrogen ion sources for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, D.P.; /Fermilab; Peters, J.; /DESY; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  2. Understanding the scale of the single ion free energy: A critical test of the tetra-phenyl arsonium and tetra-phenyl borate assumption

    Science.gov (United States)

    Duignan, Timothy T.; Baer, Marcel D.; Mundy, Christopher J.

    2018-06-01

    The tetra-phenyl arsonium and tetra-phenyl borate (TATB) assumption is a commonly used extra-thermodynamic assumption that allows single ion free energies to be split into cationic and anionic contributions. The assumption is that the values for the TATB salt can be divided equally. This is justified by arguing that these large hydrophobic ions will cause a symmetric response in water. Experimental and classical simulation work has raised potential flaws with this assumption, indicating that hydrogen bonding with the phenyl ring may favor the solvation of the TB- anion. Here, we perform ab initio molecular dynamics simulations of these ions in bulk water demonstrating that there are significant structural differences. We quantify our findings by reproducing the experimentally observed vibrational shift for the TB- anion and confirm that this is associated with hydrogen bonding with the phenyl rings. Finally, we demonstrate that this results in a substantial energetic preference of the water to solvate the anion. Our results suggest that the validity of the TATB assumption, which is still widely used today, should be reconsidered experimentally in order to properly reference single ion solvation free energy, enthalpy, and entropy.

  3. Lithium polymer batteries and proton exchange membrane fuel cells as energy sources in hydrogen electric vehicles

    Science.gov (United States)

    Corbo, P.; Migliardini, F.; Veneri, O.

    This paper deals with the application of lithium ion polymer batteries as electric energy storage systems for hydrogen fuel cell power trains. The experimental study was firstly effected in steady state conditions, to evidence the basic features of these systems in view of their application in the automotive field, in particular charge-discharge experiments were carried at different rates (varying the current between 8 and 100 A). A comparison with conventional lead acid batteries evidenced the superior features of lithium systems in terms of both higher discharge rate capability and minor resistance in charge mode. Dynamic experiments were carried out on the overall power train equipped with PEM fuel cell stack (2 kW) and lithium batteries (47.5 V, 40 Ah) on the European R47 driving cycle. The usage of lithium ion polymer batteries permitted to follow the high dynamic requirement of this cycle in hard hybrid configuration, with a hydrogen consumption reduction of about 6% with respect to the same power train equipped with lead acid batteries.

  4. Transportable Hydrogen Research Plant Based on Renewable Energy

    International Nuclear Information System (INIS)

    Mikel Fernandez; Carlos Madina; Asier Gil de Muro; Jose Angel Alzolab; Iker Marino; Javier Garcia-Tejedor; Juan Carlos Mugica; Inaki Azkkrate; Jose Angel Alzola

    2006-01-01

    Efficiency and cost are nowadays the most important barriers for the penetration of systems based on hydrogen and renewable energies. According to this background, TECNALIA Corporation has started in 2004 the HIDROTEC project: 'Hydrogen Technologies for Renewable Energy Applications'. The ultimate aim of this project is the implementation of a multipurpose demonstration and research plant in order to explore diverse options for sustainable energetic solutions based on hydrogen. The plant is conceived as an independent system that can be easily transported and assembled. Research and demonstration activities can thus be carried out at very different locations, including commercial renewable facilities. Modularity and scalability have also been taken into account for an optimised exploitation. (authors)

  5. Hydrogen from nuclear energy and the impact on climate change

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Poehnell, T.G.

    2001-01-01

    The two major candidates for hydrogen production include nuclear power and other renewable energy sources. However, hydrogen produced by steam reforming of natural gas offers little advantage in total cycle greenhouse gas (GHG) emissions over hybrid internal combustion engine (ICE) technology. Only nuclear power offers the possibility of cutting GHG emissions significantly and to economically provide electricity for traditional applications and by producing hydrogen for its widespread use in the transportation sector. Using nuclear energy to produce hydrogen for transportation fuel, doubles or triples nuclear's capacity to reduce GHG emissions. An analysis at the Atomic Energy of Canada shows that a combination of hydrogen fuel and nuclear energy can stabilize GHG emissions and climate change for a wide range of the latest scenarios presented by the Intergovernmental Panel on Climate Change. The technology for replacing hydrocarbon fuels with non-polluting hydrogen exists with nuclear power, electrolysis and fuel cells, using electric power grids for distribution. It was emphasized that a move toward total emissions-free transportation will be a move towards solving the negative effects of climate change. This paper illustrated the trends between global economic and atmospheric carbon dioxide concentrations. Low carbon dioxide emission energy alternatives were discussed along with the sources of hydrogen and the full cycle assessment results in reduced emissions. It was shown that deploying 20 CANDU NPPs (of 690 MW (e) net each) would fuel 13 million vehicles with the effect of levelling of carbon dioxide emissions from transportation between 2020 to 2030. 13 refs., 2 tabs., 3 figs

  6. Proceedings of the 14. world hydrogen energy conference 2002 : The hydrogen planet. CD-ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    Venter, R.D.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene; Veziroglu, N. [International Association for Hydrogen Energy, Coral Gables, FL (United States)] (eds.)

    2002-07-01

    Hydrogen has often been named as the ultimate fuel because it can be generated from a variety of renewable and non-renewable fuels and its direct conversion to electricity in fuel cells is efficient and results in no emissions other than water vapour. The opportunities and issues associated with the use of hydrogen as the energy carrier of the future were presented at this conference which addressed all aspects of hydrogen and fuel cell development including hydrogen production, storage, hydrogen-fuelled internal combustion engines, hydrogen infrastructure, economics, and the environment. Hydrogen is currently used as a chemical feedstock and a space fuel, but it is receiving considerable attention for bring renewable energy into the transportation and power generation sectors with little or no environmental impact at the point of end use. Canada leads the way in innovative ideas for a hydrogen infrastructure, one of the most challenging tasks for the transportation sector along with hydrogen storage. Major vehicle manufacturers have announced that they will have hydrogen-fueled cars and buses on the market beginning in 2003 and 2004. Solid oxide fuel cells will be used for generating electricity with efficiencies of 70 per cent, and proton exchange membrane (PEM) and other fuel cells are being tested for residential power supply with efficiencies of 85 per cent. The conference included an industrial exposition which demonstrated the latest developments in hydrogen and fuel cell research. More than 300 papers were presented at various oral and poster sessions, of which 172 papers have been indexed separately for inclusion in the database.

  7. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    TIAX, LLC

    2005-05-04

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational

  8. The U.S. department of energy program on hydrogen production

    International Nuclear Information System (INIS)

    Henderson, David; Paster, Mark

    2003-01-01

    Clean forms of energy are needed to support sustainable global economics growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision roadmap for moving toward a hydrogen economy-a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. DOE has examined and organized its hydrogen activities in pursuit of this national vision. This includes the development of fossil and renewable sources, as well as nuclear technologies capable of economically producing large quantities of hydrogen. (author)

  9. Configuration and mobility of hydrogen implanted in aluminium

    International Nuclear Information System (INIS)

    Bugeat, J.P.; Chami, A.C.; Ligeon, E.

    1976-01-01

    Localization methods through channeling and nuclear reaction analysis using low energy ion beam were applied to the study of deuterium and hydrogen implanted in aluminium single crystals. It was shown that implanted hydrogen occupies a tetrahedral site in the lattice as far as the implantation temperature is lower than 175K. This fact is interpreted by considering an interaction between hydrogen and monovacancies created during the implantation [fr

  10. Generation IV nuclear energy systems and hydrogen economy. New progress in the energy field in the 21st century

    International Nuclear Information System (INIS)

    Zang Mingchang

    2004-01-01

    The concept of hydrogen economy was initiated by the United States and other developed countries in the turn of the century to mitigate anxiety of national security due to growing dependence on foreign sources of energy and impacts on air quality and the potential effects of greenhouse gas emissions. Hydrogen economy integrates the primary energy used to produce hydrogen as a future energy carrier, hydrogen technologies including production, delivery and storage, and various fuel cells for transportation and stationary applications. A new hydrogen-based energy system would created as an important solution in the 21st century, flexible, affordable, safe, domestically produced, used in all sectors of the economy and in all regions of the country, if all the R and D plans and the demonstration come to be successful in 20-30 years. Among options of primary energy. Generation IV nuclear energy under development is particularly well suited to hydrogen production, offering the competitive position of large-scale hydrogen production with near-zero emissions. (author)

  11. Hydrogen: an energy vector for the future?

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    Used today in various industrial sectors including refining and chemicals, hydrogen is often presented as a promising energy vector for the transport sector. However, its balance sheet presents disadvantages as well as advantages. For instance, some of its physical characteristics are not very well adapted to transport use and hydrogen does not exist in pure form. Hydrogen technologies can offer satisfactory environmental performance in certain respects, but remain handicapped by costs too high for large-scale development. A great deal of research will be required to develop mass transport application. (author)

  12. Hydrogen: an energy vector for the future?

    Energy Technology Data Exchange (ETDEWEB)

    His, St

    2004-07-01

    Used today in various industrial sectors including refining and chemicals, hydrogen is often presented as a promising energy vector for the transport sector. However, its balance sheet presents disadvantages as well as advantages. For instance, some of its physical characteristics are not very well adapted to transport use and hydrogen does not exist in pure form. Hydrogen technologies can offer satisfactory environmental performance in certain respects, but remain handicapped by costs too high for large-scale development. A great deal of research will be required to develop mass transport application. (author)

  13. Influence of screening effect on hydrogen passivation of hole silicon

    International Nuclear Information System (INIS)

    Aleksandrov, O.V.

    2002-01-01

    The simulation of hole silicon passivation during hydrogen diffusion with account of hydrogen-acceptor pairs formation, internal electrical field and screening effect has been carried out. Screening by free carriers of hydrogen and acceptor ions results in shortening their interaction radii and slacking the concentration dependence of hydrogen diffusivity at high level of silicon doping. The consistency of simulated and experimental profiles of holes and hydrogen-acceptor pairs is reached in a broad band of doping levels from 4 x 10 14 to 1.2 x 10 20 cm -3 at the pair binding energy of 0.70-0.79 eV while the radius of the Coulomb interaction of hydrogen and boron ions is equal to 35 A under low doping and decrease with increasing doping level [ru

  14. Interaction of heavy ions with hot ionized matter

    International Nuclear Information System (INIS)

    Hoffmann, D.H.H.; Dietrich, K.G.; Laux, W.; Boggasch, E.; Mahrt-Olt, K.; Wahl, H.; Golubev, A.A.; Dubenkov, V.P.

    1991-01-01

    The energy loss of heavy ions in a hydrogen plasma has been measured in an energy range from 1.4 to 6 MeV/u. A z-pinch has been used as a plasma target with a maximum free electron density of 1.5x10 19 cm -3 . Our data show a strong enhancement of the stopping power of the plasma compared to that of a cold gas with equal density. Charge state analysis of the ions also show a higher charge state of the ions in the plasma target, relative to the cold hydrogen gas targets. A plasma lens effect of the high power z-pinch discharge was observed in our experiments. (orig.)

  15. Study of low energy hydrogen ion implantation effects in silicon: electric properties

    International Nuclear Information System (INIS)

    Barhdadi, A.

    1985-07-01

    Several analysis methods have been developed: hydrogen distribution analysis by nuclear reaction, crystal disorder evaluation by R.B.S., chemical impurities identification by SIMS, optical measurements, electrical characterization of surface barriers, deep level spectroscopy DLTS, ... All these analyses have been made after implantation then after thermal annealing. A model explaining the effect of implantation then after thermal annealing. A model explaining the effect of implanted hydrogen is proposed, the implantation creates an important quantity of defects in a thin layer near the surface; a chemical attack removes them. In Schottky devices, this layer has a basic role on carrier transport phenomena. Other results are given, some of them allow to give an account of the passivation by hydrogen implantation [fr

  16. Hydrogen is an energy source for hydrothermal vent symbioses.

    Science.gov (United States)

    Petersen, Jillian M; Zielinski, Frank U; Pape, Thomas; Seifert, Richard; Moraru, Cristina; Amann, Rudolf; Hourdez, Stephane; Girguis, Peter R; Wankel, Scott D; Barbe, Valerie; Pelletier, Eric; Fink, Dennis; Borowski, Christian; Bach, Wolfgang; Dubilier, Nicole

    2011-08-10

    The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.

  17. A study of semiconducting properties of hydrogen containing passive films

    International Nuclear Information System (INIS)

    Zeng, Y.M.; Luo, J.L.; Norton, P.R.

    2004-01-01

    Mott-Schottky and photoelectrochemical measurements were used to explore the effects of hydrogen and chloride ions on the electronic properties of the passive film on X70 micro-alloyed steel in a solution of 0.5 M NaHCO 3 . Mott-Schottky analyses have shown that hydrogen increases the capacitance and donor density, and decreases the flat band potential and the space charge layer thickness of the passive film. The photocurrent of the film is remarkably increased by hydrogen. The effects of hydrogen become more pronounced with an increase in the hydrogen charging current densities. Hydrogen has no noticeable effect on the band gap energy E g and the process by which hole-electron pairs are photo-generated in the film. The presence of chloride ions in the solution produces some similar effects on the electronic properties of the passive film to those observed with hydrogen, but reduces the photocurrent and increases the band gap energy of the film. No significant synergistic effects on the electronic properties of the passive film were observed in the presence of hydrogen and Cl - . These results provide very useful information for elucidating the mechanism by which hydrogen changes the properties of passive film and then promotes localized corrosion

  18. Experimental study on negative hydrogen ion formation in the quiescent plasma machine at INPE

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Ferreira, J.G.; Damasio, W.C.

    1989-01-01

    The preliminary results from the study on generation of positive and negative hydrogen ions in plasma produced by thermionic discharge confined superficially by magnetic fields, are presented. In the interior of this discharge was inserted a Langmuir electrostatic probe to measure H - , H + , H + 2 and H + 3 concentrations in the plasma produced from argon (Ar) and hydrogen (H 2 ) gas mixture. (M.C.K.) [pt

  19. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  20. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  1. Role of hydrogen ions in standard and activation heap leaching of gold

    Science.gov (United States)

    Rubtsov, YuI

    2017-02-01

    The role of hydrogen ions in activation heap leaching of gold from rebellious ore has been studied, which has allowed enhancing gold recovery. The author puts forward a gold leaching circuit with the use of activated oxygen-saturated solutions acidified to pH = 6-9.

  2. High-current negative hydrogen ion beam production in a cesium-injected multicusp source

    International Nuclear Information System (INIS)

    Takeiri, Y.; Tsumori, K.; Kaneko, O.

    1997-01-01

    A high-current negative hydrogen ion source has been developed, where 16.2 A of the H - current was obtained with a current density of 31 mA/cm 2 . The ion source is a multicusp source with a magnetic filter for negative ion production, and cesium vapor is injected into the arc chamber, leading to enhancement of the negative ion yields. The cesium-injection effects are discussed, based on the experimental observations. Although the surface production of the negative ions on the cesium-covered plasma grid is thought to be a dominant mechanism of the H - current enhancement, the cesium effects in the plasma volume, such as the cesium ionization and the electron cooling, are observed, and could contribute to the improved operation of the negative ion source. (author)

  3. Hydrogen energy in changing environmental scenario: Indian context

    International Nuclear Information System (INIS)

    Leo Hudson, M. Sterlin; Dubey, P.K.; Pukazhselvan, D.; Pandey, Sunil Kumar; Singh, Rajesh Kumar; Raghubanshi, Himanshu; Shahi, Rohit R.; Srivastava, O.N.

    2009-01-01

    This paper deals with how the Hydrogen Energy may play a crucial role in taking care of the environmental scenario/climate change. The R and D efforts, at the Hydrogen Energy Center, Banaras Hindu University have been described and discussed to elucidate that hydrogen is the best option for taking care of the environmental/climate changes. All three important ingredients for hydrogen economy, i.e., production, storage and application of hydrogen have been dealt with. As regards hydrogen production, solar routes consisting of photoelectrochemical electrolysis of water have been described and discussed. Nanostructured TiO 2 films used as photoanodes have been synthesized through hydrolysis of Ti[OCH(CH 3 ) 2 ] 4 . Modular designs of TiO 2 photoelectrode-based PEC cells have been fabricated to get high hydrogen production rate (∝10.35 lh -1 m -2 ). However, hydrogen storage is a key issue in the success and realization of hydrogen technology and economy. Metal hydrides are the promising candidates due to their safety advantage with high volume efficient storage capacity for on-board applications. As regards storage, we have discussed the storage of hydrogen in intermetallics as well as lightweight complex hydride systems. For intermetallic systems, we have dealt with material tailoring of LaNi 5 through Fe substitution. The La(Ni l-x Fe x ) 5 (x = 0.16) has been found to yield a high storage capacity of ∝2.40 wt%. We have also discussed how CNT admixing helps to improve the hydrogen desorption rate of NaAlH 4 . CNT (8 mol%) admixed NaAlH 4 is found to be optimum for faster desorption (∝3.3 wt% H 2 within 2 h). From an applications point of view, we have focused on the use of hydrogen (stored in intermetallic La-Ni-Fe system) as fuel for Internal Combustion (IC) engine-based vehicular transport, particularly two and three-wheelers. It is shown that hydrogen used as a fuel is the most effective alternative fuel for circumventing climate change. (author)

  4. FY 1998 summary report on the results of the R and D of the international clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the purpose of solving the global environmental problem and relaxing the energy supply/demand, the R and D were conducted of the international energy network for hydrogen production and utilization using renewable energy, and the FY 1998 results were summarized. As to the conceptual design of the total system, the detailed study was made of the conceptual design of liquid hydrogen transportation/storage system by reviewing the data inputted into the system such as the equipment cost and by making a trial calculation of the power generation cost. Concerning the development of hydrogen production technology, the following were carried out: survey of characteristics of ion exchange membranes of each company, production technology improvement and stacking technology development of large area cell, etc. Relating to the development of hydrogen transportation/storage technology, selection of the hydrogen closed cycle as the liquefaction process, heat insulation test using panel test piece, etc. As to the development of the hydrogen combustion turbine, selection of the oxygen dilution combustion method annular combustor by the combustion experiment, verification of the plant efficiency of more than 60% by the turbine blade evaluation test, evaluation/selection of the topping regenerative cycle high-temperature heat exchanger, etc. (NEDO)

  5. Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries

    Science.gov (United States)

    Zhang, Zhonghua; Zhou, Zhenfang; Nie, Sen; Wang, Honghu; Peng, Hongrui; Li, Guicun; Chen, Kezheng

    2014-12-01

    Flower-like hydrogenated TiO2(B) nanostructures have been synthesized via a facile solvothermal approach combined with hydrogenation treatment. The obtained TiO2(B) nanostructures show uniform and hierarchical flower-like morphology with a diameter of 124 ± 5 nm, which are further constructed by primary nanosheets with a thickness of 10 ± 1.2 nm. The Ti3+ species and/or oxygen vacancies are well introduced into the structures of TiO2(B) after hydrogen reduction, resulting in an enhancement in the electronic conductivity (up to 2.79 × 10-3 S cm-1) and the modified surface electrochemical activity. When evaluated for lithium storage capacity, the hydrogenated TiO2(B) nanostructures exhibit enhanced electrochemical energy storage performances compared to the pristine TiO2(B) nanostructures, including high capacity (292.3 mA h g-1 at 0.5C), excellent rate capability (179.6 mA h g-1 at 10C), and good cyclic stability (98.4% capacity retention after 200 cycles at 10C). The reasons for these improvements are explored in terms of the increased electronic conductivity and the facilitation of lithium ion transport arising from the introduction of oxygen vacancies and the unique flower-like morphologies.

  6. Ion temperature profiles along a hydrogen diagnostic beam in a TORE SUPRA tokamak plasma

    International Nuclear Information System (INIS)

    Romannikov, A.; Petrov, Yu.; Platts, P.; Khess, V.; Khutter, T.; Farzhon, Zh.; Moro, F.

    2002-01-01

    By means of corpuscular diagnostics one studies temperature of ions along a diagnostic hydrogen beam. Paper presents comparison of temperature of plasma (deuterium) basic ions measures by means of the active corpuscular diagnostics with temperature of C + carbon ions along a beam. One studies behavior peculiarities of T i ion temperature profiles for TORE-SUPRA different modes, such as: formation of plane and even hollow T i profiles for ohmic modes, variation of T i profiles under operation of an ergodic diverter, difference of temperature of basic ions measured by means of the active corpuscular diagnostics from C +5 temperature. Paper offers clear explanation of these peculiarities [ru

  7. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  8. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  9. Investigation of hydrogen micro-kinetics in metals with ion beam implantation and analysis

    International Nuclear Information System (INIS)

    Wang, T.S.; Peng, H.B.; Lv, H.Y.; Han, Y.C.; Grambole, D.; Herrmann, F.

    2007-01-01

    One of the most important subjects in the fusion material research is to study the hydrogen and helium concentration, diffusion and evolution in the structure material of fusion reactor, since the hydrogen and helium can be continuously produced by the large dose fast neutron irradiation on material. Various analysis Methods can be used, but the ion beam analysis method has some advantages for studying the hydrogen behaviors in nano- or micrometer resolution. In this work, the hydrogen motion and three-dimensional distribution after implantation into metal has been studied by resonance NRA, micro-ERDA and XRD etc Methods. The resolution of the H-depth-profile is in nanometer level and the lateral resolution can be reached to 2 micrometers. The evolution of hydrogen depth-profile in a titanium sample has been studied versus the change of normal stress in samples. Evident hydrogen diffusion has been observed, while a normal stress is changed in the range of 107-963 MPa. A new phase transformation during the hydrogenation is observed by the in-situ XRD analysis. The further study on the hydrogen behaviors in the structure materials of fusion reactor is in plan. (authors)

  10. Study of secondary electron emission from thin carbon targets with swift charged particles: heavy ions, hydrogen ions; Etude experimentale de l`emission electronique secondaire de cibles minces de carbone sous l`impact de projectiles rapides: ions lourds, ions hydrogene (atomiques, moleculaires ou sous forme d`agregats)

    Energy Technology Data Exchange (ETDEWEB)

    Billebaud, A

    1995-07-12

    The main subject of this work is the study of electron emission from the two surfaces of thin solid targets bombarded with swift charged particles. The slowing down of swift ions in matter is mainly due to inelastic interaction with target electrons (ionization, excitation): the energy transfer to target electrons is responsible for the secondary electron emission process. The phenomenological and theoretical descriptions of this phenomena are the subject of the first chapter. We focused on secondary electron emission induced by different kind of projectiles on thin carbon foils. In chapter two we describe hydrogen cluster induced electron emission measurement between 40 and 120 keV/proton. These projectiles, composed of several atoms, allowed us to study and highlight collective effects of the electron emission process. We extended our study of electron emission to molecular (H{sub 2}{sup +}, H{sub 3}{sup +}) and composite (H{sup -}, H{sup 0}) projectiles at higher energies (<= 2 MeV): we have designed an experimental set-up devoted to electron emission statistics measurements which allowed us to study, among others things, the role of projectile electrons in secondary electron emission. This experiment is described in the third chapter. Finally, the fourth chapter describes new measurements of electron emission induced by energetic (13 MeV/u) and highly charged argon ion provided by the medium energy beam line (SME) of GANIL (Caen), which have been analyzed in the framework of a semi-empirical model of secondary electron emission. This set of experiments brings new results on composite projectile interaction with matter, and on the consequences of high energy deposition in solids. (author).

  11. Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Ahmed M.; El-Shall, M. Samy, E-mail: mselshal@vcu.edu [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G. [Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-08-07

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C{sub 5}H{sub 5}N{sup +·}(HCN){sub n} and C{sub 4}H{sub 4}N{sub 2}{sup +·}(HCN){sub n} clusters, respectively, with n = 1–4. For comparison, the binding of 1–4 HCN molecules to the protonated pyridine C{sub 5}H{sub 5}NH{sup +}(HCN){sub n} has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH{sup δ+}⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH{sup +}⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH{sup +}⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH{sup δ+}⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11–12 kcal/mol) are stronger than the similar (CH{sup δ+}⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH{sup δ+} centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  12. Assessment for ion beam analysis methods about hydrogen isotope in hydrogen storaged metal

    International Nuclear Information System (INIS)

    Ding Wei; Long Xinggui; Shi Liqun

    2006-01-01

    In this paper, experimental arrangements of measuring hydrogen isotope concentration and distribution in metal hydride with ion beam analysis methods were reported, and the advantage and disadvantage of different methods were analyzed too. Experiment results show that it can get abundant information and accurate value by these ways. It can get an accurate value since it's the Rutherford cross-section, and the Mylar film used in the experiment is thin enough for H, D and T distinguishing each other while using ERD analysis method with 6.0 MeV O ion beam to proceed this work, but the disadvantage of this method is that the sample preparing is more difficult, and the analysis depth is lower. It could get the distribution information of H, D and T and the analysis depth is about 3.0 μm while using ERD analysis method with 7.4 MeV 4 He ion beam, but the disadvantage is that the spectra of H, D and T overlap each other, which makes a big error in simulated calculation. If using PBS method with 3.0 MeV proton, the analysis depth is deeper, but it couldn't get the H distribution information. (authors)

  13. Anhydrous thallium hydrogen L-glutamate: polymer networks formed by sandwich layers of oxygen-coordinated thallium ions cores shielded by hydrogen L-glutamate counterions.

    Science.gov (United States)

    Bodner, Thomas; Wirnsberger, Bianca; Albering, Jörg; Wiesbrock, Frank

    2011-11-07

    Anhydrous thallium hydrogen L-glutamate [Tl(L-GluH)] crystallizes from water (space group P2(1)) with a layer structure in which the thallium ions are penta- and hexacoordinated exclusively by the oxygen atoms of the γ-carboxylate group of the hydrogen L-glutamate anions to form a two-dimensional coordination polymer. The thallium-oxygen layer is composed of Tl(2)O(2) and TlCO(2) quadrangles and is only 3 Å high. Only one hemisphere of the thallium ions participates in coordination, indicative of the presence of the 6s(2) lone pair of electrons. The thallium-oxygen assemblies are shielded by the hydrogen l-glutamate anions. Only the carbon atom of the α-carboxylate group deviates from the plane spanned by the thallium ions, the γ-carboxylate groups and the proton bearing carbon atoms, which are in trans conformation. Given the abundance of L-glutamic and L-aspartic acid in biological systems on the one hand and the high toxicity of thallium on the other hand, it is worth mentioning that the dominant structural motifs in the crystal structure of [Tl(L-GluH)] strongly resemble their corresponding analogues in the crystalline phase of [K(L-AspH)(H(2)O)(2)].

  14. Hydrogenation effects on the lithium ion battery performance of TiOF2

    Science.gov (United States)

    He, Min; Wang, Zhihui; Yan, Xiaodong; Tian, Lihong; Liu, Gao; Chen, Xiaobo

    2016-02-01

    Hydrogenated titanium oxyfluorides (TiOF2) nanoparticles were synthesized via one-pot hydrothermal method and subsequent hydrogenation treatment. As anode materials for lithium ion batteries, the hydrogenated TiOF2 showed a superior rate performance compared to the pristine TiOF2. A charge capacity of 118.4 mA h g-1 was achieved at the current density of 1053 mA g-1 upon 150 cycles, which was 4 times higher than that of the pristine TiOF2. The rate performance of the hydrogenated TiOF2 at different current densities of 42, 210, 1053, 2106, 5265, 10530, 21060 and 52650 mA g-1 was 2.8, 6.0, 13.2, 14.7, 21.5, 30.6, 67.9 and 483.3 times higher than those of the pristine TiOF2 electrode at the corresponding rates, respectively. The remarkable improvement of the electrochemical performance was likely related to the size breakdown in the (001) direction after hydrogenation, instead of oxygen vacancies induced better charge transfer properties.

  15. The g-factor of the bound electron in hydrogenic ions

    International Nuclear Information System (INIS)

    Quint, Wolfgang

    2001-01-01

    We report on the measurement of the g-factor of the electron bound in an atomic ion. A single hydrogenic ion ( 12 C 5+ ) is stored in a Penning trap. The electronic spin state of the ion is monitored via the continuous Stern-Gerlach effect in a quantum non-demolition measurement. Quantum jumps between the two spin states (spin up and spin down) are induced by a microwave field at the spin precession frequency of the bound electron. The g-factor of the bound electron is obtained by varying the microwave frequency and counting the number of spin flips for a fixed time interval. Applications of the continuous Stern-Gerlach effect include high-accuracy tests of bound-state quantum electrodynamics (QED), the measurement of the atomic mass of the electron, the determination of the fine structure constant α, and the measurement of nuclear g-factors

  16. Production of dissociated hydrogen gas by electro-magnetically driven shock

    International Nuclear Information System (INIS)

    Kondo, Kotaro; Moriyama, Takao; Hasegawa, Jun; Horioka, Kazuhiko; Oguri, Yoshiyuki

    2013-01-01

    Evaluation of ion stopping power which has a dependence on target temperature and density is an essential issue for heavy-ion-driven high energy density experiment. We focus on experimentally unknown dissociated hydrogen atoms as target for stopping power measurement. The precise measurement of shock wave velocity is required because the dissociated gas is produced by electro-magnetically driven shock. For beam-dissociated hydrogen gas interaction experiment, shock velocity measurement using laser refraction is proposed. (author)

  17. Measurements of energy distribution and thrust for microwave plasma coupling of electrical energy to hydrogen for propulsion

    Science.gov (United States)

    Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.

    1982-01-01

    A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.

  18. The effect of hydrogenation on the growth of carbon nanospheres and their performance as anode materials for rechargeable lithium-ion batteries

    Science.gov (United States)

    Zhao, Shijia; Fan, Yunxia; Zhu, Kai; Zhang, Dong; Zhang, Weiwei; Chen, Shuanglong; Liu, Ran; Yao, Mingguang; Liu, Bingbing

    2015-01-01

    Hydrogenated carbon nanomaterials exhibit many advantages in both mechanical and electrochemical properties, and thus have a wide range of potential applications. However, methods to control the hydrogenation and the effect of hydrogenation on the microstructure and properties of the produced nanomaterials have rarely been studied. Here we report the synthesis of hydrogenated carbon nanospheres (HCNSs) with different degrees of hydrogenation by a facile solvothermal method, in which C2H3Cl3/C2H4Cl2 was used as the carbon precursor and potassium as the reductant. The hydrogenation level of the obtained nanospheres depends on the reaction temperature and higher temperature leads to lower hydrogenation due to the fact that the breaking of C-H bonds requires more external energy. The reaction temperature also affects the diameter of the HCNSs and larger spheres are produced at higher temperatures. More importantly, the size and the degree of hydrogenation are both critical factors for determining the electrochemical properties of the HCNSs. The nanospheres synthesized at 100 °C have a smaller size and a higher hydrogenation degree and show a capacity of 821 mA h g-1 after 50 cycles, which is significantly higher than that of the HCNSs produced at 150 °C (450 mA h g-1). Our study opens a possible way for obtaining high-performance anode materials for rechargeable lithium-ion batteries.

  19. HYDROGEN ENERGY: TERCEIRA ISLAND DEMONSTRATION FACILITY

    Directory of Open Access Journals (Sweden)

    MARIO ALVES

    2008-07-01

    Full Text Available The present paper gives a general perspective of the efforts going on at Terceira Island in Azores, Portugal, concerning the implementation of an Hydrogen Economy demonstration campus. The major motivation for such a geographical location choice was the abundance of renewable resources like wind, sea waves and geothermal enthalpy, which are of fundamental importance for the demonstration of renewable hydrogen economy sustainability. Three main campus will be implemented: one at Cume Hill, where the majority of renewable hydrogen production will take place using the wind as the primary energy source, a second one at Angra do Heroismo Industrial park, where a cogen electrical – heat power station will be installed, mainly to feed a Municipal Solid Waste processing plant and a third one, the Praia da Vitoria Hydrogenopolis, where several final consumer demonstrators will be installed both for public awareness and intensive study of economic sustainability and optimization. Some of these units are already under construction, particularly the renewable hydrogen generation facilities.

  20. Cross-sections of charge and electronic states change of particles at ion-ion and ion-molecule collisions

    International Nuclear Information System (INIS)

    Panov, M.N.; Afrosimov, V.V.; Basalaev, A.A.; Guschina, N.A.; Nikulin, V.K.

    2006-01-01

    The interactions of protons and alpha-particles with hydrocarbons are investigated. A quantum-mechanical computation of the electronic structure of all hydrocarbons from methane to butane and its fragment ions was performed in the Hartree-Fock RHF/UHF approximation using a GAMESS program (General Atomic Molecular Electron Structure System). The correlation energy was taken into account within the framework of MP2 perturbation theory. The structural parameters of the hydrocarbon molecules and their charged and neutral fragments were calculated in two cases: in the geometry of the parent molecule or of the relaxation states. The difference of the full energy of the same fragments in and out of brackets gives us the vibration excitation energies of the fragments at the moment of creation. Additional Mulliken effective charges (in electron charge units) of atoms in the fragments have been calculated. The calculations show that removing one electron from the ethane molecule without electronic excitation produced a single charged molecular ion in vibration state with binding energy of hydrogen atoms, some decimal eV. As results we obtain C 2 H 6 + and C 2 H 5 + . Additional fragmentation of hydrocarbon needs electronic excitation of produced single charged ions. Cross sections for electron capture and excitation processes in collisions between the hydrogen-like He + , B 4+ and O 7+ ions have been evaluated. The purpose of the theory within this project during the period under review was to get for the first time new data on Single-Electron Capture (SEC) and Excitation Processes (EP) in collisions of He + (1s) ions with hydrogen-like impurity ions B 4+ (1s) and O 7+ (1s) in the energy range for He + ions from 0.2 MeV to 3.0 MeV. The calculations were carried out by using the method of close-coupling equations with basis sets of eleven and ten quasimolecular two-electron states for reactions (1, 2) and (3, 4), respectively (entrance channel, seven charge transfer channels

  1. Cross Sections for K-shell X-ray Production by Hydrogen and Helium Ions in Elements from Beryllium to Uranium

    International Nuclear Information System (INIS)

    Lapicki, G.

    1989-01-01

    Experimental cross sections for K-shell x-ray production by hydrogen and helium ions (Z 1 = 1,2) in target atoms from beryllium to uranium (Z 2 = 4--92 ) are tabulated as compiled (7418 cross sections) from the literature (161 references were found) with the search for the data terminated in January 1988. These cross sections are compared with predictions of the first Born approximation and ECPSSR theory for inner-shell ionization. The ECPSSR accounts for the energy loss (E) and Coulomb deflection (C) of the projectile ion as well as for the perturbed stationary state (PSS) and relativistic (R) nature of the target's inner-shell electron.While the first Born approximation generally overestimates the data by orders of magnitude, the ECPSSR theory is confirmed to be, on the average, in agreement with the experiment to within 10%--20%. For light and heavy target atoms, however, systematic and opposite deviations are found in the low projectile-velocity regime. These deviations are associated with the influence of multiple outer-shell ionizations on the fluorescence yields of light elements, particularly in ionization by helium ions, and with the inaccuracy of the ECPSSR theory in the reproduction of relativistic calculations for ionization of heavy elements. The remaining discrepancies at moderate projectile velocities are prima facie attributed to inadequacies of a screened hydrogenic description for the K-shell electron

  2. Study of beryllium redeposition under bombardment by high intensity -low energy- hydrogen ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gureev, V.M.; Guseva, M.I.; Danelyan, L.S. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)] [and others

    1998-01-01

    The results of studying the erosion of beryllium under an effect of intense ion fluxes with the energy of 250 eV, at the fluences {approx}10{sup 2}1 cm{sup -2}, at the MAGRAS-stand are given. The operating conditions under which a practically-complete redeposition of the sputtered beryllium upon the target surface were experimentally-realized. A change in the microstructure of a beryllium target under sputtering and redeposition is analyzed. Some technological applications are considered. (author)

  3. Hydrogen trapping ability of the pyridine-lithium⁺ (1:1) complex.

    Science.gov (United States)

    Chattaraj, Saparya; Srinivasu, K; Mondal, Sukanta; Ghosh, Swapan K

    2015-03-26

    Theoretical studies have been carried out at different levels of theory to verify the hydrogen adsorption characteristics of pyridine-lithium ion (1:1) complexes. The nature of interactions associated with the bonding between pyridine and lithium as well as that between lithium and adsorbed molecular hydrogen is studied through the calculation of electron density and electron-density-based reactivity descriptors. The pyridine-lithium ion complex has been hydrogenated systematically around the lithium site, and each lithium site is found to adsorb a maximum of four hydrogen molecules with an interaction energy of ∼-4.0 kcal/mol per molecule of H2. The fate of the hydrogen adsorbed in a pyridine-lithium ion complex (corresponding to the maximum adsorption) is studied in the course of a 2 ps time evolution through ab initio molecular dynamics simulation at different temperatures. The results reveal that the complex can hold a maximum of four hydrogen molecules at a temperature of 77 K, whereas it can hold only two molecules of hydrogen at 298 K.

  4. Hydrogen production through nuclear energy, a sustainable scenario in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J.L.

    2007-01-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  5. Hydrogen and fuel cell research: Institute for Integrated Energy Systems (IESVic)

    International Nuclear Information System (INIS)

    Pitt, L.

    2006-01-01

    Vision: IESVic's mission is to chart feasible paths to sustainable energy. Current research areas of investigation: 1. Energy system analysis 2. Computational fuel cell engineering; Fuel cell parameter measurement; Microscale fuel cells 3. Hydrogen dispersion studies for safety codes 4. Active magnetic refrigeration for hydrogen liquifaction and heat transfer in metal hydrides 5. Hydrogen and fuel cell system integration (author)

  6. The Mean Excitation Energy of Atomic Ions

    DEFF Research Database (Denmark)

    Sauer, Stephan; Oddershede, Jens; Sabin, John R.

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  7. Investigation of the hydrogen multilayered target H/T-D{sub 2} and muonic X-ray yields in ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2011-12-21

    This paper extends applications of the multilayered solid target H/T-D{sub 2}, which is kept at 3 K. The time evolutions of muonic tritium atoms ({mu}t) are obtained, by taking into account {mu}t production rate at different places of deuterium material. The apparatus H/T-D{sub 2} can be used for checking nuclear properties of implanted ions, which take part at muon transfer. Electromagnetic X-rays are generated by muon atomic transitions. The muonic X-ray transition energies are strongly affected by the size of nuclei. Here, a solid hydrogen-tritium (H/T) with a Almost-Equal-To 1 mm thick is used for {mu}t production. For ion implantation, the required amount of deuterium material is determined to be about 3.2 {mu}m. Moreover, the muonic X-ray yields are estimated and compared with those of the arrangement H/T-D{sub 2}. While the present target requires argon ion beam intensity nearly a factor of 2 times smaller; gives a relatively higher X-ray yield (15% enhancement per hour) at the energy 644 keV with the detection efficiency of Almost-Equal-To 1%.

  8. Hydrogen in the making: how an energy company organises under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Koefoed, Anne Louise

    2011-07-01

    This thesis combines an analytical interest in innovation process studies with an empirical interest in clean energy development. My work concentrates on innovation processes from initiation to realisation in a company setting focusing on hydrogen as an energy carrier. A Norwegian energy company, Norsk Hydro, is used as a case to explore the intraorganisational processes involved in business building. This is relevant to the research question - how hydrogen energy takes on reality and relevance for business activity? Further, a concrete hydrogen demonstration project involving research and development of a new technology combination, in collaboration with partners, has also been studied.(Author)

  9. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  10. Influence of screening effect on hydrogen passivation of hole silicon

    CERN Document Server

    Aleksandrov, O V

    2002-01-01

    The simulation of hole silicon passivation during hydrogen diffusion with account of hydrogen-acceptor pairs formation, internal electrical field and screening effect has been carried out. Screening by free carriers of hydrogen and acceptor ions results in shortening their interaction radii and slacking the concentration dependence of hydrogen diffusivity at high level of silicon doping. The consistency of simulated and experimental profiles of holes and hydrogen-acceptor pairs is reached in a broad band of doping levels from 4 x 10 sup 1 sup 4 to 1.2 x 10 sup 2 sup 0 cm sup - sup 3 at the pair binding energy of 0.70-0.79 eV while the radius of the Coulomb interaction of hydrogen and boron ions is equal to 35 A under low doping and decrease with increasing doping level

  11. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

    1999-12-31

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich

  12. Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes

    Science.gov (United States)

    Kelley, J. H.

    1979-01-01

    Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.

  13. Charge exchange of hydrogen atoms with multiply charged ions in a hot plasma

    International Nuclear Information System (INIS)

    Abramov, V.A.; Baryshnikov, F.F.; Lisitsa, V.S.

    1980-08-01

    The symmetry properties of the hydrogen atom are used to calculate the charge exchange cross-sections sigma of hydrogen with the nuclei of multiply charged ions, allowance being made for the degeneration of final states. If the transitions between these states produced by rotation of the internuclear axis are taken into account, there is a qualitative change in the dependence of sigma on v for low values of v (a gradual decrease in the cross-section instead of the exponential one in the Landau-Zener model) and also a considerable increase in the peak cross-section. The cross-sections are calculated for a wide range of velocities and charge values Z. It is shown that the cross-section may be approximated to within approximately 9 /v).10 -15 cm 2 for Z>=18 (v in cm/s). A detailed comparison with the calculations of various authors is performed. The distribution of final states over orbital angular momenta is found. A calculation is made of variation in the spectral line intensities of the ion O +7 with injection of a neutral hydrogen beam in conditions similar to the experimental conditions on the ORMAK facility. (author)

  14. Probing the Martian Exosphere and Neutral Escape Using Pickup Ions Measured by MAVEN

    Science.gov (United States)

    Rahmati, A.; Larson, D. E.; Cravens, T.; Halekas, J. S.; Lillis, R. J.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; Dunn, P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.

    2016-12-01

    Soon after the MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft started orbiting Mars in September 2014, the SEP (Solar Energetic Particle), SWIA (Solar Wind Ion Analyzer), and STATIC (Supra-Thermal and Thermal Ion Composition) instruments onboard the spacecraft started detecting planetary pickup ions. SEP can measure energetic (>50 keV) oxygen pickup ions, the source of which is the extended hot oxygen exosphere of Mars. Model results show that these pickup ions originate from tens of Martian radii upstream of Mars and are energized by the solar wind motional electric field as they gyrate back towards Mars. SEP is blind to pickup hydrogen, as the low energy threshold for detection of hydrogen in SEP is 20 keV; well above the maximum pickup hydrogen energy, which is four times the solar wind proton energy. SWIA and STATIC, on the other hand, can detect both pickup oxygen and pickup hydrogen with energies below 30 keV and created closer to Mars. During the times when MAVEN is outside the Martian bow shock and in the upstream undisturbed solar wind, the solar wind velocity measured by SWIA and the solar wind (or interplanetary) magnetic field measured by the MAG (magnetometer) instrument can be used to model pickup oxygen and hydrogen fluxes near Mars. Solar wind flux measurements of the SWIA instrument are used in calculating charge-exchange frequencies, and data from the EUVM (Extreme Ultraviolet Monitor) and SWEA (Solar Wind Electron Analyzer) instruments are also used in calculating photo-ionization and electron impact frequencies of neutral species in the Martian exosphere. By comparing SEP, SWIA, and STATIC measured pickup ion fluxes with model results, the Martian thermal hydrogen and hot oxygen neutral densities can be probed outside the bow shock, which would place constraints on estimates of oxygen and hydrogen neutral escape rates. We will present model-data comparisons of pickup ions measured outside the Martian bow shock. Our analysis reveals an

  15. Precision spectroscopy of molecular hydrogen ions : Towards frequency metrology of particle masses

    NARCIS (Netherlands)

    Roth, B.; Koelemeij, J.; Schiller, S.; Hilico, L.; Karr, Jean Philippe; Korobov, V.I.; Bakalov, D.

    2008-01-01

    We describe the current status of high-precision ab initio calculations of the spectra of molecular hydrogen ions (H2+ and HD+) and of two experiments for vibrational spectroscopy. The perspectives for a comparison between theory and experiment at a level of 1 part in 109 are considered.

  16. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  17. The potential role of hydrogen energy in India and Western Europe

    NARCIS (Netherlands)

    van Ruijven, B.J.; Lakshmikanth, H.D.; van Vuuren, D.P.; de Vries, B.

    2008-01-01

    We used the TIMER energy model to explore the potential role of hydrogen in the energy systems of India and Western Europe, looking at the impacts on its main incentives: climate policy, energy security and urban air pollution. We found that hydrogen will not play a major role in both regions

  18. Tailored ion energy distributions on plasma electrodes

    International Nuclear Information System (INIS)

    Economou, Demetre J.

    2013-01-01

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods include the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas

  19. Fragmentation and reactivity of energy-selected ferrocenium ions

    International Nuclear Information System (INIS)

    Mestdagh, H.; Dutuit, O.; Heninger, M.; Thissen, R.; Alcaraz, C.

    2002-01-01

    In this study, results concerning the discussion of state-selected ferrocenium ions (c-C 5 H 5 ) 2 Fe + commonly called Cp 2 Fe + , as well as their reactions with methanol and ethanol are presented. Parent ions Cp 2 Fe + were produced by vacuumultraviolett (VUV) photoionization of neutral ferrocene using synchrotron radiation, and selected in internal energy by threshold photoelectron-photoion coincidences. The apparatus is divided into three differentially pumped regions: the source, the reaction and the detection zones. In source, state-selected parent ions are formed and can be selected in mass by a first quadrupole filter. State-selected ions are then injected in the second zone which is a RF octopole ion guide where reaction product ions are mass analyzed by a second quadrupole filter and detected by microchannelplates. In addition, the long flight time in the octopoles (several hundreds of microseconds) allows studying long-lived metastable ions. Total mass spectra were recorded at different photon energies, in addition to the main CpFe + and Fe + fragments, several minor fragments were detected such as C 10 H 10 + which reflects the formation of a C-C bond between the two Cp ligands. Losses of CH 3 , C 2 H 2 and C-4H 4 also indicate that important structure rearrangements take place before cleavage. The appearance energies of each mass-selected fragment ion were measured by recording fragment ion yields as a function of photon energy. Surprisingly, all fragments were found to have the same energy onset, i.e. 13.2 eV photon energy, except for C 3 H 3 Fe + (m/z 95). For Fe + ions, a sharp increase was observed at 17 eV, above the thermochemical onset of Fe + + 2 Cp. The 13.2 eV appearance energy of Fe + is thus assigned to the formation of Fe - + C 10 H 10 . The reactivity of ferrocenium ion with methanol and ethanol was investigated as a function of photon energy. While no reaction occurs at lower photon energies, several reaction products appear at 13.0 e

  20. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  1. Ion induced fragmentation of biomolecular systems at low collision energies

    International Nuclear Information System (INIS)

    Bernigaud, V; Adoui, L; Chesnel, J Y; Rangama, J; Huber, B A; Manil, B; Alvarado, F; Bari, S; Hoekstra, R; Postma, J; Schlathoelter, T

    2009-01-01

    In this paper, we present results of different collision experiments between multiply charged ions at low collision energies (in the keV-region) and biomolecular systems. This kind of interaction allows to remove electrons form the biomolecule without transferring a large amount of vibrational excitation energy. Nevertheless, following the ionization of the target, fragmentation of biomolecular species may occur. It is the main objective of this work to study the physical processes involved in the dissociation of highly electronically excited systems. In order to elucidate the intrinsic properties of certain biomolecules (porphyrins and amino acids) we have performed experiments in the gas phase with isolated systems. The obtained results demonstrate the high stability of porphyrins after electron removal. Furthermore, a dependence of the fragmentation pattern produced by multiply charged ions on the isomeric structure of the alanine molecule has been shown. By considering the presence of other surrounding biomolecules (clusters of nucleobases), a strong influence of the environment of the biomolecule on the fragmentation channels and their modification, has been clearly proven. This result is explained, in the thymine and uracil case, by the formation of hydrogen bonds between O and H atoms, which is known to favor planar cluster geometries.

  2. Renewable energy for hydrogen production and sustainable urban mobility

    International Nuclear Information System (INIS)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V.; Matteucci, F.; Breedveld, L.

    2010-01-01

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO 2 -free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  3. Renewable energy for hydrogen production and sustainable urban mobility

    Energy Technology Data Exchange (ETDEWEB)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V. [Istituto di Tecnologie avanzate per l' Energia ' ' Nicola Giordano' ' Salita S, Lucia sopra Contesse, 5, 98126 Messina (Italy); Matteucci, F. [TRE SpA Tozzi Renewable Energy, Via Zuccherificio, 10, 48100 Mezzano (RA) (Italy); Breedveld, L. [2B Via della Chiesa Campocroce, 4, 31021 Mogliano Veneto (TV) (Italy)

    2010-09-15

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO{sub 2}-free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  4. Proceedings of the DOE chemical/hydrogen energy systems contractor review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    This volume contains 45 papers as well as overviews of the two main project areas: the NASA Hydrogen Energy Storage Technology Project and Brookhaven National Laboratory's program on Electrolysis-Based Hydrogen Storage Systems. Forty-six project summaries are included. Individual papers were processed for inclusion in the Energy Data Base.

  5. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    International Nuclear Information System (INIS)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T.; Guharay, S.K.

    1997-01-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H - ) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  6. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T. [National Inst. for Fusion Science, Nagoya (Japan); Guharay, S.K.

    1997-02-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H{sup -}) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  7. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  8. Mass- and energy-analysis of fast ion beams in PF-1000 by means of a Thomson spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Czaus, K.; Skladnik-Sadowska, E.; Malinowski, K.; Kwiatkowski, R.; Zebrowski, J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland)] [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland); Zebrowski, J.; Karpinski, L.; Paduch, M.; Scholz, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland); Garkusha, I.E. [Institute of Plasma Physics, NSC KIPT, 61-108 Kharkov (Ukraine)

    2011-07-01

    The paper describes measurements of energy spectra of ions emitted along the z-axis of the PF-1000 facility, which have been for the first time performed by means a miniature Thomson spectrometer during 480-kJ discharges with the deuterium filling. The recorded Thomson parabolas showed that the escaping deuterons have energies in the range of 25-1000 keV, while protons (originated from hydrogen remnants) have the population of about 2 orders smaller and energies within the range of 35-300 keV. This document is composed of a paper followed by a poster. (authors)

  9. Hydrogen, fuel cells and renewable energy integration in islands

    International Nuclear Information System (INIS)

    Bauen, A.; Hart, D.; Foradini, F.; Hart, D.

    2002-01-01

    Remote areas such as islands rely on costly and highly polluting diesel and heavy fuel oil for their electricity supply. This paper explored the opportunities for exploiting economically and environmentally viable renewable energy sources, in particular hydrogen storage, on such islands. In particular, this study focused on addressing the challenge of matching energy supply with demand and with technical issues regarding weak grids that are hindered with high steady state voltage levels and voltage fluctuations. The main technical characteristics of integrated renewable energy and hydrogen systems were determined by modelling a case study for the island of El Hierro (Canary Islands). The paper referred to the challenges regarding the technical and economic viability of such systems and their contribution to the economic development of remote communities. It was noted that energy storage plays an important role in addressing supply and demand issues by offering a way to control voltage and using surplus electricity at times of low load. Electrical energy can be stored in the form of potential or chemical energy. New decentralized generation technologies have also played a role in improving the energy efficiency of renewable energy sources. The feasibility of using hydrogen for energy storage was examined with particular reference to fuel-cell based energy supply in isolated island communities. 4 refs., 5 figs

  10. Comparative study of hydrogen and methanol as energy carriers

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Anna

    1998-06-01

    This report has been written with the purpose to compare hydrogen and methanol, with gasoline, as energy carriers for new energy systems in the future. This energy system must satisfy the demands for sustainable development. The report focuses on motor vehicle applications. A few different criteria has been developed to help form the characterisation method. The criteria proposed in this thesis are developed for an environmental comparison mainly based on emissions from combustion. The criteria concerns the following areas: Renewable resources, The ozone layer, The greenhouse effect, The acidification, and Toxic substances. In many ways, hydrogen may seem as a very good alternative compared with gasoline and diesel oil. Combustion of hydrogen in air results in water and small amounts of oxides of nitrogen. In this report, hydrogen produced from renewable resources is investigated. This is necessary to fulfill the demands for sustainable development. Today, however, steam reforming of fossil fuels represent 99% of the hydrogen production market. Problem areas connected with hydrogen use are for instance storage and distribution. Methanol has many advantages, while comparing methanol and gasoline, like lower emissions of nitrogen oxides and hydrocarbons, limited emissions of carbon dioxide and no sulphur content. Methanol can be produced from many different resources, for example natural gas, naphtha, oil, coal or peat, and biomass. To meet demands for sustainable production, methanol has to be produced from biomass Examination paper. 32 refs, 20 figs, 13 tabs

  11. Some practical progress of hydrogen energy in China

    International Nuclear Information System (INIS)

    Deyou, B.

    1995-01-01

    Research and development of hydrogen energy in China was described. Recent progress included hydrogen production with a two reactor method that consumes less than 3.0/KWh/Nm 3 . Development of a Hydrogen Hydride Rechargeable Battery (HHRB) was summarized. More than 1,000,000 AA type HHRB batteries were produced in 1994. A 150-200 AH battery for use in electric vehicles has also been manufactured, and research into proton exchange membrane fuel cells (PEMFCs) was continuing. 6 refs., 2 figs

  12. Mechanism of negative hydrogen ion emission from heated saline hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Hiroyuki; Serizawa, Naoshi; Takeda, Makiko; Hasegawa, Seiji [Ehime Univ., Matsuyama (Japan). Faculty of Science

    1997-02-01

    To find a clue to the mechanism of negative hydrogen ion emission from a heated sample ({approx}10 mg) of powdery saline hydride (LiH or CaH{sub 2}) deposited on a molybdenum ribbon ({approx}0.1 cm{sup 2}), both the ionic and electronic emission currents were measured as a function of sample temperature ({approx}700 - 800 K), thereby yielding {approx}10{sup -15} - 10{sup -12} A of H{sup -} after mass analysis and {approx}10{sup -7} - 10{sup -5} A of thermal electron. Thermophysical analysis of these data indicates that the desorption energy (E{sup -}) of H{sup -} and work function ({phi}) of the emitting sample surface are 5.1 {+-} 0.3 and 3.1 {+-} 0.2 eV for LiH, respectively, while E{sup -} is 7.7 {+-} 0.3 eV and {phi} is 5.0 {+-} 0.2 eV for CaH{sub 2}. Thermochemical analysis based on our simple model on the emissions indicates that the values of E{sup -} - {phi} are 2.35 and 2.31 eV for LiH and CaH{sub 2}, respectively, which are in fair agreement with the respective values (2.1 {+-} 0.3 and 2.6 {+-} 0.3 eV) determined experimentally. This agreement indicates that the emission of H{sup -} is reasonably explained by our model from the viewpoint of reaction energy. (author)

  13. Demonstration technology development of new hydrogen energy; Shinsuiso energy jissho gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    A phenomenon of excess heat generation through the electrolysis of heavy water using palladium metals as electrode can be recognized as new hydrogen energy. Its mechanism has been investigated for four years since FY 1993. In FY 1993, the New Hydrogen Energy Demonstration Research Center and the New Hydrogen Energy Demonstration Laboratory were organized, and the research was initiated. For the excess heat generation demonstration model tests, two types of electrolysis experimental units were constructed, and the Pd/D-based electrolysis experiments were initiated. For the measurements of excess heat using an open type electrolysis cell, there were rather large errors ranging from -13% to +7%. It is necessary to improve the accuracy. For the measurements using a fuel cell type electrolysis cell, generation of the excess heat ranging from 0% to 6% was observed. For the validity of this, it is required to confirm the long-term stability of calibration and cell components. For the correlation between the increase in absorbing rate and the generation of excess heat, results of 2 to 3% lower were obtained. 28 refs., 89 figs., 26 tabs.

  14. An electron cyclotron resonance ion source based low energy ion beam platform

    International Nuclear Information System (INIS)

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-01-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed

  15. An electron cyclotron resonance ion source based low energy ion beam platform.

    Science.gov (United States)

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  16. Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

    International Nuclear Information System (INIS)

    Kim, Do Hee; Lee, Bo Kyung; Lee, Dong Soo

    1999-01-01

    A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H 2 O 2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported

  17. Effects of internal hydrogen on the vacancy loop formation probability in Al

    International Nuclear Information System (INIS)

    Bui, T.X.; Sirois, E.; Robertson, I.M.

    1990-04-01

    The effect of internal hydrogen on the formation of vacancy dislocation loops from heavy-ion generated displacement cascades in Al has been investigated. Samples of high-purity aluminum and aluminum containing 900 and 1300 appM of hydrogen were irradiated at room temperature with 50 keV Kr+ ions. The ion dose rate was typically 2 x 10 10 ions cm -2 sec -1 and the ion dose was between 10 11 and 10 13 ion cm -2 . Under these irradiation conditions, dislocation loops were observed in all compositions, although the formation probability was relatively low (less than 10 percent of the displacement cascades produced a vacancy loop). The loop formation probability was further reduced by the presence of hydrogen. No difference in the geometry or the size of the loops created in the hydrogen free and hydrogen charged samples was found. These results are difficult to interpret, and the explanation may lie in the distribution and form of the hydrogen. To account for the large hydrogen concentrations and from calculations of the energy associated with hydrogen entry into aluminum, it has been suggested that the hydrogen enters the aluminum lattice with an accompanying vacancy. This will create hydrogen-vacancy complexes in the material; two dimensional complexes have been detected in the hydrogen-charged, but unirradiated, samples by the small-angle x-ray scattering technique. The possibility of these complexes trapping the vacancies produced by the cascade process exists thus lowering the formation probability. However, such a mechanism must occur within the lifetime of the cascade. Alternatively, if a displacement cascade overlaps with the hydrogen-vacancy complexes, the lower atomic density of the region will result in an increase in the cascade volume (decrease in the local vacancy concentration) which will also reduce the loop formation probability

  18. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  19. Damage of copper by low energy xenon ions

    International Nuclear Information System (INIS)

    Babad-Zakhryapin, A.A.; Popenko, V.A.

    1988-01-01

    Changes in the copper crystal structure bombarded by xenon ions with 30-150 eV energy are studied. Foils of MOb copper mark, 10 mm in diameter and 100 μm thickness, are irradiated. The initial specimens are annealed in vacuum during 1 h at 900 K temperature. The specimens are bombarded by xenon ions in a water-cooled holder. A TE-O type accelerator serves as a xenon ion source. The ion energy varies within 30 to 150 eV range. The ion flux density is 8x10 16 ion/(cm 2 xs). It is shown that crystal structure variations at deep depths are observed not only at high (>1 keV), but at low ion energies down to several dozens of electronvolt as well. The crystal structure variation on copper irradiation by xenon ions with 30-150 eV energy is followed by formation of defects like dislocation loops, point defects in the irradiated target bulk

  20. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.