WorldWideScience

Sample records for energy utilization modular

  1. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA)

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  2. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Steven Winter Associates, Inc., Norwalk, CT (United States); Butterfield, Karla [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2016-03-01

    With funding from the Building America Program, part of the U.S. Department of Energy Building Technologies Office, the Consortium for Advanced Residential Buildings (CARB) worked with BrightBuilt Home (BBH) to evaluate and optimize building systems. CARB’s work focused on a home built by Black Bros. Builders in Lincolnville, Maine (International Energy Conservation Code Climate Zone 6). As with most BBH projects to date, modular boxes were built by Keiser Homes in Oxford, Maine.

  3. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.; Butterfield, Karla [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.

    2016-03-01

    Kaplan Thompson Architects (KTA) has specialized in sustainable, energy-efficient buildings, and they have designed several custom, zero-energy homes in New England. These zero-energy projects have generally been high-end, custom homes with budgets that could accommodate advanced energy systems. In an attempt to make zero energy homes more affordable and accessible to a larger demographic, KTA explored modular construction as way to provide high-quality homes at lower costs. In the mid-2013, KTA formalized this concept when they launched BrightBuilt Home (BBH). The BBH mission is to offer a line of architect-designed, high-performance homes that are priced to offer substantial savings off the lifetime cost of a typical home and can be delivered in less time. For the past two years, CARB has worked with BBH and Keiser Homes (the primary modular manufacturer for BBH) to discuss challenges related to wall systems, HVAC, and quality control. In Spring of 2014, CARB and BBH began looking in detail on a home to be built in Lincolnville, ME by Black Bros. Builders. This report details the solution package specified for this modular plan and the challenges that arose during the project.

  4. A New Modular Multilevel Converter with Integrated Energy Storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    This paper introduces a new modular converter with integrated energy storage based on the cascaded half-bridge modular multilevel converter with common DC bus. It represents a complete modular solution with power electronics and energy storage building blocks, for medium and high voltage...... in the future HVDC meshed grids. Its functionality and flexibility makes the converter independent on the energy storage unit characteristic. The converter concept with its basic functions and control schemes are described and evaluated in this paper....

  5. Local modular Hamiltonians from the quantum null energy condition

    Science.gov (United States)

    Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin

    2018-03-01

    The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .

  6. Energy utilization in Canada

    International Nuclear Information System (INIS)

    Klassen, J.

    1976-04-01

    The situation of the energy supply of Canada is characterized by its geographic location and by the dispersal of the energy consumers over a wide area. At present, the energy supply leaving the successful CANDU nuclear energy programme out of account, is based mainly on crude oil, natural gas, and electricity as well as on coal imported from the USA. The targets of Canadian enery policies and energy research are stated as follows: a) Reducing and optimizing energy consumption, b) introducing district heating, and c) utilizing the extensive local coal deposits. (GG) [de

  7. Modular assembly of a photovoltaic solar energy receiver

    Science.gov (United States)

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  8. Modular calorimeter system for use in high energy physics

    International Nuclear Information System (INIS)

    Yost, B.T.; Corcoran, M.D.; Cormell, L.

    1978-10-01

    A modular hadron calorimeter was designed and built for the study of high energy particle interactions which produce particles of high transverse momentum. The energy resolution of this system and the triggering method for selecting the interactions of interest are described

  9. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  10. A Hybrid Modular Multilevel Converter with Partial Embedded Energy Storage

    Directory of Open Access Journals (Sweden)

    Georgios Konstantinou

    2016-11-01

    Full Text Available Modular and cascaded multilevel converters provide a functional solution for the integration of energy storage systems (ESSs. This paper develops a hybrid multilevel converter based on the modular multilevel converter (MMC that can be functionally extended with partial embedded ESS as a fraction of the overall converter power rating. The configuration, which can operate as a typical DC-AC converter, enables multi-directional power flow between the DC- and AC-side of the converter, as well as the embedded energy storage elements. The use of a three-phase flying-capacitor submodule eliminates the second-order harmonic oscillations present in modular cascaded multilevel converters. Current, voltage and power control are discussed in the paper while simulation results illustrate the operation of the hybrid MMC as a DC-AC converter in a typical inverter application and the additional functions and control of the embedded ESS.

  11. Market potential of heat utilization of modular HTR in Japan

    International Nuclear Information System (INIS)

    Ide, Akira; Tasaka, Kanji.

    1993-01-01

    HTR is considered to be the most suitable reactor type to use in the field other than power generation. So it is useful to know market potential of this type of reactor in Japan to justify its development. This potential was estimated to be about 400 200MWt modular HTR reactors. This number will be double if the market of hydrogen is developed. (J.P.N.)

  12. Energy utilities and the Internet

    International Nuclear Information System (INIS)

    2000-01-01

    The chances for energy utilities in the Netherlands to present themselves on the Internet are briefly outlined. It appears that other businesses are ahead of the Dutch utilities in offering electronic services with respect to energy

  13. Modular safety interlock system for high energy physics experiments

    International Nuclear Information System (INIS)

    Kieffer, J.; Golceff, B.V.

    1980-10-01

    A frequent problem in electronics systems for high energy physics experiments is to provide protection for personnel and equipment. Interlock systems are typically designed as an afterthought and as a result, the working environment around complex experiments with many independent high voltages or hazardous gas subsystems, and many different kinds of people involved, can be particularly dangerous. A set of modular hardware has been designed which makes possible a standardized, intergrated, hierarchical system's approach and which can be easily tailored to custom requirements

  14. Utilizing Mass Customization Methods for Modular Manufacturing System Design

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Jacobsen, Alexia; Nielsen, Kjeld

    2011-01-01

    of Mass Customization (MC). Research focus has been on the basic principles and enabling technologies, while modular architectures and system design have received less attention. A potential to fill these gaps by applying selected design theories and methods of MC have been seen. Based on a communality......Markets today have become dynamic and demand rapid product changes, product variety, and customized products. In order to operate under and taking advantages of such conditions requires, amongst other aspects, manufacturing processes robust to product changes - a contradiction to traditional...

  15. Small Modular Reactors for Enhancing Energy Security in Developing Countries

    Directory of Open Access Journals (Sweden)

    Vladimir Kuznetsov

    2012-08-01

    Full Text Available In recent years, small modular reactors (SMRs have been attracting considerable attention around the world. SMR designs incorporate innovative approaches to achieve simplicity, modularity and speed of build, passive safety features, proliferation resistance, and reduced financial risk. The incremental capacity expansion associated with SMR deployment could provide a better match (than the large-scale reactors to the limited grid capacity of many developing countries. Because of their lower capital requirements, SMRs could also effectively address the energy needs of small developing countries with limited financial resources. Although SMRs can have substantially higher specific capital costs as compared to large-scale reactors, they may nevertheless enjoy significant economic benefits due to shorter build times, accelerated learning effects and co-siting economies, temporal and sizing flexibility of deployment, and design simplification.

  16. The modular helium reactor for future energy needs

    International Nuclear Information System (INIS)

    Richards, Matthew B.; Shenoy, Arkal S.; Venneri, Francesco; LaBar, Malcolm P.; Schultz, Kenneth R.; Brown, Lloyd C.

    2006-01-01

    The Modular Helium Reactor (MHR) is one of the advanced reactor concepts within the internationally-supported Generation IV program. Because of its design features and design maturity, the MHR was selected by the U.S. Department of Energy (DOE) as the U.S. Generation IV design concept for the Next Generation Nuclear Plant (NGNP). Other countries, including Russia, Japan, South Korea, China, South Africa, and France are also developing this technology, and large-scale deployment of MHR technology is a realistic element of future energy-growth scenarios. In this paper, we discuss MHR conceptual designs for electricity and hydrogen production and their role in a sustainable energy future with significant growth in nuclear energy. For hydrogen production, two conceptual designs are described; one coupling the MHR to thermochemical water splitting using the sulfur-iodine (SI) process and the other coupling the MHR to high-temperature electrolysis (HTE). (authors)

  17. Social cost considerations and legal constraints in implementing modular integrated utility systems

    Science.gov (United States)

    Lede, N. W.; Dixon, H. W.; King, O.; Hill, D. K.

    1974-01-01

    Social costs associated with the design, demonstration, and implementation of the Modular Integrated Utility System are considered including the social climate of communities, leadership patterns, conflicts and cleavages, specific developmental values, MIUS utility goal assessment, and the suitability of certian alternative options for use in a program of implementation. General considerations are discussed in the field of socio-technological planning. These include guidelines for understanding the conflict and diversity; some relevant goal choices and ideas useful to planners of the MIUS facility.

  18. Scheme of energy utilities

    International Nuclear Information System (INIS)

    2002-04-01

    This scheme defines the objectives relative to the renewable energies and the rational use of the energy in the framework of the national energy policy. It evaluates the needs and the potentialities of the regions and preconizes the actions between the government and the territorial organizations. The document is presented in four parts: the situation, the stakes and forecasts; the possible actions for new measures; the scheme management and the regional contributions analysis. (A.L.B.)

  19. 77 FR 28861 - Secretary of Energy Advisory Board, Small Modular Reactor Subcommittee

    Science.gov (United States)

    2012-05-16

    ... DEPARTMENT OF ENERGY Secretary of Energy Advisory Board, Small Modular Reactor Subcommittee AGENCY... Secretary of Energy Advisory Board (SEAB), Small Modular Reactor Subcommittee (SMR). The Federal Advisory...., Washington, DC 20585; email: [email protected] or Web site: http://www.nuclear.gov/smrsubcommittee...

  20. Wide swath imaging spectrometer utilizing a multi-modular design

    Science.gov (United States)

    Chrisp, Michael P.

    2010-10-05

    A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.

  1. Efficient Solutions for New Homes Case Study: BrightBuilt Home, Modular Zero Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-11

    When done well, modular home production can provide lower costs and excellent quality control (QC)—compared to conventional home building methods— while still allowing a great deal of customization. The Consortium for Advanced Residential Buildings (CARB) is a U.S. Department of Energy Building America team that worked with three Maine companies to compare standard codecompliant modular homes with a modular zero energy home. Those companies were BrightBuilt Home (BBH), Black Bros. Builders, and Keiser Homes.

  2. Solar energy research and utilization

    Science.gov (United States)

    Cherry, W. R.

    1974-01-01

    The role of solar energy is visualized in the heating and cooling of buildings, in the production of renewable gaseous, liquid and solid fuels, and in the production of electric power over the next 45 years. Potential impacts of solar energy on various energy markets, and estimated costs of such solar energy systems are discussed. Some typical solar energy utilization processes are described in detail. It is expected that at least 20% of the U.S. total energy requirements by 2020 will be delivered from solar energy.

  3. Collaborative Modular Pumped Hydro Energy Storage Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Bibeault, Mark Leonide [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roybal, Adam [Jemez Mountain Electric Cooperative, Inc., Hernandez, NM (United States); Bailey, Jr., Richard J. [Northern New Mexico College, Espanola, NM (United States)

    2017-09-29

    In May of 2017, Los Alamos National Laboratory (LANL) through the Applied Engineering Technology Division, Jemez Mountain Electric Cooperative Inc. (JMEC), and Northern New Mexico College (NNMC) agreed to enter into a small, joint, non-binding Modular Pumped Hydro (MPH) design study related to grid level energy storage to begin a process of collaboration. Los Alamos National Laboratory's mission is to solve national security challenges through scientific excellence. The mission of Northern New Mexico College is to ensure student success by providing access to affordable, community-based learning opportunities that meet the educational, cultural, and economic needs of the region. Jemez Mountain Electric Cooperative Inc. is the largest electric co-op in the State of New Mexico providing affordable and reliable electricity to customers in the five counties of Rio Arriba, Santa Fe, San Juan, McKinley and Sandoval.

  4. A Modular Approach Utilizing Decision Tree in Teaching Integration Techniques in Calculus

    Directory of Open Access Journals (Sweden)

    Edrian E. Gonzales

    2015-08-01

    Full Text Available – This study was conducted to test the effectiveness of modular approach using decision tree in teaching integration techniques in Calculus. It sought answer to the question: Is there a significant difference between the mean scores of two groups of students in their quizzes on (1 integration by parts and (2 integration by trigonometric transformation? Twenty-eight second year B.S. Computer Science students at City College of Calamba who were enrolled in Mathematical Analysis II for the second semester of school year 2013-2014 were purposively chosen as respondents. The study made use of the non-equivalent control group posttest-only design of quasi-experimental research. The experimental group was taught using modular approach while the comparison group was exposed to traditional instruction. The research instruments used were two twenty-item multiple-choice-type quizzes. Statistical treatment used the mean, standard deviation, Shapiro-Wilk test for normality, twotailed t-test for independent samples, and Mann-Whitney U-test. The findings led to the conclusion that both modular and traditional instructions were equally effective in facilitating the learning of integration by parts. The other result revealed that the use of modular approach utilizing decision tree in teaching integration by trigonometric transformation was more effective than the traditional method.

  5. Wind energy utilization: A bibliography

    Science.gov (United States)

    1975-01-01

    Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.

  6. A Distributed Control Strategy Based on DC Bus Signaling for Modular Photovoltaic Generation Systems With Battery Energy Storage

    DEFF Research Database (Denmark)

    Sun, Kai; Zhang, Li; Xing, Yan

    2011-01-01

    Modular generation system, which consists of modular power conditioning converters, is an effective solution to integrate renewable energy sources with conventional utility grid to improve reliability and efficiency, especially for photovoltaic generation. A distributed control strategy based...... charging/discharging and local loads, which is available of either grid-connected operation or islanding operation. By using the proposed control strategy, the operations of a modular PV generation system are categorized into four modes: islanding with battery discharging, grid-connected rectification......, grid-connected inversion, and islanding with constant voltage (CV) generation.The power balance of the system under extreme conditions such as the islanding operation with a full-charged battery is taken into account in this control strategy. The dc bus voltage level is employed as an information...

  7. Simulation of value stream mapping and discrete optimization of energy consumption in modular construction

    Science.gov (United States)

    Chowdhury, Md Mukul

    With the increased practice of modularization and prefabrication, the construction industry gained the benefits of quality management, improved completion time, reduced site disruption and vehicular traffic, and improved overall safety and security. Whereas industrialized construction methods, such as modular and manufactured buildings, have evolved over decades, core techniques used in prefabrication plants vary only slightly from those employed in traditional site-built construction. With a focus on energy and cost efficient modular construction, this research presents the development of a simulation, measurement and optimization system for energy consumption in the manufacturing process of modular construction. The system is based on Lean Six Sigma principles and loosely coupled system operation to identify the non-value adding tasks and possible causes of low energy efficiency. The proposed system will also include visualization functions for demonstration of energy consumption in modular construction. The benefits of implementing this system include a reduction in the energy consumption in production cost, decrease of energy cost in the production of lean-modular construction, and increase profit. In addition, the visualization functions will provide detailed information about energy efficiency and operation flexibility in modular construction. A case study is presented to validate the reliability of the system.

  8. Optimization of energy consumption and cost effectiveness of modular buildings by using renewable energy sources

    Directory of Open Access Journals (Sweden)

    Peter Tauš

    2015-10-01

    Full Text Available Problems of the temporary structures are generally dealt with by the use of modular buildings. These actually meet the terms of low costs, as appose to the terms of convenience of use, or energy efficiency in operation. Using the latest technologies in the production of the modular buildings has improved the operation sufficiently; it is now possible to use them entirely for purposes associated with the use of the buildings. Office buildings, warehouses, and conference rooms have become common standard. In Slovakia, we can already see it as a normal part of cities and municipalities: social housing, schools, and kindergartens, which were all built using this technology. During the assessment phase of these buildings, energy efficiency is always the priority. This article is aimed at establishing the economic potential of modular buildings in the field of use of renewable energy sources. For the formulation of the problem and the definition of borders of studied parameters, we proposed a four-dimensional competency decision-making space. This determines the examination process that should identify areas in which it is appropriate to consider and assess the use of renewable energy sources.

  9. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  10. Utility Energy Services Contracts: Enabling Documents

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  11. Utility Energy Services Contracts: Enabling Documents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Karen; Vasquez, Deb

    2017-01-01

    The Federal Energy Management Program's 'Utility Energy Service Contracts: Enabling Documents' provide legislative information and materials that clarify the authority for federal agencies to enter into utility energy service contracts, or UESCs.

  12. The design status of the United States Department of Energy modular high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Mills, Raymond R. Jr.

    1990-01-01

    The U.S. Department of Energy's Modular High Temperature Gas Cooled Reactor (MHTGR) is being designed using a systems engineering approach referred to as the integrated approach. The top level requirement for the plant is that it provides safe, reliable, economical energy. The safety requirements are established by the U.S. Licensing Authorities, principally the Nuclear Regulatory Commission. The reliability and economic requirements associated with the top level functions have been established in close coordination and cooperation with the electrical utilities and other potential users, and the nuclear supply industry. The integrated approach uses functional analysis to define the functions and sub-functions for the plant and to identify quantitatively how the various functions must be fulfilled. The top four functions associated with the MHTGR are: maintain safe plant operation; maintain plant protection; maintain control of radionuclide release; maintain emergency preparedness. In addition to meeting all U.S. Regulatory Requirements this advanced reactor concept is being designed to meet the following requirements: do not require sheltering or evacuating of anyone outside the plant boundary of 425 meters as a result of normal or abnormal plant operation; do not require operator action in order to accomplish the above sheltering and evacuation objectives and the design must be insensitive to operator errors; utilize inherent characteristics of materials to develop passive safety features; provide very long times for corrective actions following the initiation of an abnormal event before plant damage would be incurred

  13. Utility/user requirements for the modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Boyer, V.S.; Kendall, J.M.; Gotschall, H.L.

    1989-01-01

    This paper describes the approach used by Gas-Cooled Reactor Associates (GCRA) in developing Utility/User Requirements for the Modular High Temperature Gas-cooled Reactor (MHTGR). As representatives of the Utility/User industry, it is GCRA's goal that the MHTGR concept be established as an attractive nuclear option offering competitive economics and limited ownership risks. Commercially deployed MHTGR systems should then compete favorably in a mixed-fuel economy with options using fossil, other nuclear and other non-fossil sources. To achieve this goal, the design of the MHTGR plant must address the problems experienced by the U.S. industrial infrastructure during deployment of the first generation of nuclear plants. Indeed, it is GCRA's intent to utilize the characteristics of MHTGR technology for the development of a nuclear alternative that poses regulatory, financial and operational demands on the Owner/Operator that are, in aggregate, comparable to those encountered with non-nuclear options. The dominant risks faced by U.S. Utilities with current nuclear plants derive from their operational complexity and the degree of regulatory involvement in virtually all aspects of utility operations. The MHTGR approach of using ceramic fuel coatings to contain fission products provides the technical basis for simplification of the plant and stabilization of licensing requirements and thus the opportunity for reducing the risks of nuclear plant ownership. The paper describes the rationale for the selection of key requirements for public safety, plant size and performance, operations and maintenance, investment protection, economics and siting in the context of a risk management philosophy. It also describes the ongoing participation of the Utility/User in interpreting requirements, conducting program and design reviews and establishing priorities from the Owner/Operator perspective. (author). 7 refs, 1 fig

  14. Utility Energy Services Contracts Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    This document describes best practices in the use of Utility Energy Services Contracts. The recommendations were generated by a group of innovative energy managers in many successful projects. The topics include project financing, competition between utility franchises, and water conservation.

  15. Modular-multiplex or single large power plants-advantages and disadvantages for utility systems

    International Nuclear Information System (INIS)

    Endicott, R.D.

    1986-01-01

    The question of growing interest in the fusion community is what size and type configuration fusion reactor(s) will lead to the most economical and attractive fusion power plant? There are two sides to this question. One involves how to build the most economical and attractive fusion reactor. This question which requires evaluation of reactor components within the reactor system is being examined at the Fusion Engineering Design Center (FEDC) and elsewhere. The other side involves examining the issues associated with the most economical size and configuration reactor to use. This question requires the evaluation of the changes in cost of service due to different size and configuration reactors on a utility system. The authors objective was to explore the advantages and disadvantages of using modular-multiplex power plants and to illustrate a means of quantifying the tradeoffs. The effort resulted in the identification of the key parameters involved in selecting the optimum size plant for a utility system and a better understanding of the tradeoffs that are possible. This paper discusses this effort in detail

  16. Thermodynamic exergy analysis for small modular reactor in nuclear hybrid energy system

    Directory of Open Access Journals (Sweden)

    Boldon Lauren

    2016-01-01

    Full Text Available Small modular reactors (SMRs provide a unique opportunity for future nuclear development with reduced financial risks, allowing the United States to meet growing energy demands through safe, reliable, clean air electricity generation while reducing greenhouse gas emissions and the reliance on unstable fossil fuel prices. A nuclear power plant is comprised of several complex subsystems which utilize materials from other subsystems and their surroundings. The economic utility of resources, or thermoeconomics, is extremely difficult to analyze, particularly when trying to optimize resources and costs among individual subsystems and determine prices for products. Economics and thermodynamics cannot provide this information individually. Thermoeconomics, however, provides a method of coupling the quality of energy available based on exergy and the value of this available energy – “exergetic costs”. For an SMR exergy analysis, both the physical and economic environments must be considered. The physical environment incorporates the energy, raw materials, and reference environment, where the reference environment refers to natural resources available without limit and without cost, such as air input to a boiler. The economic environment includes market influences and prices in addition to installation, operation, and maintenance costs required for production to occur. The exergetic cost or the required exergy for production may be determined by analyzing the physical environment alone. However, to optimize the system economics, this environment must be coupled with the economic environment. A balance exists between enhancing systems to improve efficiency and optimizing costs. Prior research into SMR thermodynamics has not detailed methods on improving exergetic costs for an SMR coupled with storage technologies and renewable energy such as wind or solar in a hybrid energy system. This process requires balancing technological efficiencies and

  17. Perspectives on the U.S. energy situation and the role of the modular HTGR

    International Nuclear Information System (INIS)

    Heins, G.L.

    1991-01-01

    Electricity continues to play an increasing role in the US economy. While total energy demand in the US during the 1973 through 1988 period grew by less than 10%, the demand for electricity grew by 50%. During the same period the overall increase in the gross national product was 46%. These figures indicate that the US economy has become more energy efficient, largely through the substitution of electric for nonelectric energy. The gradual completion of the nuclear plants which were ordered by US utilities in the late 1960s and early 1970s has resulted in nuclear energy providing an increasing fraction of the electric demand. During 1988, the 108 power reactors in commercial operation provided almost 20% of the total US electricity generated. Unfortunately, with the hiatus in new nuclear orders, the role of nuclear power has presently peaked. Revival of the industry will be dependent on the success of several initiatives by the industry and the government to alleviate the major risks and the perception of risks which have thwarted nuclear power expansion. The Modular High-Temperature Gas-Cooled Reactor (MHTGR) continues to emerge as a leading second generation nuclear system. In addition to the continued development of a reference civilian design and the production reactor application supported by the US Department of Energy, a private sector initiative to investigate building a civilian Lead Plant has been undertaken by a prospective MHTGR vendor team, composed of General Atomics, Bechtel and Siemens/Interatom, and Consumers Power Company along with support from Gas-Cooled Reactor Associates. The initiative will develop an overall Project Plan, including a cost/risk sharing arrangement that will be offered to the government as a basis for mutual project support. The actual construction and operation of such a plant is a crucial step in the full-scale commercial deployment of the MHTGR. (author)

  18. Self-reconfiguration of Modular Underwater Robots using an Energy Heuristic

    DEFF Research Database (Denmark)

    Furno, Lidia; Blanke, Mogens; Galeazzi, Roberto

    2017-01-01

    to limitations from dimensions of passable corridors for an underwater maintenance task, for supplemental instrumentation that is available on a particular robot, or as remedial action if one robot in a cluster suffers from malfunction. Being crucial for autonomous underwater vehicles, energy consumed......This paper investigates self-reconfiguration of a modular robotic system, which consists of a cluster of modular vehicles that can attach to each other by a connection mechanism. Thereby, they can form a desired morphology to meet task specific requirements. Reconfiguration can be needed due...

  19. Equity implications of utility energy conservation programs

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, R.J.

    1994-03-15

    This paper uses the Residential Energy Consumption Survey undertaken by the Energy Information Administration in 1990 to estimate the statistical association between household income and participation in electric utility energy conservation programs and the association between participation and the electricity consumption. The results indicate that utility rebates, energy audits, load management programs and other conservation measures tend to be undertaken at greater frequency by high income households than by low income households. Participants in conservation programs tend to occupy relatively new and energy efficient residences and undertake conservation measures other than utility programs, which suggests that utility sponsored programs are substitutes for other conservation investments. Electricity consumption during 1990 is not significantly less for households participating in utility programs than for nonparticipants, which also implies that utility conservation programs are displacing other conservation investments. Apparently, utility programs are not avoiding costs of new construction and instead are transferring wealth, particularly to high income participating households.

  20. Impacts of solar energy utilization

    Science.gov (United States)

    1973-01-01

    Various methods of conducting surveys and analyses to determine the attitude of the public toward the energy crisis are discussed. Models to determine the impact of the energy crisis and proposed alternative sources of energy on the social structure are analyzed. The various interest groups which are concerned with energy and the nature of their interest are identified. The government structure for controlling resource production and allocation is defined.

  1. Traffic-aware energy saving scheme with modularization supporting in TWDM-PON

    Science.gov (United States)

    Xiong, Yu; Sun, Peng; Liu, Chuanbo; Guan, Jianjun

    2017-01-01

    Time and wavelength division multiplexed passive optical network (TWDM-PON) is considered to be a primary solution for next-generation passive optical network stage 2 (NG-PON2). Due to the feature of multi-wavelength transmission of TWDM-PON, some of the transmitters/receivers at the optical line terminal (OLT) could be shut down to reduce the energy consumption. Therefore, a novel scheme called traffic-aware energy saving scheme with modularization supporting is proposed. Through establishing the modular energy consumption model of OLT, the wavelength transmitters/receivers at OLT could be switched on or shut down adaptively depending on sensing the status of network traffic load, thus the energy consumption of OLT will be effectively reduced. Furthermore, exploring the technology of optical network unit (ONU) modularization, each module of ONU could be switched to sleep or active mode independently in order to reduce the energy consumption of ONU. Simultaneously, the polling sequence of ONU could be changed dynamically via sensing the packet arrival time. In order to guarantee the delay performance of network traffic, the sub-cycle division strategy is designed to transmit the real-time traffic preferentially. Finally, simulation results verify that the proposed scheme is able to reduce the energy consumption of the network while maintaining the traffic delay performance.

  2. On the modular structure of the genus-one Type II superstring low energy expansion

    Energy Technology Data Exchange (ETDEWEB)

    D’Hoker, Eric [Department of Physics and Astronomy,University of California, Los Angeles, CA 90095 (United States); Green, Michael B. [Department of Applied Mathematics and Theoretical Physics,Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Vanhove, Pierre [Institut des Hautes Études Scientifiques, Le Bois-Marie, 35 route de Chartres,F-91440 Bures-sur-Yvette (France); Institut de physique théorique, Université Paris Saclay, CEA, CNRS,F-91191 Gif-sur-Yvette (France)

    2015-08-11

    The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order D{sup 10}R{sup 4} are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.

  3. On the modular structure of the genus-one Type II superstring low energy expansion

    Science.gov (United States)

    D'Hoker, Eric; Green, Michael B.; Vanhove, Pierre

    2015-08-01

    The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.

  4. Building America Case Study: BrightBuilt Home, Modular Zero Energy, Portland, Maine

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    Kaplan Thompson Architects (KTA) has specialized in sustainable, energy-efficient buildings, and they have designed several custom, zero-energy homes in New England. These zero-energy projects have generally been high-end, custom homes with budgets that could accommodate advanced energy systems. In an attempt to make zero energy homes more affordable and accessible to a larger demographic, KTA explored modular construction as way to provide high-quality homes at lower costs. In mid-2013, KTA formalized this concept when they launched BrightBuilt Home (BBH). The BBH mission is to offer 'a line of architect-designed, high-performance homes that are priced to offer substantial savings off the lifetime cost of a typical home and can be delivered in less time.' For the past two years, CARB has worked with BBH and Keiser Homes (the primary modular manufacturer for BBH) to discuss challenges related to wall systems, HVAC, and quality control. In Spring of 2014, CARB and BBH began looking in detail on a home to be built in Lincolnville, Maine, by Black Bros. Builders. This report details the solution package specified for this modular plan and the challenges that arose during the project.

  5. Defense Utility Energy Reporting System.

    Science.gov (United States)

    1993-11-24

    collectively as "the DoD Components.") The termO "Military Services," as used herein, refers to the Army, the Navy, the Air Force, and the Marine...and evaluation, disposal, incineration and similar activities will be designated industrial process energy activities. b. Facilities used primarily for...administration, housing, education and training, medical, research, staff, and headquarters functions will be designated facility energy activities

  6. Environmental impacts of energy utilization

    International Nuclear Information System (INIS)

    Prado, C.P.C. do; Orsini, C.M.Q.; Rodrigues, D.; Barolli, E.; Nogueira, F.R.; Bosco, F.A.R.; Tabacniks, M.H.; Artaxo Netto, P.E.

    1981-04-01

    A survey is done of the available data on the physical environmental impacts in Brazil, derived from energetic systems such as: petroleum, hydroelectricity, firewood, coal, ethanol, methanol and hydrogen. A critical evalution of these data is done with respect to the preservation of the environment. The necessity of studying the environmental impact of the utilization of ethanol, nuclear fuels and coal is stressed. (M.A.) [pt

  7. Modular Energy Management System Applicable to Residential Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2016-01-01

    In this paper, an energy management system is defined as a flexible architecture. This proposal can be applied to home and residential areas when they include generation units. The system has been integrated and tested in a grid-connected microgrid prototype, where optimal power generation profiles...

  8. Modular Approach of Dynamic Modeling of Type - 3 Wind Energy Conversion Systems

    OpenAIRE

    Rani M, Deepthi; Kumar M, Satyendra

    2017-01-01

    Modular approach towards type 3 Wind Energy Conversion System (WECS) is presented in this paper. This consists of design, dynamic modeling, simulation and stability analysis of wind power system which includes Wind Turbine (WT), Doubly Fed Induction Generator (DFIG) and advanced AC/DC/AC power converters. The dq reference frame is used to obtain the equivalent circuit of the DFIG. MATLAB Simulink has been used as the tool to evaluate the stability analysis of the WECS. It is proved that the...

  9. Utilization of thorium in a Gas Turbine – Modular Helium Reactor

    International Nuclear Information System (INIS)

    Şahin, Hacı Mehmet; Erol, Özgür; Acır, Adem

    2012-01-01

    Highlights: ► Performance parameters for the original fuel in GT-MHR depending on time were found. ► A proper plutonium–thorium mixture ratio was found using the original fuel results. ► Performance comparison of plutonium mixture and original fuel was made. ► Comparison showed that weapons grade plutonium mixture can be used in the reactor. - Abstract: Gas Turbine-Modular Helium Reactor (GT-MHR) is one of the new types of the reactors with high efficiency and increased safety features. The usage of different kinds of fissile material in this reactor can increase the life of it. Weapons-grade plutonium (WGrPu), which can be acquired from the old dismantled nuclear weapons, can be an option in a GT-MHR. In order to increase the sustainability of the WGrPu resources this fuel can be mixed with thorium, which is a fertile material that can be found in the nature and has resources three times more than uranium. In this study, possibility of utilization of the weapons-grade plutonium–thorium mixture was investigated and an optimum mixture ratio was determined. The behavior of this mixture and the original fuel was studied by using MCNP5 1.4, Monteburns 2.0 and Origen 2.2 tools. Calculations showed that, a GT-MHR type reactor, which is using the original TRISO fuel particle mixture of 20% enriched uranium + natural uranium (original fuel) has an effective multiplication factor (k eff ) of 1.270. Corresponding to this k eff value the weapons grade plutonium/thorium oxide mixture was found 19%/81%. By using Monteburns Code, the operation time, which describes the time passed until the reactor reaches a k eff value of 1.02, was found as 515 days for the original fuel and 1175 days for the weapons grade plutonium mixture. Furthermore, the burn-up values for the original fuel and WGrPu fuels were found as 47.69 and 119.27 GWd/MTU, respectively.

  10. Utilization of geothermal energy in Slovakia

    Directory of Open Access Journals (Sweden)

    Henrieta Pavolová

    2015-12-01

    Full Text Available Higher demand for energy consumption and the importance of environmental issues has encouraged researchers and policy makers to consider renewable energies more seriously. Energetic projects, resulting from orientation to energetic effectiveness are contributing to the increase of energetic safety and reduction of economic dependence on unstable prices of gas and petroleum during their import. The contribution studies possible ways of utilization of individual types of renewable energies by the analysis of utilization of geothermal energy through characteristics of individual areas of geothermal energy in Slovakia according to the intensity of heat flow. The results of the analysis prove that Slovakia has the vast potential of geothermal energy. There is, therefore, necessary to support business activities, orientated to the energy saving projects.

  11. Analysis of China's energy utilization for 2007

    International Nuclear Information System (INIS)

    Zhang Ming; Wang Wenwen

    2011-01-01

    China is the world's second-largest energy producer and consumer, so that it is very necessary to analyze China's energy situation for saving energy consumption and reducing GHG emission. Energy flow chart is taken as a useful tool for sorting out and displaying energy statistics data. Energy statistics data is the premise and foundation for analyzing energy situation. However, there exit many differences between China and foreign energy balance. Based on the international criterion of energy balance and some advices given by related experts, the author properly adjusts China's energy balance. And the purpose of this paper is to draft China's energy flow chart for 2007, which is used to study the characteristics of energy production and consumption in China. We find that: (1) coal is the main energy in China, which accounted for 73.2% of total energy supply in 2007; (2) thermal power accounted for 83.2% of the total electricity supply, and 78.43% thermal power was based on coal; (3) in 2007, the secondary industrial sector consumed about 69.93% of energy; (4) China's energy utilization efficiency was about 33.23% in 2007. - Research highlights: → Based on the international criterion of energy balance and some advices given by related experts, the author properly adjusts China's energy balance. → The purpose of this paper is to draft China's energy flow chart for 2007, which is used to study the characteristics of energy production and consumption in China. → We find that China's energy utilization efficiency was about 33.23% in 2007.

  12. Enabling Technologies for Ultra-Safe and Secure Modular Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Carmelo [General Atomics, San Diego, CA (United States); Schleicher, Robert [General Atomics, San Diego, CA (United States)

    2016-06-01

    Sandia National Laboratories and General Atomics are pleased to respond to the Advanced Research Projects Agency-Energy (ARPA-e)’s request for information on innovative developments that may overcome various current reactor-technology limitations. The RFI is particularly interested in innovations that enable ultra-safe and secure modular nuclear energy systems. Our response addresses the specific features for reactor designs called out in the RFI, including a brief assessment of the current state of the technologies that would enable each feature and the methods by which they could be best incorporated into a reactor design.

  13. Enabling Technologies for Ultra-Safe and Secure Modular Nuclear Energy

    International Nuclear Information System (INIS)

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Middleton, Bobby; Rodriguez, Salvador B.; Rodriguez, Carmelo; Schleicher, Robert

    2016-01-01

    Sandia National Laboratories and General Atomics are pleased to respond to the Advanced Research Projects Agency-Energy (ARPA-e)'s request for information on innovative developments that may overcome various current reactor-technology limitations. The RFI is particularly interested in innovations that enable ultra-safe and secure modular nuclear energy systems. Our response addresses the specific features for reactor designs called out in the RFI, including a brief assessment of the current state of the technologies that would enable each feature and the methods by which they could be best incorporated into a reactor design.

  14. Public utility regulation and national energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.

    1980-09-01

    The linkage between Public Utility Commission (PUC) regulation, the deteriorating financial health of the electric utility industry, and implementation of national energy policy, particularly the reduction of foreign petroleum consumption in the utility sector is examined. The role of the Nation's utilities in the pursuit of national energy policy goals and postulates a linkage between PUC regulation, the poor financial health of the utility industry, and the current and prospective failure to displace foreign petroleum in the utility sector is discussed. A brief history of PUC regulation is provided. The concept of regulatory climate and how the financial community has developed a system of ranking regulatory climate in the various State jurisdictions are explained. The existing evidence on the hypothesis that the cost of capital to a utility increases and its availability is reduced as regulatory climate grows more unfavorable from an investor's point of view is analyzed. The implications of this cost of capital effect on the electric utilities and collaterally on national energy policy and electric ratepayers are explained. Finally various State, regional and Federal regulatory responses to problems associated with PUC regulation are examined.

  15. Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation

    Science.gov (United States)

    Guzun, R.; Kaambre, T.; Bagur, R.; Grichine, A.; Usson, Y.; Varikmaa, M.; Anmann, T.; Tepp, K.; Timohhina, N.; Shevchuk, I.; Chekulayev, V.; Boucher, F.; Santos, P. Dos; Schlattner, U.; Wallimann, T.; Kuznetsov, A. V.; Dzeja, P.; Aliev, M.; Saks, V.

    2014-01-01

    To meet high cellular demands, the energy metabolism of cardiac muscles is organized by precise and coordinated functioning of intracellular energetic units (ICEUs). ICEUs represent structural and functional modules integrating multiple fluxes at sites of ATP generation in mitochondria and ATP utilization by myofibrillar, sarcoplasmic reticulum and sarcolemma ion-pump ATPases. The role of ICEUs is to enhance the efficiency of vectorial intracellular energy transfer and fine tuning of oxidative ATP synthesis maintaining stable metabolite levels to adjust to intracellular energy needs through the dynamic system of compartmentalized phosphoryl transfer networks. One of the key elements in regulation of energy flux distribution and feedback communication is the selective permeability of mitochondrial outer membrane (MOM) which represents a bottleneck in adenine nucleotide and other energy metabolite transfer and microcompartmentalization. Based on the experimental and theoretical (mathematical modelling) arguments, we describe regulation of mitochondrial ATP synthesis within ICEUs allowing heart workload to be linearly correlated with oxygen consumption ensuring conditions of metabolic stability, signal communication and synchronization. Particular attention was paid to the structure–function relationship in the development of ICEU, and the role of mitochondria interaction with cytoskeletal proteins, like tubulin, in the regulation of MOM permeability in response to energy metabolic signals providing regulation of mitochondrial respiration. Emphasis was given to the importance of creatine metabolism for the cardiac energy homoeostasis. PMID:24666671

  16. Utilization of solar energy in cold climate

    OpenAIRE

    Tazeeva, Elena

    2010-01-01

    Solar radiation is a source of life on the Earth. The sun heats the atmosphere and the surface of our planet. Because of the sun winds are blowing, circulation of water is happened, seas and oceans are heated, and plants are growing. Nowadays people know how to transfer solar radiation straightly into energy. The subject of the project is to research the possibilities of utilization of solar energy in cold climate. At this project the model of calculation solar energy is shown. Following ...

  17. Modular Hamiltonians for deformed half-spaces and the averaged null energy condition

    Science.gov (United States)

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar; Wang, Huajia

    2016-09-01

    We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on {{R}}^{1,d-1} . We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Our main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. These methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. We also discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.

  18. Land use and energy utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, T.O.; Nathans, R.; Palmedo, P.F.

    1977-06-01

    Land use plays an important role in structuring the basic patterns in which energy is consumed in many areas of the U.S. Thus, in considering policies at a national or local level, which are aimed at either utilizing energy supplies in a more efficient manner, or in establishing the compatibility of new energy supply, conversion, and end use technologies with our existing social patterns of energy use, it is important to understand the interdependencies between land use and energy. The Land Use-Energy Utilization Project initiated in July 1974 was designed to explore the quantitative relationships between alternative regional land-use patterns and their resultant energy and fuel demands and the impacts of these demands on the regional and national energy supply-distribution systems. The project studies and analyses described briefly in this report provide a framework for delineating the energy system impacts of current and projected regional land-use development; a base of information dealing with the energy intensiveness of assorted land-use activities; models that enable Federal and regional planners to estimate the ranges of potential energy savings that could be derived from employing alternative land-use activity configurations; and a user manual for allowing local land use planners to carry out their own land use-energy impact evaluations. Much remains to be done to elucidate the complicated interdependencies between land use and energy utilization: what is accomplished here is an initial structuring of the problem. On the other hand, the recent increase in interest in establishing new ways for the U.S. to achieve energy conservation suggests that actions will be taken in the near future to tie land-use development to national and local targets for conservation.

  19. Modular Hybrid Energy Concept Employing a Novel Control Structure Based on a Simple Analog System

    Directory of Open Access Journals (Sweden)

    PETREUS, D.

    2016-05-01

    Full Text Available This paper proposes a novel control topology which enables the setup of a low cost analog system leading to the implementation of a modular energy conversion system. The modular concept is based on hybrid renewable energy (solar and wind and uses high voltage inverters already available on the market. An important feature of the proposed topology is a permanently active current loop, which assures short circuit protection and simplifies the control loops compensation. The innovative analogue solution of the control structure is based on a dedicated integrated circuit (IC for power factor correction (PFC circuits, used in a new configuration, to assure an efficient inverter start-up. The energy conversion system (control structure and maximum power point tracking algorithm is simulated using a new macromodel-based concept, which reduces the usual computational burden of the simulator and achieves high processing speed. The proposed novel system is presented in this article from concept, through the design and implementation stages, is verified through simulation and is validated by experimental results.

  20. Technical databook for geothermal energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.L.; Igbene, A.; Fair, J.A.; Ozbek, H.; Tavana, M.

    1981-06-01

    A critical survey is made of selected basic data on those aqueous solutions needed to model geothermal energy utilization. The data are useful in the design and construction of power plants and for direct use. The result of the survey is given as a current status of data. More emphasis is placed on the viscosity, thermal conductivity and density of sodium chloride solutions up to 350/sup 0/C and 50 MPa. An ideal data book for geothermal energy is described.

  1. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study......In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  2. Review of Energy Harvesters Utilizing Bridge Vibrations

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan

    2016-01-01

    Full Text Available For health monitoring of bridges, wireless acceleration sensor nodes (WASNs are normally used. In bridge environment, several forms of energy are available for operating WASNs that include wind, solar, acoustic, and vibration energy. However, only bridge vibration has the tendency to be utilized for embedded WASNs application in bridge structures. This paper reports on the recent advancements in the area of vibration energy harvesters (VEHs utilizing bridge oscillations. The bridge vibration is narrowband (1 to 40 Hz with low acceleration levels (0.01 to 3.8 g. For utilization of bridge vibration, electromagnetic based vibration energy harvesters (EM-VEHs and piezoelectric based vibration energy harvesters (PE-VEHs have been developed. The power generation of the reported EM-VEHs is in the range from 0.7 to 1450000 μW. However, the power production by the developed PE-VEHs ranges from 0.6 to 7700 μW. The overall size of most of the bridge VEHs is quite comparable and is in mesoscale. The resonant frequencies of EM-VEHs are on the lower side (0.13 to 27 Hz in comparison to PE-VEHs (1 to 120 Hz. The power densities reported for these bridge VEHs range from 0.01 to 9539.5 μW/cm3 and are quite enough to operate most of the commercial WASNs.

  3. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  4. The energy-efficiency business - Energy utility strategies

    International Nuclear Information System (INIS)

    Loebbe, S.

    2009-01-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed

  5. Energy utilization, environmental pollution and renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Ocak, M.; Ocak, Z.; Bilgen, S.; Keles, S.; Kaygusuz, K.

    2004-01-01

    In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country, more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture content. Because of increasing energy consumption, environmental pollution is becoming a serious problem in the future for the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Especially hydropower, biomass, geothermal, solar and wind energy should be considered and seriously supported by governments and private sectors

  6. Utilization of geothermal energy in the USSR

    International Nuclear Information System (INIS)

    Kononov, V.I.; Dvorov, I.M.

    1990-01-01

    This paper reports that at present geothermal energy is utilized in the USSR mostly for district heating, and for industrial and agricultural purposes. The populations of 7 towns have district heating that is supplied by thermal waters. The population supplied totals about 125,000 people. The total area of greenhouses is 850,000 m 2 . Electric energy generated at geothermal power stations still remains negligible with the installed capacity of the single Pauzhetka station (Kamchatka) being 11 MW. another station at Mutnovka is currently under construction and is expected to be producing 50 MW by 1992 and 200 MW by 1998. The proven geothermal resources in the USSR provide hope for a significant increase in the utilization of the earth's deep heat in the near future

  7. Energy capture and storage in asymmetrically multistable modular structures inspired by skeletal muscle

    Science.gov (United States)

    Kidambi, Narayanan; Harne, Ryan L.; Wang, K. W.

    2017-08-01

    The remarkable versatility and adaptability of skeletal muscle that arises from the assembly of its nanoscale cross-bridges into micro-scale assemblies known as sarcomeres provides great inspiration for the development of advanced adaptive structures and material systems. Motivated by the capability of cross-bridges to capture elastic strain energy to improve the energetic efficiency of sudden movements and repeated motions, and by models of cross-bridge power stroke motions and sarcomere contractile behaviors that incorporate asymmetric, bistable potential energy landscapes, this research develops and studies modular mechanical structures that trap and store energy in higher-energy configurations. Modules exhibiting tailorable asymmetric bistability are first designed and fabricated, revealing how geometric parameters influence the asymmetry of the resulting double-well energy landscapes. These experimentally-observed characteristics are then investigated with numerical and analytical methods to characterize the dynamics of asymmetrically bistable modules. The assembly of such modules into greater structures generates complex, multi-well energy landscapes with stable system configurations exhibiting different quantities of stored elastic potential energy. Dynamic analyses illustrate the ability of these structures to capture a portion of the initial kinetic energy due to impulsive excitations as recoverable strain potential energy, and reveal how stiffness parameters, damping, and the presence of thermal noise in micro- and nano-scale applications influence energy capture behaviors. The insights gained could foster the development of advanced structural/material systems inspired by skeletal muscle, including actuators that effectively capture, store, and release energy, as well as adaptive, robust, and reusable armors and protective devices.

  8. Renewable Energy Options for a Utility System

    Science.gov (United States)

    Ahmadi, Lena; Panjeshahi, M. Hassan; Perry, Simon

    2009-05-01

    In this paper, renewable energies have been re-addressed with respect to the potentials and feasibility of being incorporated in process industries. Within a process, utility system is considered to be the most appropriate place for using sustainable energies. For integrating the renewable energies, the pinch analysis is applied as the main tool to provide opportunity for energy conservation. The results demonstrated that the power generation by the wind is the most cost effective and environmentally friendly option for energy conservation in comparison to the other sustainable resources. However the tidal energy stands the least due to the long payback period. Also, a computer program has been developed, using MATLAB 7.3, to screen out different scenarios and perform economic study. The outcome data showed that, there are several different opportunities for the integration of alternative energies. Finally, this method has been applied to a case study and various retrofit projects have been identified, each of which has certain amount of CO2 reduction and estimated values for the required investment, saving potential and payback period.

  9. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  10. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    Science.gov (United States)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  11. BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy

    International Nuclear Information System (INIS)

    Gulbinas, R.; Jain, R.K.; Taylor, J.E.

    2014-01-01

    Highlights: • We developed a socio-technical commercial building energy management system. • It was designed for directly engaging and connecting building occupants via feedback. • We collected an array of clickstream data for internal design validation. • A pilot study validated its ability to drive energy savings in commercial buildings. - Abstract: Commercial buildings represent a significant portion of energy consumption and environmental emissions worldwide. To help mitigate the environmental impact of building operations, building energy management systems and behavior-based campaigns designed to reduce energy consumption are becoming increasingly popular. In this paper, we describe the development of a modular socio-technical energy management system, BizWatts, which combines the two approaches by providing real-time, appliance-level power management and socially contextualized energy consumption feedback. We describe in detail the physical and virtual architecture of the system, which simultaneously engages building occupants and facility managers, as well as the main principles behind the interface design and component functionalities. A discussion about how the data collection capabilities of the system enable insightful commercial building energy efficiency studies and quantitative network analysis is also included. We conclude by commenting on the validation of the system, identifying current system limitations and introducing new research avenues that the development and deployment of BizWatts enables

  12. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  13. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  14. A Standardised Modular Approach for Site SCADA Applications within a Water Utility

    OpenAIRE

    Pisica, I; Gray, A; Taylor, G; Whitehurst, L

    2016-01-01

    Any large water treatment/production utility that employs autonomous plant as part of its processes will utilise supervisory control and data acquisition systems. These systems will generally be isolated from each other and will exist solely to serve the site they control and visualise. More often, they are delivered and developed organically through cost driven maintenance regimes, that prioritise on process risk rather than asset lifecycles. In some cases, this has led to variations in inst...

  15. Industrial utilization of geopressured geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Underhill, Gary K; Carlson, Ronald A.; Clendinning, William A.; Erdos, Jozsef; Gault, John; Hall, James W.; Jones, Robert L.; Michael, Herbert K.; Powell, Paul H.; Riemann, Carl F.; Rios-Castellon, Lorenzo; Shepherd, Burchard P.; Wilson, John S.

    1976-01-01

    Discussion of the industrial utilization of geopressured geothermal energy is currently limited by the limited knowledge of the resource's distribution. However, the resource assessment activity in the Bureau of Economic Geology, The University of Texas at Austin, has identified a number of fairway or potential resource zones. These zones are located in Kenedy County; in and about Corpus Christi and Nueces Bays in Nueces, San Patricio, and Aransas Counties; in the coastal zones of Matagorda County; and in a crescent-shaped zone parallel to the coastline in Brazoria and Galveston Counties. The Kenedy and Matagorda County zones are situated in rural areas with little or no industrial activity. The Corpus Christi and Brazoria-Galveston zones are in and adjacent to highly industrialized and urbanized districts. The rural zones will require the establishment of new industries for geothermal fluid utilization while the industrial-urban zones will require either new industry, expansion to existing industry, or modification to existing plant and process. Proposed industries for geothermal fluid utilization can be considered with respect to fitting the industry to the available fluids; this has been the usual approach. An alternate approach is to fit the abailable fluids to the proposed industry. In order to follow the alternate approach requires consideration of ways to upgrade the quality of existing geothermal fluids or geothermal-derived or -energized fluids.

  16. Solar energy utilization in the USSR

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1993-01-01

    The conditions for solar energy utilization in the USSR are not too favorable. Only in the country's southern regions is there sufficient insolation to make solar energy utilization economical. In higher latitudes only seasonable use of solar energy is reasonable. Up to now, the main application of solar energy was to produce low temperature heat for hot water production, drying of agricultural goods, space heating and thermal treating of concrete. A substantial part of the solar heating installations is flat plate solar collectors. The total installed area of solar collectors slightly exceeds 100,000 m 2 . The collectors are produced by industry, as well as by small enterprises. In some cases selective coatings are used over the absorber plates; black nickel or chromium is the main coating material. Recently, new projects were launched to develop and produce advanced collectors with enhanced efficiency and reliability. Substantial progress has been made in the USSR in developing and producing photovoltaic cells, mainly for space applications. Terrestrial applications of photovoltaic is only in the very early stage. About 100 Kw of photovoltaic cells are produced annually in the USSR, based on mono or polycrystalline silicon. Some experimental photovoltaic-arrays in the range of several tenth of Kw are installed in different places. Research and development work is carried out to produce thin film cells. Effort are in progress to construct automated production lines for 1 MW per year of crystalline and amorphous silicon. In the Crimea, a solar power plant SES-5 (5 MW peak power) was commissioned some years ago. The plant is of a tower type, with a circular helioscope field. The plants working fluid is steam. The experienced gained demonstrates that this design concept has several disadvantages. The cost of electricity produced by such type plants extremely high. Recently, alternative types of solar power plants have been under development, in particular, a project

  17. Aligning Utility Incentives with Investment in Energy Efficiency

    Science.gov (United States)

    Describes the financial effects on a utility of its spending on energy efficiency programs, how those effects could constitute barriers to more aggressive and sustained utility investment in energy efficiency.

  18. Kauai Island Utility Cooperative energy storage study.

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, Abbas Ali; Yamane, Mike (Kauai Island Utility Cooperative, Lihu' e, HI); Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce

  19. Computer simulation of thermal and fluid systems for MIUS integration and subsystems test /MIST/ laboratory. [Modular Integrated Utility System

    Science.gov (United States)

    Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.

    1975-01-01

    This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.

  20. A modular function architecture for adaptive and predictive energy management in hybrid electric vehicles; Eine modulare Funktionsarchitektur fuer adaptives und vorausschauendes Energiemanagement in Hybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Andreas

    2009-10-27

    Due to the relatively low energy density of electrical energy storage devices, the control strategy of hybrid electric vehicles has to fulfil a variety of requirements in order to provide both, the availability of hybrid functions, and their efficient execution. Energy consuming functions such as electric drive or electric boost need a high amount of energy stored in the battery. On the other hand for the optimum use of the energy regeneration function a lower state of charge is preferable in order to enable storage of the kinetic energy of the vehicle in all situations, including upon deceleration from high speeds or downhill driving. These diverging requirements yield a conflict of objectives for the charging strategy of hybrid electric vehicles. This work proposes a way to overcome the restrictions on efficiency in hybrid electric vehicles without deteriorating overall driving performance by charging or discharging the traction battery, and by setting the energy management parametres according to the current and forthcoming driving situation. Specific charging and electric drive strategies are presented for various driving situations which are identified by sensors such as navigation systems, cameras or radar. Necessary sensor data fusion methods for driving situation identification are described and a modular function architecture for predictive energy management is derived that is plug-and-play compatible with a broad fleet of vehicles. In order to evaluate its potential, this work also focuses on the simulation of the energy functions and their implementation into an experimental vehicle. This allows measurements under real traffic conditions and a sensivity analysis of the main module interactions within the architecture. (orig.)

  1. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  2. Small Modular Reactors: Nuclear Energy Market Potential for Near-term Deployment

    International Nuclear Information System (INIS)

    Lokhov, Alexey; Sozoniuk, Vladislav; Rothwell, Geoffrey; ); Cometto, Marco; Paillere, Henri; ); Crozat, Matt; Genoa, Paul; Joon Kim, Tae; McGough, Mike; Ingersoll, Dan; Rickman, Robin; Stout, Dan; Halnon, Greg; Chenais, Jacques; Briffod, Francois-Xavier; Perrier, Sylvain; Shahrokhi, Farshid; Kaufer, Barry; Wasylyk, Andrew; Shropshire, David; ); Danrong, Song; Swinburn, Richard

    2016-01-01

    Recent interest in small modular reactors (SMRs) is being driven by a desire to reduce the total capital costs associated with nuclear power plants and to provide power to small grid systems. According to estimates available today, if all the competitive advantages of SMRs were realised, including serial production, optimised supply chains and smaller financing costs, SMRs could be expected to have lower absolute and specific (per-kWe) construction costs than large reactors. Although the economic parameters of SMRs are not yet fully determined, a potential market exists for this technology, particularly in energy mixes with large shares of renewables. This report assesses the size of the market for SMRs that are currently being developed and that have the potential to broaden the ways of deploying nuclear power in different parts of the world. The study focuses on light water SMRs that are expected to be constructed in the coming decades and that strongly rely on serial, factory-based production of reactor modules. In a high-case scenario, up to 21 GWe of SMRs could be added globally by 2035, representing approximately 3% of total installed nuclear capacity. (authors)

  3. A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

    Directory of Open Access Journals (Sweden)

    X. YAN

    2013-06-01

    Full Text Available HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's 950°C, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to 750°C for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to 900°C for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

  4. Locating Temporal Functional Dynamics of Visual Short-Term Memory Binding using Graph Modular Dirichlet Energy

    Science.gov (United States)

    Smith, Keith; Ricaud, Benjamin; Shahid, Nauman; Rhodes, Stephen; Starr, John M.; Ibáñez, Augustin; Parra, Mario A.; Escudero, Javier; Vandergheynst, Pierre

    2017-02-01

    Visual short-term memory binding tasks are a promising early marker for Alzheimer’s disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task’s transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100-140 ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140-180 ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.

  5. Final report on the development of a 250-kW modular, factory-assembled battery energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D. [Omnion Power Engineering Corp., East Troy, WI (United States); Nerbun, W. [AC Battery Corp., East Troy, WI (United States); Corey, G. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1998-08-01

    A power management energy storage system was developed for stationary applications such as peak shaving, voltage regulation, and spinning reserve. Project activities included design, manufacture, factory testing, and field installation. The major features that characterize the development are the modularity of the production, its transportability, the power conversion method that aggregates power on the AC side of the converter, and the use of commonly employed technology for system components. 21 figs.

  6. Reducing Operating Costs and Energy Consumption at Water Utilities

    Science.gov (United States)

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  7. Utility Energy Services Contracts: Enabling Documents, May 2009 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2009-05-01

    Enabling Documents, delivered by the U.S. Department of Energy's Federal Energy Management Program (FEMP) to provide materials that clarify the authority for federal agencies to enter into utility energy services contracts (UESCs).

  8. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.

    Science.gov (United States)

    Zhang, Meiling; Chekan, Jonathan R; Dodd, Dylan; Hong, Pei-Ying; Radlinski, Lauren; Revindran, Vanessa; Nair, Satish K; Mackie, Roderick I; Cann, Isaac

    2014-09-02

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  9. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes

    KAUST Repository

    Zhang, Meiling

    2014-08-18

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT-04215 and BACOVA-04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xy-lose- configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM fromits homolog in the Prevotella bryantii B 14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. Aminimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  10. Impact of alternative energy forms on public utilities

    Science.gov (United States)

    Keith, F. W., Jr.

    1977-01-01

    The investigation of alternative energy sources by the electric utility industry is discussed. Research projects are reviewed in each of the following areas; solar energy, wind energy conversion, photosynthesis of biomass, ocean thermal energy conversion, geothermal energy, fusion, and the environmental impact of alternative energy sources.

  11. Specific systems studies of battery energy storage for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  12. Electric utilities strategies in final energy markets

    International Nuclear Information System (INIS)

    Bianchi, A.

    2000-01-01

    In rapidly changing markets, electric utilities pay growing attention to customers and service. They are aware that competition needs strategies capable of transforming and strengthening the privileged position resulting from the knowledge of the market. Moreover, this aspect is the link between different value chains to describe new multi utility approaches [it

  13. Investigation for promoting the utilization of ligneous energy. (3). Direction of ligneous energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Actual state of 140 cases of ligneous energy utilization in the agricultural industry, the fishing industry, domestic purposes and public facilities was investigated in respect of the kind of ligneous fuels, availability and burning equipments. The results of investigation are classified by the purpose (paper and pulp mill, particle board mill, plywood mill, lumber mill, horticulture, mushroom growing, sericulture and public facilities), the ligneous fuel, type of pretreatment of ligneous fuels, equipment and the amount of fuel consumption. Three experimental studies, namely, combustion of ligneous fuels in a small hot water boiler, heating of a horticultural facility by an underground heat exchange system and manufacture of smoked firewood.

  14. A modular approach to inverse modelling of a district heating facility with seasonal thermal energy storage

    DEFF Research Database (Denmark)

    Tordrup, Karl Woldum; Poulsen, Uffe Vestergaard; Nielsen, Carsten

    2017-01-01

    We use a modular approach to develop a TRNSYS model for a district heating facility by applying inverse modelling to one year of operational data for individual components. We assemble the components into a single TRNSYS model for the full system using the accumulation tanks as a central hub...

  15. A modular approach to inverse modelling of a district heating facility with seasonal thermal energy storage

    DEFF Research Database (Denmark)

    Tordrup, Karl Woldum; Poulsen, Uffe Vestergaard; Nielsen, Carsten

    2017-01-01

    We use a modular approach to develop a TRNSYS model for a district heating facility by applying inverse modelling to one year of operational data for individual components. We assemble the components into a single TRNSYS model for the full system using the accumulation tanks as a central hub conn...

  16. Regenesys utility scale energy storage. Project summary

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed

  17. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  18. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bibeault, Mark Leonide [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  19. The strategy of European energy utilities

    International Nuclear Information System (INIS)

    Blakey, S.; Kramer, M.; Sauquet, P.; Sire, D.; Venet, D.; Lenoir, J.

    2007-01-01

    After a relatively quiet period, the concentration movement in the energy sector is growing up again. What will be the limit of this dynamics? What will be tomorrow's European energy actors? Will it be a mix of big groups, medium-size and small companies with a specialized activity like today, or only big groups with multi-energy supply and production activities which will directly supply the end-users? What is the provisions foreseen by such groups to ensure the security of supplies? What are the synergies in terms of size and/or multi-energy offers? Five participants and a journalist have debated these questions at this round table. (J.S.)

  20. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  1. Utilization of superconductivity in energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, J.T.; Mikkonen, R.; Lahtinen, M.; Paasi, J. [Tampere Univ. of Technology (Finland). Laboratory of Electricity and Magnetism

    1998-12-31

    The technical potential of high temperature superconductors has been demonstrated in energy power applications. The magnetisation coils of the constructed 1.5 kW synchronous motor are made of bismuth-based material, the efficiency of the motor being 82 %. The same material is utilised in a 5 kJ magnetic energy storage in order to compensate for a short-term loss of power. Fast activation time and high efficiency are the benefits compared to traditional UPS systems. The operation temperature of 20-30 K enables the usage of mechanical cooling which is one major advantage compared to conventional liquid helium cooled systems. (orig.)

  2. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  3. The Existing Regulatory Conditions for 'Energy Smart Water Utilities'

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe

    2014-01-01

    This chapter is focused on the legal conditions that exist for the energy–smart water utilities in the European Union (EU). In section 2 the interdependencies of water and energy services and the growing interest in solving these problems that may arise from this interdependence by regulatory...... initiatives are shortly described. One of the solutions needed is a reduction of energy use in the water utilities by their utilisation of renewable sources – acting as energy–smart water utilities. Such utilities are described in section 3. The policy and law regulating the water utilities are important...... conditions. Based on these facts, the resource efficiency and low–carbon policy of the EU as well as the EU’s rules of relevance for the utilities are highlighted in section 4. It is concluded that the current EU legislation makes it possible for the Member States to promote energy–smart water utilities...

  4. Utilization of cellulosic waste for energy production

    Science.gov (United States)

    Deshpande, V.; Mishra, C.; Rao, M.; Seeta, R.; Srinivasan, M. C.; Jagannathan, V.

    1980-01-01

    Bioconversion of cellulose for the production of food or alcohol is of importance for the utilization of a renewable and abundant resource. The hydrolysis of different cellulosic materials by the cellulolytic enzymes produced by Penicillium funiculosum was studied. Fifty to 70% saccharification was obtained from pretreated bagasse, cotton and wood. The effect of different pretreatments to make the cellulose more susceptible to enzyme breakdown was also studied. Alkali pretreatment was found to be effective for most of the substrates. The production of alcohol from the hydrolysates by yeast fermentation without isolation of glucose was studied.

  5. Utilization of secondary energy resources of metallurgical ...

    African Journals Online (AJOL)

    ... with a heat output of 4200 kW, a working agent R 600, a source of low-potential heat-circulating water: a 460 kW gas engine. The proposed scheme showed high efficiency of power supply of the town in comparison with the gas boiler. Keywords: heat pump; internal combustion engine metallurgical plant; energy efficiency ...

  6. Utilization of solar energy in South Africa

    CSIR Research Space (South Africa)

    Whillier, A

    1953-04-01

    Full Text Available Design curves based on measurements of solar irradiation in South Africa are presented for two geographic areas, the highveld and the Cape Peninsula, giving data on the amount of thermal energy that can be collected from the sun by use of flat...

  7. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  8. Assessment of household energy utilized for cooking in Ikeja, Lagos ...

    African Journals Online (AJOL)

    Household cooking energy accounts for a major part of the total energy consumed in Nigeria. Factors affecting the choice of Household energy utilized for cooking and the type preferred in Ikeja area of Lagos state were investigated in this study. Data were obtained through oral interview and administration of structured ...

  9. Identification of Selected Areas to Support Federal Clean Energy Goals Using Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [ORNL; Mays, Gary T [ORNL; Omitaomu, Olufemi A [ORNL; Poore III, Willis P [ORNL

    2013-12-01

    This analysis identifies candidate locations, in a broad sense, where there are high concentrations of federal government agency use of electricity, which are also suitable areas for near-term SMRs. Near-term SMRs are based on light-water reactor (LWR) technology with compact design features that are expected to offer a host of safety, siting, construction, and economic benefits. These smaller plants are ideally suited for small electric grids and for locations that cannot support large reactors, thus providing utilities or governement entities with the flexibility to scale power production as demand changes by adding additional power by deploying more modules or reactors in phases. This research project is aimed at providing methodologies, information, and insights to assist the federal government in meeting federal clean energy goals.

  10. Importance of Peaceful Utilization of Nuclear Energy

    OpenAIRE

    J. Frydryšková

    2009-01-01

    Following the massive destruction of Hiroshima and Nagasaki in the end of Second World War, the atom was generally taken to be the primary symbol of the new era, the so-called ‘atomic age’, a prototypical modern conjuncture forever oscillating between the agonies of mass death and standardized terror, and the euphoria of tremendous economic transformation through the permanent resolution of the ever increasing need for electrical energy at little or no cost. After Hiroshima the symbolic meani...

  11. Energy and exergy utilizations of the Jordanian SMEs industries

    International Nuclear Information System (INIS)

    Al-Ghandoor, A.; Al Salaymeh, M.; Al-Abdallat, Y.; Al-Rawashdeh, M.

    2013-01-01

    Highlights: ► We analyze the energy and exergy utilizations of the Jordanian SMEs industries. ► We developed an energy balance for the Jordanian SMEs industries. ► The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist. - Abstract: This study presents detailed analysis of the energy and exergy utilizations of the Jordanian Small-Medium Enterprises (SMEs) by considering the flows of energy and exergy through the main end uses in the Jordanian industrial sector. To achieve this purpose, a survey covering 180 facilities was conducted and energy consumption data was gathered to establish detailed end-use balance for the Jordanian industrial sector. The energy end-use balance provides a starting point to estimate the site and embodied energy and exergy efficiencies. The average site energy and exergy efficiencies of the Jordanian SMEs industries sector are estimated as 78.3% and 37.9% respectively, while the embodied energy and exergy efficiencies are estimated as 58.9% and 21.2% respectively. The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist.

  12. Benefits and applications of modular hydroelectric pumped storage

    International Nuclear Information System (INIS)

    Koebbe, R.S.

    1991-01-01

    This paper reports on hydroelectric pumped storage which is the only proven and most efficient technology available for energy storage. It is used by utilities to provide peak and intermediate power and to optimize overall system performance. Because of increased environmental and regulatory constraints, few acceptable sites, long schedules, and huge financial commitments, large conventional pumped storage plants, are now virtually impossible to build. As an alternative, small modular pumped storage, with project sizes ranging from 25 MW to 200 MW, was created to overcome the difficulties of conventional projects. The modular approach involves standardizing the elements of a pumped storage plant by utilizing specialized siting techniques and optimizing design, equipment, and construction. Compared with conventional pumped storage, the modular design can reduce cost and expedite schedule; reduce environmental concerns and permitting obstacles; and expand applications of energy storage on a utility's system

  13. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  14. Direct utilization of geothermal energy: a technical handbook

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N; Lund, J.W. (eds.)

    1979-01-01

    This technical handbook includes comprehensive discussions on nature and occurrence of the geothermal resource, its development, utilization, economics, financing, and regulation. Information on pricing parameters for the direct use of geothermal energy is included as an appendix. (MRH)

  15. Solar thermal energy utilization: A bibliography with abstracts

    Science.gov (United States)

    1976-01-01

    Bibliographic series, which is periodically updated, cites documents published since 1957 relating to practical thermal utilization of solar energy. Bibliography is indexed by author, corporate source, title, and keywords.

  16. Importance of Peaceful Utilization of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    J. Frydryšková

    2009-01-01

    Full Text Available Following the massive destruction of Hiroshima and Nagasaki in the end of Second World War, the atom was generally taken to be the primary symbol of the new era, the so-called ‘atomic age’, a prototypical modern conjuncture forever oscillating between the agonies of mass death and standardized terror, and the euphoria of tremendous economic transformation through the permanent resolution of the ever increasing need for electrical energy at little or no cost. After Hiroshima the symbolic meaning and presence of the atom crossed and recrossed the lines between popular culture, lived experience, political protest, strategic discourse, modern design, industry, medicine, and agriculture, that it truly became ‘atomic age’ whether one was in the US, France, China or anywhere else. 

  17. Analysis of energy and utility service demands

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The collection, analysis, and review of existing data on a community's service requirements are documented. The research focused on the analysis of energy-using activities including both micro activities such as space heating, cooking, lighting, and transportation; and macro activities such as providing shelter, health care, education, etc. The technical report describes the analytical framework developed for community description; describes an indexing system by which a catalog of services can be accessed; illustrates the application of the data to an existing community; and provides ancillary information on data availability. A catalog of data is presented which includes several sets of indices which facilitate access of data using various keys. Abstracts of 48 data sources are analyzed. Each abstract includes a description and evaluation of the data, a sampling of that data, an assessment as to how that data may be applied to other analyses, and a reference where the user can secure additional data. (MCW)

  18. The development and utilization of biomass energy resources in China

    International Nuclear Information System (INIS)

    Lin Dai

    1995-01-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author)

  19. Service Modularity

    DEFF Research Database (Denmark)

    Avlonitis, Viktor; Hsuan, Juliana

    2015-01-01

    The purpose of this research is to investigate the studies on service modularity with a goal of informing service science and advancing contemporary service systems research. Modularity, a general systems property, can add theoretical underpinnings to the conceptual development of service science...... in general and service systems in particular. Our research is guided by the following question: how can modularity theory inform service system design? We present a review of the modularity literature and associated concepts. We then introduce the contemporary service science and service system discourse...

  20. Service Modularity

    DEFF Research Database (Denmark)

    Avlonitis, Viktor; Hsuan, Juliana

    2015-01-01

    in general and service systems in particular. Our research is guided by the following question: how can modularity theory inform service system design? We present a review of the modularity literature and associated concepts. We then introduce the contemporary service science and service system discourse......The purpose of this research is to investigate the studies on service modularity with a goal of informing service science and advancing contemporary service systems research. Modularity, a general systems property, can add theoretical underpinnings to the conceptual development of service science...

  1. Energy Resource Planning. Optimal utilization of energy resources

    International Nuclear Information System (INIS)

    Miclescu, T.; Domschke, W.; Bazacliu, G.; Dumbrava, V.

    1996-01-01

    For a thermal power plants system, the primary energy resources cost constitutes a significant percentage of the total system operational cost. Therefore a small percentage saving in primary energy resource allocation cost for a long term, often turns out to be a significant monetary value. In recent years, with a rapidly changing fuel supply situation, including the impact of energy policies changing, this area has become extremely sensitive. Natural gas availability has been restricted in many areas, coal production and transportation cost have risen while productivity has decreased, oil imports have increased and refinery capacity failed to meet demand. The paper presents a mathematical model and a practical procedure to solve the primary energy resource allocation. The objectives is to minimise the total energy cost over the planning period subject to constraints with regards to primary energy resource, transportation and energy consumption. Various aspects of the proposed approach are discussed, and its application to a power system is illustrated.(author) 2 figs., 1 tab., 3 refs

  2. Protein and energy utilization by cockerels fed four different ...

    African Journals Online (AJOL)

    Protein and energy efficiency were significantly (p<0.05) improved in birds fed diet 3 and diet 4. These results are due to the consumption of higher levels of protein and energy by cockerels fed diet 3 and diet 4 coupled with the birds ability to better utilize these nutrients compared to those fed diet 1 and diet 2 respectively.

  3. Iceland's Central Highlands: Nature conservation, ecotourism, and energy resource utilization

    Science.gov (United States)

    Bjorn Gunnarsson; Maria-Victoria Gunnarsson

    2002-01-01

    Iceland’s natural resources include an abundance of geothermal energy and hydropower, of which only 10 to 15 percent is currently being utilized. These are clean, renewable sources of energy. The cost to convert these resources to electricity is relatively low, making them attractive and highly marketable for industrial development, particularly for heavy industry....

  4. Utilization of Wastes as an Alternative Energy Source for ...

    African Journals Online (AJOL)

    MBI

    2013-04-19

    Apr 19, 2013 ... Therefore, this paper examines how waste can be utilized to produce energy for sustainable development with ... disposal of wastes. While there is an obvious need to minimize the generation of wastes and to reuse and recycle them, the technologies for recovery of energy from ..... Resources for Wealth.

  5. The modular pebble bed nuclear reactor - the preferred new sustainable energy source for electricity, hydrogen and potable water production?

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2003-01-01

    This paper describes a joint project of Massachusetts Institute of technology, Nu-Tec Inc. and Proto Power. The elegant simplicity of graphite moderated pebble bed reactor is the basis for the 'generation four' nuclear power plants. High Temperature Gas Cooled (HTGC) nuclear power plant have the potential to become the preferred base load sustainable energy source for the new millennium. The great attraction of these helium cooled 'Generation Four' nuclear plant can be summarised as follows: Factory assembly line production; Modularity and ease of delivery to site; High temperature Brayton Cycle ideally suited for cogeneration of electricity, potable water and hydrogen; Capital and operating costs competitive with hydrocarbon plant; Design is inherently meltdown proof and proliferation resistant

  6. Modular forms

    NARCIS (Netherlands)

    Edixhoven, B.; van der Geer, G.; Moonen, B.; Edixhoven, B.; van der Geer, G.; Moonen, B.

    2008-01-01

    Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the

  7. The Legal Conditions for Water Utilities Eco-Innovation as Energy Smart Water Utilities

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe

    2013-01-01

    Welfare and green growth rest havely on an appropriate supply of safe water, the provision of adequate sewage, and on energy services. These services are interdependent, as water is an integral part of electric-power generation. Energy is also an integrated part of water services, as satisfying...... water needs for supply, purification, distribution, and treatment of wastewater requires energy sources. Water and energy utilities are however regulated without a specific focus on the interdependency of the two sectors and the possibilities to ensure sustainable use of the resources and reduction...... of greenhouse gasses by a better coordination. The article explains the possibilities of sustainable consumption and production of energy in the water utilities. It highlights EU legal framework that makes coordination at national level possible, and it gives examples and concludes on the obstacles...

  8. On the hypothetical utilization of atmospheric potential energy

    Directory of Open Access Journals (Sweden)

    Thomas Frisius

    2014-09-01

    Full Text Available Atmospheric potential energy is typically divided into an available and a nonavailable part. In this article a hypothetical utilization of a fraction of the nonavailable potential energy is described. This part stems from the water vapor that can be converted into the liquid phase. An energy gain results when the potential energy of the condensate relative to a reference height exceeds the energy necessary to condensate the water vapor. It is shown that this can be the case in a saturated atmosphere without convective available potential energy. Finally, simulations with the numerical cloud model HURMOD are performed to estimate the usability of the device in practice. Indeed, a positive energy output results in a simulation with immediate gathering of the condensate. On the contrary, potential energy gained falls significantly short of the necessary energy for forming the condensate when a realistic cloud microphysical scheme allowing re-evaporation of condensate is applied. Taken together it can be concluded that, a utilization of atmospheric potential energy is hypothetically possible but the practical realization is probably not feasible.

  9. A snapshot of geothermal energy potential and utilization in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2009-01-01

    Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey is an energy importing country; more than two-thirds of her energy requirement is supplied by imports. In this context, geothermal energy appears to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Since geothermal energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of the present study. The paper not only presents a review of the potential and utilization of the geothermal energy in Turkey but also provides some guidelines for policy makers. (author)

  10. Electric utility applications of hydrogen energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  11. Adaptable Energy Systems Integration by Modular, Standardized and Scalable System Architectures: Necessities and Prospects of Any Time Transition

    Directory of Open Access Journals (Sweden)

    Jonas Hinker

    2018-03-01

    Full Text Available Energy conversion and distribution of heat and electricity is characterized by long planning horizons, investment periods and depreciation times, and it is thus difficult to plan and tell the technology that optimally fits for decades. Uncertainties include future energy prices, applicable subsidies, regulation, and even the evolution of market designs. To achieve higher adaptability to arbitrary transition paths, a technical concept based on integrated energy systems is envisioned and described. The problem of intermediate steps of evolution is tackled by introducing a novel paradigm in urban infrastructure design. It builds on standardization, modularization and economies of scale for underlying conversion units. Building on conceptual arguments for such a platform, it is then argued how actors like (among others municipalities and district heating system operators can use this as a practical starting point for a manageable and smooth transition towards more environmental friendly supply technologies, and to commit to their own pace of transition (bearable investment/risk. Merits are not only supported by technical arguments but also by strategical and societal prospects like technology neutrality and availability of real options.

  12. Metabolic utilization of energy and maintenance requirements in lactating sows.

    Science.gov (United States)

    Noblet, J; Etienne, M

    1987-03-01

    Metabolizable energy (ME), heat production (measured by indirect calorimetry in respiration chambers), milk energy output and body energy mobilization were measured in 20 gilts (10 replicates of two littermates) during a 21-d lactation. Two energy levels were used: 14.2 and 10.4 Mcal ME X d-1 X sow-1 in the high energy (HE) and low energy (LE) groups, respectively. The daily supply of other nutrients in the diets was identical in both treatments. Measurements of metabolic rate and energy balance of the litters were carried out. These data were used to estimate the maintenance requirements of the sows (MEm) and the efficiencies of utilization of energy of food (kl) and body reserves (krl) for energy production in milk. Nitrogen balance of the sows was also determined. Energy mobilization was increased by energy restriction (-5.35 vs -2.04 Mcal X d-1 X sow-1 for HE and LE gilts, respectively) and by the increment of milk production with the advancement of lactation. Energy restriction (LE vs HE gilts) resulted in increased weight loss consisting mainly of fat tissue depletion. Muscle depletion represented a rather large proportion of weight loss, even in sows fed the high energy level. Maintenance requirements amounted to 109 kcal ME X kg weight-.75 X d-1. The estimations for kl and krl were 72 and 88%, respectively. These results show that the overall efficiency of energy storage during pregnancy and its mobilization during lactation (68.6 to 70.9%) is similar to that of direct utilization of ME during lactation.

  13. Community energy systems and the law of public utilities

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Nebraska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitiled ''Community Energy Systems and the Law of Public Utilities--Volume One: An Overview.'' This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. Can energy utilities play a role in local political energy savings programs?

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Kasper

    2012-01-01

    companies. The Carbon 20 project has entered agreements with different energy consultants to provide these screenings for little or no cost - utilising a national scheme obligating the Danish energy utilities to reduce energy use among customers. However, the energy consultants are rather reluctant to offer...

  15. ASKI: A modular toolbox for scattering-integral-based seismic full waveform inversion and sensitivity analysis utilizing external forward codes

    Directory of Open Access Journals (Sweden)

    Florian Schumacher

    2016-01-01

    Full Text Available Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth’s interior remains of high interest in Earth sciences. Here, we give a description from a user’s and programmer’s perspective of the highly modular, flexible and extendable software package ASKI–Analysis of Sensitivity and Kernel Inversion–recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski.

  16. Energy conservation through utilization of mechanical energy storage

    Science.gov (United States)

    Eisenhaure, D. B.; Bliamptis, T. E.; Downer, J. R.; Heinemann, P. C.

    Potential benefits regarding fuel savings, necessary technology, and evaluation criteria for the development of flywheel-hybrid vehicles are examined. A case study is quoted in which adoption of flywheel-hybrid vehicles in a taxi fleet would result in an increase of 10 mpg average to 32 mpg. Two proposed systems are described, one involving direct engine power to the flywheel and the second regenerating the flywheel from braking energy through a continuously variable transmission. Fuel consumption characteristics are considered the ultimate determinant in the choice of configuration, while material properties and housing shape determine the flywheel speed range. Vehicle losses are characterized and it is expected that a flywheel at 12,000 rpm will experience less than one hp average parasitic power loss. Flywheel storage is suitable for smaller engines because larger engines dominate the power train mass. Areas considered important for further investigation include reliability of an engine run near maximum torque, noise and vibration associated with flywheel operation, start up delays, compatibility of driver controls, integration of normal with regenerative braking systems, and, most importantly, the continuously variable transmission.

  17. Renewable energy utilization in 3 european cities. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    Energy production based on fossil fuels produces CO2, SO2 and NOx, which are harmful to the environment. It is agreed, both nationally and internationally, that it is necessary to considerably reduce the energy consumption. The difference between different European countries politically, financially, culturally, and socially needs to be acknowledged when energy initiatives are considered for implementation on a local as well as an international scale. This was the basis for the initiation of the project `Renewable Energy Utilization in 3 European Cities`. Three very different cities with different problems and thus different interests got together and joined efforts to develop action plans to increase renewable energy use to reduce the burden on the environment from energy consumption in the urban and regional areas. The work has been undertaken by the working group presented in appendix 3. (EG) ALTENER. 25 refs.

  18. recent estimates of energy utilization by young dairy calves

    African Journals Online (AJOL)

    gains may then be computed directly from energy reten- tion. Basing most of the above assessments on live-mass and/ or assumptions, renders these findings invalid or at best wild approximations. Numerous workers have shown that, for maintenance, the efficiency of utilization of ME from different dietary sources varies ...

  19. The Utility of Dual Energy Computed Tomography in Musculoskeletal Imaging

    Directory of Open Access Journals (Sweden)

    Sachin Khanduri

    2017-01-01

    Full Text Available The objective of this article is to review the mechanisms, advantages and disadvantages of dual energy computed tomography (DECT over conventional tomography (CT in musculoskeletal imaging as DECT provides additional information about tissue composition and artifact reduction. This provides clinical utility in detection of urate crystals, bone marrow edema, reduction of beam hardening metallic artifact, and ligament and tendon analysis.

  20. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  1. Utilization of milk energy by suckling mink kits

    DEFF Research Database (Denmark)

    Tauson, Anne-Helene; Fink, Rikke; Hansen, Kirsten Bislev

    2004-01-01

    were the most efficient, with 4.1 g milk per g body gain. The metabolizable energy requirement for maintenance (MEm) was estimated to 448 kJ/kg(0.75 and the efficiency of utilization of ME for body gain (kg) to 0.67, the estimates being higher (MEm) or in good agreement with previous findings (kg...

  2. Recent estimates of energy utilization by young dairy calves ...

    African Journals Online (AJOL)

    Recent estimates of energy utilization by young dairy calves. P.T.C. Johnson. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  3. Array of titanium dioxide nanostructures for solar energy utilization

    Science.gov (United States)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  4. Recent Developments of Wave Energy Utilization in Denmark

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Kramer, Morten

    2006-01-01

    This paper aims at giving an overview of the developments researchers at the Department of Civil Engineering, Aalborg University, Denmark (DCE), have been involved in within the field of wave energy utilization in Denmark over the past decade. At first a general introduction is given followed by ...

  5. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer

    Science.gov (United States)

    Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun

    2017-03-01

    Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.

  6. Utilization of atomic energy in Asia and nuclear nonproliferation system

    International Nuclear Information System (INIS)

    Ishii, Makoto

    1995-01-01

    The economical growth in East Asia is conspicuous as it was called East Asian Miracle, and also the demand of energy increased rapidly. The end of Cold War created the condition for the further development in this district. Many countries advanced positively the plan of atomic energy utilization, and it can be said that the smooth progress of atomic energy utilization is the key for the continuous growth in this district in view of the restriction of petroleum resources and its price rise in future and the deterioration of global environment. The nuclear nonproliferation treaty (NPT) has accomplished large role, but also its limitation became clear. At present, there is not the local security system in Asia, but in order that the various countries in Asia make the utilization of atomic energy and the security compatible, it is useful to jointly develop safety technology, execute security measures and form the nuclear fuel cycle as Asia. Energy and environmental problems in Asia are reported. Threat is essentially intention and capability, and the regulation only by capability regardless of intention brings about unrealistic result. The limitation of the NPT is discussed. The international relation of interdependence deepends after Cold War, and the security in Asia after Cold War is considered. As the mechanism of forming the nuclear fuel cycle for whole Asia, it is desirable to realize ASIATOM by accumulating the results of possible cooperation. (K.I.)

  7. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  8. Quality of renewable energy utilization in transport in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2015-04-01

    Renewable energy utilization in transportation (RES-T) is a long way behind its utilization in power (RES-E) and heat (RES-H) sectors. International and national environmental policies have recently given a lot of emphasis on this problem. For that reason information is sought on how to implement solutions both politically and technologically. As Sweden is a global leader in this area, it can provide valuable examples. In 2012 Sweden became the first country to reach the binding requirement of the European Union for at least 10 % share for renewable energy in transport energy consumption. But qualitative development has been even stronger than quantitative. Among the success stories behind qualitative progress, most noteworthy are those created by innovative municipal policies. By 2030 Sweden aims to achieve fossil fuel independent road transport system and by 2050 completely carbon neutral transport system in all modes of transport.

  9. Optimal weight based on energy imbalance and utility maximization

    Science.gov (United States)

    Sun, Ruoyan

    2016-01-01

    This paper investigates the optimal weight for both male and female using energy imbalance and utility maximization. Based on the difference of energy intake and expenditure, we develop a state equation that reveals the weight gain from this energy gap. We ​construct an objective function considering food consumption, eating habits and survival rate to measure utility. Through applying mathematical tools from optimal control methods and qualitative theory of differential equations, we obtain some results. For both male and female, the optimal weight is larger than the physiologically optimal weight calculated by the Body Mass Index (BMI). We also study the corresponding trajectories to steady state weight respectively. Depending on the value of a few parameters, the steady state can either be a saddle point with a monotonic trajectory or a focus with dampened oscillations.

  10. The elastic free energy of a tandem modular protein under force.

    Science.gov (United States)

    Valle-Orero, Jessica; Eckels, Edward C; Stirnemann, Guillaume; Popa, Ionel; Berkovich, Ronen; Fernandez, Julio M

    2015-05-01

    Recent studies have provided a theoretical framework for including entropic elasticity in the free energy landscape of proteins under mechanical force. Accounting for entropic elasticity using polymer physics models has helped explain the hopping behavior seen in single molecule experiments in the low force regime. Here, we expand on the construction of the free energy of a single protein domain under force proposed by Berkovich et al. to provide a free energy landscape for N tandem domains along a continuous polypeptide. Calculation of the free energy of individual domains followed by their concatenation provides a continuous free energy landscape whose curvature is dominated by the worm-like chain at forces below 20 pN. We have validated our free energy model using Brownian dynamics and reproduce key features of protein folding. This free energy model can predict the effects of changes in the elastic properties of a multidomain protein as a consequence of biological modifications such as phosphorylation or the formation of disulfide bonds. This work lays the foundations for the modeling of tissue elasticity, which is largely determined by the properties of tandem polyproteins. Copyright © 2015. Published by Elsevier Inc.

  11. Energy minimization strategies and renewable energy utilization for desalination: a review.

    Science.gov (United States)

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Omitaomu, Olufemi A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  13. Building Energy Asset Score for Utilities and Energy Efficiency Program Administrators

    Energy Technology Data Exchange (ETDEWEB)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for utilities and energy efficiency program administrators.

  14. Optimal flights of unmanned aerial vehicles utilizing wind energy

    Science.gov (United States)

    Qi, Ying

    Unmanned aerial vehicles (UAVs) are attractive for a wide range of applications where human presence is dangerous or undesirable. Endurance is an important performance attribute in many UAV missions. While UAV flight endurance can be improved through advances in aerodynamics and engine design, it is equally important to examine operational strategies that can enhance UAV flight endurance and other performance. Wind energy may be used to greatly enhance the flight endurance and performances of Unmanned Aerial Vehicles. Glider pilots commonly use wind to improve range, endurance, or cross-country speed. Compared with a glider, UAVs have ad vantages in utilizing energy in atmosphere. By using proper strategies to extract wind energy in the long-duration flights, a UAV's fuel consumption can be reduced and the performance can be extended. The objective of this research is to investigate the potential benefits of utilizing wind energy and develop optimal wind energy efficient flight trajectories for UAVs. In this thesis, the potential benefits and features of the autonomous soaring flights are studied. UAVs are modelled with point-mass equations of motion. Practical constraints from UAV performance and operational constraints are considered. UAV flights through various wind patterns including wind gradients, thermals and downbursts are studied. Linear wind gradient models, two-dimensional thermal models and three-dimensional vortex ring downburst models are used for the calculation of optimal trajectories. UAV flights through wind fields are formulated as nonlinear optimal control problems that minimize the overall fuel consumption. These problems are converted into parameter optimizations and numerical solutions are obtained for a wide range of wind conditions and UAV performance parameters. Basic features and special flight patterns needed for wind energy flights are discovered. Results indicate that significant improvements in UAV endurance can be achieved by

  15. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO 2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO 2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO 2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  16. Product modular design incorporating preventive maintenance issues

    Science.gov (United States)

    Gao, Yicong; Feng, Yixiong; Tan, Jianrong

    2016-03-01

    Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.

  17. Third International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-18

    This is a collection of essays presented at the above-named conference held at Kobe, Japan, from March 18 through 22, 1991. At the utility energy storage session, a power research program plan, operational and economic benefits of BESP (battery energy storage plant), the Moonlight Project, etc., were presented, respectively, by EPRI (Electric Power Research Institute) of the U.S., BEWAG Corporation of Germany, and NEDO (New Energy and Industrial Technology Development Organization) of Japan, etc. At the improved lead-acid batteries session, the characteristics of improved lead-acid batteries, load levelling and life cycle, problems in BESP, comparisons and tests, etc., were presented by Japan, Italy, the U.S., etc. At the advanced batteries session, presentations were made about the sodium-sulfur battery, zinc-bromine battery, redox battery, etc. Furthermore, there were sessions on consumer energy systems, control and power conditioning technology, and commercialization and economic studies. A total 53 presentations were made. (NEDO)

  18. On Hybrid Energy Utilization in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Tala’t

    2017-11-01

    Full Text Available In a wireless sensor network (WSN, many applications have limited energy resources for data transmission. In order to accomplish a better green communication for WSN, a hybrid energy scheme can supply a more reliable energy source. In this article, hybrid energy utilization—which consists of constant energy source and solar harvested energy—is considered for WSN. To minimize constant energy usage from the hybrid source, a Markov decision process (MDP is designed to find the optimal transmission policy. With a finite packet buffer and a finite battery size, an MDP model is presented to define the states, actions, state transition probabilities, and the cost function including the cost values for all actions. A weighted sum of constant energy source consumption and a packet dropping probability (PDP are adopted as the cost value, enabling us to find the optimal solution for balancing the minimization of the constant energy source utilization and the PDP using a value iteration algorithm. As shown in the simulation results, the performance of optimal solution using MDP achieves a significant improvement compared to solution without its use.

  19. Commercial building energy use monitoring for utility load research

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucchi, R.P.

    1987-01-01

    This paper describes a method to acquire empirical data regarding commercial building energy performance for utility load research. The method was devised and implemented for a large scale monitoring program being conducted for a federal electricity marketing and transmission agency in the Pacific Northwest states. An important feature of this method is its hierarchical approach, wherein building types, end-use loads, and key building characteristics are classified to accommodate analysis at many levels. Through this common taxonomy and measurement protocol, energy-use metering projects of varying detail and comprehensiveness can be coordinated. The procedures devised for this project have been implemented for approximately 150 buildings to date by specially trained contractors. Hence, this paper provides real-world insights of the complexity and power of end use measurements from commercial buildings to address utility load research topics. 6 refs.

  20. Enzyme activation through the utilization of intrinsic dianion binding energy.

    Science.gov (United States)

    Amyes, T L; Malabanan, M M; Zhai, X; Reyes, A C; Richard, J P

    2017-03-01

    We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol. , , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed.

  1. Activities of electric utilities in alternative energy projects

    International Nuclear Information System (INIS)

    Silva, D.B. da; Reis Neto, J.L. dos

    1990-01-01

    Since oil crisis, in 1973 and 1979, some electrical utilities in Brazil begun investments in alternative projects for example production of electrolytic hydrogen, peats with energetics goals, steam from electric boiler, and methanol from wood gasification. With oil substitution goals, these projects have not success actually, after attenuated the crisis. However, the results acquired is experience for the development of the brazilian energy patterns. (author)

  2. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  3. Efficient energy utilization and environmental issues applied to power planning

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Hector, E-mail: hcampbellr@gmail.com [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd Benito Juarez y calle de la Normal, Col Insurgentes Este, CP 21280, Mexicali, B.C., Mexico, P.O. Box 3439, Calexico, CA 92232 (United States); Montero, Gisela; Perez, Carlos [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd Benito Juarez y calle de la Normal, Col Insurgentes Este, CP 21280, Mexicali, B.C., Mexico, P.O. Box 3439, Calexico, CA 92232 (United States); Lambert, Alejandro [Facultad de Ingenieria, Universidad Autonoma de Baja California, Blvd Benito Juarez y calle de la Normal, Col Insurgentes Este, CP 21280, Mexicali, B.C. (Mexico)

    2011-06-15

    This document shows the importance of policies for electric energy savings and efficient energy utilization in power planning. The contributions of economic, social, and environmental items were evaluated according to their financial effects in the delay of investments, reduction of production costs and decrement of environmental emissions. The case study is Baja California, Mexico; this system has a unique primary source: geothermal energy. Whether analyzing the planning as usual or planning from the supply side, the forecast for 2005-2025 indicates that 4500 MW additional installed capacity will be required (3-times current capacity), representing an investment that will emit 12.7 Mton per year of CO{sub 2} to the atmosphere and will cost US$2.8 billion. Systemic planning that incorporates polices of energy savings and efficiency allows the reduction of investments and pollutant emissions. For example, a reduction of 20% in the growth trend of the electricity consumption in the industrial customers would save US$10.4 billion over the next 20 years, with a potential reduction of 1.6 Mton/year of CO{sub 2}. The increase in geothermal power generation is also attractive, and it can be combined with the reduction of use and energy losses of utilities, which would save US$13.5 billion and prevent the discharge of 8.5 Mton/year of CO{sub 2}. - Highlights: > We contrast power planning methods for supply electricity for economy development. > Importance of policies for electricity savings and efficient use in power planning. > Systemic planning facilitates decision-making process for electricity optimization. > Supply-side planning will cause climb in prices and loss of energy self-sufficiency. > Power planning should be immersed in an environment of appropriate energy policies.

  4. Assessment of energy utilization in Iran’s industrial sector using energy and exergy analysis method

    International Nuclear Information System (INIS)

    Sanaei, Sayyed Mohammad; Furubayashi, Takaaki; Nakata, Toshihiko

    2012-01-01

    The purpose of this study is to assess the use of quality of energy in Iran’s industrial sector. The exergy analysis has been performed along with energy analysis, in order to gain deeper and more realistic understanding of the sector’s condition. Primary energy utilization from seventeen different industries has been considered for calculation of the exergy and energy efficiencies for each industry, and later for Iran’s industrial sector. The exergy efficiency is much lower than energy efficiency in all industries and also in the industrial sector. It is shown that based on the results from exergy analysis the priorities for efficiency improvement are different from that of energy analysis; this in turn suggests that exergy analysis as a proper tool for policy makers. The sources of energy degradation and the mechanisms which cause degradation of quality of energy have been identified. Moreover remedial actions for better utilization of quality of energy are proposed. The energy and exergy efficiencies for the entire industrial sector of Iran were approximated as 63% and 42%, respectively. The oil, iron and steel, plastic and cement industries are found to have the highest share in destruction of quality of total input energy to the industrial sector. The aluminum industry has the highest exergy efficiency of 52.5%. Mean entropic temperature is also proposed as a tool for understanding the degree of quality of energy required in each industry and consequently better quality matching which leads to better energy quality utilization. - Highlights: ► Exergy is used to assess the use of quality of energy in Iran's Industrial sector. ► Energy degradation mechanisms have been identified. ► Mean entropic temperature is proposed as a metric for energy quality matching. ► Improvement priorities based on exergy are different from those of energy analysis.

  5. Peaceful utilization of nuclear energy in the FRG

    International Nuclear Information System (INIS)

    1980-01-01

    The present paper gives a summary of the initiatives taken by the Deutscher Bundestag (Federal Assembly) for peaceful utilization of nuclear energy consideration of relevant secondary aspects like area planning, assessment of technology consequences, the introduction of the Verbandsklage (write of associations to enter in public proceedings) etc. It is an extended table of contents of the 7th and 8th election period. Fixed days was the 1rst of Jan, 1980. Apart from this temporary limitation, only the Enquete-Commission's report Future Nuclear Energy Policy was taken into consideration because in this report the discussion about energy policy of the last two election periods is brought to an end. (orig.) [de

  6. Paracellular transport and energy utilization in the renal tubule.

    Science.gov (United States)

    Yu, Alan S L

    2017-09-01

    Paracellular transport across the tight junction is a general mechanism for transepithelial transport of solutes in epithelia, including the renal tubule. However, why paracellular transport evolved, given the existence of a highly versatile system for transcellular transport, is unknown. Recent studies have identified the paracellular channel, claudin-2, that is responsible for paracellular reabsorption of sodium in the proximal renal tubule. Knockout of claudin-2 in mice impairs proximal sodium and fluid reabsorption but is compensated by upregulation of sodium reabsorption in the loop of Henle. This occurs at the expense of increased renal oxygen consumption, hypoxia of the outer medulla and increased susceptibility to ischemic kidney injury. Paracellular transport can be viewed as a mechanism to exploit the potential energy in existing electrochemical gradients to drive passive transepithelial transport without consuming additional energy. In this way, it enhances the efficiency of energy utilization by transporting epithelia.

  7. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  8. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  9. Solar and wind energy utilization at Sarawak Southern national parks

    International Nuclear Information System (INIS)

    Abdul Rahman, N.; Kolot, A.

    2006-01-01

    The intentions of renewable energy utilization in Sarawak national parks were to reduce the environmental impacts to the protected surrounding and to overcome fuel transportation problem, as most national parks in Sarawak are not viable for the state electricity grid connection. The study was conducted at three national parks in southern Sarawak; viz. Samusan, Tanjung Datu and Pulau Talang-Talang Besar National Park. The study focused on the effectiveness of the system implementation, energy load and associated problems. Both Samusan and Tanjung Datu National systems are hybrids, which consist of solar photovoltaic panels, wind turbine and diesel generators, whereas, Pulau Talang-Talang Besar National Park is a stand alone system of solar photovoltaic panels only. In addition, the inefficient energy usage was observed at Samusan National Park. The study have identified that lack of local expertise, spare parts availability, transportation and inefficient energy management as the major problems associated to the solar and wind energy system in all national parks studied. Albeit the problems mentioned, the study discovered that the systems were acceptably reliable and satisfactorily supply fraction of the energy requirements to the national parks communities

  10. Environmental impacts of utility-scale solar energy

    Science.gov (United States)

    Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M. L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M.F.

    2014-01-01

    Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change.

  11. Sustainability of utility-scale solar energy: Critical environmental concepts

    Science.gov (United States)

    Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.

    2017-12-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  12. A single-phase multi-level D-STATCOM inverter using modular multi-level converter (MMC) topology for renewable energy sources

    Science.gov (United States)

    Sotoodeh, Pedram

    This dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10-20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices.

  13. Standardized Modular Power Interfaces for Future Space Explorations Missions

    Science.gov (United States)

    Oeftering, Richard

    2015-01-01

    Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but

  14. Enhanced understanding of energy ratepayers: Factors influencing perceptions of government energy efficiency subsidies and utility alternative energy use

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Allen, Myria W.

    2014-01-01

    This study explores factors related to energy consumers' perceptions of government subsidies for utility provided energy efficiency (EE) programs and for utility providers' use of more clean/alternative energy sources. Demographic factors, attitudes, planned purchases, and perceptions of utility provider motives in relation to governmental and utility provider EE initiatives (i.e. providing discounts and coupons for CFL bulbs), plus the influence of gain- and loss-framed messages are investigated. Over 2000 respondents completed a 16 item phone survey. Hierarchical regression explained 38% of the variance in reactions regarding government subsidies of the cost of utility provided EE programs and 43% of the variance in perceptions involving whether utility companies should use of more clean or alternative forms of energy. Gender and party differences emerged. Loss-framed messages were more important when the issue was government subsidies. Both gain- and loss-framed messages were important when clean/alternative energy was the issue. - Highlights: • Over 2000 ratepayers were surveyed on their attitudes, planned behaviors and perceptions towards energy efficiency programs. • Almost 40% of how ratepayers feel about government subsidies and utility use of clean/alternative energy was explained. • Loss-framed messages were more effective when the dependent variable was ratepayer perception of government subsidies

  15. Impacts of energy utilization in a tropical environment

    International Nuclear Information System (INIS)

    Kleemann, M.; Penner, K.; Seele, U.

    1992-01-01

    The purpose of this paper is to present the approach and the interim results of the Indonesian-German scientific co-operation on environmental impacts of future energy utilization in Indonesia. The aim of the planning study is to provide decision support for Indonesian authorities in order to develop environmentally compatible energy supply strategies. The environmental problems will focus on the island of Java with a population density of more than 800 inhabitants/km 2 which might reach 1200 within the next 25 years. Due to the further economic growth and the population increase the energy consumption of the industry, the traffic, and the household sector will increase significantly. In particular the polluting coal utilization will grow overproportionally because of declining oil reserves. Additionally, the industrial development is concentrated on the island of Java which covers only 8% of the land area of the country. A serious pollution of the sensitive tropical ecosystems in the future would be the consequence of this unbalanced developments if no efforts are made to reduce the pollutant emissions. Even today the air quality has already reached critical levels in many parts of Java. 3 figs., 3 tabs

  16. The international atomic energy agency's programme on utilization of accelerators

    Science.gov (United States)

    Dytlewski, Nikolai; Mank, Günter; Rosengard, Ulf; Bamford, Samuel; Markowicz, Andrzej; Wegrzynek, Dariusz

    2006-06-01

    Low-energy accelerators have in the past produced a major part of our current knowledge of nuclear physics. Today they are mainly used for applied research and industrial applications. In view of this, the International Atomic Energy Agency (IAEA) has during recent years initiated several Coordinated Research Projects (CRPs) concerning Ion Beam Analysis of Materials, Accelerator Mass Spectrometry and Nuclear Microprobe Techniques. The CRPs involve laboratories from developing as well as developed Member States, networking on a common topic coordinated by the IAEA. In order to facilitate networking, the IAEA has recently published the "World Survey of Accelerator Based Analytical Techniques" available on the Internet and as a CD-ROM. The IAEA maintains also a beamline at a 6 MV Van de Graaff accelerator in the Ru đjer Bo\\vsković Institute, Zagreb, Croatia. Small and medium power accelerator driven spallation neutron sources will become more important as many small neutron producing research reactors are approaching the end of their useful working life. The IAEA has, within its Department for Nuclear Sciences and Applications, a programme on the Effective Utilization of Accelerators. This programme helps Member States, in particular developing Member States, in finding new areas of applications for their low and medium energy accelerators through increased participation in activities such as Coordinated Research Projects, Technical Meetings and Conferences. This paper describes the IAEA's current programme on accelerator utilization and proposed future activities.

  17. Maximizing Utilization of Energy from Crop By-products

    Directory of Open Access Journals (Sweden)

    Budi Haryanto

    2014-03-01

    Full Text Available The availability of crop by-products is huge during harvesting times as related to the vast agricultural land area; however, their utilization is still limited due to lack of knowledge and handling problem. Seasonal effect is obvious especially during wet season when high rainfall hinders proper management of crop by-products. Crop by-products are energy rich feedstuffs in the form of chemical substance such as cellulose and hemicellulose. The utilization of cellulose and hemicellulose as sources of energy can be maximized by the application of technologies to increase the digestibility. Cellulose is polymer of glucose while hemicellulose is polymer of xylose which both can be converted to volatile fatty acids by rumen microbial enzyme activities and subsequently used by the host animal as source of energy. In addition, cellulose and hemicellulose can also be used as substrates for bioethanol production leaving behind residual matter with higher concentration of protein which is also appropriate for ruminant feeds. The fat content of crop by-products such as those in rice bran and corn germ can be extracted for oil production that can be used for human consumption with concomitant production of high nutritive value of residues for ruminant feeds. The oil extraction technologies are available; however the high cost of ethanol and oil production should obtain high attention to make the technologies more applicable at farmers’ level.

  18. Utility opinions on energy supply. Praise and reprimand

    International Nuclear Information System (INIS)

    2008-01-01

    This article discusses the opinions expressed by several electricity utilities on the cost-covering remuneration of electricity produced using renewable resources. Positive and negative aspects of the system - in the opinion of the utilities - are listed. Positive issues discussed include the improved economic viability of installations using renewable energy sources, preservation of know-how, increased use of renewables and the minimisation of economic risk for the builders of such installations. Negative issues noted include the general financial burden placed on all electricity consumers, the limits placed by parliament on the remuneration scheme, various hindrances still active in the implementation of such installations and possible competition with other schemes that further the use of electricity from renewable resources.

  19. Utilization of Solar Energy for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Sutikno Juwari Purwo

    2018-01-01

    Full Text Available The purposes of this research are to do a system simulation of air conditioning utilizing solar energy with single effect absorption refrigeration method, analyze the coefficient of performance (COP for each absorbent-refrigerant variable and compare the effectivity of every absorbent-refrigerant variable used. COP is a constant that denotes the effeciency of a refrigeration system, that is ratio of work or useful output to the amount of work or energy input. The higher the number of COP, the more efficient the system is. Absorbent-refrigerant (working fluids variables used in this research depend on its chemical and thermodynamics properties. Steps in this research are including data collection and tabulation from literature and do a simulation of air conditioning system both commercial air conditioning system (using electrical energy and solar energy air conditioning system with Aspen Plus software. Next, run the simulation for each working fluid variables used and calculate the COP for each variable. Subsequently, analyze and compare the effectivity of all variables used from COP value and economical point of view with commercial air conditioning system. From the result of the simulation, can be concluded that solar air conditioning can achieve 98,85 % of energy savings than commercial air conditioning. Furthermore, from the calculation of COP, the highest COP value is achieved by solar conditioning system with LiNO3-NH3 as working fluid where 55% of the composition is the refrigerant and 45% of absorbent.

  20. ReviewsGCSE Book Review: Modular Science for AQA GCSE Book Review: Modular Science for Edexcel GCSE Book Review: Revise for GCSE Science (Edexcel Modular Foundation and Higher) GCSE Book Review: AQA GCSE Physics, AQA GCSE Physics Additions Book Review: Studying Maths and its Applications Book Review: Medical Physics, 2nd edition Book Review: The Physics of Hockey Book Review: Nine Crazy Ideas In Science Book Review: Light and Dark Talking Point: The Skeptical Environmentalist Places To Visit: Centre for Alternative Technology, Machynlleth, Powys Resources: Sources of Energy Web Watch: Terence, this is stupid stuff...

    Science.gov (United States)

    2003-03-01

    GCSE BOOK REVIEWS (162) Modular Science for AQA Modular Science for Edexcel Revise for GCSE Science (Edexcel Modular Foundation and Higher) AQA GCSE Physics, AQA GCSE Physics Additions BOOK REVIEWS (166) Studying Maths and its Applications Medical Physics, 2nd edition The Physics of Hockey Nine Crazy Ideas In Science Light and Dark TALKING POINT (169) The Skeptical Environmentalist PLACES TO VISIT (170) Centre for Alternative Technology, Machynlleth, Powys RESOURCES (172) Sources of Energy WEB WATCH (173) Terence, this is stupid stuff...

  1. Making It Count: Understanding the Value of Energy Efficiency Financing Programs Funded by Utility Customers

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fadrhonc, Emily Martin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-12-01

    Utility customer-supported financing programs are receiving increased attention as a strategy for achieving energy saving goals. Rationales for using utility customer funds to support financing initiatives

  2. A MOdular System for Acquisition, Interface and Control (MOSAIC) of detectors and their related electronics for high energy physics experiment

    Science.gov (United States)

    Robertis, G. De; Fanizzi, G.; Loddo, F.; Manzari, V.; Rizzi, M.

    2018-02-01

    In this work the MOSAIC ("MOdular System for Acquisition, Interface and Control") board, designed for the readout and testing of the pixel modules for the silicon tracker upgrade of the ALICE (A Large Ion Collider Experiment) experiment at teh CERN LHC, is described. It is based on an Artix7 Field Programmable Gate Array device by Xilinx and is compliant with the six unit "Versa Modular Eurocard" standard (6U-VME) for easy housing in a standard VMEbus crate from which it takes only power supplies and cooling.

  3. A proposal for the modular integration of the renewable energy sources, via hydrogen, and the Rankine power cycle; Una propuesta de integracion modular de las fuentes de energia renovables, via hidrogeno, y el ciclo de potencia Rankine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Dirzo, Rafael

    2004-07-01

    This thesis synthesizes the state-of-the-art of the modular integration of the renewable energy sources and the Ranking power cycle. This is possible to obtain due to the development of the hydrogen production technologies and with it the chemical storage of the energies solar, Aeolian (wind) and tidal, among others. The purpose of this thesis is the assessment of hydrogen as fuel, its obtaining through the breaking of the water molecule using the renewable energies and the thermodynamic analysis of two prototypes for its energy conversion into electricity and power, voltage and fixed frequency: the first one at laboratory scale of 800 W and the second one, on industrial scale of 1 GW of power. Included here is the synthesis of the increasing bibliography on the development of the hydrogen technologies and the renewable energies, passing through the mass and energy balance in the power cycles until proposing, at the level of Process Flow Charts of the results of the proposed prototypes. The products show the possibility of constructing and operating the experimental prototype, whereas the thermodynamic analysis suggests that the industrial prototype is viable. The economic analysis of both proposals is part of a doctorate project in process. [Spanish] Esta tesis sintetiza el estado del arte de la integracion modular de las fuentes de energia renovables y el ciclo de potencia Ranking. Esto es posible lograrlo debido al desarrollo de las tecnologias de produccion de hidrogeno y con ello el almacenamiento quimico de las energias solar, eolica y maremotriz, entre otras. Es objetivo de esta tesis la valoracion del hidrogeno como combustible, su obtencion a traves del rompimiento de la molecula del agua utilizando las energias renovables y el analisis termodinamico de dos prototipo para su conversion energetica en electricidad a potencia, voltaje y frecuencia fijos: el primero a escala de laboratorio de 800 W y el segundo, a escala industrial de 1 GW de potencia. Se

  4. Decision modelling tools for utilities in the deregulated energy market

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, S. [Process Vision Oy, Helsinki (Finland)

    2005-07-01

    This thesis examines the impact of the deregulation of the energy market on decision making and optimisation in utilities and demonstrates how decision support applications can solve specific encountered tasks in this context. The themes of the thesis are presented in different frameworks in order to clarify the complex decision making and optimisation environment where new sources of uncertainties arise due to the convergence of energy markets, globalisation of energy business and increasing competition. This thesis reflects the changes in the decision making and planning environment of European energy companies during the period from 1995 to 2004. It also follows the development of computational performance and evolution of energy information systems during the same period. Specifically, this thesis consists of studies at several levels of the decision making hierarchy ranging from top-level strategic decision problems to specific optimisation algorithms. On the other hand, the studies also follow the progress of the liberalised energy market from the monopolistic era to the fully competitive market with new trading instruments and issues like emissions trading. This thesis suggests that there is an increasing need for optimisation and multiple criteria decision making methods, and that new approaches based on the use of operations research are welcome as the deregulation proceeds and uncertainties increase. Technically, the optimisation applications presented are based on Lagrangian relaxation techniques and the dedicated Power Simplex algorithm supplemented with stochastic scenario analysis for decision support, a heuristic method to allocate common benefits and potential losses of coalitions of power companies, and an advanced Branch- and-Bound algorithm to solve efficiently nonconvex optimisation problems. The optimisation problems are part of the operational and tactical decision making process that has become very complex in the recent years. Similarly

  5. Decision modelling tools for utilities in the deregulated energy market

    International Nuclear Information System (INIS)

    Makkonen, S.

    2005-01-01

    This thesis examines the impact of the deregulation of the energy market on decision making and optimisation in utilities and demonstrates how decision support applications can solve specific encountered tasks in this context. The themes of the thesis are presented in different frameworks in order to clarify the complex decision making and optimisation environment where new sources of uncertainties arise due to the convergence of energy markets, globalisation of energy business and increasing competition. This thesis reflects the changes in the decision making and planning environment of European energy companies during the period from 1995 to 2004. It also follows the development of computational performance and evolution of energy information systems during the same period. Specifically, this thesis consists of studies at several levels of the decision making hierarchy ranging from top-level strategic decision problems to specific optimisation algorithms. On the other hand, the studies also follow the progress of the liberalised energy market from the monopolistic era to the fully competitive market with new trading instruments and issues like emissions trading. This thesis suggests that there is an increasing need for optimisation and multiple criteria decision making methods, and that new approaches based on the use of operations research are welcome as the deregulation proceeds and uncertainties increase. Technically, the optimisation applications presented are based on Lagrangian relaxation techniques and the dedicated Power Simplex algorithm supplemented with stochastic scenario analysis for decision support, a heuristic method to allocate common benefits and potential losses of coalitions of power companies, and an advanced Branch- and-Bound algorithm to solve efficiently nonconvex optimisation problems. The optimisation problems are part of the operational and tactical decision making process that has become very complex in the recent years. Similarly

  6. ECUT (Energy Conversion and Utilization Technologies Program). Biocatalysis Project

    Science.gov (United States)

    1986-01-01

    Presented are the FY 1985 accomplishments, activities, and planned research efforts of the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Program. The Project's technical activities were organized as follows: In the Molecular Modeling and Applied Genetics work element, research focused on (1) modeling and simulation studies to establish the physiological basis of high temperature tolerance in a selected enzyme and the catalytic mechanisms of three species of another enzyme, and (2) determining the degree of plasmid amplification and stability of several DNA bacterial strains. In the Bioprocess Engineering work element, research focused on (1) studies of plasmid propagation and the generation of models, (2) developing methods for preparing immobilized biocatalyst beads, and (3) developing an enzyme encapsulation method. In the Process Design and Analysis work element, research focused on (1) further refinement of a test case simulation of the economics and energy efficiency of alternative biocatalyzed production processes, (2) developing a candidate bioprocess to determine the potential for reduced energy consumption and facility/operating costs, and (3) a techno-economic assessment of potential advancements in microbial ammonia production.

  7. NASA Products to Enhance Energy Utility Load Forecasting

    Science.gov (United States)

    Lough, G.; Zell, E.; Engel-Cox, J.; Fungard, Y.; Jedlovec, G.; Stackhouse, P.; Homer, R.; Biley, S.

    2012-01-01

    Existing energy load forecasting tools rely upon historical load and forecasted weather to predict load within energy company service areas. The shortcomings of load forecasts are often the result of weather forecasts that are not at a fine enough spatial or temporal resolution to capture local-scale weather events. This project aims to improve the performance of load forecasting tools through the integration of high-resolution, weather-related NASA Earth Science Data, such as temperature, relative humidity, and wind speed. Three companies are participating in operational testing one natural gas company, and two electric providers. Operational results comparing load forecasts with and without NASA weather forecasts have been generated since March 2010. We have worked with end users at the three companies to refine selection of weather forecast information and optimize load forecast model performance. The project will conclude in 2012 with transitioning documented improvements from the inclusion of NASA forecasts for sustained use by energy utilities nationwide in a variety of load forecasting tools. In addition, Battelle has consulted with energy companies nationwide to document their information needs for long-term planning, in light of climate change and regulatory impacts.

  8. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  9. Assessment of Global Wind Energy Resource Utilization Potential

    Science.gov (United States)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  10. Worldwide satellite communications for the energy utility industry. Final report

    International Nuclear Information System (INIS)

    Skelton, R.L.

    1998-07-01

    Recent and future generations of low earth orbiting (LEO) satellites are promising new possibilities for using space communications to achieve operational improvements and business expansion in energy supply and delivery industries. The ability to reach remote locations with relatively inexpensive devices and infrastructure is a unique property of satellites. Applications include remote monitoring and control of distributed resources and emergency and personal communication. Satellite systems are emerging as a significant opportunity for investment minded utilities. Over a dozen groups are planning to launch a total of 1200 LEOs in the period from 1996 to 2006, at a probable cost of over $20 Billion. This large number of systems can provide a worldwide mix of narrow band and wideband services including data, voice, video and Internet access. This paper examines the two primary factors which have limited applications in the energy industry: cost and propagation delay. The former has so far limited the technology to fixed communications with a few important sites such as remote substations. The latter has rendered the technology unsuitable for applications where critical protection mechanisms are involved. These constraints are effectively countered by the emerging LEO systems. Big LEOs will be used for voice service, little LEOs will be the systems of choice for most utility data applications. The author concludes that there are good technical and business reasons to reconsider future satellite communications as an option for meeting certain strategic business objectives in power system management and customer oriented information services

  11. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Andrew [ORNL; Todosow, Michael [Brookhaven National Laboratory (BNL)

    2016-01-01

    metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated

  12. Metric modular spaces

    CERN Document Server

    Chistyakov, Vyacheslav

    2015-01-01

    Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric  and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...

  13. 76 FR 62055 - Mississippi Delta Energy Agency, Clarksdale Public Utilities Commission, Public Service...

    Science.gov (United States)

    2011-10-06

    ... Energy Regulatory Commission Mississippi Delta Energy Agency, Clarksdale Public Utilities Commission, Public Service Commission of Yazoo City, Arkansas Electric Cooperative Corporation, South Mississippi... Agency, Clarksdale Public Utilities Commission of the City of Clarksdale, Mississippi, Public Service...

  14. Assessment of energy utilization and leakages in buildings with building information model energy

    Directory of Open Access Journals (Sweden)

    Egwunatum I. Samuel

    2017-03-01

    Full Text Available Given the ability of building information models (BIM to serve as a multidisciplinary data repository, this study attempts to explore and exploit the sustainability value of BIM in delivering buildings that require less energy for operations, emit less carbon dioxide, and provide conducive living environments for occupants. This objective was attained by a critical and extensive literature review that covers the following: (1 building energy consumption, (2 building energy performance and analysis, and (3 BIM and energy assessment. Literature cited in this paper shows that linking an energy analysis tool with a BIM model has helped project design teams to predict and create optimized energy consumption by conducting building energy performance analysis utilizing key performance indicators on average thermal transmitters, resulting heat demand, lighting power, solar heat gains, and ventilation heat losses. An in-depth analysis was conducted on a completed BIM integrated construction project utilizing the Arboleda Project in the Dominican Republic to validate the aforementioned findings. Results show that the BIM-based energy analysis helped the design team attain the world׳s first positive energy building. This study concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results, and deliver energy-efficient buildings. This study further recommends that the adoption of level 2 BIM and BIM integration in energy optimization analysis must be demanded by building regulatory agencies for all projects regardless of procurement method (i.e., government funded or otherwise or size.

  15. Systems dynamics (SD) strategy for Small Modular Reactor (SMR) marketing - Conquest at the MIT Energy Laboratory (Pres. MIT Energy Initiative)

    International Nuclear Information System (INIS)

    Woo, T. H.

    2016-01-01

    This reactor has the specification as the power is 330 MWt pressurized water reactor (PWR) with integral steam generators and advanced safety features. In the plant design, it is planned for electricity generation of 100 MWe and thermal applications of seawater desalination where the life span is a 60-year operation design and three-year refueling cycle. Regarding of the licensing, the standard design was approved from the Korean regulator in mid-2012 and the Korea Atomic Energy Research Institute (KAERI) has a plan to build a demonstration plant to operate from 2017. According to the previous study of the marketing strategy of the Canadian small reactor, Safe LOW-POwer Kritical Experiment (SLOWPOKE) reactor had been investigated in 1988. Therefore, it is interesting to compare SMART and SLOWPOKE. In this work, it is to find out the strategy of the successful marketing of SMART and suggest continuous marketing prospects. There are specifications and parameters of SMART in Tables 1 and 2. The public acceptance (PA) had been studies as safety-public interpretation, SLOWPOKE safety-experience and process, and economics in the previous paper of the SLOWPOKE, which was about the marketing strategy for the commercial nuclear reactor. The highly cognitive networking based dynamical modeling was discussed where the system is treated by a complex and non-linear way. The linear networking of the interested issue was changed by the SD algorithm where the feedback and multiple connections are added to the original networking theory. The non-linear method has shown the complexity of the marketing strategy, especially for the NPP which is the very expensive and safety focused facility

  16. Systems dynamics (SD) strategy for Small Modular Reactor (SMR) marketing - Conquest at the MIT Energy Laboratory (Pres. MIT Energy Initiative)

    Energy Technology Data Exchange (ETDEWEB)

    Woo, T. H. [Yonsei University, Wonju (Korea, Republic of)

    2016-10-15

    This reactor has the specification as the power is 330 MWt pressurized water reactor (PWR) with integral steam generators and advanced safety features. In the plant design, it is planned for electricity generation of 100 MWe and thermal applications of seawater desalination where the life span is a 60-year operation design and three-year refueling cycle. Regarding of the licensing, the standard design was approved from the Korean regulator in mid-2012 and the Korea Atomic Energy Research Institute (KAERI) has a plan to build a demonstration plant to operate from 2017. According to the previous study of the marketing strategy of the Canadian small reactor, Safe LOW-POwer Kritical Experiment (SLOWPOKE) reactor had been investigated in 1988. Therefore, it is interesting to compare SMART and SLOWPOKE. In this work, it is to find out the strategy of the successful marketing of SMART and suggest continuous marketing prospects. There are specifications and parameters of SMART in Tables 1 and 2. The public acceptance (PA) had been studies as safety-public interpretation, SLOWPOKE safety-experience and process, and economics in the previous paper of the SLOWPOKE, which was about the marketing strategy for the commercial nuclear reactor. The highly cognitive networking based dynamical modeling was discussed where the system is treated by a complex and non-linear way. The linear networking of the interested issue was changed by the SD algorithm where the feedback and multiple connections are added to the original networking theory. The non-linear method has shown the complexity of the marketing strategy, especially for the NPP which is the very expensive and safety focused facility.

  17. Geothermal energy utilized in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schulz, R.

    1990-01-01

    This paper reports on the geothermal resources and reserves that have been estimated for selected aquifers in the Northwest German Basin, the Upper Rhine Graben and the South German Molasse Basin. The highest reserves (31 · 10 18 J) are located in the Malm aquifer in the Molasse Basin. Geothermal energy is utilized in 15 localities using low enthalpy water. The total installed capacity is about 8 MW t . Two small new installations (Waldsee, Weiden) have been realized in the last years. In another project (Bruchsal) the doublet, which is necessary because of the high saline water, is now in a working order. A prefeasibility study for a Hot Dry Rock system has been performed by a German-French group. The HDR test site is located in the Upper Rhine Graben

  18. Energy and resource utilization of deinking sludge pyrolysis

    International Nuclear Information System (INIS)

    Lou, Rui; Wu, Shubin; Lv, Gaojin; Yang, Qing

    2012-01-01

    The thermochemical conversion technique was applied in deinking sludge from the pulp and papermaking industrial to indagate the utilization of sludge biomass to energy, and the pyrolysis characteristics and pyrolytic products of deinking sludge were studied with thermogravimetric analysis (TGA) and pyrolysis coupled with gas chromatograph–mass spectrometer (Py-GC/MS). The static tubular furnace as an applied industrial research was used to study deinking sludge pyrolysis. The solid, gas and liquid of products was characterized by electron probe microanalysis (EPMA), gas chromatograph (GC) and gas chromatograph–mass (GC/MS), respectively. The results revealed that the weight-loss process of deinking sludge was a non-isothermal reaction and composed of four stages, i.e. dewater stage, volatile releasing stage, carbon burnout stage and some calcium carbonate decomposition. Pyrolytic products from deinking sludge in the static tubular furnace were comprised of the gaseous (29.78%), condensed liquid (bio-oil, 24.41%) and solid residues (45.81%). The volatiles from deinking sludge pyrolyzing were almost aromatic hydrocarbons, i.e. styrene, toluene and benzene and few acids and the solid was calcium carbonate (CaCO 3 ) that can be reused as paper filler. Deinking sludge was converted into high-grade fuel and chemicals by means of thermochemical conversion techniques, hence, pyrolysis of paper deinking sludge had a promising development on the comprehensive utilization.

  19. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  20. Research and utilization of renewable energy resources in Bangladesh

    International Nuclear Information System (INIS)

    Kaiser, M.S.; Aditya, S.K.; Mazumder, R.K.

    2005-01-01

    Bangladesh is an energy deficit and low-economy country with high population density. Per-capita energy consumption is one of the lowest in the world. The only dependable indigenous gas, which is the major primary energy source in the country, is used mainly for the production of electricity and fertilizer. If it is burnt at an annual 10% growth rate of consumption, may not last more than 15-20 years. Around 30% of the people of the country have connections to the national grid line. In the villages, where 80% of the population live, the situation is worse. Even if it is possible to take the electric grid line to all villages of the country, which will be an extremely difficult and expensive work to do, the majority of the village houses will not be able to have electric connections due to poverty. No nuclear power station exists in the country and the possibility of setting up any in the near future is limited due to non-availability of funds. Hydroelectric resources are also low because of the flat terrain of the country. The fuel import bill also occupies a significant portion of the total amount of export earnings. Conventional resources in Bangladesh are utterly inadequate for supplying the energy needs to bring in a significant improvement in our economy. On the other hand when our gas reserves will be exhausted it will be difficult for us even to maintain the energy supply for the development of our country unless we find alternate sources of energy. Solar energy availability in Bangladesh is high around 5KWH/day per meter square or 2.6 10/sup 11/ MWH/year on the total surface area of the country. This is equivalent to the output of about 30GW capacity utility plant for 100 years assuming 10% efficiency of the solar devices. Large-scale production of electricity from new, renewable energy sources is a great challenge. Wind power is difficult to exploit economically in regions with wind speeds bellow 5 m/s yearly average. Solar thermal power plants come

  1. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  2. Final Report: Design & Evaluation of Energy Efficient Modular Classroom Structures Phase II / Volume I-VII, January 17, 1995 - October 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-30

    We are developing innovations to enable modular builders to improve the energy performance of their classrooms with no increase in first cost. The Modern Building Systems' (MBS) classroom building conforms to the stringent Oregon energy code, and at $18/ft{sup 2} ($1.67/m{sup 2}) (FOB the factory) it is at the low end of the cost range for modular classrooms. We have investigated daylighting, cross-ventilation, solar preheat of ventilation air, air-to-air heat exchanger, electric lighting controls, and down-sizing HVAC systems as strategies to improve energy performance. We were able to improve energy performance with no increase in first cost in all climates examined. Two papers and a full report on Phase I of this study are available. The work described in this report is from the second phase of the project. In the first phase we redesigned the basic modular classroom to incorporate energy strategies including daylighting, cross-ventilation, solar preheating of ventilation air, and insulation. We also explored thermal mass but determined that it was not a cost-effective strategy in the five climates we examined. Energy savings ranged from 6% to 49% with an average of 23%. Paybacks ranged from 1.3 years to 23.8 years, an average of 12.1 years. In Phase II the number of baseline buildings was expanded by simulating buildings that would be typical of those produced by Modern Building Systems, Inc. (MBS) for each of the seven locations/climates. A number of parametric simulations were performed for each energy strategy. Additionally we refined our previous algorithm for a solar ventilation air wall preheater and developed an algorithm for a roof preheater configuration. These algorithms were coded as functions in DOE 2.1E. We were striving for occupant comfort as well as energy savings. We performed computer analyses to verify adequate illumination on vertical surfaces and acceptable glare levels when using daylighting. We also used computational fluid dynamics

  3. Understanding Socio Technical Modularity

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Kudsk, Anders; Hvam, Lars

    2011-01-01

    dimension of modularity like irrational behaviors, cultural differences, learning processes, social organization and institutional influences on modularity. The paper addresses this gab offering a reinterpretation of the modularity concept from a socio-technical perspective in general and Actor Network...... Theory in particular. By formulating modularity from an ANT perspective covering social, material and process aspects, the modularity of a socio-technical system can be understood as an entanglement of product, process, organizational and institutional modularity. The theoretical framework is illustrated...

  4. Second International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-24

    This is a collection of essays presented at the above-named conference held at New Port Beach, U.S., from July 24 through 28, 1989. At the utility energy storage session, it is found that the 100kW-capable Na-S battery system of the Kansai Electric Power Company, Inc., works effectively in levelling peakloads at storage efficiency of 70%. A Chino lead-acid battery system is also described. A lead-acid battery system of the BEWAG Corporation of Germany equipped with tubular electrodes is described. For application by the consuming party, system behavior relative to duty cycle control, sudden request for energy storage, power factor, and load adjustment is discussed. Use of a valve-controlled lead-acid battery is introduced, which is to be used as a stand-by system (such as an uninterruptible power supply) or for certain types of cyclic duties. At the 4th session, economic and technical models are exhibited. Computer-aided peakload prediction, battery storage system technology, economic parameters, profitability, etc., are explained for use by the consuming party in a peakload shaving battery system. The Zn/Br battery, redox-flow battery, and other advanced technologies are also presented. (NEDO)

  5. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  6. Local sharing of cogeneration energy through individually prioritized controls for increased on-site energy utilization

    International Nuclear Information System (INIS)

    Hirvonen, Janne; Kayo, Genku; Hasan, Ala; Sirén, Kai

    2014-01-01

    Highlights: • Sharing of surplus heat and electricity produced by CHP plants in different types of buildings. • Individually prioritized control of CHP plants with direct local sharing and minimal storage capacity. • Energy sharing reduced primary energy consumption by 1–9% with biogas. • Excess energy minimized by thermal tracking. - Abstract: All over the world, including Japan, there are targets to decrease building energy consumption and increase renewable energy utilization. Combined heat and power (CHP) plants increase energy efficiency and are becoming popular in Japan. CHP plants produce both heat and power simultaneously, but there is not always a need for both. A cluster of several different buildings can increase total efficiency and reduce primary energy (PE) consumption by sharing excess heat and electricity between neighboring buildings. If the generated energy comes from renewable sources, energy sharing makes it easier to reach the net zero energy balance. By adjusting CHP sizes and operation patterns, the wasted heat and primary energy consumption can be minimized. Energy sharing has been explored in situations with identical buildings and centrally administered energy systems before, but not with different building types with separate systems. In this study, a cluster of Japanese office and residential buildings were combined to allow heat and electricity sharing based on cogeneration, using individually prioritized control (IPC) systems. TRNSYS simulation was used to match energy generation with pregenerated demand profiles. Absorption cooling was utilized to increase the benefits of local heat generation. Different CHP operation modes and plant sizes were tested. The benefit of surplus energy sharing depends on the CHP capacities and the fuel type. When using biogas, larger CHP plants provided lower total primary energy consumption, in the most extreme case lowering it by 71%, compared to the conventional case. Using natural gas

  7. Preliminary feasibility study of modular reactors

    International Nuclear Information System (INIS)

    Yamaji, Kenji

    1987-01-01

    In the future, electric utilities will be required to make a switch-over to a more flexible and dynamic form of power supply due to the slowing growth of power demand, increasing uncertainty, the stagnating economy of increasing scale, the bottleneck of transmission and so on. Nuclear technology would also be required to adapt to this changing environment surrounding its development. The long term prospect of energy demand and nuclear power growth, and the evolution of commercial reactors in Japan are shown. The design of 1,300 MWe advanced LWRs has been completed, and as the reactors of next generation, the ultralarge LWRs of 1,500 - 1,800 MWe are suggested. However, there can be an alternative future for nuclear power development, and in this paper, the possibility for altering the image of conventional nuclear power technology by developing modular reactors which are economical even at small capacity, and can be sited in urban areas just like conventional thermal power plants is examined. The factors for the economical evaluation of modular reactors, learning effect and scale effect on the economy, the case study on a modular high temperature reactor designed by Interatom-GHT, and the possibility of siting in urban areas due to the system of inherent safety are reported. (Kako, I.)

  8. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-01-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  9. AES Modular Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Modular Power Systems (AMPS) project will demonstrate and infuse modular power electronics, batteries, fuel cells, and autonomous control for exploration...

  10. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    Science.gov (United States)

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

  11. Utilization of net energy analysis as a method of evaluating energy systems

    International Nuclear Information System (INIS)

    Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon

    1994-01-01

    It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making

  12. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    International Nuclear Information System (INIS)

    Podwin, Agnieszka; Dziuban, Jan A

    2017-01-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO 2 —a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells. (paper)

  13. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    Science.gov (United States)

    Podwin, Agnieszka; Dziuban, Jan A.

    2017-10-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO2—a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells.

  14. Modularizing development

    DEFF Research Database (Denmark)

    Müller, Anders Riel; Doucette, Jamie

    In 2007, South Korea's Ministry of Strategy and Finance (MOSF) and the Korea Development Institute (KDI) launched the Knowledge Sharing Program (KSP) to satisfy the growing interest in Korea's rapid development from high growth economies in East Asia and Africa. The KSP's mandate is "to offer...... a deeper and wider understanding of Korea’s development experience with the hope that Korea’s past can offer lessons for developing countries in search of sustainable and broad‐based development" (KSP 2011). To do so, the KSP provides users with a modularized set of policy narratives that represent Korea...... as a unique success story of sustainable and equitable development worth emulating. These narratives accord South Korea considerable international status and portray it as a country with recent, hands‐on development expertise that is directly relevant to the needs of developing economies. Furthermore...

  15. The diabetic heart utilizes ketone bodies as an energy source.

    Science.gov (United States)

    Mizuno, Yuji; Harada, Eisaku; Nakagawa, Hitoshi; Morikawa, Yoshinobu; Shono, Makoto; Kugimiya, Fumihito; Yoshimura, Michihiro; Yasue, Hirofumi

    2017-12-01

    Diabetic heart is characterized by failure of insulin to increase glucose uptake and increasingly relies on free fatty acids (FFAs) as a source of fuel in animal models. However, it is not well known how cardiac energy metabolism is altered in diabetic hearts in humans. We examined cardiac fuel metabolism in the diabetics as compared to non-diabetics who underwent cardiac catheterization for heart diseases. The study subjects comprised 81 patients (male 55, female 26, average age 63.0±10.0years) who underwent the cardiac catheterization for heart diseases. Thirty-six patients were diagnosed as diabetics (diabetic group) and 45 as non-diabetics (non-diabetic group). Blood samplings were done in both the aortic root (Ao) and coronary sinus (CS) simultaneously and the plasma levels of FFAs, glucose, lactate, pyruvate, total ketone bodies and β-hydroxybutyrate were measured and compared between the two groups. The myocardial uptake of glucose, lactate and pyruvate were decreased, whereas those of total ketone bodies, β-hydroxybutyrate and acetoacetate were increased in the diabetics as compared to the non-diabetics. However, the myocardial uptakes of FFAs were not significantly increased in the diabetics as compared to the non-diabetics. Cardiac uptakes of carbohydrate (glucose, lactate and pyruvate) were decreased, whereas those of total ketone bodies and β-hydroxybutyrate were increased in the diabetics as compared to the non-diabetics in humans. Ketone bodies therefore are utilized as an energy source partially replacing glucose in the human diabetic heart. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Artificial ocean upwelling utilizing the energy of surface waves

    Science.gov (United States)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  17. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  18. Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization

    Science.gov (United States)

    Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.

    2016-06-01

    Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.

  19. Rapidly Deployed Modular Telemetry System

    Science.gov (United States)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  20. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  1. Renewable Energy Power System Modular SIMulators: RPM-Sim User's Guide (Supersedes October 1999 edition)

    Energy Technology Data Exchange (ETDEWEB)

    Bialasiewicz, J.T.; Muljadi, E.; Nix, G.R.; Drouilhet, S.

    2001-03-28

    This version of the RPM-SIM User's Guide supersedes the October 1999 edition. Using the VisSimTM visual environment, researchers developed a modular simulation system to facilitate an application-specific, low-cost study of the system dynamics for wind-diesel hybrid power systems. This manual presents the principal modules of the simulator and, using case studies of a hybrid system, demonstrates some of the benefits that can be gained from understanding the effects of the designer's modifications to these complex dynamic systems.

  2. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (MACINTOSH A/UX VERSION)

    Science.gov (United States)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a

  3. Energy utilization of light and heavy weaned piglets subjected to different dietary energy levels

    Directory of Open Access Journals (Sweden)

    Andréa Machado Leal Ribeiro

    Full Text Available ABSTRACT This study was conducted to evaluate the effects of dietary metabolisable energy (ME: 3.25, 3.40, 3.55, or 3.70 Mcal kg−1 and weaning weight (WW: light 4.0±0.7 kg, and heavy: 6.3±0.6 kg on productive response and energy utilization of weaned piglets. Sixty-four male piglets were housed in 32 metabolic cages (two animals per cage during the first 14 d postweaning. At day 15, only one animal per cage was kept until day 28. Body composition, energy, and nutrient deposition rates and energy utilization efficiency were measured through a comparative slaughter procedure. Piglets with light WW had a poorer feed conversion ratio and lower weight gain and feed intake when expressed per live weight. Increased ME led to greater daily fat deposition in the empty bodies (defined as weighted mean of the carcass + organs + blood, no intestinal content, while light WW piglets had a reduced protein deposition. Light WW piglets increased heat production with increased ME, but no effect was seen for the heavy WW piglets. By contrast, heavy WW piglets increased empty body gross energy as ME increased, while no influence was observed on light WW piglets. Increasing dietary energy levels did not contribute to the subsequent growth performance of piglets that were lighter at weaning. The lack of interaction between weaning weight and dietary ME content on growth performance does not support the hypothesis that light piglets at weaning do not exhibit compensatory growth because of limitations in energy intake.

  4. Dualisme Modular

    Directory of Open Access Journals (Sweden)

    Natas Setiabudhi Daryono Putra

    2017-09-01

    Full Text Available Dualisme merupakan konsep filsafat yang menyatakan bahwa segala sesuatu memiliki dua hal yang berlawanan atau prinsip. Hidup dan mati, laki dan perempuan, siang dan malam, jiwa dan raga, sehat dan sakit, kaya dan miskin, baik dan buruk, halal dan haram, pro dan kontra, aktif dan pasif, statis dan dinamis, tampan dan buruk rupa, besar dan kecil, panjang dan pendek, manis dan pahit, mahal dan murah, kuat dan lemah, dan seterusnya. Dalam konteks karya ini merupakan representasi dari manusia yang pada dasarnya memiliki 2 kepribadian, baik dan buruk. Keduanya diterjemahkan ke dalam konsep modular dalam menyusun sebuah konfigurasi karya. Pesan yang ingin penulis sampaikan adalah seseorang tidak bisa dinilai dari “baju atau seragam” yang ia pakai. Selain itu keseimbangan dalam baik dan buruk yang direpresentasikan dengan modul positif dan negatif menjadi ambigu dalam kaitan dengan pahala dan dosa dalam Islam. Karya ini meminjam gambar Rubin’s vase/goblet (vas/piala Rubin karya seorang psikolog gestalt Edgar Rubin asal Denmark yang ditransformasi menjadi sebuah karya keramik 3 dimensional [1]. Vas/piala Rubin ini secara perseptual memiliki 2 makna, yaitu gambar vas/piala dan siluet wajah dari samping yang saling berhadapan (pengaruh antarobjek dan latar secara bergiliran. Proses kreasi berasal dari pengalaman empirik personal yang dihubungkan dengan teori-teori pendukung. Perpaduan keduanya menghasilkan karya seni yang merupakan representasi dari realitas. Dalam penciptaan karya seni rupa sebenarnya tidak ada metode baku seperti halnya dalam riset pada umumnya. Proses kreasi kadang berdasarkan intuisi, pengalaman personal yang dominan dan mengandung narasi yang sangat subjektif. Kesemuanya itu dikaitkan dengan disiplin ilmu lainnya (sosial, ekonomi, budaya dan politik untuk menghasilkan sebuah representasi. Modular Dualism Abstract. Dualism is the concept that everything has two opposite sides or principles. Life and death, male and female, day

  5. Modular properties of 6d (DELL) systems

    Science.gov (United States)

    Aminov, G.; Mironov, A.; Morozov, A.

    2017-11-01

    If super-Yang-Mills theory possesses the exact conformal invariance, there is an additional modular invariance under the change of the complex bare charge [InlineMediaObject not available: see fulltext.]. The low-energy Seiberg-Witten prepotential ℱ( a), however, is not explicitly invariant, because the flat moduli also change a - → a D = ∂ℱ/∂ a. In result, the prepotential is not a modular form and depends also on the anomalous Eisenstein series E 2. This dependence is usually described by the universal MNW modular anomaly equation. We demonstrate that, in the 6 d SU( N) theory with two independent modular parameters τ and \\widehat{τ} , the modular anomaly equation changes, because the modular transform of τ is accompanied by an ( N -dependent!) shift of \\widehat{τ} and vice versa. This is a new peculiarity of double-elliptic systems, which deserves further investigation.

  6. Utilization of microwave energy for decontamination of oil polluted soils.

    Science.gov (United States)

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.

  7. Dealing with the paradox of energy efficiency promotion by electric utilities

    International Nuclear Information System (INIS)

    Sousa, José Luís; Martins, António Gomes; Jorge, Humberto

    2013-01-01

    Utility-based Demand-Side Management (DSM) programmes started after the oil crises of the 70's and were adopted by utilities as a standard practice. However, deregulation of the electricity industry threatened DSM. More recent concerns regarding energy dependence and environmental impact of energy use caused renewed attention on the utilities role in energy efficiency fostering. EE is presently a cross-cutting issue, influencing energy policy definition and regulatory activity worldwide. Some instruments for influencing the behaviour of electric utilities in the market are used by regulators, corresponding to both impositions and stimuli, such as defining savings targets or decoupling profits from energy sales. The paper addresses categories of regulatory instruments and refers to examples of countries and regions using these identified categories of instruments. Although some cases show voluntary involvement of utilities in EE promotion on the grounds of customer retention strategies, there is a clear prevalence of regulatory constrained markets where utilities rationally engage in energy efficiency promotion

  8. The Effects of Utilizing Natural Light to Reduce Energy Consumption

    OpenAIRE

    SHEIKH, Shilla; GHALEHNOVI, Afsane

    2015-01-01

    Abstract.While Iran has the richest energy source, but wastage and improper use of it has imposed irretrievable damages to our annual budget; such that construction division has allocated the most level of energy to itself with more than 40% of total energy produced in Iran and consumption of expenses equal to 30% of earning gained from oil sale. Since electricity energy has the most share of energy consumption in construction division, providing modern ways to reduce the consumption of this ...

  9. Modular Software-Defined Radio

    Directory of Open Access Journals (Sweden)

    Rhiemeier Arnd-Ragnar

    2005-01-01

    Full Text Available In view of the technical and commercial boundary conditions for software-defined radio (SDR, it is suggestive to reconsider the concept anew from an unconventional point of view. The organizational principles of signal processing (rather than the signal processing algorithms themselves are the main focus of this work on modular software-defined radio. Modularity and flexibility are just two key characteristics of the SDR environment which extend smoothly into the modeling of hardware and software. In particular, the proposed model of signal processing software includes irregular, connected, directed, acyclic graphs with random node weights and random edges. Several approaches for mapping such software to a given hardware are discussed. Taking into account previous findings as well as new results from system simulations presented here, the paper finally concludes with the utility of pipelining as a general design guideline for modular software-defined radio.

  10. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m 2 , the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m 2 , the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  11. Effects of atmospheric variability on energy utilization and conservation. [Space heating energy demand modeling; Program HEATLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Johnson, G.R.; Somervell, W.L. Jr.; Sparling, E.W.; Dreiseitly, E.; Macdonald, B.C.; McGuirk, J.P.; Starr, A.M.

    1976-11-01

    Research conducted between 1 July 1975 and 31 October 1976 is reported. A ''physical-adaptive'' model of the space-conditioning demand for energy and its response to changes in weather regimes was developed. This model includes parameters pertaining to engineering factors of building construction, to weather-related factors, and to socio-economic factors. Preliminary testing of several components of the model on the city of Greeley, Colorado, yielded most encouraging results. Other components, especially those pertaining to socio-economic factors, are still under development. Expansion of model applications to different types of structures and larger regions is presently underway. A CRT-display model for energy demand within the conterminous United States also has passed preliminary tests. A major effort was expended to obtain disaggregated data on energy use from utility companies throughout the United States. The study of atmospheric variability revealed that the 22- to 26-day vacillation in the potential and kinetic energy modes of the Northern Hemisphere is related to the behavior of the planetary long-waves, and that the midwinter dip in zonal available potential energy is reflected in the development of blocking highs. Attempts to classify weather patterns over the eastern and central United States have proceeded satisfactorily to the point where testing of our method for longer time periods appears desirable.

  12. A Wind Power Plant with Thermal Energy Storage for Improving the Utilization of Wind Energy

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2017-12-01

    Full Text Available The development of the wind energy industry is seriously restricted by grid connection issues and wind energy generation rejections introduced by the intermittent nature of wind energy sources. As a solution of these problems, a wind power system integrating with a thermal energy storage (TES system for district heating (DH is designed to make best use of the wind power in the present work. The operation and control of the system are described in detail. A one-dimensional system model of the system is developed based on a generic model library using the object-oriented language Modelica for system modeling. Validations of the main components of the TES module are conducted against experimental results and indicate that the models can be used to simulate the operation of the system. The daily performance of the integrated system is analyzed based on a seven-day operation. And the influences of system configurations on the performance of the integrated system are analyzed. The numerical results show that the integrated system can effectively improve the utilization of total wind energy under great wind power rejection.

  13. Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, L.S; Thybo, C.; Stoustrup, Jakob

    2003-01-01

    The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives...

  14. Utilization of arginine as an energy source for the growth of Streptococcus faecalis.

    Science.gov (United States)

    Deibel, R H

    1964-05-01

    Deibel, R. H. (American Meat Institute Foundation, Chicago, Ill.). Utilization of arginine as an energy source for the growth of Streptococcus faecalis. J. Bacteriol. 87:988-992. 1964.-Although both Streptococcus faecalis and S. faecium (and its variety durans) hydrolyze arginine, the utilization of this amino acid as an energy source appears to have taxonomic utility, as only S. faecalis and its varieties can couple the resultant energy with growth processes. Utilization of arginine by S. faecalis in a semisynthetic, casein-hydrolysate medium requires small concentrations of a fermentable carbohydrate (0.05%), presumably for synthetic reactions. The arginine analogue, agmatine, is utilized as an energy source by S. faecalis but not by S. faecium, and only approxinately 50% of the latter strains hydrolyzed this compound. Other ureido- and guanido-containing compounds tested were neither utilized as an energy source nor deaminated.

  15. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    Science.gov (United States)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  16. Electric utility application of wind energy conversion systems on the island of Oahu

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, C.A.; Melton, W.C.

    1979-02-23

    This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

  17. Complexity in Managing Modularization

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Sun, Hongyi

    2011-01-01

    In general, the phenomenon of managing modularization is not well known. The cause-effect relationships between modularization and realized benefits are complex and comprehensive. Though a number of research works have contributed to the study of the phenomenon of efficient and effective...... modularization management it is far from clarified. Recognizing the need for further empirical research, we have studied 40 modularity cases in various companies. The studies have been designed as long-term studies leaving time for various types of modularization benefits to emerge. Based on these studies we...... have developed a framework to support the heuristic and iterative process of planning and realizing modularization benefits....

  18. Legal-institutional arrangements facilitating offshore wind energy conversion systems (WECS) utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, L.H.

    1977-09-01

    Concern for the continuing sufficiency of energy supplies in the U.S. has tended to direct increasing attention to unconventional sources of supply, including wind energy. Some of the more striking proposals for the utilization of wind energy relate to offshore configurations. The legal-institutional arrangements for facilitating the utilization of offshore wind energy conversion systems (WECS) are examined by positioning three program alternatives and analyzing the institutional support required for the implementation of each.

  19. Environmental impacts of of energy exploitation and utilization in Nigeria

    International Nuclear Information System (INIS)

    Adewoye, R. O.

    1999-01-01

    This is the lead paper of the conference and presented by the Permanent Secretary, Federal Ministry of the Environment. It highlights the significant role of energy in the affairs of mankind, present available energy resources and their contributions to global energy supply. The particular case of Nigeria with its high dependence on fossil fuel, whose development and usage has proved to have significant environmental consequences necessitating the development of adequate strategies for mitigating environmental impacts

  20. Heavier tax burden on energy utilities in the Netherlands

    International Nuclear Information System (INIS)

    Oostenrijk, A.J.; Van Peer, A.J.M.; Thomas, B.A.J.

    1997-01-01

    In order for the energy market to develop into a market with business economical starting points, competition and free access the Dutch Electric Power Law is revised. Part of the Energy Distribution Law (WED, abbreviated in Dutch) came into effect February 1, 1997. The WED also has far-going fiscal consequences for the energy market and people working in that market. The companies have to pay corporation taxes, are not allowed to activate goodwill and to deduct environmental investments anymore. 2 figs

  1. Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, L.S; Thybo, C.; Stoustrup, Jakob

    2003-01-01

    The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives...... the condenser pressure towards an optimal state. The objective of this is to present a feasible method that can be used for energy optimizing control. A simulation model of a simple refrigeration system will be used as basis for testing the control method....

  2. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  3. Opportunities for public water utilities in the market of energy from water.

    Science.gov (United States)

    Mol, S S M; Kornman, J M; Kerpershoek, A J; van der Helm, A W C

    2011-01-01

    An inventory is made of the possibilities to recover sustainable energy from the water cycle by identifying different water flows in a municipal environment as a sustainable energy source. It is discussed what role public water utilities should play in the market of energy from water. This is done for Waternet, the public water utility of Amsterdam, by describing experiences on two practical applications for aquifer thermal energy storage and energy recovery from drinking water. The main conclusion is that public water utilities can substantially contribute to the production of sustainable energy, especially by making use of heat and cold from the water cycle. Public water utilities have the opportunity to both regulate and enter the market for energy from water.

  4. Renewable Energy Price-Stability Benefits in Utility Green Power Programs

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L. A.; Cory, K. S.; Swezey, B. G.

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  5. Renewable Energy Price-Stability Benefits in Utility Green Power Programs. 36 pp

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cory, Karlynn S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Swezey, Blair G. [Applied Materials, Santa Clara, CA (United States)

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  6. Energy economics: impacts on electric utilities' future decisions

    International Nuclear Information System (INIS)

    Smith, S.H.

    1983-01-01

    Despite financial and regulatory pressures that have led electric utilities to slow construction and minimize capital expenditures, Carolina Power and Light Company is proceeding with two new nuclear and two new coal facilities because it believes the commitment to expand must be made in the 1980s. The economic slowdown has given utilities a breathing period, but not enough to allow a complete stop in expansion if the utilities are to be ready for the expected economic growth of the 1990s. Financing this expansion is a slower process for regulated industries and leads to strained relations between customers and suppliers. The two can work together to promote conservation and load management, but higher rates must finance new construction to avoid a shortfall later. The costs of environmentally sound coal combustion and nuclear plant construction must both be reduced to help keep the recovery from being inflationary

  7. The energy issue. Demand and potentials, utilization, risks, costs

    International Nuclear Information System (INIS)

    Heinloth, K.

    1997-01-01

    Will the demand for energy be growing or decreasing in future? How are prosperity and energy consumption linked up? How can the CO 2 reduction target announced at the Earth Summit in Rio de Janeiro be achieved? What is the price for ''''benign'''' energy as compared to ''''malignant'''' energy? What is the future contribution to energy supplies that can be expected from renewable energy sources? What are the good and the evil aspects of nuclear energy? These are questions that will sooner or later concern us all, and in any case when it comes to paying the bill for our present squandering. The author Klaus Heinloth, a renown expert in this field, presents with this book a scientifically well-founded and unbiased analysis and source of information that may serve politicians as a basis for objective debates about the future energy policy. Provided with a generous grant by the Heraeus foundation, the author was free to pursue his studies and inquiries independent of industry and relevant associations, and collect, evaluate and analyse the required information. (orig./CB) [de

  8. Fusion utilization projections in the United States energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Fillo, J.A.

    1979-11-01

    The following topics are discussed in some detail in this report: (1) applications of fusion energy, (2) fusion implementation in the US energy system, (3) reactor performance requirements, (4) technology for electric applications, and (5) technology for synthetic fuel/chemical applications. (MOW)

  9. Valuable technical advice in sale of energy utility

    International Nuclear Information System (INIS)

    Roggen, M.

    2005-01-01

    The buying and merging of energy companies is a dynamic market. Merging companies is a complex process. The expertise of the Dutch research institute for the electric power industry KEMA can be used to support potential buyers of energy companies [nl

  10. Utilization of Wastes as an Alternative Energy Source for ...

    African Journals Online (AJOL)

    To meet the rising demand for energy and to address environmental concerns, a conversion from conventional energy systems to renewable resources is essential. For the sustainability of human civilization, an environmentally techno – economically feasible waste treatment method is very important to treat waste. Several ...

  11. Fusion utilization projections in the United States energy economy

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.

    1979-11-01

    The following topics are discussed in some detail in this report: (1) applications of fusion energy, (2) fusion implementation in the US energy system, (3) reactor performance requirements, (4) technology for electric applications, and (5) technology for synthetic fuel/chemical applications

  12. Optimal benefits of utilizing renewable energy technologies in ...

    African Journals Online (AJOL)

    With rapid population growth and increase in industrial activities, more energy is consumed, resulting in environmental pollution and economic difficulties, ttherefore, the need for utilising renewable energy resources has emerged globally and it is possible that China, India, Brazil and South Africa (CIBS) would develop ...

  13. Modularity and Economic Organization

    DEFF Research Database (Denmark)

    Sanchez, Ron; Mahoney, Joseph T.

    and the nature of product market competition, (ii) the organization designs firms may adopt and the industry structures that can result when significant numbers of firms adopt modular product architectures, and (iii) learning processes and knowledge structures at the firm and industry levels in modular product......This paper addresses modularity as a basis for organizing economic activity. We first define the key concepts of architecture and of modularity as a special form of architecture. We then suggest how modular systems of all types may exhibit several properties of fundamental importance...... to the organization of economic activities, including greater adaptability and evolvability than systems that lack modular properties. We draw extensively on our original 1996 paper on modularity and subsequent research to suggest broad theoretical implications of modularity for (i) firms' product strategies...

  14. Potential utilization of renewable energy sources and the related problems

    International Nuclear Information System (INIS)

    Roos, I.; Selg, V.

    1996-01-01

    Estonia's most promising resource of renewable energy is the natural biomass. In 1994 the use of wood and waste wood formed about 4.9% of the primary energy supply, the available resource will provide for a much higher share of biomass in the future primary energy supply, reaching 9-14%. Along with the biomass, wind energy can be considered the largest resource. On the western and northern coast of Estonia, in particular, on the islands, over several years, the average wind speed has been 5 m/s. Based on the assumption that the wind speed exceeds 6 m/s in the area that forms ca 1.5% of the Estonian territory (the total area of Estonia is about 45,000 km 2 ) and is 5 - 6 m/s on about 15% of the total area, using 0.5 MW/km 2 for the installation density, very approximate estimates permit to state that the maximum hypothetical installed capacity could be 3750 MW. It might be useful to make use of the current maximum 50 MW, which could enable the generation of approximately 70 - 100 GW h of energy per year. Although the solar energy currently has no practical use in Estonia and the resource of hydro power is also insignificant (only ca 1% of the electricity consumption), these two resources of renewable energy hold future promise in view of the use of local resources and that of environmental protection. It is not reasonable to regard renewable energy sources as a substitute for the traditional oil shale-based power engineering in Estonia. But, to some extent, local energy demand can be covered by renewable energy sources. Thus, they can contribute to the reduction of the greenhouse gases emissions in Estonia

  15. Optimization of power generating thermoelectric modules utilizing LNG cold energy

    Science.gov (United States)

    Jeong, Eun Soo

    2017-12-01

    A theoretical investigation to optimize thermoelectric modules, which convert LNG cold energy into electrical power, is performed using a novel one-dimensional analytic model. In the model the optimum thermoelement length and external load resistance, which maximize the energy conversion ratio, are determined by the heat supplied to the cold heat reservoir, the hot and cold side temperatures, the thermal and electrical contact resistances and the properties of thermoelectric materials. The effects of the thermal and electrical contact resistances and the heat supplied to the cold heat reservoir on the maximum energy conversion ratio, the optimum thermoelement length and the optimum external load resistance are shown.

  16. Portable modular detection system

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  17. Energy efficient scheme for cognitive radios utilizing soft sensing

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-04-06

    In this paper we propose an energy efficient cognitive radio system. Our design considers an underlaying resource allocation combined with soft sensing information to achieve a sub-optimum energy efficient system. The sub-optimality is achieved by optimizing over a channel inversion power policy instead of considering a water-filling power policy. We consider an Energy per Goodbit (EPG) metric to express the energy efficient objective function of the system and as an evaluation metric to our system performance. Since our optimization problem is not a known convex problem, we prove its convexity to guarantee its feasibility. We evaluate the proposed scheme comparing to a benchmark system through both analytical and numerical results.

  18. Utilization of geothermal energy for drying fish products

    International Nuclear Information System (INIS)

    Arason, S.; Arnason, H.

    1992-01-01

    This paper is about industrial uses of geothermal energy for drying of fish products. Drying is an ancient method for preservation of foods, the main purpose of which is to increase the preservation time. For drying, an external source of energy is needed to extract water. In this paper an emphasis is placed on drying fish and associated processes, and how geothermal energy can be used to substitute oil or electricity. The Icelandic Fisheries Laboratories have been experimenting with different methods of drying, and several drying stations have been designed for indoor drying of fish products. Today there are more than a dozen companies in this country which are drying fish indoors using for that purpose electricity and/or geothermal energy. Further possibilities are available when fish processing plants are located in geothermal areas

  19. assessment of household energy utilized for cooking in ikeja, lagos

    African Journals Online (AJOL)

    EYERE

    In certain regions of Mexico, households irrespective of their income level cook a particular .... No monthly salary. 1. 3. 200. 1. 0. -100. 0. 0. 0. 1. 0. -100. 0. 0. 0. Total. 74 116 56 103 39. -62. 5. 40. 700. 15. 3. -80. 12 11. -8. 3.4.2 Energy Use and Preferred Energy Compared for. Income Level: As observed from Table 2, most.

  20. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  1. Inverter for interfacing advanced energy sources to a utility grid

    Science.gov (United States)

    Steigerwald, Robert L.

    1984-01-01

    A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.

  2. Control room conceptual design of nuclear power plant with multiple modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Jia Qianqian; Qu Ronghong; Zhang Liangju

    2014-01-01

    A conceptual design of the control room layout for the nuclear power plant with multiple modular high temperature gas-cooled reactors has been developed. The modular high temperature gas-cooled reactors may need to be grouped to produce as much energy as a utility demands to realize the economic efficiency. There are many differences between the multi-modular plant and the current NPPs in the control room. These differences may include the staffing level, the human-machine interface design, the operation mode, etc. The potential challenges of the human factor engineering (HFE) in the control room of the multi-modular plant are analyzed, including the operation workload of the multi-modular tasks, how to help the crew to keep situation awareness of all modules, and how to support team work, the control of shared system between modules, etc. A concept design of control room for the multi-modular plant is presented based on the design aspect of HTR-PM (High temperature gas-cooled reactor pebble bed module). HFE issues are considered in the conceptual design of control room for the multi-modular plant and some design strategies are presented. As a novel conceptual design, verifications and validations are needed, and focus of further work is sketch out. (author)

  3. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation.

    Science.gov (United States)

    Shaw, Wendy J; Helm, Monte L; DuBois, Daniel L

    2013-01-01

    This review discusses the development of molecular electrocatalysts for H2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first, second, and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride donor abilities and other important thermodynamic parameters. The second coordination sphere includes functional groups such as pendent acids or bases that can interact with bound substrates such as H2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H2, controlling intra- and intermolecular proton transfer reactions, and providing a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor ability of the catalysts using the first coordination sphere and the proton donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H2 production, oxidation, or bidirectional (catalyzing both H2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that is beyond the second coordination sphere. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes, and these simple systems provide insights into enzyme function and reactivity that may be difficult to probe in enzymes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2013 Elsevier

  4. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    Energy Technology Data Exchange (ETDEWEB)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04

    Many state regulatory commissions and policymakers want utilities to aggressively pursue energy efficiency as a strategy to mitigate demand and energy growth, diversify the resource mix, and provide an alternative to building new, costly generation. However, as the National Action Plan for Energy Efficiency (NAPEE 2007) points out, many utilities continue to shy away from aggressively expanding their energy efficiency efforts when their shareholder's fundamental financial interests are placed at risk by doing so. Thus, there is increased interest in developing effective ratemaking and policy approaches that address utility disincentives to pursue energy efficiency or lack of incentives for more aggressive energy efficiency efforts. New regulatory initiatives to promote increased utility energy efficiency efforts also affect the interests of consumers. Ratepayers and their advocates are concerned with issues of fairness, impacts on rates, and total consumer costs. From the perspective of energy efficiency advocates, the quid pro quo for utility shareholder incentives is the obligation to acquire all, or nearly all, achievable cost-effective energy efficiency. A key issue for state regulators and policymakers is how to maximize the cost-effective energy efficiency savings attained while achieving an equitable sharing of benefits, costs and risks among the various stakeholders. In this study, we modeled a prototypical vertically-integrated electric investor-owned utility in the southwestern US that is considering implementing several energy efficiency portfolios. We analyze the impact of these energy efficiency portfolios on utility shareholders and ratepayers as well as the incremental effect on each party when lost fixed cost recovery and/or utility shareholder incentive mechanisms are implemented. A primary goal of our quantitative modeling is to provide regulators and policymakers with an analytic framework and tools that assess the financial impacts of

  5. Modular Robotic Vehicle

    Science.gov (United States)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  6. Issues associated with energy efficiency programs implementation at the housing and utility enterprises

    Directory of Open Access Journals (Sweden)

    Borisova Natalia

    2017-01-01

    Full Text Available Energy saving potential is quite huge in the most sectors of the national economy, particularly in housing and utilities and industry. Due to this, energy efficiency increase at the enterprises of housing and utilities and industry through the energy efficiency programs implementation, is one of the priorities in the modern economy of Russia and its regions, and requires radical measures to improve the effectiveness of its implementation. The purpose of the authors is the scientific and practical study of the main problems of energy efficiency programs implementation at the enterprises of housing and utilities services and industry in modern conditions. To achieve this purpose the authors solved the following problems: the current state of the housing and utilities sector and industry, the relevance and the need for energy saving policy at the enterprises of housing and utilities services and industry are studied; the main problems impeding to implement the energy-saving program effectively at the enterprises of housing and utilities services and industry are determined; the possible ways of solving the problems identified in the energy efficiency programs implementation at the enterprises of housing and industry are offered. The team of authors focuses in this study on the problems of the energy audit using in practice as a basic tool for the energy saving programs development at the enterprises of housing and utilities services, industry and their subsequent implementation. The subject of author's researches is the factors that determine the energy efficiency programs implementation at the enterprises of housing and utilities services and industry at the level of individual region and the whole country, and the object is the enterprises of housing and utilities services and industry. Methodologically the scientific and practical research is based on the complex approach using the methods of comparative, statistical and logical analysis.

  7. Methods of determining incremental energy costs for economic dispatch and inter-utility interchange in Canadian utilities

    International Nuclear Information System (INIS)

    El-Hawary, M.E.; El-Hawary, F.; Mbamalu, G.A.N.

    1991-01-01

    A questionnaire was mailed to ten Canadian utilities to determine the methods the utilities use in determining the incremental cost of delivering energy at any time. The questionnaire was divided into three parts: generation, transmission and general. The generation section dealt with heat rates, fuel, operation and maintenance, startup and shutdown, and method of prioritizing and economic evaluation of interchange transactions. Transmission dealt with inclusion of transmission system incremental maintenance costs, and transmission losses determination. The general section dealt with incremental costs aspects, and various other economic considerations. A summary is presented of responses to the questionnaire

  8. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structures: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Mittal, Saurabh; Wu, Hongyu; Jones, Wesley

    2015-07-17

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is poorly understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time of use tariff to estimate economic and physical impacts on both the households and the distribution utilities. HEMS reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Household savings are greater than the reduction utility net revenue indicating that HEMS can provide a societal benefit providing tariffs are structured so that utilities remain solvent. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices and resulting in a higher peak load.

  9. Choice of Locations for Wind Energy Utilization With GIS Tools

    Directory of Open Access Journals (Sweden)

    Štefan Kuzevič

    2007-06-01

    Full Text Available Using of renewable energy sources, among which we can classify, wind energy, meet the requirements of environmental acceptable. The renewable energy sources have significant role in meeting the targets of Kyoto Protocol and they have very important role in the field of local and regional development and employment. Potential builder of wind plant have to take to consideration many different factors. Power of wind is one of these factors. Wind power can be estimate from measured data at the climatologically stations and airports. Choice of potential locality is by influenced many others factor, such as quantity and parameters obstacles, elevation, accessibility location for building machines, distance from connection of high voltage, etc. For examination locality we can use the GIS tools.

  10. Product Architecture Modularity Strategies

    DEFF Research Database (Denmark)

    Mikkola, Juliana Hsuan

    2003-01-01

    The focus of this paper is to integrate various perspectives on product architecture modularity into a general framework, and also to propose a way to measure the degree of modularization embedded in product architectures. Various trade-offs between modular and integral product architectures...... and how components and interfaces influence the degree of modularization are considered. In order to gain a better understanding of product architecture modularity as a strategy, a theoretical framework and propositions are drawn from various academic literature sources. Based on the literature review...

  11. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  12. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    International Nuclear Information System (INIS)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-01-01

    This project's mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS)

  13. A Resource Utilization Score for Software Energy Consumption

    NARCIS (Netherlands)

    Jagroep, E.A.; van der Werf, J.M.E.M.; Broekman, Jordy; Blom, Leen; van Vliet, Rob; Brinkkemper, S.

    Software as the true consumer of power and its potential contribution to reach sustainability goals is increasingly being acknowledged. Studies so far have presented successful results and methods to address the energy consumption of the software, indicating that different stakeholders striving for

  14. Utilization of low-energy electron accelerators in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-02-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  15. Efficient energy management measures in steel industry for economic utilization

    Directory of Open Access Journals (Sweden)

    Gurinderbir Singh Grewal

    2016-11-01

    Full Text Available The application of energy efficient Induction Machines (IM is explained in reference to power consumption savings. In energy efficient IM, losses for various Horse Power (HP ratings are summarized for bringing effective changes in design. Emphasis is laid on how load factor, speed & power quality affect machine’s efficiency. Replacement of conventional IM of higher power rating is done with required energy efficient Doubly Fed Induction Machine (DFIM to enhance the performance at variable speeds near rated power outputs. Results of the proposed approach will give substantial savings in energy & loss reduction. The field data of Jindal Steel Rolling Mill (JSRM at Hisar, Haryana (India is taken into consideration. This paper proposes a non-intrusive air gap torque method for efficiency estimation of in-service IMs. This approach gives results considering stray-load and friction-windage loss according to IEC standard and IEEE112-B standard. The proposed method is validated experimentally whose effectiveness is witnessed using MATLAB/SIMULINK.

  16. Geothermal Energy: Resource and Utilization. A Teaching Module.

    Science.gov (United States)

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  17. Utilization of Microwave Energy in the Calcination and ...

    African Journals Online (AJOL)

    The application of microwave energy in the calcination and agglomeration of manganese carbonate ore from Nsuta, Ghana, has been investigated. The real and imaginary permittivities, which may be used to determine a substance's response to microwave heating, were measured and the permittivities of both the ore and ...

  18. Product Architecture Modularity Strategies

    DEFF Research Database (Denmark)

    Mikkola, Juliana Hsuan

    2003-01-01

    and how components and interfaces influence the degree of modularization are considered. In order to gain a better understanding of product architecture modularity as a strategy, a theoretical framework and propositions are drawn from various academic literature sources. Based on the literature review......The focus of this paper is to integrate various perspectives on product architecture modularity into a general framework, and also to propose a way to measure the degree of modularization embedded in product architectures. Various trade-offs between modular and integral product architectures......, the following key elements of product architecture are identified: components (standard and new-to-the-firm), interfaces (standardization and specification), degree of coupling, and substitutability. A mathematical function, termed modularization function, is introduced to measure the degree of modularization...

  19. Modular Hydropower Engineering and Pilot Scale Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, Phillip C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Emrgy has developed, prototyped and tested a modular hydropower system for renewable energy generation. ORNL worked with Emrgy to demonstrate the use of additive manufacturing in the production of the hydrofoils and spokes for the hydrokinetic system. Specifically, during Phase 1 of this effort, ORNL printed and finished machined patterns for both the hydrofoils and spokes that were subsequently used in a sand casting manufacturing process. Emrgy utilized the sand castings for a pilot installation in Denver, CO, where the parts represented an 80% cost savings from the previous prototype build that was manufactured using subtractive manufacturing. In addition, the castings were completed with ORNL’s newly developed AlCeMg alloy that will be tested for performance improvements including higher corrosion resistance in a water application than the 6160 alloy used previously

  20. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structure; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Pratt, A.; Lunacek, M.; Mittal, S.; Wu, H.; Jones, W.

    2015-06-15

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.

  1. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    Energy Technology Data Exchange (ETDEWEB)

    Fromer, Neil A., E-mail: nafromer@caltech.edu [California Institute of Technology, Resnick Sustainability Institute (United States); Diallo, Mamadou S., E-mail: diallo@wag.caltech.edu [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of)

    2013-11-15

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  2. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    Science.gov (United States)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-11-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  3. Energy Saving Potential by Utilizing Natural Ventilation under Warm Conditions

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    –airflow simulations of 27 common cases of dwellings (considered as one thermal zone) based on the combination of specific features of the building design, occupancy and climate conditions. The energy saving potential is assessed then by the use of a new assessment method suitable for large-scale scenarios using......The objective of this article is to show the potential of natural ventilation as a passive cooling method within the residential sector of countries which are located in warm conditions using Mexico as a case study. The method is proposed as performing, with a simplified ventilation model, thermal...... the actual number of air-conditioned dwellings distributed among the 27 cases. Thereby, the energy saving is presented as the difference in the cooling demand of the dwelling during one year without and with natural ventilation, respectively. Results indicate that for hot-dry conditions, buildings with high...

  4. The Utilization of Solar Energy by Way of Hydrogen Production

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    It is suggested to produce hydrogen gas by photolytic splitting of water, and to feed it into a hydrogen economy. One approach to obtain good yields in photolysis consist in the application of asymmetric membranes that release the different, reactive, primary products of the photochemical reaction on opposite sides of the membranes so that a back reaction is prevented. Through this solar-chemical option a very large part of the energy needs of mankind could be covered in the long run. (author)

  5. Utilization of solar energy through photosynthesis and artificial water photolysis

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The plants build up organic matter with a carbon content of the order of 1011 t/year by means of photochemistry. Energy farming for the production of liquid or gaseous fuel is discussed. Yet the abiotic photolysis of water with production of hydrogen is preferable. By means of synthetic, asymmetric, photochemically active, membranes the primary products of water photolysis could be spatially separated so that their recombination is prevented.(author)

  6. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  7. Generation and energy utilization of methane form industrial wastewater

    International Nuclear Information System (INIS)

    Lebek, M.

    2009-01-01

    At the production site of a natural ingredients manufacturer for the food industry was necessary the adjustment of the WWTP to the enlargement of the production and its complement with a pre-treatment. The core of the treatment plan tis an UASB (Upflow Anaerobic Sludge Blanket) reactor where the wastewater is removed under anaerobic conditions. The main advantages of this treatment ar the operation stability and the high methane production. The biogas generated is cleaned before it is used during the production process as an energy resource. (Author)

  8. Progress in developing repetitive pulse systems utilizing inductive energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1983-01-01

    High-power, fast-recovery vacuum switches were used in a new repetitive counterpulse and transfer circuit to deliver a 5-kHz pulse train with a peak power of 75 MW (at 8.6 kA) to a 1-..cap omega.. load, resulting in the first demonstration of fully controlled, high-power, high-repetition-rate operation of an inductive energy-storage and transfer system with nondestructive switches. New circuits, analytical and experimental results, and feasibility of 100-kV repetitive pulse generation are discussed. A new switching concept for railgun loads is presented.

  9. Public utilities with renewable energy sources. Proceedings; Stadtwerke mit Erneuerbaren Energien. Konferenzbeitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Within the Second EUROSOLAR Conference of EUROSOLAR, the European Association for Renewable Energy (Bonn, Federal Republic of Germany) between 15th and 16th May, 2008, at the Waterworks Braunschweig (Federal Republic of Germany), the following lectures were held: (1) The municipal public utility: The paradigm shift from power distribution companies to municipal infrastructure provider (C. Jaenig); (2) Public utilities and their concepts (Z. Meszaros); (3) The BS Energy Group (U.Lehmann-Grube); (4) New ways with energy (T. Westerheide); (5) Public utilities and their concepts (R. Edzards); (6) Public utilities with renewable energy (P. Asmuth); (7) Total concept of the public utility Wolfhagen (M. Ruehl); (8) Municipal energy concepts for the expansion of the combined heat and power generation and renewable energies (J. van Bergen); (9) Storage of renewable energy (T. Blank); (10) Public utility as a confident partner of a renewable regional economy (R. Hemmers); (11) The regenerative combined cycle power plant (M. Meyr); (12) The solar power system of systaic (O. Achilles); (13) The concession contract as an instrument for restructuring (J. Schwarz); (14) EEG 2009, GasNZV and EEWaermeG: The changed legal framework as a chance for a restructured power generation (M. Altrock).

  10. Specialization can drive the evolution of modularity.

    Directory of Open Access Journals (Sweden)

    Carlos Espinosa-Soto

    2010-03-01

    Full Text Available Organismal development and many cell biological processes are organized in a modular fashion, where regulatory molecules form groups with many interactions within a group and few interactions between groups. Thus, the activity of elements within a module depends little on elements outside of it. Modularity facilitates the production of heritable variation and of evolutionary innovations. There is no consensus on how modularity might evolve, especially for modules in development. We show that modularity can increase in gene regulatory networks as a byproduct of specialization in gene activity. Such specialization occurs after gene regulatory networks are selected to produce new gene activity patterns that appear in a specific body structure or under a specific environmental condition. Modules that arise after specialization in gene activity comprise genes that show concerted changes in gene activities. This and other observations suggest that modularity evolves because it decreases interference between different groups of genes. Our work can explain the appearance and maintenance of modularity through a mechanism that is not contingent on environmental change. We also show how modularity can facilitate co-option, the utilization of existing gene activity to build new gene activity patterns, a frequent feature of evolutionary innovations.

  11. A Comparative Case Study of Electric Utility Companies’ Use of Energy Democracy in Strategic Communication

    Directory of Open Access Journals (Sweden)

    Meaghan McKasy

    2018-02-01

    Full Text Available A substantial increase in distributed renewable energy resources is changing the face of the energy environment, leading to strategic communication efforts by key stakeholders. The energy democracy movement supports this transformation from fossil fuels to distributed renewable energy and aims for equitable involvement of publics in energy decision making. These tenets challenge utility company earnings as they are directly related to energy sales and infrastructure returns on investment. Proposals by electric utility companies to restructure net-metering policies as a solution to financial issues have been criticized as prohibitive to the success of renewable energy advancement. To address these disagreements, the Edison Electric Institute and a communication firm, Maslansky & Partners, created The Future of Energy: A Working Communication Guide for Discussion. This handbook provides utility companies with strategic communication guidelines to portray themselves as supportive of renewables within a dynamic energy industry. We posit that aspects of the energy democracy movement have been employed by electric utility companies, as shown through the use of the handbook, as a strategy for communicating with customers in discussions around net metering. We examine two case studies in states with recent controversial net-metering policy changes by analyzing utility company websites and press releases for the use of the communication handbook terminology. We found that, in both cases, the suggested language was used to position their companies as pro-renewable energy and their utility-scale projects as more equitable for their customers. In addition, we found differences between each company’s use of key terms from the handbook. We posit that this is due to the temporal context of each net-metering debate at the time of the handbook release. Conclusions and future directions for research in the growing area of energy democracy are discussed.

  12. Utilization of geothermal energy in the mining and processing of tungsten ore. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, C.K.; Erickson, M.V.; Lowe, G.D.

    1980-02-01

    The status of the engineering and economic feasibility study of utilizing geothermal energy for the mining and processing of tungsten ore at the Union Carbide-Metals Division Pine Creek tungsten complex near Bishop, Calfironia is reviewed. Results of geophysical data analysis including determination of assumed resource parameters are presented. The energy utilization evaluation identifies potential locations for substituting geothermal energy for fossil fuel energy using current technology. Preliminary analyses for local environmental and institutional barriers to development of a geothermal system are also provided.

  13. Hierarchy of modular graph identities

    Energy Technology Data Exchange (ETDEWEB)

    D’Hoker, Eric; Kaidi, Justin [Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,University of California,Los Angeles, CA 90095 (United States)

    2016-11-09

    The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.

  14. Utilizing HPC Network Technologies in High Energy Physics Experiments

    CERN Document Server

    AUTHOR|(CDS)2088631; The ATLAS collaboration

    2017-01-01

    Because of their performance characteristics high-performance fabrics like Infiniband or OmniPath are interesting technologies for many local area network applications, including data acquisition systems for high-energy physics experiments like the ATLAS experiment at CERN. This paper analyzes existing APIs for high-performance fabrics and evaluates their suitability for data acquisition systems in terms of performance and domain applicability. The study finds that existing software APIs for high-performance interconnects are focused on applications in high-performance computing with specific workloads and are not compatible with the requirements of data acquisition systems. To evaluate the use of high-performance interconnects in data acquisition systems a custom library, NetIO, is presented and compared against existing technologies. NetIO has a message queue-like interface which matches the ATLAS use case better than traditional HPC APIs like MPI. The architecture of NetIO is based on a interchangeable bac...

  15. Energy utilization under different dietary regime in sheep

    International Nuclear Information System (INIS)

    Nasr, M.A.H.

    1982-01-01

    The present system of ruminant nutrition in egypt depends upon the agroindustrial by - products, crop residues and limited quantities of green fodders. Any future development will come through introducing non-traditional materials in ruminant rations and through benefiting from the recent scientific developments occurred in our understanding to the ruminal and post-ruminal digestion. Four rations, were tested throughout the present investigation, these diets consisted of molasses as low-cost, readily fermentable source of energy and as a good carrier for urea, and rice straw . On this diet the supply of amino acids may not be sufficient for moderate production levels by the animals.Hence, amino acids shortage and imbalance, in such animals has had to be expected

  16. Prediction of energy balance and utilization for solar electric cars

    Science.gov (United States)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    Solar irradiation and ambient temperature are characterized by region, season and time-domain, which directly affects the performance of solar energy based car system. In this paper, the model of solar electric cars used was based in Xi’an. Firstly, the meteorological data are modelled to simulate the change of solar irradiation and ambient temperature, and then the temperature change of solar cell is calculated using the thermal equilibrium relation. The above work is based on the driving resistance and solar cell power generation model, which is simulated under the varying radiation conditions in a day. The daily power generation and solar electric car cruise mileage can be predicted by calculating solar cell efficiency and power. The above theoretical approach and research results can be used in the future for solar electric car program design and optimization for the future developments.

  17. History of, and recent progress in, wind-energy utilization

    International Nuclear Information System (INIS)

    Soerensen, B.

    1995-01-01

    This review presents the current status of wind turbine technology and recent advances in understanding the long history of wind energy. Reasons for the convergence of technologies solutions towards a horizontal axis concept with two or three blades are discussed, and the advances in materials science are identified as determinants of the change toward increasing optimum turbine size. The modest environmental impacts of wind turbines are illustrated by recent life-cycle analyses, and the economic incentive structure and power buy-back rates in different countries are invoked to explain the variation in wind technology penetration in countries with similar resource potentials. Finally, the possible future role of wind technology is discussed, based on resource estimates, competing land demands, government commitments and technological trends, including the recent offshore wind farm developments. 83 refs., 15 figs., 6 tabs

  18. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  19. Utilizing Ocean Thermal Energy in a Submarine Robot

    Science.gov (United States)

    Jones, Jack; Chao, Yi

    2009-01-01

    A proposed system would exploit the ocean thermal gradient for recharging the batteries in a battery-powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. The proposed system is related to, but not the same as, previously reported ocean thermal energy conversion (OTEC) systems that exploit the ocean thermal gradient but consist of stationary apparatuses that span large depth ranges. The system would include a turbine driven by working fluid subjected to a thermodynamic cycle. CO2 has been provisionally chosen as the working fluid because it has the requisite physical properties for use in the range of temperatures expected to be encountered in operation, is not flammable, and is much less toxic than are many other commercially available refrigerant fluids. The system would be housed in a pressurized central compartment in a UUV equipped with a double hull (see figure). The thermodynamic cycle would begin when the UUV was at maximum depth, where some of the CO2 would condense and be stored, at relatively low temperature and pressure, in the annular volume between the inner and outer hulls. The cycle would resume once the UUV had ascended to near the surface, where the ocean temperature is typically greater than or equals 20 C. At this temperature, the CO2 previously stored at depth in the annular volume between the inner and outer hulls would be pressurized to approx. equals 57 bar (5.7 MPa). The pressurized gaseous CO2 would flow through a check valve into a bladder inside the pressurized compartment, thereby storing energy of the relatively warm, pressurized CO2 for subsequent use after the next descent to maximum depth.

  20. Case-study application of venture analysis: the integrated energy utility. Volume 3. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Fein, E; Gordon, T J; King, R; Kropp, F G; Shuchman, H L; Stover, J; Hausz, W; Meyer, C

    1978-11-01

    The appendices for a case-study application of venture analysis for an integrated energy utility for commercialization are presented. The following are included and discussed: utility interviews; net social benefits - quantitative calculations; the financial analysis model; market penetration decision model; international district heating systems; political and regulatory environment; institutional impacts.

  1. Energy utilization associated with regular activity breaks and continuous physical activity: A randomized crossover trial.

    Science.gov (United States)

    Fenemor, S P; Homer, A R; Perry, T L; Skeaff, C M; Peddie, M C; Rehrer, N J

    2018-02-13

    To quantify and compare energy utilization associated with prolonged sitting alone, or interrupted with regular activity breaks and/or an additional bout of continuous physical activity. Thirty six adults (11 males, BMI 24.1 ± 4.6) completed four interventions: (1) prolonged sitting (SIT), (2) sitting with 2-min of walking every 30 min (RAB), (3) prolonged sitting with 30-min of continuous walking at the end of the day (SIT + PA), (4) a combination of the activities in (2) and (3) above (RAB + PA). All walking was at a speed and incline corresponding to 60% V̇O 2max . Energy utilization over 7 h for each intervention was estimated using indirect calorimetry. Compared to SIT, SIT + PA increased total energy utilization by 709 kJ (95% CI 485-933 kJ), RAB by 863 kJ (95% CI 638-1088 kJ), and RAB + PA by 1752 kJ (95% CI 1527-1927 kJ) (all p energy utilization between SIT + PA and RAB, however, post-physical activity energy utilization in RAB was 632 kJ greater than SIT + PA (95% CI 561-704 kJ; p energy utilization compared to a single bout of continuous activity; however the total energy utilization is similar. Combining activity breaks with a longer continuous bout of activity will further enhance energy utilization, and in the longer term, may positively affect weight management of a greater magnitude than either activity pattern performed alone. ANZCTR12614000624684. Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  2. Pumped hydroelectric storage utilization assessment: Forerunner of renewable energy integration or Trojan horse?

    OpenAIRE

    KOUGIAS IOANNIS; SZABO SANDOR

    2017-01-01

    Pumped hydroelectric storage (PHS) is the main utility-scale storage technology. Although PHS systems generally constitute a fraction of generation, they receive increasing attention due to their potential balancing role towards higher penetration of variable renewable energy sources (RES). In the European context it is widely believed that PHS are key elements of the ongoing energy transition. The present analysis examines if this assumption is valid and PHS utilization grows parallel to RES...

  3. Clinical utility of dual-energy vertebral assessment (DVA).

    Science.gov (United States)

    Vokes, Tamara J; Dixon, Larry B; Favus, Murray J

    2003-11-01

    The current study was undertaken to evaluate the clinical utility of DVA, a system for imaging the lateral spine on the Lunar Prodigy densitometer. DVA images were obtained and bone density of the lumbar spine and proximal femur measured in 297 subjects (272 women), aged 64+/-13 years. The images were classified as: normal (N) if no fractures were detected and all vertebrae between T6 and L4 were visualized, fracture (F) if any vertebra had a fracture (defined as 25% or more reduction in the vertebral height) even if some of the other vertebrae could not be visualized, and un-interpretable (U) if at least one of the vertebra between T6 and L4 could not be classified and no fractures were detected in the visualized vertebrae. A subset of 66 patients also had standard radiographs of the thoracic and lumbar spine. Compared to radiographs, DVA had a 95% sensitivity to detect fractures and 82% specificity (to exclude them). Among all 297 subjects studied, DVAs were interpretable in 87%. They were classified as N in 204 (68%), F in 55 (19%) and U in 38 (13%). The reasons for un-interpretability were: scoliosis, scapular or rib shadow, severe arthritic changes and multiple vertebral compression fracture with severe spinal deformities. Only 11% of F subjects gave a history of a vertebral fracture, and only 56% of F subjects met the BMD criteria for osteoporosis (T score DVA, a low radiation and relatively low cost "point of service" procedure, to BMD measurement provides the clinician with a more comprehensive fracture risk assessment than that afforded by clinical evaluation and BMD measurement alone.

  4. The Utilization of Classifications in High-Energy Astrophysics Experiments

    Science.gov (United States)

    Atwood, Bill

    2012-03-01

    The history of high-energy gamma observations stretches back several decades. But it was with the launch of the Energetic Gamma Ray Experiment Telescope (EGRET) in 1991 onboard the Compton Gamma Ray Observatory (CGRO) [1], that the field entered a new era of discovery. At the high-energy end of the electromagnetic spectrum, incoming particles of light, photons, interact with matter mainly by producing electron-positron pairs and this process dominates above an energy of 10-30MeV depending on the material. To a high degree the directionality of the incoming gamma ray is reflected in the e+ and e-, and hence the detection of the trajectories of the e+e- pair can be used to infer the direction of the originating photon. Measuring these high-energy charged particles is the domain of high-energy particle physics and so it should be of little surprise that particle physicists played a significant role in the design and construction of EGRET, as well as the design and implementation of analysis methods for the resulting data. Prior to EGRET, only a handful of sources in the sky were known as high-energy gamma-ray emitters. During EGRET's 9-years mission the final catalog included over 270 sources including new types such as Gamma Ray Bursts (GRBs). This set the stage for the next-generation mission, the Gamma ray Large Area Space Telescope (GLAST) [2]. Very early in the EGRET mission, the realization that the high-energy gamma-ray sky was extremely interesting led to a competition to develop the next-generation instruments. The technology used in EGRET was frozen in the late 1970s and by 1992, enormous advances had been made in experimental particle physics. In particular the effort to develop solid state detectors, targeted for use at the Super Conducting Super Collider (SSC), had made the technology of silicon strip detectors (SSDs) commercially viable for use in large area arrays. Given the limitations imposed by the space environment (e.g., operate in a vacuum, scarce

  5. Unutilized energy utilizing systems. ; Power and levelling measures and unutilized energies. Miriyo energy katsuyo system. ; Denryoku fuka heijunka taisaku to miriyo energy

    Energy Technology Data Exchange (ETDEWEB)

    Kuromoto, E. (The Tokyo Electric Power Co. Inc., Tokyo (Japan))

    1993-02-12

    This paper explains quantitatively performance of heat storage tanks contributing largely to levelling power loads, and promoting and spreading more effective use of unutilized energies. A model case was used to compare differences in effectiveness of unutilized energy utilization with and without use of heat storage tanks. The heat demand used was a value in a day with a peak room cooling demand, and a heat supply system using water heat source heat pumps that utilize sewage treated water was used to manufacture cold water. As a result, the effective utilization rate of unutilized energy was increased to about 1.3 times when heat storage tanks were used. Effectiveness of a heat storage tank comes from its capability that excess amount of cold water manufactured during nighttime when heat demand falls by utilizing sewage treated water is stored in the heat storage tank, and the stored cold water can be supplied being mixed with cold water manufactured during daytime when heat demand rises sharply in daytime. Because sewage treated water has its annual temperature difference stabilized at about 10[degree]C, a heat pump utilizing the sewage treated water can reduce power required to produce heat of 1 Gcal by about 40% during room heating and about 15% during room cooling over the heating tower type heat pump. 8 figs., 1 tab.

  6. Evaluation of energy efficiency of various biogas production and utilization pathways

    International Nuclear Information System (INIS)

    Poeschl, Martina; Ward, Shane; Owende, Philip

    2010-01-01

    The energy efficiency of different biogas systems, including single and co-digestion of multiple feedstock, different biogas utilization pathways, and waste-stream management strategies was evaluated. The input data were derived from assessment of existing biogas systems, present knowledge on anaerobic digestion process management and technologies for biogas system operating conditions in Germany. The energy balance was evaluated as Primary Energy Input to Output (PEIO) ratio, to assess the process energy efficiency, hence, the potential sustainability. Results indicate that the PEIO correspond to 10.5-64.0% and 34.1-55.0% for single feedstock digestion and feedstock co-digestion, respectively. Energy balance was assessed to be negative for feedstock transportation distances in excess of 22 km and 425 km for cattle manure and for Municipal Solid Waste, respectively, which defines the operational limits for respective feedstock transportation. Energy input was highly influenced by the characteristics of feedstock used. For example, agricultural waste, in most part, did not require pre-treatment. Energy crop feedstock required the respect cultivation energy inputs, and processing of industrial waste streams included energy-demanding pre-treatment processes to meet stipulated hygiene standards. Energy balance depended on biogas yield, the utilization efficiency, and energy value of intended fossil fuel substitution. For example, obtained results suggests that, whereas the upgrading of biogas to biomethane for injection into natural gas network potentially increased the primary energy input for biogas utilization by up to 100%; the energy efficiency of the biogas system improved by up to 65% when natural gas was substituted instead of electricity. It was also found that, system energy efficiency could be further enhanced by 5.1-6.1% through recovery of residual biogas from enclosed digestate storage units. Overall, this study provides bases for more detailed assessment

  7. Modular Product Families and Assembly Systems

    DEFF Research Database (Denmark)

    Thyssen, Jesper

    2005-01-01

    of the rela-tionship between variables associated with configuration of modular product families and the interacting assembly system. One core result is the development of a system model based on the longitudinal case study incorporating both structural and performance elements. Based on the system model......This research centres on assembly systems designed for utilizing product modularization. Altogether, the task for companies has become an issue of managing the overall trade-off between the external market’s desire for variety and the internal efficiency and effectiveness. Product modularization...... is often claimed to be the answer to this trade-off in the extant literature. The overall research purpose has been to investigate the phenomena of product modularization as an apparently both powerful and com-plex means. The focal research objective is to obtain an improved insight and understanding...

  8. Energy and exergy analysis at the utility and commercial sectors of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Sattar, M.A.; Masjuki, H.H.; Abdessalam, H.; Shahruan, B.S.

    2007-01-01

    In this paper, sectoral energy and exergy analysis model is applied to the utility and commercial sectors of Malaysia by considering the energy and exergy flows from 1990 to 2003. The energy and exergy efficiencies are determined for the sub-sectors and devices used in these two sectors. It has been found the hydroelectric power plant sub-sector is more energy and exergy efficient compared to the thermal power plant sub-sector. The energy and exergy efficiencies of utility and commercial sectors of Malaysia are compared with a few other countries around the world as well. The utility and commercial sectors of Malaysia are found to be more efficient than that of Thailand, Brunei, China, and Vietnam in 1999

  9. Community energy systems and the law of public utilities. Volume 20. Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Louisiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities--Volume One: An overview. This report also contains a summary of a strategy described in Volume One--An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enchance the likelihood of ICES implementation.

  10. Impacts of environmental and utility siting laws on community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Senew, M J; Shimamoto, G T; Seymour, D A; Santini, D J

    1978-02-01

    Community Energy Systems provide an interesting energy conservative alternative to the traditional trend of large, central, grid-connected power plant design. The small community energy system (generally smaller than 100 MW), provides for waste heat utilization and utility cogeneration significantly reducing a community's total energy demand. Developers of Community Energy Systems, unfortunately, are faced with a complex of environmental and siting regulations, most of which are aimed at regulating the development and design of large power-generating facilities. Aside from discouraging development of a potentially more economic and environmentally sound approach to power generation, air-pollution regulations discriminate against these smaller systems. Compliance with the many Federal, state and local regulations often make small energy systems uneconomical. This project studies the emissions associated with Community Energy Systems and reviews the Federal, state, and local laws that regulate their design.

  11. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  12. Designing Modular Robotic Playware

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Marti, Patrizia

    2009-01-01

    In this paper, we explore the design of modular robotic objects that may enhance playful experiences. The approach builds upon the development of modular robotics to create a kind of playware, which is flexible in both set-up and activity building for the end-user to allow easy creation of games...... robotic tiles, and discusses the challenges and opportunities of this modular playware when used by children with different cognitive abilities....

  13. Modular Robotic Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  14. Energy expenditure and substrate utilization during whole body vibration

    Directory of Open Access Journals (Sweden)

    Ravena Santos Raulino

    2015-04-01

    Full Text Available INTRODUCTION AND OBJECTIVE: the aim of this study was to investigate whether the addition of vibration during interval training would raise oxygen consumption VO2 to the extent necessary for weight management and to evaluate the influence of the intensity of the vibratory stimulus for prescribing the exercise program in question. METHODS: VO2, measured breath by breath, was evaluated at rest and during the four experimental conditions to determine energy expenditure, metabolic equivalent MET, respiratory exchange ratio RER, % Kcal from fat, and rate of fat oxidation. Eight young sedentary females age 22±1 years, height 163.88± 7.62 cm, body mass 58.35±10.96 kg, and VO2 max 32.75±3.55 mLO2.Kg-1.min-1 performed interval training duration = 13.3 min to the upper and lower limbs both with vibration 35 Hz and 2 mm, 40 Hz and 2 mm, 45 Hz and 2 mm and without vibration. The experimental conditions were randomized and balanced at an interval of 48 hours. RESULTS: the addition of vibration to exercise at 45 Hz and 2 mm resulted in an additional increase of 17.77±12.38% of VO2 compared with exercise without vibration. However, this increase did not change the fat oxidation rate p=0.42 because intensity of exercise 29.1±3.3 %VO2max, 2.7 MET was classified as mild to young subjects. CONCLUSION: despite the influence of vibration on VO2 during exercise, the increase was insufficient to reduce body weight and did not reach the minimum recommendation of exercise prescription for weight management for the studied population.

  15. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA

  16. Electric vehicles from the point of view of an energy utility; Elektrofahrzeuge aus Sicht eines Energieversorgers

    Energy Technology Data Exchange (ETDEWEB)

    Corpataux, M.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Marcel Corpataux from the Elektra Baselland utility (EBL) takes a look at the utility's activities in the renewable energies sector and the need for balancing energy supply and demand. Various methods on the demand side are briefly looked at and the use of 'vehicle-to-grid' concepts that use hybrid vehicles as storage facilities for electrical power are commented on. The chances offered to electricity utilities by using hybrid vehicles as buffer storage for electrical power are discussed.

  17. Fusion Energy from the electric utilities perspective: Fusion Innovation Industry Forum

    International Nuclear Information System (INIS)

    Tagle, J. A.; Felipe, A.; Gomez, A.; Sanchez-Mayoral, M. L.; Merino, A.

    2013-01-01

    The paper presents the different future energy scenarios envisaged and the so called Power Generation Fleet Transition in which Fusion Energy could play an important role. A review of the R and D and Innovation main drivers in the electric sector is outline, with a detail description of the main issues and strategic challenges in the medium and short term. The worldwide historical involvement of electric utilities in Fusion is presented and revised under the new USA Utilities technical assessment carried out by the Electric Power Research Institute EPRI. The paper also presents the work done in the last few years by the European Fusion Industry Innovation Forum FIIF-MB in order to to evaluate a wide range of fusion concepts from the utility standpoint, to enhance utilities perspective on fusion, to provide guidance to Government Bodies and national Energy strategies for fusion-utilities and finally to establish a basis for communication and cooperation in fusion for utilities standpoint. Finally the paper comments the utilities challenges pointed out by the Fusion electricity: a road map to the realization of fusion energy report issued this year by the European Fusion Development Agreement EFDA.

  18. Utility and performance relative to consumer product energy efficiency standards. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Coggins, J.L.

    1979-12-14

    An investigation of the relative utility and performance of nine major household consumer products covered by the Energy Policy and Conservation Act is summarized. The objective was to define the terms utility and performance, to recommend methods for quantifying these two concepts, and to recommend an approach for dealing with utility and performance issues in the energy efficiency standards program. The definitions developed are: performance of a consumer product is the objective measure of how well, with the expected level of consumer input (following the manufacturer's instructions for installation and operation), the product does its intended job; and utility of a consumer product is a subjective measure, based on the consumer's perception, of the capability of the product to satisfy human needs. Quantification is based on test procedures and consumer survey methods which are largely already in use by industry. Utility and performance issues are important in product classification for prescribing energy efficiency standards. The recommended approach to utility and performance issues and classification is: prior to setting standards, evaluate utility and performance issues in the most quantitative way allowed by resources and schedules in order to develop classification guidelines. This approach requires no changes in existing Department of Energy test procedures.

  19. Utilization of geothermal energy resources in rural Alaskan communities. Final report, June 1-December 31, 1974

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, R.B.; Leonard, L.; Dinkel, D.H.

    1974-12-01

    Three potential geothermal sites in Alaska are discovered. The history of previous use of the hot springs, the socio-economic factors, energy needs, and total energy utilization plans of selected Alaskan thermal springs are presented. Proposed research programs for the sites and environmental hazards and protection are described. (MHR)

  20. Energy Utilization and Environmental Health: Methods for Prediction and Evaluation of Impact on Human Health.

    Science.gov (United States)

    Wadden, Richard A., Ed.

    A variety of socio-economic criteria are suggested for the choice of how best to utilize energy resources. One of the most significant of these criteria is the prediction and evaluation of existing and potential human health effects of recovery and usage of various energy resources. Suggestions are made for incorporation of these methods in site…

  1. Coal and energy: a southern perspective. Regional characterization report for the National Coal Utilization Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Boercker, F. D.; Davis, R. M.; Goff, F. G.; Olson, J. S.; Parzyck, D. C.

    1977-08-01

    This publication is the first of several reports to be produced for the National Coal Utilization Assessment, a program sponsored by the Assistant Administrator for Environment and Safety through the Division of Technology Overview of ERDA. The purpose of the report is to present the state and regional perspective on energy-related issues, especially those concerning coal production and utilization for 12 southern states. This report compiles information on the present status of: (1) state government infrastructure that deals with energy problems; (2) the balance between energy consumption and energy production; (3) the distribution of proved reserves of various mineral energy resources; (4) the major characteristics of the population; (5) the important features of the environment; and (6) the major constraints to increased coal production and utilization as perceived by the states and regional agencies. Many energy-related characteristics described vary significantly from state to state within the region. Regional and national generalizations obscure these important local variations. The report provides the state and regional perspective on energy issues so that these issues may be considered objectively and incorporated into the National Coal Utilization Assessment. This Assessment is designed to provide useful outputs for national, regional, and local energy planners.

  2. 75 FR 32494 - Energy Conservation for PHA-Owned or Leased Project-Audits, Utility Allowances

    Science.gov (United States)

    2010-06-08

    ... URBAN DEVELOPMENT Energy Conservation for PHA-Owned or Leased Project-Audits, Utility Allowances AGENCY... subject proposal. In support of national energy conservation goals, Public Housing Agencies (PHAs... techniques or other forms of information technology, e.g., permitting electronic submission of responses...

  3. Advanced Modular Inverter Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main

  4. Strategic management of utilization of new and renewable energy in the rural areas of Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Chaibi, M.T. (Centre de Recherche du Genie Rural, Ariana, Tunis (Tunisia))

    1993-01-01

    In Tunisia, the rural people have the smallest amounts of energy available. Their energy is used mainly for basic needs, and it often comes from non-commercial fuels, especially wood. The environmental impacts of intensified production processes aggravate the degradation of ecologic systems. The analysis of the energy situation in rural areas of Tunisia has shown that a growing energy consumption can be expected over the entire spectrum of economic and social activities. To cope with this crisis, technologies for energy requirements should not only meet energy needs; they must also be geared to particular economic, social and environmental conditions. Technically efficient, decentralized systems for the utilization of new and renewable energy can help in this by meeting the demand for high quality energy. This article attempts to propose precepts upon which a strategy can be formulated for a rational use of renewable energy in the rural areas. (Author)

  5. Community Energy Systems and the Law of Public Utilities. Volume Twenty-four. Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description of the laws and programs of the State of Michigan governing the regulation of public energy facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Path to Market for Compact Modular Fusion Power Cores

    Science.gov (United States)

    Woodruff, Simon; Baerny, Jennifer K.; Mattor, Nathan; Stoulil, Don; Miller, Ronald; Marston, Theodore

    2012-08-01

    The benefits of an energy source whose reactants are plentiful and whose products are benign is hard to measure, but at no time in history has this energy source been more needed. Nuclear fusion continues to promise to be this energy source. However, the path to market for fusion systems is still regularly a matter for long-term (20 + year) plans. This white paper is intended to stimulate discussion of faster commercialization paths, distilling guidance from investors, utilities, and the wider energy research community (including from ARPA-E). There is great interest in a small modular fusion system that can be developed quickly and inexpensively. A simple model shows how compact modular fusion can produce a low cost development path by optimizing traditional systems that burn deuterium and tritium, operating not only at high magnetic field strength, but also by omitting some components that allow for the core to become more compact and easier to maintain. The dominant hurdles to the development of low cost, practical fusion systems are discussed, primarily in terms of the constraints placed on the cost of development stages in the private sector. The main finding presented here is that the bridge from DOE Office of Science to the energy market can come at the Proof of Principle development stage, providing the concept is sufficiently compact and inexpensive that its development allows for a normal technology commercialization path.

  7. Plasma ARC/SCWO Sysems for Waste-to-Energy Applications Utilizing Milwaste Fuels

    Science.gov (United States)

    2013-07-01

    approximately 140 kW of energy from burning syngas generated from the pyrolysis of medical waste • The PAV reactor generates a significant amount of fine...AFRL-RX-WP-TR-2013-00213 PLASMA ARC/SCWO SYSTEMS FOR WASTE -TO- ENERGY APPLICATIONS UTILIZING MILWASTE FUELS Ralph H. Yates General...DATES COVERED (From - To) July 2013 Final 30 April 2004 – 3 June 2013 4. TITLE AND SUBTITLE PLASMA ARC/SCWO SYSTEMS FOR WASTE -TO-ENERGY

  8. The utilization of solar energy to help meet our nation's energy needs

    Science.gov (United States)

    Thomas, R. L.

    1973-01-01

    The nation's energy needs, domestic energy resources, and possible future energy resources are briefly discussed in this paper. Three potential solutions, coal, nuclear and solar are compared as to benefits and problems. The paper primarily discusses the options available in using solar energy as a natural energy resource. These options are discussed under the generation of electricity, heating and cooling of buildings, and the production of clean fuel.

  9. Modular Forms and Weierstrass Mock Modular Forms

    Directory of Open Access Journals (Sweden)

    Amanda Clemm

    2016-02-01

    Full Text Available Alfes, Griffin, Ono, and Rolen have shown that the harmonic Maass forms arising from Weierstrass ζ-functions associated to modular elliptic curves “encode” the vanishing and nonvanishing for central values and derivatives of twisted Hasse-Weil L-functions for elliptic curves. Previously, Martin and Ono proved that there are exactly five weight 2 newforms with complex multiplication that are eta-quotients. In this paper, we construct a canonical harmonic Maass form for these five curves with complex multiplication. The holomorphic part of this harmonic Maass form arises from the Weierstrass ζ-function and is referred to as the Weierstrass mock modular form. We prove that the Weierstrass mock modular form for these five curves is itself an eta-quotient or a twist of one. Using this construction, we also obtain p-adic formulas for the corresponding weight 2 newform using Atkin’s U-operator.

  10. Modular tree automata

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2012-01-01

    Tree automata are traditionally used to study properties of tree languages and tree transformations. In this paper, we consider tree automata as the basis for modular and extensible recursion schemes. We show, using well-known techniques, how to derive from standard tree automata highly modular r...

  11. Energy utilities and environment-related energy services in the year 2008. Scenario study

    International Nuclear Information System (INIS)

    1999-05-01

    Insight is given into of the developments in the sector energy distribution companies and the consequences for the demand for energy services. Next, an overview is given of which energy services should be developed to meet the changed needs of the market. Three scenarios have been set up and are discussed in this brochure: (1) a Steady State scenario (unchanged policy of energy distribution companies); (2) Alliance scenario (strategic cooperation between energy distribution companies and retailers and installation businesses); and (3) Autonomous Development scenario (energy distribution companies develop and offer new services)

  12. Targeting utility customers to improve energy savings from conservation and efficiency programs

    International Nuclear Information System (INIS)

    Taylor, Nicholas W.; Jones, Pierce H.; Kipp, M. Jennison

    2014-01-01

    Highlights: • Improving DSM program impacts by targeting high energy users. • DSM energy savings potential hinges on pre-participation performance. • Targeting can benefit different utilities and energy efficiency programs. • Overall performance can be improved by up to 250% via targeting strategies. - Abstract: Electric utilities, government agencies, and private interests in the US have committed and continue to invest substantial resources – including billions of dollars of financial capital – in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. While most of these programs are deemed to be cost effective, and therefore in the public interest, opportunities exist to improve cost effectiveness by targeting programs to those customers with the greatest potential for energy savings. This article details an analysis of three DSM programs offered by three Florida municipal electric utilities to explore such opportunities. First, we estimate programs’ energy savings impacts; second, we measure and compare energy savings across subgroups of program participants as determined by their pre-intervention energy performance, and third, we explore potential changes in program impacts that might be realized by targeting specific customers for participation in the DSM programs. All three programs resulted in statistically significant average (per-participant) energy savings, yet average savings varied widely, with the customers who performed best (i.e., most efficient) before the intervention saving the least energy and those who performed worst (i.e., least efficient) before the intervention saving the most. Assessment of alternative program participation scenarios with varying levels of customer targeting suggests that program impacts could be increased by as much as 80% for a professional energy audit program, just over 100% for a high-efficiency heat pump upgrade program, and nearly 250% for an attic insulation

  13. Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion

    International Nuclear Information System (INIS)

    Qin, Jiang; Cheng, Kunlin; Zhang, Silong; Zhang, Duo; Bao, Wen; Han, Jiecai

    2016-01-01

    The working process of scramjet with regenerative cooling, which was actually the chemical recuperation process, was analyzed in view of energy cascade utilization. The indirect combustion was realized through pyrolysis reaction of fuel. The relative yields of thermal exergy obtained by indirect combustion have been predicted both assuming an ideal pyrolysis reaction and using the experimental results of thermal pyrolysis of n-decane. The results showed that the influence mechanism of regenerative cooling improved the scramjet engine performance by the energy cascade utilization, and the combustion process was supposed to be designed with the cooling process together to utilize the chemical energy of fuel in a more effective way. A maximum value of 11% of the relative yield was obtained with the ideal pyrolysis reaction while a value less than 3% existed in the thermal pyrolysis experiments because of the domination of chemical kinetics rather than chemical thermodynamics in the real experiments. In spite of the difference between the ideal and the present experimental results, the indirect combustion was prospective to achieve a better energy cascade utilization in a chemically recuperated scramjet if the pyrolysis reaction was further optimized. The results in this paper were beneficial for the performance optimization of a regenerative cooling scramjet. - Highlights: • A new method of energy cascade utilization in a chemically recuperated scramjet. • 11% exergy loss is reduced by ideal pyrolysis reaction with indirect combustion. • Regenerative cooling with chemical recuperation can improve engine performance.

  14. Exploring Modularity in Services

    DEFF Research Database (Denmark)

    Avlonitis, Viktor; Hsuan, Juliana

    2017-01-01

    insights on the mirroring hypothesis of modularity theory to services. Originality/value The paper provides a conceptualization of service architectures drawing on service design, modularity, and market relationships. The study enriches service design literature with elements from modularity theory......Purpose The purpose of this paper is to examine how modularity manifests in the design of services. The study brings new insights on the organization of service firms by empirically exploring and theoretically advancing the intersection of modularity and service design. Design....../methodology/approach The paper compares two companies that offer similar services in the same geographical region but represent polar case types. A framework grounded on extant literature is constructed and applied to the two cases to assess its practicality and provide theoretical insights. Findings The paper demonstrates...

  15. A potential of utilizing renewable energy sources and the state support in Slovakia

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2007-04-01

    Full Text Available The renewable energy sources are domestic sources of energy that help to enhance the safety of energy supplies and the diversification of energy sources. The utilization of such sources complies with the environmental acceptability requirement and leads to a reduction in greenhouse gas emissions. The renewable energy is proved to be commercially viable for a growing list of consumers and uses. The renewable energy technologies provide many benefits that go well beyond the energy alone. More and more, the renewable energies contribute to the three pillars of the sustainable development in the economy, environment and the society.Several renewable energy technologies are established in world markets, building global industries and infrastructures. Other renewables become competitive in growing markets, and some are widely recognised as the lowest cost option for stand-alone and offgrid applications. An increased utilization of renewable energy sources in the heat and electricity generation is one of priority tasks of the Slovak Republic to boost the use of domestic energy potential and thus to decrease the Slovakia’s dependence on imported fossil fuels.

  16. Business model innovation for Local Energy Management: a perspective from Swiss utilities

    Directory of Open Access Journals (Sweden)

    Emanuele Facchinetti

    2016-08-01

    Full Text Available The successful deployment of the energy transition relies on a deep reorganization of the energy market. Business model innovation is recognized as a key driver of this process. This work contributes to this topic by providing to potential Local Energy Management stakeholders and policy makers a conceptual framework guiding the Local Energy Management business model innovation. The main determinants characterizing Local Energy Management concepts and impacting its business model innovation are identified through literature reviews on distributed generation typologies and customer/investor preferences related to new business opportunities emerging with the energy transition. Afterwards, the relation between the identified determinants and the Local Energy Management business model solution space is analyzed based on semi-structured interviews with managers of Swiss utilities companies. The collected managers’ preferences serve as explorative indicators supporting the business model innovation process and provide insights to policy makers on challenges and opportunities related to Local Energy Management.

  17. 10th World Energy Conference. Division 2. Conservation in energy utilization. [30 papers

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    A separate abstract was prepared for each of the 30 papers and a position paper. All of the abstracts will appear both in Energy Research Abstracts (ERA) and Energy Abstracts for Policy Analysis (EAPA). (MCW)

  18. Optimal utilization of waste-to-energy in an LCA perspective

    DEFF Research Database (Denmark)

    Fruergaard, Thilde; Astrup, Thomas

    2011-01-01

    . For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production...... and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two...... the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive...

  19. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  20. Relocating Energy in the Social Commons: Ideas for a Sustainable Energy Utility

    Science.gov (United States)

    Byrne, John; Martinez, Cecilia; Ruggero, Colin

    2009-01-01

    Climate change, rising energy costs, and other dilemmas raise the prospect for major change in energy-ecology-society relations. Two prominent proposals for change include: a nuclear power renaissance; and mega-scale renewable energy development. Both suggest that modern society will receive a rising stream of less CO2-rich kilowatt-hours, so that…

  1. From light trapping to solar energy utilization: A novel photovoltaic–thermoelectric hybrid system to fully utilize solar spectrum

    International Nuclear Information System (INIS)

    Da, Yun; Xuan, Yimin; Li, Qiang

    2016-01-01

    In this paper, the comprehensive photon and thermal management approaches are proposed to increase the full-spectrum solar energy utilization in PV–TE (photovoltaic–thermoelectric) hybrid systems. The bio-inspired moth-eye nanostructured surface is adopted to suppress the reflection for full solar spectrum photons while the enhanced transmission film is used to improve the transmission for photons with energy below the band-gap of PV cells, making the reasonable utilization of solar spectrum energy. The PV–TE hybrid system is studied for both terrestrial and space applications, corresponding to different thermal management approaches. The effects of geometric parameters, incident angle, thermal concentration ratio, and optical concentration ratio on the system performance are discussed. The results show that the PV–TE hybrid system exhibits better performance under both AM1.5 and AM0 illumination without any optical concentration compared to pure PV cells under the same conditions. For an optical concentrated solar PV–TE system, although the efficiency of the system may decrease with the increment of optical concentration ratio, the total power output increases for both terrestrial and space applications. The results indicate that a lower concentration ratio is more suitable for PV–TE hybrid systems in both terrestrial and space applications unless more powerful temperature management tricks are taken. - Highlights: • A design approach of efficient PV–TE systems for terrestrial and space applications is proposed. • Both solar photonic and thermal management issues are handled in designing a PV–TE system. • A bio-inspired structured surface and a transmission film are incorporated. • Effects of thermal and optical concentration ratios are discussed.

  2. Analyses of Public Utility Building - Students Designs, Aimed at their Energy Efficiency Improvement

    Science.gov (United States)

    Wołoszyn, Marek Adam

    2017-10-01

    Public utility buildings are formally, structurally and functionally complex entities. Frequently, the process of their design involves the retroactive reconsideration of energy engineering issues, once a building concept has already been completed. At that stage, minor formal corrections are made along with the design of the external layer of the building in order to satisfy applicable standards. Architecture students do the same when designing assigned public utility buildings. In order to demonstrate energy-related defects of building designs developed by students, the conduct of analyses was proposed. The completed designs of public utility buildings were examined with regard to energy efficiency of the solutions they feature through the application of the following programs: Ecotect, Vasari, and in case of simpler analyses ArchiCad program extensions were sufficient.

  3. A composite efficiency metrics for evaluation of resource and energy utilization

    International Nuclear Information System (INIS)

    Yang, Siyu; Yang, Qingchun; Qian, Yu

    2013-01-01

    Polygeneration systems are commonly found in chemical and energy industry. These systems often involve chemical conversions and energy conversions. Studies of these systems are interdisciplinary, mainly involving fields of chemical engineering, energy engineering, environmental science, and economics. Each of these fields has developed an isolated index system different from the others. Analyses of polygeneration systems are therefore very likely to provide bias results with only the indexes from one field. This paper is motivated from this problem to develop a new composite efficiency metrics for polygeneration systems. This new metrics is based on the second law of thermodynamics, exergy theory. We introduce exergy cost for waste treatment as the energy penalty into conventional exergy efficiency. Using this new metrics could avoid the situation of spending too much energy for increasing production or paying production capacity for saving energy consumption. The composite metrics is studied on a simplified co-production process, syngas to methanol and electricity. The advantage of the new efficiency metrics is manifested by comparison with carbon element efficiency, energy efficiency, and exergy efficiency. Results show that the new metrics could give more rational analysis than the other indexes. - Highlights: • The composite efficiency metric gives the balanced evaluation of resource utilization and energy utilization. • This efficiency uses the exergy for waste treatment as the energy penalty. • This efficiency is applied on a simplified co-production process. • Results show that the composite metrics is better than energy efficiencies and resource efficiencies

  4. Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan

    International Nuclear Information System (INIS)

    Tabata, Tomohiro; Okuda, Takaaki

    2012-01-01

    This paper discusses the effectiveness of a woody biomass utilization system that would result in increased net energy production through wood pellet production, along with energy recovery processes as they relate to household energy demand. The direct environmental load of the system, including wood pellet production and utilization processes, was evaluated. Furthermore, the indirect load, including the economic impact of converting the existing fossil-fuel-based energy system into a woody biomass-based system, on the entire society was also evaluated. Gifu Prefecture in Japan was selected for a case study, which included a comparative evaluation of the environmental load and costs both with and without coordination with the wood pellet production process and the waste-to-energy of municipal solid waste process, using the life cycle assessment methodology. If the release of greenhouse gases from the combustion of wood pellets is included in calculations, then burning wood pellets results in unfavorable environmental consequences. However, when the reduced indirect environmental load due to the utilization of wood pellets versus petroleum is included in calculations, then favorable environmental consequences result, with a net reduction of greenhouse gases emissions by 14,060 ton-CO 2eq . -- Highlights: ► We evaluate economic and environmental impact of woody biomass utilization in household. ► Wood pellet utilization for house heating is advantageous to reduce greenhouse gas emissions. ► Reduction effect of greenhouse gas will be canceled out if carbon neutrality were considered. ► Net greenhouse gas emissions considering conversion of an ordinal energy system will be minus. ► Wood pellet utilization is advantageous not only in global warming but also for resource conservation.

  5. Solar thermal energy utilization. German studies on technology and application. Vol. 1. General investigations on energy availability

    Energy Technology Data Exchange (ETDEWEB)

    Becker, M. (Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V. (DFVLR), Koeln (Germany, F.R.). Hauptabteilung Energietechnik) (ed.)

    1987-01-01

    The first volume of a three-volume series titled 'Solar thermal energy utilization' comprises three papers dealing with general investigations into energy availability. Their titles are: Yearly yield of solar CRS-process heat and temperature of reaction; - literature survey in the field of primary and secondary concentrating solar energy systems concerning the choice and manufacturing process of suitable materials; - considerations and proposals for future research and development of high temperature solar processes. Each of the three chapters was abstracted for entry into the database. (HWJ).

  6. [Effects of straw mulching and irrigation on solar energy utilization efficiency of winter wheat farmland].

    Science.gov (United States)

    Li, Quanqi; Chen, Yuhai; Wu, Wei; Yu, Shunzhang; Zhou, Xunbo; Dong, Qingyu; Yu, Songlie

    2006-02-01

    The study showed that straw mulching decreased the basic seedlings and tillers of winter wheat and the leaf area index (LAI) at earlier growth stage, but increased the LAI at latter growth stage. Straw mulching and irrigation reduced the transmittance and reflectance of PAR, resulting in the increase of PAR capture ratio mainly at the height of 40-60 cm. The solar energy utilization ratio of grain was decreased by straw mulching, while that of stem and leaf was increased. The total solar energy utilization efficiency of winter wheat could also be increased by straw mulching.

  7. Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, N.

    2001-05-21

    As the electric industry goes through a transformation to a more market-driven model, traditional grounds for utility energy efficiency have come under fire, undermining the existing mechanisms to fund and deliver such services. The challenge, then, is to understand why the electric industry should sustain investments in helping low-income Americans use electricity efficiently, how such investments should be made, and how these policies can become part of the new electric industry structure. This report analyzes the opportunities and barriers to leveraging electric utility energy efficiency assistance to low-income customers during the transition of the electric industry to greater competition.

  8. Scheme of energy utilities; Schema de service collectifs de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    This scheme defines the objectives relative to the renewable energies and the rational use of the energy in the framework of the national energy policy. It evaluates the needs and the potentialities of the regions and preconizes the actions between the government and the territorial organizations. The document is presented in four parts: the situation, the stakes and forecasts; the possible actions for new measures; the scheme management and the regional contributions analysis. (A.L.B.)

  9. Community Energy Systems and the Law of Public Utilities. Volume Forty-seven. Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Vermont governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Two. Federal

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is presented of the laws and programs of the Federal government governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Twenty-six. Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Mississippi governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. Community Energy Systems and the Law of Public Utilities. Volume Forty. Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Pennsylvania governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Community Energy Systems and the Law of Public Utilities. Volume Thirty-three. New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Mexico governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. Community Energy Systems and the Law of Public Utilities. Volume Fourteen. Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Idaho governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Community Energy Systems and the Law of Public Utilities. Volume Forty-eight. Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Virginia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Community Energy Systems and the Law of Public Utilities. Volume Thirty-two. New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Jersey governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  17. Community Energy Systems and the Law of Public Utilities. Volume Eighteen. Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  18. Community Energy Systems and the Law of Public Utilities. Volume Thirty-six. North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of North Dakota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  19. Community Energy Systems and the Law of Public Utilities. Volume Twenty-three. Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Massachusetts governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Community Energy Systems and the Law of Public Utilities. Volume Nine. Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Connecticut governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Community Energy Systems and the Law of Public Utilities. Volume Fifteen. Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Illinois governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  2. Community Energy Systems and the Law of Public Utilities. Volume Six. Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Arkansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. Community Energy Systems and the Law of Public Utilities. Volume Fifty-one. Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wisconsin governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Community Energy Systems and the Law of Public Utilities. Volume Eight. Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Colorado governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Five. Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Arizona governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Three. Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Alabama governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Community Energy Systems and the Law of Public Utilities. Volume Seven. California

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of California governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Community Energy Systems and the Law of Public Utilities. Volume Eleven. Florida

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Florida governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Fifty-two. Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wyoming governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Thirteen. Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Hawaii governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. Community Energy Systems and the Law of Public Utilities. Volume Fifty. West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of West Virginia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Community Energy Systems and the Law of Public Utilities. Volume Forty-four. Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Tennessee governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. Community Energy Systems and the Law of Public Utilities. Volume Forty-three. South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of South Dakota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Community Energy Systems and the Law of Public Utilities. Volume Twenty-seven. Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Missouri governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Community Energy Systems and the Law of Public Utilities. Volume Thirty-seven. Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Ohio governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  17. Community Energy Systems and the Law of Public Utilities. Volume Thirty-one. New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Hampshire governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One. An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  18. Community Energy Systems and the Law of Public Utilities. Volume Sixteen. Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Indiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  19. Community Energy Systems and the Law of Public Utilities. Volume Twelve. Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Georgia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Community Energy Systems and the Law of Public Utilities. Volume Forty-one. Rhode Island

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Rhode Island governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Community Energy Systems and the Law of Public Utilities. Volume Forty-five. Texas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Texas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  2. Community Energy Systems and the Law of Public Utilities. Volume Thirty-nine. Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Oregon governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. Community Energy Systems and the Law of Public Utilities. Volume Thirty. Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Nevada governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Community Energy Systems and the Law of Public Utilities. Volume Twenty-eight. Montana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Montana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Community Energy Systems and the Law of Public Utilities. Volume Twenty-five. Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Minnesota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Forty-two. South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of South Carolina governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Twenty-two. Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maryland governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Community Energy Systems and the Law of Public Utilities. Volume Forty-nine. Washington

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Washington governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Community energy systems and the law of public utilities. Volume thirty-four. New York

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New York governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Seventeen. Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Iowa governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Ten. Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Delaware governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. A comparative study of energy utilization efficiency between Taiwan and China

    International Nuclear Information System (INIS)

    Yeh Tsailien; Chen Tseryieth; Lai Peiying

    2010-01-01

    This paper employs data envelopment analysis to evaluate energy utilization efficiency between China and Taiwan from 2002 to 2007. The most important contributions of this paper are the clear description of the systematic process of energy utilization efficiency, the efficiency comparison between China and Taiwan, the remarkable demonstration of their outputs through two non-desirable outputs (CO 2 emissions and SO 2 emissions) in the data envelopment analysis framework, and the valuable results and insights gained from the application of economic development and environmental protection. Empirical results show that the Eastern region of China enjoy higher energy utilization efficiency than the Western region. Energy utilization efficiency in Taiwan is higher than that in the Eastern region of China. In China, CO 2 emissions were 11.28% greater than they should be (from 2002 to 2007). By contrast, CO 2 emissions in Taiwan were only 1.50% in excess of what they should be since Taiwan began conducting an uninterrupted energy-saving policy and a CO 2 emission regulation policy. Finally, this study employs the business strategy matrix constructed by the Boston Consulting Group (BCG Matrix) to illustrate individual evidence of the relationship between economic development efficiency and greenhouse gas efficiency.

  13. Community Energy Systems and the Law of Public Utilities. Volume Twenty-one. Maine

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maine governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. A Comparison of Modular Verification Techniques

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Staunstrup, Jørgen; Maretti, Niels

    1997-01-01

    This paper presents and compares three techniques for mechanized verification of state oriented design descriptions. One is a traditional forwardgeneration of a fixed point characterizing the reachable states. The two others can utilize a modular structure provided by the designer. Onerequires a ...

  15. Planning for Micro-grid with Static Voltage Stability and Maximizing Renewable Energy Utilization

    Science.gov (United States)

    Zhou, Youfu; Zhang, Yuhong; Lv, Xuehai; Zhang, Wentai; Wei, Jun; Zhang, Changhua; Chen, Xin

    2017-05-01

    The access position and capacity of distribution generation (DG) affect the static voltage stability of micro-grid, thus affecting the renewable energy utilization. In the current reform of the energy supply side, a multi-objective optimization model is established, aiming at the abandoning wind and abandoning light problem. This model has three advantages, which are the largest renewable energy utilization, static voltage stability of micro-grid and the minimum cost of DG investment considering environmental benefits. It can effectively promote the use of wind power, photovoltaic power generation and other renewable energy sources. In this paper, the multi-objective optimization problem is transformed into a single objective programming problem by using the deviation method; the optimal solution of multi-objective function is solved by using particle swarm optimization algorithm, so as to establish the planning scheme of micro-grid. Simulation results prove the correctness and feasibility of the optimization method.

  16. An econometric study on long-term energy outlook and the implications of renewable energy utilization in Malaysia

    International Nuclear Information System (INIS)

    Gan, Peck Yean; Li Zhidong

    2008-01-01

    We developed a comprehensive econometric model to study the long-term outlook of Malaysia's economy, energy and environment to 2030. Our projections under the reference scenario indicated that Malaysia's gross domestic production (GDP) is expected to average 4.6% from 2004 to 2030, and total primary energy consumption will triple by 2030. Coal import will increase following governmental policy of intensifying its use for power generation. Oil import is predicted to take place by 2013 and reach 45 Mtoe in 2030. Hence, in the near future, Malaysia's energy import dependency will rise. Carbon emissions will triple by 2030. On the other hand, our projections under an alternative renewable energy (RE) scenario showed that the utilization of RE is a strategic option to improve the long-term energy security and environmental performance of Malaysia. However, substantial governmental involvements and support, as well as the establishment of a regulatory framework are necessary

  17. Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume III. Appendixes. [10 appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-06-01

    This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs, Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)

  18. Modular programming method at JAERI

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Katsuragi, Satoru

    1982-02-01

    In this report the histories, concepts and a method for the construction and maintenance of nuclear code systems of Japan Atomic Energy Research Institute (JAERI) are presented. The method is mainly consisted of novel computer features. The development process of the features and experiences with them which required many man-months and efforts of scientists and engineers of JAERI and a computer manufacturer are also described. One of the features is a file handling program named datapool. The program is being used in code systems which are under development at JAERI. The others are computer features such as dynamic linking, reentrant coding of Fortran programs, interactive programming facility, document editor, quick system output viewer and editor, flexible man-machine interactive Fortran executor, and selective use of time-sharing or batch oriented computer in an interactive porgramming environment. In 1980 JAERI has replaced its two old computer systems by three FACOM M-200 computer systems and they have such features as mentioned above. Since 1981 most code systems, or even big single codes can be changed to modular code systems even if the developers or users of the systems will not recognize the fact that they are using modular code systems. The purpose of this report is to describe our methodology of modular programming from aspects of computer features and some of their applications to nuclear codes to get sympathetic understanding of it from persons of organizations who are concerned with the effective use of computers, especially, in nuclear research fields. (author)

  19. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    OpenAIRE

    Limberger, J.; Boxem, T.; Pluymaekers, Maarten; Bruhn, David; Manzella, Adelle; Calcagno, Philippe; Beekman, F.; Cloetingh, S.; van Wees, J.-D.

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a volumetric heat-in-place method to improve current global geothermal resource base estimates for direct heat applications. The amount of thermal energy stored within aquifers depends on the Earth's he...

  20. Jicarilla Apache Utility Authority Renewable Energy and Energy Efficiency Strategic Planning

    Energy Technology Data Exchange (ETDEWEB)

    Rabago, K.R.

    2008-06-28

    The purpose of this Strategic Plan Report is to provide an introduction and in-depth analysis of the issues and opportunities, resources, and technologies of energy efficiency and renewable energy that have potential beneficial application for the people of the Jicarilla Apache Nation and surrounding communities. The Report seeks to draw on the best available information that existed at the time of writing, and where necessary, draws on new research to assess this potential. This study provides a strategic assessment of opportunities for maximizing the potential for electrical energy efficiency and renewable energy development by the Jicarilla Apache Nation. The report analyzes electricity use on the Jicarilla Apache Reservation in buildings. The report also assesses particular resources and technologies in detail, including energy efficiency, solar, wind, geothermal, biomass, and small hydropower. The closing sections set out the elements of a multi-year, multi-phase strategy for development of resources to the maximum benefit of the Nation.

  1. Jicarilla Apache Utility Authority. Strategic Plan for Energy Efficiency and Renewable Energy Development

    International Nuclear Information System (INIS)

    Rabago, K.R.

    2008-01-01

    The purpose of this Strategic Plan Report is to provide an introduction and in-depth analysis of the issues and opportunities, resources, and technologies of energy efficiency and renewable energy that have potential beneficial application for the people of the Jicarilla Apache Nation and surrounding communities. The Report seeks to draw on the best available information that existed at the time of writing, and where necessary, draws on new research to assess this potential. This study provides a strategic assessment of opportunities for maximizing the potential for electrical energy efficiency and renewable energy development by the Jicarilla Apache Nation. The report analyzes electricity use on the Jicarilla Apache Reservation in buildings. The report also assesses particular resources and technologies in detail, including energy efficiency, solar, wind, geothermal, biomass, and small hydropower. The closing sections set out the elements of a multi-year, multi-phase strategy for development of resources to the maximum benefit of the Nation

  2. Implementing energy efficiency: Challenges and opportunities for rural electric co-operatives and small municipal utilities

    International Nuclear Information System (INIS)

    Wilson, Elizabeth J.; Plummer, Joseph; Fischlein, Miriam; Smith, Timothy M.

    2008-01-01

    Challenges in implementing demand side management (DSM) programs in rural electric co-operatives and small municipal utilities are not well understood, yet these organizations sell roughly 15% of electricity in the US, many are more coal-intensive than investor-owned utilities (IOUs), and they are politically important-rural electric co-operatives cover about 75% of the US land area and municipal utilities are found in every state except Hawaii. We provide a background on rural co-operatives and municipal utilities in the context of the US electric sector and highlight the challenges and opportunities of implementing DSM programs in these institutions. Where past studies of utility DSM have mostly focused on IOUs or consisted of qualitative case studies of municipal utilities with exemplary DSM performance, this study makes a unique contribution to the DSM literature by systematically analyzing an entire co-operative and municipal utility population in Minnesota through the use of a survey. In doing so, we provide policy recommendations relevant to energy planners and policy makers to support DSM in rural electric co-operatives and municipal utilities

  3. Energy policy and European utilities' strategy: Lessons from the liberalisation and privatisation of the energy sector in Romania

    International Nuclear Information System (INIS)

    Haar, Laura N.; Marinescu, Nicolae

    2011-01-01

    In the context of energy sector reforms pursued by Romanian government since 1990s, we compare and contrast the market outcomes of European utilities' investment with the host government policy objectives. We begin with energy market reform in Romania and review governments' efforts to attract foreign direct investment (FDI) and to gradually withdraw from the distribution and supply segments of electricity market. Subsequently, we illustrate the scope European utilities have had, market policy and design notwithstanding, for consolidating market power through regional dominance. We examine the extent to which these utilities have sought to enhance their positions through horizontal and vertical integration, counter to the EU plans for a competitive market structure. We find that the investments of European incumbents have not been resoundingly successful: although market entrance may have been justified on long-term strategic grounds, in the immediate term, segments acquired through competitive auctions have yielded modest regulated returns. Finally, we discuss the extent to which policy makers have achieved their goals. Although the short-term benefits of a competitive market structure have reached some consumers, a renewed interest in promoting 'national champions' reflect frustration with market mechanisms as a means of ensuring long-term strategic investments in the sector. - Research highlights: → We analyze the European Utilities activities in Romania after market liberalization. → We find government efforts to reform energy sector attracted foreign direct investment. → We find utilities consolidated market power horizontally in Central European region. → The short-term benefits of competitive forces contrast the weak returns by utilities. → To encourage further investment, government should not promote national champions.

  4. Geothermal energy and the utility market -- the opportunities and challenges for expanding geothermal energy in a competitive supply market: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year's conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,'' focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  5. State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.

    2010-05-01

    High initial costs can impede the deployment of clean energy technologies. Financing can reduce these costs. And, state, municipal, and utility-sponsored loan programs have emerged to fill the gap between clean energy technology financing needs and private sector lending. In general, public loan programs are more favorable to clean energy technologies than are those offered by traditional lending institutions; however, public loan programs address only the high up-front costs of clean energy systems, and the technology installed under these loan programs rarely supports clean energy production at levels that have a notable impact on the broader energy sector. This report discusses ways to increase the impact of these loan programs and suggests related policy design considerations.

  6. Energy resources' utilization in organic and conventional vineyards: Energy flow, greenhouse gas emissions and biofuel production

    International Nuclear Information System (INIS)

    Kavargiris, Stefanos E.; Mamolos, Andreas P.; Nikolaidou, Anna E.; Kalburtji, Kiriaki L.; Tsatsarelis, Constantinos A.

    2009-01-01

    An energy analysis, in conventional and organic vineyards, combined with ethanol production and greenhouse gas emissions, is useful in evaluating present situation and deciding best management strategies. The objective of this study was to evaluate the differences in the energy flow between organic and conventional vineyards in three locations, to calculate CO 2 , CH 4 and N 2 O-emissions based on the used fossil energy and to explore if wine industry wastes can be used to extract bioethanol. The data were collected through personal interviews with farmers during 2004-2005. Eighteen farmers, who owned vineyards about 1 ha each, were randomly selected to participate in this study [(3 conventional and 3 organic) x 3 locations]. The means averaged over all locations for fertilizer application, plant protection products application, transportation, harvesting, labor, machinery, fuels, plant protections products and tools energy inputs, total energy inputs, outputs (grapes), outputs (grapes + shoots), grape yield, man hour, pomace and ethanol from pomace were significantly higher in conventional than in organic vineyards, while the opposite occurred for the pruning. Means averaged over two farming systems for harvesting, tools energy inputs, energy outputs (grapes), grape yield, pomace and ethanol from pomace were significantly higher at location A, followed by location C and location B. Finally, for irrigation, the means averaged over the two farming systems were significantly lower at location C. Greenhouse gas emissions were significant lower in organic than in conventional vineyards. The results show a clear response of energy inputs to energy outputs that resulted from the farming system and location. (author)

  7. A modular control system

    International Nuclear Information System (INIS)

    Cruz, B.; Drexler, J.; Olcese, G.; Santome, D.

    1990-01-01

    The main objective of the modular control system is to provide the requirements to most of the processes supervision and control applications within the industrial automatization area. The design is based on distribution, modulation and expansion concepts. (Author) [es

  8. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    NARCIS (Netherlands)

    Limberger, J.; Boxem, T.; Pluymaekers, Maarten; Bruhn, David; Manzella, Adelle; Calcagno, Philippe; Beekman, F.; Cloetingh, S.; van Wees, J.-D.

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  9. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    NARCIS (Netherlands)

    Limberger, Jon; Boxem, Thijs; Pluymaekers, Maarten; Bruhn, D.F.; Manzella, Adele; Calcagno, Philippe; Beekman, Fred; Cloetingh, S.A.P.L.; van Wees, Jan Diederik

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  10. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Science.gov (United States)

    2010-01-01

    ... cost indexes? 591.220 Section 591.220 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ALLOWANCES AND DIFFERENTIALS Cost-of-Living Allowance and Post Differential-Nonforeign Areas Cost-Of-Living Allowances § 591.220 How does OPM calculate energy utility cost indexes? (a) OPM...

  11. Advanced system demonstration for utilization of biomass as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The results of a 20 month study to explore the technical and economic feasibility of fuelwood utilization to operate a 50 megawatt energy conversion facility are described. The availability of biomass as a fuel source, the methods of harvesting and collecting the fuelstock, the costs of providing adequate fuel to the plant, and other requirements for fueling the proposed conversion facility are investigated. (MHR)

  12. Refresher training as an important factor affecting safety of atomic energy utilization facilities

    International Nuclear Information System (INIS)

    Kapralov, E.

    2005-01-01

    Refresher training appears to be one of the most important factors, affecting safety of atomic energy utilization facilities. To provide up-to-date refresher training programs and courses TC NRS implements best training practice based on the actual and perspective Russian national and international norms, regulations, standards and recommendations. (author)

  13. Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization

    NARCIS (Netherlands)

    Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhn, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; Wees, J.D. van

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  14. Criteria for determining the effectiveness of utility-initiated energy assistance

    Energy Technology Data Exchange (ETDEWEB)

    Costello, Ken

    2010-04-15

    The affordability of electricity and natural gas to all households requires some form of energy assistance, funded by utilities and their customers. Good regulation demands that EA initiatives have favorable benefit-cost ratios. Regulators should strive to assure that each dollar expended returns the highest possible dividend and that EA initiatives do not seriously impede other regulatory objectives. (author)

  15. Effects of energy and protein levels on growth and nutrient utilization ...

    African Journals Online (AJOL)

    Effects of energy and protein levels on growth and nutrient utilization of weaned rabbits. ML Egbo, TA Adegbola, EO Oyawoye, MM Abubakar. Abstract. No Abstract. Animal Production Research Advances Vol. 3 (4) 2007: pp. 306-310. http://dx.doi.org/10.4314/apra.v3i4.36411 · AJOL African Journals Online. HOW TO USE ...

  16. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Energy Technology Data Exchange (ETDEWEB)

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  17. An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources

    International Nuclear Information System (INIS)

    Sulaiman, F.; Abdullah, N.; Gerhauser, H.; Shariff, A.

    2011-01-01

    Malaysia has an abundance of energy resources, both renewable and non-renewable. The largest non-renewable energy resource found in Malaysia is oil, and second, is natural gas, primarily liquefied natural gas. The production and consumption of oil, gas and coal in Malaysia are given in this paper. The energy demand and supply by source are also shown in relation to the country's fuel diversification policy. In order to reduce the overall dependence on a single source of energy, efforts were undertaken to encourage the utilization of renewable resources. Forest residue and oil palm biomass are found to be potentially of highest energy value and considered as the main renewable energy option for Malaysia. Palm oil and related products represent the second largest export of Malaysia. The total oil palm planted area in Malaysia has increased significantly in recent years. This paper gives a detailed representation of oil palm planted and produced together with its yield from the year 1976 onwards. The large amounts of available forest and palm oil residues resulting from the harvest can be utilized for energy generation and other by-products in a manner that also addresses environmental concerns related to current waste disposal methods. -- Highlights: →Palm oil and related products represent the second largest export of Malaysia. →Malaysia has an abundance of energy resources, both renewable and non-renewable. →Forest and oil palm residues are the main renewable energy option for Malaysia. →Efforts were undertaken to encourage the utilization of renewable resources.

  18. Duality ensures modular covariance

    International Nuclear Information System (INIS)

    Li Miao; Yu Ming

    1989-11-01

    We show that the modular transformations for one point functions on the torus, S(n), satisfy the polynomial equations derived by Moore and Seiberg, provided the duality property of the model is ensured. The formula for S(n) is derived by us previously and should be valid for any conformal field theory. As a consequence, the full consistency conditions for modular invariance at higher genus are completely guaranteed by duality of the theory on the sphere. (orig.)

  19. Conditions for energy generation as an alternative approach to compost utilization.

    Science.gov (United States)

    Raclavska, H; Juchelkova, D; Skrobankova, H; Wiltowski, T; Campen, A

    2011-01-01

    Very strict limits constrain the current possibilities for compost utilization in agriculture and for land reclamation, thus creating a need for other compost utilization practices. A favourable alternative can be compost utilization as a renewable heat source - alternative fuel. The changes of the basic physical-chemical parameters during the composting process are evaluated. During the composting process, energy losses of 920 kJ/kg occur, caused by carbohydrate decomposition (loss of 12.64% TOC). The net calorific value for mature compost was 11.169 kJ/kg dry matter. The grain size of compost below 0.045 mm has the highest ash content. The energetic utilization of compost depended on moisture, which can be influenced by paper addition or by prolonging the time of maturation to six months.

  20. Ultra-dense energy storage utilizing high melting point metallic alloys and photovoltaic cells

    OpenAIRE

    Datas Medina, Alejandro; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio

    2015-01-01

    A novel concept for energy storage utilizing high melting point metallic alloys and photovoltaic cells is presented. In the proposed system, the energy is stored in the form of latent heat of metallic alloys and converted to electricity upon demand by infrared sensitive photovoltaic cells. Silicon is considered in this paper due to its extremely high latent heat (1800 J/g), melting point (1410ºC), low cost (~$1.7/kg) and abundance on earth. The proposed solution enables an enormous energy sto...

  1. The role of utilities in enabling technology innovation: The BC hydro alternative & emerging energy strategy

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Alex; Leclair, Donna; Morrison, Allison

    2010-09-15

    In order for renewable energy to play a dominant role in the global electricity supply mix, emerging renewable energy technologies - such as wave, tidal, enhanced geothermal, and 3rd generation photovoltaic technologies - must prove their technical merits and achieve cost parity with conventional sources of supply. BC Hydro, a government-owned electric utility, launched an Alternative and Emerging Energy Strategy that describes its role as an enabler of technology innovation. This paper describes BC Hydro's goal, objectives and actions to accelerate the commercialization that will yield a diversity of supply options and a growing, local clean-tech cluster.

  2. Exploring New Models for Utility Distributed Energy Resource Planning and Integration: SMUD and Con Edison

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-23

    As a result of the rapid growth of renewable energy in the United States, the U.S. electric grid is undergoing a monumental shift away from its historical status quo. These changes are occurring at both the centralized and local levels and have been driven by a number of different factors, including large declines in renewable energy costs, federal and state incentives and mandates, and advances in the underlying technology. Higher levels of variable-generation renewable energy, however, may require new and increasingly complex methods for utilities to operate and maintain the grid while also attempting to limit the costly build-out of supporting grid infrastructure.

  3. Service Modularity and Architecture

    DEFF Research Database (Denmark)

    Brax, Saara A.; Bask, Anu; Hsuan, Juliana

    2017-01-01

    Purpose: Services are highly important in a world economy which has increasingly become service driven. There is a growing need to better understand the possibilities for, and requirements of, designing modular service architectures. The purpose of this paper is to elaborate on the roots of the e......Purpose: Services are highly important in a world economy which has increasingly become service driven. There is a growing need to better understand the possibilities for, and requirements of, designing modular service architectures. The purpose of this paper is to elaborate on the roots...... of the emerging research stream on service modularity, provide a concise overview of existing work on the subject, and outline an agenda for future research on service modularity and architecture. The articles in the special issue offer four diverse sets of research on service modularity and architecture. Design....../methodology/approach: The paper is built on a literature review mapping the current body of literature on the topic and developing future research directions in service modularity and architecture. Findings: The growing focus on services has triggered needs to investigate the suitability and implementation of physical...

  4. Design Optimization of an Electromagnetic Energy Harvester Backpack for Utilization of Human Walking Energy

    Science.gov (United States)

    Mullen, Christopher

    Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with multiple case studies including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.

  5. Nuclear energy, today and tomorrow. Present status of development and utilization in Japan 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The world population has exceeded 5 billion, today, and it is estimated to reach 10 billion in the middle of the twenty first century. Because of such rapid increase of population, the world energy consumption is estimated to increase tremendously. Furthermore, there are problems of limited energy resources from oil and coal down, how to respond to environment problems such as global warming, acid rain caused by fossil fuel burning, followed by carbon dioxide discharge. Under such circumstances of global scale problems, the nuclear power generation that is excellent in stable nature of supply, economic advantage, less effect to the environment, supplies about 20 % of the total power generation in the world. In our country, some 30 % of the total power generation relies on the nuclear power, as an indispensable power source. Radiation utilization, together with the nuclear power generation, is an important pillar of development and utilization of nuclear energy, and has penetrated deeply in the life of the people, in the fields of industry, agriculture, medicine and environmental protection, and it is contributing to realize affluent life to a great extent. Thus, expectations to the nuclear energy seem to grow larger and larger in future. The publication introduces present status and future potential of the development and utilization of the nuclear energy in Japan, including the basic idea and concrete plans shown in the Long-Term Program. (J.P.N.)

  6. Community Energy Systems and the Law of Public Utilities. Volume Forty-six. Utah

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Utah governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilites, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Optimizing virtual machine placement for energy and SLA in clouds using utility functions

    Directory of Open Access Journals (Sweden)

    Abdelkhalik Mosa

    2016-10-01

    Full Text Available Abstract Cloud computing provides on-demand access to a shared pool of computing resources, which enables organizations to outsource their IT infrastructure. Cloud providers are building data centers to handle the continuous increase in cloud users’ demands. Consequently, these cloud data centers consume, and have the potential to waste, substantial amounts of energy. This energy consumption increases the operational cost and the CO2 emissions. The goal of this paper is to develop an optimized energy and SLA-aware virtual machine (VM placement strategy that dynamically assigns VMs to Physical Machines (PMs in cloud data centers. This placement strategy co-optimizes energy consumption and service level agreement (SLA violations. The proposed solution adopts utility functions to formulate the VM placement problem. A genetic algorithm searches the possible VMs-to-PMs assignments with a view to finding an assignment that maximizes utility. Simulation results using CloudSim show that the proposed utility-based approach reduced the average energy consumption by approximately 6 % and the overall SLA violations by more than 38 %, using fewer VM migrations and PM shutdowns, compared to a well-known heuristics-based approach.

  8. Energy Requirements of Hydrogen-utilizing Microbes: A Boundary Condition for Subsurface Life

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.

    2003-01-01

    Microbial ecosystems based on the energy supplied by water-rock chemistry carry particular significance in the context of geo- and astrobiology. With no direct dependence on solar energy, lithotrophic microbes could conceivably penetrate a planetary crust to a depth limited only by temperature or pressure constraints (several kilometers or more). The deep lithospheric habitat is thereby potentially much greater in volume than its surface counterpart, and in addition offers a stable refuge against inhospitable surface conditions related to climatic or atmospheric evolution (e.g., Mars) or even high-energy impacts (e.g., early in Earth's history). The possibilities for a deep microbial biosphere are, however, greatly constrained by life s need to obtain energy at a certain minimum rate (the maintenance energy requirement) and of a certain minimum magnitude (the energy quantum requirement). The mere existence of these requirements implies that a significant fraction of the chemical free energy available in the subsurface environment cannot be exploited by life. Similar limits may also apply to the usefulness of light energy at very low intensities or long wavelengths. Quantification of these minimum energy requirements in terrestrial microbial ecosystems will help to establish a criterion of energetic habitability that can significantly constrain the prospects for life in Earth's subsurface, or on other bodies in the solar system. Our early work has focused on quantifying the biological energy quantum requirement for methanogenic archaea, as representatives of a plausible subsurface metabolism, in anoxic sediments (where energy availability is among the most limiting factors in microbial population growth). In both field and laboratory experiments utilizing these sediments, methanogens retain a remarkably consistent free energy intake, in the face of fluctuating environmental conditions that affect energy availability. The energy yields apparently required by

  9. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Summary report

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. Case studies were performed for three different municipalities: Uppsala, Stockholm, and Aelvdalen. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management systems of the three municipalities studied, even if the waste has to be transported to a regional facility. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are

  10. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Uppsala

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Uppsala. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to incineration from a welfare economic aspect, but gives

  11. A new era in nuclear energy science. When will radiation application receive citizenship ranking along with energy utilization

    International Nuclear Information System (INIS)

    Tabata, Yoneho; Tagawa, Seiichi; Saito, Naoki; Fujii, Yasuhiko

    2005-01-01

    Japan has been obtaining definite results in these decades in both fields of nuclear power generation (energy utilization) and radiation application thus contributing to a sustainable development of the world. The present special issue of 'Atom Eye' introduces (1) Japanese achievements in cooperative relationships with developing countries in the field of radiation applications, (2) history of research and development of radiation-utilization techniques in Japan, (3) present status of quantum-beam applications in life-science, medial application, and nano-technology, etc, (4) applications of high-intensity neutron source, (5) cancer therapy using high-energy heavy-ion beams, (6) radiation sterilizations, (7) radiation mutations, (8) three interviewer's reports visiting several research institutes of radiation applications in Japan, and introduction of (9) a bencher enterprise and also (10) an accelerator business. (S. Ohno)

  12. Selection of design basis event for modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Nakagawa, Shigeaki; Ohashi, Hirofumi

    2016-06-01

    Japan Atomic Energy Agency (JAEA) has been investigating safety requirements and basic approach of safety guidelines for modular High Temperature Gas-cooled Reactor (HTGR) aiming to increase internarial contribution for nuclear safety by developing an international HTGR safety standard under International Atomic Energy Agency. In this study, we investigate a deterministic approach to select design basis events utilizing information obtained from probabilistic approach. In addition, selections of design basis events are conducted for commercial HTGR designed by JAEA. As a result, an approach for selecting design basis event considering multiple failures of safety systems is established which has not been considered as design basis in the safety guideline for existing nuclear facility. Furthermore, selection of design basis events for commercial HTGR has completed. This report provides an approach and procedure for selecting design basis events of modular HTGR as well as selected events for the commercial HTGR, GTHTR300. (author)

  13. Optimal control, investment and utilization schemes for energy storage under uncertainty

    Science.gov (United States)

    Mirhosseini, Niloufar Sadat

    Energy storage has the potential to offer new means for added flexibility on the electricity systems. This flexibility can be used in a number of ways, including adding value towards asset management, power quality and reliability, integration of renewable resources and energy bill savings for the end users. However, uncertainty about system states and volatility in system dynamics can complicate the question of when to invest in energy storage and how best to manage and utilize it. This work proposes models to address different problems associated with energy storage within a microgrid, including optimal control, investment, and utilization. Electric load, renewable resources output, storage technology cost and electricity day-ahead and spot prices are the factors that bring uncertainty to the problem. A number of analytical methodologies have been adopted to develop the aforementioned models. Model Predictive Control and discretized dynamic programming, along with a new decomposition algorithm are used to develop optimal control schemes for energy storage for two different levels of renewable penetration. Real option theory and Monte Carlo simulation, coupled with an optimal control approach, are used to obtain optimal incremental investment decisions, considering multiple sources of uncertainty. Two stage stochastic programming is used to develop a novel and holistic methodology, including utilization of energy storage within a microgrid, in order to optimally interact with energy market. Energy storage can contribute in terms of value generation and risk reduction for the microgrid. The integration of the models developed here are the basis for a framework which extends from long term investments in storage capacity to short term operational control (charge/discharge) of storage within a microgrid. In particular, the following practical goals are achieved: (i) optimal investment on storage capacity over time to maximize savings during normal and emergency

  14. Energy consumption of building related energy functions in houses and utility buildings

    International Nuclear Information System (INIS)

    Van Arkel, W.G.; Jeeninga, H.; Menkveld, M.; Ruijg, G.J.

    1999-11-01

    This study investigates the development of the use of electricity and natural gas in houses and buildings until 2010. For the domestic sector it is studied how much energy is used now and will be used in future for heating, for production of hot water, for lighting, for ventilation and for cooling. For different sorts of buildings (shops, hospitals, schools, offices, restaurants) it has been determined how much gas will be used for heating, for hot water production and by humidifiers. It has also been calculated how much electricity will be used for lighting, ventilation, cooling and humidifying. The influence of higher and lower energy prices on the amount of use has been studied. Experts have been asked to give their opinions on trends in the use of buildings and the role of new technologies. The influence of these ideas on the use of energy has been calculated. 44 refs

  15. The effects of utility cost reduction on residential energy consumption in Hungary – a decomposition analysis

    Directory of Open Access Journals (Sweden)

    Tekla Sebestyén Szép

    2017-01-01

    Full Text Available The residential energy consumption is influenced by a lot of factors. Understanding and calculating these factors is essential to making conscious energy policy decisions and feedbacks. Since 2013 the energy prices for households have been controlled by the government in Hungary and as a result of the utility cost reduction program a sharp decline can be observed in residential electricity, district heating and natural gas prices. This paper applies the LMDI (~Logarithmic Mean Division Index method to decompose the absolute change of the residential energy consumption during the period of 2010-2015. We calculate the price, the intensive structure (it means the change of energy expenditure share on energy sources, the extensive structure (it is in connection with the change of energy expenditure share in total expenditure, expenditure (it is the change of per capita total expenditure and population effect. All of that shows the impact of the specific factor on the residential energy consumption by income deciles. Our results have verified the preliminary expectations: the decreasing energy prices for households have a positive impact on energy use and it has been strengthened by the expenditure effect as well. However, the intensive structure, the extensive structure and the population effect have largely offset it.

  16. Energy Requirements of Hydrogen-Utilizing Microbes: Boundary Condition for Subsurface Life

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    For planetary bodies with surface conditions that are too harsh to permit continuous occupation by life, the deep subsurface offers a potentially stable and habitable niche. For organisms occupying this niche, the spectrum of possible metabolisms must be limited to those which do not include sunlight as an energy source or oxygen as a chemical reagent - generally, low-energy anaerobic oxidation-reduction processes. The quantity of energy released in such processes is critical, because currently understood mechanisms of biological energy conservation indicate that energy is only 'useful' to an organism when it is available at a certain minimum level - the 'biological energy quantum'. The mere existence of a BEQ implies that a significant fraction of the chemical energy present in the environment cannot be exploited by life; similarly, the absolute magnitude of the BEQ must be a key variable in determining the potential viability and distribution of subsurface microbial communities. Laboratory culture studies suggest that organisms require an energy of about -20 kJ/mol to grow. However, we find that hydrogen-utilizing microorganisms in an energy-limited natural ecosystem are active with energy yields as low as -10 kJ/mol. A lower BEQ would mean a significantly expanded range of energetically viable subsurface habitat for life.

  17. Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process

    International Nuclear Information System (INIS)

    Sorgüven, Esra; Özilgen, Mustafa

    2012-01-01

    This paper investigates the impact of food production processes on the environment in terms of energy and exergy utilization and carbon dioxide emission. There are three different energy utilization mechanisms in food production: Utilization of solar energy by plants to produce agricultural goods; feed consumption by herbivores to produce meat and milk; fossil fuel consumption by industrial processes to perform mixing, cooling, heating, etc. Production of strawberry-flavored yogurt, which involves these three mechanisms, is investigated here thermodynamically. Analysis starts with the cultivation of the ingredients and ends with the transfer of the final product to the market. The results show that 53% of the total exergy loss occurs during the milk production and 80% of the total work input is consumed during the plain yogurt making. The cumulative degree of perfection is 3.6% for the strawberry-flavored yogurt. This value can rise up to 4.6%, if renewable energy resources like hydropower and algal biodiesel are employed instead of fossil fuels. This paper points the direction for the development of new technology in food processing to decrease waste of energy and carbon dioxide accumulation in the atmosphere. -- Highlights: ► Energy and exergy utilization and carbon dioxide emission during strawberry-flavored yogurt production. ► Cumulative degree of perfection of strawberry-flavored yogurt is 3.6%. ► 53% of the total exergy loss occurs during the milk production. ► 80% of the total work input is consumed during the plain yogurt making.

  18. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Stockholm

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from the waste is positive, from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Stockholm. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to incineration from a welfare economic aspect, but gives less

  19. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Aelvdalen

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Aelvdalen, even if the waste has to be transported to a regional facility. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to

  20. Choosing the Energy Sources Needed for Utilities in the Design and Refurbishment of Buildings

    Directory of Open Access Journals (Sweden)

    Pavel Atănăsoae

    2018-03-01

    Full Text Available This paper presents a method for choosing the energy sources that are needed for the following building utilities following building: lighting, domestic hot water, heating, ventilation, and air conditioning. The novelty of this paper consists of applying the concept of the energy hub and considering the cost of carbon dioxide emissions when selecting the available energy sources in the building’s location. The criterion for selecting the energy sources is the minimum overall cost of all forms of energy that are consumed in the building over its estimated lifetime. In order to estimate the overall costs, it is necessary to know the power that is installed and provided by the energy production technologies that are inside the building, as well as the capacity of energy that is required from outside energy sources. An office building that was proposed for refurbishment has been investigated as a case study. In the paper, we have analysed four scenarios. The results indicate that more favourable alternative solutions can be obtained compared to the traditional scenario (Scenario 4—heat and electricity by public utility networks. The overall costs are 46.17% (212,671 EUR lower in Scenario 1, 25.35% (116,770 EUR lower in Scenario 2, and 10.89% (50,150 EUR lower in Scenario 3. Additionally, the carbon dioxide emissions are 22.98% (49 tonnes CO2/year lower in Scenario 1 and 8.91% (19 tonnes CO2/year lower in Scenario 2. Thus, renewable energy sources can occupy a growing share of the total energy consumption of the building. The proposed algorithm can be used for both the refurbishment of existing buildings and the design of new buildings.

  1. Energy saving house utilizing photovoltaic system. 3; Taiyoko hatsuden wo donyushita sho energy jutaku. 3

    Energy Technology Data Exchange (ETDEWEB)

    Itsumi, J. [Kumamoto Institute of Technology, Kumamoto (Japan)

    1997-11-25

    Various measurements are conducted in an energy-efficient house equipped with a photovoltaic power generation system and actually lived in by people, and matching between the household load and photovoltaic power generation, and the consumption of power, are examined. As the result investigation of power consumption in the house, it is found that 13.31kWh is consumed in the daytime in winter, and 14.15kWh in summer. Thirty-two 153W modules are used, and they produce 12.74kWh in four hours on a fine summer day, which amount nearly satisfies the demand of the household. As for the records during a year beginning in May, 1996, it is found that an annual amount of 4326kWh was generated, with 68% being surplus and 32% consumed for the household. Details of the household consumption were that 49.2% was consumed for house heating and cooling and 34.1% for cooking, the two in total occupying more than 80% of the whole household consumption. Energy-saving behavior is evaluated by comparing the energy-efficient house with some ordinary residential houses in Kumamoto City, and it is found that there is a yearly difference of 104,310 yen in electricity bill or 47% in energy saving effect. 5 refs., 4 figs., 4 tabs.

  2. Shapley Value-Based Payment Calculation for Energy Exchange between Micro- and Utility Grids

    Directory of Open Access Journals (Sweden)

    Robin Pilling

    2017-10-01

    Full Text Available In recent years, microgrids have developed as important parts of power systems and have provided affordable, reliable, and sustainable supplies of electricity. Each microgrid is managed as a single controllable entity with respect to the existing power system but demands for joint operation and sharing the benefits between a microgrid and its hosting utility. This paper is focused on the joint operation of a microgrid and its hosting utility, which cooperatively minimize daily generation costs through energy exchange, and presents a payment calculation scheme for power transactions based on a fair allocation of reduced generation costs. To fairly compensate for energy exchange between the micro- and utility grids, we adopt the cooperative game theoretic solution concept of Shapley value. We design a case study for a fictitious interconnection model between the Mueller microgrid in Austin, Texas and the utility grid in Taiwan. Our case study shows that when compared to standalone generations, both the micro- and utility grids are better off when they collaborate in power exchange regardless of their individual contributions to the power exchange coalition.

  3. On sub-modularization and morphological heterogeneity in modular robotics

    DEFF Research Database (Denmark)

    Lyder, A. H.; Stoy, K.; Garciá, R. F. M.

    2012-01-01

    Modular robots are a kind of robots built from mechatronic modules, which can be assembled in many different ways allowing the modular robot to assume a wide range of morphologies and functions. An important question in modular robotics is to which degree modules should be heterogeneous. In this ......Modular robots are a kind of robots built from mechatronic modules, which can be assembled in many different ways allowing the modular robot to assume a wide range of morphologies and functions. An important question in modular robotics is to which degree modules should be heterogeneous...

  4. Distributed utility technology cost, performance, and environmental characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y; Adelman, S

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  5. A scoping study on energy-efficiency market transformation by California Utility DSM Programs

    Energy Technology Data Exchange (ETDEWEB)

    Eto, J.; Prahl, R.; Schlegel, J.

    1996-07-01

    Market transformation has emerged as a central policy objective for future publicly-funded energy-efficiency programs in California. California Public Utilities Commission (CPUC) Decision 95-12-063 calls for public funding to shift to activities designed to transform the energy-efficiency market. The CPUC envisions that funding {open_quotes}would only be needed for specific and limited periods of time to cause the market to be transformed{close_quotes}. At the same time, the CPUC also acknowledges that {open_quotes}there are many definitions of market transformation{close_quotes} ... and does {open_quotes}not attempt to refine those definitions today{close_quotes}. We argue that a definition of market transformation is essential. The literature is now replete with definitions, and an operational definition is needed for the CPUC to decide on which programs should be supported with public funds. The CPUC decision initially indicated a preference for programs that do not provide financial assistance 4-efficiency programs that rely on financial assistance to customers. However, energy customers have traditionally accounted for a substantial portion of California utility`s DSM programs, so the CPUC`s direction to use ratepayer funds to support programs that will transform the market raises critical questions about how to analyze what has happened in order to plan effectively for the future: Which utility energy-efficiency programs, including those that provide financial assistance to customers, have had market transforming effects? To what extent do current regulatory rules and practices encourage or discourage utilities from running programs that are designed to transform the market? Should the rules and programs be modified, and, if so, how, to promote market transformation?

  6. How to develop a world class electrical utility for the free markets of electrical energy?

    International Nuclear Information System (INIS)

    Aaltonen, J.E.; Takala, J.A.

    1995-01-01

    The electricity distribution in Finland is going to the new stage where the electrical energy market will be gradually free from competition. The purpose of this study is to analyze the concept of the world class utility. A feasibility study was made to research the condition in logistics and suitable methods for the implementation. Some ideas have been piloted to verify and find acceptable approaches of the implementation to practice. Utilities improved the cost efficiency and strategical business logistics in a customer oriented and flexible way. The methods and findings can be used on other public and industrial areas, too

  7. Residential energy-consumption analysis utilizing the DOE-1 computer program

    Energy Technology Data Exchange (ETDEWEB)

    Arentsen, S K

    1979-04-01

    The DOE-1 computer program is used to examine energy consumption in a typical middle-class household in Cincinnati, Ohio. The program is used to compare energy consumption under different structural and environmental conditions, including various levels of insulation in the walls and ceiling, double and single glazing of windows, and thermostat setback schedules. In addition, the DOE-1 program is used to model the house under three energy distribution systems: a unit heater, a single-zone fan system with optional subzone reheat; and a unitary heat pump. A plant equipment simulation is performed to model the heating and cooling plant currently installed in the house. A simple economic analysis of life-cycle costs for the house is done utilizing the economic simulation portion of DOE-1. Utility bills over the past six years are analyzed to gain an actual energy-use profile for the house to compare with computer results. Results indicate that a 35% savings in heating load may be obtained with addition of proper amounts of insulation as compared with the house with no insulation. The installation of double glazing on windows may save close to 6% on heating load. Thermostat setbacks may result in savings of around 25% on energy consumed for heating. Similar results are achieved with regard to cooling load. Comparison of actual energy consumed by the household (from utility bills) with the computer results shows a 4.25% difference in values between the two. This small percent difference certainly strengthens the case for future use of computer programs in comparing construction alternatives and predicting building energy consumption.

  8. Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Salar Chamanian

    2014-10-01

    Full Text Available This paper presents a wireless sensor node (WSN system where an electromagnetic (EM energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3 in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.

  9. Modeling and Optimizing Energy Utilization of Steel Production Process: A Hybrid Petri Net Approach

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2013-01-01

    Full Text Available The steel industry is responsible for nearly 9% of anthropogenic energy utilization in the world. It is urgent to reduce the total energy utilization of steel industry under the huge pressures on reducing energy consumption and CO2 emission. Meanwhile, the steel manufacturing is a typical continuous-discrete process with multiprocedures, multiobjects, multiconstraints, and multimachines coupled, which makes energy management rather difficult. In order to study the energy flow within the real steel production process, this paper presents a new modeling and optimization method for the process based on Hybrid Petri Nets (HPN in consideration of the situation above. Firstly, we introduce the detailed description of HPN. Then the real steel production process from one typical integrated steel plant is transformed into Hybrid Petri Net model as a case. Furthermore, we obtain a series of constraints of our optimization model from this model. In consideration of the real process situation, we pick the steel production, energy efficiency and self-made gas surplus as the main optimized goals in this paper. Afterwards, a fuzzy linear programming method is conducted to obtain the multiobjective optimization results. Finally, some measures are suggested to improve this low efficiency and high whole cost process structure.

  10. PROJECT MANAGEMENT AS THE BASIS FOR ENERGY SAVING IN HOUSING AND UTILITIES SECTOR

    Directory of Open Access Journals (Sweden)

    Павло Трохимович БУБЕНКО

    2017-03-01

    Full Text Available Considered a scientific approach to energy conservation issues in the housing from the standpoint of program-oriented management, when in contrast to the current practice solutions of energy saving tasks, the process is carried out based on the analysis and comparison of the costs and resource losses for each energy-saving project, and the energy-saving process is based on the provisions of the theory project management. The necessity of mandatory registration of housing construction industry sub-sectors with the utilities in the process of implementing energy-saving strategies. Proposed key areas of energy efficiency of existing and new buildings, formed components selection, programming and planning of energy saving activities at the strategic, tactical and operational levels. We studied the organizational and structural relationship of the construction sector and sub-sectors of housing and communal services in the implementation of energy-saving strategies. We prove the advantages of using the network form of organizational and economic support implementation of energy saving projects.

  11. Future perspective of nuclear energy utilization and expected role of HTGR. JAERI's energy systems analysis research

    International Nuclear Information System (INIS)

    Sato, Osamu

    1996-01-01

    Studies have been made in JAERI in order to assess the possibility of using nuclear energy symbiotically with fossil and biomass fuels, and to evaluate its implications for the environment. The application system of high temperature nuclear heat has been designed for this purpose with various technology options. The core of the system is a set of technologies for hydrogen production and its application to produce clean and convenient fuels from fossil or biomass sources. The results of analytical studies using the MARKAL model have indicated sufficient possibilities of combining nuclear energy effectively with fossil or biomass fuels via hydrogen produced by high temperature nuclear heat. In addition to providing clean and convenient liquid fuels on a large scale, the combined system will contribute to the substantial reduction of long-term CO 2 emissions. The relatively high cost of this system will be well justified when CO 2 emission penalties are taken into account. (J.P.N.)

  12. A pilot study of energy utilization patterns during different transurethral electrosurgical treatments of the prostate.

    Science.gov (United States)

    Patel, A; Fuchs, G J; Gutiérrez-Aceves, J

    1997-07-01

    During a prospective randomized study of prostatic and periprostatic heating during transurethral electrosurgical treatment, energy utilization was studied with respect to electrode configuration and prostate size. Patients were stratified for gland volume (transrectal ultrasound [TRUS] 50 cc or less and more than 50 cc) and randomized to treatment either with loop resection (transurethral resection of the prostate [TURP]) or electrovaporization (transurethral electrovaporization [TUEVAP]. VaporTrode-Grooved Bar, CIRCON ACMI). Power was provided by a radiofrequency unit (Force FX, Valleylab) initially set at 150 W. A passive feed-through system was connected to the patient circuit to record current and voltage at 10 Hz during each activation of the cut mode in real time. Patients (6 per group) were well matched for prostate volume (P < 0.57) and operating time (P < 0.33). Power settings were also similar (120 to 190 W). Both total energy utilization (P < 0.025) and energy used per minute of treatment (P < 0.004) were greater for TUEVAP than for TURP. The higher energy deposition per unit time for TUEVAP was not associated with undesirable periprostatic heating. For TURP, more energy was used per unit time for each gram resected in small prostates than in larger glands. Comparing energy consumption per minute per cubic centimeter of prostate, we found a 2:1 ratio between TUEVAP and TURP in large prostates, which increased to 3.4:1 (P < 0.049) in small glands. For the same panel power settings, more energy is deposited at the tissue interface during TUEVAP than during TURP. This extra energy provides better surface hemostasis without undesirable deep heating and can be explained by the larger contact surface and contact time (slower speed of excursion) of the VaporTrode than a regular loop. The novel observation that more energy is required for small prostates during both treatments suggests that these glands have different electrical properties and higher tissue

  13. Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective

    Directory of Open Access Journals (Sweden)

    Lijun Zeng

    2018-01-01

    Full Text Available As the world faces great challenges from climate change and environmental pollution, China urgently requires energy saving, emission reduction, and carbon reduction programmes. However, the non-cooperative energy saving model (NCESM, the simple regulation mode that is China’s main model for energy saving, is not beneficial for optimization of energy and resource distribution, and cannot effectively motivate energy saving at the provincial level. Therefore, we propose an interprovincial cooperative energy saving model (CESM from the perspective of electricity utilization, with the object of maximizing the benefits from electricity utilization of the cooperation union based on achieving the energy saving goals of the union as a whole. The CESM consists of two parts: (1 an optimization model that calculates the optimal quantities of electricity consumption for each participating province to meet the joint energy saving goal; and (2 a model that distributes the economic benefits of the cooperation among the provinces in the cooperation based on the Shapley value method. We applied the CESM to the case of an interprovincial union of Shanghai, Sichuan, Shanxi, and Gansu in China. The results, based on the data from 2001–2014, show that cooperation can significantly increase the benefits of electricity utilization for each province in the union. The total benefits of the union from utilization of electricity increased 38.38%, or 353.98 billion CNY, while the benefits to Shanghai, Sichuan, Shanxi, and Gansu were 200.28, 58.37, 57.11, and 38.22 billion CNY respectively greater under the CESM than the NCESM. The implementation of the CESM provides the provincial governments not only a flexible and incentive way to achieve short-term goals, but also a feasible and effective path to realize long-term energy saving strategies. To test the impact of different parameter values on the results of the CESM, a sensitivity analysis was conducted. Some policy

  14. Endomorphisms on half-sided modular inclusions

    International Nuclear Information System (INIS)

    Svegstrup, Rolf Dyre

    2006-01-01

    In algebraic quantum field theory we consider nets of von Neumann algebras indexed over regions of the space time. Wiesbrock [''Conformal quantum field theory and half-sided modular inclusions of von Neumann algebras,'' Commun. Math. Phys. 158, 537-543 (1993)] has shown that strongly additive nets of von Neumann algebras on the circle are in correspondence with standard half-sided modular inclusions. We show that a finite index endomorphism on a half-sided modular inclusion extends to a finite index endomorphism on the corresponding net of von Neumann algebras on the circle. Moreover, we present another approach to encoding endomorphisms on nets of von Neumann algebras on the circle into half-sided modular inclusions. There is a natural way to associate a weight to a Moebius covariant endomorphism. The properties of this weight have been studied by Bertozzini et al. [''Covariant sectors with infinite dimension and positivity of the energy,'' Commun. Math. Phys. 193, 471-492 (1998)]. In this paper we show the converse, namely, how to associate a Moebius covariant endomorphism to a given weight under certain assumptions, thus obtaining a correspondence between a class of weights on a half-sided modular inclusion and a subclass of the Moebius covariant endomorphisms on the associated net of von Neumann algebras. This allows us to treat Moebius covariant endomorphisms in terms of weights on half-sided modular inclusions. As our aim is to provide a framework for treating endomorphisms on nets of von Neumann algebras in terms of the apparently simpler objects of weights on half-sided modular inclusions, we lastly give some basic results for manipulations with such weights

  15. Business Model Innovation for Local Energy Management: A Perspective from Swiss Utilities

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Eid, Cherrelle; Bollinger, Andrew; Sulzer, Sabine

    2016-01-01

    The successful deployment of the energy transition relies on a deep reorganization of the energy market. Business model innovation is recognized as a key driver of this process. This work contributes to this topic by providing to potential local energy management (LEM) stakeholders and policy makers a conceptual framework guiding the LEM business model innovation. The main determinants characterizing LEM concepts and impacting its business model innovation are identified through literature reviews on distributed generation typologies and customer/investor preferences related to new business opportunities emerging with the energy transition. Afterwards, the relation between the identified determinants and the LEM business model solution space is analyzed based on semi-structured interviews with managers of Swiss utilities companies. The collected managers’ preferences serve as explorative indicators supporting the business model innovation process and provide insights into policy makers on challenges and opportunities related to LEM.

  16. Background research paper : township of East Garafraxa utilities and renewable energy planning study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-11

    This paper established the foundation for future policies in Ontario's Township of East Garafraxa regarding renewable energy facilities and utilities. The paper provided research which included a summary of policy and regulatory best practices; a lexicon for renewable energy and wind power terminology; a baseline for scales of facilities; identification of constraints and land use issues; a discussion on alternative energy sources and their impacts; a summary of discussions with stakeholders and interest groups; and an opportunity and constraints analysis. Specifically, the report provided an overview of the Township of East Garafraxa and discussed regulations such as the Environmental Assessment Act and Environmental Protection Act. The forms of renewable energy that were discussed included wind, solar, biomass, hydro and geothermal energy. A jurisdictional analysis was then presented. Scale options for each renewable energy system were presented along with recommended scales for each renewable energy system. It was concluded that the Township of East Garafraxa has an opportunity to proactively accommodate new renewable energy land uses in a manner that reflects the local characteristics and aspirations of its residents. 50 refs., 12 figs., 1 appendix.

  17. Financial analysis of utility scale photovoltaic plants with battery energy storage

    International Nuclear Information System (INIS)

    Rudolf, Viktor; Papastergiou, Konstantinos D.

    2013-01-01

    Battery energy storage is a flexible and responsive form of storing electrical energy from Renewable generation. The need for energy storage mainly stems from the intermittent nature of solar and wind energy sources. System integrators are investigating ways to design plants that can provide more stable output power without compromising the financial performance that is vital for investors. Network operators on the other side set stringent requirements for the commissioning of new generation, including preferential terms for energy providers with a well-defined generation profile. The aim of this work is to highlight the market and technology drivers that impact the feasibility of battery energy storage in a Utility-scale solar PV project. A simulation tool combines a battery cycling and lifetime model with a solar generation profile and electricity market prices. The business cases of the present market conditions and a projected future scenario are analyzed. - Highlights: • Generation shifting with batteries allows PV projects to generate additional revenues. • Battery lifetime, lifecycles and price are less relevant than electricity market prices. • Installed battery capacity of up to 50% of the daily PV energy boosts project economy. • A 25% higher premium for energy storage could improve NPV by approximately 65%

  18. Energy consumption across European Union farms: Efficiency in terms of farming output and utilized agricultural area

    International Nuclear Information System (INIS)

    Martinho, Vítor João Pereira Domingues

    2016-01-01

    Energy consumption is a global concern, namely due to the limited availability of energy sources and the consequences in terms of gas emissions, with its implications upon greenhouse gas emissions. In the agricultural sector this question bears an additional concern, considering that it is an economic activity which is sensitive to the dimension of the costs associated with production factors. In this way, the objective of the study presented here is to analyze, the efficiency of energy consumption, for the twelve former European Union countries, at farm level, in terms of farming output and utilized agricultural area, over the period 1989–2009 and for the years 2004–2012, with data available in the Farm Accountancy Data Network. On the other hand, the implications of energy consumption in farms' economic performance were analyzed, through econometric techniques (time series, panel data and generalized method of moments) and models based on the Kaldor developments. As a main conclusion, to stress the decrease in efficiency related with energy consumption by farms in the twelve former European Union countries. - Highlights: • It was analyzed the efficiency of energy consumption. • It was considered data for the twelve former European Union states at farm level. • They were evaluated the implications of energy consumption in farms performance. • The conclusions stress the decrease in efficiency of the farms energy consumption.

  19. Remunicipalisation and Foundation of Municipal Utilities in the German Energy Sector: Details about Newly Established Enterprises

    Directory of Open Access Journals (Sweden)

    Oliver Wagner

    2017-09-01

    Full Text Available Since the majority of network concession contracts in Germany were set to expire some time between 2005 and 2016, a window of opportunity arose in which to rebuild and remunicipalise the local energy supply. As a result, 72 new local power companies were established in Germany within the space of just seven years (between early 2005 and late 2012. This paper provides an introduction to the topic of establishing municipal utilities in Germany. The findings were identified on the basis of the comprehensive screening of all newly established municipal utilities in Germany. Our analysis provides information about regional concentration, the size of municipalities, the legal forms of the newly founded municipal public utilities and the role of strategic partnerships. The key findings are that remunicipalisation is not a question of size and that knowledge gaps may be closed by entering into close strategic partnerships.

  20. Thermodynamic analysis of load-leveling hyper energy converting and utilization system

    International Nuclear Information System (INIS)

    Kiani, Behdad; Akisawa, Atsushi; Kashiwagi, Takao

    2008-01-01

    Load-leveling hyper energy converting and utilization system (LHECUS) is a hybrid cycle which utilizes ammonia-water mixture as the working fluid in a combined power generation and refrigeration cycle. The power generation cycle functions as a Kalina cycle and an absorption refrigeration cycle is combined with it as a bottoming cycle. LHECUS is designed to utilize the waste heat from industry to produce cooling and power simultaneously. The refrigeration effect can be either transported to end-use sectors by means of a solution transportation absorption chiller (STA) as solution concentration difference or stored for demand load leveling. This paper shows a simulation of the LHECUS cycle. A computer model was written to balance the cycle and key parameters for optimizing the cycle were identified

  1. Energy technologies for distributed utility applications: Cost and performance trends, and implications for photovoltaics

    International Nuclear Information System (INIS)

    Eyer, J.M.

    1994-01-01

    Utilities are evaluating several electric generation and storage (G ampersand S) technologies for distributed utility (DU) applications. Attributes of leading DU technologies and implications for photovoltaics (PV) are described. Included is a survey of present and projected cost and performance for: (1) small, advanced combustion turbines (CTs); (2) advanced, natural gas-fired, diesel engines (diesel engines); and (3) advanced lead-acid battery systems (batteries). Technology drivers and relative qualitative benefits are described. A levelized energy cost-based cost target for PV for DU applications is provided. The analysis addresses only relative cost, for PV and for three selected alternative DU technologies. Comparable size, utility, and benefits are assumed, although relative value is application-specific and often technology- and site-specific

  2. Utility survey on nuclear power plant siting and nuclear energy centers

    International Nuclear Information System (INIS)

    Cope, D.F.; Bauman, H.F.

    1977-01-01

    Most of the large U.S. utilities were surveyed by telephone and mail on questions concerning nuclear power plant siting and nuclear energy centers (NECs). The main purpose of the survey was for guidance of ERDA's NEC program. The questions covered the following topics: availability of sites; impact of environmental and other restraints; plans for development of multi-unit sites; interest in NEC development; interest in including fuel-cycle facilities in NECs; and opinions on the roles desired for the state and Federal governments in power plant siting. The main conclusion of the survey was that, while many utilities were considering multiple-unit sites of 2 to 5 units, none were planning larger energy centers at the present time. However, several expressed interest in NECs as a long-range future development

  3. Agribusiness geothermal energy utilization potential of Klamath and Western Snake River Basins, Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1978-03-01

    Resource assessment and methods of direct utilization for existing and prospective food processing plants have been determined in two geothermal resource areas in Oregon. Ore-Ida Foods, Inc. and Amalgamated Sugar Company in the Snake River Basin; Western Polymer Corporation (potato starch extraction) and three prospective industries--vegetable dehydration, alfalfa drying and greenhouses--in the Klamath Basin have been analyzed for direct utilization of geothermal fluids. Existing geologic knowledge has been integrated to indicate locations, depth, quality, and estimated productivity of the geothermal reservoirs. Energy-economic needs and balances, along with cost and energy savings associated with field development, delivery systems, in-plant applications and fluid disposal have been calculated for interested industrial representatives.

  4. Utility survey on nuclear power plant siting and nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    Cope, D. F.; Bauman, H. F.

    1977-06-28

    Most of the large U.S. utilities were surveyed by telephone and mail on questions concerning nuclear power plant siting and nuclear energy centers (NECs). The main purpose of the survey was for guidance of ERDA's NEC program. The questions covered the following topics: availability of sites; impact of environmental and other restraints; plans for development of multi-unit sites; interest in NEC development; interest in including fuel-cycle facilities in NECs; and opinions on the roles desired for the state and Federal governments in power plant siting. The main conclusion of the survey was that, while many utilities were considering multiple-unit sites of 2 to 5 units, none were planning larger energy centers at the present time. However, several expressed interest in NECs as a long-range future development.

  5. Utilization of Nuclear Energy for Electricity Generation: Review of Intelligence Perspective

    International Nuclear Information System (INIS)

    Bijah Subijanto

    2004-01-01

    In the perspective of intelligence, the use of nuclear energy was studied in terms of the potential and challenges. There are seven potential that could be the reason for the utilization of nuclear energy power plant. The seven potential factors are world fuel prices, high security, eco-friendly, economical, political and defense considerations, socio-cultural and efficiency. While the challenges that may face is the public perception, social transition, politics and culture, the mass media that are not patterned maximally, traditions and culture as well as the factors unrest and natural disasters

  6. The „stability“ of the system of the eart thermal energy utilization

    Directory of Open Access Journals (Sweden)

    Marina Sidorová

    2006-10-01

    Full Text Available In relation to the geothermal resources and, especially, to the geothermal energy utilization, stability means the ability of an applied production system to sustain the production level over long times. Often, the resources are taken into production, mainly to meet economic goals like a quick pay-back of investments for an exploration and anequipment, in such a way that the reservoir depletion is the result. In contrast, the sustainability production of the geothermal energy secures a longevity of these resource, at a lower production level.

  7. Possibilities and Barriers for Energy Conservation in a Liberalised Electricity Market: Danish Utility Experiences

    DEFF Research Database (Denmark)

    Meyer, Niels I

    1999-01-01

    development.Commercial competition has a short time horizon and a goal function of profit maximizing. In contrast to this, creation of a sustainable development requires long time horizons and comprehensive societal planning and regulation.This paper analyses the possibilities and barriers for promoting...... a sustainable energy development in efficiency and energy conservation. The electric utilities play an important role in this relation, but their priority is of commercial nature rather than concern for the environment. This dilemma is analyzed in more detail in the paper....

  8. Thermal insulation research plan for the Energy Conversion and Utilization Technologies (ECUT) materials program

    Energy Technology Data Exchange (ETDEWEB)

    Fine, H.A.

    1986-08-01

    This report documents both the process and the output of the process of establishing a peer review panel primarily from the private sector to suggest research and development activities appropriate for government sponsorship through the US Department of Energy (DOE) Energy Conversion and Utilization Technologies (ECUT) Program on the subject of thermal insulation. We expect to use information and guidance from the document during the federal budgetary process to allow more informed decision making. All related results of that budgetary decision making will affect what the DOE or Oak Ridge National Laboratory (ORNL) can and will sponsor during this or subsequent years through detailed decisions of DOE and ORNL program managers.

  9. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    Science.gov (United States)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  10. International Atomic Energy Agency programme and activity on the utilization of low energy accelerators

    International Nuclear Information System (INIS)

    Shalnov, A.V.; Whetstone, S.L.

    1974-01-01

    One of the chief missions of the Agency is as intermediary between the more highly developed of its member states and the less developed. This involves transmittal of needs of the latter to the former and, where possible, in response to the needs, an appropriate transfer of information and technical assistance. The physics section of the IAEA has recently encouraged and supported requests for technical assistance for programs based on neutron activation studies or pedagogic neutron physics experiments for institutes entering the nuclear field. Neutron generator laboratories have been set up with IAEA-assistance most recently in Burma, Hong Kong, Lebanon. Other recent technical assistance projects involving low-energy accelerators include: (1) consultation on the future program for the accelerator laboratory in Algeria; (2) equipment and experts to assist the nuclear physics program at the Van de Graaff in Bangladesh; (3) expert assistance and equipment in support of the installation of an electron linear accelerator in Egypt; and (4) expert assistance for nuclear physics studies at the cyclotron in Chile. A large number of young scientists, particularly from S.E. Europe, but also from the Middle East and South America, have received training in nuclear physics experimentation by advanced countries at low energy accelerator laboratories under the IAEA fellowship program

  11. Life expectancy impacts due to heating energy utilization in China: Distribution, relations, and policy implications.

    Science.gov (United States)

    Wang, Shaobin; Luo, Kunli

    2018-01-01

    The relation between life expectancy and energy utilization is of particular concern. Different viewpoints concerned the health impacts of heating policy in China. However, it is still obscure that what kind of heating energy or what pattern of heating methods is the most related with the difference of life expectancies in China. The aim of this paper is to comprehensively investigate the spatial relations between life expectancy at birth (LEB) and different heating energy utilization in China by using spatial autocorrelation models including global spatial autocorrelation, local spatial autocorrelation and hot spot analysis. The results showed that: (1) Most of heating energy exhibit a distinct north-south difference, such as central heating supply, stalks and domestic coal. Whereas spatial distribution of domestic natural gas and electricity exhibited west-east differences. (2) Consumption of central heating, stalks and domestic coal show obvious spatial dependence. Whereas firewood, natural gas and electricity did not show significant spatial autocorrelation. It exhibited an extinct south-north difference of heat supply, stalks and domestic coal which were identified to show significant positive spatial autocorrelation. (3) Central heating, residential boilers and natural gas did not show any significant correlations with LEB. While, the utilization of domestic coal and biomass showed significant negative correlations with LEB, and household electricity shows positive correlations. The utilization of domestic coal in China showed a negative effect on LEB, rather than central heating. To improve the solid fuel stoves and control consumption of domestic coal consumption and other low quality solid fuel is imperative to improve the public health level in China in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Modular reconfigurable machines incorporating modular open architecture control

    CSIR Research Space (South Africa)

    Padayachee, J

    2008-01-01

    Full Text Available is presented. By virtue of their fully modular nature these machines are able to display a variability of machining functions and cutting degrees of freedom on a single platform. A corresponding modular Open Architecture Control (OAC) system is presented..., Modular Reconfigurable Machines, Open Architecture Control, Modular Machine Control I. INTRODUCTION Reconfigurable Manufacturing Systems (RMS) is a new class of manufacturing systems, having been created to overcome the inadequacies of previous...

  13. Modular Robotic Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable......, it is possible to obtain a flexible wearable processing system, where freely inter-changeable input/output modules can be positioned on the body suit in accordance with the task at hand. We describe the first rough prototypes and show an artistic application, as well as some drawing of future works and projects....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  14. Recent development of organic light-emitting diode utilizing energy transfer from exciplex to phosphorescent emitter

    Science.gov (United States)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Takahashi, Tatsuyoshi; Hamada, Takao; Watabe, Takeyoshi; Yamada, Yui; Mitsumori, Satomi

    2016-09-01

    This study investigates an organic light-emitting diode (OLED) utilizing energy transfer from an excited complex (exciplex) comprising donor and acceptor molecules to a phosphorescent dopant. An exciplex has a very small energy gap between the lowest singlet and triplet excited states (S1 and T1). Thus, both S1 and T1 energies of the exciplex can be directly transferred to the T1 of the phosphorescent dopant by adjusting the emission energy of the exciplex to the absorption-edge energy of the dopant. Such an exciplex‒triplet energy transfer (ExTET) achieves high efficiency at low drive voltage because the electrical excitation energy of the exciplex approximates the T1 energy of the dopant. Furthermore, the efficiency of the reverse intersystem crossing (RISC) of the exciplex does not affect the external quantum efficiency (EQE) of the ExTET OLED. The RISC of the exciplex is inhibited when the T1 energy of either donor or acceptor molecules is close to or lower than that of the exciplex itself. Even in this case, however, the ExTET OLED maintains its high efficiency because the T1 energy of each component of the exciplex or the T1 energy of the exciplex itself can be transferred to the dopant. We also varied the emission colors of ExTET OLEDs from sky-blue to red by introducing various phosphorescent dopants. These devices achieved high EQEs (≍30%), low drive voltages (≍3 V), and extremely long lifetimes (e.g., 1 million hours for the orange OLED) at a luminance of 1,000 cd/m2.

  15. R and D of energy saving and new energy utilization in Japanese marine engineering

    Science.gov (United States)

    Isshiki, N.; Tamaki, H.; Murayama, Y.; Tokuda, S.

    Energy saving measures being studied and implemented in Japan to reduce marine diesel fuel consumption are described. Lower ship speeds, bulb bows, better surface paint, a reaction ladder, low speed diesel engines with long stroke cylinders and superchargers are being tried. Large, low speed, controllable pitch propellers, digital engine control, and waste heat recovery with Rankine cycle generators are other methods under investigation. Blade cooling and reheating are being introduced, and a set of computer controlled maneuverable metal sails undergoing sea tests on a commercial tanker as a fuel saving technique have displayed a 20% fuel savings in tests. A windmill is under design for ship propulsion, involving several vertical airfoils revolving around a vertical axis of rotation. Direct connection to a propeller is being considered, noting that operations to windward would be possible.

  16. Carbon emissions associated with the procurement and utilization of forest harvest residues for energy, northern Minnesota, USA

    Science.gov (United States)

    Grant M. Domke; Dennis R. Becker; Anthony W. D' Amato; Alan R. Ek; Christopher W. Woodall

    2012-01-01

    Interest in the use of forest-derived biomass for energy has prompted comparisons to fossil fuels and led to controversy over the atmospheric consequences of its utilization. Much of the debate has centered on the carbon storage implications of utilizing whole trees for energy and the time frame necessary to offset the carbon emissions associated with fixed-life...

  17. 78 FR 7426 - City of Fallon, Nevada; Truckee Donner Public Utility District v. NV Energy Operating Companies...

    Science.gov (United States)

    2013-02-01

    ... Energy Regulatory Commission City of Fallon, Nevada; Truckee Donner Public Utility District v. NV Energy...), the City of Fallon, Nevada and Truckee Donner Public Utility District (collectively, Complainants... review in the Commission's Public Reference Room in Washington, DC. There is an ``eSubscription'' link on...

  18. Contributing to a green energy economy? A macroeconomic analysis of an energy efficiency program operated by a Swiss utility

    International Nuclear Information System (INIS)

    Yushchenko, Alisa; Patel, Martin Kumar

    2016-01-01

    Highlights: • Our input–output model allows estimating impacts of energy efficiency programs on GDP and employment in Switzerland. • We provide with a deeper insight into modeling of income impacts of energy savings with regard to input–output method. • Geneva case study demonstrates that energy efficiency programs can have positive macroeconomic impacts in Switzerland. • Our results help to understand how to enhance positive macroeconomic impacts of energy efficiency programs. • We provide policy recommendations for further development of energy efficiency programs. - Abstract: In order to enhance energy efficiency as a pillar of transition to a green energy economy it is important to understand whether and under which conditions energy efficiency programs could have positive economic and social impacts. There are a growing number of studies on macroeconomic impacts of energy efficiency programs for various countries and regions. However, in Switzerland only few evaluations have been performed. The present study evaluates the impacts on GDP and employment of Geneva’s energy efficiency program portfolio éco21 which is operated by the local utility. Two programs aiming for electricity savings in the residential sector are analyzed: Eco-sociales targets social housing and Communs d’immeubles focuses on common spaces in buildings. An input–output model is developed, based on the Swiss input–output table, program administrator data, Swiss, and European statistics. Both impacts of initial expenditure and energy cost savings are evaluated. We estimate and compare the impacts of the two programs and discuss factors that cause differences. Our results show that energy efficiency programs can have positive impacts on GDP and employment. According to our estimates, each Swiss Franc (CHF) spent within the energy efficiency program creates approximately 0.2 CHF of additional GDP compared to the reference case scenario. Net impacts on employment are

  19. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  20. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 1: (Executive summary)

    Science.gov (United States)

    1976-01-01

    Integrated Utility Systems (IUS) have been suggested as a means of reducing the cost and conserving the nonrenewable energy resources required to supply utility services (energy, water, and waste disposal) to developments of limited size. The potential for further improving the performance and reducing the cost of IUS installations through the use of energy storage devices is examined and the results are summarized. Candidate energy storage concepts in the general areas of thermal, inertial, superconducting magnetic, electrochemical, chemical, and compressed air energy storage are assessed and the storage of thermal energy as the sensible heat of water is selected as the primary candidate for near term application to IUS.

  1. Assessment of target markets for deployment of modular HTGRs

    International Nuclear Information System (INIS)

    Richards, M.; Hamilton, C.; Venneri, F.

    2014-01-01

    The Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) consists of 16 companies and organizations that support development and deployment of modular High Temperature Gas-Cooled Reactors (modular HTGRs or MHRs). These companies include reactor vendors, utilities, potential industrial end users of MHR process steam/heat, nuclear graphite vendors, and companies with design, technology development, regulatory licensing, and other HTGR subject matter expertise. The NIA has been investigating potential markets for MHRs in both North America and globally as part of its business plan development. MHRs have inherent, melt-down proof safety with high-temperature capability and high utilization of the nuclear heat for production of electricity and process heat. These features allow MHRs to be located within close proximity to the public and industrial end users, and in locations with very limited or no availability of cooling water as the ultimate heat sink. This paper provides a summary of recent NIA target market assessments, including selected markets which currently utilize high value oil and expensive liquefied natural gas (LNG) fuels for process heat and electricity generation on a large scale (e.g., Kingdom of Saudi Arabia, Japan, and Korea). Results show that significant markets exist today for economical deployment of steam-cycle MHRs for electricity and process heat, especially in countries/regions that utilize expensive (or heavily subsidized) fossil fuels for energy needs. Low natural gas prices in North America presently inhibit expansion of any nuclear technology, but MHRs should be economically competitive by the 2030 - 2040 time frame, when natural gas prices are projected to be in the $7 to $10 per MMBtu price range. There is also good market potential for higher temperature MHR applications, including nuclear steel manufacturing, production of synthetic fuels, and hydrogen production. (author)

  2. Energy utilization from landfill biogas; Aproveitamento energetico do biogas de aterros sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Candiani, Giovano [Universidade Federal do ABC, Santo Andre, SP (Brazil). Programa de Pos-Graduacao em Energia; Hoffmann, Gustavo; Silva, Elissandro Rocha da; Moreira, Joao M.L.; Tomioka, Jorge

    2008-07-01

    Landfills for solid waste disposal are used in Brazil and in most of countries in the world. The organic part of the solid wastes produces gas out of the decomposition of its organic content. This gas, named biogas and mostly made of carbon dioxide and methane, may be collected and used as an energy source due the methane presence. In this work we analyze the possible energy utilization of landfill biogas in Brazil in which the organic content of the solid waste is about 60%. The use of biogas as energy source can reduce the greenhouse gas emissions and improve the sanitation conditions of landfills. Moreover, it allows financial gains through selling of energy and carbon credits. In order to make possible the biogas utilization it is necessary to recognize the differences among the many landfills which exist in the country. There are the large and small landfills. The large ones usually have good instrumentation and gas exhaustion systems while the small ones have passive exhaustion systems and very few field instrumentation. The small landfills need to improve their instrumentation system and to incorporate exhaustion systems. (author)

  3. Profit maximization algorithms for utility companies in an oligopolistic energy market with dynamic prices and intelligent users

    Directory of Open Access Journals (Sweden)

    Tiansong Cui

    2016-01-01

    Full Text Available Dynamic energy pricing provides a promising solution for the utility companies to incentivize energy users to perform demand side management in order to minimize their electric bills. Moreover, the emerging decentralized smart grid, which is a likely infrastructure scenario for future electrical power networks, allows energy consumers to select their energy provider from among multiple utility companies in any billing period. This paper thus starts by considering an oligopolistic energy market with multiple non-cooperative (competitive utility companies, and addresses the problem of determining dynamic energy prices for every utility company in this market based on a modified Bertrand Competition Model of user behaviors. Two methods of dynamic energy pricing are proposed for a utility company to maximize its total profit. The first method finds the greatest lower bound on the total profit that can be achieved by the utility company, whereas the second method finds the best response of a utility company to dynamic pricing policies that the other companies have adopted in previous billing periods. To exploit the advantages of each method while compensating their shortcomings, an adaptive dynamic pricing policy is proposed based on a machine learning technique, which finds a good balance between invocations of the two aforesaid methods. Experimental results show that the adaptive policy results in consistently high profit for the utility company no matter what policies are employed by the other companies.

  4. The role of exergy in increasing utilization of green energy and technologies. Paper no. IGEC-1-Keynote-Rosen

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2005-01-01

    The use of exergy is described as a measure for identifying and explaining the benefits of green energy and technologies, so the benefits can be clearly understood and appreciated by experts and non-experts alike, and the utilization of green energy and technologies can be increased. Exergy can be used to assess and improve energy systems, and can help better understand the benefits of utilizing green energy by providing more useful and meaningful information than energy provides. Exergy clearly identifies efficiency improvements and reductions in thermodynamic losses attributable to green technologies. Exergy can also identify better than energy the environmental benefits and economics of energy technologies. Exergy should be utilized to engineers and scientists, as well as decision and policy makers, involved in green energy and technologies. (author)

  5. Reduction in tribological energy losses in the transportation and electric utilities sectors

    Energy Technology Data Exchange (ETDEWEB)

    Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

    1985-09-01

    This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

  6. Optimal number of energy generators for biogas utilization in wastewater treatment facility

    International Nuclear Information System (INIS)

    Tsagarakis, Konstantinos P.

    2007-01-01

    A technoeconomic analysis has been undertaken considering the optimum number of energy producing generators using biogas coming from anaerobic digestion. Inputs for this analysis originate from available data on the first generator for energy production from biogas, installed in Greece at the wastewater treatment facility of Iraklio city. The data spans a period of 5.5 years of operation. It is concluded that the cost per kWh produced is 0.0876 Euro /kWh if one generator is used covering 15.9% of the facility's needs. If two generators are used, more biogas is utilized contributing 32.6% of the facility's needs at a marginal production cost of 0.0886 Euro /kWh. Similar estimations have been made for scenarios involving up to six generators. In contrast, the marginal cost of conventionally produced energy is 0.1383-0.2483 Euro /kWh

  7. MPC for Wind Power Gradients - Utilizing Forecasts, Rotor Inertia, and Central Energy Storage

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Jørgensen, John Bagterp

    2013-01-01

    decentralized energy storage in the turbines’ inertia combined with a central storage unit or deferrable consumers can be utilized to achieve this goal at a minimum cost. We propose a variation on model predictive control to incorporate predictions of wind speed. Due to the aerodynamics of the turbines...... the model contains nonconvex terms. To handle this nonconvexity, we propose a sequential convex optimization method, which typically converges in fewer than 10 iterations. We demonstrate our method in simulations with various wind scenarios and prices for energy storage. These simulations show substantial......We consider the control of a wind power plant, possibly consisting of many individual wind turbines. The goal is to maximize the energy delivered to the power grid under very strict grid requirements to power quality. We define an extremely low power output gradient and demonstrate how...

  8. Utilization of the PCM latent heat for energy savings in buildings

    Science.gov (United States)

    Fořt, Jan; Trník, Anton; Pavlík, Zbyšek

    2017-07-01

    Increase of the energy consumption for buildings operation creates a great challenge for sustainable development issues. Thermal energy storage systems present promising way to achieve this goal. The latent heat storage systems with high density of thermal storage via utilization of phase change materials (PCMs) enable to improve thermal comfort of buildings and reduce daily temperature fluctuations of interior climate. The presented study is focused on the evaluation of the effect of PCM admixture on thermal performance of a cement-lime plaster. On the basis of the experimentally accessed properties of newly developed plasters, computational modeling is carried out in order to rate the acquired thermal improvement. The calculated results show that incorporation of 24 mass% of paraffinic wax based PCM decreased the energy demand of approx. 14.6%.

  9. Energy and exergy utilization efficiencies and emission performance of Canadian transportation sector, 1990–2035

    International Nuclear Information System (INIS)

    Motasemi, F.; Afzal, Muhammad T.; Salema, Arshad Adam; Moghavvemi, M.; Shekarchian, M.; Zarifi, F.; Mohsin, R.

    2014-01-01

    Transportation sector of Canada is the second largest energy consuming sector which accounts for 30% of the total energy consumption of the country in 2009. The purpose of this work was to analyze the energy, exergy, and emission performance for four different modes of transport (road, air, rail, and marine) from the year 1990–2035. For historical period, the estimated overall energy efficiency ranges from 22.41% (1991) to 22.55% (2006) with a mean of 22.48 ± 0.07% and the overall exergy efficiency ranges from 21.61% (2001) to 21.87 (2006) with a mean of 21.74 ± 0.13%. Energy and exergy efficiencies may reach 20.95% and 20.97% in the year 2035 respectively based on the forecasted data. In comparison with other countries, we found that in the year 2000 the overall energy and exergy efficiencies for Canadian transportation sector were higher than Jordan, China, Norway, and Saudi Arabia but lower than Turkey and Malaysia. Between the year 1990–2009, the highest amount of emission produced in each subsector was: road CO 2 (80%), NO x (72%), and CO (carbon monoxide) (96%); air SO 2 (86%); rail NO x (6%) and marine NO x (7%). The road subsector produced the highest amount of emissions. - Highlights: • Energy, exergy and emission performance for Canadian transport was analyzed. • Maximum energy and exergy efficiencies were 22.55% and 21.87% in 2006 respectively. • Energy and exergy efficiencies may decrease in the year 2035. • CO 2 was the largest pollutant emitted followed by CO, NO x , and SO 2 . • Utilization of green fuels can improve exergy and emission performance

  10. Energy Utilization and Environmental Aspects of Rice Processing Industries in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammed Ahiduzzaman

    2009-03-01

    Full Text Available In this study, the energy utilization and environmental aspects of the rice processing industries in Bangladesh was analyzed. Rice husk, a milling by-product of rice, is used as a source of thermal energy to produce steam for parboiling of raw rice. The rice is mostly dried on a concrete floor under the sunshine. In mechanical drying, rice husks are used as a source of primary energy. In Bangladesh, the annual estimated energy used in 2000 for the drying of rice by sunshine was 10.7 million GJ and for drying and parboiling by rice husks it was 48.2 million GJ. These amounts will increase to 20.5 and 92.5 million GJ in 2030, respectively. Electrical energy consumption for mechanical drying and milling of rice was calculated as 1.83 million GJe and 3.51 million GJe in 2000 and in 2030, respectively. Biogenic carbon dioxide emission from burning of rice husk is renewed every year by the rice plant. Both the biogenic and non-biogenic carbon dioxide emissions in 2000 were calculated as 5.7 and 0.4 million tonnes, respectively, which will increase to 10.9 and 0.7 million tonnes in 2030. The demand of energy for rice processing increases every year, therefore, energy conservation in rice processing industries would be a viable option to reduce the intensity of energy by increasing the efficiency of rice processing systems which leads to a reduction in emissions and an increased supply of rice husk energy to other sectors as well.

  11. Energy utilization and environmental aspects of rice processing industries in Bangladesh

    International Nuclear Information System (INIS)

    Ahiduzzaman, M.; Sadrul Islam, A. K. L.

    2009-01-01

    In this study, the energy utilization and environmental aspects of the rice processing industries in Bangladesh was analyzed. Rice husk, a milling by-product of rice, is used as a source of thermal energy to produce steam for parboiling of raw rice. The rice is mostly dried on a concrete floor under the sunshine. In mechanical drying, rice husks are used as a source of primary energy. In Bangladesh, the annual estimated energy used in 2000 for the drying of rice by sunshine was 10.7 million GJ and for drying and parboiling by rice husks it was 48.2 million GJ. These amounts will increase to 20.5 and 92.5 million GJ in 2030, respectively. Electrical energy consumption for mechanical drying and milling of rice was calculated as 1.83 million GJ e and 3.51 million GJ e in 2000 and in 2030, respectively... Biogenic carbon dioxide emission from burning of rice husk is renewed every year by the rice plant. Both the biogenic and non-biogenic carbon dioxide emissions in 2000 were calculated as 5.7 and 0.4 million tonnes, respectively, which will increase to 10.9 and 0.7 million tonnes in 2030. The demand of energy for rice processing increases every year, therefore, energy conservation in rice processing industries would be a viable option to reduce the intensity of energy by increasing the efficiency of rice processing systems which leads to a reduction in emissions and an increased supply of rice husk energy to other sectors as well. (author)

  12. Application of Engineered Cementitious Composites (ECC) in modular floor panels

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2008-01-01

    with adaptability to various loading requirements, and the efficient utilization of material resources and industrial byproducts. The work described in this paper is a continuation of previous activities on composite floor panels in which light gage steel joists were integrally cast with the ECC slab. The modular......This paper describes the design, manufacturing, and structural behavior of a prefabricated floor panel consisting of a modular assembly of a thin-walled ECC slab and steel truss girders. The features of this composite structure include light weight, the modular manufacturing process...

  13. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables

    International Nuclear Information System (INIS)

    Caputo, Antonio C.; Palumbo, Mario; Pelagagge, Pacifico M.; Scacchia, Federica

    2005-01-01

    The substitution of conventional fossil fuels with biomass for energy production results both in a net reduction of greenhouse gases emissions and in the replacement of non-renewable energy sources. However, at present, generating energy from biomass is rather expensive due to both technological limits related to lower conversion efficiencies, and logistic constraints. In particular, the logistics of biomass fuel supply is likely to be complex owing to the intrinsic feedstock characteristics, such as the limited period of availability and the scattered geographical distribution over the territory. In this paper, the economical feasibility of biomass utilization for direct production of electric energy by means of combustion and gasification-conversion processes, has been investigated and evaluated over a capacity range from 5 to 50 MW, taking into account total capital investments, revenues from energy sale and total operating costs, also including a detailed evaluation of logistic costs. Moreover, in order to evaluate the impact of logistics on the bio-energy plants profitability, the effects of main logistic variables such as specific vehicle transport costs, vehicles capacity, specific purchased biomass costs and distribution density, have been examined. Finally, a mapping of logistic constraints on plant profitability in the specified capacity range has been carried out

  14. Sustainability of utility-scale solar energy – critical ecological concepts

    Science.gov (United States)

    Moore-O'Leary, Kara A.; Hernandez, Rebecca R.; Johnston, Dave S.; Abella, Scott R.; Tanner, Karen E.; Swanson, Amanda C.; Kreitler, Jason R.; Lovich, Jeffrey E.

    2017-01-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists – including those from academia, industry, and government agencies – have only recently begun to quantify trade-offs in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  15. Evolution of Modularity Literature

    DEFF Research Database (Denmark)

    Frandsen, Thomas

    2017-01-01

    Purpose The purpose of this paper is to review and analyze the modularity literature to identify the established and emerging perspectives. Design/methodology/approach A systematic literature search and review was conducted through the use of bibliometrics and network analysis. The analysis ident...

  16. MRV - Modular Robotic Vehicle

    Science.gov (United States)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  17. Modular invariant gaugino condensation

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M.K.

    1991-05-09

    The construction of effective supergravity lagrangians for gaugino condensation is reviewed and recent results are presented that are consistent with modular invariance and yield a positive definite potential of the noscale type. Possible implications for phenomenology are briefly discussed. 29 refs.

  18. Modular co-ordination

    DEFF Research Database (Denmark)

    Blach, K.

    Notatet er på engelsk, idet det er lavet som et oplæg til den internationale standardiseringsorganisations (ISO) arbejde med målkoordinering i byggeriet. Materialet har også været forelagt ekspertgrupperne i CIB W24 og i International Modular Group. Det i notatet præsenterede materiale er blevet ...

  19. Large boiler modularization

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Malcolm [Babcock and Wilcox Canada Ltd (Canada)

    2011-07-01

    This paper presents the modularization strategy in boiler manufacture of Babcock and Wilcox Canada Ltd, designed specifically to provide steam capacities up to 1,000,000 lb/hr. Designed as a solution for the oil sands market, the boiler responds to the needs of steam assisted gravity drainage (SAGD) and other in situ processes. Manufacture of three modules: furnace, superheater, and saturated module, is detailed assembly phases are shown as well as the construction sequence. The boiler is bottom-supported and features a unique modularized design that maximizes shop assembly and provides certainty to delivery and overall project schedule. Moreover, it is adaptable for all liquid and gaseous fuel types, including natural gas, produced gas and emulsified liquid fuels. This highly modular solution makes it a comprehensive solution for projects where construction risks and costs would otherwise be prohibitive. Maximum modularization of the boiler and minimal site labour are key design features, ensuring compliance with the weight and dimensional constraints of Alberta's high load corridor.

  20. Practical strategies of wind energy utilization for uninhabited aerial vehicles in loiter flights

    Science.gov (United States)

    Singhania, Hong Yang

    Uninhabited Aerial Vehicle (UAV) is becoming increasingly attractive in missions where human presence is undesirable or impossible. Agile maneuvers and long endurance are among the most desired advantages of UAVs over aircraft that have human pilots onboard. Past studies suggest that the performance of UAVs may be considerably improved by utilizing natural resources, especially wind energy, during flights. The key challenge of exploiting wind energy in practical UAV operations lies in the availability of reliable and timely wind field information in the operational region. This thesis presents a practical onboard strategy that attempts to over-come this challenge, to enable UAVs in utilizing wind energy effectively during flights, and therefore to enhance performance. We propose and explore a strategy that combines wind measurement and optimal trajectory planning onboard UAVs. During a cycle of a loiter flight, a UAV can take measurements of wind velocity components over the flight region, use these measurements to estimate the local wind field through a model-based approach, and then compute a flight trajectory for the next flight cycle with the objective of optimizing fuel. As the UAV follows the planned trajectory, it continues to measure the wind components and repeats the process of updating the wind model with new estimations and planning optimal trajectories for the next flight cycle. Besides presenting an onboard trajectory planning strategy of wind energy exploration, estimation, and utilization, this research also develops a semi-analytical linearized solution to the formulated nonlinear optimal control problem. Simulations and numerical results indicate that the fuel savings of trajectories generated using the proposed scheme depend on wind speed, wind estimation errors, rates of change in wind speed, and the wind model structures. For a given wind field, the magnitude of potential fuel savings is also contingent upon UAVs' performance capabilities.