WorldWideScience

Sample records for energy transfer analyses

  1. Analysing success of regulatory policy transfers: Evidence from Turkish energy markets

    International Nuclear Information System (INIS)

    Dastan, Seyit Ali

    2011-01-01

    Economic regulation of public utilities has become a worldwide phenomenon with the preceding privatisation stream. It is questionable to transfer regulatory models hastily without customising the policy options or introducing necessary institutional reforms enabling the achievement of expected results of regulatory reform. Institutional configuration of a country affects credibility of regulatory commitments, quality of regulatory design, and way of policy transfer. Turkey’s energy market regulation experience confirms the decisive role of institutions in shaping the regulatory framework. - Highlights: ► The last quarter of the 20th century witnessed public sector reforms all over the world. ► The British model of utility regulation swept globally. ► In Turkey’s adoption of the utility regulation model, different factors affected in various ways. ► Higher political stability and regulatory experience provide faith in the regulatory framework.

  2. Metagenomic Analyses Reveal That Energy Transfer Gene Abundances Can Predict the Syntrophic Potential of Environmental Microbial Communities

    Directory of Open Access Journals (Sweden)

    Lisa Oberding

    2016-01-01

    Full Text Available Hydrocarbon compounds can be biodegraded by anaerobic microorganisms to form methane through an energetically interdependent metabolic process known as syntrophy. The microorganisms that perform this process as well as the energy transfer mechanisms involved are difficult to study and thus are still poorly understood, especially on an environmental scale. Here, metagenomic data was analyzed for specific clusters of orthologous groups (COGs related to key energy transfer genes thus far identified in syntrophic bacteria, and principal component analysis was used in order to determine whether potentially syntrophic environments could be distinguished using these syntroph related COGs as opposed to universally present COGs. We found that COGs related to hydrogenase and formate dehydrogenase genes were able to distinguish known syntrophic consortia and environments with the potential for syntrophy from non-syntrophic environments, indicating that these COGs could be used as a tool to identify syntrophic hydrocarbon biodegrading environments using metagenomic data.

  3. Dexter energy transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  4. Systems analyses and the sustainable transfer of renewable energy technologies: a focus on remote areas of Africa

    CSIR Research Space (South Africa)

    Brent, AC

    2008-01-01

    Full Text Available study conducted with several experts in the energy sector. The results indicate that the integrated framework is suitable for the South African context, with additions to the ITDG and SURE frameworks suggested. Finally the paper highlights a potential...

  5. Laser induced energy transfer

    International Nuclear Information System (INIS)

    Falcone, R.W.

    1979-01-01

    Two related methods of rapidly transferring stored energy from one excited chemical species to another are described. The first of these, called a laser induced collision, involves a reaction in which the energy balance is met by photons from an intense laser beam. A collision cross section of ca 10 - 17 cm 2 was induced in an experiment which demonstrated the predicted dependence of the cross section on wavelength and power density of the applied laser. A second type of laser induced energy transfer involves the inelastic scattering of laser radiation from energetically excited atoms, and subsequent absorption of the scattered light by a second species. The technique of producing the light, ''anti-Stokes Raman'' scattering of visible and infrared wavelength laser photons, is shown to be an efficient source of narrow bandwidth, high brightness, tunable radiation at vacuum ultraviolet wavelengths by using it to excite a rare gas transition at 583.7 A. In addition, this light source was used to make the first measurement of the isotopic shift of the helium metastable level at 601 A. Applications in laser controlled chemistry and spectroscopy, and proposals for new types of lasers using these two energy transfer methods are discussed

  6. Energy transfer properties and mechanisms

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the energy transfer mechanisms in azulene, benzene, toluene, and isotopomers. Also discussed is the coupled energy reservoirs model, quantum effects in energy transfer, NO 2 energy transfer, densities of states, the reactant states model, and O 3 excited electronic states

  7. Energy transfer in plasmonic systems

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N; Urbas, Augustine M; Shahbazyan, Tigran V

    2014-01-01

    We present our results on energy transfer between donor and acceptor molecules or quantum dots near a plasmonic nanoparticle. In such systems, the Förster resonance energy transfer is strongly modified due to plasmon-mediated coupling between donors and acceptors. The transfer efficiency is determined by a competition between transfer, radiation and dissipation that depends sensitively on system parameters. When donor and accepror spectral bands overlap with dipole surface plasmon resonance, the dominant transfer mechanism is through plasmon-enhanced radiative coupling. When transfer takes place from an ensemble of donors to an acceptor, a cooperative amplification of energy transfer takes place in a wide range of system parameters. (paper)

  8. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  9. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  10. Energy transfer properties and mechanisms

    International Nuclear Information System (INIS)

    Barker, J.R.

    1993-01-01

    Since no single experimental technique is the best method for energy transfer experiments, we have used both time-dependent infrared fluorescence (IRF) and time-dependent thermal lensing (TDTL) to study energy transfer in various systems. We are investigating pump-probe techniques employing resonance enhanced multiphoton ionization (REMPI). IRF was used to study benzene, azulene, and toluene. TDTL was used to study CS 2 and SO 2 (data not given for latter). Large molecule energy transfer mechanisms are discussed. 10 figs

  11. Analysing CMS transfers using Machine Learning techniques

    CERN Document Server

    Diotalevi, Tommaso

    2016-01-01

    LHC experiments transfer more than 10 PB/week between all grid sites using the FTS transfer service. In particular, CMS manages almost 5 PB/week of FTS transfers with PhEDEx (Physics Experiment Data Export). FTS sends metrics about each transfer (e.g. transfer rate, duration, size) to a central HDFS storage at CERN. The work done during these three months, here as a Summer Student, involved the usage of ML techniques, using a CMS framework called DCAFPilot, to process this new data and generate predictions of transfer latencies on all links between Grid sites. This analysis will provide, as a future service, the necessary information in order to proactively identify and maybe fix latency issued transfer over the WLCG.

  12. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31

    In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force the research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and

  13. WIND SPEED AND ENERGY POTENTIAL ANALYSES

    Directory of Open Access Journals (Sweden)

    A. TOKGÖZLÜ

    2013-01-01

    Full Text Available This paper provides a case study on application of wavelet techniques to analyze wind speed and energy (renewable and environmental friendly energy. Solar and wind are main sources of energy that allows farmers to have the potential for transferring kinetic energy captured by the wind mill for pumping water, drying crops, heating systems of green houses, rural electrification's or cooking. Larger wind turbines (over 1 MW can pump enough water for small-scale irrigation. This study tried to initiate data gathering process for wavelet analyses, different scale effects and their role on wind speed and direction variations. The wind data gathering system is mounted at latitudes: 37° 50" N; longitude 30° 33" E and height: 1200 m above mean sea level at a hill near Süleyman Demirel University campus. 10 minutes average values of two levels wind speed and direction (10m and 30m above ground level have been recorded by a data logger between July 2001 and February 2002. Wind speed values changed between the range of 0 m/s and 54 m/s. Annual mean speed value is 4.5 m/s at 10 m ground level. Prevalent wind

  14. Stray energy transfer during endoscopy.

    Science.gov (United States)

    Jones, Edward L; Madani, Amin; Overbey, Douglas M; Kiourti, Asimina; Bojja-Venkatakrishnan, Satheesh; Mikami, Dean J; Hazey, Jeffrey W; Arcomano, Todd R; Robinson, Thomas N

    2017-10-01

    Endoscopy is the standard tool for the evaluation and treatment of gastrointestinal disorders. While the risk of complication is low, the use of energy devices can increase complications by 100-fold. The mechanism of increased injury and presence of stray energy is unknown. The purpose of the study was to determine if stray energy transfer occurs during endoscopy and if so, to define strategies to minimize the risk of energy complications. A gastroscope was introduced into the stomach of an anesthetized pig. A monopolar generator delivered energy for 5 s to a snare without contacting tissue or the endoscope itself. The endoscope tip orientation, energy device type, power level, energy mode, and generator type were varied to mimic in vivo use. The primary outcome (stray current) was quantified as the change in tissue temperature (°C) from baseline at the tissue closest to the tip of the endoscope. Data were reported as mean ± standard deviation. Using the 60 W coag mode while changing the orientation of the endoscope tip, tissue temperature increased by 12.1 ± 3.5 °C nearest the camera lens (p energy transfer (p = 0.04 and p = 0.002, respectively) as did utilizing the low-voltage cut mode (6.6 ± 0.5 °C, p energy transfer compared to a standard generator (1.5 ± 3.5 °C vs. 9.5 ± 0.8 °C, p energy is transferred within the endoscope during the activation of common energy devices. This could result in post-polypectomy syndrome, bleeding, or perforation outside of the endoscopist's view. Decreasing the power, utilizing low-voltage modes and/or an impedance-monitoring generator can decrease the risk of complication.

  15. Pumped energy transfer stations (STEP)

    International Nuclear Information System (INIS)

    Tournery, Jean-Francois

    2015-12-01

    As objectives of development are high for renewable energies (they are supposed to cover 50 per cent of new energy needs by 2035), pumped energy transfer stations are to play an important role in this respect. The author first discusses the consequences of the development of renewable energies on the exploitation of electric grids: issue of intermittency for some of them, envisaged solutions. Then, he addresses one of the solutions: the storage of electric power. He notices that increasing the potential energy of a volume of water is presently the most mature solution to face massive needs of the power system. Dams and pumped energy transfer stations represent now almost the whole installed storage power in the world. The author then presents these pumped energy transfer stations: principle, brief history (the first appeared in Italy and Switzerland at the end of the 1890's). He indicates the various parameters of assessment of such stations: maximum stored energy, installed power in pumping mode and turbine mode, time constant, efficiency, level of flexibility. He discusses economic issues. He describes and comments the operation of turbine-pump groups: ternary groups, reversible binary groups. He discusses barriers to be overcome and technical advances to be made for varying speed groups and for marine stations. He finally gives an overview (table with number of stations belonging to different power ranges, remarkable installations) of existing stations in China, USA, Japan, Germany, Austria, Spain, Portugal, Italy, Switzerland, France and UK, and indicate predictions regarding storage needs at the world level. Some data are finally indicated for the six existing French installations

  16. Mass separated neutral particle energy analyser

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi; Matsuda, Toshiaki; Miura, Yukitoshi; Shiho, Makoto; Maeda, Hikosuke; Hashimoto, Kiyoshi; Hayashi, Kazuo.

    1983-09-01

    A mass separated neutral particle energy analyser which could simultaneously measure hydrogen and deuterium atoms emitted from tokamak plasma was constructed. The analyser was calibrated for the energy and mass separation in the energy range from 0.4 keV to 9 keV. In order to investigate the behavior of deuteron and proton in the JFT-2 tokamak plasma heated with ion cyclotron wave and neutral beam injection, this analyser was installed in JFT-2 tokamak. It was found that the energy spectrum could be determined with sufficient accuracy. The obtained ion temperature and ratio of deuteron and proton density from the energy spectrum were in good agreement with the value deduced from Doppler broadening of TiXIV line and the line intensities of H sub(α) and D sub(α) respectively. (author)

  17. Electromechanical capacitor for energy transfer

    International Nuclear Information System (INIS)

    Carroll, T.A.; Chowdhuri, P.; Marshall, J.

    1983-01-01

    Inductive energy transfer between two magnets can be achieved with almost 100% efficiency with a transfer capacitor. However, the bulk and cost will be high, and reliability low if conventional capacitors are used. A homopolar machine, used as a capacitor, will be compact and economical. A homopolar machine was designed with counter-rotating copper disks completely immersed in a liquid metal (NaK-78) to work as a pulse capacitor. Absence of solid-brush collectors minimized wear and frictional losses. Wetting of the copper disks throughout the periphery by the liquid metal minimized the resistive losses at the collector interface. A liquid-metal collector would, however, introduce hydrodynamic and magnetohydrodynamic losses. The selected liquid metal, e.g., NaK-78 will produce the lowest of such losses among the available liquid metals. An electromechanical capacitor of this design was tested at various dc magnetic fields. Its measured capacitance was about 100 farads at a dc magnetic field of 1.15 tesla

  18. Energy and exergy analyses of electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M A [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical Engineering

    1995-07-01

    The thermodynamic performance is investigated of a water-electrolysis process for producing hydrogen, based on current-technology equipment. Both energy and exergy analyses are used. Three cases are considered in which the principal driving energy inputs are (i) electricity, (ii) the high-temperature heat used to generate the electricity, and (iii) the heat source used to produce the high-temperature heat. The nature of the heat source (e.g.) fossil fuel, nuclear fuel, solar energy, (etc.) is left as general as possible. The analyses indicate that, when the main driving input is the hypothetical heat source, the principal thermodynamic losses are associated with water splitting, electricity generation and heat production; the losses are mainly due to the irreversibilities associated with converting a heat source to heat, and heat transfer across large temperature differences. The losses associated with the waste heat in used cooling water, because of its low quality, are not as significant as energy analysis indicates. (Author)

  19. Energy and exergy analyses of an ice-on-coil thermal energy storage system

    International Nuclear Information System (INIS)

    Ezan, Mehmet Akif; Erek, Aytunç; Dincer, Ibrahim

    2011-01-01

    In this study, energy and exergy analyses are carried out for the charging period of an ice-on-coil thermal energy storage system. The present model is developed using a thermal resistance network technique. First, the time-dependent variations of the predicted total stored energy, mass of ice, and outlet temperature of the heat transfer fluid from a storage tank are compared with the experimental data. Afterward, performance of an ice-on-coil type latent heat thermal energy storage system is investigated for several working and design parameters. The results of a comparative study are presented in terms of the variations of the heat transfer rate, total stored energy, dimensionless energetic/exergetic effectiveness and energy/exergy efficiency. The results indicate that working and design parameters of the ice-on-coil thermal storage tank should be determined by considering both energetic and exergetic behavior of the system. For the current parameters, storage capacity and energy efficiency of the system increases with decreasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. Besides, the exergy efficiency increases with increasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. -- Highlights: ► A comprehensive study on energy and exergy analyses of an ice-on-coil TES system. ► Determination of irreversibilities and their potential sources. ► Evaluation of both energy and exergy efficiencies and their comparisons.

  20. Transfer of energy in an atom

    International Nuclear Information System (INIS)

    Chemin, J.F.

    2001-01-01

    In most cases the nucleus does not interact with the electron cloud because its energy range is far higher, but in some rare cases electrons from the electron cloud and the nucleus may exchange energy: an electron may de-excite by transferring a part of its energy to the nucleus that becomes itself excited (nuclear excitation by electronic transfer or NEET), conversely electrons can receive energy from the nucleus (bound internal conversion or BIC). For the first time both energy transfers have been observed: a BIC process on a tellurium-125 atom by a French team and a NEET process on a gold-197 atom by a Japanese team. (A.C.)

  1. A real-time transfer function analyser program for PFR

    International Nuclear Information System (INIS)

    McWilliam, D.

    1980-03-01

    A transfer function analyser software package has been produced which is believed to constitute a significant advance over others reported in the literature. The main advantages of the system are its operating speed, especially at low frequencies, which is due to its use of part-cycle integration and its high degree of interactive operator control. The driving sine wave, the return signals and the computed vector diagrams are displayed on TV type visual display units. Data output is by means of an incremental graph plotter or an IBM typewriter. (author)

  2. Energy transfer mechanism between manganese and neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R [Department of Physics, Government Raza Post-Graduate College, Rampur 244901, U.P., India

    1977-01-01

    The mechanism of energy transfer between Mn/sup 2 +/ ..-->.. Nd/sup 3 +/ in barium borate glass has been investigated. The change in emission intensities and lifetimes of Mn/sup 2 +/ (donor) due to the presence of Nd/sup 3 +/ (acceptor) are observed. It has been concluded that the mechanism of energy transfer involves a nonradiative resonance process. The electrostatic multiple interaction responsible for the transfer is dipole-dipole in nature.

  3. Interactive Joint Transfer of Energy and Information

    DEFF Research Database (Denmark)

    Popovski, Petar; Fouladgar, A. M.; Simeone, Osvaldo

    2013-01-01

    In some communication networks, such as passive RFID systems, the energy used to transfer information between a sender and a recipient can be reused for successive communication tasks. In fact, from known results in physics, any system that exchanges information via the transfer of given physical...... key design insights. Index Terms— Two-way channel, interactive communication, energy transfer, energy harvesting....... resources, such as radio waves, particles and qubits, can conceivably reuse, at least part, of the received resources. This paper aims at illustrating some of the new challenges that arise in the design of communication networks in which the signals exchanged by the nodes carry both information and energy...

  4. Energy-transfer properties and mechanisms:

    International Nuclear Information System (INIS)

    Barker, J.R.

    1988-02-01

    This project continues the research on vibrational energy transfer involving large molecules. The motivation of the research is to advance knowledge concerning molecular energy in the electronic ground state so that meaningful predictions can be made. The experimental program will use several techniques on several different molecules with the aim of eliminating experimental artifacts and gaining more insight into energy transfer processes. The theoretical effort will be directed toward assessing the validity of the Biased Random Walk theory and toward developing simpler models that adequately describe the energy transfer process. 6 figs

  5. Plasmonic energy transfer in periodically doped graphene

    International Nuclear Information System (INIS)

    Silveiro, I; Manjavacas, A; Thongrattanasiri, S; García de Abajo, F J

    2013-01-01

    We predict unprecedentedly large values of the energy-transfer rate between an optical emitter and a layer of periodically doped graphene. The transfer exhibits divergences at photon frequencies corresponding to the Van Hove singularities of the plasmonic band structure of the graphene. In particular, we find flat bands associated with regions of vanishing doping charge, which appear in graphene when it is patterned through gates of spatially alternating signs, giving rise to intense transfer rate singularities. Graphene is thus shown to provide a unique platform for fast control of optical energy transfer via fast electrostatic inhomogeneous doping. (paper)

  6. Resonance energy transfer: Dye to metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R., E-mail: him-lax3@yahoo.com [Laser Spectroscopy Programme, Department of Physics, Karnatak University, Dharwad-580003 (India)

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  7. Energy transfer during the hydroentanglement of fibres

    CSIR Research Space (South Africa)

    Moyo, D

    2012-10-01

    Full Text Available .kashan.co.za] ABSTRACT The hydroentanglement of fibres is achieved by the energy of the high-velocity waterjets. This method is highly energy intensive and costly, hence the attempt to study the energy transfer during the process. Generally, the amount of energy used... in the nonwoven fabric strength were studied. In the study, the energies of the waterjets transferred to every fabric sample as a function of the waterjet pressure, machine speed, machine efficiency and the web area weight were quantified, and the resultant...

  8. Magnetic energy analyser for slow electrons

    International Nuclear Information System (INIS)

    Limberg, W.

    1974-08-01

    A differential spectrometer with high time and energy resolution has been developed using the principle of energy analysis with a longitudinal homogeneous magnetic field. This way it is possible to measure the energy distribution of low energy electrons (eV-range) in the presence of high energy electrons without distortions by secondary electrons. The functioning and application of the analyzer is demonstrated by measuring the energy distributions of slow electrons emitted by a filament. (orig.) [de

  9. Targeting Low-Energy Ballistic Lunar Transfers

    Science.gov (United States)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  10. Risk transfer via energy savings insurance

    OpenAIRE

    Mills, Evan

    2001-01-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of t...

  11. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  12. Wireless energy transfer between anisotropic metamaterials shells

    International Nuclear Information System (INIS)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-01-01

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted

  13. Energy transfer in turbulence under rotation

    Science.gov (United States)

    Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz

    2018-03-01

    It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.

  14. Optical Energy Transfer and Conversion System

    Science.gov (United States)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2018-01-01

    An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.

  15. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Butera, F.; Farinelli, U.

    1992-01-01

    With the use of critical analyses of some examples of technology transfer by industrialized to third world countries, this paper illustrates the importance, in technology transfer, of giving due consideration to the specific social and marketing contexts of the targeted developing country and its physical and financial capability to acquire all the technology necessary to make the total realization of a desired industrial scheme feasible from the economic, technical and social points of view. It also indicates that the most effective transfers are those in which efforts are made to optimize local work force learning levels, process scheme efficiency and cost through the careful integration of innovative with conventional technologies

  16. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1991-01-01

    This paper gives some examples of how technology transfer can successfully be given to third world countries to allow them to benefit in their quest for economic growth and better standards of living through reduced energy consumption and environmental pollution. It also suggests methods by which obstacles such as high investment costs, lack of information, market demand, etc., can be overcome in order to motivate technological transfer by industrialized countries

  17. Nuclear energy technology transfer: the security barriers

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1975-08-01

    The problems presented by security considerations to the transfer of nuclear energy technology are examined. In the case of fusion, the national security barrier associated with the laser and E-beam approaches is discussed; for fission, the international security requirements, due to the possibility of the theft or diversion of special nuclear materials or sabotage of nuclear facilities, are highlighted. The paper outlines the nuclear fuel cycle and terrorist threat, examples of security barriers, and the current approaches to transferring technology. (auth)

  18. Power law scaling for rotational energy transfer

    International Nuclear Information System (INIS)

    Pritchard, D.E.; Smith, N.; Driver, R.D.; Brunner, T.A.

    1979-01-01

    We have applied a new scaling law to several sets of rotational energy transfer cross sections. The new law asserts that the square of the T-matrix depends on the amount of energy transferred as a power law. Two different kinds of angular momentum statistics are assumed, one corresponding to m/sub j/ being conserved and the other corresponding to m/sub j/ being completely randomized. Numerical fits are presented which demonstrate that the data follow the power law better than the widely used exponential gap law

  19. Theory of coherent resonance energy transfer

    International Nuclear Information System (INIS)

    Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.

    2008-01-01

    A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.

  20. Energy transfer in a mechanically trapped exciplex.

    Science.gov (United States)

    Klosterman, Jeremy K; Iwamura, Munetaka; Tahara, Tahei; Fujita, Makoto

    2009-07-15

    Host-guest complexes involving M(6)L(4) coordination cages can display unusual photoreactivity, and enclathration of the very large fluorophore bisanthracene resulted in an emissive, mechanically trapped intramolecular exciplex. Mechanically linked intramolecular exciplexes are important for understanding the dependence of energy transfer on donor-acceptor distance, orientation, and electronic coupling but are relatively unexplored. Steady-state and picosecond time-resolved fluorescence measurements have revealed that selective excitation of the encapsulated guest fluorophore results in efficient energy transfer from the excited guest to an emissive host-guest exciplex state.

  1. Resonant vibrational energy transfer in ice Ih

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Li, F.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Förster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  2. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Quantum mechanical scattering theory is studied for time-dependent. Schrödinger ... the energy transferred to a particle by collision with a rotating blade. Keywords. ..... terms of the unitary group for some time-independent generator. This will ...

  3. Risk transfer via energy savings insurance

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2001-10-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of $875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance

  4. Risk transfer via energy savings insurance; TOPICAL

    International Nuclear Information System (INIS)

    Mills, Evan

    2001-01-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of$875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance sheets to self

  5. Risk transfer via energy-savings insurance

    International Nuclear Information System (INIS)

    Mills, Evan

    2003-01-01

    Among the key barriers to investment in energy efficiency are uncertainties about attaining projected energy savings and potential disputes over stipulated savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building diagnostics and commissioning), financial methods are less developed in the energy management arena than in other segments of the economy. Energy-savings insurance (ESI) - formal insurance of predicted energy savings - transfers and spreads both types of risk over a larger pool of energy efficiency projects and reduces barriers to market entry of smaller energy service firms who lack sufficiently strong balance sheets to self-insure the savings. ESI encourages those implementing energy-saving projects to go beyond standard measures and thereby achieve more significant levels of energy savings. Insurance providers are proponents of improved savings measurement and verification techniques, as well as maintenance, thereby contributing to national energy-saving objectives. If properly applied, ESI can potentially reduce the net cost of energy-saving projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Governmental agencies have been pioneers in the use of ESI and could continue to play a role

  6. Far-field RF energy transfer and harvesting

    NARCIS (Netherlands)

    Visser, H.J.; Vullers, R.; Briand, D.; Yeatman, E.; Roundy, S.

    2015-01-01

    This chapter deals with radio frequency (RF) energy transfer over a distance. After explaining the differences between nonradiative and radiative RF energy transfer, the chapter gives definitions for transfer and harvesting. Nonradiative RF energy transfer is mostly employed in inductive systems,

  7. Stochastic Modelling of Wireless Energy Transfer

    Science.gov (United States)

    Veilleux, Shaun; Almaghasilah, Ahmed; Abedi, Ali; Wilkerson, DeLisa

    2017-01-01

    This study investigates the efficiency of a new method of powering remote sensors by the means of wireless energy transfer. The increased use of sensors for data collection comes with the inherent cost of supplying power from sources such as power cables or batteries. Wireless energy transfer technology eliminates the need for power cables or periodic battery replacement. The time and cost of setting up or expanding a sensor network will be reduced while allowing sensors to be placed in areas where running power cables or battery replacement is not feasible. This paper models wireless channels for power and data separately. Smart scheduling for the data channel is proposed to avoid transmitting data on a noisy channel where the probability of data loss is high to improve power efficiency. Analytical models have been developed and verified using simulations.

  8. Energy relaxation and transfer in excitonic trimer

    International Nuclear Information System (INIS)

    Herman, Pavel; Barvik, Ivan; Urbanec, Martin

    2004-01-01

    Two models describing exciton relaxation and transfer (the Redfield model in the secular approximation and Capek's model) are compared for a simple example - a symmetric trimer coupled to a phonon bath. Energy transfer within the trimer occurs via resonance interactions and coupling between the trimer and the bath occurs via modulation of the monomer energies by phonons. Two initial conditions are adopted: (1) one of higher eigenstates of the trimer is initially occupied and (2) one local site of the trimer is initially occupied. The diagonal exciton density matrix elements in the representation of eigenstates are found to be the same for both models, but this is not so for the off-diagonal density matrix elements. Only if the off-diagonal density matrix elements vanish initially (initial condition (1)), they then vanish at arbitrary times in both models. If the initial excitation is local, the off-diagonal matrix elements essentially differ

  9. Detailed energy saving performance analyses on thermal mass walls demonstrated in a zero energy house

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L. [School of Architecture, Tianjin University, Tianjin 300072 (China); Hurt, R.; Correia, D.; Boehm, R. [Center for Energy Research, University of Nevada, Las Vegas, NV 89154 (United States)

    2009-03-15

    An insulated concrete wall system{sup 1}1 was used on exterior walls of a zero energy house. Its thermal functions were investigated using actual data in comparison to a conventional wood frame system. The internal wall temperature of massive systems changes more slowly than the conventional wall constructions, leading to a more stable indoor temperature. The Energy10 simulated equivalent R-value and DBMS of the mass walls under actual climate conditions are, respectively, 6.98 (m{sup 2} C)/W and 3.39. However, the simulated heating energy use was much lower for the massive walls while the cooling load was a little higher. Further investigation on the heat flux indicates that the heat actually is transferred inside all day and night, which results in a higher cooling energy consumption. A one-dimensional model further verified these analyses, and the calculated results are in good agreement with the actual data. We conclude that the thermal mass wall does have the ability to store heat during the daytime and release it back at night, but in desert climates with high 24-h ambient temperature and intense sunlight, more heat will be stored than can be transferred back outside at night. As a result, an increased cooling energy will be required. (author)

  10. Wireless Energy Transfer Through Magnetic Reluctance Coupling

    International Nuclear Information System (INIS)

    Pillatsch, P

    2014-01-01

    Energy harvesting from human motion for body worn or implanted devices faces the problem of the wearer being still, e.g. while asleep. Especially for medical devices this can become an issue if a patient is bed-bound for prolonged periods of time and the internal battery of a harvesting system is not recharged. This article introduces a mechanism for wireless energy transfer based on a previously presented energy harvesting device. The internal rotor of the energy harvester is made of mild steel and can be actuated through a magnetic reluctance coupling to an external motor. The internal piezoelectric transducer is consequently actuated and generates electricity. This paper successfully demonstrates energy transfer over a distance of 16 mm in air and an achieved power output of 85 μW at 25 Hz. The device functional volume is 1.85 cm 3 . Furthermore, it was demonstrated that increasing the driving frequency beyond 25 Hz did not yield a further increase in power output. Future research will focus on improving the reluctance coupling, e.g. by investigating the use of multiple or stronger magnets, in order to increase transmission distance

  11. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  12. Energy Transfer Kinetics and Dynamics of Relevance to Iodine Lasers

    National Research Council Canada - National Science Library

    Heaven, Michael C

    2001-01-01

    ...). Energy transfer between I(2 P(1/2)) and 02(X) has been studied in detail. Rate constants for electronic energy transfer and nuclear spin relaxation were measured over the temperature range from 150-300K...

  13. Energy transfer and kinetics in mechanochemistry.

    Science.gov (United States)

    Chen, Zhiliang; Lu, Shengyong; Mao, Qiongjing; Buekens, Alfons; Wang, Yuting; Yan, Jianhua

    2017-11-01

    Mechanochemistry (MC) exerts extraordinary degradation and decomposition effects on many chlorinated, brominated, and even fluorinated persistent organic pollutants (POPs). However, its application is still limited by inadequate study of its reaction kinetic aspects. In the present work, the ball motion and energy transfer in planetary ball mill are investigated in some detail. Almost all milling parameters are summarised in a single factor-total effective impact energy. Furthermore, the MC kinetic between calcium oxide/Al and hexachlorobenzene is well established and modelled. The results indicate that total effective impact energy and reagent ratio are the two factors sufficient for describing the MC degradation degree of POPs. The reaction rate constant only depends on the chemical properties of reactants, so it could be used as an important index to appraise the quality of MC additives. This model successfully predicts the reaction rate for different operating conditions, indicating that it could be suitably applied for conducting MC reactions in other reactors.

  14. Higher order energy transfer. Quantum electrodynamical calculations and graphical representation

    International Nuclear Information System (INIS)

    Jenkins, R.D.

    2000-01-01

    In Chapter 1, a novel method of calculating quantum electrodynamic amplitudes is formulated using combinatorial theory. This technique is used throughout instead of conventional time-ordered methods. A variety of hyperspaces are discussed to highlight isomorphism between a number of A generalisation of Pascal's triangle is shown to be beneficial in determining the form of hyperspace graphs. Chapter 2 describes laser assisted resonance energy transfer (LARET), a higher order perturbative contribution to the well-known process resonance energy transfer, accommodating an off resonance auxiliary laser field to stimulate the migration. Interest focuses on energy exchanges between two uncorrelated molecular species, as in a system where molecules are randomly oriented. Both phase-weighted and standard isotropic averaging are required for the calculations. Results are discussed in terms of a laser intensity-dependent mechanism. Identifying the applied field regime where LARET should prove experimentally significant, transfer rate increases of up to 30% are predicted. General results for three-center energy transfer are elucidated in chapter 3. Cooperative and accretive mechanistic pathways are identified with theory formulated to elicit their role in a variety of energy transfer phenomena and their relative dominance. In multichromophoric the interplay of such factors is analysed with regard to molecular architectures. The alignments and magnitudes of donor and acceptor transition moments and polarisabilities prove to have profound effects on achievable pooling efficiency for linear configurations. Also optimum configurations are offered. In ionic lattices, although both mechanisms play significant roles in pooling and cutting processes, only the accretive is responsible for sensitisation. The local, microscopic level results are used to gauge the lattice response, encompassing concentration and structural effects. (author)

  15. Distributed Wireless Power Transfer With Energy Feedback

    Science.gov (United States)

    Lee, Seunghyun; Zhang, Rui

    2017-04-01

    Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.

  16. Wireless energy transfer through non-resonant magnetic coupling

    DEFF Research Database (Denmark)

    Peng, Liang; Breinbjerg, Olav; Mortensen, Asger

    2010-01-01

    could be properly designed to minimize undesired energy dissipation in the source coil when the power receiver is out of the range. Our basic observation paves the way for more flexible design and fabrication of non-resonant mid-range wireless energy transfer systems, thus potentially impacting......We demonstrate by theoretical analysis and experimental verification that mid-range wireless energy transfer systems may take advantage of de-tuned coupling devices, without jeopardizing the energy transfer efficiency. Allowing for a modest de-tuning of the source coil, energy transfer systems...... practical implementations of wireless energy transfer....

  17. Energy transfer in contact binary systems

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1980-01-01

    A simple model for the transfer of energy by steady circulation within the envelope of a contact binary system is presented. The model describes the fully compressible, two-dimensional flow of a perfect gas within a rectangular region in a uniform gravitational field. The region is heated non-uniformly from below. Coriolis forces are neglected but the interaction of the circulation with convection is discussed briefly. Numerical solutions of the linearized equations of the problem are discussed in detail, and the results of some non-linear calculations are also presented. The influence of alternative boundary conditions is examined. (author)

  18. Nanophotonics: Energy Transfer towards Enhanced Luminescent Chemosensing

    Science.gov (United States)

    Aad, Roy; Couteau, Christophe; Lérondel, Gilles

    2015-01-01

    We discuss a recently proposed novel photonic approach for enhancing the fluorescence of extremely thin chemosensing polymer layers. We present theoretical and experimental results demonstrating the concept of gain-assisted waveguided energy transfer (G-WET) on a very thin polymer nanolayer spincoated on an active ZnO thin film. The G-WET approach is shown to result in an 8-fold increase in polymer fluorescence. We then extend the G-WET concept to nanostructured media. The benefits of using active nanostructured substrates on the sensitivity and fluorescence of chemosensing polymers are discussed. Preliminary theoretical results on enlarged sensing surface and photonic band-gap are presented. PMID:28788025

  19. New airtight transfer box for SEM experiments: Application to lithium and sodium metals observation and analyses.

    Science.gov (United States)

    Stephant, Nicolas; Grissa, Rabeb; Guillou, Fanch; Bretaudeau, Mickaël; Borjon-Piron, Yann; Guillet, Jacques; Moreau, Philippe

    2018-04-18

    The surface of some materials reacts very quickly on contact with air, either because it is oxidized or because it gets humidity from the air. For the sake of original surface observation by scanning electron microscopy (SEM), we conceived an airtight transfer box to keep the samples under vacuum from the place of manufacturing to the SEM chamber. This object is designed to fit in all the models of SEM including those provided with an airlock chamber. The design is voluntarily simplified to allow the manufacturing of the object by a standard mechanical workshop. The transfer box can be easily opened by gravity inside the SEM and allows the preservation of the best vacuum inside, before opening. SEM images and energy dispersive spectroscopy (EDX) analyses of metallic lithium and sodium samples are presented prior and after exposure to the air. X-ray Photoelectron Spectroscopy (XPS) analyses of all samples are also discussed in order to investigate the chemical environments of the detected elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  1. Energy and exergy analyses of the diffusion absorption refrigeration system

    International Nuclear Information System (INIS)

    Yıldız, Abdullah; Ersöz, Mustafa Ali

    2013-01-01

    This paper describes the thermodynamic analyses of a DAR (diffusion absorption refrigeration) cycle. The experimental apparatus is set up to an ammonia–water DAR cycle with helium as the auxiliary inert gas. A thermodynamic model including mass, energy and exergy balance equations are presented for each component of the DAR cycle and this model is then validated by comparison with experimental data. In the thermodynamic analyses, energy and exergy losses for each component of the system are quantified and illustrated. The systems' energy and exergy losses and efficiencies are investigated. The highest energy and exergy losses occur in the solution heat exchanger. The highest energy losses in the experimental and theoretical analyses are found 25.7090 W and 25.4788 W respectively, whereas those losses as to exergy are calculated 13.7933 W and 13.9976 W. Although the values of energy efficiencies obtained from both the model and experimental studies are calculated as 0.1858, those values, in terms of exergy efficiencies are found 0.0260 and 0.0356. - Highlights: • The diffusion absorption refrigerator system is designed manufactured and tested. • The energy and exergy analyses of the system are presented theoretically and experimentally. • The energy and exergy losses are investigated for each component of the system. • The highest energy and exergy losses occur in the solution heat exchanger. • The energy and the exergy performances are also calculated

  2. Simulation-based Investigations of Electrostatic Beam Energy Analysers

    CERN Document Server

    Pahl, Hannes

    2015-01-01

    An energy analyser is needed to measure the beam energy profile behind the REX-EBIS at ISOLDE. The device should be able to operate with an accuracy of 1 V at voltages up to 30 kV. In order to find a working concept for an electrostatic energy analyser different designs were evaluated with simulations. A spherical device and its design issues are presented. The potential deformation effects of grids at high voltages and their influence on the energy resolution were investigated. First tests were made with a grid-free ring electrode device and show promising results.

  3. Transfer and breakup reactions at intermediate energies

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1986-04-01

    The origin of the quasi-elastic peak in peripheral heavy-ion reactions is discussed in terms of inelastic scattering and transfer reactions to unbound states of the primary projectile-like fragment. The situation is analogous to the use of reverse kinematics in fusion reactions, a technique in which the object of study is moving with nearly the beam velocity. It appears that several important features of the quasi-elastic peak may be explained by this approach. Projectile-breakup reactions have attractive features for the study of nuclear structure. They may also be used to determine the partition of excitation energy in peripheral reactions. At intermediate energies, neutron-pickup reactions leading to four-body final states become important. Examples of experiments are presented that illustrate these points. 15 refs., 14 figs

  4. Multipole analyses and photo-decay couplings at intermediate energies

    International Nuclear Information System (INIS)

    Workman, R.L.; Arndt, R.A.; Zhujun Li

    1992-01-01

    The authors describe the results of several multipole analyses of pion-photoproduction data to 2 GeV in the lab photon energy. Comparisons are made with previous analyses. The photo-decay couplings for the delta are examined in detail. Problems in the representation of photoproduction data are discussed, with an emphasis on the recent LEGS data. 16 refs., 4 tabs

  5. Enhancing radiative energy transfer through thermal extraction

    Science.gov (United States)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  6. Transfer of mechanical energy during the shot put

    Directory of Open Access Journals (Sweden)

    Błażkiewicz Michalina

    2016-09-01

    Full Text Available The aim of this study was to analyse transfer of mechanical energy between body segments during the glide shot put. A group of eight elite throwers from the Polish National Team was analysed in the study. Motion analysis of each throw was recorded using an optoelectronic Vicon system composed of nine infrared camcorders and Kistler force plates. The power and energy were computed for the phase of final acceleration of the glide shot put. The data were normalized with respect to time using the algorithm of the fifth order spline and their values were interpolated with respect to the percentage of total time, assuming that the time of the final weight acceleration movement was different for each putter. Statistically significant transfer was found in the study group between the following segments: Right Knee – Right Hip (p = 0.0035, Left Hip - Torso (p = 0.0201, Torso – Right Shoulder (p = 0.0122 and Right Elbow – Right Wrist (p = 0.0001. Furthermore, the results of cluster analysis showed that the kinetic chain used during the final shot acceleration movement had two different models. Differences between the groups were revealed mainly in the energy generated by the hips and trunk.

  7. Ultrasound acoustic wave energy transfer and harvesting

    Science.gov (United States)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  8. Enhancing radiative energy transfer through thermal extraction

    Directory of Open Access Journals (Sweden)

    Tan Yixuan

    2016-06-01

    Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

  9. Energy Transfer Using Gradient Index Metamaterial

    Directory of Open Access Journals (Sweden)

    Boopalan Ganapathy

    2018-01-01

    Full Text Available The gradient refractive index structure in this paper is used to increase the quantum of energy transfer. This is done by improving the directive gain of the pyramidal horn antenna at a frequency of 10 GHz. A three-dimensional array of closed square rings is placed in front of the horn antenna aperture to form a gradient refractive index structure. This structure increases the directive gain by 1.6 dB as compared to that of the conventional horn antenna. The structure nearly doubles the wireless power transfer quantum between the transmitter and the receiver when placed at both ends. The increase in the directivity is achieved by converting the spherical wave emanating from the horn to a plane wave once it passes through the structure. This transformation is realized by the gradient refractive index structure being placed perpendicular to the direction of propagation. The gradient refractive index is constructed by changing the dimensions of a closed square ring placed in the unit cell of the array. The change in the refractive index gives rise to an improvement of the half power beam width and side lobe level compared to that of the normal horn. The design and simulation were done using CST Studio software.

  10. Fluorescence energy transfer on erythrocyte membranes

    International Nuclear Information System (INIS)

    Fuchs, H.M.; Hof, M.; Lawaczeck, R.

    1995-08-01

    Stationary and time-dependent fluorescence have been measured for a donor/acceptor (DA) pair bound to membrane proteins of bovine erythrocyte ghosts. The donor N-(p-(2-benzoxazolyl)phenyl)-maleimid (BMI) and the acceptor fluram bind to SH- and NH 2 -residues, respectively. The fluorescence spectra and the time-dependent emission are consistent with a radiationless fluorescence energy transfer (RET). The density of RET-effective acceptor binding sites c=0.072 nm -2 was calculated on the basis of the two-dimensional Foerster-kinetic. Band3 protein is the only membrane spanning protein with accessible SH-groups, and therefore only effective binding sites on the band3 protein are counted for the RET measurements performed. (author). 23 refs, 4 figs, 2 tabs

  11. Nanophotonics: Energy Transfer towards Enhanced Luminescent Chemosensing

    Directory of Open Access Journals (Sweden)

    Roy Aad

    2015-04-01

    Full Text Available We discuss a recently proposed novel photonic approach for enhancing the fluorescence of extremely thin chemosensing polymer layers. We present theoretical and experimental results demonstrating the concept of gain-assisted waveguided energy transfer (G-WET on a very thin polymer nanolayer spincoated on an active ZnO thin film. The G-WET approach is shown to result in an 8-fold increase in polymer fluorescence. We then extend the G-WET concept to nanostructured media. The benefits of using active nanostructured substrates on the sensitivity and fluorescence of chemosensing polymers are discussed. Preliminary theoretical results on enlarged sensing surface and photonic band-gap are presented.

  12. Energy transfer in structured and unstructured environments

    DEFF Research Database (Denmark)

    Iles-Smith, Jake; Dijkstra, Arend G.; Lambert, Neill

    2016-01-01

    of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum......We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly...... correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously...

  13. Intermolecular energy transfer in binary systems of dye polymers

    Science.gov (United States)

    Liu, Lin-I.; Barashkov, Nikolay N.; Palsule, Chintamani P.; Gangopadhyay, Shubhra; Borst, Walter L.

    2000-10-01

    We present results and physical interpretations for the energy transfer mechanisms in two-component dye polymer systems. The data consist of fluorescence emission spectra and decays. Two dyes were embedded in an epoxypolymer base, and only they participated in the energy transfer. Following pulsed laser excitation of the donor dye, energy transfer took place to the accept dye. The possible transfer paths considered here were nonradiative and radiative transfer. The latter involves two steps, emission and absorption of a photon, and therefore is relatively slow, while nonradiative transfer is a fast single step resulting from direct Coulomb interactions. A predominantly nonradiative transfer is desirable for applications, for instance in wavelength shifters in high energy particle detection. We studied the concentration effects of the dyes on the energy transfer and obtained the relative quantum efficiencies of various wavelength shifters from the fluorescence emission spectra. For low acceptor concentrations, radiative transfer was found to dominate, while nonradiative transfer became dominant at increasing dye concentrations. The fluorescence decays were analyzed with a sum-of-exponentials method and with Förster kinetics. The sum of exponential model yielded mean decay times of the dye polymers useful for a general classification. The decay times decreased as desired with increasing acceptor concentration. The samples, in which nonradiative energy transfer dominated, were analyzed with Förster kinetics. As a result, the natural decay times of the donor and acceptor dyes and the critical radii for nonradiative energy transfer were obtained from a global best fit.

  14. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  15. Influence of donor-donor transport on excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K K; Joshi, H C; Pant, T C [Kumaun University, Nainital (India). Department of Physics

    1989-01-01

    Energy migration and transfer from acriflavine to rhodamine B and malachite green in poly (methylmethacrylate) have been investigated using the decay function analysis. It is found that the influence of energy migration in energy transfer can be described quite convincingly by making use of the theories of Loring, Andersen and Fayer (LAF) and Huber. At high acceptor concentration direct donor-acceptor transfer occurs through Forster mechanism. (author). 17 refs., 5 figs.

  16. The security energy encryption in wireless power transfer

    Science.gov (United States)

    Sadzali, M. N.; Ali, A.; Azizan, M. M.; Albreem, M. A. M.

    2017-09-01

    This paper presents a concept of security in wireless power transfer (WPT) by applying chaos theory. Chaos theory is applied as a security system in order to safeguard the transfer of energy from a transmitter to the intended receiver. The energy encryption of the wireless power transfer utilizes chaos theory to generate the possibility of a logistic map for the chaotic security key. The simulation for energy encryption wireless power transfer system was conducted by using MATLAB and Simulink. By employing chaos theory, the chaotic key ensures the transmission of energy from transmitter to its intended receiver.

  17. Integrated analysis of energy transfers in elastic-wave turbulence.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  18. Energy and exergy analyses of solar drying process of pistachio

    International Nuclear Information System (INIS)

    Midilli, A.; Kucuk, H.

    2003-01-01

    This paper is concerned with the energy and exergy analyses of the drying process of shelled and unshelled pistachios using a solar drying cabinet. Using the first law of thermodynamics, energy analysis was carried to estimate the amounts of energy gained from solar air collectors and the ratios of energy utilization. However, exergy analysis was accomplished to determine the location, type, and magnitude of exergy losses during the solar drying process by applying the second law of thermodynamics. It was deduced that the exergy losses took place mostly in the 15th shelf where the available energy was less utilized. Moreover, the shelled and unshelled pistachios are sufficiently dried in the ranges between 40 and 60 deg. C and 37 and 62% of relative humidity at 1.23 m s -1 of drying air velocity in 6 h despite the exergy losses of 0.15-3.08 kJ kg -1

  19. Energy and exergy analyses of solar drying process of pistachio

    Energy Technology Data Exchange (ETDEWEB)

    Midilli, A [University of Nigde (Turkey). Dept. of Mechanical Engineering; Kucuk, H [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Mechanical Engineering

    2003-05-01

    This paper is concerned with the energy and exergy analyses of the drying process of shelled and unshelled pistachios using a solar drying cabinet. Using the first law of thermodynamics, energy analysis was carried to estimate the amounts of energy gained from solar air collectors and the ratios of energy utilization. However, exergy analysis was accomplished to determine the location, type, and magnitude of exergy losses during the solar drying process by applying the second law of thermodynamics. It was deduced that the exergy losses took place mostly in the 15th shelf where the available energy was less utilized. Moreover, the shelled and unshelled pistachios are sufficiently dried in the ranges between 40 and 60{sup o}C and 37 and 62% of relative humidity at 1.23 m s{sup -1} of drying air velocity in 6 h despite the exergy losses of 0.15-3.08 kJ kg{sup -1}. (Author)

  20. Cultural energy analyses of dairy cattle receiving different concentrate levels

    International Nuclear Information System (INIS)

    Koknaroglu, Hayati

    2010-01-01

    Purpose of this study was to conduct cultural energy analyses of dairy cows receiving different levels of concentrate. Data were acquired by conducting a survey on 132 dairy farms selected by the stratified random sampling method. Dairy cattle farms were divided into three groups according to concentrate level and were analyzed. Accordingly concentrate levels were assigned as low (LLC) ( 50%, 44 farms). Cultural energy used for feed for cows was calculated by multiplying each ingredient with corresponding values of ingredients from literature. Transportation energy was also included in the analysis. Total cultural energy expended was highest for LLC (P < 0.05). Cultural energy expended for feed constituted more than half of the total cultural energy and was highest for LLC (P < 0.05). Cultural energy expended per kg milk and per Mcal protein energy was higher for LLC (P < 0.05). Efficiency defined as Mcal input/Mcal output was better for ILC and was worse for LLC (P < 0.05) and HLC was intermediate thus not differing from other groups. Results show that cultural energy use efficiency does not linearly increases as concentrate level increases and increasing concentrate level does not necessarily mean better efficiency. Thus optimum concentrate level not interfering cows performance should be sought for sustainable dairy production.

  1. Ultrafast Energy Transfer in an Artificial Photosynthetic Antenna

    Directory of Open Access Journals (Sweden)

    van Grondelle R.

    2013-03-01

    Full Text Available We temporally resolved energy transfer kinetics in an artificial light-harvesting dyad composed of a phthalocyanine covalently linked to a carotenoid. Upon carotenoid photo-excitation, energy transfers within ≈100fs (≈52% efficiency to the phthalocyanine.

  2. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  3. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  4. Fluorescence Resonance Energy Transfer in Polydiacetylene Liposomes

    Science.gov (United States)

    Li, Xuelian; Matthews, Shelton; Kohli, Punit

    2009-01-01

    Conjugated polydiacetylene (PDA) possessing stimuli-responsive properties has been intensively investigated for developing efficient sensors. We report here fluorescence resonance energy transfer (FRET) in liposomes synthesized using different molar ratios of dansyl-tagged diacetylene and diacetylene–carboxylic acid monomers. Photopolymerization of diacetylene resulted in cross-linked PDA liposomes. We used steady-state electronic absorption, emission, and fluorescence anisotropy (FA) analysis to characterize the thermal-induced FRET between dansyl fluorophores (donor) and PDA (acceptor). We found that the monomer ratio of acceptor to donor (Rad) and length of linkers (functional part that connects dansyl fluorophores to the diacetylene group in the monomer) strongly affected FRET. For Rad = 10 000, the acceptor emission intensity was amplified by more than 18 times when the liposome solution was heated from 298 to 338 K. A decrease in Rad resulted in diminished acceptor emission amplification. This was primarily attributed to lower FRET efficiency between donors and acceptors and a higher background signal. We also found that the FRET amplification of PDA emissions after heating the solution was much higher when dansyl was linked to diacetylene through longer and flexible linkers than through shorter linkers. We attributed this to insertion of dansyl in the bilayer of the liposomes, which led to an increased dansyl quantum yield and a higher interaction of multiple acceptors with limited available donors. This was not the case for shorter and more rigid linkers where PDA amplification was much smaller. The present studies aim at enhancing our understanding of FRET between fluorophores and PDA-based conjugated liposomes. Furthermore, receptor tagged onto PDA liposomes can interact with ligands present on proteins, enzymes, and cells, which will produce emission sensing signal. Therefore, using the present approach, there exist opportunities for designing FRET

  5. Linking material and energy flow analyses and social theory

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, Frank [The Open University, Faculty of Maths, Computing and Technology, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)

    2009-04-15

    The paper explores the potential of Habermas' theory of communicative action to alter the social reflexivity of material and energy flow analysis. With his social macro theory Habermas has provided an alternative, critical justification for social theory that can be distinguished from economic libertarianism and from political liberalism. Implicitly, most flow approaches draw from these theoretical traditions rather than from discourse theory. There are several types of material and energy flow analyses. While these concepts basically share a system theoretical view, they lack a specific interdisciplinary perspective that ties the fundamental insight of flows to disciplinary scientific development. Instead of simply expanding micro-models to the social macro-dimension social theory suggests infusing the very notion of flows to the progress of disciplines. With regard to the functional integration of society, material and energy flow analyses can rely on the paradigm of ecological economics and at the same time progress the debate between strong and weak sustainability within the paradigm. However, placing economics at the centre of their functional analyses may still ignore the broader social integration of society, depending on their pre-analytic outline of research and the methods used. (author)

  6. Linking material and energy flow analyses and social theory

    International Nuclear Information System (INIS)

    Schiller, Frank

    2009-01-01

    The paper explores the potential of Habermas' theory of communicative action to alter the social reflexivity of material and energy flow analysis. With his social macro theory Habermas has provided an alternative, critical justification for social theory that can be distinguished from economic libertarianism and from political liberalism. Implicitly, most flow approaches draw from these theoretical traditions rather than from discourse theory. There are several types of material and energy flow analyses. While these concepts basically share a system theoretical view, they lack a specific interdisciplinary perspective that ties the fundamental insight of flows to disciplinary scientific development. Instead of simply expanding micro-models to the social macro-dimension social theory suggests infusing the very notion of flows to the progress of disciplines. With regard to the functional integration of society, material and energy flow analyses can rely on the paradigm of ecological economics and at the same time progress the debate between strong and weak sustainability within the paradigm. However, placing economics at the centre of their functional analyses may still ignore the broader social integration of society, depending on their pre-analytic outline of research and the methods used. (author)

  7. Analysing knowledge transfer channels between universities and industry : to what degree do sectors also matter?

    NARCIS (Netherlands)

    Bekkers, R.N.A.; Bodas de Araújo Freitas, I.M.

    2008-01-01

    There is a wide variety of channels through which knowledge and technology is being transferred between universities and industry. This paper aims to explain the relative importance of these different channels in different contexts. For this purpose, responses from two questionnaires were analysed,

  8. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions

  9. A review of computer tools for analysing the integration of renewable energy into various energy systems

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad

    2010-01-01

    to integrating renewable energy, but instead the ‘ideal’ energy tool is highly dependent on the specific objectives that must be fulfilled. The typical applications for the 37 tools reviewed (from analysing single-building systems to national energy-systems), combined with numerous other factors......This paper includes a review of the different computer tools that can be used to analyse the integration of renewable energy. Initially 68 tools were considered, but 37 were included in the final analysis which was carried out in collaboration with the tool developers or recommended points...... of contact. The results in this paper provide the information necessary to identify a suitable energy tool for analysing the integration of renewable energy into various energy-systems under different objectives. It is evident from this paper that there is no energy tool that addresses all issues related...

  10. Visual prosthesis wireless energy transfer system optimal modeling.

    Science.gov (United States)

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  11. Energy and Exergy Analyses of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    A detailed analysis of the Danish industry is presented in this paper using the energy and exergy methods. For the 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industrial sector, detailed end-use models were created and analysed...... of using electricity and district heat in the industry is shown. The exergy efficiencies for each process industry were found to be in the range of 12% to 56% in 2012. However variations in the efficiencies within the sectors for individual process industries occur, underlining the need for detailed......, by determining the sectors losses and exergy destruction. In addition the importance of applying a system analysis is shown, which corrects the site efficiencies for electricity and district heating use. The use of 22 industries,further highlights differences amongst industries belonging to the same sector....

  12. Resonance energy transfer: The unified theory via vector spherical harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Grinter, Roger, E-mail: r.grinter@uea.ac.uk; Jones, Garth A., E-mail: garth.jones@uea.ac.uk [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2016-08-21

    In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherent in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon’s fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.

  13. The Grover energy transfer algorithm for relativistic speeds

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro, E-mail: juagar@yllera.tel.uva.e [Dpto. de TeorIa de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI de Telecomunicacion, Campus Miguel Delibes, Paseo Belen 15, 47011 Valladolid (Spain)

    2010-11-12

    Grover's algorithm for quantum search can also be applied to classical energy transfer. The procedure takes a system in which the total energy is equally distributed among N subsystems and transfers most of it to one marked subsystem. We show that in a relativistic setting the efficiency of this procedure can be improved. We will consider the transfer of relativistic kinetic energy in a series of elastic collisions. In this case, the number of steps of the energy transfer procedure approaches 1 as the initial velocities of the objects become closer to the speed of light. This is a consequence of introducing nonlinearities in the procedure. However, the maximum attainable transfer will depend on the particular combination of speed and number of objects. In the procedure, we will use N elements, as in the classical non-relativistic case, instead of the log{sub 2}(N) states of the quantum algorithm.

  14. The Grover energy transfer algorithm for relativistic speeds

    International Nuclear Information System (INIS)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro

    2010-01-01

    Grover's algorithm for quantum search can also be applied to classical energy transfer. The procedure takes a system in which the total energy is equally distributed among N subsystems and transfers most of it to one marked subsystem. We show that in a relativistic setting the efficiency of this procedure can be improved. We will consider the transfer of relativistic kinetic energy in a series of elastic collisions. In this case, the number of steps of the energy transfer procedure approaches 1 as the initial velocities of the objects become closer to the speed of light. This is a consequence of introducing nonlinearities in the procedure. However, the maximum attainable transfer will depend on the particular combination of speed and number of objects. In the procedure, we will use N elements, as in the classical non-relativistic case, instead of the log 2 (N) states of the quantum algorithm.

  15. Pair transfer processes probed at deep sub barrier energies

    International Nuclear Information System (INIS)

    Corradi, L.; Mason, P.; Fioretto, E.; Michelagnoli, C.; Stefanini, A.M.; Valiente-Dobon, J.J.; Szinler, S.; Jelavic-Malenica, D.; Soic, N.; Pollarolo, G.; Farnea, E.; Montagnoli, G.; Montanari, D.; Scarlassara, F.; Ur, C.A.; Gadea, A.; Haas, F.; Marginean, N.

    2011-01-01

    Multinucleon transfer cross sections in the system 40 Ca+ 96 Zr have been measured at bombarding energies ranging from the Coulomb barrier to ∼ 25% below. Target-like (lighter) recoils in inverse kinematics have been completely identified in A,Z and Q-value with the large solid angle magnetic spectrometer PRISMA. The experimental slopes of the neutron transfer probabilities at large internuclear separation are consistent with the values derived from the binding energies. A phenomenological interpretation of the transfer probabilities indicates the presence of enhanced values for the even number of neutron transfers. (authors)

  16. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    Science.gov (United States)

    Samosvat, D. M.; Chikalova-Luzina, O. P.; Vyatkin, V. M.; Zegrya, G. G.

    2016-11-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones.

  17. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    International Nuclear Information System (INIS)

    Samosvat, D M; Chikalova-Luzina, O P; Zegrya, G G; Vyatkin, V M

    2016-01-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones. (paper)

  18. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj; Verma, Mahendra K.; Samtaney, Ravi

    2013-01-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20

  19. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  20. Dynamics of energy systems: Methods of analysing technology change

    Energy Technology Data Exchange (ETDEWEB)

    Neij, Lena

    1999-05-01

    Technology change will have a central role in achieving a sustainable energy system. This calls for methods of analysing the dynamics of energy systems in view of technology change and policy instruments for effecting and accelerating technology change. In this thesis, such methods have been developed, applied, and assessed. Two types of methods have been considered, methods of analysing and projecting the dynamics of future technology change and methods of evaluating policy instruments effecting technology change, i.e. market transformation programmes. Two methods are focused on analysing the dynamics of future technology change; vintage models and experience curves. Vintage models, which allow for complex analysis of annual streams of energy and technological investments, are applied to the analysis of the time dynamics of electricity demand for lighting and air-distribution in Sweden. The results of the analyses show that the Swedish electricity demand for these purposes could decrease over time, relative to a reference scenario, if policy instruments are used. Experience curves are used to provide insight into the prospects of diffusion of wind turbines and photo voltaic (PV) modules due to cost reduction. The results show potential for considerable cost reduction for wind-generated electricity, which, in turn, could lead to major diffusion of wind turbines. The results also show that major diffusion of PV modules, and a reduction of PV generated electricity down to the level of conventional base-load electricity, will depend on large investments in bringing the costs down (through R D and D, market incentives and investments in niche markets) or the introduction of new generations of PV modules (e.g. high-efficiency mass-produced thin-film cells). Moreover, a model has been developed for the evaluation of market transformation programmes, i.e. policy instruments that effect technology change and the introduction and commercialisation of energy

  1. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit; Verma, Mahendra K.; Samtaney, Ravi

    2015-01-01

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due

  2. Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix

    International Nuclear Information System (INIS)

    Kumar, Ashish; Saha, Sandip K.

    2016-01-01

    Graphical abstract: I. Metal matrix is used as the thermal conductivity enhancers (TCE) in PCM-based TES. II. Time evolution second law analysis is evaluated for different porosities and pore diameters. III. Reduction in fluctuation in HTF temperature is significantly affected by the change in porosity (ε) shown in figure. IV. Maximum energy and exergy efficiencies are obtained for porosity of 0.85. V. Effect of pore diameter on first law and second law efficiencies is found to be marginal. - Abstract: Thermal energy storage system in a concentrating solar plant (CSP) reduces the gap between energy demand and supply caused by the intermittent behaviour of solar radiation. In this paper, detailed exergy and energy analyses of shell and tube type latent heat thermal storage system (LHTES) for medium temperature solar thermal power plant (∼200 °C) are performed to estimate the net useful energy during the charging and discharging period in a cycle. A commercial-grade organic phase change material (PCM) is stored inside the annular space of the shell and the heat transfer fluid (HTF) flows through the tubes. Thermal conductivity enhancer (TCE) in the form of metal matrix is embedded in PCM to augment heat transfer. A numerical model is developed to investigate the fluid flow and heat transfer characteristics using the momentum equation and the two-temperature non-equilibrium energy equation coupled with the enthalpy method to account for phase change in PCM. The effects of storage material, porosity and pore-diameter on the net useful energy that can be stored and released during a cycle, are studied. It is found that the first law efficiency of sensible heat storage system is less compared to LHTES. With the decrease in porosity, the first law and second law efficiencies of LHTES increase for both the charging and discharging period. There is no significant variation in energy and exergy efficiencies with the change in pore-diameter of the metal matrix.

  3. Energy transfer dynamics in Light-Harvesting Dendrimers

    Science.gov (United States)

    Melinger, Joseph S.; McMorrow, Dale; Kleiman, Valeria D.

    2002-03-01

    We explore energy transfer dynamics in light-harvesting phenylacetylene symmetric and asymmetric dendrimers. Femtosecond pump-probe spectroscopy is used to probe the ultrafast dynamics of electronic excitations in these dendrimers. The backbone of the macromolecule consists of branches of increasing conjugation length, creating an energy gradient, which funnels energy to an accepting perylene trap. In the case of the symmetric dendrimer (nanostar), the energy transfer efficiency is known to approach nearly unity, although the nature and timescale of the energy transfer process is still unknown. For the asymmetric dendrimers, energy transfer efficiencies are very high, with the possibility of more complex transfer processes. We experimentally monitor the transport of excitons through the light-harvesting dendrimer. The transients show a number of components, with timescales ranging from <300fs to several tens of picoseconds, revealing the complex photophysics taking place in these macromolecules. We interpret our results in terms of the Förster mechanism in which energy transfer occurs through dipole-dipole interactions.

  4. A simplified approach for the coupling of excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Shi Bo [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Gao Fang, E-mail: gaofang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Liang Wanzhen [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China)

    2012-02-06

    Highlights: Black-Right-Pointing-Pointer We propose a simple method to calculate the coupling of singlet-to-singlet and triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer. Black-Right-Pointing-Pointer Effect from the intermolecular charge-transfer states dorminates in triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer This method can be expanded by including correlated wavefunctions. - Abstract: A simplified approach for computing the electronic coupling of nonradiative excitation-energy transfer is proposed by following Scholes et al.'s construction on the initial and final states [G.D. Scholes, R.D. Harcourt, K.P. Ghiggino, J. Chem. Phys. 102 (1995) 9574]. The simplification is realized through defining a set of orthogonalized localized MOs, which include the polarization effect of the charge densities. The method allows calculating the coupling of both the singlet-to-singlet and triplet-to-triplet energy transfer. Numerical tests are performed for a few of dimers with different intermolecular orientations, and the results demonstrate that Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer whereas in the case of triplet-to-triplet energy transfer, the dominant effect is arisen from the intermolecular charge-transfer states. The present application is on the Hartree-Fock level. However, the correlated wavefunctions which are normally expanded in terms of the determinant wavefunctions can be employed in the similar way.

  5. A chopper circuit for energy transfer between superconducting magnets

    International Nuclear Information System (INIS)

    Onishi, Toshitada; Tateishi, Hiroshi; Takeda, Masatoshi; Matsuura, Toshiaki; Nakatani, Toshio.

    1986-01-01

    It has been suggested that superconducting magnets could provide a medium for storing energy and supplying the large energy pulses needed by experimental nuclear-fusion equipment and similar loads. Based on this concept, tests on energy transfer between superconducting magnets are currently being conducted at the Agency of Industrial Science and Technology's Electrotechnical Laboratory. Mitsubishi Electric has pioneered the world's first chopper circuit for this application. The circuit has the advantages of being simple and permitting high-speed, bipolar energy transfer. The article describes this circuit and its testing. (author)

  6. Energy and exergy analyses of Angra-2 nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Marques, João G.O.; Costa, Antonella L.; Pereira, Claubia; Fortini, Ângela, E-mail: jgabrieloliveira2010@bol.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: fortini@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Nuclear Power Plants (NPPs) based on Pressurized Water Reactors (PWRs) technology are considered an alternative to fossil fuels plants due to their reliability with low operational cost and low CO{sub 2} emissions. An example of PWR plant is Angra-2 built in Brazil. This NPP has a nominal electric power output of 1300 MW and made it possible for the country save its water resources during electricity generation from hydraulic plants, and improved Brazilian knowledge and technology in nuclear research area. Despite all these benefits, PWR plants generally have a relatively low thermal efficiency combined with a large amount of irreversibility generation or exergy destruction in their components, reducing their capacity to produce work. Because of that, it is important to assess such systems to understand how each component impacts on system efficiency. Based on that, the aim of this work is to evaluate Angra-2 by performing energy and exergy analyses to quantify the thermodynamic performance of this PWR plant and its components. The methodology consists in the development of a mathematical model in EES (Engineering Equation Solver) software based on thermodynamic states in addition to energy and exergy balance equations. According to the results, Angra 2 has energy efficiency of 36.18% and exergy efficiency of 49.24%. Reactor core is the most inefficient device in the NPP; it has exergy efficiency of 67.16% and is responsible for 63.88% of all exergy destroyed in Angra-2. (author)

  7. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj

    2013-12-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20 on 10243 grid using the pseudospectral method. We demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers moves towards lower wave numbers as dynamo evolves, which is the reason why the integral scale of the magnetic field increases with time. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. Copyright © EPLA, 2013.

  8. Quantum electrodynamics of resonant energy transfer in condensed matter

    International Nuclear Information System (INIS)

    Juzeliunas, G.; Andrews, D.L.

    1994-01-01

    A microscopic many-body QED theory for dipole-dipole resonance energy transfer has been developed from first principles. A distinctive feature of the theory is full incorporation of the dielectric effects of the supporting medium. The approach employs the concept of bath polaritons mediating the energy transfer. The transfer rate is derived in terms of the Green's operator corresponding to the polariton matrix Hamiltonian. In contrast to the more common lossless polariton models, the present theory accommodates an arbitrary number of energy levels for each molecule of the medium. This includes, a case of special interest, where the excitation energy spectrum of the bath molecules is sufficiently dense that it can be treated as a quasicontinuum in the energy region in question, as in the condensed phase normally results from homogeneous and inhomogeneous line broadening. In such a situation, the photon ''dressed'' by the medium polarization (the polariton) acquires a finite lifetime, the role of the dissipative subsystem being played by bath molecules. It is this which leads to the appearance of the exponential decay factor in the microscopically derived pair transfer rates. Accordingly, the problem associated with potentially infinite total ensemble rates, due to the divergent R -2 contribution, is solved from first principles. In addition, the medium modifies the distance dependence of the energy transfer function A(R) and also produces extra modifications due to screening contributions and local field effects. The formalism addresses cases where the surrounding medium is either absorbing or lossless over the range of energies transferred. In the latter case the exponential factor does not appear and the dielectric medium effect in the near zone reduces to that which is familiar from the theory of radiationless (Foerster) energy transfer

  9. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  10. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit

    2015-06-25

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due to the energy transfers from large-scale velocity field to large-scale magnetic field and that the magnetic energy flux is forward. The steady-state magnetic energy is much smaller than the kinetic energy, rather than equipartition; this is because the magnetic Reynolds number is near the dynamo transition regime. We also contrast our results with those for dynamo with Pm = 20 and decaying dynamo. © 2015 Taylor & Francis.

  11. Spark and HPC for High Energy Physics Data Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Sehrish, Saba; Kowalkowski, Jim; Paterno, Marc

    2017-05-01

    A full High Energy Physics (HEP) data analysis is divided into multiple data reduction phases. Processing within these phases is extremely time consuming, therefore intermediate results are stored in files held in mass storage systems and referenced as part of large datasets. This processing model limits what can be done with interactive data analytics. Growth in size and complexity of experimental datasets, along with emerging big data tools are beginning to cause changes to the traditional ways of doing data analyses. Use of big data tools for HEP analysis looks promising, mainly because extremely large HEP datasets can be represented and held in memory across a system, and accessed interactively by encoding an analysis using highlevel programming abstractions. The mainstream tools, however, are not designed for scientific computing or for exploiting the available HPC platform features. We use an example from the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) in Geneva, Switzerland. The LHC is the highest energy particle collider in the world. Our use case focuses on searching for new types of elementary particles explaining Dark Matter in the universe. We use HDF5 as our input data format, and Spark to implement the use case. We show the benefits and limitations of using Spark with HDF5 on Edison at NERSC.

  12. Linear motor with contactless energy transfer

    NARCIS (Netherlands)

    2014-01-01

    An integrated electromagnetic energy conversions device is provided that includes a synchronous or brushless linear (SoBL) motor, and a transformer, where the transformer is integrated electromagnetically and topologically with the SoBL motor, where an electromagnetic field orientation of the

  13. Energy Transfer in Scattering by Rotating Potentials

    Indian Academy of Sciences (India)

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...

  14. Luminescence and energy transfer in Garnet Scintillators

    NARCIS (Netherlands)

    Ogiegło, J.M.

    2012-01-01

    The thesis is focused on development and fundamental understanding of scintillators that play a central role in the field of medical imaging. These materials convert high energy, gamma or X-ray, radiation into visible light that is then used to create a detailed image of the patient’s body. The

  15. Optical absorption and energy transfer processes in dendrimers

    International Nuclear Information System (INIS)

    Reineker, P.; Engelmann, A.; Yudson, V.I.

    2004-01-01

    For dendrimers of various sizes the energy transfer and the optical absorption is investigated theoretically. The molecular subunits of a dendrimer are modeled as two-level systems. The electronic interaction between them is described via transfer integrals and the influence of vibrational degrees of freedom is taken into account in a first approach using a stochastic model. We discuss the time dependence of the energy transport and show that rim states of the dendrimer dominate the absorption spectra, that in general the electronic excitation energy is concentrated on peripheric molecules, and that the energetically lowest absorption peak is redshifted with increasing dendrimer size due to delocalization of the electronic excitation

  16. Nuclear response functions at large energy and momentum transfer

    International Nuclear Information System (INIS)

    Bertozzi, W.; Moniz, E.J.; Lourie, R.W.

    1991-01-01

    Quasifree nucleon processes are expected to dominate the nuclear electromagnetic response function for large energy and momentum transfers, i.e., for energy transfers large compared with nuclear single particle energies and momentum transfers large compared with typical nuclear momenta. Despite the evident success of the quasifree picture in providing the basic frame work for discussing and understanding the large energy, large momentum nuclear response, the limits of this picture have also become quite clear. In this article a selected set of inclusive and coincidence data are presented in order to define the limits of the quasifree picture more quantitatively. Specific dynamical mechanisms thought to be important in going beyond the quasifree picture are discussed as well. 75 refs, 37 figs

  17. Energy transfer from a superconducting magnet to an inductive load

    International Nuclear Information System (INIS)

    Onishi, Toshitada; Miura, Akinori.

    1977-01-01

    Experiments on energy transfer between two superconducting magnets have been carried out using an inductive energy transfer system similar to the flying capacitor system developed at the Karlsruhe Institute. In the present system the capacitor is grounded and diodes are used instead of thyristors, and a fraction of stored energy is transferred to the capacitor only when the relay connected in parallel to the magnet is switched off. The capacitor is expected to have no constraint in size, while in the flying capacitor system the capacitor is required to exceed a threshold size. Consequently it is possible to shorten the transfer time to some extent in comparison with the one in the flying capacitor system. Transfer experiments have been carried out using a storage magnet with inductance of 1.2H and a load of 0.41H. The capacitance is 200μF. It is possible to transfer 80.1% of the stored energy of 221 J into the load in less than about 0.35 seconds. (auth.)

  18. Luminescence and energy transfer in Garnet Scintillators

    OpenAIRE

    Ogiegło, J.M.

    2012-01-01

    The thesis is focused on development and fundamental understanding of scintillators that play a central role in the field of medical imaging. These materials convert high energy, gamma or X-ray, radiation into visible light that is then used to create a detailed image of the patient’s body. The power of such imaging techniques as diagnostic medical tools is hard to overestimate.

  19. Production and transfer of energy and information in Hamiltonian systems.

    Directory of Open Access Journals (Sweden)

    Chris G Antonopoulos

    Full Text Available We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an "experimental" implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented.

  20. VLAD for epithermal neutron scattering experiments at large energy transfers

    International Nuclear Information System (INIS)

    Tardocchi, M; Gorini, G; Perelli-Cippo, E; Andreani, C; Imberti, S; Pietropaolo, A; Senesi, R; Rhodes, N R; Schooneveld, E M

    2006-01-01

    The Very Low Angle Detector (VLAD) bank will extend the kinematical region covered by today's epithermal neutron scattering experiments to low momentum transfer ( -1 ) together with large energy transfer 0 -4 0 . In this paper the design of VLAD is presented together with Montecarlo simulations of the detector performances. The results of tests made with prototype VLAD detectors are also presented, confirming the usefulness of the Resonance Detector for measurements at very low scattering angles

  1. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  2. A new energy transfer model for turbulent free shear flow

    Science.gov (United States)

    Liou, William W.-W.

    1992-01-01

    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  3. Energy consumption patterns. A theoretical analysis; Energieverbrauchsverhalten. Eine theoretische Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Flandrich, D.

    2006-07-01

    The author questions the methodological and methodical foundations of energy consumption research and attempts a theory of energy consumption patterns on the basis of psychology, opening up a quite new perspective that has been neglected so far. Energy policy and energy marketing are two fields of applications which are getting more important in these times of increasing prices of energy resources, high public awareness of environmental issues, and deregulated energy markets. (orig.)

  4. Advances in energy-transfer technology

    International Nuclear Information System (INIS)

    Terpstra, L.

    1992-01-01

    This paper discusses the technology of drying and curing inks, coatings and adhesives which is changing rapidly as converters and manufacturers strive to comply with regulations governing airborne emissions as well as discharge of liquid and solid wastes. Compliance with these regulations will become more difficult in the coming decade as the Clean Air Act's increasingly stringent limitations on emissions of volatile organic compounds are implemented to support the intentions of the Montreal protocol. Many of the customary solvents are being eliminated, and the volume of production for many others will be severely reduced. For some companies, the switch to the new materials means updating or replacing antiquated hot-air drying systems with high-velocity impingement ovens with higher temperature capabilities. Probably the least-expansive alternative to replacing the entire oven is to retrofit the installation with infrared (IR) energy in the form of separate predryers or postheaters or, in some cases, to install auxiliary IR heaters between the hot-air nozzles within the oven

  5. SWOT analyses of the national energy sector for sustainable energy development

    International Nuclear Information System (INIS)

    Markovska, N.; Taseska, V.; Pop-Jordanov, J.

    2009-01-01

    A holistic perspective of various energy stakeholders regarding the Strengths, Weaknesses, Opportunities and Threats (SWOTs) of the energy sector in Macedonia is utilized as baseline to diagnose the current state and to sketch future action lines towards sustainable energy development. The resulting SWOT analyses pointed to the progressive adoption of European Union (EU) standards in energy policy and regulation as the most important achievement in the energy sector. The most important problems the national energy sector faces are scarce domestic resources and unfavorable energy mix, low electricity prices, a high degree of inefficiency in energy production and use, as well as insufficient institutional and human capacities. The formulated portfolio of actions towards enabling sustainable energy development urges the adoption of a comprehensive energy strategy built upon sustainability principles, intensified utilization of the natural gas, economic prices of electricity, structural changes in industry, promotion of energy efficiency and renewables, including Clean Development Mechanism (CDM) projects, enforcement of EU environmental standards and meeting the environmental requirements, as well as institutional and human capacity building.

  6. Energy transfer processes in Er-doped crystals

    International Nuclear Information System (INIS)

    Georgescu, Serban; Toma, Octavian

    2005-01-01

    In this paper, the microparameters characteristic to various energy-transfer processes in erbium doped crystals are estimated using the Dexter theory. For all the investigated processes, electric dipole-dipole interaction between donor and acceptor ions is assumed. The spectra appearing in Dexter's expression of the microparameter are simulated as a superposition of Lorentzian lines, knowing the positions of both initial and final Stark levels, and calibrated using the Judd-Ofelt model. This approach can give an estimation of the importance of the energy-transfer processes. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    Directory of Open Access Journals (Sweden)

    L. R. Corr

    2016-08-01

    Full Text Available Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  8. Performance Optimization of Unglazed Nanofluid Photovoltaic/Thermal System: Energy and Exergy Analyses

    Directory of Open Access Journals (Sweden)

    M. Imtiaz Hussain

    2018-01-01

    Full Text Available The focus of this paper is to predict the transient response of a nanoengineered photovoltaic thermal (PV/T system in view of energy and exergy analyses. Instead of a circular-shaped receiver, a trapezoidal-shaped receiver is employed to increase heat transfer surface area with photovoltaic (PV cells for improvement of heat extraction and thus achievement of a higher PV/T system efficiency. The dynamic mathematical model is developed using MATLAB® software by considering real-time heat transfer coefficients. The proposed model is validated with experimental data from a previous study. Negligible discrepancies were found between measured and predicted data. The validated model was further investigated in detail using different nanofluids by dispersing copper oxide (CuO and aluminum oxide (Al2O3 in pure water. The overall performance of the nanoengineered PV/T system was compared to that of a PV/T system using water only, and optimal operating conditions were determined for maximum useful energy and exergy rates. The results indicated that the CuO/water nanofluid has a notable impact on the energy and exergy efficiencies of the PV/T system compared to that of Al2O3/water nanofluid and water only cases.

  9. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    Science.gov (United States)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall

  10. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.; Hardin, Brian E.; McGehee, Michael D.

    2010-01-01

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation

  11. Electron transfer in organic glass. Distance and energy dependence

    International Nuclear Information System (INIS)

    Krongauz, V.V.

    1992-01-01

    The authors have investigated the distance and energy dependence of electron transfer in rigid organic glasses containing randomly dispersed electron donor and electron acceptor molecules. Pulsed radiolysis by an electron beam from a linear accelerator was used for ionization resulting in charge deposition on donor molecules. The disappearance kinetics of donor radical anions due to electron transfer to acceptor was monitored spectroscopically by the change in optical density at the wavelength corresponding to that of donor radical anion absorbance. It was found that the rate of the electron transfer observed experimentally was higher than that computed using the Marcus-Levich theory assuming that the electron-transfer activation barrier is equal to the binding energy of electron on the donor molecule. This discrepancy between the experimental and computed results suggests that the open-quotes inertclose quotes media in which electron-transfer reaction takes place may be participating in the process, resulting in experimentally observed higher electron-transfer rates. 32 refs., 3 figs., 2 tabs

  12. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  13. Energy and exergy analyses of energy consumptions in the industrial sector in South Africa

    International Nuclear Information System (INIS)

    Oladiran, M.T.; Meyer, J.P.

    2007-01-01

    The energy-utilization over a 10-year period (1994-2003) has been analysed for the South African industrial sector, which consumes more primary energy than any other sector of the economy. Four principal sub-sectors, namely iron and steel, chemical and petrochemical, mining and quarrying, and non-ferrous metals/non-metallic minerals were considered in this study. Primary-energy utilization data were used to calculate the weighted mean energy and exergy efficiencies for the sub-sectors and then overall values for the industrial sector were obtained. The results indicate that exergy efficiency is considerably lower than energy efficiency in all the sub-sectors, particularly in mining and quarrying processes, for which the values were approximately 83% and 16%, respectively. The performance of exergy utilization in the industrial sector can be improved by introducing various conservation strategies. Results from this study were compared with those for other countries

  14. A theoretical analysis on vibrational-energy transfers in gases

    International Nuclear Information System (INIS)

    Mastrocinque, G.

    1981-01-01

    In order to investigate the relationships between three-dimensional and colinear molecular-collision models with particular emphasis on the role of repulsive and attractive forces in vibrational-energy transfers in gases, a theoretical analysis is developed in this paper. A few known results - mainly the Cottrell and Ream equation, the Takayanagi and the Shin expressions of the transfer probability - relevant to repulsive-force-dominated processes are obtained and/or discussed in the proposed frame. Light is also given on long-range, attractive-forces-dominated processes. The main result of this investigation is that, when a suitable hypothesis is done on the transfer probability, centrifugal effects on the intermolecular trajectories due to standard potentials are negligible in the low-temperature range. A quasi-colinear collision model, which is found to be correlated to the Cottrell and Ream expression for the transfer probability, is regained from a three-dimensional geometry in these conditions. (author)

  15. A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester

    Science.gov (United States)

    Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.

    2016-11-01

    A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.

  16. Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.

    Science.gov (United States)

    Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel

    2017-05-26

    Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.

  17. The charge transfer structure and effective energy transfer in multiplayer assembly film

    International Nuclear Information System (INIS)

    Li Mingqiang; Jian Xigao

    2005-01-01

    Charge transfer multiplayer films have been prepared by layer-by-layer self-assembly technique. The films incorporate the rare-earth-containing polyoxometalate K 11 [Eu{PW 11 O 39 } 2 ].nH 2 O and the rich electron polyelectrolyte poly(3-viny-1-methyl-pyridine) quaternary ammonium and display a linear increase in the absorption and film thickness with the number of deposition cycles. Ultraviolet and visible absorption spectra, atomic force micrographs, small-angle X-ray reflectivity measurements, and photoluminescence spectra were used to determine the structure of films. Linear and regular multilayer growth was observed. We can observe the formation of charge transfer complex compound in multiplayer by layer-by-layer assembly method. Most importantly, the luminescence spectra show the charge transfer band in assembly films, which suggest that energy could be effectively transferred to rare earth ions in assembly multiplayer films

  18. Novel DNA sequence detection method based on fluorescence energy transfer

    International Nuclear Information System (INIS)

    Kobayashi, S.; Tamiya, E.; Karube, I.

    1987-01-01

    Recently the detection of specific DNA sequence, DNA analysis, has been becoming more important for diagnosis of viral genomes causing infections disease and human sequences related to inherited disorders. These methods typically involve electrophoresis, the immobilization of DNA on a solid support, hybridization to a complementary probe, the detection using labeled with /sup 32/P or nonisotopically with a biotin-avidin-enzyme system, and so on. These techniques are highly effective, but they are very time-consuming and expensive. A principle of fluorescene energy transfer is that the light energy from an excited donor (fluorophore) is transferred to an acceptor (fluorophore), if the acceptor exists in the vicinity of the donor and the excitation spectrum of donor overlaps the emission spectrum of acceptor. In this study, the fluorescence energy transfer was applied to the detection of specific DNA sequence using the hybridization method. The analyte, single-stranded DNA labeled with the donor fluorophore is hybridized to a probe DNA labeled with the acceptor. Because of the complementary DNA duplex formation, two fluorophores became to be closed to each other, and the fluorescence energy transfer was occurred

  19. Accurate magnetic field calculations for contactless energy transfer coils

    NARCIS (Netherlands)

    Sonntag, C.L.W.; Spree, M.; Lomonova, E.A.; Duarte, J.L.; Vandenput, A.J.A.

    2007-01-01

    In this paper, a method for estimating the magnetic field intensity from hexagon spiral windings commonly found in contactless energy transfer applications is presented. The hexagonal structures are modeled in a magneto-static environment using Biot-Savart current stick vectors. The accuracy of the

  20. Metaphors Describing Energy Transfer through Ecosystems: Helpful or Misleading?

    Science.gov (United States)

    Wernecke, Ulrike; Schwanewedel, Julia; Harms, Ute

    2018-01-01

    Energy transfer in ecosystems is an abstract and challenging topic for learners. Metaphors are widely used in scientific and educational discourse to communicate ideas about abstract phenomena. However, although considered valuable teaching tools, metaphors are ambiguous and can be misleading when used in educational contexts. Educational…

  1. Reversible Energy Transfer and Fluorescence Decay in Solid Solutions

    Science.gov (United States)

    Shealy, David L.; Hoover, Richard B.; Gabardi, David R.

    1988-07-01

    The article deals with the influence of reversible excitation energy transfer on the fluorescence decay in systems with random distribution of molecules. On the basis of a hopping model, we have obtained an expression for the Laplace transform of the decay function and an expression for the average decay time. The case of dipole-dipole interaction is discussed in detail.

  2. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Balashov, S.P.; Chábera, P.; Imasheva, E.S.; Yartsev, A.; Sundström, V.; Lanyi, J.K.

    2009-01-01

    Roč. 96, č. 6 (2009), s. 2268-2277 ISSN 0006-3495 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : energy transfer * carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.390, year: 2009

  3. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    Recently, we have reported theoretical studies on the rate of energy transfer ... Dirac cone approximation and hence our conclusions are of qualitative nature. 2. .... make another change of variable to r given by r = ki q/2 to get. G1 (q) = Aq2.

  4. Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications

    Science.gov (United States)

    Gonçalves, Ricardo; Carvalho, Nuno B.; Pinho, Pedro

    2017-02-01

    In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air. In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the Ku band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations. xml:lang="fr"

  5. Energy transfer in diatom/diatom molecular collisions

    International Nuclear Information System (INIS)

    Sohlberg, K.W.

    1992-01-01

    In a collision of two molecules, the translational energy of the collision may be redistributed into internal energy of rotation, vibration, or electron motion, in one or both of the colliding partners. In addition, internal energy in one or more of these modes may be open-quotes quenchedclose quotes into translation, leading to a superelastic collision. Such energy transfer may take place by a number of mechanisms. This energy transfer is of fundamental importance in understanding chemical reaction dynamics. Nearly all chemical reactions take place through a bimolecular collision process (or multiple bimolecular collisions) and the quantum state specificity of the reaction can have a major role in determining the kinetics of the reaction, In particular, the author has investigated vibrational energy transfer in collisions between two diatomic molecules. In addition to serving as models for all molecular collision process, gas phase collisions of these species are ubiquitous in atmospheric phenomena which are of critical importance in answering the current questions about the human induced degradation of the earth's atmospheric. Classical trajectory methods have been used to explore the excitation of vibrations in gas-phase collisions of the nitrogen molecular ion with its parent molecule. The near symmetry of the reactants is shown to result in a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability, even

  6. Electron transfer and energy transfer reactions in photoexcited a-nonathiophene/C60 films and solutions

    NARCIS (Netherlands)

    Janssen, R.A.J.; Moses, D.; Sariciftci, N.S.; Heeger, A.J.

    1994-01-01

    Photoexcitation of a nonathiophene in film or solution across the p-p* energy gap produces a metastable triplet state. In the presence of C60, on the other hand, an ultra fast electron transfer from the photoexcited nonathiophene onto C60 is observed in films, whereas in solution C60 is involved in

  7. Energy transfer mechanisms in layered 2D perovskites.

    Science.gov (United States)

    Williams, Olivia F; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M

    2018-04-07

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA) 2 (MA) n-1 [Pb n I 3n+1 ] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  8. Energy transfer mechanisms in layered 2D perovskites

    Science.gov (United States)

    Williams, Olivia F.; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M.

    2018-04-01

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA)2(MA)n-1[PbnI3n+1] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  9. RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Science.gov (United States)

    Abouzied, Mohamed Ali Mohamed

    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various

  10. Intangible asset valuation, damages, and transfer price analyses in the health care industry.

    Science.gov (United States)

    Reilly, Robert F

    2010-01-01

    Most health care industry participants own and operate intangible assets. These intangible assets can be industry-specific (e.g., patient charts and records, certificates of need, professional and other licenses), or they can be general commercial intangible assets (e.g., trademarks, systems and procedures, an assembled workforce). Many industry participants have valued their intangible assets for financial accounting or other purposes. This article summarizes the intangible assets that are common to health care industry participants. This article describes the different types of intangible asset analyses (including valuation, transfer price, damages estimates, etc.), and explains the many different transaction, accounting, taxation, regulatory, litigation, and other reasons why industry participants may wish to value (or otherwise analyze) health care intangible assets.

  11. Energy system analyses of the marginal energy technology in life cycle assessments

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Münster, Marie; Fruergaard, Thilde

    2007-01-01

    in historical and potential future energy systems. Subsequently, key LCA studies of products and different waste flows are analysed in relation to the recom- mendations in consequential LCA. Finally, a case of increased waste used for incineration is examined using an energy system analysis model......In life cycle assessments consequential LCA is used as the “state-of-the-art” methodology, which focuses on the consequences of decisions made in terms of system boundaries, allocation and selection of data, simple and dynamic marginal technology, etc.(Ekvall & Weidema 2004). In many LCA studies...... marginal technology? How is the marginal technology identified and used today? What is the consequence of not using energy system analy- sis for identifying the marginal energy technologies? The use of the methodology is examined from three angles. First, the marginal electricity technology is identified...

  12. The transfer of technologies for biomass energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, H H [German Agency for Technical Cooperation (GTZ), Eschborn (Germany)

    1995-12-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  13. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  14. Wireless energy transfer platform for medical sensors and implantable devices.

    Science.gov (United States)

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui

    2009-01-01

    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power.

  15. Long range energy transfer in graphene hybrid structures

    International Nuclear Information System (INIS)

    Gonçalves, Hugo; Bernardo, César; Moura, Cacilda; Belsley, Michael; Schellenberg, Peter; Ferreira, R A S; André, P S; Stauber, Tobias

    2016-01-01

    In this work we quantify the distance dependence for the extraction of energy from excited chromophores by a single layer graphene flake over a large separation range. To this end hybrid structures were prepared, consisting of a thin (2 nm) layer of a polymer matrix doped with a well chosen strongly fluorescent organic molecule, followed by an un-doped spacer layer of well-defined thicknesses made of the same polymer material and an underlying single layer of pristine, undoped graphene. The coupling strength is assessed through the variation of the fluorescence decay kinetics as a function of distance between the graphene and the excited chromophore molecules. Non-radiative energy transfer to the graphene was observed at distances of up to 60 nm; a range much greater than typical energy transfer distances observed in molecular systems. (paper)

  16. Direct observation of triplet energy transfer from semiconductor nanocrystals.

    Science.gov (United States)

    Mongin, Cédric; Garakyaraghi, Sofia; Razgoniaeva, Natalia; Zamkov, Mikhail; Castellano, Felix N

    2016-01-22

    Triplet excitons are pervasive in both organic and inorganic semiconductors but generally remain confined to the material in which they originate. We demonstrated by transient absorption spectroscopy that cadmium selenide semiconductor nanoparticles, selectively excited by green light, engage in interfacial Dexter-like triplet-triplet energy transfer with surface-anchored polyaromatic carboxylic acid acceptors, extending the excited-state lifetime by six orders of magnitude. Net triplet energy transfer also occurs from surface acceptors to freely diffusing molecular solutes, further extending the lifetime while sensitizing singlet oxygen in an aerated solution. The successful translation of triplet excitons from semiconductor nanoparticles to the bulk solution implies that such materials are generally effective surrogates for molecular triplets. The nanoparticles could thereby potentially sensitize a range of chemical transformations that are relevant for fields as diverse as optoelectronics, solar energy conversion, and photobiology. Copyright © 2016, American Association for the Advancement of Science.

  17. Coherent or hopping like energy transfer in the chlorosome ?

    Science.gov (United States)

    Nalbach, Peter

    2014-08-01

    Chlorosomes, as part of the light-harvesting system of green bacteria, are the largest and most efficient antennae systems in nature. We have studied energy transfer dynamics in the chlorosome in a simplified toy model employing a master equation. Dephasing and relaxation due to environmental fluctuations are included by Lindblad dephasing and Redfield thermalization rates. We find at room temperature three separate time scales, i.e. 25 fs, 250 fs and 2.5 ps and determine the according energy pathways through the hierarchical structure in the chlorosome. Quantum coherence lives up to 150 fs at which time the energy is spread over roughly 12 pigments in our model.

  18. Financial and energy analyses of woody biomass plantations

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    This paper provides an economic analysis of a short rotation woody crop (SRWC) plantation system established the financial and energy costs of woody biomass and related net values for the total system. A production model for commercial-sized Populus plantations was developed from a series of research projects sponsored by the U.S,. Department of Energy's Short Rotation Woody Crops Program. The design was based on hybrid poplar planted on good quality agricultural sites at a density of 2100 cutting ha -1 . Growth was forecast at 16 Mg(OD) ha -1 yr -1 on a six-year rotation cycle. All inputs associated with plantation establishment, annual operations, and land use were identified on a financial and energy cost basis (Strauss et al. 1989). Net values for the system projected a minimum financial profit and a major net energy gain. Financial profit was limited by the high market value of energy inputs as compared to the low market value of the energy output. The net energy gain was attributed to the solar energy captured through photosynthesis. Principal input costs to the overall system, on both a financial and energy basis, were land rent and the harvesting/transportation requirements

  19. Model analyses for sustainable energy supply under CO2 restrictions

    International Nuclear Information System (INIS)

    Matsuhashi, Ryuji; Ishitani, Hisashi.

    1995-01-01

    This paper aims at clarifying key points for realizing sustainable energy supply under restrictions on CO 2 emissions. For this purpose, possibility of solar breeding system is investigated as a key technology for the sustainable energy supply. The authors describe their mathematical model simulating global energy supply and demand in ultra-long term. Depletion of non-renewable resources and constraints on CO 2 emissions are taken into consideration in the model. Computed results have shown that present energy system based on non-renewable resources shifts to a system based on renewable resources in the ultra-long term with appropriate incentives

  20. State-of-the-Art Developments of Acoustic Energy Transfer

    Directory of Open Access Journals (Sweden)

    Md Rabiul Awal

    2016-01-01

    Full Text Available Acoustic energy transfer (AET technology has drawn significant industrial attention recently. This paper presents the reviews of the existing AETs sequentially, preferably, from the early stage. From the review, it is evident that, among all the classes of wireless energy transfer, AET is the safest technology to adopt. Thus, it is highly recommended for sensitive area and devices, especially implantable devices. Though, the efficiency for relatively long distances (i.e., >30 mm is less than that of inductive or capacitive power transfer; however, the trade-off between safety considerations and performances is highly suitable and better than others. From the presented statistics, it is evident that AET is capable of transmitting 1.068 kW and 5.4 W of energy through wall and in-body medium (implants, respectively. Progressively, the AET efficiency can reach up to 88% in extension to 8.6 m separation distance which is even superior to that of inductive and capacitive power transfer.

  1. Using Carbon Nanotubes for Nanometer-Scale Energy Transfer Microscopy

    Science.gov (United States)

    Johnston, Jessica; Shafran, Eyal; Mangum, Ben; Mu, Chun; Gerton, Jordan

    2009-10-01

    We investigate optical energy transfer between fluorophores and carbon nanotubes (CNTs). CNTs are grown on Si-oxide wafers by chemical vapor deposition (CVD), lifted off substrates by atomic force microscope (AFM) tips via Van der Waals forces, then shortened by electrical pulses. The tip-attached CNTs are scanned over fluorescent CdSe-ZnS quantum dots (QDs) with sub-nm precision while recording the fluorescence rate. A novel photon counting technique enables us to produce 3D maps of the QD-CNT coupling, revealing nanoscale lateral and vertical features. All CNTs tested (>50) strongly quenched the QD fluorescence, apparently independent of chirality. In some data, a delay in the recovery of QD fluorescence following CNT-QD contact was observed, suggesting possible charge transfer in this system. In the future, we will perform time-resolved studies to quantify the rate of energy and charge transfer processes and study the possible differences in fluorescence quenching and nanotube-QD energy transfer when comparing single-walled (SW) versus multi-walled (MW) CNTs, attempting to grow substrates consisting primarily of SW or MWCNTs and characterizing the structure of tip-attached CNTs using optical spectroscopy.

  2. Three essays in energy consumption: Time series analyses

    Science.gov (United States)

    Ahn, Hee Bai

    1997-10-01

    Firstly, this dissertation investigates that which demand specification is an appropriate model for long-run energy demand between the conventional demand specification and the limited demand specification. In order to determine the components of a stable long-run demand for different sectors of the energy industry, I perform cointegration tests by using the Johansen test procedure. First, I test the conventional demand specification including prices and income as components. Second, I test a limited demand specification only income as a component. The reason for performing these tests is that we can determine that which demand specification is a good long-run predictor of energy consumption between the two demand specifications by using the cointegration tests. Secondly, for the purpose of planning and forecasting energy demand in case of cointegrated system, long-run elasticities are of particular interest. To retrieve the optimal level of energy demand in case of price shock, we need long-run elasticities rather than short-run elasticities. The energy demand study provides valuable information to the energy policy makers who are concerned about the long-run impact of taxes and tariffs. A long-run price elasticity is a primary barometer of the substitution effect between energy and non-energy inputs and long-run income elasticity is an important factor since we can measure the energy demand growing slowly or fast than in the past depending on the magnitude of long-run elasticity. The one other problem in estimating the total energy demand is that there exists an aggregation bias stemming from the process of summation in four different energy types for the total aggregation prices and total aggregation energy consumption. In order to measure the aggregation bias between the Btu aggregation method and the Divisia Index method, i.e., which methodology has less aggregation bias in the long-run, I compare the two estimation results with calculated results estimated on

  3. Life-cycle energy analyses of electric vehicle storage batteries

    Science.gov (United States)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  4. Three-dimensional analyses of fluid flow and heat transfer for moderator integrity assessment in PHWR

    International Nuclear Information System (INIS)

    Yu, S.-O.; Kim, M.; Kim, H.-J.

    2002-01-01

    A CANDU reactor has the unique features and the intrinsic safety related characteristics that distinguish it from other water-cooled thermal reactors. If there is the loss of coolant accident (LOCA) and a coincident failure of the emergency coolant injection (ECI) system, the heavy water moderator is continuously cooled, providing a heat sink for decay heat produced in the fuel. Therefore, it is one of major concerns to estimate the local subcooling of moderator inside the calandria vessel under postulated accident in CANDU safety analyses. The Canadian Nuclear Safety Commission (CNSC), a regulatory body in Canada, categorized the integrity of moderator as a generic safety issue and recommended that a series of experimental works be performed to verify the safety evaluation codes for individual simulated condition of nuclear power plant, comparing with the results of three-dimensional experimental data. In this study, three-dimensional analyses of fluid flow and heat transfer have been performed to assess thermal-hydraulic characteristics for moderator simulation conducted by SPEL (Sheridan Park Experimental Laboratory) experimental facility. The parametric study has also carried out to investigate the effect of major parameters such as flowrate, temperature, and heat load generated from the heaters on the temperature and flow distribution inside the moderator. Three flow patterns have been identified in the moderator with flowrate, heat generation, or both. As the transition of fluid flow is progressed, it is found that the dimensionless numbers (Ar) and the ratio of buoyancy to inertia forces are constant. (author)

  5. Energy and Information Transfer Via Coherent Exciton Wave Packets

    Science.gov (United States)

    Zang, Xiaoning

    associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria

  6. Energy and exergy analyses of malt drink production in Nigeria

    International Nuclear Information System (INIS)

    Fadare, D.A.; Nkpubre, D.O.; Oni, A.O.; Falana, A.; Waheed, M.A.; Bamiro, O.A.

    2010-01-01

    Energy requirements and exergy inefficiencies for processing of malt drink were estimated for a Nigerian brewery. The process was divided into twenty-one basic unit operations and grouped into four main group operations: silo house, brew house, filter room and packaging house. The energy intensity for processing a batch of 9.8 tonnes brew grains to 562 hl of malt drink was estimated as 261.63 MJ/hl consisting of electrical (41.01%), thermal (58.81%) and manual (0.19%) of the total energy. The most energy intensive group operation was the Packaging House operation, followed by the Brew House operation with energy intensities of 223.19 and 35.94 MJ/hl, respectively. The exergy analysis revealed that the packaging house operation was responsible for most of the inefficiency (92.16%) followed by brew house operation (7.17%) and the silo house and filter room operations with less than 1% of the total exergy lost. The most exergy loss took place in the pasteurizer, which accounted for 59.75% of the overall system inefficiency. Modification in the pasteurizer and use of spent grains as alternate source of energy in the steam boiler were recommended to improve the energy efficiency of the system.

  7. Energy and exergy analyses of malt drink production in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Fadare, D.A.; Nkpubre, D.O.; Oni, A.O.; Falana, A.; Bamiro, O.A. [Mechanical Engineering Department, University of Ibadan, P. M.B. 1, Ibadan, Oyo State (Nigeria); Waheed, M.A. [Mechanical Engineering Department, University of Agriculture, P. M.B. 2240, Abeokuta, Ogun State (Nigeria)

    2010-12-15

    Energy requirements and exergy inefficiencies for processing of malt drink were estimated for a Nigerian brewery. The process was divided into twenty-one basic unit operations and grouped into four main group operations: silo house, brew house, filter room and packaging house. The energy intensity for processing a batch of 9.8 tonnes brew grains to 562 hl of malt drink was estimated as 261.63 MJ/hl consisting of electrical (41.01%), thermal (58.81%) and manual (0.19%) of the total energy. The most energy intensive group operation was the Packaging House operation, followed by the Brew House operation with energy intensities of 223.19 and 35.94 MJ/hl, respectively. The exergy analysis revealed that the packaging house operation was responsible for most of the inefficiency (92.16%) followed by brew house operation (7.17%) and the silo house and filter room operations with less than 1% of the total exergy lost. The most exergy loss took place in the pasteurizer, which accounted for 59.75% of the overall system inefficiency. Modification in the pasteurizer and use of spent grains as alternate source of energy in the steam boiler were recommended to improve the energy efficiency of the system. (author)

  8. TRANSFER

    African Journals Online (AJOL)

    This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...

  9. Energy use pattern analyses of greenhouse vegetable production

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Akinci, I. [Department of Agricultural Machinery, Faculty of Agriculture, Akdeniz University, 07070 Antalya (Turkey)

    2006-07-15

    Greenhouse farming is a growing industry in many states. It is a very expensive way to produce greenhouse crops and there are many variables to consider before the farmer decides to take this route. A good location is essential for crop planning and growing. However, current studies related to energy use patterns and resources present in vegetable production are very limited. This research attempts to investigate the energy use patterns in greenhouse vegetable production, to determine the energy output-input ratio and their relationships. Antalya province, which has greenhouse area of about 13,337ha (30.2%), is the center of greenhouse farming in Turkey. A questionnaire was distributed to 101 greenhouse farms from 11 villages in order to obtain the available data for vegetable production. Power requirement of the machines used in greenhouse operations were measured by using a computer based data acquisition system. Energy and economical variables (i.e. output-input ratio, specific energy, production cost, net return, etc.) were calculated by using the standard equations. As a result, the operational energy and energy source requirements of the greenhouse vegetable production were found between the ranges of 23,883.5-28,034.7 and 45,763.3-49,978.8MJ/1000m{sup 2}, respectively. The energy ratio of four major greenhouse vegetables-tomato, pepper, cucumber and eggplant-was 0.32, 0.19, 0.31, 0.23, respectively. The crop yields increased as a function of the total energy inputs with the best form being second-degree polynomial. The net return of the vegetable production was found in the 595.6-2775.3$/1000m{sup 2} ranges. Among the greenhouse vegetables, tomato cultivation resulted in being the most profitable. (author)

  10. Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay.

    Science.gov (United States)

    Lee, Joon Seok; Joung, Hyou-Arm; Kim, Min-Gon; Park, Chan Beum

    2012-04-24

    We report on chemiluminescence resonance energy transfer (CRET) between graphene nanosheets and chemiluminescent donors. In contrast to fluorescence resonance energy transfer, CRET occurs via nonradiative dipole-dipole transfer of energy from a chemiluminescent donor to a suitable acceptor molecule without an external excitation source. We designed a graphene-based CRET platform for homogeneous immunoassay of C-reactive protein (CRP), a key marker for human inflammation and cardiovascular diseases, using a luminol/hydrogen peroxide chemiluminescence (CL) reaction catalyzed by horseradish peroxidase. According to our results, anti-CRP antibody conjugated to graphene nanosheets enabled the capture of CRP at the concentration above 1.6 ng mL(-1). In the CRET platform, graphene played a key role as an energy acceptor, which was more efficient than graphene oxide, while luminol served as a donor to graphene, triggering the CRET phenomenon between luminol and graphene. The graphene-based CRET platform was successfully applied to the detection of CRP in human serum samples in the range observed during acute inflammatory stress.

  11. 2013 MOLECULAR ENERGY TRANSFER GORDON RESEARCH CONFERENCE (JANUARY 13-18, 2013 - VENTURA BEACH MARRIOTT, VENTURA CA

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Scott A. [Marquette University

    2012-10-18

    Sessions covered all areas of molecular energy transfer, with 10 sessions of talks and poster sessions covering the areas of :  Energy Transfer in Inelastic and Reactive Scattering  Energy Transfer in Photoinitiated and Unimolecular Reactions  Non-adiabatic Effects in Energy TransferEnergy Transfer at Surfaces and Interfaces  Energy Transfer in Clusters, Droplets, and Aerosols  Energy Transfer in Solution and Solid  Energy Transfer in Complex Systems  Energy Transfer: New vistas and horizons  Molecular Energy Transfer: Where Have We Been and Where are We Going?

  12. Regulation control and energy management scheme for wireless power transfer

    Science.gov (United States)

    Miller, John M.

    2015-12-29

    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  13. Preserving and reusing high-energy-physics data analyses

    CERN Document Server

    Simko, Tibor; Dasler, Robin; Fokianos, Pamfilos; Kuncar, Jiri; Lavasa, Artemis; Mattmann, Annemarie; Rodriguez, Diego; Trzcinska, Anna; Tsanaktsidis, Ioannis

    2017-01-01

    The revalidation, reuse and reinterpretation of data analyses require having access to the original virtual environments, datasets and software that was used to produce the original scientific result. The CERN Analysis Preservation pilot project is developing a set of tools that support particle physics researchers in preserving the knowledge around analyses so that capturing, sharing, reusing and reinterpreting data becomes easier. In this talk, we shall notably focus on the aspects of reusing a preserved analysis. We describe a system that permits to instantiate the preserved analysis workflow on the computing cloud, paving the way to allowing researchers to revalidate and reinterpret research data even many years after the original publication.

  14. Enabling Detailed Energy Analyses via the Technology Performance Exchange: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D.; Fleming, K.; Lee, E.; Livingood, W.

    2014-08-01

    One of the key tenets to increasing adoption of energy efficiency solutions in the built environment is improving confidence in energy performance. Current industry practices make extensive use of predictive modeling, often via the use of sophisticated hourly or sub-hourly energy simulation programs, to account for site-specific parameters (e.g., climate zone, hours of operation, and space type) and arrive at a performance estimate. While such methods are highly precise, they invariably provide less than ideal accuracy due to a lack of high-quality, foundational energy performance input data. The Technology Performance Exchange was constructed to allow the transparent sharing of foundational, product-specific energy performance data, and leverages significant, external engineering efforts and a modular architecture to efficiently identify and codify the minimum information necessary to accurately predict product energy performance. This strongly-typed database resource represents a novel solution to a difficult and established problem. One of the most exciting benefits is the way in which the Technology Performance Exchange's application programming interface has been leveraged to integrate contributed foundational data into the Building Component Library. Via a series of scripts, data is automatically translated and parsed into the Building Component Library in a format that is immediately usable to the energy modeling community. This paper (1) presents a high-level overview of the project drivers and the structure of the Technology Performance Exchange; (2) offers a detailed examination of how technologies are incorporated and translated into powerful energy modeling code snippets; and (3) examines several benefits of this robust workflow.

  15. Morphing continuum analysis of energy transfer in compressible turbulence

    Science.gov (United States)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis B.; Chen, James

    2018-02-01

    A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8∘ compression ramp. The simulation results validated MCT with experiments as an alternative for modeling compressible turbulence. The required size of the smallest mesh cell for the MCT simulation is shown to be almost an order larger than that in a similar direct numerical simulation study. The comparison shows MCT is a much more computationally friendly theory than the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale of individual eddies is illuminated through the subscale rotation introduced by MCT. In this regard, MCT provides a statistical averaging procedure for capturing energy transfer in compressible turbulence, not found in classical fluid theories. Analysis of the MCT results show the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources.

  16. A three-dimensional analyses of fluid flow and heat transfer for moderator integrity assessment in PHWR

    International Nuclear Information System (INIS)

    Bang, K. H.; Lee, J. Y.; Yoo, S. O.; Kim, M. W.; Kim, H. J.

    2002-01-01

    Three-dimensional analyses of fluid flow and heat transfer has been performed in this study. The simulation of SPEL experimental work and comparison with experimental data has been carried out to verify the analyses models. Moreover, to verify the CANDU-6 reactor type, analyses of fluid flow and heat transfer in the calandria under the condition of steady state has been performed using FLUENT code, which is the conventional code for a three-dimensional analyses of fluid flow and heat transfer for moderator integrity assessment in PHWR thermal-hydraulics. It is found that the maximum temperature in the moderator is 347K (74 ), so that the moderator has the enough subcoolability to ensure the integrity of pressure tube during LOCA conditions

  17. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  18. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  19. Debris and pool formation/heat transfer in FARO-LWR: experiments and analyses

    International Nuclear Information System (INIS)

    Magallon, D.; Annunziato, A.; Corradini, M.

    1999-01-01

    The FARO-LWR experiments examine the debris and pool formation from a pour of core melt materials (UO 2 /ZrO 2 and UO 2 /ZrO 2 /Zr) into a pool of water at prototypic accident conditions. The experiments give unique data on the debris bed initial conditions, morphology and heat transfer after the core melt has slump and (partly) quenched into the water of the lower head. Quantities of up to 170 kg of corium melt are poured by gravity into water of depth between 1 and 2 m through a nozzle of diameter 0.1 m at different system pressures. The debris is collected in a flat bottom catcher of diameter 0.66 m. It reaches heights up to 0.2 m depending on the melt quantity. In general, the melt reaches the bottom only partially fragmented. The debris which forms consists of a conglomerate ('cake') in contact with the collecting structure and overlaying fragments (loose debris). The mean particle size of the loose debris is in the range 3.5 - 4.8 mm. The upper surface of the debris is flat. A gap is present between the cake and the bottom plate. The paper reviews the debris formation and heat transfer to the bottom steel structure from these tests and describes the development of a model to predict the debris and pool formation process. Sensitivity analyses have been performed by the COMETA code to study the behaviour of the ratio between the cake mass and the total mass. (authors)

  20. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    International Nuclear Information System (INIS)

    Plunk, G. G.; Tatsuno, T.

    2011-01-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  1. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    Science.gov (United States)

    Plunk, G. G.; Tatsuno, T.

    2011-04-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  2. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    Stillwagon, R.E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermonuclear reactor is described. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals

  3. Photosynthetic Energy Transfer at the Quantum/Classical Border.

    Science.gov (United States)

    Keren, Nir; Paltiel, Yossi

    2018-06-01

    Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Optically nonlinear energy transfer in light-harvesting dendrimers

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2004-08-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.

  5. Accurate magnetic field calculations for contactless energy transfer coils

    OpenAIRE

    Sonntag, C.L.W.; Spree, M.; Lomonova, E.A.; Duarte, J.L.; Vandenput, A.J.A.

    2007-01-01

    In this paper, a method for estimating the magnetic field intensity from hexagon spiral windings commonly found in contactless energy transfer applications is presented. The hexagonal structures are modeled in a magneto-static environment using Biot-Savart current stick vectors. The accuracy of the models are evaluated by mapping the current sticks and the hexagon spiral winding tracks to a local twodimensional plane, and comparing their two-dimensional magnetic field intensities. The accurac...

  6. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil

    Czech Academy of Sciences Publication Activity Database

    Poštulka, J.; Slavíček, P.; Fedor, Juraj; Fárník, Michal; Kočišek, Jaroslav

    2017-01-01

    Roč. 121, č. 38 (2017), s. 8965-8974 ISSN 1520-6106 R&D Projects: GA ČR GJ16-10995Y; GA ČR(CZ) GA17-04068S Institutional support: RVO:61388955 Keywords : Aromatic compounds * Electrons * Energy transfer Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  7. Spatial propagation of excitonic coherence enables ratcheted energy transfer

    OpenAIRE

    Hoyer, Stephan; Ishizaki, Akihito; Whaley, K. Birgitta

    2011-01-01

    Experimental evidence shows that a variety of photosynthetic systems can preserve quantum beats in the process of electronic energy transfer, even at room temperature. However, whether this quantum coherence arises in vivo and whether it has any biological function have remained unclear. Here we present a theoretical model that suggests that the creation and recreation of coherence under natural conditions is ubiquitous. Our model allows us to theoretically demonstrate a mechanism for a ratch...

  8. Quantitative analysis with energy dispersive X-ray fluorescence analyser

    International Nuclear Information System (INIS)

    Kataria, S.K.; Kapoor, S.S.; Lal, M.; Rao, B.V.N.

    1977-01-01

    Quantitative analysis of samples using radioisotope excited energy dispersive x-ray fluorescence system is described. The complete set-up is built around a locally made Si(Li) detector x-ray spectrometer with an energy resolution of 220 eV at 5.94 KeV. The photopeaks observed in the x-ray fluorescence spectra are fitted with a Gaussian function and the intensities of the characteristic x-ray lines are extracted, which in turn are used for calculating the elemental concentrations. The results for a few typical cases are presented. (author)

  9. Theoretical study for a digital transfer function analyser; Etude theorique pour un transferometre digital

    Energy Technology Data Exchange (ETDEWEB)

    Freycenon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    This study deals with the harmonic analysis of the instantaneous counting rate of a pulse train. This arises from using a fission chamber for reactivity to power transfer function measurements by oscillation methods in reactors. The systematical errors due to the sampling process are computed. The integration carried out when sampling the signal modifies the formulae of the Nyquist theorem on spectrum folding. The statistical errors due to the noise are analysed: it is shown that the bandwidth of the spectral window applied to the noise frequency spectrum is equal to the inverse of the time duration of the experiment. A dead time of 25 per cent of the sampling time does not increase appreciably the bandwidth. A new method is proposed afterwards yielding very approximate results of the Fourier analysis during the experiment. The systematical errors arising from the measuring process are determined, and it is shown that the bandwidth of the corresponding spectral window is still given by the inverse of the time duration of the experiment. (author) [French] Cette etude se rapporte a l'analyse harmonique de la valeur instantanee du taux de comptage d'une suite d'impulsions. On rencontre ce probleme dans l'utilisation de chambres a fission pour les mesures de fonction de transfert reactivite-puissance par la methode d'oscillation dans les piles. On calcule l'erreur systematique due au processus d'echantillonnage ou l'integration operee modifie les formules classiques de recouvrement du spectre. On analyse ensuite les erreurs statistiques dues au bruit de fond. On montre que la largeur de bande de la fenetre spectrale appliquee au spectre de puissance du bruit est donnee par l'inverse du temps de mesure. Un temps mort de 25 pour cent du temps de prelevement n'accroit pas sensiblement cette largeur de bande. On propose ensuite un procede simple qui permet d'obtenir, en cours d'experience, des resultats tres approches de l'analyse de Fourier. On determine les erreurs

  10. Electromagnetic Energy Absorption due to Wireless Energy Transfer: A Brief Review

    Directory of Open Access Journals (Sweden)

    Syafiq A.

    2016-01-01

    Full Text Available This paper reviews an implementation of evaluating compliance of wireless power transfer systems with respect to human electromagnetic exposure limits. Methods for both numerical analysis and measurements are discussed. The objective is to evaluate the rate of which energy is absorbed by the human body when exposed to a wireless energy transfer, although it can be referred to the absorption of other forms of energy by tissue. An exposure assessment of a representative wireless power transfer system, under a limited set of operating conditions, is provided in order to estimate the maximum SAR levels. The aim of this review is to conclude the possible side effect to the human body when utilizing wireless charging in daily life so that an early severe action can be taken when using wireless transfer.

  11. Coherence and relaxation in energy transfer processes in condensed phases

    International Nuclear Information System (INIS)

    Shelby, R.M.

    1978-03-01

    Investigations of electronic triplet and vibrational energy transfer dynamics and relaxation processes are presented. Emphasis is placed on understanding the role of coherence and interactions which tend to destroy the coherence. In the case of triplet excitons at low temperatures, the importance of coherence in energy migration can be established, and the average coherence parameters can be experimentally determined. In the case of vibrational excitations, both picosecond spectroscopic studies of vibrational relaxation and spontaneous Raman spectroscopy are used to characterize the dynamics and give increased insight into the nature of the mechanisms responsible for vibrational dephasing. The design and operation of the picosecond apparatus used in these experiments is also described

  12. Isotope separation process by transfer of vibrational energy

    International Nuclear Information System (INIS)

    Angelie, C.; Cauchetier, M.; Paris, J.

    1983-01-01

    This process consists in exciting A molecules by absorption of a pulsed light beam, then in exciting until their dissociation X molecules, present in several isotopic forms, by a vibrational transfer between the A molecules and the X molecules, the A molecules having a dissociation energy greater than that of the X molecules, the duration and energy of the light pulses being such that the absorption time by the A molecules is less than the excitation time of the X molecules and the temperature conditions such that the thermal width of the vibration rays is at the most near the isotopic difference between the resonance rays of the two isotopic varieties [fr

  13. State-to-state dynamics of molecular energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  14. Homopolar machine for reversible energy storage and transfer systems

    Science.gov (United States)

    Stillwagon, Roy E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  15. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    Stillwagon, R.E.

    1981-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine

  16. Solar wind energy transfer regions inside the dayside magnetopause

    International Nuclear Information System (INIS)

    Lundin, R.; Dubinin, E.

    1984-01-01

    PROGNOZ-7 high temporal resolution measurements of the ion composition and hot plasma distribution in the dayside high latitude boundary layer near noon have revealed that magnetosheath plasma may penetrate the dayside magnetopause and form high density, high β, magnetosheath-like regions inside the magnetopause. From these measurements it is demonstrated that the magnetosheath injection regions most probably play an important role in transferring solar wind energy into the magnetosphere. The transfer regions are characterized by a strong perpendicular flow towards dawn or dusk (depending on local time) but are also observed to expand rapidly along the boundary field lines. This increased flow component transverse to the local magnetic field corresponds to a predominantly radial electric field of up to several mV m -1 , which indicates that the injected magnetosheath plasma causes an enhanced polarization of the boundary layer. Polarization of the boundary layer can therefore be considered a result of a local MHD-process where magnetosheath plasma excess momentum is converted into electromagnetic energy (electric field), i.e. there is an MHD-generator. It was observed that the boundary layer is charged up to tens of kilovolts, a potential which may be highly variable on e.g. the presence of a momentum exchange by the energy transfer regions. (author)

  17. Energy and charge transfer in ionized argon coated water clusters

    International Nuclear Information System (INIS)

    Kočišek, J.; Lengyel, J.; Fárník, M.; Slavíček, P.

    2013-01-01

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H 2 O) n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar + and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar + * and water opens leading to new products Ar n H + and (H 2 O) n H + . On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H 2 O) n H 2 2+ and (H 2 O) n 2+ ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent

  18. Analyses of High-Energy Sources with ESA Gaia

    Czech Academy of Sciences Publication Activity Database

    Hudec, R.; Šimon, Vojtěch; Hudcová, Věra

    2010-01-01

    Roč. 1248, - (2010), s. 583-584 ISSN 1551-7616. [X-ray astronomy 2009. Bologna, 07.09.2009-11.09.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : high-energy sources * gamma-ray bursts * low-dispersion spectra Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  19. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  20. Luminescence and energy transfer processes in rare earth compounds

    International Nuclear Information System (INIS)

    Vliet, J.P.M. van.

    1989-01-01

    In this thesis some studies are presented of the luminescence and energy transfer in compounds containing Eu 3+ , Pr 3+ and Gd 3+ ions. Ch. 2 deals with the energy migration in the system Gd 1 - xEu x(IO 3) 3. In ch 3 the luminescence properties of the Pr 3+ ion in the system La 1 - xPr xMgAl 1 10 1 9 are reported. Ch. 4 discusses the luminescence properties of alkali europium double tungstates and molybdates AEuW 20 8 and AEuMo 20 * (A + = alkali metal atom). The luminiscence and energy migration characteristics of the isostructural system LiGd 1 - xEu xF 4 and Gd 1 - xEu xNbO 4 are reported in ch. 5. In ch. 6 the mechanism of energy migration in (La,Gd)AlO 3 and (Gd,Eu)AlO 3 is discussed. Ch. 7 deals with the system Na 5(Gd,Eu) (WO 4) 4. In ch. 8 the luminescence and energy transfer properties of two europium tellurite anti-glass phases are reported. The two phases are Eu 1 . 7 9TeO x, which has a pseudotetragonal structure, and Eu 1 . 0 6TeO x, which has a monoclinic, ordered structure. (author). 201 refs.; 39 figs.; 8 tabs

  1. Energy distribution and transfer in flowing hydrogen microwave plasmas

    International Nuclear Information System (INIS)

    Chapman, R.A.

    1987-01-01

    This thesis is an experimental investigation of the physical and chemical properties of a hydrogen discharge in a flowing microwave plasma system. The plasma system is the mechanisms utilized in an electrothermal propulsion concept to convert electromagnetic energy into the kinetic energy of flowing hydrogen gas. The plasmas are generated inside a 20-cm ID resonant cavity at a driving frequency of 2.45 GHz. The flowing gas is contained in a coaxially positioned 22-mm ID quartz discharge tube. The physical and chemical properties are examined for absorbed powers of 20-100 W, pressures of 0.5-10 torr, and flow rates of 0-10,000 μ-moles/sec. A calorimetry system enclosing the plasma system to accurately measure the energy inputs and outputs has been developed. The rate of energy that is transferred to the hydrogen gas as it flows through the plasma system is determined as a function of absorbed power, pressure, and flow rate to +/-1.8 W from an energy balance around the system. The percentage of power that is transferred to the gas is found to increase with increasing flow rate, decrease with increasing pressure, and to be independent of absorbed power

  2. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    Science.gov (United States)

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  3. Targeted Energy Transfer Phenomena in Vibro-Impact Oscillators

    International Nuclear Information System (INIS)

    Lee, Young S.; McFarland, D. Michael; Bergman, Lawrence A.; Nucera, Francesco; Vakakis, Alexander F.

    2008-01-01

    We study targeted energy transfer (TET) in a coupled oscillator, consisting of a single-degree-of-freedom primary linear oscillator coupled to a vibro-impact nonlinear energy sink (VI NES). For this purpose, we first compute the VI periodic orbits of the underlying hamiltonian VI system, and construct the corresponding frequency-energy plot (FEP). Then, considering inelastic impacts and viscous dissipation, we examine VI damped transitions on the FEP to identify a TET phenomenon by exciting a VI impulsive orbit, which is the most efficient mechanism for TET. Not only can the VI TET involve passive absorption and local dissipation of significant portions of the energy from the primary systems, but it occurs at sufficiently fast time scales. This renders VI NESs suitable for applications, like seismic mitigation, where shock elimination in the early, highly energetic regime of the motion is a critical requirement

  4. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

  5. Energy-donor phosphorescence quenching study of triplet–triplet energy transfer between UV absorbers

    International Nuclear Information System (INIS)

    Kikuchi, Azusa; Nakabai, Yuya; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2015-01-01

    The intermolecular triplet–triplet energy transfer from a photounstable UV-A absorber, 4-tert-butyl-4′-methoxydibenzoylmethane (BMDBM), to UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC), octocrylene (OCR) and dioctyl 4-methoxybenzylidenemalonate (DOMBM) has been observed using a 355 nm laser excitation in rigid solutions at 77 K. The decay curves of the energy-donor phosphorescence in the presence of the UV-B absorbers deviate from the exponential decay at the initial stage of the decay. The Stern–Volmer formulation is not valid in rigid solutions because molecular diffusion is impossible. The experimental results indicate that the rate constant of triplet–triplet energy transfer from BMDBM to the UV-B absorbers, k T–T , decreases in the following order: k T–T (BMDBM–DOMBM)>k T–T (BMDBM–OMC)≥k T–T (BMDBM–OCR). The presence of DOMBM enhances the photostability of the widely used combination of UV-A and UV-B absorbers, BMDBM and OCR. The effects of the triplet–triplet energy transfer on the photostability of BMDBM are discussed. - Highlights: • The intermolecular triplet–triplet energy transfer between UV absorbers was observed. • The phosphorescence decay deviates from exponential at the initial stage of decay. • The effects of triplet–triplet energy transfer on the photostability are discussed

  6. Thermoluminescent analyses of mean photon energy of a field

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, T. A.; De Paiva, F.; Fonseca, G.; Dalledone S, P. de T.; Yoriyaz, H., E-mail: tassio.cavalieri@usp.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Nowadays a common method of dosimetry is utilize the thermoluminescent dosimetry (TLD) of LiF, where for pure gamma field is typically used the LiF or CaF{sub 2} TLDs and for mixed neutron and gamma field dosimetry is used the pair TLD-600/TLD-700. The difference between these three LiF TLDs is the amount of isotope {sup 6}Li in their composition. The isotope {sup 6}Li has a great cross section for thermal neutrons, making the TLD-600 sensitive to thermal neutrons beyond the radiation gamma. Whereas the TLD-700 is considered sensitive only for radiation gamma. Some studies showed an energetic dependence of these TLDs for gammas rays. So the goal of this work was study these energetic dependence of TLDs from the angular coefficient of their response versus dose calibration curves when they were irradiated in four fields with photons of different energies: 43 keV, 662 keV, 1.2 MeV, 3 MeV. In order to create the calibration curves TLD, it was performed three irradiations with distinct exposure times for each photon energy. These studies showed a different angular coefficient to each curve; demonstrate the energetic dependence of these TLDs. By simulation with Monte Carlo based code, MCNP-5, it was observed the deposited photon dose due to different photons energies. From these simulations, it was also possible to observe a difference of dose deposition in TLDs when they were exposed to the same dose provided from different photons energies. These work showed the previously study of photon energetic dependence of LiF TLDs. (Author)

  7. New theory of radiative energy transfer in free electromagnetic fields

    International Nuclear Information System (INIS)

    Wolf, E.

    1976-01-01

    A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon

  8. Membranes: A Variety of Energy Landscapes for Many Transfer Opportunities.

    Science.gov (United States)

    Bacchin, Patrice

    2018-02-22

    A membrane can be represented by an energy landscape that solutes or colloids must cross. A model accounting for the momentum and the mass balances in the membrane energy landscape establishes a new way of writing for the Darcy law. The counter-pressure in the Darcy law is no longer written as the result of an osmotic pressure difference but rather as a function of colloid-membrane interactions. The ability of the model to describe the physics of the filtration is discussed in detail. This model is solved in a simplified energy landscape to derive analytical relationships that describe the selectivity and the counter-pressure from ab initio operating conditions. The model shows that the stiffness of the energy landscape has an impact on the process efficiency: a gradual increase in interactions (such as with hourglass pore shape) can reduce the separation energetic cost. It allows the introduction of a new paradigm to increase membrane efficiency: the accumulation that is inherent to the separation must be distributed across the membrane. Asymmetric interactions thus lead to direction-dependent transfer properties and the membrane exhibits diode behavior. These new transfer opportunities are discussed.

  9. Technology application analyses at five Department of Energy Sites

    International Nuclear Information System (INIS)

    1995-05-01

    The Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Lockheed Martin Energy Systems, Inc., managing contractor for the Department of Energy (DOE) facilities in Oak Ridge, Tennessee, was tasked by the United States Air Force (USAF) through an Interagency Agreement between DOE and the USAF, to provide five Technology Application Analysis Reports to the USAF. These reports were to provide information about DOE sites that have volatile organic compounds contaminating soil or ground water and how the sites have been remediated. The sites were using either a pump-and-treat technology or an alternative to pump-and-treat. The USAF was looking at the DOE sites for lessons learned that could be applied to Department of Defense (DoD) problems in an effort to communicate throughout the government system. The five reports were part of a larger project undertaken by the USAF to look at over 30 sites. Many of the sites were DoD sites, but some were in the private sector. The five DOE projects selected to be reviewed came from three sites: the Savannah River Site (SRS), the Kansas City Site, and Lawrence Livermore National Laboratory (LLNL). SRS and LLNL provided two projects each. Both provided a standard pump-and-treat application as well as an innovative technology that is an alternative to pump-and-treat. The five reports on these sites have previously been published separately. This volume combines them to give the reader an overview of the whole project

  10. Automatic energy dispersive x-ray fluorescence analysing apparatus

    International Nuclear Information System (INIS)

    Russ, J.C.; Carey, R.; Chopra, V.K.

    1983-01-01

    The invention discloses a number of improvements for an energy dispersive X-ray analysis system having computer supervised data collection, display and processing. The systems with which the improved circuitry and methods may be used include a dual interlocking bus structure so that the analyzer and computer functions communicate directly with each other and the user has immediate keyboard control of both. Such a system normally includes a system base control, a control console and a display console. The portions of the system which have been improved include a new type of ratemeter which gives a voltage output proportional to the intensity of the energy window or windows under consideration, an output which is an absolute digital representation of the intensity count rate, circuitry for input multiplexing and multiple output voltage buffering of the ratemeter to accomodate multiple single channel signals, and a new dead time correction to enable meaningful single channel intensity data to be handled by the system. An extension of the ratemeter is also disclosed for use in conjunction with X-ray mapping, enabling enhancements to be made on mapping SCA data

  11. Emittance growth of an electron beam in a periodic channel due to transfer of longitudinal energy to transverse energy

    International Nuclear Information System (INIS)

    Carlsten, B.E.

    1998-01-01

    Most discussions about emittance growth and halo production for an intense electron beam in a periodic focusing channel assume that the total transverse energy is constant (or, in other words, that the transverse and longitudinal Hamiltonians are separable). Previous analyses that include variations in the total transverse energy are typically based on a transverse-longitudinal coupling that is either from two-dimensional space-charge modes or particle-particle Coulomb collisions. With the space-charge modes, the energy exchange between the transverse and longitudinal directions is periodic, and of constant magnitude. The total energy transfer for the case of the Coulomb collisions is negligible. This limited increase of energy in the transverse direction from these other effects will limit the amount of transverse emittance growth possible. In this paper, the authors investigate a mechanism in which there is a continual transfer of energy from the longitudinal direction to the transverse direction, leading to essentially unlimited potential transverse emittance growth. This mechanism is caused by an asymmetry of the beam's betatron motion within the periodic focusing elements. This analysis is based on thermodynamic principles. This mechanism exists for both solenoids and quadrupole focusing, although only solenoid focusing is studied here

  12. Vibrational energy transfer in hydrogen liquid and its isotopes

    International Nuclear Information System (INIS)

    Gale, G.M.; Delalande, C.

    1978-01-01

    The transfer of vibrational energy (V-V) from H 2 to isotopic impurities (HD or D 2 ) has been studied in the liquid state, between 15 and 30 K. The subsequent ralaxation (V-T) of the excited impurity by the H 2 liquid host has also been measured and contrasted with the vibrational relaxation behaviour of pure H 2 and D 2 liquids. The isothermal density dependence of both V-V and V-T transfer has been investigated in the fluid state at 30 K. High density relaxation rates are also compared to the data in the pure gases and to other available gas phase results. Measurements in the solid, near the triple-point temperature, are equally reported for each process studied. (Auth.)

  13. Comparison of vibrational conductivity and radiative energy transfer methods

    Science.gov (United States)

    Le Bot, A.

    2005-05-01

    This paper is concerned with the comparison of two methods well suited for the prediction of the wideband response of built-up structures subjected to high-frequency vibrational excitation. The first method is sometimes called the vibrational conductivity method and the second one is rather known as the radiosity method in the field of acoustics, or the radiative energy transfer method. Both are based on quite similar physical assumptions i.e. uncorrelated sources, mean response and high-frequency excitation. Both are based on analogies with some equations encountered in the field of heat transfer. However these models do not lead to similar results. This paper compares the two methods. Some numerical simulations on a pair of plates joined along one edge are provided to illustrate the discussion.

  14. Surprisal analysis and probability matrices for rotational energy transfer

    International Nuclear Information System (INIS)

    Levine, R.D.; Bernstein, R.B.; Kahana, P.; Procaccia, I.; Upchurch, E.T.

    1976-01-01

    The information-theoretic approach is applied to the analysis of state-to-state rotational energy transfer cross sections. The rotational surprisal is evaluated in the usual way, in terms of the deviance of the cross sections from their reference (''prior'') values. The surprisal is found to be an essentially linear function of the energy transferred. This behavior accounts for the experimentally observed exponential gap law for the hydrogen halide systems. The data base here analyzed (taken from the literature) is largely computational in origin: quantal calculations for the hydrogenic systems H 2 +H, He, Li + ; HD+He; D 2 +H and for the N 2 +Ar system; and classical trajectory results for H 2 +Li + ; D 2 +Li + and N 2 +Ar. The surprisal analysis not only serves to compact a large body of data but also aids in the interpretation of the results. A single surprisal parameter theta/subR/ suffices to account for the (relative) magnitude of all state-to-state inelastic cross sections at a given energy

  15. Manipulation of Energy Transfer Processes in Nano channels

    International Nuclear Information System (INIS)

    Devaux, A.; Calzaferri, G.

    2010-01-01

    The realisation of molecular assemblies featuring specific macroscopic properties is a prime example for the versatility of supramolecular organisation. Microporous materials such as zeolite L are well suited for the preparation of host-guest composites containing dyes, complexes, or clusters. This short tutorial focuses on the possibilities offered by zeolite L to study and influence Forster resonance energy transfer inside of its nano channels. The highly organised host-guest materials can in turn be structured on a larger scale to form macroscopic patterns, making it possible to create large-scale structures from small, highly organised building blocks for novel optical applications.

  16. Nanoparticles for heat transfer and thermal energy storage

    Science.gov (United States)

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  17. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  18. Energy transfer to xanthene dyes in dansylated POPAM dendrimers

    Science.gov (United States)

    Aumanen, Jukka; Korppi-Tommola, Jouko

    2011-12-01

    Excitation energy transfer (EET) in host-guest complexes of dansylated POPAM dendrimers and xanthene dyes have been studied by transient absorption spectroscopy. EET from dansyl periphery to guests: rose bengal, eosin, or fluorescein, showed non-exponential behaviour as a result of distribution of donor-acceptor distances. Time constants range from 100 fs to 8 ps, independent of the dye and the dendrimer generation. Experiments suggested that in dendrimers binding more than one guest, EET among the guests becomes effective. Guest-host and guest-guest interactions induce non-radiative relaxation channels making excitation decays of the guests clearly faster in complexes than in solution.

  19. Energy transfer from an alkene triplet state during pulse radiolysis

    International Nuclear Information System (INIS)

    Barwise, A.J.G.; Gorman, A.A.; Rodgers, M.A.J.

    1976-01-01

    Pulse radiolysis of a benzene solution of norbornene containing low concentrations of anthracene results in delayed formation of anthracene triplet: this is the result of diffusion-controlled energy transfer from the alkene triplet state which has a natural lifetime in benzene of 250 ns. The use of various hydrocarbon acceptors has indicated that Esub(T)=20 000+-500 cm -1 for the relaxed T 1 state of the alkene, at least 5000 cm -1 below that of the spectroscopic state. (Auth.)

  20. Energy-dependent applications of the transfer matrix method

    International Nuclear Information System (INIS)

    Oeztunali, O.I.; Aronson, R.

    1975-01-01

    The transfer matrix method is applied to energy-dependent neutron transport problems for multiplying and nonmultiplying media in one-dimensional plane geometry. Experimental cross sections are used for total, elastic, and inelastic scattering and fission. Numerical solutions are presented for the problem of a unit point isotropic source in an infinite medium of water and for the problem of the critical 235 U slab with finite water reflectors. No iterations were necessary in this method. Numerical results obtained are consistent with physical considerations and compare favorably with the moments method results for the problem of the unit point isotropic source in an infinite water medium. (U.S.)

  1. Energy transfer efficiency measurements in a theta-pinch

    International Nuclear Information System (INIS)

    Cavalcanti, G.H.; Luna, F.R.T.; Trigueiros, A.G.

    1993-01-01

    An increase in energy transfer efficiency of the capacitor bank to the plasma was obtained when the electrical system of a theta-pinch was changed so that the ratio of total inductance to coil inductance was switched of 1/6 to 1/2. A further increase about 20% was obtained for 16/1 ratio. The measurements were made through the current discharge decay, and the spectral analysis of the emitted light from theta-pinch shows a correspondent efficiency increase. (author)

  2. Power Loss Analysis and Comparison of Segmented and Unsegmented Energy Coupling Coils for Wireless Energy Transfer.

    Science.gov (United States)

    Tang, Sai Chun; McDannold, Nathan J

    2015-03-01

    This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems.

  3. Characterising phosphorus transfers in rural catchments using a continuous bank-side analyser

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available A six-month series of high-resolution synchronous stream discharge and total phosphorus (TP concentration data is presented from a 5 km2 agricultural catchment in the Lough Neagh basin, Northern Ireland. The data are hourly averages of 10-minute measurements using a new bankside, automatic, continuous monitoring technology. Three TP transfer "event-types" occur in this catchment: (1 chronic, storm independent transfers; (2 acute, storm dependent transfers; (3 acute, storm independent transfers. Event-type 2 transferred over 90% of the total 279 kg TP load in 39% of the total period; it corresponded to diffuse transfers from agricultural soils. Event-types 1 and 3, however, maintained the river in a highly eutrophic state between storm events and were characteristic of point source pollution, despite there being no major industrial or municipal point sources. Managing P transfers at the catchment scale requires a robust monitoring technology to differentiate between dynamic, multiple sources and associated event types and so enable a reliable assessment of the performance of mitigation measures, monitored at catchment outlets. The synchronous and continuous TP and discharge data series generated in this study demonstrate how this is possible.

  4. Effect of high linear energy transfer radiation on biological membranes

    International Nuclear Information System (INIS)

    Choudhary, D.; Srivastava, M.; Kale, R.K.; Sarma, A.

    1998-01-01

    Cellular membranes are vital elements, and their integrity is extremely essential for the viability of the cells. We studied the effects of high linear energy transfer (LET) radiation on the membranes. Rabbit erythrocytes (1 x 10 7 cells/ml) and microsomes (0.6 mg protein/ml) prepared from liver of rats were irradiated with 7 Li ions of energy 6.42 MeV/u and 16 O ions of energy 4.25 MeV/u having maximum LET values of 354 keV/μm and 1130 keV/μm, respectively. 7 Li- and 16 O-induced microsomal lipid peroxidation was found to increase with fluence. The 16 O ions were more effective than 7 Li ions, which could be due to the denser energy distribution in the track and the yield of free radicals. These findings suggested that the biological membranes could be peroxidized on exposure to high-LET radiation. Inhibition of the lipid peroxidation was observed in the presence of a membrane-active drug, chlorpromazine (CPZ), which could be due to scavenging of free radicals (mainly HO. and ROO.), electron donation, and hydrogen transfer reactions. The 7 Li and 16 O ions also induced hemolysis in erythrocytes. The extent of hemolysis was found to be a function of time and fluence, and showed a characteristic sigmoidal pattern. The 16 O ions were more effective in the lower fluence range than 7 Li ions. These results were compared with lipid peroxidation and hemolysis induced by gamma-radiation. (orig.)

  5. Heat transfer and energy efficiency in infrared paper dryers

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Magnus

    1999-11-01

    Infrared (IR) dryers are widely used in the paper industry, mainly in the production of coated paper grades. The thesis deals with various aspects of heat transfer and energy use in infrared heaters and dryers as employed in the paper industry. Both gas-fired and electric IR dryers are considered and compared. The thesis also provides an introduction to infrared heaters and infrared drying, including a review of recent literature in the field. The transport of thermal radiation inside a paper sheet was investigated and different IR dryers were compared in terms of their ability to transfer energy to the internal parts of a paper sheet. Although there were evident differences in the absorption of radiation between gas-fired and electric IR dryers, the distinction was found not to be as important as has generally been believed. The main differences appeared to be due to the choice of a one- or a two-sided dryer solution, rather than the spectral distributions emitted by the dryers. A method for evaluating the radiation efficiency of IR heaters was proposed. An electric IR heater was evaluated in the laboratory. The radiation efficiency of the heater was shown to be strongly dependent on the power level. The maximum efficiency, found at high power level, was close to 60 %. A procedure for evaluation of the total energy transfer efficiency of an infrared paper dryer was proposed and used in the evaluation of an electric IR dryer operating in an industrial coating machine. The efficiency of the dryer was roughly 40 %. A model for an electric IR heater was developed. The model includes non-grey radiative heat transfer between the different parts of the heater, as well as conduction in reflector material and convective cooling of the surfaces. Using IR module voltage as the only input, model predictions of temperatures and heat flux were found to agree well with experimental data both at steady state and under transient conditions. The model was also extended to include

  6. Light harvesting via energy transfer in the dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siegers, Conrad

    2007-11-09

    The PhD-thesis ''Light Harvesting via Energy Transfer in the Dye Solar Cell'' (University of Freiburg, July 2007) describes the conceptual design, synthesis and testing of energy donor acceptor sensitizers for the dye solar cell (DSC). Under monochromatic illumination solar cells sensitized with the novel donor acceptor systems revealed a higher power conversion efficiency than cells containing exclusively the acceptor component. The following approach led to this conclusion: (i) the choice of suitable chromophores as energy donor and acceptor moieties according to the Foerster-theory, (ii) the synthesis of different donor acceptor systems, (iii) the development of a methodology allowing the quantification of energy transfer within dye solar cells, and (iv) the evaluation of characteristics of DSCs that were sensitized with the different donor acceptor systems. The acceptor chromophores used in this work were derived from [Ru(dcbpy)2acac]Cl (dcbpy = 4,4'-dicarboxy-2,2'-bipyridin, acac = acetylacetonato). This complex offered the opportunity to introduce substituents at the acac-ligand's terminal CH3 groups without significantly affecting its excellent photoelectrochemical properties. Alkylated 4-amino-1,8-naphthalimides (termed Fluorols in the following) were used as energy donor chromophores. This class of compounds fulfils the requirements for efficient energy transfer to [Ru(dcbpy)2acac]Cl. Covalently linking donor and acceptor chromophores to one another was achieved by two different concepts. A dyad comprising one donor and one acceptor chromophore was synthesized by subsequent hydrosilylation steps of an olefin-bearing donor and an acceptor precursor to the dihydrosilane HSiMe2-CH2CH2-SiMe2H. A series of polymers comprising multiple donor and acceptor units was made by the addition of alkyne-bearing chromophores to hyperbranched polyglycerol azide (''Click-chemistry''). In this series the donor acceptor

  7. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  8. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  9. Ultrafast Single and Multiexciton Energy Transfer in Semiconductor Nanoplatelets

    Science.gov (United States)

    Schaller, Richard

    Photophysical processes such as fluorescence resonance energy transfer (FRET) enable optical antennas, wavelength down-conversion in light-emitting diodes (LEDs), and optical bio-sensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells and reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (QDs) (0.12-1 ns), do not outpace biexciton Auger recombination (0.01-0.1 ns), which impedes multiexciton-driven applications including electrically-pumped lasers and carrier-multiplication-enhanced photovoltaics. Precisely controlled, few-monolayer thick semiconductor nano-platelets with tens-of-nanometer diameters exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that inter-plate FRET (~6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies. This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357.

  10. Energy transfer mechanism in CsI:Eu crystal

    International Nuclear Information System (INIS)

    Yakovlev, V.; Trefilova, L.; Karnaukhova, A.; Ovcharenko, N.

    2014-01-01

    This paper studies the scintillation process in CsI:Eu crystal exposed to the pulse electron irradiation (E=0.25 MeV, t 1/2 =15 ns and W=0.003 J/cm 2 ). It has been proved that the energy transfer from the lattice to Eu 2+ ions in CsI:Eu occurs through the re-absorption of STE emission. The proposed model rests on the following experimental facts: (1) the activator emission at 2.68 eV rises gradually after the decay of the excitation pulse even at temperature lower than 90 K when V k centers are immobile; (2) the rise time of 2.68 eV emission and the decay time of STE emission have the same temperature dependences at T=78–300 K; (3) the excitation spectrum of 2.68 eV emission overlaps the emission spectrum of STE. -- Highlights: • The scintillation process in CsI:Eu was studied under pulsed electron irradiation. • A model of the energy transfer from the lattice to Eu 2+ ions in CsI:Eu was proposed. • Eu 2+ ions in CsI:Eu reabsorb the π-emission of self-trapped excitons

  11. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J.

    2015-11-01

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum.

  12. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes.

    Science.gov (United States)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J

    2015-11-03

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Parameterization and sensitivity analyses of a radiative transfer model for remote sensing plant canopies

    Science.gov (United States)

    Hall, Carlton Raden

    A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf

  14. Two Dimensional CFD Analyses on the Heat Transfer for a Supercritical Pressure CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hyun; Kim, Young In; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The Supercritical Water Cooled Reactor(SCWR) operates in a pressure around 25MPa and temperature of 293{approx}510 .deg. C. In order to study the heat transfer behaviors and good comparisons between the various fluids, a heat transfer test loop(SPHINX) using CO{sub 2} has been constructed in KAERI as a part of international research program, I-NERI. At a supercritical pressure, the heat transfer coefficient is much larger than that estimated from the Dittus-Boelter correlation for a relatively large flow rate with moderate wall heat flux conditions. This phenomenon was explained by the rapid variations of the physical properties near the wall with the temperature. On the contrary, the heat transfer becomes worse when the bulk fluid enthalpy is below the pseudo-critical enthalpy under a low flow rate with large heat flux conditions. This phenomenon is called 'deteriorated heat transfer', and which is explained as the modification of the shear stress distribution across the tube to a buoyancy and/or acceleration in a low density layer near the wall, with the consequence of a turbulence. The upward vertical flow of CO{sub 2} through a uniformly heated tube of 4.4 mm in diameter and 3m long(heated length is 2.1m) was investigated numerically using the CFD code, FLUENT. Through the numerical simulations, we have attempted to obtain a physically meaningful insight into the heat transfer mechanisms at a supercritical pressure.

  15. Photophysical properties and energy transfer mechanism of PFO/Fluorol 7GA hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Asbahi, Bandar Ali, E-mail: alasbahibandar@gmail.com [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Science, Sana' a University (Yemen); Jumali, Mohammad Hafizuddin Haji, E-mail: hafizhj@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Yap, Chi Chin; Flaifel, Moayad Husein [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2013-10-15

    Photophysical properties of poly (9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO)/2-butyl-6- (butylamino)benzo [de] isoquinoline-1,3-dione (Fluorol 7GA) and energy transfer between them have been investigated. In this work, both PFO and Fluorol 7GA act as donor and acceptor, respectively. Based on the absorption and luminescence measurements, the photophysical and energy transfer properties such as fluorescence quantum yield (Φ{sub f}), fluorescence lifetime (τ), radiative rate constant (k{sub r}), non-radiative rate constant (k{sub nr}), quenching rate constant (k{sub SV}), energy transfer rate constant (k{sub ET}), energy transfer probability (P{sub DA}), energy transfer efficiency (η), critical concentration of acceptor (C{sub o}), energy transfer time (τ{sub ET}) and critical distance of energy transfer (R{sub o}) were calculated. Large values of k{sub SV}, k{sub ET} and R{sub o} suggested that Förster-type energy transfer was the dominant mechanism for the energy transfer between the excited donor and ground state acceptor molecules. It was observed that the Förster energy transfer together with the trapping process are crucial for performance improvement in ITO/(PFO/Fluorol7GA)/Al device. -- Highlights: • The efficient of energy transfer from PFO to Fluorol 7GA was evidenced. • The resonance energy transfer (Förster type) is the dominant mechanism. • Hsu et al. model was used to calculate Φ{sub f}, τ, k{sub r} and k{sub nr} of PFO thin film. • Several of the photophysical and energy transfer properties were calculated. • Trapping process and Förster energy transfer led to improve the device performance.

  16. Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells

    NARCIS (Netherlands)

    Rabouw, Freddy T.; Meijerink, Andries

    2015-01-01

    Cooperative energy transfer (ET) is a quantum cutting (or downconversion) process where a luminescent center splits its excited state energy in two by simultaneous transfer to two nearby acceptor centers, thus yielding two low-energy photons for each high-energy photon absorbed. It has the potential

  17. The Clean Energy Transfer : preliminary assesment of the potential for a clean energy transfer between Manitoba and Ontario

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    Ontario may have an electrical power shortfall of as much as 25,000 MW by 2020, due to phase-out of coal fired plants, a general increase in demand and existing plants reaching the end of their design lives. Manitoba has approximately 5,000 MW of new hydroelectric power potential which could help to reduce this shortfall. This document reports on a study between the Manitoba government, the Ontario government, Manitoba Hydro, Hydro One, and the Ontario Independent Electricity Market Operator to provide an incremental transfer capability of 1,500 MW between the provinces. This is known as the Clean Energy Transfer Initiative (CETI). The current east-west transmission grid is limited to about 200 MW and is thus not sufficient for this project. Three transmission options have been studied. The report claims that CETI would be the largest single project in terms of greenhouse gas reductions. It is also claimed to potentially benefit Aboriginal groups by increasing employment and business opportunities. Also, tax revenues would be substantial. The most likely alternative energy supply is considered to be the combined cycle gas turbine which, according to the study, would cost about the same amount per MWh, excluding environmental credits. 4 tabs., 11 figs.

  18. The Clean Energy Transfer : preliminary assesment of the potential for a clean energy transfer between Manitoba and Ontario

    International Nuclear Information System (INIS)

    2004-09-01

    Ontario may have an electrical power shortfall of as much as 25,000 MW by 2020, due to phase-out of coal fired plants, a general increase in demand and existing plants reaching the end of their design lives. Manitoba has approximately 5,000 MW of new hydroelectric power potential which could help to reduce this shortfall. This document reports on a study between the Manitoba government, the Ontario government, Manitoba Hydro, Hydro One, and the Ontario Independent Electricity Market Operator to provide an incremental transfer capability of 1,500 MW between the provinces. This is known as the Clean Energy Transfer Initiative (CETI). The current east-west transmission grid is limited to about 200 MW and is thus not sufficient for this project. Three transmission options have been studied. The report claims that CETI would be the largest single project in terms of greenhouse gas reductions. It is also claimed to potentially benefit Aboriginal groups by increasing employment and business opportunities. Also, tax revenues would be substantial. The most likely alternative energy supply is considered to be the combined cycle gas turbine which, according to the study, would cost about the same amount per MWh, excluding environmental credits. 4 tabs., 11 figs

  19. Economical analyses of build-operate-transfer model in establishing alternative power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yumurtaci, Zehra [Yildiz Technical University, Department of Mechanical Engineering, Y.T.U. Mak. Fak. Mak. Muh. Bolumu, Besiktas, 34349 Istanbul (Turkey)]. E-mail: zyumur@yildiz.edu.tr; Erdem, Hasan Hueseyin [Yildiz Technical University, Department of Mechanical Engineering, Y.T.U. Mak. Fak. Mak. Muh. Bolumu, Besiktas, 34349 Istanbul (Turkey)

    2007-01-15

    The most widely employed method to meet the increasing electricity demand is building new power plants. The most important issue in building new power plants is to find financial funds. Various models are employed, especially in developing countries, in order to overcome this problem and to find a financial source. One of these models is the build-operate-transfer (BOT) model. In this model, the investor raises all the funds for mandatory expenses and provides financing, builds the plant and, after a certain plant operation period, transfers the plant to the national power organization. In this model, the object is to decrease the burden of power plants on the state budget. The most important issue in the BOT model is the dependence of the unit electricity cost on the transfer period. In this study, the model giving the unit electricity cost depending on the transfer of the plants established according to the BOT model, has been discussed. Unit electricity investment cost and unit electricity cost in relation to transfer period for plant types have been determined. Furthermore, unit electricity cost change depending on load factor, which is one of the parameters affecting annual electricity production, has been determined, and the results have been analyzed. This method can be employed for comparing the production costs of different plants that are planned to be established according to the BOT model, or it can be employed to determine the appropriateness of the BOT model.

  20. Economical analyses of build-operate-transfer model in establishing alternative power plants

    International Nuclear Information System (INIS)

    Yumurtaci, Zehra; Erdem, Hasan Hueseyin

    2007-01-01

    The most widely employed method to meet the increasing electricity demand is building new power plants. The most important issue in building new power plants is to find financial funds. Various models are employed, especially in developing countries, in order to overcome this problem and to find a financial source. One of these models is the build-operate-transfer (BOT) model. In this model, the investor raises all the funds for mandatory expenses and provides financing, builds the plant and, after a certain plant operation period, transfers the plant to the national power organization. In this model, the object is to decrease the burden of power plants on the state budget. The most important issue in the BOT model is the dependence of the unit electricity cost on the transfer period. In this study, the model giving the unit electricity cost depending on the transfer of the plants established according to the BOT model, has been discussed. Unit electricity investment cost and unit electricity cost in relation to transfer period for plant types have been determined. Furthermore, unit electricity cost change depending on load factor, which is one of the parameters affecting annual electricity production, has been determined, and the results have been analyzed. This method can be employed for comparing the production costs of different plants that are planned to be established according to the BOT model, or it can be employed to determine the appropriateness of the BOT model

  1. The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses

    Science.gov (United States)

    Burgess, A. B. H.; Erler, A. R.; Shepherd, T. G.

    2012-04-01

    We present spectra, nonlinear interaction terms, and fluxes computed for horizontal wind fields from high-resolution meteorological analyses made available by ECMWF for the International Polar Year. Total kinetic energy spectra clearly show two spectral regimes: a steep spectrum at large scales and a shallow spectrum in the mesoscale. The spectral shallowing appears at ~200 hPa, and is due to decreasing rotational power with height, which results in the shallower divergent spectrum dominating in the mesoscale. The spectra we find are steeper than those observed in aircraft data and GCM simulations. Though the analyses resolve total spherical harmonic wavenumbers up to n = 721, effects of dissipation on the fluxes and spectra are visible starting at about n = 200. We find a weak forward energy cascade and a downscale enstrophy cascade in the mesoscale. Eddy-eddy nonlinear kinetic energy transfers reach maximum amplitudes at the tropopause, and decrease with height thereafter; zonal mean-eddy transfers dominate in the stratosphere. In addition, zonal anisotropy reaches a minimum at the tropopause. Combined with strong eddy-eddy interactions, this suggests flow in the tropopause region is very active and bears the greatest resemblance to isotropic turbulence. We find constant enstrophy flux over a broad range of wavenumbers around the tropopause and in the upper stratosphere. A relatively constant spectral enstrophy flux at the tropopause suggests a turbulent inertial range, and that the enstrophy flux is resolved. A main result of our work is its implications for explaining the shallow mesoscale spectrum observed in aircraft wind measurements, GCM studies, and now meteorological analyses. The strong divergent component in the shallow mesoscale spectrum indicates unbalanced flow, and nonlinear transfers decreasing quickly with height are characteristic of waves, not turbulence. Together with the downscale flux of energ y through the shallow spectral range, these

  2. Comparative analyses suggest that information transfer promoted sociality in male bats in the temperate zone.

    Science.gov (United States)

    Safi, Kamran; Kerth, Gerald

    2007-09-01

    The evolution of sociality is a central theme in evolutionary biology. The vast majority of bats are social, which has been explained in terms of the benefits of communal breeding. However, the causes for segregated male groups remain unknown. In a comparative study, we tested whether diet and morphological adaptations to specific foraging styles, two factors known to influence the occurrence of information transfer, can predict male sociality. Our results suggest that the species most likely to benefit from information transfer--namely, those preying on ephemeral insects and with morphological adaptations to feeding in open habitat--are more likely to form male groups. Our findings also indicate that solitary life was the ancestral state of males and sociality evolved in several lineages. Beyond their significance for explaining the existence of male groups in bats, our findings highlight the importance of information transfer in the evolution of animal sociality.

  3. Analysing the interactions between renewable energy promotion and energy efficiency support schemes: The impact of different instruments and design elements

    International Nuclear Information System (INIS)

    Rio, Pablo del

    2010-01-01

    CO 2 emissions reduction, renewable energy deployment and energy efficiency are three main energy/environmental goals, particularly in Europe. Their relevance has led to the implementation of support schemes in these realms. Their coexistence may lead to overlaps, synergies and conflicts between them. The aim of this paper is to analyse the interactions between energy efficiency measures and renewable energy promotion, whereas previous analyses have focused on the interactions between emissions trading schemes (ETS) and energy efficiency measures and ETS and renewable energy promotion schemes. Furthermore, the analysis in this paper transcends the 'certificate' debate (i.e., tradable green and white certificates) and considers other instruments, particularly feed-in tariffs for renewable electricity. The goal is to identify positive and negative interactions between energy efficiency and renewable electricity promotion and to assess whether the choice of specific instruments and design elements within those instruments affects the results of the interactions.

  4. Analysing the interactions between renewable energy promotion and energy efficiency support schemes: The impact of different instruments and design elements

    Energy Technology Data Exchange (ETDEWEB)

    Rio, Pablo del, E-mail: pablo.delrio@cchs.csic.e [Instituto de Politicas y Bienes Publicos, Consejo Superior de Investigaciones Cientificas (CSIC), C/Albasanz 26-28, 28037 Madrid (Spain)

    2010-09-15

    CO{sub 2} emissions reduction, renewable energy deployment and energy efficiency are three main energy/environmental goals, particularly in Europe. Their relevance has led to the implementation of support schemes in these realms. Their coexistence may lead to overlaps, synergies and conflicts between them. The aim of this paper is to analyse the interactions between energy efficiency measures and renewable energy promotion, whereas previous analyses have focused on the interactions between emissions trading schemes (ETS) and energy efficiency measures and ETS and renewable energy promotion schemes. Furthermore, the analysis in this paper transcends the 'certificate' debate (i.e., tradable green and white certificates) and considers other instruments, particularly feed-in tariffs for renewable electricity. The goal is to identify positive and negative interactions between energy efficiency and renewable electricity promotion and to assess whether the choice of specific instruments and design elements within those instruments affects the results of the interactions.

  5. Analysing the interactions between renewable energy promotion and energy efficiency support schemes. The impact of different instruments and design elements

    Energy Technology Data Exchange (ETDEWEB)

    Del Rio, Pablo [Instituto de Politicas y Bienes Publicos, Consejo Superior de Investigaciones Cientificas (CSIC), C/Albasanz 26-28, 28037 Madrid (Spain)

    2010-09-15

    CO{sub 2} emissions reduction, renewable energy deployment and energy efficiency are three main energy/environmental goals, particularly in Europe. Their relevance has led to the implementation of support schemes in these realms. Their coexistence may lead to overlaps, synergies and conflicts between them. The aim of this paper is to analyse the interactions between energy efficiency measures and renewable energy promotion, whereas previous analyses have focused on the interactions between emissions trading schemes (ETS) and energy efficiency measures and ETS and renewable energy promotion schemes. Furthermore, the analysis in this paper transcends the certificate debate (i.e., tradable green and white certificates) and considers other instruments, particularly feed-in tariffs for renewable electricity. The goal is to identify positive and negative interactions between energy efficiency and renewable electricity promotion and to assess whether the choice of specific instruments and design elements within those instruments affects the results of the interactions. (author)

  6. Proxy studies of energy transfer to the magnetosphere

    International Nuclear Information System (INIS)

    Scurry, L.; Russell, C.T.

    1991-01-01

    The transfer of energy into the magnetosphere is studied using as proxy the Am geomagnetic index and multilinear regressions and correlations with solar wind data. In particular, the response of Am to the reconnection mechanism is examined in relation to the orientation of the interplanetary magnetic field as well as the upstream plasma parameters. A functional dependence of Am on clock angle, the orientation of the IMF in the plane perpendicular to the flow, is derived after first correcting the index for nonreconnection effects due to dynamic pressure and velocity. An examination of the effect of upstream magnetosonic Mach number shows the reconnection mechanism to become less efficient at high Mach numbers. The reconnection mechanism is shown to be slightly enhanced by higher dynamic pressures

  7. Ultrafast energy transfer in dansylated POPAM--eosin complexes

    Science.gov (United States)

    Aumanen, Jukka; Lehtovuori, Viivi; Werner, Nicole; Richardt, Gabriele; van Heyst, Jeroen; Vögtle, Fritz; Korppi-Tommola, Jouko

    2006-12-01

    Excitation energy transfer (EET) in dendritic host-guest complexes has been studied. Three generations G2, G3 and G4 of dansyl substituted poly(propyleneamine) dendrimers (POPAM) were complexed with a fluorescent dye eosin in chloroform solution. Arrival of excitation from dansyls to eosin was monitored by femtosecond transient absorption spectroscopy. EET rates from the dansyls to eosin(s) are characterised by two time constants 1 ps and 6 ps independent of dendrimer generation. Relaxation processes in eosin were clearly faster when complexed with dendrimer than in solution. As several eosins are bound to G3 and G4 dendrimers, besides host-guest interaction, also eosin-eosin interactions may contribute to the faster relaxation observed in these complexes.

  8. Unravelling radiative energy transfer in solid-state lighting

    Science.gov (United States)

    Melikov, Rustamzhon; Press, Daniel Aaron; Ganesh Kumar, Baskaran; Sadeghi, Sadra; Nizamoglu, Sedat

    2018-01-01

    Today, a wide variety of organic and inorganic luminescent materials (e.g., phosphors, quantum dots, etc.) are being used for lighting and new materials (e.g., graphene, perovskite, etc.) are currently under investigation. However, the understanding of radiative energy transfer is limited, even though it is critical to understand and improve the performance levels of solid-state lighting devices. In this study, we derived a matrix approach that includes absorption, reabsorption, inter-absorption and their iterative and combinatorial interactions for one and multiple types of fluorophores, which is simplified to an analytical matrix. This mathematical approach gives results that agree well with the measured spectral and efficiency characteristics of color-conversion light-emitting diodes. Moreover, it also provides a deep physical insight by uncovering the entire radiative interactions and their contribution to the output optical spectrum. The model is universal and applicable for all kinds of fluorophores.

  9. Control of particle precipitation by energy transfer from solar wind

    Science.gov (United States)

    Bremer, J.; Gernandt, H.

    1985-12-01

    The energy transfer function (epsilon), introduced by Perreault and Akasofu (1978), appears to be well suited for the description of the long-term control of the particle precipitation by interplanetary parameters. An investigation was conducted with the objective to test this control in more detail. This investigation included the calculation of hourly epsilon values on the basis of satellite-measured solar wind and IMF (interplanetary magnetic field) data. The results were compared with corresponding geomagnetic and ionospheric data. The ionospheric data had been obtained by three GDR (German Democratic Republic) teams during the 21st, 22nd, and 23rd Soviet Antarctic Expeditions in the time period from 1976 to 1979. It was found that, in high latitudes, the properties of the solar wind exercise a pronounced degree of control on the precipitation of energetic particles into the atmosphere, taking into account a time delay of about one hour due to the occurrence of magnetospheric storage processes.

  10. Experiments and Analyses of Data Transfers Over Wide-Area Dedicated Connections

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Liu, Qiang [ORNL; Sen, Satyabrata [ORNL; Hanley, Jesse A. [ORNL; Foster, Ian [University of Chicago; Kettimuthu, R. [Argonne National Laboratory (ANL); Wu, Qishi [University of Memphis; Yun, Daqing [Harrisburg University; Towsley, Don [University of Massachusetts, Amherst; Vardoyan, Gayane [University of Massachusetts, Amherst

    2017-08-01

    Dedicated wide-area network connections are increasingly employed in high-performance computing and big data scenarios. One might expect the performance and dynamics of data transfers over such connections to be easy to analyze due to the lack of competing traffic. However, non-linear transport dynamics and end-system complexities (e.g., multi-core hosts and distributed filesystems) can in fact make analysis surprisingly challenging. We present extensive measurements of memory-to-memory and disk-to-disk file transfers over 10 Gbps physical and emulated connections with 0–366 ms round trip times (RTTs). For memory-to-memory transfers, profiles of both TCP and UDT throughput as a function of RTT show concave and convex regions; large buffer sizes and more parallel flows lead to wider concave regions, which are highly desirable. TCP and UDT both also display complex throughput dynamics, as indicated by their Poincare maps and Lyapunov exponents. For disk-to-disk transfers, we determine that high throughput can be achieved via a combination of parallel I/O threads, parallel network threads, and direct I/O mode. Our measurements also show that Lustre filesystems can be mounted over long-haul connections using LNet routers, although challenges remain in jointly optimizing file I/O and transport method parameters to achieve peak throughput.

  11. Possibility of a higher PSB to PS transfer energy

    CERN Document Server

    Hanke, K; Blas, A; Borburgh, J; Bozzini, D; Buzio, M; Capatina, O; Carli, C; Dobers, T; Fernandez, L; Findlay, A; Folch, R; Gilardoni, S; Gilbert, N; Hermanns, T; Mahner, E; Mikulec, B; Newborough, A; Nonis, M; Olek, S; Paoluzzi, M; Pittet, S; Ruehl, I; Rumolo, G; Steerenberg, R; Tan, J; Tommasini, D; Weterings, W; Widorski, M; Shaposhnikova, E

    2011-01-01

    Following the Chamonix 2010 workshop a task force has been set up to study the feasibility and the impact of an energy upgrade of the PS Booster from the present 1.4 GeV to about 2 GeV. The working group has confirmed the feasibility of such an upgrade, and analysed in detail the impact on the accelerator hardware along with a cost estimate and a tentative planning. The outcome of the task force will be summarized, with particular emphasis on the remaining limitations, risks and uncertainties.

  12. Wave energy: technology transfer and generic R and D recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Scarr, D.; Kollek, R.; Collier, D.

    2001-07-01

    Arup have reviewed the status of the industry by way of individual interviews with all teams currently active in the UK as well as by research of international activities in the area. A preliminary technology workshop was organised to identify and discuss key issues with the teams and other industries. The following technology areas were discussed: (1) Regulatory Environment, HSE, Design Codes and Verification; (2) Construction Methods and Project Cost Estimation; (3) Marine Operations; (4) Mooring Systems; (5) Operations and Maintenance; (6) Materials; (7) Hydraulic Systems; (8) Pneumatic Systems; (9) Subsea Cables and Connectors; (10) Control Systems; (11) Power Quality and Grid Connection. The recommendations were made bearing in mind the proposed programme of Wave Energy Converter (WEC) prototype and power station development and the perceived need for further cost reductions. The major conclusions of the study were: The Wave Energy Industry is poorly co-ordinated. At present, all teams are working independently and commercial considerations force them to keep their ideas secret. There remains a lack of investor confidence and hence industrial support for the industry. Teams tend to be relatively small working out of University Departments or SMEs with some industrial backing. No major technological barriers to the development of Wave Energy Prototypes have been identified. All the issues raised under design, construction, deployment and operation can be addressed by transfer of technology from other industries, especially the offshore industry. However, costs, risks and approvals will need to be addressed. However, some technology gaps have been identified, notably in the areas of mooring and cable connections detailing, hydraulic machines and grid connection and energy storage. (author)

  13. Renewable Energy Centre: design, realisation and exploitation transfer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-31

    The Renewable Energy Centre (REC), which was completed in October 2003, has become one of the very few, maybe the only, commercial office project in the world to attempt to achieve net zero carbon dioxide emissions. This achievement results from a highly integrated, interactive use of four different renewable energy sources. These sources include a 225kW wind turbine, a 170m{sup 2} solar array (both thermal and photovoltaic), biomass fuel for heating and borehole water for cooling. The building itself is a converted 1930s farm building, sensitively restored to reflect its historical importance using, as far as possible, sustainable construction methods and materials with low embodied energy and designed to have a low energy requirement by means of good insulation and extensive passive solar measures. This document is a final report on the operation of the Centre as part of the IPID programme. The work carried out on this contract has been extremely successful in terms of its principal objectives. A vast amount of useful data has been collected, analysed and openly disseminated by a variety of means. Much of the data is summarized in this final report and new data continues to be collected and displayed on the Beaufort Court website.

  14. Energy transfer in reactive and non-reactive H2 + OH collisions

    International Nuclear Information System (INIS)

    Rashed, O.; Brown, N.J.

    1985-04-01

    We have used the methods of quasi-classical dynamics to compute energy transfer properties of non-reactive and reactive H 2 + OH collisions. Energy transfer has been investigated as function of translational temperature, reagent rotational energy, and reagent vibrational energy. The energy transfer mechanism is complex with ten types of energy transfer possible, and evidence was found for all types. There is much more exchange between the translational degree of freedom and the H 2 vibrational degree of freedom than there is between translation and OH vibration. Translational energy is transferred to the rotational degrees of freedom of each molecule. There is a greater propensity for the transfer of translation to OH rotation than H 2 rotation. In reactive collisions, increases in reagent translational temperature predominantly appear as vibrational energy in the water molecule. Energy transfer in non-reactive and reactive collisions does not depend strongly on the initial angular momentum in either molecule. In non-reactive collisions, vibrational energy is transferred to translation, to the rotational degree of freedom of the same molecule, and to the rotational and vibrational degrees of freedom of the other molecule. In reactive collisions, the major effect of increasing the vibrational energy in reagent molecules is that, on the average, the vibrational energy of the reagents appears as product vibrational energy. 18 refs., 16 figs., 6 tabs

  15. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange

    DEFF Research Database (Denmark)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Aklujkar, Muktak

    2013-01-01

    Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy...... dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration....

  16. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions

  17. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae-ik [Proton Therapy Center, National Cancer Center (Korea, Republic of); Division of Heavy Ion Clinical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul (Korea, Republic of); Park, Seyjoon [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Kim, Haksoo; Kim, Meyoung [Proton Therapy Center, National Cancer Center (Korea, Republic of); Jeong, Chiyoung [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Cho, Sungkoo [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Lim, Young Kyung; Shin, Dongho [Proton Therapy Center, National Cancer Center (Korea, Republic of); Lee, Se Byeong, E-mail: sblee@ncc.re.kr [Proton Therapy Center, National Cancer Center (Korea, Republic of); Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu [Department of Physics, Nagoya University, Nagoya (Japan); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sung Hyun [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon (Korea, Republic of); Cho, Jung Sook [Department of refinement education, Dongseo University, Busan (Korea, Republic of); Ahn, Jung Keun [Department of Physics, Korea University, Seoul (Korea, Republic of); Kim, Ji Hyun; Yoon, Chun Sil [Gyeongsang National University, Jinju (Korea, Republic of); Incerti, Sebastien [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France)

    2015-04-15

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  18. Internal high linear energy transfer (LET) targeted radiotherapy for cancer

    International Nuclear Information System (INIS)

    Allen, Barry J

    2006-01-01

    High linear energy transfer (LET) radiation for internal targeted therapy has been a long time coming on to the medical therapy scene. While fundamental principles were established many decades ago, the clinical implementation has been slow. Localized neutron capture therapy, and more recently systemic targeted alpha therapy, are at the clinical trial stage. What are the attributes of these therapies that have led a band of scientists and clinicians to dedicate so much of their careers? High LET means high energy density, causing double strand breaks in DNA, and short-range radiation, sparing adjacent normal tissues. This targeted approach complements conventional radiotherapy and chemotherapy. Such therapies fail on several fronts. Foremost is the complete lack of progress for the control of primary GBM, the holy grail for cancer therapies. Next is the inability to regress metastatic cancer on a systemic basis. This has been the task of chemotherapy, but palliation is the major application. Finally, there is the inability to inhibit the development of lethal metastatic cancer after successful treatment of the primary cancer. This review charts, from an Australian perspective, the developing role of local and systemic high LET, internal radiation therapy. (review)

  19. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    International Nuclear Information System (INIS)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-01-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion

  20. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    Science.gov (United States)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-04-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  1. Heat transfer analyses for grout disposal of radioactive double-shell slurry and customer wastes

    International Nuclear Information System (INIS)

    Robinson, S.M.; Gilliam, T.M.; McDaniel, E.W.

    1987-04-01

    Grout immobilization is being considered by Rockwell Hanford Operations (Rockwell Hanford) as a permanent disposal method for several radioactive waste streams. These include disposal of customer and double-shell slurry wastes in earthen trenches and in single-shell underground waste storage tanks. Heat transfer studies have previously been made to determine the maximum heat loading for grout disposal of various wastes under similar conditions, but a sensitivity analysis of temperature profiles to input parameters was needed. This document presents the results of heat transfer calculations for trenches containing grouted customer and double-shell slurry wastes and for in situ disposal of double-shell wastes in single-shell, domed concrete storage tanks. It discusses the conditions that lead to maximum grout temperatures of 250 0 F during the curing stage and 350 0 F thereafter and shows the dependence of these temperatures on input parameters such as soil and grout thermal conductivity, grout specific heat, waste loading, and disposal geometries. Transient heat transfer calculations were made using the HEATING6 computer code to predict temperature profiles in solidified low-level radioactive waste disposal scenarios at the Rockwell Hanford site. The calculations provide guidance for the development of safe, environmentally acceptable grout formulas for the Transportable Grout Facility. 11 refs

  2. Energy feeds. Detailed analyses of the indirect energy consumption of food; Energie voedt. Nadere analyses van het indirekte energieverbruik van voeding

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, K.J.; Moll, H.C.

    1995-04-01

    Household expenditures on products or the use of services lead to direct and indirect energy consumption. Various features influence the energy requirement of product and services. In this report the results for food are presented. A computer model, the Energy Analysis Programme EAP, has been used for the energy analysis to calculate the energy requirements of food, and serves as the database. Packaging appears to be a discriminating characteristic for all the different categories in the food sector. However, in general, differences of packaging result only in minor variations in the energy requirements of the products. The energy requirement of pastry depends among others of the period that a product can be conserved. The energy requirement of vegetables and fruits depends especially on the crop season, the import and on the industrial processing. Furthermore, the way of processing and the packaging of the vegetables plays an important role with regard to the energy requirement. The percentage of sugar is important for the energy requirement of sweet products. The energy requirement of oils and fats depends on the type of oil used in production. The energy requirement of oils and fats hardly depends on the percentage of the oil or fat. The way of production is important for the value of the energy intensities of meat and meat products. The percentage fat is important for milk products. The energy requirement of milk products is hardly influenced by the packaging. The difference is mainly caused by the use of energy in the dairy factory and in the wholesale and retail trade. The packaging of the other food products (sauces, ready-made meals) determines substantially the energy requirement of those products. The energy requirement of meals depends on the use of indirect energy for the ingredients and on the use of direct energy for cooling the ingredients, preparation of the meal and cleaning the dishes. tabs., 46 refs., 5 appendices

  3. Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  4. Clean Energy Policy Analyses. Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  5. Epidemiology of distal radius fractures in polytrauma patients and the influence of high traumatic energy transfer.

    Science.gov (United States)

    Ferree, Steven; van der Vliet, Quirine M J; Nawijn, Femke; Bhashyam, Abhiram R; Houwert, Roderick M; Leenen, Luke P H; Hietbrink, Falco

    2018-03-01

    For several extremity fractures differences in morphology, incidence rate and functional outcome were found when polytrauma patients were compared to patients with an isolated injury. This is not proven for distal radius fractures (DRF). Therefore, this study aimed to analyse fracture morphology in relation to energy transfer in both poly- and mono-trauma patients with a DRF. This was a retrospective cohort study. All patients aged 16 years and older with a DRF were included. Patients with an Injury Severity Score of 16 or higher were classified as polytrauma patients. Injuries were defined as high or low energy. All DRFs were classified using the AO/OTA fracture classification system. A total of 830 patients with a DRF were included, 12% were polytrauma. The incidence rate of DRF in polytrauma patients was 3.5%. Ipsilateral upper extremity injury was found in >30% of polytrauma and high-energy monotrauma patients, compared to 5% in low-energy monotrauma patients. More type C DRF were found in polytrauma and high-energy monotrauma patients versus low-energy monotrauma patients. Operative intervention rates for all types of DRF were similar for polytrauma and high-energy monotrauma patients. Non-union rates were higher in polytrauma patients. Higher energy mechanisms of injury, in polytrauma and high-energy monotrauma patients, were associated with more severe complex articular distal radius fractures and more ipsilateral upper extremity injuries. Polytrauma and high-energy monotrauma patient have a similar fracture morphology. However, polytrauma patients have in addition to more injured body regions also more non-union related interventions than high-energy monotrauma patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Heat transfer analyses of continuous casting by free jet meltspinning device

    Directory of Open Access Journals (Sweden)

    B. Karpe

    2011-01-01

    Full Text Available New method for determining contact resistance through variable heat transfer coefficient is introduced which takes into account physical properties of the casting material, process parameters and contact time/length between molten material (melt puddle and chilling wheel and enables cooling rate prediction before experiment execution. From the results can be concluded, that those process parameters which determine the thickness of the melt puddle in the downstream and consequently the ribbon thickness have major influence on cooling rate of the ribbon. In the case of continuous casting, heat balance of the wheel is calculated and influence of the chill wheel cooling mode on cooling rate of metallic ribbon is analyzed.

  7. Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS.

    Science.gov (United States)

    Li, Guoliang; Cherqui, Charles; Bigelow, Nicholas W; Duscher, Gerd; Straney, Patrick J; Millstone, Jill E; Masiello, David J; Camden, Jon P

    2015-05-13

    Energy transfer from plasmonic nanoparticles to semiconductors can expand the available spectrum of solar energy-harvesting devices. Here, we spatially and spectrally resolve the interaction between single Ag nanocubes with insulating and semiconducting substrates using electron energy-loss spectroscopy, electrodynamics simulations, and extended plasmon hybridization theory. Our results illustrate a new way to characterize plasmon-semiconductor energy transfer at the nanoscale and bear impact upon the design of next-generation solar energy-harvesting devices.

  8. Organic solar cells: understanding the role of Förster resonance energy transfer.

    Science.gov (United States)

    Feron, Krishna; Belcher, Warwick J; Fell, Christopher J; Dastoor, Paul C

    2012-12-12

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  9. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    International Nuclear Information System (INIS)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-01-01

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''

  10. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Paul C. Dastoor

    2012-12-01

    Full Text Available Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  11. Exploiting energy transfer in hybrid metal and semiconductor nanoparticle systems for biosensing and energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Mayilo, Sergiy

    2009-06-19

    In this work, gold and semiconductor nanoparticles are used as building blocks for nanostructures, in which energy transfer is investigated. Fluorescence quenching by gold nanoparticles is investigated and used to develop novel immunoassays for medically relevant molecules. The influence of gold nanoparticles on radiative and non-radiative rates of Cy3 and Cy3B dyes is studied here. A competitive, homogeneous immunoassay for digoxigenin and digoxin, a drug used to cure heart diseases, is developed. The assay has a limit of detection of 0.5 nM in buffer and 50 nM in serum. Time resolved spectroscopy reveals that the quenching is due to energy transfer with an efficiency of 70%. A homogeneous sandwich immunoassay for cardiac troponin T, an indicator of damage to the heart muscle, is developed. Gold nanoparticles and fluorophores are functionalized with anti-troponin T antibodies. In the presence of troponin T the nanoparticles and fluorophores form a sandwich structure, in which the dye fluorescence is quenched by a gold nanoparticle. The limit of detection of the immunoassay in buffer is 0.02 nM and 0.11 nM in serum. Energy transfer is demonstrated in clusters of CdTe nanocrystals assembled using three methods. In the first method, clusters of differently-sized water soluble CdTe nanocrystals capped by negatively charged mercaptoacid stabilizers are produced through electrostatic interactions with positively charged Ca{sup 2+} cations. The two other methods employ covalent binding through dithiols and thiolated DNA as linkers between nanocrystals. Energy transfer from smaller nanocrystals to larger nanocrystals in aggregates is demonstrated by means of steady-state and time-resolved photoluminescence spectroscopy, paving the way for nanocrystal-based light harvesting structures in solution. Multi-shell onion-like CdSe/ZnS/CdSe/ZnS nanocrystals are presented. The shade of the white light can be controlled by annealing the particles. Evidence for intra

  12. Analysing bifurcations encountered in numerical modelling of current transfer to cathodes of dc glow and arc discharges

    International Nuclear Information System (INIS)

    Almeida, P G C; Benilov, M S; Cunha, M D; Faria, M J

    2009-01-01

    Bifurcations and/or their consequences are frequently encountered in numerical modelling of current transfer to cathodes of gas discharges, also in apparently simple situations, and a failure to recognize and properly analyse a bifurcation may create difficulties in the modelling and hinder the understanding of numerical results and the underlying physics. This work is concerned with analysis of bifurcations that have been encountered in the modelling of steady-state current transfer to cathodes of glow and arc discharges. All basic types of steady-state bifurcations (fold, transcritical, pitchfork) have been identified and analysed. The analysis provides explanations to many results obtained in numerical modelling. In particular, it is shown that dramatic changes in patterns of current transfer to cathodes of both glow and arc discharges, described by numerical modelling, occur through perturbed transcritical bifurcations of first- and second-order contact. The analysis elucidates the reason why the mode of glow discharge associated with the falling section of the current-voltage characteristic in the solution of von Engel and Steenbeck seems not to appear in 2D numerical modelling and the subnormal and normal modes appear instead. A similar effect has been identified in numerical modelling of arc cathodes and explained.

  13. Model-based performance and energy analyses of reverse osmosis to reuse wastewater in a PVC production site.

    Science.gov (United States)

    Hu, Kang; Fiedler, Thorsten; Blanco, Laura; Geissen, Sven-Uwe; Zander, Simon; Prieto, David; Blanco, Angeles; Negro, Carlos; Swinnen, Nathalie

    2017-11-10

    A pilot-scale reverse osmosis (RO) followed behind a membrane bioreactor (MBR) was developed for the desalination to reuse wastewater in a PVC production site. The solution-diffusion-film model (SDFM) based on the solution-diffusion model (SDM) and the film theory was proposed to describe rejections of electrolyte mixtures in the MBR effluent which consists of dominant ions (Na + and Cl - ) and several trace ions (Ca 2+ , Mg 2+ , K + and SO 4 2- ). The universal global optimisation method was used to estimate the ion permeability coefficients (B) and mass transfer coefficients (K) in SDFM. Then, the membrane performance was evaluated based on the estimated parameters which demonstrated that the theoretical simulations were in line with the experimental results for the dominant ions. Moreover, an energy analysis model with the consideration of limitation imposed by the thermodynamic restriction was proposed to analyse the specific energy consumption of the pilot-scale RO system in various scenarios.

  14. Definition and determination of the triplet-triplet energy transfer reaction coordinate.

    Science.gov (United States)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Acuña, A Ulises; Frutos, Luis Manuel

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  15. Interaction mechanism for energy transfer from Ce to Tb ions in silica

    International Nuclear Information System (INIS)

    Seed Ahmed, H.A.A.; Chae, W.S.; Ntwaeaborwa, O.M.; Kroon, R.E.

    2016-01-01

    Energy transfer phenomena can play an important role in the development of luminescent materials. In this study, numerical simulations based on theoretical models of non-radiative energy transfer are compared to experimental results for Ce, Tb co-doped silica. Energy transfer from the donor (Ce) to the acceptor (Tb) resulted in a decrease in the Ce luminescence intensity and lifetime. The decrease in intensity corresponded best with the energy transfer models based on the exchange interaction and the dipole-dipole interaction. The critical transfer distance obtained from the fitting using both these models is around 2 nm. Since the exchange interaction requires a distance shorter than 1 nm to occur, the mechanism most likely to account for the energy transfer is concluded to be the dipole–dipole interaction. This is supported by an analysis of the lifetime data.

  16. Vibrational energy transfer in selectively excited diatomic molecules

    International Nuclear Information System (INIS)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295 0 K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295 0 K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ΔJ transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references

  17. Controlling energy transfer between multiple dopants within a single nanoparticle

    Science.gov (United States)

    DiMaio, Jeffrey R.; Sabatier, Clément; Kokuoz, Baris; Ballato, John

    2008-01-01

    Complex core-shell architectures are implemented within LaF3 nanoparticles to allow for a tailored degree of energy transfer (ET) between different rare earth dopants. By constraining specific dopants to individual shells, their relative distance to one another can be carefully controlled. Core-shell LaF3 nanoparticles doped with Tb3+ and Eu3+ and consisting of up to four layers were synthesized with an outer diameter of ≈10 nm. It is found that by varying the thicknesses of an undoped layer between a Tb3+-doped layer and a Eu3+-doped layer, the degree of ET can be engineered to allow for zero, partial, or total ET from a donor ion to an acceptor ion. More specifically, the ratio of the intensities of the 541-nm Tb3+ and 590 nm Eu3+ peaks was tailored from core-shell configuration that restricts ET is used. Beyond simply controlling ET, which can be limiting when designing materials for optical applications, this approach can be used to obtain truly engineered spectral features from nanoparticles and composites made from them. Further, it allows for a single excitation source to yield multiple discrete emissions from numerous lanthanide dopants that heretofore would have been quenched in a more conventional active optical material. PMID:18250307

  18. Heavy ion mutagenesis: linear energy transfer effects and genetic linkage

    Science.gov (United States)

    Kronenberg, A.; Gauny, S.; Criddle, K.; Vannais, D.; Ueno, A.; Kraemer, S.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We have characterized a series of 69 independent mutants at the endogenous hprt locus of human TK6 lymphoblasts and over 200 independent S1-deficient mutants of the human x hamster hybrid cell line AL arising spontaneously or following low-fluence exposures to densely ionizing Fe ions (600 MeV/amu, linear energy transfer = 190 keV/microns). We find that large deletions are common. The entire hprt gene (> 44 kb) was missing in 19/39 Fe-induced mutants, while only 2/30 spontaneous mutants lost the entire hprt coding sequence. When the gene of interest (S1 locus = M1C1 gene) is located on a nonessential human chromosome 11, multilocus deletions of several million base pairs are observed frequently. The S1 mutation frequency is more than 50-fold greater than the frequency of hprt mutants in the same cells. Taken together, these results suggest that low-fluence exposures to Fe ions are often cytotoxic due to their ability to create multilocus deletions that may often include the loss of essential genes. In addition, the tumorigenic potential of these HZE heavy ions may be due to the high potential for loss of tumor suppressor genes. The relative insensitivity of the hprt locus to mutation is likely due to tight linkage to a gene that is required for viability.

  19. Study of primary energy transfer process in ultrafast plastic scintillators

    International Nuclear Information System (INIS)

    Bengtson, B.; Moszynski, M.

    1978-01-01

    The study of the light-pulse shape, the initial delay of light pulses and the light yield of plastics prepared by a modification of the NE111 scintillator were performed. The NE111 scintillator doped with several quench agents, the plastics prepared as a solution of butyl PBD in PVT of different concentration and PVT alone were studied. The study confirmed that the light pulse shape from fast binary plastics is well described analytically by the convolution of the clipped Gaussian and exponential functions. The investigation of the PVT-butyl PBD plastics shows that even more than three times larger concentration of butyl PBD compared to that of PBD in the NE111 solution does not improve the rise of the light pulse. Thus the rise time seems to be not controlled by the intermolecular energy transfer process. Finally, the observed rise time of the light pulse from the PVT sample was also approximated well by the Gaussian function. Altogether it brought a strong support for the earlier hypothesis that the initial slow rise of light pulses from plastic scintillators may come from the deexcitation of several higher levels of the solvent molecules excited by nuclear particles. (Auth.)

  20. Low-energy charge transfer excitations in NiO

    International Nuclear Information System (INIS)

    Sokolov, V I; Yermakov, A Ye; Uimin, M A; Gruzdev, N B; Pustovarov, V A; Churmanov, V N; Ivanov, V Yu; Sokolov, P S; Baranov, A N; Moskvin, A S

    2012-01-01

    Comparative analysis of photoluminescence (PL) and photoluminescence excitation (PLE) spectra of NiO poly- and nanocrystals in the spectral range 2-5.5 eV reveals two PLE bands peaked near 3.7 and 4.6 eV with a dramatic rise in the low-temperature PLE spectral weight of the 3.7 eV PLE band in the nanocrystalline NiO as compared with its polycrystalline counterpart. In frames of a cluster model approach we assign the 3.7 eV PLE band to the low-energy bulk-forbidden p-d (t 1g (π)-e g ) charge transfer (CT) transition which becomes the allowed one in the nanocrystalline state while the 4.6 eV PLE band is related to a bulk allowed d-d (e g -e g ) CT transition scarcely susceptible to the nanocrystallization. The PLE spectroscopy of the nanocrystalline materials appears to be a novel informative technique for inspection of different CT transitions.

  1. Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes

    International Nuclear Information System (INIS)

    Azadbakht, Mohsen; Aghili, Hajar; Ziaratban, Armin; Torshizi, Mohammad Vahedi

    2017-01-01

    Drying the samples was performed in the inlet temperatures of 45, 50, and 55 °C, air velocity of 3.2, 6.8, and 9.1 m s"−"1, and bed depth of 1.5, 2.2, and 3 cm. The effects of these parameters were evaluated on energy utilization, energy efficiency and utilization ratio and exergy loss and efficiency. Furthermore, artificial neural network was employed in order to predict the energy and exergy parameters, and simulation of thermodynamic drying process was carried out, using the ANN created. A network was constructed from learning algorithms and transfer functions that could predict, with good accuracy, the exergy and energy parameters related to the drying process. The results revealed that energy utilization, efficiency, and utilization ratio increased by increasing the air velocity and depth of the bed; however, energy utilization and efficiency were augmented by increasing the temperature; additionally, energy utilization ratio decreased along with the rise in temperature. Also was found that exergy loss and efficiency improved by increasing the air velocity, temperature, and depth of the bed. Finally, the results of the statistical analyses indicated that neural networks can be utilized in intelligent drying process which has a large share of energy utilization in the food industry. - Highlights: • Energy utilization increased by increasing temperature, air velocity and depth of the bed. • Exergy loss increased with increasing the air velocity, temperature and depth of the bed. • Prediction by a trained neural network is faster than usual mathematical models. • ANN it is a suitable method to predict the energy and exergy in various driers.

  2. Mechanism and models for collisional energy transfer in highly excited large polyatomic molecules

    International Nuclear Information System (INIS)

    Gilbert, R. G.

    1995-01-01

    Collisional energy transfer in highly excited molecules (say, 200-500 kJ mol -1 above the zero-point energy of reactant, or of product, for a recombination reaction) is reviewed. An understanding of this energy transfer is important in predicting and interpreting the pressure dependence of gas-phase rate coefficients for unimolecular and recombination reactions. For many years it was thought that this pressure dependence could be calculated from a single energy-transfer quantity, such as the average energy transferred per collision. However, the discovery of 'super collisions' (a small but significant fraction of collisions which transfer abnormally large amounts of energy) means that this simplistic approach needs some revision. The 'ordinary' (non-super) component of the distribution function for collisional energy transfer can be quantified either by empirical models (e.g., an exponential-down functional form) or by models with a physical basis, such as biased random walk (applicable to monatomic or diatomic collision partners) or ergodic (for polyatomic collision partners) treatments. The latter two models enable approximate expressions for the average energy transfer to be estimated from readily available molecular parameters. Rotational energy transfer, important for finding the pressure dependence for recombination reactions, can for these purposes usually be taken as transferring sufficient energy so that the explicit functional form is not required to predict the pressure dependence. The mechanism of 'ordinary' energy transfer seems to be dominated by low-frequency modes of the substrate, whereby there is sufficient time during a vibrational period for significant energy flow between the collision partners. Super collisions may involve sudden energy flow as an outer atom of the substrate is squashed between the substrate and the bath gas, and then is moved away from the interaction by large-amplitude motion such as a ring vibration or a rotation; improved

  3. Energy and exergy analyses of an integrated solar heat pump system

    International Nuclear Information System (INIS)

    Suleman, F.; Dincer, I.; Agelin-Chaab, M.

    2014-01-01

    An integrated solar and heat pump based system for industrial heating is developed in this study. The system comprises heat pump cycle for process heating water and solar energy for another industrial heating process. Comprehensive energy and exergy analyses are performed on the system. These analyses generated some compelling results as expected because of the use of green and environmentally friendly energy sources. The results show that the energy efficiency of the process is 58% while the exergy efficiency is 75%. Energetic COP of the heat pump cycle is 3.54 whereas the exergy efficiency is 42.5%. Moreover, the energetic COP of the system is 2.97 and the exergy efficiency of the system is 35.7%. In the parametric study, a different variation such as changing the temperature and pressure of the condenser also shows positive results. - Highlights: • An integrated system is analysed using renewable energy source which can be used in textile industry. • Energy losses and exergy destructions are calculated at all major components. • Energy and exergy efficiencies of all subunits, subsystems and overall system are determined. • A parametric study shows the effect of environment and operating conditions on efficiencies. • Solar energy for heating in textile industry is efficient and environmentally friendly

  4. Efficient near-field wireless energy transfer using adiabatic system variations

    Energy Technology Data Exchange (ETDEWEB)

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.; Soljacic, Marin

    2017-11-28

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  5. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  6. Comprehensive energy and economic analyses on a zero energy house versus a conventional house

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L. [School of Architecture, Tianjin University, Tianjin, 300072 (China); Hurt, R.; Correa, D.; Boehm, R. [Center for Energy Research, University of Nevada, Las Vegas, NV 89154 (United States)

    2009-09-15

    A zero energy house (ZEH) was built side by side with a baseline house in suburban Las Vegas. Actual energy performance measurements were carried out on the incorporated energy saving features and solar applications. The data show that a radiant barrier and a water-cooled air conditioner are major contributors to the energy savings, while an insulated floor slab and thermal mass walls are not effective for energy-conservation during cooling periods. Photovoltaic roof tiles produce enough green power to cover the use in the ZEH, and the solar water heater can reach a peak efficiency of 80%. The energy saving contribution of each incorporated component was obtained using Energy10 and eQUEST3.6 models, and then these codes were used for economic application evaluation. The two analysis codes yield similar results that compare well with the actual building performance data. Four items are clearly economically valuable for these applications: high performance windows, compact fluorescent lights, highly-insulated roofs and air conditioners with water-cooled condensers. PV tiles show a good financial return when rebates are considered. The Integrated Collector Storage (ICS) unit has a high efficiency but with a little higher thermal price. Thermal mass walls are too costly to have wide market appeal. (author)

  7. Energy consumption in the dairy industry. Analysis of 1987. Energie in zuivel. Analyse 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The research on the title subject was carried out by the NOVEM (Dutch Agency for Energy and the Environment) aimed at planning energy conservation in the Dutch dairy industry for 1988. Data on the energy consumption (electric power and natural gas) were collected and are presented for: milk production on the farm; milk transport from the farm to the processing industry; cheese or butter production; production of consumption milk and derived products; production of evaporated milk; milk powder and whey powder production, and finally overall management and other products. 35 figs., 18 tabs., 1 app.

  8. Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting

    Science.gov (United States)

    Hadas, Z.; Smilek, J.; Rubes, O.

    2017-05-01

    The paper deals with analyses and evaluation of vibration energy harvesting systems which are based on electromagnetic and piezoelectric physical principles off electro-mechanical conversion. Energy harvesting systems are associated with wireless sensors and a monitoring of engineering objects. The most of engineering objects operate with unwanted mechanical vibrations. However, vibrations could provide an ambient source of energy which is converted into useful electricity. The use of electromagnetic and piezoelectric vibration energy harvesters is analyzed in this paper. Thee evaluated output power is used for a choice of the efficient system with respect to the character of vibrations and thee required power output.

  9. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2009-01-01

    An analysis of seven different technologies is presented. The technologies integrate fluctuating renewable energy sources (RES) such as wind power production into the electricity supply, and the Danish energy system is used as a case. Comprehensive hour-by-hour energy system analyses are conducted...... of a complete system meeting electricity, heat and transport demands, and including RES, power plants, and combined heat and power production (CHP) for district heating and transport technologies. In conclusion, the most fuel-efficient and least-cost technologies are identified through energy system...

  10. Energy and exergy analyses of native cassava starch drying in a tray dryer

    International Nuclear Information System (INIS)

    Aviara, Ndubisi A.; Onuoha, Lovelyn N.; Falola, Oluwakemi E.; Igbeka, Joseph C.

    2014-01-01

    Energy and exergy analyses of native cassava starch drying in a tray dryer were carried out to assess the performance of the system in terms of energy utilization, energy utilization ratio, energy efficiency, exergy inflow and outflow, exergy loss and exegetic efficiency. The results indicated that for the starch with ash content of 0.76%, 0.85% crude protein, 0.16% crude fat, negligible amount of fiber, average granule size of 14.1 μm, pH of 5.88, amylose content of 23.45% and degree of crystallinity of 22.34%, energy utilization and energy utilization ratio increased from 1.93 to 5.51 J/s and 0.65 to 0.6 as the drying temperature increased from 40 to 60 °C. Energy efficiency increased from 16.036 to 30.645%, while exergy inflow, outflow and losses increased from 0.399 to 2.686, 0.055 to 0.555 and 0.344 to 2.131 J/s respectively in the above temperature range. Exergetic efficiency increased with increase in both drying air temperature and energy utilization and was lower than energy efficiency. Exergetic improvement potential also increased with increase in drying air temperature. Model equations that could be used to express the energy and exergy parameters as a function of drying temperature were established. - Highlights: • Energy and exergy analyses of cassava starch drying in a tray dryer were carried out. • Energy utilization increased with drying temperature. • Energy efficiency was higher than exergy efficiency. • Energy and exergy efficiencies increased with increase in temperature. • Improvement potential increased with increase in temperature

  11. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.

    2010-02-11

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies. © 2010 Optical Society of America.

  12. Applications of high lateral and energy resolution imaging XPS with a double hemispherical analyser based spectromicroscope

    International Nuclear Information System (INIS)

    Escher, M.; Winkler, K.; Renault, O.; Barrett, N.

    2010-01-01

    The design and applications of an instrument for imaging X-ray photoelectron spectroscopy (XPS) are reviewed. The instrument is based on a photoelectron microscope and a double hemispherical analyser whose symmetric configuration avoids the spherical aberration (α 2 -term) inherent for standard analysers. The analyser allows high transmission imaging without sacrificing the lateral and energy resolution of the instrument. The importance of high transmission, especially for highest resolution imaging XPS with monochromated laboratory X-ray sources, is outlined and the close interrelation of energy resolution, lateral resolution and analyser transmission is illustrated. Chemical imaging applications using a monochromatic laboratory Al Kα-source are shown, with a lateral resolution of 610 nm. Examples of measurements made using synchrotron and laboratory ultra-violet light show the broad field of applications from imaging of core level electrons with chemical shift identification, high resolution threshold photoelectron emission microscopy (PEEM), work function imaging and band structure imaging.

  13. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  14. Assessment of the Turkish utility sector through energy and exergy analyses

    International Nuclear Information System (INIS)

    Utlu, Zafer; Hepbasli, Arif

    2007-01-01

    The present study deals with evaluating the utility sector in terms of energetic and exergetic aspects. In this regard, energy and exergy utilization efficiencies in the Turkish utility sector over a wide range of period from 1990 to 2004 are assessed in this study. Energy and exergy analyses are performed for eight power plant modes, while they are based on the actual data over the period studied. Sectoral energy and exergy analyses are conducted to study the variations of energy and exergy efficiencies for each power plants throughout the years, and overall energy and exergy efficiencies are compared for these power plants. The energy utilization efficiencies for the overall Turkish utility sector range from 32.64% to 45.69%, while the exergy utilization efficiencies vary from 32.20% to 46.81% in the analyzed years. Exergetic improvement potential for this sector are also determined to be 332 PJ in 2004. It may be concluded that the methodology used in this study is practical and useful for analyzing sectoral and subsectoral energy and exergy utilization to determine how efficient energy and exergy are used in the sector studied. It is also expected that the results of this study will be helpful in developing highly applicable and productive planning for energy policies

  15. The 2H(e, e' p)n reaction at large energy transfers

    NARCIS (Netherlands)

    Willering, Hendrik Willem

    2003-01-01

    At the ELSA accelerator facillity in Bonn, Germany, we have measured the deutron "breakup" reaction 2H(e,e' p)n at four-momentum transfers around Q2 = -0 .20(GeV/c)2 with an electron beam energy of E0 = 1.6 GeV. The cross section has been determined for energy transfers extending from the

  16. Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors

    NARCIS (Netherlands)

    Yu, D. C.; Rabouw, F. T.|info:eu-repo/dai/nl/413318036; Boon, W. Q.; Kieboom, T.; Ye, S.; Zhang, Q. Y.; Meijerink, A.|info:eu-repo/dai/nl/075044986

    2014-01-01

    Two distinct energy transfer (ET) mechanisms have been proposed for the conversion of blue to near-infrared (NIR) photons in YAG:Ce3+,Yb3+. The first mechanism involves downconversion by cooperative energy transfer, which would yield two NIR photons for each blue photon excitation. The second

  17. Hybrid Systems Based on Layered Silicate and Organic Dyes for Cascade Energy Transfer

    Czech Academy of Sciences Publication Activity Database

    Belušáková, S.; Lang, Kamil; Bujdák, J.

    2015-01-01

    Roč. 119, č. 38 (2015), s. 21784-21794 ISSN 1932-7447 Institutional support: RVO:61388980 Keywords : Cascade energy transfers * Multicomponent films * Resonance energy transfer * Spectral properties * Steady state fluorescence * Time-resolved fluorescence spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 4.509, year: 2015

  18. Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime

    Science.gov (United States)

    Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.

    2018-05-01

    We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.

  19. Forster resonance energy transfer in the system of human serum albumin-xanthene dyes

    Science.gov (United States)

    Kochubey, V. I.; Pravdin, A. B.; Melnikov, A. G.; Konstantinova, I.; Alonova, I. V.

    2016-04-01

    The processes of interaction of fluorescent probes: eosin and erythrosine with human serum albumin (HSA) were studied by the methods of absorption and fluorescence spectroscopy. Extinction coefficients of probes were determined. Critical transfer radius and the energy transfer efficiency were defined by fluorescence quenching of HSA. Analysis of the excitation spectra of HSA revealed that the energy transfer process is carried out mainly between tryptophanyl and probes.

  20. Multi-step intramolecular excitation energy transfer in dendritic pyrene-phosphorus(V)porphyrin heptads

    International Nuclear Information System (INIS)

    Hirakawa, Kazutaka; Segawa, Hiroshi

    2016-01-01

    Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.

  1. Multi-step intramolecular excitation energy transfer in dendritic pyrene-phosphorus(V)porphyrin heptads

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Kazutaka, E-mail: hirakawa.kazutaka@shizuoka.ac.jp [Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Segawa, Hiroshi [Department of Multi-Disciplinary Science - General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8904 (Japan); Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904 (Japan)

    2016-11-15

    Dendritic heptad molecules in which four pyrenyl groups are connected at the central phosphorus atom of the edge-porphyrins of the center-to-edge type porphyrin trimers were synthesized to investigate a multi-step excitation energy transfer. As the central energy acceptor, two types porphyrins which one was phosphorus(V)tetraphenylporphyrin (H2) and another was its derivative substituted by butoxy groups at four para-position of meso-phenyl groups (H1) were used. In the photoexcited state of the pyrene units, the excitation energy transfer to the central-porphyrin unit was observed in toluene. The excitation energy transfer is considered to be through two pathways; one is a stepwise pathway through the edge-porphyrin unit and another is a direct excitation energy transfer to the central porphyrin. The direct excitation energy transfer from pyrenes to the edge-porphyrin and central-porphyrin were observed in the case for H1. From the excited state of the edge-porphyrins, the excitation energy transfer to the central-porphyrin occurs in the H1 case. In the H2 case, the excitation energy of central-porphyrin is higher than that of H1, and the electron transfer from edge-porphyrin to the central-porphyrin become predominant process. - Highlights: • Dendritic pyrene-porphyrin heptads were synthesized. • Excitation energy transfer occurs from the pyrenyl moiety to the phosphorus(V)porphyrin. • The stepwise and direct energy transfer pathways were observed. • The quantum yields of these energy transfer pathways could be determined.

  2. Travelling energy systems: knowledge transfer for energy efficiency and conservation from European to Australian building projects

    Energy Technology Data Exchange (ETDEWEB)

    Glad, Wiktoria (Tema Technology and Social Change, Linkoeping Univ. (Sweden); Inst. for Sustainable Futures, Univ. of Technology, Sydney (Australia))

    2009-07-01

    Energy efficiency and conservation in the Australian built environment have not yet been implemented to any great extent. Despite favourable prerequisites, such as vast windswept unpopulated areas suitable for wind power and many hours of direct sunlight in most populated areas, electricity is mainly generated by burning brown coal and buildings are poorly equipped for hot summers and cool winters. Australia urgently needs to convert to alternative energy sources and implement energy efficiency measures, since its carbon dioxide emissions per capita are among the highest in the world. In a recent major redevelopment in Sydney, the Carlton and United Brewery (CUB) site knowledge of energy efficiency and conservation measures used in European buildings was transferred and implemented in local designs and infrastructure. This knowledge came mainly from urban planning and developments in London, but also from high-profile architectural firms based in Paris and Germany. The arrival of this knowledge in Australia led to phases when the knowledge was translated and enacted in local spaces and the constituent ideas were transformed into action. The present research is based on ten months of ethnographic fieldwork in which the planning and design of the CUB site was observed. The results of the study identify barriers to and opportunities for energy system knowledge transfer between different cultures and local spaces. Substantial time must be spent overcoming cultural barriers, so the involved parties can start talking the same language. This is not only true for stakeholders operating in different continents, but for stakeholders operating in different local arenas in the same country.

  3. Embodied energy and emergy analyses of a concentrating solar power (CSP) system

    International Nuclear Information System (INIS)

    Zhang Meimei; Wang Zhifeng; Xu Chao; Jiang Hui

    2012-01-01

    Although concentrating solar power (CSP) technology has been projected as one of the most promising candidates to replace conventional power plants burning fossil fuels, the potential advantages and disadvantages of the CSP technology have not been thoroughly evaluated. To better understand the performance of the CSP technology, this paper presents an ecological accounting framework based on embodied energy and emergy analyses methods. The analyses are performed for the 1.5 MW Dahan solar tower power plant in Beijing, China and different evaluation indices used in the embodied energy and emergy analyses are employed to evaluate the plant performance. Our analysis of the CSP plant are compared with six Italian power plants with different energy sources and an American PV plant, which demonstrates the CSP is the superior technology. - Highlights: ► Embodied energy and emergy analyses are employed to evaluate the first solar tower power plant in China. ► Different evaluation indices are quantitatively analyzed to show the advantages of CSP technology. ► This analysis provides insights for making energy policy and investment decisions about CSP technology.

  4. Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime

    International Nuclear Information System (INIS)

    Salavati-fard, T; Vazifehshenas, T

    2014-01-01

    We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field. (paper)

  5. Deflection type energy analyser for energetic electron beams in a beam-plasma system

    International Nuclear Information System (INIS)

    Michel, J.A.; Hogge, J.P.

    1988-11-01

    An energy analyser for the study of electron beam distribution functions in unmagnetized plasmas is described. This analyser is designed to avoid large electric fields which are created in multi-grid analysers and to measure directly the beam distribution function without differentiation. As an example of an application we present results on the propagation of an energetic beam (E b : 2.0 keV) in a plasma (n o : 1.10 10 cm -3 , T e : 1.4 eV) (author) 7 figs., 10 refs

  6. Competition and stability analyses among emissions, energy, and economy: Application for Mexico

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Fu, Hsin-Chia

    2015-01-01

    In view of limited natural resources on Earth, linkage among environment, energy, and economy (3Es) becomes important perspectives for sustainable development. This paper proposes to use Lotka–Volterra model for SUstainable Development (LV-SUD) to analyse the interspecific interactions, equilibria and their stabilities among emissions, different types of energy consumption (renewable, nuclear, and fossil fuel), and real GDP, the main factors of 3Es issues. Modelling these interactions provides a useful multivariate framework for prediction outcomes. Interaction between 3Es, namely competition, symbiosis, or predation, plays an important role in policy development to achieve a balanced use of energy resources and to strengthen the green economy. Applying LV-SUD in Mexico, an emerging markets country, analysing results show that there is a mutualism between fossil fuel consumption and GDP; prey-predator relationships that fossil fuel and GDP enhance the growth of emissions, but emissions inhibit the growth of the others; and commensalisms that GDP benefits from nuclear power, and renewable power benefits from fossil fuel. It is suggested that national energy policies should remain committed to decoupling the relevance between non-clean energy and GDP, to actively developing clean energy and thereby to properly reducing fossil fuel consumption and emissions without harming economic growth. - Highlights: • LV-SUD is used to analyse the competition between environment-energy-economy (3Es). • The competitions between renewable, nuclear, and fossil energy are analysed. • Competition between 3Es plays an important role in policy development. • LV-SUD provides a useful multivariate framework for prediction outcomes. • An application for emerging markets countries such as Mexico is presented

  7. Analyses of fluid flow and heat transfer inside calandria vessel of CANDU-6 reactor using CFD

    International Nuclear Information System (INIS)

    Yu, Seon Oh; Kim, Man Woong; Kim, Hho Jung

    2005-01-01

    In a CANDU (CANada Deuterium Uranium) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a Loss Of Coolant Accident (LOCA) with coincident Loss Of Emergency Core Cooling (LOECC). as well as normal operating conditions. This study presents assessments of moderator thermal-hydraulic characteristics in the normal operating conditions and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, using the optimized scheme, analyses of real CANDU-6 in normal operating conditions and the transition condition have been performed. The present model successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of a real CANDU-6 with 380 fuel channels. A flow regime map with major parameters representing the flow pattern inside a calandria vessel has also proposed to be used as operational and/or regulatory guidelines

  8. Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow

    Science.gov (United States)

    Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao

    2018-05-01

    An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.

  9. Subwavelength dielectric nanorod chains for energy transfer in the visible range.

    Science.gov (United States)

    Li, Dongdong; Zhang, Jingjing; Yan, Changchun; Xu, Zhengji; Zhang, Dao Hua

    2017-10-15

    We report a new type of energy transfer device, formed by a dielectric nanorod array embedded in a silver slab. Such dielectric chain structures allow surface plasmon wave guiding with large propagation length and highly suppressed crosstalk between adjacent transmission channels. The simulation results show that our proposed design can be used to enhance the energy transfer along the waveguide-like dielectric nanorod chains via coupled plasmons, where the energy spreading is effectively suppressed, and superior imaging properties in terms of resolution and energy transfer distance can be achieved.

  10. Coupled-channels analyses for 9,11Li + 208Pb fusion reactions with multi-neutron transfer couplings

    Science.gov (United States)

    Choi, Ki-Seok; Cheoun, Myung-Ki; So, W. Y.; Hagino, K.; Kim, K. S.

    2018-05-01

    We discuss the role of two-neutron transfer processes in the fusion reaction of the 9,11Li + 208Pb systems. We first analyze the 9Li + 208Pb reaction by taking into account the coupling to the 7Li + 210Pb channel. To this end, we assume that two neutrons are directly transferred to a single effective channel in 210Pb and solve the coupled-channels equations with the two channels. By adjusting the coupling strength and the effective Q-value, we successfully reproduce the experimental fusion cross sections for this system. We then analyze the 11Li + 208Pb reaction in a similar manner, that is, by taking into account three effective channels with 11Li + 208Pb, 9Li + 210Pb, and 7Li + 212Pb partitions. In order to take into account the halo structure of the 11Li nucleus, we construct the potential between 11Li and 208Pb with a double folding procedure, while we employ a Woods-Saxon type potential with the global Akyüz-Winther parameters for the other channels. Our calculation indicates that the multiple two-neutron transfer process plays a crucial role in the 11Li + 208Pb fusion reaction at energies around the Coulomb barrier.

  11. Efficient energy transfer and increase of energy density of magnetically charged flywheels

    International Nuclear Information System (INIS)

    Hinterdorfer, T.

    2014-01-01

    Flywheel Energy Storage Systems represent an ecologically and economically sustainable technology for decentralized energy storage. Compared to other storage technologies such as e.g. chemical accumulators, they offer longer life cycles without performance degradation over time and usage and need almost no systematic maintenance. Further, they are made of environmentally friendly materials. By means of the driving torque of an electric motor, the flywheel is accelerated and thus electrical energy is transformed to kinetic energy. The stored energy can be transfered back by the load torque of a generator when needed. Modern flywheel energy storage applications use magnetic bearings to minimize selfdischarge. To avoid bearing forces due to rotor eccentricity an unbalance control strategy is used. However, this leads to an off-centered run of the electric machines rotor which in turn generates undesirable forces. A force-compensating operation of the electric machine will minimize the influence on the magnetic bearings in the planned control scheme, thus increasing their efficiency. Different concepts will be developed and compared to each other by means of simulations. Validation of the simulation models is carried out on a specially constructed test setup under defined conditions. In addition, the electrical machine will be integrated into the concept of redundancy of the flywheel. A bearingless operation increases the reliability and enables a safe shutdown of the application in case of malfunction of the magnetic bearings. High strength composite materials are used to achieve high speeds. Based on existing results from past research activities, a disc-shaped rotor is optimized first. To increase material utilization and to maximize energy density a topology optimization is performed. Evolutionary and gradient based optimization algorithms are used. Thereby the unused strength potential of the material is exploited in order to increase the economic efficiency of

  12. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  13. Nuclear energy and the public opinion: analyses, communication strategy and actions

    International Nuclear Information System (INIS)

    Ansel, P.; Pages, J.P.

    1994-01-01

    A series of papers analysing the reactions of the public opinion concerning the nuclear energy, describing the information and communication strategies of some of the main French companies involved in the nuclear field, and presenting some of the actions undertaken in France and abroad

  14. Design of a variable-phase contactless energy transfer platform using air-cored planar inductor technology

    NARCIS (Netherlands)

    Sonntag, C.L.W.

    2010-01-01

    Contactless Energy Transfer (CET) describes the process in which electrical energy is transferred among two or more galvanically isolated electrical circuits or devices by means of magnetic induction (magnetic energy). The potential applications can range from the transfer of energy between low

  15. Linear energy transfer incorporated intensity modulated proton therapy optimization

    Science.gov (United States)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the

  16. Ultrafast excitation energy transfer from encapsulated quaterrylene to single-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Takeshi, E-mail: koyama@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Tsunekawa, Takuya [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Saito, Takeshi [Research Center for Advanced Carbon Materials, AIST, Tsukuba, Ibaraki 305-8565 (Japan); Asaka, Koji; Saito, Yahachi [Department of Quantum Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Kishida, Hideo [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nakamura, Arao [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192 (Japan)

    2016-01-15

    We investigate excitation energy transfer from an encapsulated quaterrylene molecule to a single-walled carbon nanotube by means of femtosecond pump-probe spectroscopy. The time constant of energy transfer becomes shorter with increasing average diameter of nanotube: 1.4±0.2 ps for 1.0 nm, 1.1±0.2 ps for 1.4 nm, and 0.4±0.1 ps for 1.8 nm. The observed behavior is discussed considering the distance of less than 1 nm between the molecule and the nanotube wall. - Highlights: • Dynamical properties of excited states in quaterrylene/SWNT composites were studied. • Excitation energy transfer occurs in the time range of 0.4-1.4 ps. • The transfer rate depends on the nanotube diameter, i.e. molecule-nanotube wall distance. • This dependence indicates the feature of excitation energy transfer on the nanoscale.

  17. Energy transfer moments in thermalization; Les moments dei transfert d'energie en thermalisation

    Energy Technology Data Exchange (ETDEWEB)

    Soule, J L; Pillard, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    For all moderators of the 'incoherent gaussian' type, it is possible to calculate, at any temperature, the energy transfer moments as a function of the incident energy without having to use the differential sections. Integral formulae are derived for the integral cross-section, the first and the second moment, which make it possible to tabulate directly these three functions in a few minutes calculation on IBM 7094, for the most part models proposed in the literature for the common moderators. (authors) [French] Pour tous les moderateurs de type 'incoherent gaussien' on peut calculer, a n'importe quelle temperature, les moments de transfert d'energie en fonction de l'energie incidente, sans passer par l'intermediaire des sections differentielles. On developpe des formules integrales pour la section efficace integrale, le premier et le second moment, qui permettent de tabuler directement ces trois fonctions en quelques minutes de calcul sur IBM 7094, pour la plupart des modeles proposes dans la litterature pour les moderateurs usuels. (auteurs)

  18. Analyses of Public Utility Building - Students Designs, Aimed at their Energy Efficiency Improvement

    Science.gov (United States)

    Wołoszyn, Marek Adam

    2017-10-01

    Public utility buildings are formally, structurally and functionally complex entities. Frequently, the process of their design involves the retroactive reconsideration of energy engineering issues, once a building concept has already been completed. At that stage, minor formal corrections are made along with the design of the external layer of the building in order to satisfy applicable standards. Architecture students do the same when designing assigned public utility buildings. In order to demonstrate energy-related defects of building designs developed by students, the conduct of analyses was proposed. The completed designs of public utility buildings were examined with regard to energy efficiency of the solutions they feature through the application of the following programs: Ecotect, Vasari, and in case of simpler analyses ArchiCad program extensions were sufficient.

  19. Photoinduced energy and electron transfer in rubrene-benzoquinone and rubrene-porphyrin systems

    KAUST Repository

    Khan, Jafar Iqbal

    2014-11-01

    Excited-state electron and energy transfer from singlet excited rubrene (Ru) to benzoquinone (BQ) and tetra-(4-aminophenyl) porphyrin (TAPP) were investigated by steady-state absorption and emission, time-resolved transient absorption, and femtosecond (fs)-nanosecond (ns) fluorescence spectroscopy. The low reduction potential of BQ provides the high probability of electron transfer from the excited Ru to BQ. Steady-state and time-resolved results confirm such an excited electron transfer scenario. On the other hand, strong spectral overlap between the emission of Ru and absorption of TAPP suggests that energy transfer is a possible deactivation pathway of the Ru excited state.

  20. European energy security analysing the EU-Russia energy security regime in terms of interdependence theory

    CERN Document Server

    Esakova, Nataliya

    2012-01-01

    Nataliya Esakova performs an analysis of the interdependencies and the nature of cooperation between energy producing, consuming and transit countries focusing on the gas sector. For the analysis the theoretical framework of the interdependence theory by Robert O. Keohane and Joseph S. Nye and the international regime theory are applied to the recent developments within the gas relationship between the European Union and Russia in the last decade. The objective of the analysis is to determine, whether a fundamental regime change in terms of international regime theory is taking place, and, if so, which regime change explanation model in terms of interdependence theory is likely to apply.

  1. European energy security. Analysing the EU-Russia energy security regime in terms of interdependence theory

    Energy Technology Data Exchange (ETDEWEB)

    Esakova, Nataliya

    2012-07-01

    Nataliya Esakova performs an analysis of the interdependencies and the nature of cooperation between energy producing, consuming and transit countries focusing on the gas sector. For the analysis the theoretical framework of the interdependence theory by Robert O. Keohane and Joseph S. Nye and the international regime theory are applied to the recent developments within the gas relationship between the European Union and Russia in the last decade. The objective of the analysis is to determine, whether a fundamental regime change in terms of international regime theory is taking place, and, if so, which regime change explanation model in terms of interdependence theory is likely to apply. (orig.)

  2. Coherent excitation-energy transfer and quantum entanglement in a dimer

    International Nuclear Information System (INIS)

    Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman

    2010-01-01

    We study coherent energy transfer of a single excitation and quantum entanglement in a dimer, which consists of a donor and an acceptor modeled by two two-level systems. Between the donor and the acceptor, there exists a dipole-dipole interaction, which provides the physical mechanism for coherent energy transfer and entanglement generation. The donor and the acceptor couple to two independent heat baths with diagonal couplings that do not dissipate the energy of the noncoupling dimer. Special attention is paid to the effect on single-excitation energy transfer and entanglement generation of the energy detuning between the donor and the acceptor and the temperatures of the two heat baths. It is found that, the probability for single-excitation energy transfer largely depends on the energy detuning in the low temperature limit. Concretely, the positive and negative energy detunings can increase and decrease the probability at steady state, respectively. In the high temperature limit, however, the effect of the energy detuning on the probability is negligibly small. We also find that the probability is negligibly dependent on the bath temperature difference of the two heat baths. In addition, it is found that quantum entanglement can be generated in the process of coherent energy transfer. As the bath temperature increases, the generated steady-state entanglement decreases. For a given bath temperature, the steady-state entanglement decreases with the increase of the absolute value of the energy detuning.

  3. Quantum transfer energy in the framework of time-dependent dipole-dipole interaction

    Science.gov (United States)

    El-Shishtawy, Reda M.; Haddon, Robert C.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.; Berrada, K.; Abdel-Khalek, S.; Al-Hadeethi, Yas F.

    2018-03-01

    In this work, we examine the process of the quantum transfer of energy considering time-dependent dipole-dipole interaction in a dimer system characterized by two-level atom systems. By taking into account the effect of the acceleration and speed of the atoms in the dimer coupling, we demonstrate that the improvement of the probability for a single-excitation transfer energy extremely benefits from the incorporation of atomic motion effectiveness and the energy detuning. We explore the relevance between the population and entanglement during the time-evolution and show that this kind of nonlocal correlation may be generated during the process of the transfer of energy. Our work may provide optimal conditions to implement realistic experimental scenario in the transfer of the quantum energy.

  4. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix

    Science.gov (United States)

    Yang, Dong; Duan, Pengfei; Zhang, Li; Liu, Minghua

    2017-01-01

    Transfer of both chirality and energy information plays an important role in biological systems. Here we show a chiral donor π-gelator and assembled it with an achiral π-acceptor to see how chirality and energy can be transferred in a composite donor–acceptor system. It is found that the individual chiral gelator can self-assemble into nanohelix. In the presence of the achiral acceptor, the self-assembly can also proceed and lead to the formation of the composite nanohelix. In the composite nanohelix, an energy transfer is realized. Interestingly, in the composite nanohelix, the achiral acceptor can both capture the supramolecular chirality and collect the circularly polarized energy from the chiral donor, showing both supramolecular chirality and energy transfer amplified circularly polarized luminescence (ETACPL). PMID:28585538

  5. TOP-Energy - toolkit for optimization of industrial energy systems; TOP-Energy - Softwaregestuetzte Analyse und Optimierung industrieller Energieversorgungssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Augenstein, E.; Kuperjans, I. [RWTH Aachen (Germany); Wrobel, G. [Gesellschaft zur Foerderung angewandter Informatik e.V. (GFal), Berlin (Germany); Gruezenich, D.

    2004-07-01

    The contribution presents the software package 'TOP-Energy' which supports energy consultants in their analysis and optimisation of industrial energy systems and is a tool for development and assessment of measures for reducing the energy cost and the consumption of energy resources. In particular, it supports data acquisition, evaluation, and presentation of results of routine work; it offers simulations of complel processes and systems as well as tools like integrated project management. TOP-Energy consists of several modules linked by a common framework. The framework is for data management, module integration and control, and offers a user interface in the form of adaptable editors, dialogues and menus. Power supply systems of industrial works can be modelled with all their components. The key module of Top-energy is a simulator for systems designed, with variable temporal load curves and other boundary conditions. (orig.)

  6. Calculation of energy transfer by fission fragments from plane uranium layer to thin wire

    International Nuclear Information System (INIS)

    Pikulev, A.A.

    2006-01-01

    Energy transfer from a flat fissile uranium slab to a fine wire via fission fragments is calculated. The rate of energy transfer versus the thicknesses of the slab and protecting aluminum film, as well as the wire-slab gap, is found. An expression for the absorption coefficient of the wire is derived, and the effect the thickness of the wire has on the energy transfer process is studied. The amount of the edge effect for a finite-size uranium slab is demonstrated with calculations for vacuum conditions and for argon under a pressure of 0.25 atm [ru

  7. Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency

    DEFF Research Database (Denmark)

    Blum, Christian; Zijlstra, Niels; Lagendijk, Ad

    2012-01-01

    We have studied the influence of the local density of optical states (LDOS) on the rate and efficiency of Forster resonance energy transfer (FRET) from a donor to an acceptor. The donors and acceptors are dye molecules that are separated by a short strand of double-stranded DNA. The LDOS...... is controlled by carefully positioning the FRET pairs near a mirror. We find that the energy transfer efficiency changes with LDOS, and that, in agreement with theory, the energy transfer rate is independent of the LDOS, which allows one to quantitatively control FRET systems in a new way. Our results imply...

  8. Resonance Energy Transfer in Hybrid Devices in the Presence of a Surface

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Huck, Alexander; Kadkhodazadeh, Shima

    2014-01-01

    to approximately 10 nm was observed. By comparing the carrier dynamics of the quantum wells and the nanocrystals, we found that nonradiative recombination via surface states, generated during dry etching of the wafer, counteracts the nonradiative energy-transfer process to the nanocrystals and therefore decreases......We have studied room-temperature, nonradiative resonant energy transfer from InGaN/GaN quantum wells to CdSe/ZnS nanocrystals separated by aluminum oxide layers of different thicknesses. Nonradiative energy transfer from the quantum wells to the nanocrystals at separation distances of up...

  9. Spectroscopic evidence of resonance energy transfer mechanism from PbS QDs to bulk silicon

    Directory of Open Access Journals (Sweden)

    Bernechea M.

    2013-06-01

    Full Text Available In this work, we study the efficiency of the resonance energy transfer from PbS quantum dots to bulk silicon. We present spectroscopic evidence that resonance energy transfer from PbS quantum dots to bulk silicon can be an efficient process for separation distances below 12 nm. Temperature measurements are also presented for PbS quantum dots deposited on glass and silicon with 5 nm and 20nm spacer thicknesses substrates. Our findings show that the resonance energy transfer efficiency remains constant over the 50K to 300K temperature range.

  10. The impact of fiscal transfer on energy efficiency in Indonesia

    NARCIS (Netherlands)

    Syaifudin, N.; Sutrisno, A.; Setiawan, A.D.

    2015-01-01

    Conference and Exhibition Indonesia - New, Renewable Energy and Energy Conservation (The 3rd Indo-EBTKE ConEx 2014) IRSA-Indonesia 5, a bottom-up CGE model, was employed to analyze the impacts of fiscal support to the sub-national region to implement energy efficiency policy. By implementing several

  11. Active transfer of poloidal magnetic energy during plasma disruptions in J-TEXT

    International Nuclear Information System (INIS)

    Zhang, Ming; Zhang, Jun; Rao, Bo; Chen, Zhongyong; Li, Xiaolong; Xu, Wendi; Pan, Yuan; Yu, Kexun

    2016-01-01

    Highlights: • An alternative plasma disruption mitigation method by transferring partial poloidal magnetic energy out of the vacuum vessel has been presented in this paper. • This method can reduced the magnetic energy dissipated inside the vacuum vessel during disruption and mitigated the disruption damage. • This method has been experimentally verified in J-TEXT with an experiment system set up. • According to the experimental results, the magnetic energy dissipated inside the vacuum vessel during disruption can be reduced by 20% or more and the loop voltage can be reduced by 58%. - Abstract: The magnitude of the damaging effects of plasma disruptions on vacuum vessel (VV) components increases with the thermal energy and poloidal magnetic energy dissipated inside the VV. This study focuses on an alternative method, by which partial poloidal magnetic energy is transferred out of the VV. The quantity of the poloidal magnetic energy dissipated inside the VV (W_d_i_s) can be reduced with this method, and the damaging effects can be mitigated. Partial magnetic energy is transferred based on magnetic coupling by a group of energy transfer coils (ETCs) that are coupled with the plasma current. This method, which is called magnetic energy transfer (MET), has been experimentally verified in J-TEXT. W_d_i_s can be reduced by approximately 20%, and the loop voltage can be reduced by 58%. MET is established as a novel, promising, and effective plasma disruption mitigation method.

  12. Quasiclassical trajectory study of the energy transfer in CO2--rare gas systems

    International Nuclear Information System (INIS)

    Suzukawa, H.H. Jr.; Wolfsberg, M.; Thompson, D.L.

    1978-01-01

    Computational methods are presented for the study of collisions between a linear, symmetric triatomic molecule and an atom by three-dimensional quasiclassical trajectory calculations. Application is made to the investigation of translational to rotational and translational to vibrational energy transfer in the systems CO 2 --Kr, CO 2 --Ar, and CO 2 --Ne. Potential-energy surfaces based on spectroscopic and molecular beam scattering data are used. In most of the calculations, the CO 2 molecule is initially in the quantum mechanical zero-point vibrational state and in a rotational state picked from a Boltzmann distribution at 300 0 K. The energy transfer processes are investigated for translational energies ranging from 0.1 to 10 eV. Translational to rotational energy transfer is found to be the major process for CO 2 --rare gas collisions at these energies. Below 1 eV there is very little translational to vibrational energy transfer. The effects of changes in the internal energy of the molecule, in the masses of the collidants, and in the potential-energy parameters are studied in an attempt to gain understanding of the energy transfer processes

  13. Direct heat transfer considerations for improving energy efficiency in pulp and paper Kraft mills

    Energy Technology Data Exchange (ETDEWEB)

    Savulescu, Luciana Elena; Alva-Argaez, Alberto [Natural Resources (Canada)

    2008-10-15

    The success of any process improvement study depends on the quality of the available data and the way in which the plant-specific characteristics are incorporated in the applied conceptual models; in the context of process integration studies these issues are directly related to the rules followed during the data extraction stage. Improving energy efficiency in a pulp and paper Kraft mill requires the identification of the most promising heat recovery network retrofit projects. In a retrofit analysis using pinch technology/process integration methods, only the process streams associated to the existing heat exchangers and some outlet streams (such as wastewater/effluent streams and vents) with high potential for heat recovery are usually included, while the energy exchanged through non-isothermal stream mixing (NIM) or direct heat transfer (DHT) is often assumed fixed and is not considered in the analysis. Relaxing this assumption requires extracting more data to represent the DHT design configuration that exists in the plant. However, different data extraction options can be considered to represent the DHT configuration depending on the associated process/operation constraints. This work describes a systematic procedure to extract and analyse the impacts of DHT on the overall energy efficiency of a Kraft process with a specific focus on mixing along the pulp line and in water tanks. (author)

  14. Direct heat transfer considerations for improving energy efficiency in pulp and paper Kraft mills

    International Nuclear Information System (INIS)

    Savulescu, Luciana Elena; Alva-Argaez, Alberto

    2008-01-01

    The success of any process improvement study depends on the quality of the available data and the way in which the plant-specific characteristics are incorporated in the applied conceptual models; in the context of process integration studies these issues are directly related to the rules followed during the data extraction stage. Improving energy efficiency in a pulp and paper Kraft mill requires the identification of the most promising heat recovery network retrofit projects. In a retrofit analysis using pinch technology/process integration methods, only the process streams associated to the existing heat exchangers and some outlet streams (such as wastewater/effluent streams and vents) with high potential for heat recovery are usually included, while the energy exchanged through non-isothermal stream mixing (NIM) or direct heat transfer (DHT) is often assumed fixed and is not considered in the analysis. Relaxing this assumption requires extracting more data to represent the DHT design configuration that exists in the plant. However, different data extraction options can be considered to represent the DHT configuration depending on the associated process/operation constraints. This work describes a systematic procedure to extract and analyse the impacts of DHT on the overall energy efficiency of a Kraft process with a specific focus on mixing along the pulp line and in water tanks

  15. Energy transfer of excitons between quantum wells separated by a wide barrier

    International Nuclear Information System (INIS)

    Lyo, S. K.

    2000-01-01

    We present a microscopic theory of the excitonic Stokes and anti-Stokes energy-transfer mechanisms between two widely separated unequal quantum wells with a large energy mismatch (Δ) at low temperatures (T). Several important intrinsic energy-transfer mechanisms have been examined, including dipolar coupling, real and virtual photon-exchange coupling, and over-barrier ionization of the excitons via exciton-exciton Auger processes. The transfer rate is calculated as a function of T and the center-to-center distance d between the wells. The rates depend sensitively on T for plane-wave excitons. For localized excitons, the rates depend on T only through the T dependence of the exciton localization radius. For Stokes energy transfer, the dominant energy transfer occurs through a photon-exchange interaction, which enables the excitons from the higher-energy wells to decay into free electrons and holes in the lower-energy wells. The rate has a slow dependence on d, yielding reasonable agreement with recent data from GaAs/Al x Ga 1-x As quantum wells. The dipolar rate is about an order of magnitude smaller for large d (e.g., d=175Aa) with a stronger range dependence proportional to d -4 . However, the latter can be comparable to the radiative rate for small d (e.g., d≤80Aa). For anti-Stokes transfer through exchange-type (e.g., dipolar and photon-exchange) interactions, we show that thermal activation proportional to exp(-Δ/k B T) is essential for the transfer, contradicting a recent nonactivated result based on the Fo''rster-Dexter's spectral-overlap theory. Phonon-assisted transfer yields a negligibly small rate. On the other hand, energy transfer through over-barrier ionization of excitons via Auger processes yields a significantly larger nonactivated rate which is independent of d. The result is compared with recent data

  16. Is free knowledge transfer history in the energy sector?

    International Nuclear Information System (INIS)

    Zewald, H.

    2000-01-01

    The European power industry is gradually changing from a government-controlled sector of monopolists to an internationally privatized free sector. Companies that used to cooperate are now competing with one another. The question is: can the international knowledge transfer institutes escape from this competitive climate or will they fall victim to it?

  17. Energy transfer and thermal studies of Pr 3+ doped cerium oxalate ...

    Indian Academy of Sciences (India)

    The analysis of energy level diagrams of cerium and praseodymium ions indicates that the energy gap between the sensitizer and the activator ions varies in a small range suggesting a possible energy transfer from the Ce3+ to Pr3+. The emission and absorption spectra of these crystals were recorded. The overlapping of ...

  18. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  19. Visible Light Photocatalysis of [2+2] Styrene Cycloadditions via Energy Transfer

    Science.gov (United States)

    Lu, Zhan; Yoon, Tehshik P.

    2012-01-01

    Hip to be square: Styrenes participate in [2+2] cycloadditions upon irradiation with visible light in the presence of an iridium(III) polypyridyl complex. In contrast to previous reports of visible light photoredox catalysis, the mechanism of this process involves photosensitization by energy transfer and not electron transfer. PMID:22965321

  20. Analysing policy interactions for promoting energy efficiency in the Hellenic sectors of buildings and transport

    OpenAIRE

    Dr. Popi KONIDARI; Mrs. Anna FLESSA; Ms. Aliki-Nefeli MAVRAKI; Ms. Eleni-Danai MAVRAKI

    2016-01-01

    Policy interactions are important parameters for the successful implementation of policies, measures and policy instruments. The parallel implementation of a number of policy instruments has the potential to create synergies or conflicts that maximize or prevent the achievement of their anticipated outcomes. This paper analyses three cases of policy interactions between two policy instruments for promoting even more the energy efficiency outcomes in Greece for two sectors, buildings and trans...

  1. Independent component analysis: A new possibility for analysing series of electron energy loss spectra

    International Nuclear Information System (INIS)

    Bonnet, Nogl; Nuzillard, Danielle

    2005-01-01

    A complementary approach is proposed for analysing series of electron energy-loss spectra that can be recorded with the spectrum-line technique, across an interface for instance. This approach, called blind source separation (BSS) or independent component analysis (ICA), complements two existing methods: the spatial difference approach and multivariate statistical analysis. The principle of the technique is presented and illustrations are given through one simulated example and one real example

  2. Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; van Stokkum, I.H.M.; Zigmantas, D.; van Grondelle, R.; Sundström, V.; Hiller, R.G.

    2006-01-01

    Roč. 45, - (2006), s. 8516-8526 ISSN 0006-2960 Institutional research plan: CEZ:AV0Z50510513 Keywords : Energy transfer * Amphidinium carterae Subject RIV: CE - Biochemistry Impact factor: 3.633, year: 2006

  3. Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; van Stokkum, I.H.M.; Zigmantas, D.; van Grondelle, R.; Sundström, V.; Hiller, R.G.

    2006-01-01

    Roč. 45, č. 28 (2006), s. 8516-8526 ISSN 0006-2960 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * Energy transfer Subject RIV: CE - Biochemistry Impact factor: 3.633, year: 2006

  4. Energy transfer in isolated LHC II studied by femtosecond pump-probe technique

    CERN Document Server

    Yang Yi; Liu Yuan; Liu Wei Min; Zhu Rong Yi; Qian Shi Xiong; Xu Chun He

    2003-01-01

    Excitation energy transfer in the isolated light-harvesting chlorophyll (Chl)-a/b protein complex of photosystem II (LHC II) was studied by the one-colour pump-probe technique with femtosecond time resolution. After exciting Chl-b by 638nm beam, the dynamic behaviour shows that the ultrafast energy transfer from Chl-b at positions of B2, B3, and B5 to the corresponding Chl-a molecules in monomeric subunit of LHC II is in the time scale of 230fs. While with the excitation of Chl-a at 678nm, the energy transfer between excitons of Chl-a molecules has the lifetime of about 370 fs, and two other slow decay components are due to the energy transfer between different Chl-a molecules in a monomeric subunit of LHC II or in different subunits, or due to change of molecular conformation. (20 refs).

  5. Ultrafast Dynamics of Dansylated POPAM Dendrimers and Energy Transfer in their Dye Complexes

    Science.gov (United States)

    Aumanen, J.; Kesti, T.; Sundström, V.; Vögtle, F.; Korppi-Tommola, J.

    We have studied internal dynamics of dansylated poly(propyleneamine) dendrimers of different generations in solution and excitation energy transfer from dansyl chromophores to xanthene dyes that form van der Waals complexes with the dendrimers

  6. Optogalvanic monitoring of collisional transfer of laser excitation energy in a neon RF plasma

    International Nuclear Information System (INIS)

    Armstrong, T.D.

    1994-01-01

    The optogalvanic signals produced by pulsed laser excitation of 1s5--2p8 and 1s5-2p9 (Paschen notation) transition by a ∼29 MHz radiofrequency (rf) discharge at ∼5 torr have been investigated. The optogalvanic signal produced by 1s5-2p9 excitations indicates that there is transfer of energy from the 2p9 state to some other state. The state to which this energy is transferred is believed to be mainly the 2p8 state because of the very small energy gap between the 2p9 and 2p8 states. To verify this transfer, the 1s5-2p8 transition was investigated. The similarity of the temporal profiles of the optogalvanic signals in both excitations confirms the collisional transfer of laser excitation energy from 2p9 to 2p8

  7. Inhibition of crossed-beam energy transfer induced by expansion-velocity fluctuations

    Science.gov (United States)

    Neuville, C.; Glize, K.; Loiseau, P.; Masson-Laborde, P.-E.; Debayle, A.; Casanova, M.; Baccou, C.; Labaune, C.; Depierreux, S.

    2018-04-01

    Crossed-beam energy transfer between three laser beams has been experimentally investigated in a flowing plasma. Time-evolution measurements of the amplification of a first beam by a second beam highlighted the inhibition of energy transfer by hydrodynamic modifications of the plasma in the crossing volume due to the propagation of a third beam. According to 3D simulations and an analytical model, it appears that the long-wavelength expansion-velocity fluctuations produced by the propagation of the third beam in the crossing volume are responsible for this mitigation of energy transfer. This effect could be a cause of the over-estimation of the amount of the transferred energy in indirect-drive inertial confinement fusion experiments. Besides, tuning such long-wavelength fluctuations could be a way to completely inhibit CBET at the laser entrance holes of hohlraums.

  8. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  9. Transferability of results of cost utility analyses for biologicals in inflammatory conditions for Central and Eastern European countries.

    Science.gov (United States)

    Gulácsi, László; Rencz, Fanni; Péntek, Márta; Brodszky, Valentin; Lopert, Ruth; Hevér, Noémi V; Baji, Petra

    2014-05-01

    Several Central and Eastern European (CEE) countries require cost-utility analyses (CUAs) to support reimbursement formulary listing. However, CUAs informed by local evidence are often unavailable, and the cost-effectiveness of the several currently reimbursed biologicals is unclear. To estimate the cost-effectiveness as multiples of per capita GDP/quality adjusted life years (QALY) of four biologicals (infliximab, etanercept, adalimumab, golimumab) currently reimbursed in six CEE countries in six inflammatory rheumatoid and bowel disease conditions. Systematic literature review of published cost-utility analyses in the selected conditions, using the United Kingdom (UK) as reference country and with study selection criteria set to optimize the transfer of results to the CEEs. Prices in each CEE country were pro-rated against UK prices using purchasing power parity (PPP)-adjusted per capita GDP, and local GDP per capita/QALY ratios estimated. Central and Eastern European countries list prices were 144-333% higher than pro rata prices. Out of 85 CUAs identified by previous systematic literature reviews, 15 were selected as a convenience sample for estimating the cost-effectiveness of biologicals in the CEE countries in terms of per capita GDP/QALY. Per capita GDP/QALY values varied from 0.42 to 6.4 across countries and conditions (Bulgaria: 0.97-6.38; Czech Republic: 0.42-2.76; Hungary: 0.54-3.54; Poland: 0.59-3.90; Romania: 0.77-5.07; Slovakia: 0.55-3.61). While results must be interpreted with caution, calculating pro rata (cost-effective) prices and per capita GDP/QALY ratios based on CUAs can aid reimbursement decision-making in the absence of analyses using local data.

  10. Spontaneous Emission and Energy Transfer Rates Near a Coated Metallic Cylinder

    OpenAIRE

    BRADLEY, LOUISE

    2014-01-01

    PUBLISHED The spontaneous emission and energy transfer rates of quantum systems in proximity to a dielectrically coated metallic cylinder are investigated using a Green's tensor formalism. The excitation of surface plasmon modes can significantly modify these rates. The spontaneous emission and energy transfer rates are investigated as a function of the material and dimensions of the core and coating, as well as the emission wavelength of the donor. For the material of the core we consider...

  11. Argonne National Laboratory energy storage and transfer experimental program

    International Nuclear Information System (INIS)

    Kustom, R.L.; Wehrle, R.B.; Smith, R.P.; Fuja, R.E.

    1978-01-01

    Magnetic fusion reactor, equilibrium field, and ohmic heating (OH) coils require the coil energy to be cycled in relatively short periods of time. For large fusion reactor systems, the energy can be in the thousands of MJ range. These large amounts of energy cannot be removed from or returned to the power grid without having an adverse effect on the grid. Several schemes have been proposed which can minimize the amount of energy required from the power grid over a fusion-reactor cycle. They include the flying capacitor, the inductor-convertor bridge, the homopolar generator, and the motor-generator flywheel (MGF). The MGF is best understood and has been in use for this purpose for many years. It requires the least amount of development. The other schemes have not been applied to the energy buffering problem and require considerable development. Of the three remaining schemes, the homopolar generator and the inductor-convertor bridge seem to be the most desirable

  12. Energy Link Optimization in a Wireless Power Transfer Grid under Energy Autonomy Based on the Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhihao Zhao

    2016-08-01

    Full Text Available In this paper, an optimization method is proposed for the energy link in a wireless power transfer grid, which is a regional smart microgrid comprised of distributed devices equipped with wireless power transfer technology in a certain area. The relevant optimization model of the energy link is established by considering the wireless power transfer characteristics and the grid characteristics brought in by the device repeaters. Then, a concentration adaptive genetic algorithm (CAGA is proposed to optimize the energy link. The algorithm avoided the unification trend by introducing the concentration mechanism and a new crossover method named forward order crossover, as well as the adaptive parameter mechanism, which are utilized together to keep the diversity of the optimization solution groups. The results show that CAGA is feasible and competitive for the energy link optimization in different situations. This proposed algorithm performs better than its counterparts in the global convergence ability and the algorithm robustness.

  13. Modeling of MeV alpha particle energy transfer to lower hybrid waves

    International Nuclear Information System (INIS)

    Schivell, J.; Monticello, D.A.; Fisch, N.; Rax, J.M.

    1993-10-01

    The interaction between a lower hybrid wave and a fusion alpha particle displaces the alpha particle simultaneously in space and energy. This results in coupled diffusion. Diffusion of alphas down the density gradient could lead to their transferring energy to the wave. This could, in turn, put energy into current drive. An initial analytic study was done by Fisch and Rax. Here the authors calculate numerical solutions for the alpha energy transfer and study a range of conditions that are favorable for wave amplification from alpha energy. They find that it is possible for fusion alpha particles to transfer a large fraction of their energy to the lower hybrid wave. The numerical calculation shows that the net energy transfer is not sensitive to the value of the diffusion coefficient over a wide range of practical values. An extension of this idea, the use of a lossy boundary to enhance the energy transfer, is investigated. This technique is shown to offer a large potential benefit

  14. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    Science.gov (United States)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-02-01

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  15. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    International Nuclear Information System (INIS)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-01-01

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation

  16. HVDC interrupter experiments for large Magnetic Energy Transfer and Storage (METS) systems

    International Nuclear Information System (INIS)

    Swannack, C.E.; Haarman, R.A.; Lindsay, J.D.G.; Weldon, D.M.

    1975-01-01

    Proposed fusion-test reactors will require energy storage systems of hundreds of megajoules with transfer times of the order of one millisecond. The size of the energy storage submodule (and hence, the overall system cost and complexity) is directly determined by the voltage and current limits of the switch used for the energy transfer. Experiments are being conducted on high voltage dc circuit breakers as a major part of the energy storage, pulsed power program. DC circuit interruption characteristics of a commercially available ac power vacuum interrupter are discussed. Preliminary data of interruption characteristics are reported for an interrupter developed specifically to match a present METS circuit requirement

  17. An investment-led approach to analysing the hydrogen energy economy in the UK

    International Nuclear Information System (INIS)

    Houghton, T.; Cruden, A.

    2009-01-01

    The authors propose an alternative, investment-led approach to analysing the potential for the development of hydrogen energy in the UK. The UK economy is relatively sensitive to movements in world fossil fuels markets since the energy sector contributes at least 5% of UK GDP and represents an asset pool of at least pound 230 billion. Much of the ongoing research to assess possible scenarios for the development of alternatives to existing energy systems, including hydrogen energy, in the UK is built around the cost-optimising MARKAL model. The authors believe that this approach offers an incomplete picture of hydrogen energy deployment since it ignores the mechanisms dictating the flow of commercial capital to the sector and they suggest an alternative model based on the risk-adjusted value proposition. Initial analysis shows that valuation differentials already exist between companies in the fossil fuel, utilities and fuel cell sectors and that this might be exploited to the advantage of investors thus affecting the speed of development in hydrogen energy. It should be noted that the following represents work in progress and the authors intend to publish an extended analysis in due course. (author)

  18. New aspects of high energy heavy-ion transfer reactions

    International Nuclear Information System (INIS)

    Scott, D.K.

    1975-03-01

    New aspects of heavy ion reactions at incident energies in the region of 10 MeV/nucleon are discussed with an emphasis on the peripheral nature of the collisions, which leads to simplicities in the differential cross sections. The distortion of the peripheral distribution through the interference of direct and multistep processes is used to illustrate aspects of high energy reactions unique to heavy ions. The simplicities of the distributions for reactions on lighter nuclei are exploited to give new information about nuclear structure from direct and compound reactions at high energy. (16 figures, 32 references) (U.S.)

  19. Numerical simulations of energy transfer in two collisionless interpenetrating plasmas

    Directory of Open Access Journals (Sweden)

    Davis S.

    2013-11-01

    Full Text Available Ion stream instabilities are essential for collisionless shock formation as seen in astrophysics. Weakly relativistic shocks are considered as candidates for sources of high energy cosmic rays. Laboratory experiments may provide a better understanding of this phenomenon. High intensity short pulse laser systems are opening possibilities for efficient ion acceleration to high energies. Their collision with a secondary target could be used for collisionless shock formation. In this paper, using particle-in-cell simulations we are studying interaction of a sub-relativistic, laser created proton beam with a secondary gas target. We show that the ion bunch initiates strong electron heating accompanied by the Weibel-like filamentation and ion energy losses. The energy repartition between ions, electrons and magnetic fields are investigated. This yields insight on the processes occurring in the interstellar medium (ISM and gamma-ray burst afterglows.

  20. Heat transfer efficient thermal energy storage for steam generation

    International Nuclear Information System (INIS)

    Adinberg, R.; Zvegilsky, D.; Epstein, M.

    2010-01-01

    A novel reflux heat transfer storage (RHTS) concept for producing high-temperature superheated steam in the temperature range 350-400 deg. C was developed and tested. The thermal storage medium is a metallic substance, Zinc-Tin alloy, which serves as the phase change material (PCM). A high-temperature heat transfer fluid (HTF) is added to the storage medium in order to enhance heat exchange within the storage system, which comprises PCM units and the associated heat exchangers serving for charging and discharging the storage. The applied heat transfer mechanism is based on the HTF reflux created by a combined evaporation-condensation process. It was shown that a PCM with a fraction of 70 wt.% Zn in the alloy (Zn70Sn30) is optimal to attain a storage temperature of 370 deg. C, provided the heat source such as solar-produced steam or solar-heated synthetic oil has a temperature of about 400 deg. C (typical for the parabolic troughs technology). This PCM melts gradually between temperatures 200 and 370 deg. C preserving the latent heat of fusion, mainly of the Zn-component, that later, at the stage of heat discharge, will be available for producing steam. The thermal storage concept was experimentally studied using a lab scale apparatus that enabled investigating of storage materials (the PCM-HTF system) simultaneously with carrying out thermal performance measurements and observing heat transfer effects occurring in the system. The tests produced satisfactory results in terms of thermal stability and compatibility of the utilized storage materials, alloy Zn70Sn30 and the eutectic mixture of biphenyl and diphenyl oxide, up to a working temperature of 400 deg. C. Optional schemes for integrating the developed thermal storage into a solar thermal electric plant are discussed and evaluated considering a pilot scale solar plant with thermal power output of 12 MW. The storage should enable uninterrupted operation of solar thermal electric systems during additional hours

  1. Experimental Study of RF Energy Transfer System in Indoor Environment

    International Nuclear Information System (INIS)

    Adami, S-E; Proynov, P P; Stark, B H; Hilton, G S; Craddock, I J

    2014-01-01

    This paper presents a multi-transmitter, 2.43 GHz Radio-Frequency (RF) wireless power transfer (WPT) system for powering on-body devices. It is shown that under typical indoor conditions, the received power range spans several orders of magnitude from microwatts to milliwatts. A body-worn dual-polarised rectenna (rectifying antenna) is presented, designed for situations where the dominant polarization is unpredictable, as is the case for the on-body sensors. Power management circuitry is demonstrated that optimally loads the rectenna even under highly intermittent conditions, and boosts the voltage to charge an on-board storage capacitor

  2. Experimental Study of RF Energy Transfer System in Indoor Environment

    Science.gov (United States)

    Adami, S.-E.; Proynov, P. P.; Stark, B. H.; Hilton, G. S.; Craddock, I. J.

    2014-11-01

    This paper presents a multi-transmitter, 2.43 GHz Radio-Frequency (RF) wireless power transfer (WPT) system for powering on-body devices. It is shown that under typical indoor conditions, the received power range spans several orders of magnitude from microwatts to milliwatts. A body-worn dual-polarised rectenna (rectifying antenna) is presented, designed for situations where the dominant polarization is unpredictable, as is the case for the on-body sensors. Power management circuitry is demonstrated that optimally loads the rectenna even under highly intermittent conditions, and boosts the voltage to charge an on-board storage capacitor.

  3. Statistical error of spin transfer to hyperon at RHIC energy

    International Nuclear Information System (INIS)

    Han Ran; Mao Yajun

    2009-01-01

    From the RHIC/PHENIX experiment data, it is found that the statistical error of spin transfer is few times larger than the statistical error of the single spin asymmetry. In order to verify the difference between σDLL and σAL, the linear least squares method was used to check it first, and then a simple Monte-Carlo simulation to test this factor again. The simulation is consistent with the calculation result which indicates that the few times difference is reasonable. (authors)

  4. The role of the concentration scale in the definition of transfer free energies.

    Science.gov (United States)

    Moeser, Beate; Horinek, Dominik

    2015-01-01

    The Gibbs free energy of transferring a solute at infinite dilution between two solvents quantifies differences in solute-solvent interactions - if the transfer takes place at constant molarity of the solute. Yet, many calculation formulae and measuring instructions that are commonly used to quantify solute-solvent interactions correspond to transfer processes in which not the molarity of the solute but its concentration measured in another concentration scale is constant. Here, we demonstrate that in this case, not only the change in solute-solvent interactions is quantified but also the entropic effect of a volume change during the transfer. Consequently, the "phenomenon" which is known as "concentration-scale dependence" of transfer free energies is simply explained by a volume-entropy effect. Our explanations are of high importance for the study of cosolvent effects on protein stability. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Energy transfer from triplet aromatic hydrocarbons to Tb3+ and Eu3+ in aqueous micellar solutions

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Thomas, J.K.

    1979-01-01

    The sensitization of Tb 3+ and Eu 3+ luminescence by energy transfer from aromatic triplet donors like naphthalene, bromonaphthalene, biphenyl, and phenanthrene in micellar sodium lauryl sulfate solution has been studied. Formal second-order rate constants for the energy transfer process in the micellar solutions were determined as 5 x 10 5 and 1.8 x 10 5 M -1 S -1 for transfer from biphenyl to Tb 3+ . The method of converting these rate constants to second-order constants pertaining to the micellar microenvironment is discussed; it is estimated that the transfer process at the micelles is charaterized by rate constants about one order of magnitude smaller than the formal ones. The transfer process is thus extremely slow. 7 figures

  6. Observation of the one- to six-neutron transfer reactions at sub-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.L.; Rehm, K.E.; Gehring, J. [and others

    1995-08-01

    It was suggested many years ago that when two heavy nuclei are in contact during a grazing collision, the transfer of several correlated neutron-pairs could occur. Despite considerable experimental effort, however, so far only cross sections for up to four-neutron transfers have been uniquely identified. The main difficulties in the study of multi-neutron transfer reactions are the small cross sections encountered at incident energies close to the barrier, and various experimental uncertainties which can complicate the analysis of these reactions. We have for the first time found evidence for multi-neutron transfer reactions covering the full sequence from one- to six-neutron transfer reactions at sub-barrier energies in the system {sup 58}Ni + {sup 100}Mo.

  7. Fluorescence resonance energy transfer between conjugated molecules infiltrated in three-dimensional opal photonic crystals

    International Nuclear Information System (INIS)

    Zou, Lu; Sui, Ning; Wang, Ying-Hui; Qian, Cheng; Ma, Yu-Guang; Zhang, Han-Zhuang

    2015-01-01

    Fluorescence resonance energy transfer (FRET) from Coumarin 6 (C-6) to Sulforhodamine B (S-B) infiltrated into opal PMMA (poly-methyl-methacrylate) photonic crystals (PCs) has been studied in detail. The intrinsic mesh micro-porous structure of opal PCs could increase the luminescent efficiency through inhibiting the intermolecular interaction. Meanwhile, its structure of periodically varying refractive indices could also modify the FRET through affecting the luminescence characteristics of energy donor or energy acceptor. The results demonstrate that the FRET efficiency between conjugated dyes was easily modified by opal PCs. - Highlights: • We investigate the fluorescence resonance energy transfer between two kinds of dyes. • These two kinds of dyes are infiltrated in PMMA opal photonic crystals. • The structure of opal PCs could improve the luminescent characteristics. • The structure of opal PCs could improve the energy transfer characteristics

  8. Simulation of ball motion and energy transfer in a planetary ball mill

    International Nuclear Information System (INIS)

    Lu Sheng-Yong; Mao Qiong-Jing; Li Xiao-Dong; Yan Jian-Hua; Peng Zheng

    2012-01-01

    A kinetic model is proposed for simulating the trajectory of a single milling ball in a planetary ball mill, and a model is also proposed for simulating the local energy transfer during the ball milling process under no-slip conditions. Based on the kinematics of ball motion, the collision frequency and power are described, and the normal impact forces and effective power are derived from analyses of collision geometry. The Hertzian impact theory is applied to formulate these models after having established some relationships among the geometric, dynamic, and thermophysical parameters. Simulation is carried out based on two models, and the effects of the rotation velocity of the planetary disk Ω and the vial-to-disk speed ratio ω/Ω on other kinetic parameters is investigated. As a result, the optimal ratio ω/Ω to obtain high impact energy in the standard operating condition at Ω = 800 rpm is estimated, and is equal to 1.15. (interdisciplinary physics and related areas of science and technology)

  9. Dynamic bounds for power and efficiency of non-ideal energy converters under nonlinear transfer laws

    International Nuclear Information System (INIS)

    Sieniutycz, Stanislaw

    2009-01-01

    We present a thermodynamic approach to simulation and modeling of nonlinear energy converters, in particular radiation engines. Novel results are obtained especially for dynamical engines when the temperature of the propelling medium decreases in time due to a continual decrease of the medium's internal energy caused by the power production. Basic thermodynamic principles determine the converter's efficiency and work limits in terms of the entropy production. The real work is a cumulative effect obtained in a system of a resource fluid, a sequence of engines, and an infinite bath. Nonlinear modeling involves dynamic optimization in which the classical expression for efficiency at maximum power is generalized to endoirreversible machines and nonlinear transfer laws. The primary result is a finite-rate generalization of the classical, reversible work potential (exergy). The generalized work function depends on thermal coordinates and a dissipation index, h, i.e. a Hamiltonian of the minimum entropy production problem. This generalized work function implies stronger bounds on work delivered or supplied than the reversible work potential. The role of the nonlinear analyses and dynamic optimization is shown especially for radiation engines. As an example of the kinetic work limit, generalized exergy of radiation fluid is estimated in terms of finite rates, quantified by the Hamiltonian h

  10. Mid-range adiabatic wireless energy transfer via a mediator coil

    International Nuclear Information System (INIS)

    Rangelov, A.A.; Vitanov, N.V.

    2012-01-01

    A technique for efficient mid-range wireless energy transfer between two coils via a mediator coil is proposed. By varying the coil frequencies, three resonances are created: emitter–mediator (EM), mediator–receiver (MR) and emitter–receiver (ER). If the frequency sweeps are adiabatic and such that the EM resonance precedes the MR resonance, the energy flows sequentially along the chain emitter–mediator–receiver. If the MR resonance precedes the EM resonance, then the energy flows directly from the emitter to the receiver via the ER resonance; then the losses from the mediator are suppressed. This technique is robust against noise, resonant constraints and external interferences. - Highlights: ► Efficient and robust mid-range wireless energy transfer via a mediator coil. ► The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. ► Wireless energy transfer is insensitive to any resonant constraints. ► Wireless energy transfer is insensitive to noise in the neighborhood of the coils.

  11. Collisions involving energy transfer between atoms with large angular moments

    International Nuclear Information System (INIS)

    Vdovin, Yu.A.; Galitskij, V.M.

    1975-01-01

    Study is made of the collisions of excited and nonexcited atoms with a small resonance defect, assuming that the excited and ground states of each atom are bound via an allowed dipole transition and that intrinsic moments of states are great. In such an approximation the atomic interaction is defined by a dipole-dipole interaction operator. Equations for amplitudes are derived for two cases: (1) the first atom is in an excited state while the second is in the ground state and (2) the first atom is in the ground state while the second is in an excited state. The problem is solved in the approximation that the moments of the excited and ground states of each atom are equal. An expression for the excitation transfer cross section is written down. Analysis of this expression shows that the excitation transfer cross section at first increases with removal from the exact resonance and reaches resonance at lambda approximately 0.1 (lambda is a dimensionless parameter which is equal to the ratio of the resonance defect Δ to the interaction at spacings of the order of the Weisskopf radius). Only at lambda >0.16 does the cross section become smaller than the resonance one. This effect is due to the interaction Hamiltonian approximation adopted in the present study

  12. Vectorial photoinduced energy transfer between boron-dipyrromethene (Bodipy) chromophores across a fluorene bridge.

    Science.gov (United States)

    Puntoriero, Fausto; Nastasi, Francesco; Campagna, Sebastiano; Bura, Thomas; Ziessel, Raymond

    2010-08-02

    A series of novel multichromophoric, luminescent compounds has been prepared, and their absorption spectra, luminescence properties (both at 77 K in rigid matrix and at 298 K in fluid solution), and photoinduced intercomponent energy-transfer processes have been studied. The series contains two new multichromophoric systems 1 and 2, each one containing two different boron-dipyrromethene (Bodipy) subunits and one bridging fluorene species, and two fluorene-Bodipy bichromophoric species, 6 and 7. Three monochromophoric compounds, 3, 4, and 5, used as precursors in the synthetic process, were also fully characterized. The absorption spectra of the multichromophoric compounds are roughly the summation of the absorption spectra of their individual components, thus demonstrating the supramolecular nature of the assemblies. Luminescence studies show that quantitative energy transfer occurs in 6 and 7 from the fluorene chromophore to the Bodipy dyes. Luminescence studies, complemented by transient-absorption spectroscopy studies, also indicate that efficient inter-Bodipy energy transfer across the rigid fluorene spacer takes place in 1 and 2, with rate constants, evaluated by several experimental methods, between 2.0 and 7.0 x 10(9) s(-1). Such an inter-Bodipy energy transfer appears to be governed by the Förster mechanism. By taking advantage of the presence of various protonable sites in the substituents of the lower-energy Bodipy subunit of 1 and 2, the effect of protonation on the energy-transfer rates has also been investigated. The results suggest that control of energy-transfer rate and efficiency of inter-Bodipy energy transfer in this type of systems can be achieved by an external, reversible input.

  13. Crossed-beam energy transfer: polarization effects and evidence of saturation

    Science.gov (United States)

    Turnbull, D.; Colaïtis, A.; Follett, R. K.; Palastro, J. P.; Froula, D. H.; Michel, P.; Goyon, C.; Chapman, T.; Divol, L.; Kemp, G. E.; Mariscal, D.; Patankar, S.; Pollock, B. B.; Ross, J. S.; Moody, J. D.; Tubman, E. R.; Woolsey, N. C.

    2018-05-01

    Recent results on crossed-beam energy transfer are presented. Wavelength tuning was used to vary the amount of energy transfer between two beams in a quasi-stationary plasma with carefully controlled conditions. The amount of transfer agreed well with calculations assuming linear ion acoustic waves (IAWs) with amplitudes up to δ n/n≈ 0.015. Increasing the initial probe intensity to access larger IAW amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to manipulate a beam's polarization, which results from the anisotropic nature of the interaction, is revisited; an example is provided to demonstrate how polarization effects in a multibeam situation can dramatically enhance the expected amount of energy transfer.

  14. Integrated well-to-wheel assessment on biofuels, analysing energy, emission and welfare economic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Slentoe, E.; Moeller, F.; Frederiksen, P.; Jepsen, M.R.

    2011-07-15

    Various biofuel evaluation methods exist, with different analytical framework setup and different scopes. The scope of this study is to develop an integrated method to evaluate the consequences of producing biofuels. The consequences should include energy consumption, emission and welfare economic changes within the well-to-wheel (WTW) flow chain focusing on the production of biomass, and the subsequent conversion into bio fuel and combustion in vehicles. This method (Moeller and Slentoe, 2010) is applied to a Danish case, implementing policy targets for biofuel use in the transport sector and also developing an alternative scenario of higher biofuel shares. This paper presents the results of three interlinked parallel running analyses, of energy consumption, emissions and welfare economics (Slentoe, Moeller and Winther, 2010), and discusses the feasibility of those analyses, which are based on the same consequential analysis method, comparing a scenario situation to a reference situation. As will be shown, the results are not univocal; example given, what is an energy gain is not necessarily a welfare economic gain. The study is conducted as part of the Danish REBECa project. Within this, two main scenarios, HS1 and HS2, for biofuel mixture in fossil diesel fuel and gasoline are established. The biofuel rape diesel (RME) stems from rape seeds and bioethanol stems from either wheat grains (1st generation) or straw (2nd generation) - all cultivated in Denmark. The share of 2nd generation bioethanol exceeds 1st generation bioethanol towards 2030. Both scenarios initiate at a 5.75% mixture in 2010 and reach 10% and 25% in 2030 for HS1 and HS2, such that the low mixture scenario reflects the Danish Act on sustainable biofuels (June 2009), implementing the EU renewable energy directive (2009/29/EC), using biofuels as energy carrier. The two scenarios are computed in two variants each, reflecting oil prices at 65$ and 100$ per barrel. (Author)

  15. Transfer

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Aarkrog, Vibe

    Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...

  16. Solar-pumped electronic-to-vibrational energy transfer lasers

    Science.gov (United States)

    Harries, W. L.; Wilson, J. W.

    1981-01-01

    The possibility of using solar-pumped lasers as solar energy converters is examined. The absorbing media considered are halogens or halogen compounds, which are dissociated to yield excited atoms, which then hand over energy to a molecular lasing medium. Estimates of the temperature effects for a Br2-CO2-He system with He as the cooling gas are given. High temperatures can cause the lower energy levels of the CO2 laser transition to be filled. The inverted populations are calculated and lasing should be possible. However, the efficiency is less than 0.001. Examination of other halogen-molecular lasant combinations (where the rate coefficients are known) indicate efficiencies in all cases of less than 0.005.

  17. Application of energy dispersive X-ray spectrometers with semiconductor detectors in radiometric analyses

    International Nuclear Information System (INIS)

    Jugelt, P.; Schieckel, M.

    1983-01-01

    Problems and possibilities of applying semiconductor detector spectrometers in radiometric analyses are described. A summary of the state of the art and tendencies of device engineering and spectra evaluation is given. Liquid-nitrogen cooled Li-drifted Si-detectors and high-purity Ge-detectors are compared. Semiconductor detectors working at room temperature are under development. In this connection CdTe and HgI 2 semiconductor detectors are compared. The use of small efficient computers in the spectrometer systems stimulates the development of algorithms for spectra analyses and for determining the concentration. Fields of application of energy dispersive X-ray spectrometers are X-ray diffraction and X-ray macroanalysis in investigating the structure of extensive surface regions

  18. The Ontario-Manitoba clean energy transfer initiative

    International Nuclear Information System (INIS)

    Clarkson, J.

    2006-01-01

    Manitoba currently generates 5500 MW of electricity, and has the potential to add another 5000 MW of clean energy. Nearly 2000 MW of Manitoba's electricity is currently being sold to the United States. New transmission sites will ensure both grid reliability and energy security for Ontario, and power exchanges are expected to reduce costs. This presentation provided details of a memorandum of understanding (MOU) between Ontario and Manitoba concerning energy sales across existing and future transmission infrastructure. Peak energy sales were expected to reach 1000 MW in the near future. Options for the interconnection included direct high voltage direct current (HVDC) lines to Sudbury as well as lines through Thunder Bay and Winnipeg. Manitoba's existing hydro sites were outlined, and potential sites were reviewed. In addition to presenting new supply options, this presentation described generation and transmission approval processes, as well as construction schedules for new sites and interconnection points. It was concluded that while there is currently a provincial focus on electricity supply and demand, new generation technologies will make interprovincial electricity agreements economically viable. tabs., figs

  19. Energy transfer rates in inhomogeneous van der Waals clusters

    International Nuclear Information System (INIS)

    Desfrancois, C.; Schermann, J.P.

    1991-01-01

    The internal energy exchange inside an inhomogeneous van der Waals cluster are investigated by means of molecular dynamic calculations. The very long time scales for relaxation of the high frequency degrees of freedom are examined within the framework of Nekhoroshev's theorem. (orig.)

  20. Wireless Energy Transfer Using Zero Bias Schottky Diodes Rectenna Structures

    International Nuclear Information System (INIS)

    Marian, V.; Adami, S.E.; Vollaire, Ch.; Allard, B.; Verdier, J.

    2011-01-01

    This paper presents several RF-to-DC converter topologies and compares their performances based on measurements made on fabricated prototypes. A medium range wireless low power transmission experiment is presented. A low power DC-DC boost converter designed rectenna-generated energy conditioning is also discussed. (author)

  1. Instruction transfer and storage exploration for low energy embedded VLIWs

    NARCIS (Netherlands)

    Aa, van der T.

    2005-01-01

    Portable consumer electronics to play multimedia have to be high performant and flexible. Energy consumption has to be kept as low as possible to ensure a long battery lifetime. To be flexible, these systems often contain an instruction set processor. Very Long Instruction Word (VLIW) processors

  2. Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria

    International Nuclear Information System (INIS)

    Linnanto, J.M.; Korppi-Tommola, J.E.I.

    2009-01-01

    Molecular mechanics and quantum chemical configuration interaction calculations in combination with exciton theory were used to predict vibronic energies and eigenstates of light harvesting antennae and the reaction centre and to evaluate excitation energy transfer rates in the photosynthetic unit of purple bacteria. Excitation energy transfer rates were calculated by using the transition matrix formalism and exciton basis sets of the interacting antenna systems. Energy transfer rates of 600-800 fs from B800 ring to B850 ring in the LH2 antenna, 3-10 ps from LH2 to LH2 antenna, 2-8 ps from LH2 to LH1 antenna and finally 30-70 ps from LH1 to the reaction centre were obtained. Dependencies of energy transfer rates on lateral and vertical inter-complex distances were determined. The results indicate that a fair amount of spatial heterogeneity of antenna complexes in the photosynthetic membrane is tolerated without much loss in excitation energy transfer efficiency

  3. Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Linnanto, J.M. [Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyvaeskylae, Jyvaeskylae (Finland)], E-mail: juha.m.linnanto@jyu.fi; Korppi-Tommola, J.E.I. [Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyvaeskylae, Jyvaeskylae (Finland)

    2009-02-23

    Molecular mechanics and quantum chemical configuration interaction calculations in combination with exciton theory were used to predict vibronic energies and eigenstates of light harvesting antennae and the reaction centre and to evaluate excitation energy transfer rates in the photosynthetic unit of purple bacteria. Excitation energy transfer rates were calculated by using the transition matrix formalism and exciton basis sets of the interacting antenna systems. Energy transfer rates of 600-800 fs from B800 ring to B850 ring in the LH2 antenna, 3-10 ps from LH2 to LH2 antenna, 2-8 ps from LH2 to LH1 antenna and finally 30-70 ps from LH1 to the reaction centre were obtained. Dependencies of energy transfer rates on lateral and vertical inter-complex distances were determined. The results indicate that a fair amount of spatial heterogeneity of antenna complexes in the photosynthetic membrane is tolerated without much loss in excitation energy transfer efficiency.

  4. Computational study of energy transfer in two-dimensional J-aggregates

    International Nuclear Information System (INIS)

    Gallos, Lazaros K.; Argyrakis, Panos; Lobanov, A.; Vitukhnovsky, A.

    2004-01-01

    We perform a computational analysis of the intra- and interband energy transfer in two-dimensional J-aggregates. Each aggregate is represented as a two-dimensional array (LB-film or self-assembled film) of two kinds of cyanine dyes. We consider the J-aggregate whose J-band is located at a shorter wavelength to be a donor and an aggregate or a small impurity with longer wavelength to be an acceptor. Light absorption in the blue wing of the donor aggregate gives rise to the population of its excitonic states. The depopulation of these states is possible by (a) radiative transfer to the ground state (b) intraband energy transfer, and (c) interband energy transfer to the acceptor. We study the dependence of energy transfer on properties such as the energy gap, the diagonal disorder, and the exciton-phonon interaction strength. Experimentally observable parameters, such as the position and form of luminescence spectrum, and results of the kinetic spectroscopy measurements strongly depend upon the density of states in excitonic bands, rates of energy exchange between states and oscillator strengths for luminescent transitions originating from these states

  5. Direct determination of resonance energy transfer in photolyase: structural alignment for the functional state.

    Science.gov (United States)

    Tan, Chuang; Guo, Lijun; Ai, Yuejie; Li, Jiang; Wang, Lijuan; Sancar, Aziz; Luo, Yi; Zhong, Dongping

    2014-11-13

    Photoantenna is essential to energy transduction in photoinduced biological machinery. A photoenzyme, photolyase, has a light-harvesting pigment of methenyltetrahydrofolate (MTHF) that transfers its excitation energy to the catalytic flavin cofactor FADH¯ to enhance DNA-repair efficiency. Here we report our systematic characterization and direct determination of the ultrafast dynamics of resonance energy transfer from excited MTHF to three flavin redox states in E. coli photolyase by capturing the intermediates formed through the energy transfer and thus excluding the electron-transfer quenching pathway. We observed 170 ps for excitation energy transferring to the fully reduced hydroquinone FADH¯, 20 ps to the fully oxidized FAD, and 18 ps to the neutral semiquinone FADH(•), and the corresponding orientation factors (κ(2)) were determined to be 2.84, 1.53 and 1.26, respectively, perfectly matching with our calculated theoretical values. Thus, under physiological conditions and over the course of evolution, photolyase has adopted the optimized orientation of its photopigment to efficiently convert solar energy for repair of damaged DNA.

  6. Hand-to-hand coupling and strategies to minimize unintentional energy transfer during laparoscopic surgery.

    Science.gov (United States)

    Overbey, Douglas M; Hilton, Sarah A; Chapman, Brandon C; Townsend, Nicole T; Barnett, Carlton C; Robinson, Thomas N; Jones, Edward L

    2017-11-01

    Energy-based devices are used in nearly every laparoscopic operation. Radiofrequency energy can transfer to nearby instruments via antenna and capacitive coupling without direct contact. Previous studies have described inadvertent energy transfer through bundled cords and nonelectrically active wires. The purpose of this study was to describe a new mechanism of stray energy transfer from the monopolar instrument through the operating surgeon to the laparoscopic telescope and propose practical measures to decrease the risk of injury. Radiofrequency energy was delivered to a laparoscopic L-hook (monopolar "bovie"), an advanced bipolar device, and an ultrasonic device in a laparoscopic simulator. The tip of a 10-mm telescope was placed adjacent but not touching bovine liver in a standard four-port laparoscopic cholecystectomy setup. Temperature increase was measured as tissue temperature from baseline nearest the tip of the telescope which was never in contact with the energy-based device after a 5-s open-air activation. The monopolar L-hook increased tissue temperature adjacent to the camera/telescope tip by 47 ± 8°C from baseline (P energy devices significantly reduced temperature change in comparison to the monopolar instrument (47 ± 8°C) for both the advanced bipolar (1.2 ± 0.5°C; P energy transfers from the monopolar "bovie" instrument through the operating surgeon to standard electrically inactive laparoscopic instruments. Hand-to-hand coupling describes a new form of capacitive coupling where the surgeon's body acts as an electrical conductor to transmit energy. Strategies to reduce stray energy transfer include avoiding the same surgeon holding the active electrode and laparoscopic camera or using alternative energy devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A Conceptual Change Model for Teaching Heat Energy, Heat Transfer and Insulation

    Science.gov (United States)

    Lee, C. K.

    2014-01-01

    This study examines the existing knowledge that pre-service elementary teachers (PSETs) have regarding heat energy, heat transfer and insulation. The PSETs' knowledge of heat energy was initially assessed by using an activity: determining which container would be best to keep hot water warm for the longest period of time. Results showed that PSETs…

  8. Experimental studies and computer simulation of the control of energy transfer using inductor-converter bridges

    International Nuclear Information System (INIS)

    Hirano, M.; Kustom, R.L.

    1984-03-01

    An inductor-converter bridge (ICB) is a solid state DC-AC-DC power converter system for bidirectional, controllable, energy transfer between two coils. The ICB is suitable for supplying large pulsed power to such magnets as the superconducting equilibrium field coil of the proposed tokamak power reactors from another superconducting energy storage coil

  9. Designed azurins show lower reorganization free energies for intraprotein electron transfer

    DEFF Research Database (Denmark)

    Farver, Ole; Marshall, Nicholas M; Wherland, Scot

    2013-01-01

    Low reorganization free energies are necessary for fast electron transfer (ET) reactions. Hence, rational design of redox proteins with lower reorganization free energies has been a long-standing challenge, promising to yield a deeper understanding of the underlying principles of ET reactivity...

  10. Generating Excitement: Build Your Own Generator to Study the Transfer of Energy

    Science.gov (United States)

    Fletcher, Kurt; Rommel-Esham, Katie; Farthing, Dori; Sheldon, Amy

    2011-01-01

    The transfer of energy from one form to another can be difficult to understand. The electrical energy that turns on a lamp may come from the burning of coal, water falling at a hydroelectric plant, nuclear reactions, or gusts of wind caused by the uneven heating of the Earth. The authors have developed and tested an exciting hands-on activity to…

  11. Rotational energy transfer of the A{sup 2}{Sigma}`({nu}`=1) state of OH

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, P; Radi, P; Frey, H B; Mischler, B; Tzannis, A P; Gerber, T [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Spectrally and temporally resolved laser excited fluorescence of OH is investigated in the picosecond time domain. The total rotational energy transfer (RET) rate from the excited state is determined from the experimental data. Simulated spectra obtained by modelling RET with the energy corrected sudden approximation agree well with the measured spectra. (author) 1 fig., 1 tab., 5 refs.

  12. Performance assessment analyses unique to Department of Energy spent nuclear fuel

    International Nuclear Information System (INIS)

    Loo, H.H.; Duguid, J.J.

    2000-01-01

    This paper describes the iterative process of grouping and performance assessment that has led to the current grouping of the U.S. Department of Energy (DOE) spent nuclear fuel (SNF). The unique sensitivity analyses that form the basis for incorporating DOE fuel into the total system performance assessment (TSPA) base case model are described. In addition, the chemistry that results from dissolution of DOE fuel and high level waste (HLW) glass in a failed co-disposal package, and the effects of disposal of selected DOE SNF in high integrity cans are presented

  13. EXANA, a program for analysing EXtended energy loss fine structures, EXELFS spectra

    International Nuclear Information System (INIS)

    Tafreshi, M.A.; Bohm, C.; Csillag, S.

    1992-09-01

    This paper is a users guide and reference manual for the EXANA, an IBM or IBM compatible PC-based program used for analysing extended fine structures occurring on the high energy side of the ionisation edges. The RDF (Radial Distance Function) obtained from this analysis contains information about the number, distance, and type of the nearby atoms, as well as the inelastic mean free path and disorder in distances from the centre atom to the atoms in a atomic shell around it. The program can be made available on request. (au)

  14. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Sangwijit, K. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Bang Khen, Chiang Mai 50290 (Thailand); Pitakrattananukool, S. [School of Science, University of Phayao, Muang, Phayao 56000 (Thailand); Anuntalabhochai, S. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand)

    2015-12-15

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10{sup 12} to 1 × 10{sup 17} ions/cm{sup 2} treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  15. Can nanophotonics control the Förster resonance energy transfer efficiency?

    DEFF Research Database (Denmark)

    Blum, C.; Zijlstra, N.; Lagendijk, A.

    2013-01-01

    from photovoltaics and lighting, to probing molecular distances and interactions.It is an intriguing open question whether the FRET rate γFRET and the energy transfer efficiency ηFRET can also be controlled by the nanoscale optical environment, characterized by the local density of optical states (LDOS...... precisely-defined, isolated, and efficient donor-acceptor pairs. The FRET pairs are dye molecules that covalently bound to the opposite ends of a 15 basepair long double-stranded with a precisely defined distance of 6.8 nm. Control over the LDOS is realized by positioning the FRET systems at well...... of the energy donor by the LDOS, the energy transfer efficiency can be enhanced or reduced. If a donor with unit quantum efficiency is placed in a 3D photonic bandgap, the energy transfer efficiency will approach 100 %, independent of the acceptor, and of the distances and orientations between the FRET partners....

  16. Ion-ion interaction and energy transfer of 4+ transuranium ions in cerium tetrafluoride

    International Nuclear Information System (INIS)

    Liu, G.K.; Beitz, J.V.

    1990-01-01

    Dynamics of excited 5f electron states of the transuranium ions Cm 4+ and Bk 4+ in CeF 4 are compared. Based on time- and wavelength-resolved laser-induced fluorescence, excitation energy transfer processes have been probed. Depending on concentration and electronic energy level structure of the studied 4+ transuranium ion, the dominant energy transfer mechanisms were identified as cross relaxation, exciton-exciton annihilation, and trapping. Energy transfer rates derived from the fitting of the observed fluorescence decays to theoretical models, based on electric multipolar ion-ion interactions, are contrasted with prior studies of 4f states of 3+ lanthanide and 3d states of transition metal ions. 16 refs., 1 tab

  17. Analysis of optical near-field energy transfer by stochastic model unifying architectural dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Makoto, E-mail: naruse@nict.go.jp [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Nanophotonics Research Center, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Akahane, Kouichi; Yamamoto, Naokatsu [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Holmström, Petter [Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH), SE-164 40 Kista (Sweden); Thylén, Lars [Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH), SE-164 40 Kista (Sweden); Hewlett-Packard Laboratories, Palo Alto, California 94304 (United States); Huant, Serge [Institut Néel, CNRS and Université Joseph Fourier, 25 rue des Martyrs BP 166, 38042 Grenoble Cedex 9 (France); Ohtsu, Motoichi [Nanophotonics Research Center, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-04-21

    We theoretically and experimentally demonstrate energy transfer mediated by optical near-field interactions in a multi-layer InAs quantum dot (QD) structure composed of a single layer of larger dots and N layers of smaller ones. We construct a stochastic model in which optical near-field interactions that follow a Yukawa potential, QD size fluctuations, and temperature-dependent energy level broadening are unified, enabling us to examine device-architecture-dependent energy transfer efficiencies. The model results are consistent with the experiments. This study provides an insight into optical energy transfer involving inherent disorders in materials and paves the way to systematic design principles of nanophotonic devices that will allow optimized performance and the realization of designated functions.

  18. Analysis of optical near-field energy transfer by stochastic model unifying architectural dependencies

    International Nuclear Information System (INIS)

    Naruse, Makoto; Akahane, Kouichi; Yamamoto, Naokatsu; Holmström, Petter; Thylén, Lars; Huant, Serge; Ohtsu, Motoichi

    2014-01-01

    We theoretically and experimentally demonstrate energy transfer mediated by optical near-field interactions in a multi-layer InAs quantum dot (QD) structure composed of a single layer of larger dots and N layers of smaller ones. We construct a stochastic model in which optical near-field interactions that follow a Yukawa potential, QD size fluctuations, and temperature-dependent energy level broadening are unified, enabling us to examine device-architecture-dependent energy transfer efficiencies. The model results are consistent with the experiments. This study provides an insight into optical energy transfer involving inherent disorders in materials and paves the way to systematic design principles of nanophotonic devices that will allow optimized performance and the realization of designated functions

  19. Energy storage and transfer with homopolar machine for a linear theta-pinch hybrid reactor

    International Nuclear Information System (INIS)

    Vogel, H.F.; Brennan, M.; Dase, W.G.; Tolk, K.M.; Weldon, W.F.

    1976-01-01

    The energy storage and transfer system for the compression coils of a linear theta-pinch hybrid reactor (LTPHR) are described. High efficiency and low cost are the principal requirements for the energy storage and transfer of 25MJ/m or 25GJ for a 1-km LTPHR. The circuit efficiency must be approximately 90%, and the cost for the circuit 5-6c/J. Scaling laws and simple relationships between circuit efficiency and cost-per-unit energy as a function of the half cycle time are presented. An important consideration concerns the pulse repetition rate of 2.25 pulses per second, 70x10 6 shots/yr, or 1.7x10 9 shots over the 25-yr plant life. Current interruption to initiate energy transfer is not feasible at this rate. Therefore, a simple ringing circuit with contactors to make and break at the periodically occurring zero-current instances, is considered

  20. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    Science.gov (United States)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-07-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.

  1. Indoor Wireless RF Energy Transfer for Powering Wireless Sensors

    Directory of Open Access Journals (Sweden)

    H. Visser

    2012-12-01

    Full Text Available For powering wireless sensors in buildings, rechargeable batteries may be used. These batteries will be recharged remotely by dedicated RF sources. Far-field RF energy transport is known to suffer from path loss and therefore the RF power available on the rectifying antenna or rectenna will be very low. As a consequence, the RF-to-DC conversion efficiency of the rectenna will also be very low. By optimizing not only the subsystems of a rectenna but also taking the propagation channel into account and using the channel information for adapting the transmit antenna radiation pattern, the RF energy transport efficiency will be improved. The rectenna optimization, channel modeling and design of a transmit antenna are discussed.

  2. Modulating Pathways for Electron and Energy Transfer Through Molecules

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro

    Energy transport efficiency and electric conductance are molecular properties that motivates the development of optoelectronic materials, energy storage, and electronic devices. Several experimental techniques allow measurement of these properties and regularly, modeling is employed to find...... correlations between chemical structure and molecular properties. This dissertation discusses the interplay between modeling and experiments toward the assessment of new relations between the molecular structure and properties. In particular, it has been shown how simulations can push the development of new...... experimental techniques, demonstrate the potential of already established techniques, and work in synergy with experiments. It is demonstrated how the use of modeling can expand our understanding of how chemical structure affects molecular properties, which will enable us to design molecules with specific...

  3. A method for energy and exergy analyses of product transformation processes in industry

    International Nuclear Information System (INIS)

    Abou Khalil, B.

    2008-12-01

    After a literature survey enabling the determination of the advantages and drawbacks of existing methods of assessment of the potential energy gains of an industrial site, this research report presents a newly developed method, named Energy and Exergy Analysis of Transformation Processes (or AEEP for Analyse energetique et exergetique des procedes de transformation), while dealing with actual industrial operations, in order to demonstrate the systematic character of this method. The different steps of the method are presented and detailed, one of them, the process analysis, being critical for the application of the developed method. This particular step is then applied to several industrial unitary operations in order to be a base for future energy audits in the concerned industry sectors, as well as to demonstrate its generic and systematic character. The method is the then applied in a global manner to a cheese manufacturing plant, all the different steps of the AEEP being applied. The author demonstrates that AEEP is a systematic method and can be applied to all energy audit levels, moreover to the lowest levels which have a relatively low cost

  4. Optically nonlinear energy transfer in light-harvesting dendrimers

    OpenAIRE

    Andrews, David; Bradshaw, DS

    2004-01-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems,organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Sta...

  5. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  6. Impact of undamped and damped intramolecular vibrations on the efficiency of photosynthetic exciton energy transfer

    Science.gov (United States)

    Juhász, Imre Benedek; Csurgay, Árpád I.

    2018-04-01

    In recent years, the role of molecular vibrations in exciton energy transfer taking place during the first stage of photosynthesis attracted increasing interest. Here, we present a model formulated as a Lindblad-type master equation that enables us to investigate the impact of undamped and especially damped intramolecular vibrational modes on the exciton energy transfer, particularly its efficiency. Our simulations confirm the already reported effects that the presence of an intramolecular vibrational mode can compensate the energy detuning of electronic states, thus promoting the energy transfer; and, moreover, that the damping of such a vibrational mode (in other words, vibrational relaxation) can further enhance the efficiency of the process by generating directionality in the energy flow. As a novel result, we show that this enhancement surpasses the one caused by pure dephasing, and we present its dependence on various system parameters (time constants of the environment-induced relaxation and excitation processes, detuning of the electronic energy levels, frequency of the intramolecular vibrational modes, Huang-Rhys factors, temperature) in dimer model systems. We demonstrate that vibrational-relaxation-enhanced exciton energy transfer (VREEET) is robust against the change of these characteristics of the system and occurs in wide ranges of the investigated parameters. With simulations performed on a heptamer model inspired by the Fenna-Matthews-Olson (FMO) complex, we show that this mechanism can be even more significant in larger systems at T = 300 K. Our results suggests that VREEET might be prevalent in light-harvesting complexes.

  7. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  8. Direct effects of ionizing radiation on integral membrane proteins. Noncovalent energy transfer requires specific interpeptide interactions

    International Nuclear Information System (INIS)

    Jhun, E.; Jhun, B.H.; Jones, L.R.; Jung, C.Y.

    1991-01-01

    The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100 degree C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein

  9. Climate friendly technology transfer in the energy sector: A case study of Iran

    International Nuclear Information System (INIS)

    Talaei, Alireza; Ahadi, Mohammad Sadegh; Maghsoudy, Soroush

    2014-01-01

    The energy sector is the biggest contributor of anthropogenic emissions of greenhouse gases into the atmosphere in Iran. However, abundant potential for implementing low-carbon technologies offers considerable emissions mitigation potential in this sector, and technology transfer is expected to play an important role in the widespread roll-out of these technologies. In the current work, globally existing low-carbon energy technologies that are compatible with the energy sector of Iran are identified and then prioritised against different criteria (i.e. Multi Criteria Decision Analysis). Results of technology prioritisation and a comprehensive literature review were then applied to conduct a SWOT analysis and develop a policy package aiming at facilitating the transfer of low carbon technologies to the country. Results of technology prioritisation suggest that the transport, oil and gas and electricity sectors are the highest priority sectors from technological needs perspective. In the policy package, while fuel price reform and environmental regulations are categorised as high priority policies, information campaigns and development of human resources are considered to have moderate effects on the process of technology transfer. - Highlights: • We examined the process of technology transfer in the energy sector of Iran. • Multi Criteria Decision Analysis techniques are used to prioritise the technological needs of the country. • Transportation, electricity and oil and gas sectors are found as recipients of new technologies. • A policy package was designed for facilitating technology transfer in the energy sector

  10. Energy transfer mechanism between Ce and Tb ions in sol–gel synthesized YSO crystals

    International Nuclear Information System (INIS)

    Chiriu, Daniele; Stagi, Luigi; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo

    2016-01-01

    The luminescence properties of Tb and Ce in Rare Earth Doped crystalline oxides largely depend on their relative concentrations: by increasing the dopant concentration, the luminescence profile changes from blue to green because of the energy transfer among centers. The kinetic properties of the luminescence of optically excited Terbium–Cerium co-doped Y_2SiO_5 sol–gel synthesized crystal powders have been investigated as a function of the Tb dopant concentration (Ce content fixed at 1% atomic). The interaction among different Tb emitting centers and their relation with Ce centers was explained within the Inokuti-Hirayama model for a dipole–dipole energy transfer mechanism in the low-middle Tb concentration range whilst the Forster–Dexter model was applied in the middle-high Tb concentration range. The kinetic model allows elucidating the role of sensitizer and activator ion as a function of Tb concentration, successfully estimating the energy transfer mechanism efficiency and calculating the critical Tb concentration. - Highlights: • The kinetic properties of Ce, Tb recombination in YSO matrix were studied. • The Inokuti-Hirayama and Forster–Dexter models were applied. • At high Tb content, the Ce to Tb energy transfer acts through the dipole−quadrupole. • At low Tb content, the Ce to Tb energy transfer acts through the dipole−dipole. • The presence of Ce reduces the critical Tb concentration (at low Tb content).

  11. Energy transfer mechanism between Ce and Tb ions in sol–gel synthesized YSO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chiriu, Daniele; Stagi, Luigi; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo, E-mail: carlo.ricci@dsf.unica.it

    2016-03-01

    The luminescence properties of Tb and Ce in Rare Earth Doped crystalline oxides largely depend on their relative concentrations: by increasing the dopant concentration, the luminescence profile changes from blue to green because of the energy transfer among centers. The kinetic properties of the luminescence of optically excited Terbium–Cerium co-doped Y{sub 2}SiO{sub 5} sol–gel synthesized crystal powders have been investigated as a function of the Tb dopant concentration (Ce content fixed at 1% atomic). The interaction among different Tb emitting centers and their relation with Ce centers was explained within the Inokuti-Hirayama model for a dipole–dipole energy transfer mechanism in the low-middle Tb concentration range whilst the Forster–Dexter model was applied in the middle-high Tb concentration range. The kinetic model allows elucidating the role of sensitizer and activator ion as a function of Tb concentration, successfully estimating the energy transfer mechanism efficiency and calculating the critical Tb concentration. - Highlights: • The kinetic properties of Ce, Tb recombination in YSO matrix were studied. • The Inokuti-Hirayama and Forster–Dexter models were applied. • At high Tb content, the Ce to Tb energy transfer acts through the dipole−quadrupole. • At low Tb content, the Ce to Tb energy transfer acts through the dipole−dipole. • The presence of Ce reduces the critical Tb concentration (at low Tb content).

  12. ENERGY AND ENTROPY ANALYSES OF AN EXPERIMENTAL TURBOJET ENGINE FOR TARGET DRONE APPLICATION

    Directory of Open Access Journals (Sweden)

    Onder Turan

    2016-12-01

    Full Text Available This study investigates energy and entropy analyses of an experimental turbojet engine build in Anadolu University Faculty of Aeronautics and Astronautics Test-Cell Laboratory.  Law of motions and Brayton thermodynamic cycle model are used for this purpose. The processes (that is, compression, combustion, and expansion are simulated in P-v, T-s and h-s diagrams. Furthermore, the second law of thermodynamics is applied to the cycle model to perform the entropy analysis. A distribution of the wasted and thrust power, the overall (energy-based the first law efficiency, and the specific fuel consumption and specific thrust of the engine were calculated during the analyses as well. The results of the study also show the entropy changing value in engine components due to irreversibilities and inefficiencies. As a conclusion, it is expected that this study is useful to study future design and research work similar aircraft turbojets, auxiliary power units and target drone power systems.

  13. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported....... We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(iii)–dye complex. Following light absorption, excited state relaxation times of the dye of 115...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...

  14. 10-channel neutral particle energy analyser apparatus and its application to tokamak plasmas

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi; Funahashi, Akimasa; Takahashi, Koki; Shirakata, Hirofumi; Yano, Syukuro.

    1976-07-01

    A 10-channel neutral particle energy analyser apparatus for measurement of charge-exchange fast atoms emitted from a hot tokamak plasma has been constructed to determine the ion temperature of plasma from fewer discharge shots and to improve the accuracy of measurement. It consists of a 45-degrees parallel plate electrostatic analyser with ten ion detectors (Ceratron multipliers), a charge stripping cell, a dry vacuum pumping system and pulse-counting circuits for data acquisition. A calibration experiment of the apparatus is made for the particle energy and the energy resolution with electron beams of 100 to 1000 eV. The transmission efficiency of particles in the energy analyser is measured with proton beams of 1, 2 and 3 keV, and the conversion efficiency for H 2 gas in a charge stripping cell is also determined with hydrogen-atom beams of 2, 3 and 4 keV. Ion temperatures of JFT-2a and JFT-2 devices were measured with this apparatus, in order to check the usefulness and reliability of the apparatus and to investigate the parameter dependence of ion temperatures. It is found that an ion temperature can be measured with sufficient accuracy from six plasma shots (three shots to determine particle signals and three shots to determine background noises). The peak ion temperatures 80 to 400 eV are about (1/2 - 1/3) of the central electron temperatures. Dependence of the ion temperatures on plasma current I sub(p), toroidal magnetic field B sub(t) and average electron density anti n sub(e) is investigated for I sub(p) = 15 to 170 kAmp, B sub(t) = 10 to 18 kGauss and anti n sub(e) = (0.8 to 1.8) x 10 13 cm -3 on JFT-2a and JFT-2 devices. It is shown that the ion temperatures are in good agreement with the scaling law by Artsimovich Tsub(i) proportional to (Isub(p)Bsub(t) anti n sub(e)R 2 )sup(1/3), with R as the major radius of a tokamak device. (J.P.N.)

  15. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    International Nuclear Information System (INIS)

    Dewa, Takehisa; Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu; Nango, Mamoru

    2013-01-01

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency

  16. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dewa, Takehisa, E-mail: takedewa@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Japan Science and Technology, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nango, Mamoru, E-mail: nango@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2013-06-20

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency.

  17. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    International Nuclear Information System (INIS)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong; Yu Yunjin; Cao Jianshu

    2012-01-01

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  18. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yu Yunjin [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); College of Physics Science and Technology, Shenzhen University, Guangdong 518060 (China); Cao Jianshu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2012-06-28

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  19. Transfer of energy or charge between quasi-zero-dimensional nanostructures

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2016-01-01

    Roč. 45, č. 4 (2016), s. 243-255 ISSN 2332-4309 R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk(CZ) LD14011; GA MŠk LH12236 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : charge transfer * electron-phonon interaction * energy transfer * nanostructures * quantum dots Subject RIV: BM - Solid Matter Physics ; Magnetism; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 0.171, year: 2016

  20. Thermodynamic analyses and assessments of various thermal energy storage systems for buildings

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2012-01-01

    Highlights: ► Proposing a novel latent (PCM), thermochemical and sensible (aquifer) TES combination for building heating. ► Performing comprehensive environmental, energy, exergy and sustainability analyses. ► Investigating the effect of varying dead state temperatures on the TESs. - Abstract: In this study, energetic, exergetic, environmental and sustainability analyses and their assessments are carried out for latent, thermochemical and sensible thermal energy storage (TES) systems for phase change material (PCM) supported building applications under varying environment (surrounding) temperatures. The present system consists of a floor heating system, System-I, System-II and System-III. The floor heating system stays at the building floor supported with a floor heating unit and pump. The System-I includes a latent TES system and a fan. The latent TES system is comprised of a PCM supported building envelope, in which from outside to inside; glass, transparent insulation material, PCM, air channel and insulation material are placed, respectively. Furthermore, System-II mainly has a solar-thermochemical TES while there are an aquifer TES and a heat pump in System-III. Among the TESs, the hot and cold wells of the aquifer TES have maximum exergetic efficiency values of 88.782% and 69.607% at 8 °C dead state temperature, respectively. According to the energy efficiency aspects of TESs, the discharging processes of the latent TES and the hot well of the aquifer TES possess the minimum and maximum values of 5.782% and 94.118% at 8 °C dead state temperature, respectively. Also, the fan used with the latent TES is the most environmentally-benign system component among the devices. Furthermore, the most sustainable TES is found for the aquifer TES while the worst sustainable system is the latent TES.

  1. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  2. Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum.

    Science.gov (United States)

    Thyrhaug, Erling; Lincoln, Craig N; Branchi, Federico; Cerullo, Giulio; Perlík, Václav; Šanda, František; Lokstein, Heiko; Hauer, Jürgen

    2018-03-01

    The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Q x band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.

  3. Recent development of organic light-emitting diode utilizing energy transfer from exciplex to phosphorescent emitter

    Science.gov (United States)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Takahashi, Tatsuyoshi; Hamada, Takao; Watabe, Takeyoshi; Yamada, Yui; Mitsumori, Satomi

    2016-09-01

    This study investigates an organic light-emitting diode (OLED) utilizing energy transfer from an excited complex (exciplex) comprising donor and acceptor molecules to a phosphorescent dopant. An exciplex has a very small energy gap between the lowest singlet and triplet excited states (S1 and T1). Thus, both S1 and T1 energies of the exciplex can be directly transferred to the T1 of the phosphorescent dopant by adjusting the emission energy of the exciplex to the absorption-edge energy of the dopant. Such an exciplex‒triplet energy transfer (ExTET) achieves high efficiency at low drive voltage because the electrical excitation energy of the exciplex approximates the T1 energy of the dopant. Furthermore, the efficiency of the reverse intersystem crossing (RISC) of the exciplex does not affect the external quantum efficiency (EQE) of the ExTET OLED. The RISC of the exciplex is inhibited when the T1 energy of either donor or acceptor molecules is close to or lower than that of the exciplex itself. Even in this case, however, the ExTET OLED maintains its high efficiency because the T1 energy of each component of the exciplex or the T1 energy of the exciplex itself can be transferred to the dopant. We also varied the emission colors of ExTET OLEDs from sky-blue to red by introducing various phosphorescent dopants. These devices achieved high EQEs (≍30%), low drive voltages (≍3 V), and extremely long lifetimes (e.g., 1 million hours for the orange OLED) at a luminance of 1,000 cd/m2.

  4. Studies of the deuteron at high energy and momentum transfer

    International Nuclear Information System (INIS)

    Holt, R.J.

    1993-01-01

    Measurements of the tensor analyzing power T 20 are in progress at the 2-GeV electron storage ring (VEPP-3) in Novosibirsk. Preliminary results from the second phase of this experiment will be presented along with a discussion of the theoretical implications of the existing data. Measurements of the γd → pn reaction at photon energies above ∼ 1 GeV were performed at SLAC during experiments NE8 and NE17. The results for experiment NE8 are final while those for NE17 are preliminary. The results appear to be consistent with the constituent scaling law near θ CM =90 degrees, but inconsistent with the rule at a forward angle

  5. Vibrational spectroscopy and intramolecular energy transfer in isocyanic acid (HNCO)

    International Nuclear Information System (INIS)

    Coffey, M.J.; Berghout, H.L.; Woods, E. III; Crim, F.F.

    1999-01-01

    Room temperature photoacoustic spectra in the region of the first through the fourth overtones (2ν 1 to 5ν 1 ) and free-jet action spectra of the second through the fourth overtones (3ν 1 to 5ν 1 ) of the N - H stretching vibration permit analysis of the vibrational and rotational structure of HNCO. The analysis identifies the strong intramolecular couplings that control the early stages of intramolecular vibrational energy redistribution (IVR) and gives the interaction matrix elements between the zero-order N - H stretching states and the other zero-order states with which they interact. The experimentally determined couplings and zero-order state separations are consistent with ab initio calculations of East, Johnson, and Allen [J. Chem. Phys. 98, 1299 (1993)], and comparison with the calculation identifies the coupled states and likely interactions. The states most strongly coupled to the pure N - H stretching zero-order states are ones with a quantum of N - H stretching excitation (ν 1 ) replaced by different combinations of N - C - O asymmetric or symmetric stretching excitation (ν 2 or ν 3 ) and trans-bending excitation (ν 4 ). The two strongest couplings of the nν 1 state are to the states (n-1)ν 1 +ν 2 +ν 4 and (n-1)ν 1 +ν 3 +2ν 4 , and sequential couplings through a series of low order resonances potentially play a role. The analysis shows that if the pure N - H stretch zero-order state were excited, energy would initially flow out of that mode into the strongly coupled mode in 100 fs to 700 fs, depending on the level of initial excitation. copyright 1999 American Institute of Physics

  6. Analysing the effectiveness of renewable energy supporting policies in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Harmelink, Mirjam [Ecofys BV, P.O. Box 8404, NL-3503 RK Utrecht (Netherlands)] e-mail: m.harmelink@ecofys.nl; Voogt, Monique [Ecofys BV, P.O. Box 8404, NL-3503 RK Utrecht (Netherlands); Cremer, Clemens [Fraunhofer ISI, Breslauer Str. 48, 76139 Karlsruhe (Germany)] e-mail: Cremer@isi.fhg.de

    2006-02-01

    With several mid-term policies in place to support the development of renewables, the European Union (EU) seems on its way to increasing the share of renewable energy to the targeted 12% by the year 2010. It is however, yet unclear how effective these policies are, which technologies will see the largest growth and which countries will indeed be able to meet their targets. This article discusses a monitoring protocol that was developed to monitor this effectiveness and judge whether targets will be met. In a step-wise approach policy instruments are characterised and analysed, leading to a quantitative assessment of the likely growth in renewable energy production for each individual technology and country in case no policy changes occur. Applying this monitoring protocol at the EU-level we show that with the current policies in place renewable energy production will reach a share of 8-10% in 2010, and the share of electricity production will reach a level of 15-18% of total electricity consumption, whereas the target is 22.5%. Additional policies are clearly needed to achieve the ambitious targets set.

  7. Analysing the effectiveness of renewable energy supporting policies in the European Union

    International Nuclear Information System (INIS)

    Harmelink, Mirjam; Voogt, Monique; Cremer, Clemens

    2006-01-01

    With several mid-term policies in place to support the development of renewables, the European Union (EU) seems on its way to increasing the share of renewable energy to the targeted 12% by the year 2010. It is however, yet unclear how effective these policies are, which technologies will see the largest growth and which countries will indeed be able to meet their targets. This article discusses a monitoring protocol that was developed to monitor this effectiveness and judge whether targets will be met. In a step-wise approach policy instruments are characterised and analysed, leading to a quantitative assessment of the likely growth in renewable energy production for each individual technology and country in case no policy changes occur. Applying this monitoring protocol at the EU-level we show that with the current policies in place renewable energy production will reach a share of 8-10% in 2010, and the share of electricity production will reach a level of 15-18% of total electricity consumption, whereas the target is 22.5%. Additional policies are clearly needed to achieve the ambitious targets set

  8. Solar wind energy transfer through the magnetopause of an open magnetosphere

    International Nuclear Information System (INIS)

    Lee, L.C.; Roederer, J.G.

    1982-01-01

    An expression for the total power P/sub T/ transferred from the solar wind to an ''open'' magnetopause with a nonzero normal component of the magnetic field, which is identified as a rotational discontinuity. The total power P/sub T/ consists of (1) the power P/sub EM/ representing the electromagnetic energy transfer and (2) the power P/sub KE/ representing the rate of kinetic energy carried by particles penetrating into the magnetosphere. It is found that P/sub EM/approx. =V/sub SW/ B/sub SW/psi, P/sub KE/approx. =(1/2 M/sub A/-1) P/sub EM/ and P/sub T/approx. =1/2M/sub A/P/sub EM/, where V/sub SW/, B/sub SW/, and M/sub A/ are the velocity, magnetic field, and the Alfven--Mach number in the solar wind, respectively, and Psi is the open magnetic flux in the magnetosphere. The Alfven--Mach number of flow at the magnetopause determines the nature of the local energy transfer; the power per unit area transferred from the solar wind to the magnetosphere consists mainly of kinetic energy. The electromagnetic energy rate P/sub EM/ controls the near-earth magnetospheric activity, whereas the kinetic energy rate P/sub KE/(approx. =3--4 P/sub EM/) should dominate the dynamics of the distant magnetotail

  9. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  10. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Science.gov (United States)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  11. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals

    Science.gov (United States)

    Sun, Qi; Mundoor, Haridas; Ribot, Josep; Singh, Vivek; Smalyukh, Ivan; Nagpal, Prashant

    2014-03-01

    Upconversion of infrared radiation into visible light has been investigated for applications in biological imaging and photovoltaics. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb3+) , and slow rate of energy transfer (to Er3+ states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increases the rate of resonant energy transfer from Yb3+ to Er3+ ions by 6 fold. While we do observe strong metal mediated quenching (14 fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared, and hence enhances the nanocrystal UPL. This strong columbic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  12. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals.

    Science.gov (United States)

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant

    2014-01-08

    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  13. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy.

    Science.gov (United States)

    Zhang, Zhengyang; Lambrev, Petar H; Wells, Kym L; Garab, Győző; Tan, Howe-Siang

    2015-07-31

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  14. Intramolecular singlet-singlet energy transfer in antenna-substituted azoalkanes.

    Science.gov (United States)

    Pischel, Uwe; Huang, Fang; Nau, Werner M

    2004-03-01

    Two novel azoalkane bichromophores and related model compounds have been synthesised and photophysically characterised. Dimethylphenylsiloxy (DPSO) or dimethylnaphthylsiloxy (DNSO) serve as aromatic donor groups (antenna) and the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as the acceptor. The UV spectral window of DBO (250-300 nm) allows selective excitation of the donor. Intramolecular singlet-singlet energy transfer to DBO is highly efficient and proceeds with quantum yields of 0.76 with DPSO and 0.99 with DNSO. The photophysical and spectral properties of the bichromophoric systems suggest that energy transfer occurs through diffusional approach of the donor and acceptor within a van der Waals contact at which the exchange mechanism is presumed to dominate. Furthermore, akin to the behaviour of electron-transfer systems in the Marcus inverted region, a rate of energy transfer 2.5 times slower was observed for the system with the more favourable energetics, i.e. singlet-singlet energy transfer from DPSO proceeded slower than from DNSO, although the process is more exergonic for DPSO (-142 kJ mol(-1) for DPSO versus-67 kJ mol(-1) for DNSO).

  15. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2017-10-01

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  16. Comparison of Healthcare Workers Transferring Patients Using Either Conventional Or Robotic Wheelchairs: Kinematic, Electromyographic, and Electrocardiographic Analyses

    Directory of Open Access Journals (Sweden)

    Hiromi Matsumoto

    2016-01-01

    Full Text Available Objectives. The aim of this study was to compare the musculoskeletal and physical strain on healthcare workers, by measuring range of motion (ROM, muscle activity, and heart rate (HR, during transfer of a simulated patient using either a robotic wheelchair (RWC or a conventional wheelchair (CWC. Methods. The subjects were 10 females who had work experience in transferring patients and another female adult as the simulated patient to be transferred from bed to a RWC or a CWC. In both experimental conditions, ROM, muscle activity, and HR were assessed in the subjects using motion sensors, electromyography, and electrocardiograms. Results. Peak ROM of shoulder flexion during assistive transfer with the RWC was significantly lower than that with the CWC. Values for back muscle activity during transfer were lower with the RWC than with the CWC. Conclusions. The findings suggest that the RWC may decrease workplace injuries and lower back pain in healthcare workers.

  17. Environment-assisted Quantum Critical Effect for Excitation Energy Transfer in a LH2-type Trimer

    Science.gov (United States)

    Xu, Lan; Xu, Bo

    2015-10-01

    In this article, we are investigating excitation energy transfer (EET) in a basic unit cell of light-harvesting complex II (LH2), named a LH2-type trimer. Calculation of energy transfer efficiency (ETE) in the framework of non-Markovian environment is also implemented. With these achievements, we theoretically predict the environment-assisted quantum critical effect, where ETE exhibits a sudden change at the critical point of quantum phase transition (QPT) for the LH2-type trimer. It is found that highly efficient EET with nearly unit efficiency may occur in the vicinity of the critical point of QPT.

  18. Energy dependence of the Coulomb-nuclear interference at small momentum transfers

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    1997-01-01

    The analyzing power of the elastic proton-proton scattering at small momentum transfers and the effect of the Coulomb-nuclear interference are examined on the basis of the available experimental data at p L from 6 up to 200 GeV/c taking account of a phenomenological analysis at p L =6 GeV/c and of the dynamic high energy spin model. The structure of the spin-dependent elastic scattering amplitude at small momentum transfers is obtained. The predictions for the analyzing power at RHIC energies are made

  19. High-energy, large-momentum-transfer processes: Ladder diagrams in φ3 theory. Pt. 1

    International Nuclear Information System (INIS)

    Osland, P.; Wu, T.T.; Harvard Univ., Cambridge, MA

    1987-01-01

    Relativistic quantum field theories may give us useful guidance to understanding high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, we study the ladder diagrams in φ 3 theory. In this paper, some of the necessary techniques are developed and applied to the simplest cases of the fourth- and sixth-order ladder diagrams. (orig.)

  20. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    International Nuclear Information System (INIS)

    Ajayi, O. A.; Wong, C. W.; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-01-01

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices

  1. Fluorescence resonance energy transfer imaging of CFP/YFP labeled NDH in cyanobacterium cell

    International Nuclear Information System (INIS)

    Ji Dongmei; Lv Wei; Huang Zhengxi; Xia Andong; Xu Min; Ma Weimin; Mi Hualing; Ogawa Teruo

    2007-01-01

    The laser confocal scanning microscopy combined with time-correlated single photon counting imaging technique to obtain fluorescence intensity and fluorescence lifetime images for fluorescence resonance energy transfer measurement is reported. Both the fluorescence lifetime imaging microscopy (FLIM) and intensity images show inhomogeneous cyan fluorescent protein and yellow fluorescent protein (CFP /YFP) expression or inhomogeneous energy transfer between CFP and YFP over whole cell. The results presented in this work show that FLIM could be a potential method to reveal the structure-function behavior of NAD(P)H dehydrogenase complexes in living cell

  2. Computation studies into architecture and energy transfer properties of photosynthetic units from filamentous anoxygenic phototrophs

    Energy Technology Data Exchange (ETDEWEB)

    Linnanto, Juha Matti [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Freiberg, Arvi [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu (Estonia)

    2014-10-06

    We have used different computational methods to study structural architecture, and light-harvesting and energy transfer properties of the photosynthetic unit of filamentous anoxygenic phototrophs. Due to the huge number of atoms in the photosynthetic unit, a combination of atomistic and coarse methods was used for electronic structure calculations. The calculations reveal that the light energy absorbed by the peripheral chlorosome antenna complex transfers efficiently via the baseplate and the core B808–866 antenna complexes to the reaction center complex, in general agreement with the present understanding of this complex system.

  3. Phosphorescence as a probe of exciton formation and energy transfer in organic light emitting diodes

    International Nuclear Information System (INIS)

    Baldo, M.; Segal, M.

    2004-01-01

    The development of highly efficient phosphorescent molecules has approximately quadrupled the quantum efficiency of organic light emitting devices (OLEDs). By harnessing triplet as well as singlet excitons, efficient molecular phosphorescence has also enabled novel studies of exciton physics in organic semiconductors. In this review, we will summarize recent progress in understanding exciton formation and energy transfer using phosphorescent molecular probes. Particular emphasis is given to two topics of current interest: energy transfer in blue phosphorescent OLEDs, and quantifying the formation ratio of singlet to triplet excitons in small-molecular weight materials and polymers. (orig.)

  4. Solar wind energy transfer to the earth magnetosphere due to the magnetic junction in the magnetopause

    International Nuclear Information System (INIS)

    Gonzalez, A.L.C. de; Gonzalez-Alarcon, W.D.; Jardim, M.V.A.

    1983-01-01

    An expression for the energy transfer due to magnetopause reconnection, as well as related expressions for the convection and parallel electric fields, are presented. These expressions are derived from a reconnection model centered at the magnetopause nose, and that considers the presence of the clefts. The expression for the convection - electric field - related energy transfer reduces to the substorm parameter epsilon for the special case of equal magnetosheath and geomagnetic field amplitudes. This result suggests that the reconnection electric field is transmitted along a tilted reconnection line, but that the convection field is only related to the 'dawn to dusk' component of the reconnection - electric field. (Author) [pt

  5. Exciplex formation and energy transfer in a self-assembled metal-organic hybrid system.

    Science.gov (United States)

    Haldar, Ritesh; Rao, K Venkata; George, Subi J; Maji, Tapas Kumar

    2012-05-07

    Exciting assemblies: A metal-organic self-assembly of pyrenebutyric acid (PBA), 1,10-phenanthroline (o-phen), and Mg(II) shows solid-state fluorescence originating from a 1:1 PBA-o-phen exciplex. This exciplex fluorescence is sensitized by another residual PBA chromophore through an excited-state energy-transfer process. The solvent polarity modulates the self-assembly and the corresponding exciplex as well as the energy transfer, resulting in tunable emission of the hybrid (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O. A., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu; Wong, C. W., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States); Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Anderson, N. C.; Wolcott, A.; Owen, J. S. [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Cotlet, M. [Brookhaven National Laboratory, Upton, New York, New York 11973 (United States); Petrone, N.; Hone, J. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Gu, T.; Gesuele, F. [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States)

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  7. Possible transfer of traditional energy intensive industries towards developing countries. Offers of energy resource in the CIER [Comision de Integracion Electrica Regional] area in relation to this transfer

    International Nuclear Information System (INIS)

    Facchini Ferro, A.; D'Amado Campo, R.

    1989-01-01

    Due to the steep rise in oil prices in the early 1970s, South American countries became aware of the advisability of developing their abundant and renewable hydroelectric resources. The second energy crisis of 1979 pushed up oil prices still further and the consequences in the South American electricity sector included contractions in markets, overcapacity, and difficult financial circumstances. Increases in exports were seen as a way to reduce the burden of those countries' heavy debts and to improve economic conditions. To harmonize the interests of development of highly energy intensive industries in developed countries and the economic development of developing countries, the possibility of marketing energy as an industrial input should be considered. Evidence of the advantages that South American countries can offer to such industrial transfers is presented. These countries offer a source of plentiful hydropower from installations in operation, under construction, or projected as major developments. These installations are already largely interconnected through high- and extra-high-voltage power transmission networks. Technical information is given on the installed generating capacities, including thermal reserve plants; utilization levels; transmission line interconnections; and remaining renewable and non-renewable energy resources. Considerations regarding the political and financial implications of industrial transfers are discussed. 6 refs., 9 figs

  8. 77 FR 73654 - Eau Galle Renewable Energy Company, Eau Galle Hydro, LLC; Notice of Transfer of Exemption

    Science.gov (United States)

    2012-12-11

    ... Renewable Energy Company, Eau Galle Hydro, LLC; Notice of Transfer of Exemption 1. By letter filed October 12, 2012, Eau Galle Renewable Energy Company informed the Commission that its exemption from... transferred to Eau Galle Renewable Energy Company by letter.\\2\\ The project is located on the Eau Galle River...

  9. Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials

    Science.gov (United States)

    Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina

    1992-08-01

    Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.

  10. Interrelationships between man, energy, and water quality: a new methodology for integrative analyses

    International Nuclear Information System (INIS)

    Kaplan, E.; Thode, H.C. Jr.

    1979-01-01

    The STORET/MSP option was used to obtain county aggregated information on ambient water quality for sixty parameters during the period 1950 to 1978. Masks, extended EXTRACT specifications and bounds on allowable values limited inclusion of erroneous data. Remark codes were required to aggregate STORET parameters to obtain increased numbers of observations. Numerous statistical analyses led to the conclusions that medians were more useful than means, that trimming on number of observations was required to eliminate counties with extreme values, and that many parameters required logarithmic transformation to be useful in regional analyses. County aggregated data for nineteen water quality parameters were examined in terms of their ability to describe qualitative chemical characteristics of water. Anion--cation balances as well as expected relationships between conductivity and other parameters were correctly accounted for. Factor analysis indicated the existence of three principal components describing patterns between metal ions, non-metal ions, and alkalinity-bicarbonate, respectively. These factors were used in place of the original complete set of water quality parameters in a structural equation approach describing relationships between variables of mans activites. It was found that counties with high industrial electric consumption, farming and mineral shipments tended to have increased levels of most water quality parameters. It was also found that simpler path diagrams may be indicated to reduce the effects of redundancy in adequately describing energy--water relationships

  11. Spectral energy transfer of atmospheric gravity waves through sum and difference nonlinear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K.M. [Wuhan Univ. (China). School of Electronic Information; Chinese Academey of Sciences, Hefei (China). Key Lab. of Geospace Environment; Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China); Liu, A.Z.; Li, Z. [Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Zhang, S.D.; Yi, F. [Wuhan Univ. (China). School of Electronic Information; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China)

    2012-07-01

    Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value. (orig.)

  12. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2018-05-03

    Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ∆pucBA abce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1-reaction centers (LH1-RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2-3 times larger for ICMs accumulating LH2 complexes with the classical B800-850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ∆pucBA abce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.

  13. Impact of coupled heat and moisture transfer effects on buildings energy consuption

    Directory of Open Access Journals (Sweden)

    Ferroukhi Mohammed Yacine

    2017-01-01

    Full Text Available Coupled heat, air, and moisture transfers through building envelope have an important effect on prediction of building energy requirements. Several works were conducted in order to integrate hygrothermal transfers in dynamic buildings simulations codes. However, the incorporation of multidirectional hygrothermal transfer analysis in the envelope into building simulation tools is rarely considered. In this work, coupled heat, air, and moisture (HAM transfer model in multilayer walls was established. Thereafter, the HAM model is coupled dynamically to a building behavior code (BES.The coupling concerns a co-simulation between COMSOL Multiphysics and TRNSYS software. Afterward, the HAM-BES co-simulation accuracy was verified. Then, HAM-BES co-simulation platform was applied to a case study with various types of climates (temperate, hot and humid, cold and humid. Three simulations cases were carried out. The first simulation case consists of the TRNSYS model without HAM transfer model. The second simulation case, 1-D HAM model for the envelope was integrated in TRNSYS code. For the third one, 1-D HAM model for the wall and 2-D HAM model for thermal bridges were coupled to the thermal building model of TRNSYS. Analysis of the results confirms the significant impact of 2-D envelope hygrothermal transfers on the indoor thermal and moisture behavior of building as well as on the energy building assessment. These conclusions are shown for different studied climates.

  14. Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery

    International Nuclear Information System (INIS)

    El-Emam, Rami Salah; Dincer, Ibrahim

    2014-01-01

    This paper investigates the performance of a RO (reverse osmosis) desalination plant at different seawater salinity values. An energy recovery Pelton turbine is integrated with the desalination plant. Thermodynamic analysis, based on the first and second laws of thermodynamics, as well as a thermo-based economic analysis is performed for the proposed system. The effects of the system components irreversibilities on the economics and cost of product water are parametrically studied through the thermoeconomic analysis. The exergy analysis shows that large irreversibilities occur in the high pressure pump and in the RO module. Both thermodynamic and thermoeconomic performances of the overall system are investigated under different operating parameters. For the base case; the system achieves an exergy efficiency of 5.82%. The product cost is estimated to be 2.451 $/m 3 and 54.2 $/MJ when source water with salinity of 35,000 ppm is fed to the system. - Highlights: • Thermodynamic and exergoeconomic analyses are performed for SWRO with energy recovery. • Parametric studies are done to study effects of operating conditions on performance. • Different seawater sources with different salinity values are tested. • At base case, plant exergy efficiency is 5.82% and product cost is 2.451 $/m 3

  15. A schematic model for energy and charge transfer in the chlorophyll complex

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F.B.

    2011-01-01

    A theory for simultaneous charge and energy transfer in the carotenoid-chlorophyll-a complex is presented here and discussed. The observed charge transfer process in these chloroplast complexes is reasonably explained in terms of this theory. In addition, the process leads to a mechanism to drive...... an electron in a lower to a higher-energy state, thus providing a mechanism for the ejection of the electron to a nearby molecule (chlorophyll) or into the environment. The observed lifetimes of the electronically excited states are in accord/agreement with the investigations of Sundström et al....... and are in the range of pico-seconds and less. The change in electronic charge distribution in internuclear space as the system undergoes an electronic transition to a higher-energy state could, under appropriate physical conditions, lead to oscillating dipoles capable of transmitting energy from the carotenoid-chlorophylls...

  16. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    Energy Technology Data Exchange (ETDEWEB)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J., E-mail: ortoleva@indiana.edu [Center for Cell and Virus Theory, Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405 (United States)

    2014-02-21

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  17. Energy storage and transfer with homopolar machine for a linear theta-pinch hybrid reactor

    International Nuclear Information System (INIS)

    Vogel, H.F.; Brennan, M.; Dase, W.G.; Tolk, K.M.; Weldon, W.F.

    1975-12-01

    This report describes the energy storage and transfer system for the compression coil system of a linear theta-pinch hybrid reactor (LTPHR). High efficiency and low cost are the principal requirements for the energy storage and transfer of 25 MJ/m or 25 GJ for a 1-km LTPHR. The circuit efficiency must be approximately 90 percent, and the cost for the circuit 5 to 6 cents/J. Scaling laws and simple relationships between circuit efficiency and cost per unit energy as a function of the half cycle time are presented. Capacitors and homopolor machines are considered as energy storage elements with both functioning basically as capacitors. The advantage of the homopolar machine in this application is its relatively low cost, whereas that of capacitors is better efficiency

  18. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    Science.gov (United States)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The

  19. Long-range energy transfer in self-assembled quantum dot-DNA cascades

    Science.gov (United States)

    Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant

    2015-11-01

    The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient

  20. Novel hybrid Monte Carlo/deterministic technique for shutdown dose rate analyses of fusion energy systems

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.; Grove, Robert E.

    2014-01-01

    Highlights: •Develop the novel Multi-Step CADIS (MS-CADIS) hybrid Monte Carlo/deterministic method for multi-step shielding analyses. •Accurately calculate shutdown dose rates using full-scale Monte Carlo models of fusion energy systems. •Demonstrate the dramatic efficiency improvement of the MS-CADIS method for the rigorous two step calculations of the shutdown dose rate in fusion reactors. -- Abstract: The rigorous 2-step (R2S) computational system uses three-dimensional Monte Carlo transport simulations to calculate the shutdown dose rate (SDDR) in fusion reactors. Accurate full-scale R2S calculations are impractical in fusion reactors because they require calculating space- and energy-dependent neutron fluxes everywhere inside the reactor. The use of global Monte Carlo variance reduction techniques was suggested for accelerating the R2S neutron transport calculation. However, the prohibitive computational costs of these approaches, which increase with the problem size and amount of shielding materials, inhibit their ability to accurately predict the SDDR in fusion energy systems using full-scale modeling of an entire fusion plant. This paper describes a novel hybrid Monte Carlo/deterministic methodology that uses the Consistent Adjoint Driven Importance Sampling (CADIS) method but focuses on multi-step shielding calculations. The Multi-Step CADIS (MS-CADIS) methodology speeds up the R2S neutron Monte Carlo calculation using an importance function that represents the neutron importance to the final SDDR. Using a simplified example, preliminary results showed that the use of MS-CADIS enhanced the efficiency of the neutron Monte Carlo simulation of an SDDR calculation by a factor of 550 compared to standard global variance reduction techniques, and that the efficiency enhancement compared to analog Monte Carlo is higher than a factor of 10,000

  1. Energy conservation via heat transfer enhancement. Quarterly progress report, January 1-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Junkhan, G.H.; Webb, R.L.

    1979-06-01

    This report for the first quarter of 1979 summarizes visits and contacts relative to the theory and practice of heat transfer enhancement. The Technical Literature File and Manufacturers' File were expanded, and the initial Patent Technology Information File was completed. Application studies on enhancement of waste heat recuperators and laminar internal flow heat transfer are described. A comprehensive bibliography on laminar flow enhancement is included. The Technology study on performance of internally finned tubes is complete. New data for the heat transfer and friction characteristics of internally finned tubes will be analyzed to develop rationally based correlations. An assessment of natural convection from rough surfaces was performed. Major effort was directed toward planning of the Research Workshop on Energy Conservation Through Enhanced Heat Transfer. The Workshop, scheduled for May 24 and May 25, 1979 in Chicago, will be co-sponsored by NSF.

  2. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2017-02-01

    Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.

  3. Fluorescence resonance energy transfer between perylene and riboflavin in micellar solution and analytical application on determination of vitamin B2

    International Nuclear Information System (INIS)

    Bhattar, S.L.; Kolekar, G.B.; Patil, S.R.

    2008-01-01

    Fluorescence resonance energy transfer (FRET) between perylene and riboflavin is studied in micellar solution of sodium dodecyl sulfate. The fluorescence of perylene is quenched by riboflavin and quenching is in accordance with Stern-Volmer relation. The efficiency of energy transfer is found to depend on the concentration of riboflavin. The value of critical energy transfer distance (R 0 ) calculated by using Foster relation is 32.13 A, and as it is less than 50 A, it indicates efficient energy transfer in the present system. The analytical relation was established between extent of sensitization and concentration of riboflavin, which helped to estimate vitamin B 2 directly from pharmaceutical tablets

  4. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals.

    Science.gov (United States)

    Ranjbar Choubeh, Reza; Sonani, Ravi R; Madamwar, Datta; Struik, Paul C; Bader, Arjen N; Robert, Bruno; van Amerongen, Herbert

    2018-03-01

    Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.

  5. Energy transfer between two vacuum-gapped metal plates: Coulomb fluctuations and electron tunneling

    Science.gov (United States)

    Zhang, Zu-Quan; Lü, Jing-Tao; Wang, Jian-Sheng

    2018-05-01

    Recent experimental measurements for near-field radiative heat transfer between two bodies have been able to approach the gap distance within 2 nm , where the contributions of Coulomb fluctuation and electron tunneling are comparable. Using the nonequilibrium Green's function method in the G0W0 approximation, based on a tight-binding model, we obtain for the energy current a Caroli formula from the Meir-Wingreen formula in the local equilibrium approximation. Also, the Caroli formula is consistent with the evanescent part of the heat transfer from the theory of fluctuational electrodynamics. We go beyond the local equilibrium approximation to study the energy transfer in the crossover region from electron tunneling to Coulomb fluctuation based on a numerical calculation.

  6. Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator

    Science.gov (United States)

    Gorman, Dylan J.; Hemmerling, Boerge; Megidish, Eli; Moeller, Soenke A.; Schindler, Philipp; Sarovar, Mohan; Haeffner, Hartmut

    2018-01-01

    Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.

  7. Comparison based on energy and exergy analyses of the potential cogeneration efficiencies for fuel cells and other electricity generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M A [Ryerson Polytechnical Inst., Toronto, (CA). Dept. of Mechanical Engineering

    1990-01-01

    Comparisons of the potential cogeneration efficiencies are made, based on energy and exergy analyses, for several devices for electricity generation. The investigation considers several types of fuel cell system (Phosphoric Acid, Alkaline, Solid Polymer Electrolyte, Molten Carbonate and Solid Oxide), and several fossil-fuel and nuclear cogeneration systems based on steam power plants. In the analysis, each system is modelled as a device for which fuel and air enter, and electrical- and thermal-energy products and material and thermal-energy wastes exit. The results for all systems considered indicate that exergy analyses should be used when analysing the cogeneration potential of systems for electricity generation, because they weigh the usefulnesses of heat and electricity on equivalent bases. Energy analyses tend to present overly optimistic views of performance. These findings are particularly significant when large fractions of the heat output from a system are utilized for cogeneration. (author).

  8. Photoluminescence quenching through resonant energy transfer in blends of conjugated polymer with low-molecular acceptor

    International Nuclear Information System (INIS)

    Zapunidi, S. A.; Paraschuk, D. Yu.

    2008-01-01

    A model is proposed for photoluminescence quenching due to resonant energy transfer in a blend of a conjugated polymer and a low-molecular energy acceptor. An analytical dependence of the normalized photoluminescence intensity on the acceptor concentration is derived for the case of a homogeneous blend. This dependence can be described by two fitting parameters related to the Foerster radii for energy transfer between conjugated segments of the polymer and between the conjugated polymer segment and the energy acceptor. Asymptotic approximations are obtained for the model dependence that make it possible to estimate the contribution from the spatial migration of excitons to the photoluminescence quenching. The proposed model is used to analyze experimental data on the photoluminescence quenching in a blend of the soluble derivative of poly(p-phenylene vinylene) and trinitrofluorenone [13]. The Foerster radius for resonant energy transfer between the characteristic conjugated segment of poly(p-phenylene vinylene) and the energy acceptor is determined to be r F = 2.6 ± 0.3 nm

  9. On the nature of intramolecular vibrational energy transfer in dense molecular environments

    Energy Technology Data Exchange (ETDEWEB)

    Benten, Rebekka S. von [Institut fuer Physikalische Chemie der Universitaet Goettingen, Tammannstrasse 6, D-37077 Goettingen (Germany); Abel, Bernd, E-mail: Bernd.Abel@uni-lepzig.de [Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Universitaet Leipzig, Linne-Strasse 2, D-04103 Leipzig (Germany)

    2010-12-09

    Graphical abstract: Mechanisms of IVR in multi-tiers of intramolecular energy levels in different molecular environments are investigated. - Abstract: Transient femtosecond-IR-pump-UV-absorption probe-spectroscopy has been employed to shed light on the nature of intramolecular vibrational energy transfer (IVR) in dense molecular environments ranging from the diluted gas phase to the liquid. A general feature in our experiments and those of others is that IVR proceeds via multiple timescales if overtones or combination vibrations of high frequency modes are excited. It has been found that collisions enhance IVR if its (slower) timescales can compete with collisions. This enhancement is, however, much more weaker and rather inefficient as opposed to the effect of collisions on intermolecular energy transfer which is well known. In a series of experiments we found that IVR depends not significantly on the average energy transferred in a collision but rather on the number of collisions. The collisions are much less efficient in affecting IVR than VET. We conclude that collision induced broadening of vibrational energy levels reduces the energy gaps and enhances existing couplings between tiers. The present results are an important step forward to rationalize and understand apparently different and not consistent results from different groups on different molecular systems between gas and liquid phases.

  10. [Intermediate energy studies of polarization transfer, polarized deuteron scattering, and (p,π+-) reactions: Rapporteur's report

    International Nuclear Information System (INIS)

    Moss, J.M.

    1985-01-01

    An overview of intermediate energy (80 to 1000 MeV) study contributions to the International Polarization Symposium in Osaka, Japan, August 1985 is presented in this report. Contributions fall into three categories: polarization transfer, polarized deuteron scattering and polarized (p,π +- ) reactions

  11. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence

    NARCIS (Netherlands)

    Zhao, L.; Andersson, H.I.; Gillissen, J.J.J.

    2013-01-01

    Transfer of mechanical energy between solid spherical particles and a Newtonian carrier fluid has been explored in two-way coupled direct numerical simulations of turbulent channel flow. The inertial particles have been treated as individual point particles in a Lagrangian framework and their

  12. Directed Energy Transfer in Films of CdSe Quantum Dots: Beyond the Point Dipole Approximation

    DEFF Research Database (Denmark)

    Zheng, Kaibo; Zídek, Karel; Abdellah, Mohamed

    2014-01-01

    Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size of ...

  13. Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror

    Science.gov (United States)

    Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.

    2017-08-01

    The ability to control light-matter interactions in quantum objects opens up many avenues for new applications. We look at this issue within a fully quantized framework using a fundamental theory to describe mirror-assisted resonance energy transfer (RET) in nanostructures. The process of RET communicates electronic excitation between suitably disposed donor and acceptor particles in close proximity, activated by the initial excitation of the donor. Here, we demonstrate that the energy transfer rate can be significantly controlled by careful positioning of the RET emitters near a mirror. The results deliver equations that elicit new insights into the associated modification of virtual photon behavior, based on the quantum nature of light. In particular, our results indicate that energy transfer efficiency in nanostructures can be explicitly expedited or suppressed by a suitably positioned neighboring mirror, depending on the relative spacing and the dimensionality of the nanostructure. Interestingly, the resonance energy transfer between emitters is observed to "switch off" abruptly under suitable conditions of the RET system. This allows one to quantitatively control RET systems in a new way.

  14. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.

    Science.gov (United States)

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-08-12

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  15. A new energy transfer channel from carotenoids to chlorophylls in purple bacteria.

    Science.gov (United States)

    Feng, Jin; Tseng, Chi-Wei; Chen, Tingwei; Leng, Xia; Yin, Huabing; Cheng, Yuan-Chung; Rohlfing, Michael; Ma, Yuchen

    2017-07-10

    It is unclear whether there is an intermediate dark state between the S 2 and S 1 states of carotenoids. Previous two-dimensional electronic spectroscopy measurements support its existence and its involvement in the energy transfer from carotenoids to chlorophylls, but there is still considerable debate on the origin of this dark state and how it regulates the energy transfer process. Here we use ab initio calculations on excited-state dynamics and simulated two-dimensional electronic spectrum of carotenoids from purple bacteria to provide evidence supporting that the dark state may be assigned to a new A g + state. Our calculations also indicate that groups on the conjugation backbone of carotenoids may substantially affect the excited-state levels and the energy transfer process. These results contribute to a better understanding of carotenoid excited states.Carotenoids harvest energy from light and transfer it to chlorophylls during photosynthesis. Here, Feng et al. perform ab initio calculations on excited-state dynamics and simulated 2D electronic spectrum of carotenoids, supporting the existence of a new excited state in carotenoids.

  16. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  17. Direct visualization of efficient energy transfer in single oligo(p-phenylene vinylene) vesicles

    NARCIS (Netherlands)

    Hoeben, F.J.M.; Shklyarevskiy, I.O.; Pouderoijen, M.J.; Engelkamp, H.; Schenning, A.P.H.J.; Christianen, P.C.M.; Maan, J.C.; Meijer, E.W.

    2006-01-01

    Monitoring self-assembled objects: Optical studies and scanning confocal microscopy have been used to monitor intermolecular energy transfer (ENT) in mixed vesicles of donor/acceptor oligo(p-phenylene vinylene)s (OPVs) in water (see picture) over time. This probing of the ongoing exchange process

  18. Sensing DNA Opening in Transcription Using Quenchable Förster Resonance Energy Transfer

    NARCIS (Netherlands)

    Cordes, Thorben; Santoso, Yusdi; Tomescu, Alexandra I.; Gryte, Kristofer; Hwang, Ling Chin; Camará, Beatriz; Wigneshweraraj, Sivaramesh; Kapanidis, Achillefs N.

    2010-01-01

    Many biological processes, such as gene transcription and replication, involve opening and closing of short regions of double-stranded DNA (dsDNA). Few techniques, however, can study these processes in real time or at the single-molecule level. Here, we present a Förster resonance energy transfer

  19. Energy transfer between the Eu2+ dipole and aggregate centers in CsBr:Eu crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Turchak, R.; Voznjak, T.

    2007-01-01

    The energy transfer between the Eu 2+ -V Cs dipole centers and presumable CsEuBr 3 aggregate centers has been studied in CsBr:Eu crystals by means of investigation of their time-resolved emission spectra and luminescence decay kinetics at 300 K

  20. Enhanced intersystem crossing via a high energy charge transfer state in a perylenediimide-perylenemonoimide dyad

    NARCIS (Netherlands)

    Veldman, D.; Chopin-Cado, S.M.A; Meskers, S.C.J.; Janssen, R.A.J.

    2008-01-01

    The electronic relaxation processes of a photoexcited linear perylenediimide-perylenemonoimide (PDI-PMI) acceptor-donor dyad were studied. PDI-PMI serves as a model compound for donor-acceptor systems in photovoltaic devices and has been designed to have a high-energy PDI--PMI + charge transfer (CT)

  1. Beta-carotene to bacteriochlorophyll-c energy transfer in self-assembled aggregates mimicking chlorosomes

    Czech Academy of Sciences Publication Activity Database

    Alster, J.; Polívka, Tomáš; Arellano, J.B.; Chábera, P.; Vácha, František; Pšenčík, J.

    2010-01-01

    Roč. 373, 1-2 (2010), s. 90-97 ISSN 0301-0104 R&D Projects: GA ČR GA206/09/0375 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * chlorosomes * energy transfer Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  2. A fluorescence resonance energy transfer-based method for histone methyltransferases

    DEFF Research Database (Denmark)

    Devkota, Kanchan; Lohse, Brian; Nyby Jakobsen, Camilla

    2015-01-01

    A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye...

  3. Detection of three porcine vesicular viruses using multiplex real-time primer-probe energy transfer

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Aguero, M.

    2006-01-01

    Rapid identification of the etiologic agent in infected animals is important for the control of an outbreak of vesicular disease in livestock. We have in the present study developed a multiplex real-time reverse transcription-PCR, based on primer-probe energy transfer (PriProET), for simultaneous...

  4. The effect of reflections on the performance of an acoustic energy transfer system

    NARCIS (Netherlands)

    Roes, M.G.L.; Hendrix, M.A.M.; Duarte, J.L.

    2012-01-01

    Abstract—The performance of an acoustic energy transfer (AET) system, defined as the ratio of electrical output to input power, is affected to a large extent by reflections. Their effect is examined in this paper. A finite element model is created to model reflections in a typical AET system, of

  5. Laser Absorption and Energy Transfer in Foams of Various Pore Structures and Chemical Compositions,

    Czech Academy of Sciences Publication Activity Database

    Limpouch, J.; Borisenko, N.G.; Demchenko, N. N.; Gus´kov, S.Y.; Kasperczuk, A.; Khalenkov, A.M.; Kondrashov, V. N.; Krouský, Eduard; Kuba, J.; Mašek, Karel; Merkul´ev, A.Y.; Nazarov, W.; Pisarczyk, P.; Pisarczyk, T.; Pfeifer, Miroslav; Renner, Oldřich; Rozanov, V. B.

    2006-01-01

    Roč. 133, - (2006), s. 457-459 ISSN 1155-4339 R&D Projects: GA MŠk(CZ) LC528 Grant - others:INTAS(XE) 01-0572 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser absorption * energy transfer * foam Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.315, year: 2006

  6. Intramolecular energy transfer at donor-acceptor interactions in model and biological membranes

    International Nuclear Information System (INIS)

    Umarova, Fatima T.

    2011-01-01

    Intramolecular triplet-triplet energy transfer between molecules of sensibilisator and photochrome for registration of protein interactions in the membrane preparation of Na,K-ATPase was investigated. Erythrosinithiocyanate (ERITC) was used as the triplet label of sensibilisator, and 4-acetoamido-4 -isothiocyanatostilbene-2,2 disullfonic acid (SITS) was used as the photochrome label. Na,K-ATPase preparations were covalently bound with ERITC in active centre of enzyme, and SITS molecules were covalently bound by NH2-groups. In model system, in chymotrypsinogene molecule, SITS and ERITC labels were used also. The cis-trans-isomerization of SITS was initiated by triplet-triplet energy transfer from light excited ERITC molecule to photochrome. The kinetics of isomerization was recorded by the SITS fluorescence measurements. The constant of rate of triplet-triplet energy transfer from ERITC to cis-isomers of SITS in Na,K-ATPase was determined as (3-7)x10 3 M -1 s -1 , and in model system it equals 1x 10 7 M 1 s -1 . The value of energy transfer between loos molecules of erythrosine and SITS in buffer solution equaled to 7x10 7 M -1 s -1 . This drop of R m y in the membrane preparation of Na,K-ATPase at 10 4 reflected the decrease in the frequency of label collisions caused by the increase in the media viscosity and steric hindrances. (author)

  7. Foerster resonance energy transfer in inhomogeneous non-dispersive nanophotonic environments

    DEFF Research Database (Denmark)

    Wubs, Martijn; Vos, Willem L.

    A nondispersive inhomogeneous dielectric environment of a donor-acceptor pair of quantum emitters affects their Foerster resonance energy transfer (FRET) rate. We find that this rate does not depend on the emission frequency and hence not on the local optical density of states (LDOS) at that freq...

  8. Incorporating the Delphi Technique to investigate renewable energy technology transfer in Saudi Arabia

    Science.gov (United States)

    Al-Otaibi, Nasir K.

    Saudi Arabia is a major oil-producing nation facing a rapidly-growing population, high unemployment, climate change, and the depletion of its natural resources, potentially including its oil supply. Technology transfer is regarded as a means to diversify countries' economies beyond their natural resources. This dissertation examined the opportunities and barriers to utilizing technology transfer successfully to build renewable energy resources in Saudi Arabia to diversify the economy beyond oil production. Examples of other developing countries that have successfully used technology transfer to transform their economies are explored, including Japan, Malayasia, and the United Arab Emirates. Brazil is presented as a detailed case study to illustrate its transition to an economy based to a much greater degree than before on renewable energy. Following a pilot study, the Delphi Method was used in this research to gather the opinions of a panel of technology transfer experts consisting of 10 heterogeneous members of different institutions in the Kingdom of Saudi Arabia, including aviation, telecommunication, oil industry, education, health systems, and military and governmental organizations. In three rounds of questioning, the experts identified Education, Dependence on Oil, and Manpower as the 3 most significant factors influencing the potential for success of renewable energy technology transfer for Saudi Arabia. Political factors were also rated toward the "Very Important" end of a Likert scale and were discussed as they impact Education, Oil Dependence, and Manpower. The experts' opinions are presented and interpreted. They form the basis for recommended future research and discussion of how in light of its political system and its dependence on oil, Saudi Arabia can realistically move forward on renewable energy technology transfer and secure its economic future.

  9. Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots

    International Nuclear Information System (INIS)

    Mihalache, Iuliana; Radoi, Antonio; Mihaila, Mihai; Munteanu, Cornel; Marin, Alexandru; Danila, Mihai; Kusko, Mihaela; Kusko, Cristian

    2015-01-01

    Highlights: • We report a one pot synthesis metod of GQD with controlled size and optoelectronic properties. • An improvement of common N3-DSSC characteristics is achieved when GQDs are used as co-sensitiser. • The role of GQD as cosensitisers in hybrid DSSC was investigated and the interplay between charge and energy transfer phenomena mediated by GQDs was demonstrated. • The GQDs presence determines an inhibition of the recombination processes at the TiO 2 /electrolyte interface. - Abstract: We explored the role of graphene quantum dots (GQDs) as co-sensitizers in hybrid dye sensitized solar cell (DSSC) architectures, focusing on various concurring mechanisms, such as: charge transfer, energy transfer and recombination rate, towards light harvesting improvement. GQDs were prepared by the hydrothermal method that allows the tuning of electronic levels and optical properties by employing appropriate precursors and synthesis conditions. The aim was to realize a type II alignment for TiO 2 /GQD/dye hybrid configuration, using standard N3 Ru-dye in order to improve charge transfer. When GQDs were used as co-sensitizers together with N3 Ru-dye, an improvement in power conversion efficiency was achieved, as shown by electrical measurements. The experimental analysis indicates that this improvement arises from the interplay of various mechanisms mediated by GQDs: (i) enhancement of charge separation and collection due to the cascaded alignment of the energy levels; (ii) energy transfer from GQDs to N3 Ru-dye due to the overlap between GQD photoluminescence and N3 Ru-dye absorption spectra; and (iii) reduction of the electron recombination to the redox couple due to the inhibition of the back electron transfer to the electrolyte by the GQDs

  10. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2.

    Science.gov (United States)

    Ogren, John I; Tong, Ashley L; Gordon, Samuel C; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E; Cao, Jianshu; Schlau-Cohen, Gabriela S

    2018-03-28

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to

  11. Information on the Department of Energy's analyses to determine the need for appliance efficiency standards

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-23

    A historical overview of three separate Department of Energy analyses performed to determine the need for appliance efficiency standards is presented. An identification of the assumptions used in each of the analyses and the conclusions reached in each analysis are covered. Standards for furnaces, water heaters, central air conditioners, refrigerators, ranges/ovens, clothes dryers, freezers, and room air conditioners are considered. (MCW)

  12. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context

    Directory of Open Access Journals (Sweden)

    Zúñiga Manuel

    2008-05-01

    Full Text Available Abstract Background The phosphoenolpyruvate phosphotransferase system (PTS plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria

  13. Photoinduced proton transfer coupled with energy transfer: Mechanism of sensitized luminescence of terbium ion by salicylic acid doped in polymer.

    Science.gov (United States)

    Misra, Vinita; Mishra, Hirdyesh

    2008-06-28

    In the present work, excited state intramolecular proton transfer (ESIPT) in salicylic acid (SA) monoanion and subsequent sensitization of Tb(3+) ion in polyvinyl alcohol (PVA) have been studied. The study has been carried out both by steady state and time domain fluorescence measurement techniques at room temperature. It is found that the SA completely ionizes and exists as monoanion in PVA. It exhibits a large Stokes shifted blue emission (10 000 cm(-1)) due to ESIPT and shows a decay time of 6.85 ns. On the other hand, Tb(3+) ion shows a very weak green emission and a decay time of approximately 641 mus in PVA film. Upon incorporating Tb(3+) ion in SA doped PVA film, both intensity and decay time of SA decrease and sensitized emission from Tb(+3) ion along with 3.8 mus rise time is observed. Energy transfer is found to take place both from excited singlet as well as triplet states. A brief description of the properties of the present system from the viewpoint of luminescent solar collector material is addressed.

  14. On the Statistical Properties of Turbulent Energy Transfer Rate in the Inner Heliosphere

    Science.gov (United States)

    Sorriso-Valvo, Luca; Carbone, Francesco; Perri, Silvia; Greco, Antonella; Marino, Raffaele; Bruno, Roberto

    2018-01-01

    The transfer of energy from large to small scales in solar wind turbulence is an important ingredient of the long-standing question of the mechanism of the interplanetary plasma heating. Previous studies have shown that magnetohydrodynamic (MHD) turbulence is statistically compatible with the observed solar wind heating as it expands in the heliosphere. However, in order to understand which processes contribute to the plasma heating, it is necessary to have a local description of the energy flux across scales. To this aim, it is customary to use indicators such as the magnetic field partial variance of increments (PVI), which is associated with the local, relative, scale-dependent magnetic energy. A more complete evaluation of the energy transfer should also include other terms, related to velocity and cross-helicity. This is achieved here by introducing a proxy for the local, scale-dependent turbulent energy transfer rate ɛ_{Δ t}(t), based on the third-order moment scaling law for MHD turbulence. Data from Helios 2 are used to determine the statistical properties of such a proxy in comparison with the magnetic and velocity fields PVI, and the correlation with local solar wind heating is computed. PVI and ɛ_{Δ t}(t) are generally well correlated; however, ɛ_{Δ t}(t) is a very sensitive proxy that can exhibit large amplitude values, both positive and negative, even for low amplitude peaks in the PVI. Furthermore, ɛ_{Δ t}(t) is very well correlated with local increases of the temperature when large amplitude bursts of energy transfer are localized, thus suggesting an important role played by this proxy in the study of plasma energy dissipation.

  15. Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Krause, E.; et al.

    2017-06-28

    We present the methodology for and detail the implementation of the Dark Energy Survey (DES) 3x2pt DES Year 1 (Y1) analysis, which combines configuration-space two-point statistics from three different cosmological probes: cosmic shear, galaxy-galaxy lensing, and galaxy clustering, using data from the first year of DES observations. We have developed two independent modeling pipelines and describe the code validation process. We derive expressions for analytical real-space multi-probe covariances, and describe their validation with numerical simulations. We stress-test the inference pipelines in simulated likelihood analyses that vary 6-7 cosmology parameters plus 20 nuisance parameters and precisely resemble the analysis to be presented in the DES 3x2pt analysis paper, using a variety of simulated input data vectors with varying assumptions. We find that any disagreement between pipelines leads to changes in assigned likelihood $\\Delta \\chi^2 \\le 0.045$ with respect to the statistical error of the DES Y1 data vector. We also find that angular binning and survey mask do not impact our analytic covariance at a significant level. We determine lower bounds on scales used for analysis of galaxy clustering (8 Mpc$~h^{-1}$) and galaxy-galaxy lensing (12 Mpc$~h^{-1}$) such that the impact of modeling uncertainties in the non-linear regime is well below statistical errors, and show that our analysis choices are robust against a variety of systematics. These tests demonstrate that we have a robust analysis pipeline that yields unbiased cosmological parameter inferences for the flagship 3x2pt DES Y1 analysis. We emphasize that the level of independent code development and subsequent code comparison as demonstrated in this paper is necessary to produce credible constraints from increasingly complex multi-probe analyses of current data.

  16. Intramolecular energy transfer and mode-specific effects in unimolecular reactions of 1,2-difluoroethane

    Science.gov (United States)

    Raff, Lionel M.

    1989-06-01

    The unimolecular decomposition reactions of 1,2-difluoroethane upon mode-specific excitation to a total internal energy of 7.5 eV are investigated using classical trajectory methods and a previously formulated empirical potential-energy surface. The decomposition channels for 1,2-difluoroethane are, in order of importance, four-center HF elimination, C-C bond rupture, and hydrogen-atom dissociation. This order is found to be independent of the particular vibrational mode excited. Neither fluorine-atom nor F2 elimination reactions are ever observed even though these dissociation channels are energetically open. For four-center HF elimination, the average fraction of the total energy partitioned into internal HF motion varies between 0.115-0.181 depending upon the particular vibrational mode initially excited. The internal energy of the fluoroethylene product lies in the range 0.716-0.776. Comparison of the present results with those previously obtained for a random distribution of the initial 1,2-difluoroethane internal energy [J. Phys. Chem. 92, 5111 (1988)], shows that numerous mode-specific effects are present in these reactions in spite of the fact that intramolecular energy transfer rates for this system are 5.88-25.5 times faster than any of the unimolecular reaction rates. Mode-specific excitation always leads to a total decomposition rate significantly larger than that obtained for a random distribution of the internal energy. Excitation of different 1,2-difluoroethane vibrational modes is found to produce as much as a 51% change in the total decomposition rate. Mode-specific effects are also seen in the product energy partitioning. The rate coefficients for decomposition into the various channels are very sensitive to the particular mode excited. A comparison of the calculated mode-specific effects with the previously determined mode-to-mode energy transfer rate coefficients [J. Chem. Phys. 89, 5680 (1988)] shows that, to some extent, the presence of mode

  17. Near-field effects and energy transfer in hybrid metal-oxide nanostructures.

    Science.gov (United States)

    Herr, Ulrich; Kuerbanjiang, Balati; Benel, Cahit; Papageorgiou, Giorgos; Goncalves, Manuel; Boneberg, Johannes; Leiderer, Paul; Ziemann, Paul; Marek, Peter; Hahn, Horst

    2013-01-01

    One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide nanoparticles. The oxide particles were doped with rare-earth (RE) ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu(3+), since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments are

  18. Near-surface energy transfers from internal tide beams to smaller vertical scale motions

    Science.gov (United States)

    Chou, S.; Staquet, C.; Carter, G. S.; Luther, D. S.

    2016-02-01

    Mechanical energy capable of causing diapycnal mixing in the ocean is transferred to the internal wave field when barotropic tides pass over underwater topography and generate internal tides. The resulting internal tide energy is confined in vertically limited structures, or beams. As internal tide beams (ITBs) propagate through regions of non-uniform stratification in the upper ocean, wave energy can be scattered through multiple reflections and refractions, be vertically trapped, or transferred to non-tidal frequencies through different nonlinear processes. Various observations have shown that ITBs are no longer detectable in horizontal kinetic energy beyond the first surface reflection. Importantly, this implies that some of the internal tide energy no longer propagates in to the abyssal ocean and consequently will not be available to maintain the density stratification. Using the NHM, a nonlinear and nonhydrostatic model based on the MITgcm, simulations of an ITB propagating up to the sea surface are examined in order to quantify the transformation of ITB energy to other motions. We compare and contrast the transformations enabled by idealized, smoothly-varying stratification with transformations enabled by realistic stratification containing a broad-band vertical wavenumber spectrum of variations. Preliminary two-dimensional results show that scattering due to small-scale structure in realistic stratification profiles from Hawaii can lead to energy being vertically trapped near the surface. Idealized simulations of "locally" generated internal solitary waves are analyzed in terms of energy flux transfers from the ITB to solitary waves, higher harmonics, and mean flow. The amount of internal tide energy which propagates back down after near-surface reflection of the ITB in different environments is quantified.

  19. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  20. Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.; Dincer, Ibrahim; Hamdullahpur, Feridun

    2012-01-01

    In this study, energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle (ORC) are presented. Four cases are considered for analysis: electrical-power, cooling-cogeneration, heating-cogeneration and trigeneration cases. The results obtained reveal that the best performance of the trigeneration system considered can be obtained with the lowest ORC evaporator pinch temperature considered, T pp = 20 K, and the lowest ORC minimum temperature, T 9 = 345 K. In addition, this study reveals that there is a significant improvement when trigeneration is used as compared to only electrical power production. This study demonstrates that the fuel utilization efficiency increases, in average, from 12% for electrical power to 88% for trigeneration. Moreover, the maximum exergy efficiency of the ORC is 13% and, when trigeneration is used, it increases to 28%. Furthermore, this study reveals that the electrical to cooling ratio can be controlled through changing the ORC evaporator pinch point temperature and/or the pump inlet temperature. In addition, the study reveals that the biomass burner and the ORC evaporator are the main two sources of exergy destruction. The biomass burner contributes to 55% of the total destructed exergy whereas the ORC evaporator contributes to 38% of the total destructed exergy. -- Highlights: ► The best performance can be obtained with the lowest ORC evaporator pinch temperature and the lowest ORC minimum temperature. ► There is, on average, 75 % gain in energy efficiency for trigeneration compared to electrical system. ► There is, on average, 17% gain in exergy efficiency when trigeneration is used as compared to electrical system. ► The electrical to cooling ratio is sensitive to the variation of the pinch point temperature and pump inlet temperature. ► The two main sources of the exergy destruction are the biomass burner with 55% and the ORC evaporator with 38%.