WorldWideScience

Sample records for energy technology development

  1. Energy, technology, development

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [Ministerio da Educacao, Brasilia (Brazil)

    1992-02-01

    Energy and technology are essential ingredients of development, it is only through their use that it became possible to sustain a population of almost 5 billion on Earth. The challenges to eradicate poverty and underdevelopment in developing countries in the face of strong population increases can only be successfully met with the use of advanced technology, leapfrogging the path followed in the past by today's industrialized countries. It is shown in the paper that energy consumption can be decoupled from economic development. Such possibility will contribute significantly in achieving sustainable development. 10 refs., 4 figs., 3 tabs.

  2. Interactions of energy technology development and new energy exploitation with water technology development in China

    International Nuclear Information System (INIS)

    Liang, Sai; Zhang, Tianzhu

    2011-01-01

    Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO 2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO 2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO 2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO 2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development. -- Highlights: ► Energy policies and water technology development can produce co-benefits for each other. ► For proportions of water saving co-benefits of energy policies, energy sectors benefit the most. ► For proportions of energy saving and CO 2 mitigation co-benefits of water policy, water sector benefits the most. ► China’s economic sectors are classified into four categories for policy implementation at sector scale.

  3. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    Okorokov, V.R.

    1990-02-01

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  4. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  5. Learning in renewable energy technology development

    International Nuclear Information System (INIS)

    Junginger, M.

    2005-01-01

    The main objectives of this thesis are: to investigate technological change and cost reduction for a number of renewable electricity technologies by means of the experience curve approach; to address related methodological issues in the experience curve approach, and, based on these insights; and to analyze the implications for achieving the Dutch renewable electricity targets for the year 2020 within a European context. In order to meet these objectives, a number of research questions have been formulated: What are the most promising renewable electricity technologies for the Netherlands until 2020 under different technological, economic and environmental conditions?; To what extent is the current use of the experience curve approach to investigate renewable energy technology development sound, what are differences in the utilization of this approach and what are possible pitfalls?; How can the experience curve approach be used to describe the potential development of partially new energy technologies, such as offshore wind energy? Is it possible to describe biomass fuel supply chains with experience curves? What are the possibilities and limits of the experience curve approach when describing non-modular technologies such as large (biomass) energy plants?; What are the main learning mechanisms behind the cost reduction of the investigated technologies?; and How can differences in the technological progress of renewable electricity options influence the market diffusion of renewable electricity technologies, and what implications can varying technological development and policy have on the implementation of renewable electricity technologies in the Netherlands? The development of different renewable energy technologies is investigated by means of some case studies. The possible effects of varying technological development in combination with different policy backgrounds are illustrated for the Netherlands. The thesis focuses mainly on the development of investment

  6. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Stern, T.

    1989-09-01

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  7. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  8. Developing a framework for energy technology portfolio selection

    Science.gov (United States)

    Davoudpour, Hamid; Ashrafi, Maryam

    2012-11-01

    Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.

  9. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  10. Development of alternative energy technologies. Entrepreneurs, new technologies, and social change

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R

    1985-01-01

    This paper discusses the introduction and development of several alternative energy technologies in countries where the innovation process has enjoyed some measure of success: solar water heating (California, Israel), windmills (Denmark), wood and peat for co-generation (Northern New England, Finland) and geo-thermal power (California) as well as heat pumps designed to save energy (West Germany). It is argued that the introduction and development of new technologies - and the socio-technical systems which utilize these technologies - depend on the initiatives of entrepreneurs and social change agents. They engage in adapting and matching technology and social structure (laws, institutions, norms, political and economic forces and social structure generally). Successful developments - as well as blocked or retarded developments - are discussed in terms of such ''compatibility analysis''. Policy implications are also discussed. (orig.).

  11. Trends in Wind Energy Technology Development

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.

    2011-01-01

    . The huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a secure global energy supply. Between the mid-1980s, when the wind industry took off, and 2005 wind......Text Over the past 25 years global wind energy capacity has doubled every three years, corresponding to a tenfold expansion every decade. By the end of 2010 global installed wind capacity was approximately 200 GW and in 2011 is expected to produce about 2% of global electricity consumption...... turbine technology has seen rapid development, leading to impressive increases in the size of turbines, with corresponding cost reductions. From 2005 to 2009 the industry’s focus seems to have been on increasing manufacturing capacity, meeting market demand and making wind turbines more reliable...

  12. Data on development of new energy technologies

    Science.gov (United States)

    1994-03-01

    The paper compiles data on the trend of development of new energy technologies into a book. By category, renewable energy is solar energy, wind power generation, geothermal power generation, ocean energy, and biomass. As a category of fuel form conversion, cited are coal liquefaction/gasification, coal gasification combined cycle power generation, and natural gas liquefaction/decarbonization. The other categories are cogeneration by fuel cell and ceramic gas turbine, district heat supply system, power load leveling technology, transportation-use substitution-fuel vehicle, and others (Stirling engine, superconducting power generator, etc.). The data are systematically compiled on essential principles, transition of introduction, objectives of introduction, status of production, cost, development schedule, performance, etc. The paper also deals with the related legislation system, developmental organizations, and a menu for power companies' buying surplus power.

  13. Deployment of energy efficient technologies in developing countries

    International Nuclear Information System (INIS)

    Koch, H.J.

    2000-01-01

    Efficient and reliable power generation and power distribution represent the engine for economic growth in developing countries. A vast majority of the population in these countries does not have access to electricity, and those that do are often faced with an unreliable power distribution system. Now is the ideal time to transfer efficient energy technologies which also adhere to environmental standards. There are a myriad of inexpensive ways to avoid energy losses, such as cogeneration, the addition of natural gas turbines to coal-fired heating boilers. Even power generation itself can be more efficient. These improvements would encourage the financing world to pay closer attention and invest more rapidly in projects aimed at improving efficient power generation. The International Energy Agency was created in 1974 with the participation of 25 countries, and its mandate was expanded to include the deployment of clean and efficient energy technologies in developing countries. Technology transfer involves more than the shipping of equipment combined with some expert assistance. It involves the active participation of several partners, from the private sector, governments, non-governmental organizations (NGO), and academic institutions. The objective is to empower the recipient population, thereby reducing the need for imports. It is a joint international effort where the results benefit all participants. The author also discussed the Climate Technology Initiative (CTI) with the aim of disseminating information concerning climate change in the hope of reducing global emissions of greenhouse gases. Discussions to assist countries in the examination of avenues open to them in the field of energy are also fostered. Training in energy efficient technologies represents an important aspect of the role of CTI. It applies to decision makers to help them establish appropriate guidelines and regulations with regard to these technologies. Sustainable development can be achieved

  14. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  15. Energy Technology Roadmaps: A Guide to Development and Implementation. 2014 edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    New low-carbon technologies show clear potential for transforming the global energy system, but a key challenge remains: what steps do governments and industry need to take to ensure their development and deployment? Roadmapping, used for decades in technology-intensive industries, is a useful tool to help address complicated issues strategically at the national, regional and global levels. To help turn political statements and analytical work into concrete action, the International Energy Agency (IEA) is developing a series of global roadmaps devoted to low-carbon energy technologies. Drawing upon the extensive IEA experience, this guide is aimed at providing countries and companies with the context, information and tools needed to design, manage and implement an effective energy technology roadmap process relevant to their own local circumstances and objectives. This edition of the Energy Technology Roadmaps: a guide to development and implementation includes more detailed guidance on how to identify key stakeholders, develop a technology baseline and development of indicators to help track progress against roadmap milestones. The IEA hopes that this guide and the examples and references it offers, together with the new IEA How2Guides, which provide technology-specific guidance, will help national and local policy makers and industry to develop strategies that accelerate the deployment of low-carbon energy technologies worldwide.

  16. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  17. Development of other oil-alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development efforts are being given on a large wind power generation system which has high reliability and economy and suits the actual situations in Japan. Verification tests will be conducted to establish control systems to realize load leveling against the increase in maximum power demand and the differences in demands between seasons, days and nights. Development will also be made on technologies for systems to operate devices optimally using nighttime power for household use. Solar light and heat energies will be introduced and used widely in housing to achieve efficient comprehensive energy utilization. Wastes, waste heat and unused energies locally available will be utilized to promote forming environment harmonious type energy communities. Photovoltaic and fuel cell power generation facilities will be installed on a trial basis to promote building a groundwork for full-scale installations. Photovoltaic power generation systems will be installed on actual houses to establish technologies to assess and optimize the load leveling effect. Attempts will be made on practical application of high-efficiency regional heat supply systems which utilize such unutilized energies as those from sea water and river water. Assistance will be given through preparing manuals on introduction of wastes power generation systems by local governments, and introduction of regional energy systems by using new discrete type power generation technologies and consumer-use cogeneration systems. 1 fig., 1 tab.

  18. Noise-control needs in the developing energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Keast, D.N.

    1978-03-01

    The noise characteristics of existing energy conversion technologies, e.g., from obtaining and processing fossil fuels to power plants operations, and of developing energy technologies (wind, geothermal sources, solar energy or fusion systems) are discussed in terms of the effects of noise on humans, animals, structures, and equipment and methods for noise control. Regulations for noise control are described. Recommendations are made for further research on noise control and noise effects. (LCL)

  19. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  20. Present state and future of new energy technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, N

    1976-08-01

    The Sunshine Project was begun in 1973 by the Japanese Ministry of Industry to investigate all alternative energy sources other than nuclear. The project is subdivided into four separate areas, those being solar energy, geothermal energy, liquefaction and gasification of coal, and hydrogen fuel. This article describes the present state of these technologies and their probable future development. Although hydrogen fuel and coal liquefaction/gasification are still in the basic research stage solar and geothermal technologies are already well developed.

  1. On new evolution in development of basic technology of atomic energy

    International Nuclear Information System (INIS)

    1993-01-01

    In 1988, the expert committee on the promotion of basic technology organized in the Atomic Energy Commission presented the report and showed concretely the subjects of research and development to be promoted in four fields of material technology, artificial intelligence technology, laser technology and the technology for evaluating and reducing radiation risks for atomic energy, and the measures of efficiently promoting the technical development. The research and development achieved the steady results following this report. The creation of radiation resistant materials, the development of knowledge base system and robot technology, the development of the laser technology required for atomic energy, and the technology for evaluating and reducing radiation risks and so on have been carried out. As the measures for efficiently promoting the technical development, the promotion of the active interchange of researches, the intentional rearing of creative men, the positive development of international interchange, the introduction of the new evaluation of research and the promotion of spread of the results of research have been carried out. The state of execution and the new development measures of the development of the basic technology are reported. (K.I.)

  2. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Boardman, Richard; Rabiti, Cristian; Suk Kim, Jong; McKellar, Michael; Sabharwall, Piyush; Chen, Jun; Cetiner, M. Sacit; Harrison, T. Jay; Qualls, A. Lou

    2016-01-01

    The United States is in the midst of an energy revolution, spurred by advancement of technology to produce unprecedented supplies of oil and natural gas. Simultaneously, there is an increasing concern for climate change attributed to greenhouse gas (GHG) emissions that, in large part, result from burning fossil fuels. An international consensus has concluded that the U.S. and other developed nations have an imperative to reduce GHG emissions to address these climate change concerns. The global desire to reduce GHG emissions has led to the development and deployment of clean energy resources and technologies, particularly renewable energy technologies, at a rapid rate. At the same time, each of the major energy sectors-the electric grid, industrial manufacturing, transportation, and the residential/commercial consumers- is increasingly becoming linked through information and communications technologies, advanced modeling and simulation, and controls. Coordination of clean energy generation technologies through integrated hybrid energy systems, as defined below, has the potential to further revolutionize energy services at the system level by coordinating the exchange of energy currency among the energy sectors in a manner that optimizes financial efficiency (including capital investments), maximizes thermodynamic efficiency (through best use of exergy, which is the potential to use the available energy in producing energy services), reduces environmental impacts when clean energy inputs are maximized, and provides resources for grid management. Rapid buildout of renewable technologies has been largely driven by local, state, and federal policies, such as renewable portfolio standards and production tax credits that incentivize investment in these generation sources. A foundational assumption within this program plan is that renewable technologies will continue to be major contributors to the future U.S. energy infrastructure. While increased use of clean renewable

  3. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cetiner, M. Sacit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, T. Jay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. Lou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    The United States is in the midst of an energy revolution, spurred by advancement of technology to produce unprecedented supplies of oil and natural gas. Simultaneously, there is an increasing concern for climate change attributed to greenhouse gas (GHG) emissions that, in large part, result from burning fossil fuels. An international consensus has concluded that the U.S. and other developed nations have an imperative to reduce GHG emissions to address these climate change concerns. The global desire to reduce GHG emissions has led to the development and deployment of clean energy resources and technologies, particularly renewable energy technologies, at a rapid rate. At the same time, each of the major energy sectors—the electric grid, industrial manufacturing, transportation, and the residential/commercial consumers— is increasingly becoming linked through information and communications technologies, advanced modeling and simulation, and controls. Coordination of clean energy generation technologies through integrated hybrid energy systems, as defined below, has the potential to further revolutionize energy services at the system level by coordinating the exchange of energy currency among the energy sectors in a manner that optimizes financial efficiency (including capital investments), maximizes thermodynamic efficiency (through best use of exergy, which is the potential to use the available energy in producing energy services), reduces environmental impacts when clean energy inputs are maximized, and provides resources for grid management. Rapid buildout of renewable technologies has been largely driven by local, state, and federal policies, such as renewable portfolio standards and production tax credits that incentivize investment in these generation sources. A foundational assumption within this program plan is that renewable technologies will continue to be major contributors to the future U.S. energy infrastructure. While increased use of clean

  4. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  5. Status of tritium technology development for magnetic-fusion energy

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1983-01-01

    The development of tritium technology for the magnetic fusion energy program has progressed at a rapid rate over the past two years. The focal points for this development in the United States have been the Tritium Systems Test Assembly at Los Alamos and the FED/INTOR studies supported by the Fusion Engineering Design Center at Oak Ridge. In Canada the Canadian Fusion Fuel Technology Project has been initiated and promises to make significant contributions to the tritium technology program in the next few years. The Japanese government has now approved funding for the Tritium Processing Laboratory at the Japan Atomic Energy Research Institute's Tokai Research Establishment. Construction on this new facility is scheduled to begin in April 1983. This facility will be the center for fusion tritium technology development in Japan. The European Community is currently working on the design of the tritium facility for the Joint European Torus. There is considerable interaction between all of these programs, thus accelerating the overall development of this crucial technology

  6. Technological choices and development: the energy conservation case in the Tunisian industry

    International Nuclear Information System (INIS)

    Sellami, H.

    1988-01-01

    The technological choices for an industrial development, especially in a developing country such as Tunisia, may be determined by two opposite principles: the appropriate technologies and the technological short cuts. The methodological approach presented here is based on a comparison of the technological choices for energy conservation in France and in Tunisia. The main energy consuming industrial sectors are analyzed for their technology use and their relative energy consumptions

  7. The rhetoric of calculations. Economical arguments for development of new energy technologies

    International Nuclear Information System (INIS)

    Solli, Joeran

    2004-01-01

    The thesis discusses the theoretical economics and social factors for development of new energy technologies and has chapter on: New energy technologies in an economical and political change, technology development from innovation economy to economical sociology, opinion formation in the energy sector, establishing energy economical discussion, economy as pidgin, financial factors, forming social education and market power versus language strife

  8. Technology assessment HTR. Part 8. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Turkenburg, W.C.

    1996-06-01

    The small social acceptance of nuclear power for power generation suggests that in the present situation nuclear technology does not meet certain sustainable criteria. First, the concept of sustainable development is explained and which dimensions can be distinguished. Next, the sustainable development with regard to the development of the energy supply is outlined and the energy policy to obtain this situation is discussed. Subsequently, the impact of the sustainable development and the policy used to realize this on the nuclear technology are dealt with. As a result, criteria are formulated that can be used to verify how nuclear technology will meet this criteria and which demands should be used to fit this technology so it can be used in a sustainable development of the society. 55 refs

  9. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  10. Technologies for sustainable energy development in the long term. Proceedings

    DEFF Research Database (Denmark)

    Sønderberg Petersen, Leif; Larsen, Hans Hvidtfeldt

    2005-01-01

    The Risø International Energy Conference took place 23 - 25 May 2005 and the aim of the conference was to present and discuss new developments and trends in energy technologies which may make major contributions to sustainable energy developments in thecoming decades. The conference addressed R......&D related to the individual technologies as well as their integration into the local, regional and global energy systems. The proceedings are prepared from papers presented at the conference and received withcorrections, if any, until the final deadline on 15 June 2005....

  11. Considerations in promoting markets for sustainable energy technologies in developing countries

    International Nuclear Information System (INIS)

    Radka, Mark; Kamel, Sami

    2003-01-01

    The growth in demand for energy in both developed and developing countries is expected to continue an upward trend for many years, with a large portion of the increase projected to occur in developing countries. As these countries undertake various economic development initiatives and programmes it is important from a global environmental perspective that they increase the proportion of efficient, low carbon emitting energy in the energy mix. This paper identifies a number of ways of improving markets that foster increased adoption of clean energy technologies in developing countries. The paper concludes that a holistic approach is needed if new technology promotion efforts are to succeed. Ensuring the appropriateness of the technology, and hence its sustainability, requires proper attention to social, economic and political criteria as well as the fundamental technical characteristics. (au)

  12. Considerations in promoting markets for sustainable energy technologies in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Radka, Mark [United Nations Environment Programme, Div. of Technology, Industry and Economics (France); Kamel, Sami [Risoe National Lab., UNEP Risoe Centre for Energy, Climate Change and Sustainable Development, Roskilde (Denmark)

    2003-09-01

    The growth in demand for energy in both developed and developing countries is expected to continue an upward trend for many years, with a large portion of the increase projected to occur in developing countries. As these countries undertake various economic development initiatives and programmes it is important from a global environmental perspective that they increase the proportion of efficient, low carbon emitting energy in the energy mix. This paper identifies a number of ways of improving markets that foster increased adoption of clean energy technologies in developing countries. The paper concludes that a holistic approach is needed if new technology promotion efforts are to succeed. Ensuring the appropriateness of the technology, and hence its sustainability, requires proper attention to social, economic and political criteria as well as the fundamental technical characteristics. (au)

  13. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  14. Modular, Reconfigurable, High-Energy Technology Development

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  15. Demand for Clean Energies Efficient Development in Buildings Technologies

    International Nuclear Information System (INIS)

    Mustafa Omer, Abdeen

    2017-01-01

    Aims/Purpose: The increased availability of reliable and efficient energy services stimulates new development alternatives. This article discusses the potential for such integrated systems in the stationary and portable power market in response to the critical need for a cleaner energy technology. Throughout the theme several issues relating to renewable energies, environment, and sustainable development are examined from both current and future perspectives. It is concluded that green energies like wind, solar, ground source heat pumps, and biomass must be promoted, implemented, and demonstrated from the economic and/or environmental point view. Biogas from biomass appears to have potential as an alternative energy source, which is potentially rich in biomass resources. This is an overview of some salient points and perspectives of biogas technology. The current literature is reviewed regarding the ecological, social, cultural and economic impacts of biogas technology. This article gives an overview of present and future use of biomass as an industrial feedstock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value products are required. Results suggest that biogas technology must be encouraged, promoted, invested, implemented, and demonstrated, but especially in remote rural areas. Study design: Anticipated patterns of future energy use and consequent environmental impacts (acid precipitation, ozone depletion and the greenhouse effect or global warming) are comprehensively discussed in this article. Place and Duration of Study: National Centre for Research, Energy Research Institute (ERI), between January 2014 and July 2015. (author)

  16. Estimating energy-augmenting technological change in developing country industries

    International Nuclear Information System (INIS)

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    Assumptions regarding the magnitude and direction of energy-related technological change have long been recognized as critical determinants of the outputs and policy conclusions derived from integrated assessment models. Particularly in the case of developing countries, however, empirical analysis of technological change has lagged behind simulation modeling. This paper presents estimates of sectoral productivity trends and energy-augmenting technological change for several energy-intensive industries in India and South Korea, and, for comparison, the United States. The key findings are substantial heterogeneity among both industries and countries, and a number of cases of declining energy efficiency. The results are subject to certain technical qualifications both in regards to the methodology and to the direct comparison to integrated assessment parameterizations. Nevertheless, they highlight the importance of closer attention to the empirical basis for common modeling assumptions

  17. Technology development and application of solar energy in desalination: MEDRC contribution

    KAUST Repository

    Ghaffour, Noreddine

    2011-12-01

    Desalination has become one of the sources for water supply in several countries especially in the Middle East and North Africa region. There is a great potential to develop solar desalination technologies especially in this region where solar source is abundantly available. The success in implementing solar technologies in desalination at a commercial scale depends on the improvements to convert solar energy into electrical and/or thermal energies economically as desalination processes need these types of energies. Since desalination is energy intensive, the wider use of solar technologies in desalination will eventually increase the demand on these technologies, making it possible to go for mass production of photovoltaic (PV) cells, collectors and solar thermal power plants. This would ultimately lead to the reduction in the costs of these technologies. The energy consumed by desalination processes has been significantly reduced in the last decade meaning that, if solar technologies are to be used, less PV modules and area for collectors would be needed. The main aspects to be addressed to make solar desalination a viable option in remote location applications is to develop new materials or improve existing solar collectors and find the best combinations to couple the different desalination processes with appropriate solar collector. In the objective to promote solar desalination in MENA, the Middle East Desalination Research Center has concentrated on various aspects of solar desalination in the last twelve years by sponsoring 17 research projects on different technologies and Software packages development for coupling desalination and renewable energy systems to address the limitations of solar desalination and develop new desalination technologies and hybrid systems suitable for remote areas. A brief description of some of these projects is highlighted in this paper. The full details of all these projects are available the Centers website. © 2011 Elsevier

  18. The Impact of Sustainable Development Technology on a Small Economy-The Case of Energy-Saving Technology.

    Science.gov (United States)

    Chen, Xiding; Huang, Qinghua; Huang, Weilun; Li, Xue

    2018-02-08

    We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology's displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM) effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different.

  19. Basic survey for promoting energy efficiency in developing countries. Database development project directory of energy conservation technology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    In order to promote energy conservation in developing countries, the gist of Japanese energy saving technologies was edited into a database. The Asian territory is expected of remarkable economic development and increased energy consumption including that for fossil fuels. Therefore, this project of structuring a database has urgent importance for the Asian countries. New and wide-area discussions were given to revise the 1995 edition. The committee was composed of members from high energy consuming areas such as iron and steel, paper and pulp, chemical, oil refining, cement, electric power, machinery, electric devices, and industrial machinery industries. Technical literatures and reports were referred to, and opinions were heard from specialists and committee members representing the respective areas. In order to reflect the current status and particular conditions in specific industrial areas, additions were given under the assistance and guidance from the specialists. The energy saving technologies recorded in the database may be called small to medium scale technologies, with the target placed on saving energy by 10% or more. Small-scale energy saving technologies were omitted. Flow charts for manufacturing processes were also added. (NEDO)

  20. Capacity building in renewable energy technologies in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, Ingvar

    2010-09-15

    The renewable energy sources are expected to provide 20-40% of the world primary energy in 2050, depending on scenarios. A key element in the mitigation of climate change is capacity building in renewable energy technologies in the developing countries, where the main energy use growth is expected. An innovative training programme for geothermal energy professionals developed in Iceland is an example of how this can be done effectively. In 1979-2009, 424 scientists/engineers from 44 developing countries have completed the 6 month courses. In many countries in Africa, Asia, C-America, and E-Europe, UNU-GTP Fellows are among the leading geothermal specialists.

  1. Energy Choices. Choices for future technology development

    International Nuclear Information System (INIS)

    Billfalk, Lennart; Haegermark, Harald

    2009-03-01

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO 2 target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large investments

  2. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  3. Energy research and technology development data collection strategies. The case of Greece

    International Nuclear Information System (INIS)

    Doukas, Haris; Papadopoulou, Alexandra G.; Nychtis, Christos; Psarras, John; Van Beeck, Nicole

    2009-01-01

    The European Union (EU) from the beginning of 2007 has focused its emphasis on the development of a new policy that puts energy back at the heart of EU action. Indeed, it has very often been stated that the difficulty and complexity of achieving green energy targets in the EU will require strengthened measures to promote implementation of new energy technologies (NET), as well as measures to support the related energy Research and Technology Development (R and TD). Often forgotten is the fact, that most of all, a European-wide co-ordinated forum is needed to continuously develop and sophisticate the monitoring and methodology results, bringing together specialised statisticians, energy researchers and experts on energy socio-economics. Today a nebulous picture prevails on the existence of categorized data with regards to energy Research and Technology Development (R and TD) expenditure. In this context, aim of this paper is the presentation of energy R and TD data collection strategies, as well as the related findings for the Greek energy market. (author)

  4. A Survey on the Development Status of Nano Technology as a Basic and Fundamental Technology of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Lee, J. Y.; Lee, G. H.

    2010-02-01

    - It is necessary to research and develop high-grade nuclear energy technology such as raising stability of nuclear power generation, improving economic feasibility and managing radioactive wastes. - Innovation of nano technology is composed of each stage as follows Energy source -> conversion to energy -> distribution of energy -> energy storage -> energy use which are a value added system in the part of energy. - It is necessary to strengthen support of the government to raise next-generation human resources for continuous promotion of nuclear energy, referring to KNOO program promoted by the UK government for raising recognition about nuclear energy, raising core human resources and developing next generation core technology

  5. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  6. The Impact of Sustainable Development Technology on a Small Economy—The Case of Energy-Saving Technology

    Directory of Open Access Journals (Sweden)

    Xiding Chen

    2018-02-01

    Full Text Available We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology’s displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different.

  7. The Impact of Sustainable Development Technology on a Small Economy—The Case of Energy-Saving Technology

    Science.gov (United States)

    Huang, Qinghua; Huang, Weilun; Li, Xue

    2018-01-01

    We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology’s displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM) effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different. PMID:29419788

  8. Opportunities for renewable energy technologies in water supply in developing country villages

    Energy Technology Data Exchange (ETDEWEB)

    Niewoehner, J.; Larson, R.; Azrag, E.; Hailu, T.; Horner, J.; VanArsdale, P. [Water for People, Denver, CO (United States)

    1997-03-01

    This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.

  9. Evolutionary Patterns of Renewable Energy Technology Development in East Asia (1990–2010

    Directory of Open Access Journals (Sweden)

    Yoonhwan Oh

    2016-07-01

    Full Text Available This study investigates the evolutionary patterns of renewable energy technology in East Asian countries—Japan, Korea, and China—as an emerging technology where the catch-up strategy is actively taking place. To reflect the quality of technology development activities, we assess each country’s research and development (R&D activities using patent citation analysis. The goal of this study is to overcome the limitations of prior research that uses quantitative information, such as R&D expenditures and number of patents. This study observes the process of technological catch-up and leapfrogging in the East Asian renewable energy sector. Furthermore, we find that each nation’s technology development portfolio differs depending on the composition share of technologies. Policymakers in emerging economies can use the findings to shape R&D strategies to develop the renewable energy sector and provide an alternative method of evaluating the qualitative development of technology.

  10. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  11. An assessment of research and development leadership in ocean energy technologies

    International Nuclear Information System (INIS)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing

  12. Technological development with reference to hydro-power, nuclear, and alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R; Baumgartner, T

    1985-01-01

    This report outlines a theoretical framework for describing and analyzing the introduction of new technologies and the development of socio-technical systems associated with such innovations. While the report is largely theoretical in nature, it refers to certain strategic aspects of the development of nuclear, hydro-power and alternative energy systems. The ease with which technological innovation and development occur, the directions they take, and the impacts they have on the social and physical environments depend not only on purely technical and economic factors. Barriers, regulators and facilitators are inherent in the socio-political, institutional and cultural structures within which any attempts at innovation and technological development take place. The final section of the report explores some of the implications of the theory for policy and strategy, including consideration of environmental policy.

  13. Technological Changes as the Development Factor of the Global and Russian Energy Sector

    OpenAIRE

    Dudin, Mihail Nikolaevich; Lyasnikov, Nikolai Vasil’evich; Sekerin, Vladimir Dmitrievich; Gorokhova, Anna Evgen’evna; Danko, Tamara Petrovna; Bank, Olga Anatol’evna

    2017-01-01

    This article aims to study the real and hidden technological changes that will shape the strategic contours of the world energy civilization development, as well as the development of the Russian energy sector. The paper presents the following main conclusions: i) global energy development and nation states energy sector development are determined by a set of issues, foremost of which is innovation and technological aspect that determines the local and global changes that are likely to lead t...

  14. Promoting renewable energy technologies

    International Nuclear Information System (INIS)

    Grenaa Jensen, S.

    2004-06-01

    Technologies using renewable energy sources are receiving increasing interest from both public authorities and power producing companies, mainly because of the environmental advantages they procure in comparison with conventional energy sources. These technologies can be substitution for conventional energy sources and limit damage to the environment. Furthermore, several of the renewable energy technologies satisfy an increasing political goal of self-sufficiency within energy production. The subject of this thesis is promotion of renewable technologies. The primary goal is to increase understanding on how technological development takes place, and establish a theoretical framework that can assist in the construction of policy strategies including instruments for promotion of renewable energy technologies. Technological development is analysed by through quantitative and qualitative methods. (BA)

  15. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  16. Development of Strategic Technology Road map for Establishing Safety Infrastructure of Fusion Energy

    International Nuclear Information System (INIS)

    Han, B. S.; Cho, S. H.; Kam, S. C.; Kim, K. T.

    2009-01-01

    The Korean Government established an 'Act for the Promotion of Fusion Energy Development (APFED)' and formulated a 'Strategy Promotion Plan for Fusion Energy Development.' KINS has carried out a safety review of KSTAR (Korea Superconducting Tokamak Advanced Research), for which an application for use was received in 2002 and the license was issued in August 2007. With respect to the APFED, 'Atomic Energy Acts (AEAs)' shall apply in the fusion safety regulation. However the AEAs are not applicable because they aim for dealing with nuclear energy. In this regard, this study was planned to establish safety infrastructure for fusion energy and to develop technologies necessary for verifying the safety. The purpose of this study is to develop a 'Strategic Technology Roadmap (STR) for establishing safety infrastructure of the fusion energy', which displays the content and development schedule and strategy for developing the laws, safety goals and principles, and safety standards applicable for fusion safety regulation, and core technology required for safety regulation of fusion facilities

  17. Renewable energy technology development at Sandia National Laboratories

    Science.gov (United States)

    Klimas, P. C.

    1994-02-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  18. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  19. Finnish energy technology programmes 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Finnish Technology Development Centre (Tekes) is responsible for the financing of research and development in the field of energy production technology. A considerable part of the financing goes to technology programmes. Each technology programme involves major Finnish institutions - companies, research institutes, universities and other relevant interests. Many of the energy technology programmes running in 1998 were launched collectively in 1993 and will be completed at the end of 1998. They are complemented by a number of other energy-related technology programmes, each with a timetable of its own. Because energy production technology is horizontal by nature, it is closely connected with research and development in other fields, too, and is an important aspect in several other Tekes technology programmes. For this reason this brochure also presents technology programmes where energy is only one of the aspects considered but which nevertheless contribute considerably to research and development in the energy production sector

  20. Kinetic energy recovery turbine technology: resource assessment and site development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Briand, Marie-Helene; Ng, Karen

    2010-09-15

    New technologies to extract readily available energy from waves, tides and river flow are being developed and are promising but are still at the demonstration stage. Harnessing kinetic energy from currents (hydrokinetic power) is considered an attractive and cost-effective renewable energy solution to replace thermal generation without requiring construction of a dam or large civil works. The nature of this innovative hydrokinetic technology requires an adaptation of conventional approach to project engineering and environmental impact studies. This paper presents the approach developed by RSW to design a hydrokinetic site in the riverine environment, from resource assessment to detailed engineering design.

  1. Environmental and institutional considerations in the development and implementation of biomass energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, C.

    1979-09-01

    The photosynthetic energy stored in plant and organic waste materials in the United States amounts to approximately 40% of the nation's total energy consumption. Conversion of this energy to usable power sources is a complex process, involving many possible materials, conversion technologies, and energy products. Near-term biomass technologies are predominantly based on traditional fuel use and have the advantage over other solar technologies of fitting into existing tax and business practices. However, no other solar technology has the potential for such large environmental impacts. Unlike the conversion of sun, wind, and ocean thermal energy, the conversion of the biomass energy source, in the form of biomass residues and wastes, can create problems. Environmental impacts may be significant, and legal responses to these impacts are a key determinant to the widespread adoption of biomass technologies. This paper focuses on the major legal areas which will impact on biomass energy conversion. These include (1) the effect of existing state and federal legislation, (2) the role of regulatory agencies in the development of biomass energy, (3) governmental incentives to biomass development, and (4) legal issues surrounding the functioning of the technologies themselves. Emphasis is placed on the near-term technologies whose environmental impacts and institutional limitations are more readily identified. If biomass energy is to begin to achieve its apparently great potential, these questions must receive immediate attention.

  2. Understanding the development trends of low-carbon energy technologies: A patent analysis

    International Nuclear Information System (INIS)

    Albino, Vito; Ardito, Lorenzo; Dangelico, Rosa Maria; Messeni Petruzzelli, Antonio

    2014-01-01

    Highlights: • Governments’ strategies set important frameworks to develop and sustain low-carbon energy technologies. • Commercial activities play a key role in the low-carbon energy technologies’ development. • The number of patents that are based upon basic research is growing. - Abstract: Eco-innovations are being recognized as fundamental means to foster sustainable development, as well as to create new business opportunities. Nowadays, the eco-innovation concept is gaining ground within both academic and practitioner studies with the attempt to better understand the main dynamics underlying its nature and guide policymakers and companies in supporting its development. This paper contributes to the extant literature on eco-innovation by providing a comprehensive overview of the evolution of a specific type of eco-innovations that are playing a crucial role in the current socio-economic agenda, namely low-carbon energy technologies. Accordingly, we focus our attention on the related patenting activity of different countries and organizations over time, as well as on influencing policy initiatives and events. Hence, we collected 131,661 patents granted at the United States Patent and Trademark Office (U.S.PTO.) between 1971 and 2010, and belonging to the “Nuclear power generation”, “Alternative energy production”, and “Energy conservation” technological classes, as indicated by the International Patent Classification (IPC) Green Inventory. Our findings report the development trends of low-carbon energy technologies, as well as identify major related environmental programs, historical events, and private sector initiatives explaining those trends, hence revealing how these different circumstances have significantly influenced their development over time

  3. Research and development of superconductivity for energy technology in electrotechnical laboratory

    International Nuclear Information System (INIS)

    Koyama, K.

    1984-01-01

    Superconductivity is a physical effect wherein the electrical resistivity disappears at cryogenic temperatures. Superconductivity has the advantage of following large current densities and high magnetic fields, which are stable and homogeneous. There are many applications of superconductivity which take advantage of these merits. It is of special importance to apply superconductors to alternative energy and energy saving technology. This paper presents briefly some of the research and development efforts to apply superconductivity to energy technology in the Electrotechnical Laboratory

  4. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  5. Draft South African wind energy technology platform: preliminary wind energy research and development framework

    CSIR Research Space (South Africa)

    Szewczuk, S

    2011-08-01

    Full Text Available The South African Wind Energy Technology Programme (SAWEP) Phase 1 aims to achieve two key strategic outputs that will guide South Africa on wind energy development. One of these outputs is the Wind Atlas for South Africa (WASA) which will play a...

  6. The national laboratory business role in energy technology research and development. Panel Discussion

    International Nuclear Information System (INIS)

    Sackett, John; Sullivan, Charles J.; Aumeier, Steve; Sanders, Tom; Johnson, Shane; Bennett, Ralph

    2001-01-01

    Full text of publication follows: Energy issues will play a pivotal role in the economic and political future of the United States. For reasons of both available supply and environmental concerns, development and deployment of new energy technologies is critical. Nuclear technology is important, but economic, political, and technical challenges must be overcome if it is to play a significant role. This session will address business opportunities for national laboratories to contribute to the development and implementation of a national energy strategy, concentrating on the role of nuclear technology. Panelists have been selected from the national laboratories, the U.S. Department of Energy, and state regulators. (authors)

  7. The development and diffusion of renewable energy technologies in Norway and Denmark

    DEFF Research Database (Denmark)

    Klitkou, Antje; Jørgensen, Birte Holst

    2011-01-01

    By applying the technological innovation systems concept this paper compares two case studies on the development and diffusion of renewable energy technologies: the case of solar photovoltaics in Norway and offshore wind in Denmark. Both cases show a high activity level, in terms of RD......&D and industrial deployment. Both cases illustrate the contribution to energy security of supply as well as prospects for business opportunities on global markets. The focus of the paper is on what stimulates the development and diffusion of new renewable technologies, asking: Which framework conditions facilitate...

  8. Eco-development and energy efficient technologies in Russia: prospects and reality

    Science.gov (United States)

    Kurakova, Oksana

    2017-10-01

    The article highlights the concept of eco-standards in Russia, and discusses new technologies that allow to build energy-efficient houses in the form of countryside real estate. Special attention is given to the principle of heat production based on the use of individual facilities, power centers mini thermal power plants, as well as to ways to reduce water consumption at home. Presents analysis of the advantages projects “built-to-suit” for the introduction of the energy efficient technologies. Justified idea and principles of “green construction” in Russia in the real estate market. Conclusion about the effectiveness of the use, opportunities and development of energy efficient technologies.

  9. Keeping options open. Energy, technology and sustainable development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger; Langlois, Lucille; McDonald, Alan

    2001-01-01

    The Ninth Session of the the Commission for Sustainable Development (CSD-9) in April 2001 provided an excellent opportunity for a full debate on the role of nuclear power in sustainable development, as part of its over-all discussion of energy, transport and the atmospheric change issues. On nuclear power, there were two important conclusions. First, countries agreed to disagree on the role of nuclear power in sustainable development. CSD-9's final text recognizes that some countries view nuclear power as incompatible with sustainable development while others believe it is an important contributor to sustainable development. For each case, the reasoning is presented in the text. The second conclusion, on which there was consensus agreement, is that 'the choice of nuclear energy rests with countries'. The arguments in favor of an important role for nuclear power role in sustainable development are that it broadens the resource base by putting uranium to productive use; it reduces harmful emissions; it expands electricity supplies and it increases the world's stock of technological and human capital. It is ahead of other energy technologies in internalizing all externalities, from safety to waste disposal to decommissioning - the costs of all of these are already included in the price of nuclear electricity in most countries. The complete nuclear power chain, from resource extraction to waste disposal including reactor and facility construction, emits only two to kilowatt-hour -- about the same as wind and solar power and two orders of magnitude below coal, oil, and even natural gas. In addition, nuclear power avoids the emission of many other air pollutants, such as SO 2 , NO x and particulates

  10. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  11. Moonlight project promotes energy-saving technology

    Science.gov (United States)

    Ishihara, A.

    1986-01-01

    In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.

  12. Energy Choices. Choices for future technology development; Vaegval Energi. Vaegval foer framtidens teknikutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Billfalk, Lennart; Haegermark, Harald (eds.)

    2009-03-15

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO{sub 2} target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large

  13. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    International Nuclear Information System (INIS)

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs

  14. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs.

  15. Cost, Time, and Risk Assessment of Different Wave Energy Converter Technology Development Trajectories: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jochem W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Laird, Daniel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Costello, Ronan [Wave Venture; Roberts, Jesse [Sandia National Laboratories; Bull, Diana [Sandia National Laboratories; Babarit, Aurelien [Ecole Centrale de Nantes; Nielsen, Kim [Ramboll; Ferreira, Claudio Bittencourt [DNV-GL; Kennedy, Ben [Wave Venture

    2017-09-14

    This paper presents a comparative assessment of three fundamentally different wave energy converter technology development trajectories. The three technology development trajectories are expressed and visualised as a function of technology readiness levels and technology performance levels. The assessment shows that development trajectories that initially prioritize technology readiness over technology performance are likely to require twice the development time, consume a threefold of the development cost, and are prone to a risk of technical or commercial failure of one order of magnitude higher than those development trajectories that initially prioritize technology performance over technology readiness.

  16. Towards a European Energy Technology Policy - The European Strategic Energy Technology Plan (Set-Plan)

    International Nuclear Information System (INIS)

    Mercier, A.; Petric, H.; Peteves, E.

    2008-01-01

    The transition to a low carbon economy will take decades and affect the entire economy. There is a timely opportunity for investment in energy infrastructure. However, decisions to invest in technologies that are fully aligned with policy and society priorities do not necessarily come naturally, although it will profoundly affect the level of sustainability of the European energy system for decades to come. Technology development needs to be accelerated and prioritized at the highest level of the European policy agenda. This is the essence of the European Strategic Energy Technology Plan (SET-Plan). The SET-Plan makes concrete proposals for action to establish an energy technology policy for Europe, with a new mind-set for planning and working together and to foster science for transforming energy technologies to achieve EU energy and climate change goals for 2020, and to contribute to the worldwide transition to a low carbon economy by 2050. This paper gives an overview of the SET-Plan initiative and highlights its latest developments. It emphasises the importance of information in support of decision-making for investing in the development of low carbon technologies and shows the first results of the technology mapping undertaken by the newly established Information System of the SET-Plan (SETIS).(author)

  17. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  18. The development of the Dutch wind energy technology in an international perspective

    International Nuclear Information System (INIS)

    Beurskens, H.J.M.

    1990-01-01

    An overview is given of the developments in the Dutch wind energy industry and the position of that industry in the industrialized world. First attention is paid to some historical developments of the modern wind energy technology in the Netherlands compared to some other countries. The start of the Integral Wind energy Program (IPW) at the end of 1985 brought the Dutch know-how of wind energy back on the international level. Next a brief overview is given of governmental wind energy programs which resulted in various projects aimed at designing, testing and implementing wind turbines in the Netherlands. Here too a comparison is made with other countries concerning the realized capacity, investments, and attempts to commercialize the wind turbines. The technological developments in the Netherlands can be characterized as gradual: step-by-step larger wind turbines (i.e. larger capacities) will be developed. The development of multi-megawatt turbines is too risky and too costly at present. Some final remarks state that the present position of the Dutch wind energy industry and the Dutch research activities are good starting-points to realize an important part of the wind energy capacity in Europe, or even the world. Recommendations are given by which the Dutch wind energy industry can operate with success on the international market. 5 figs., 3 tabs., 2 refs

  19. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  20. New energy development and APEC-related energy technology cooperation programs in New Zealand and Australia (March, 1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This paper explains new energy development in New Zealand and Australia. New Zealand produces only 40% of its liquid fuel requirements but is self sufficient in its electricity produced by hydro power and geothermal power. However, the long term outlook is far from healthy due to increasing demand for electricity, depletion of oil and natural gas, and movement against environmental issues relating to the development of hydro and geothermal resources. The government has recognized the need to promote energy efficiency and conservation, and to develop renewable energy resources. However, the total funds allocated are small. The Australian economy has been maintained primarily by exports of coal, minerals and agricultural products. The government has basically deregulated the economy but still plays an important part in determining the direction and allocating funds for R and D in all sectors including energy. Australia is self sufficient in all energies other than oil; hence, there is little incentive in developing alternative fuels. However, there has been an increased interest in new energy technologies stimulated by such issues as global warming gases and exports of energy technology to Asia. (NEDO)

  1. International energy technology collaboration: benefits and achievements

    International Nuclear Information System (INIS)

    1996-01-01

    The IEA Energy Technology Collaboration Programme facilitates international collaboration on energy technology research, development and deployment. More than 30 countries are involved in Europe, America, Asia, Australasia and Africa. The aim is to accelerate the development and deployment of new energy technologies to meet energy security, environmental and economic development goals. Costs and resources are shared among participating governments, utilities, corporations and universities. By co-operating, they avoid unproductive duplication and maximize the benefits from research budgets. The IEA Programme results every year in hundreds of publications which disseminate information about the latest energy technology developments and their commercial utilisation. The IEA Energy Technology Collaboration Programme operates through a series of agreements among governments. This report details the activities and achievements of all 41 agreements, covering energy technology information centres and Research and Development projects in fossil fuels, renewable energy efficient end-use, and nuclear fusion technologies. (authors). 58 refs., 9 tabs

  2. Water assessment for the Lower Colorado River region-emerging energy technology development

    Science.gov (United States)

    1981-08-01

    Water supply availability for two hypothetical levels of emerging energy technology development are assessed. The water and related land resources implications of such hypothetical developments are evaluated. Water requirement, the effects on water quality, costs of water supplies, costs of disposal of wastewaters, and the environmental, economic and social impacts are determined, providing information for the development of non-nuclear energy research.

  3. Technology data for energy plants. Individual heating plants and energy transport

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The present technology catalogue is published in co-operation between the Danish Energy Agency and Energinet.dk and includes technology descriptions for a number of technologies for individual heat production and energy transport. The primary objective of the technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for the work with energy planning and the development of the energy sector, including future outlooks, scenario analyses and technical/economic analyses. The technology catalogue is thus a valuable tool in connection with energy planning and assessment of climate projects and for evaluating the development opportunities for the energy sector's many technologies, which can be used for the preparation of different support programmes for energy research and development. The publication of the technology catalogue should also be viewed in the light of renewed focus on strategic energy planning in municipalities etc. In that respect, the technology catalogue is considered to be an important tool for the municipalities in their planning efforts. (LN)

  4. Stimulating R and D of industrial energy-efficient technology; the effect of government intervention on the development of strip casting technology

    International Nuclear Information System (INIS)

    Luiten, E.E.M.; Blok, Kornelis

    2003-01-01

    Strip casting technology in steel-making is known as an innovative energy-efficient technology. Stimulating the development (R and D) of such industrial process technologies is an appealing government intervention strategy for reducing greenhouse gas emissions. In this article, we analyse (a) the R and D trajectory of strip casting technology and (b) the effect of government intervention on the development of this particular energy-efficient technology. For this purpose we made a detailed investigation of the networks within which the technology was developed. The huge capital cost advantages of strip casting technology were already notified back in the 19th century. However, only after 1975 a robust technology network emerged. There is no single, simple determinant explaining the slow emergence of the technology network: the innovative technology had to become a more incremental improvement to the conventional production facilities before R and D was seriously pursued. Once the technology network emerged, it proved to have a strong momentum of itself. Steel firms maintained their confidence in the strategic cost advantages of the technology and persistently invested in up-scaling the technology. The effect of government intervention was minimal, because the technology network had its own strong momentum. All in all, R and D was only loosely influenced by energy-efficiency considerations or by government intervention. The major policy lesson is that information on technology networks and its momentum--in addition to classic information on energy-efficiency improvements and investments costs--is required to improve the effect of government intervention in the field of industrial energy-efficiency R and D and innovation

  5. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1991-01-01

    This paper gives some examples of how technology transfer can successfully be given to third world countries to allow them to benefit in their quest for economic growth and better standards of living through reduced energy consumption and environmental pollution. It also suggests methods by which obstacles such as high investment costs, lack of information, market demand, etc., can be overcome in order to motivate technological transfer by industrialized countries

  6. Wind energy technology development and diffusion: a case study of Inner Mongolia, China

    International Nuclear Information System (INIS)

    Xiliang Zhang; Shuhua Gu; Wenqiang Liu; Lin Gan

    2001-01-01

    This article reviews the spread of small household wind generators and the development of wind farms in Inner Mongolia, China with emphasis on policy and institutional perspectives. It analyses the patterns of wind technology dissemination within social, economic, and environmental contexts. It also discusses international investment and technology transfer relating to wind energy technology. The economics of windfarm development are examined and the role of alternative policy instruments analysed. Major constraints to wind technology development are identified and relevant policy recommendations suggested. (Author)

  7. Wind energy technology development and diffusion: a case study of Inner Mongolia, China

    International Nuclear Information System (INIS)

    Zhang Xiliang; Liu Wenqiang; Gu Shuhua; Gan Lin

    2001-01-01

    This article reviews the spread of small household wind generators and the development of wind farms in Inner Mongolia, China with emphasis on policy and institutional perspectives. It analyzes the patterns of wind technology dissemination within social, economic, and environmental contexts. It also discusses international investment and technology transfer relating to wind energy technology. The economics of windfarm development are examined and the role of alternative policy instruments analyzed. Major constraints to wind technology development are identified and relevant policy recommendations suggested. (author)

  8. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  9. Technological Aspects of Russian Energy Diplomacy

    Directory of Open Access Journals (Sweden)

    Stanislaw Z. Zhiznin

    2016-01-01

    Full Text Available In the present study we examined the impact of technology on the development of world energy in the world, as well as on the development of international energy relations. The important role of international cooperation in the field of energy technologies as a key factor in the development and global deployment of energy technologies in the industry. The most effective technology in the world of multilateral cooperation under the auspices of the International Energy Agency (IEA and other international organizations. It allows the joint efforts of the countries concerned to develop new technologies, test them and implement in production. For Russia, it is very important, because at the moment our country is not only a leading exporter of energy resources, but also has a significant impact on global energy security. At the same time Russia's FEC requires urgent and serious modernization through the development and introduction of innovative technologies on the basis of the study of international experience. Therefore the question of modernization of Russian fuel and energy complex has an international character. One way to accelerate the process of modernization of the organization is a public-private partnership that will largely depend on the nature and possibilities of Russian energy diplomacy, given the geopolitical and economic realities in connection with the sanctions imposed by Western countries against our country.

  10. Does energy efficiency improve technological change and economic growth in developing countries?

    International Nuclear Information System (INIS)

    Cantore, Nicola; Calì, Massimiliano; Velde, Dirk Willem te

    2016-01-01

    Does a trade-off exist between energy efficiency and economic growth? This question underlies some of the tensions between economic and environmental policies, especially in developing countries that often need to expand their industrial base to grow. This paper contributes to the debate by analyzing the relationship between energy efficiency and economic performance at the micro- (total factor productivity) and macro-level (countries' economic growth). It uses data on a large sample of manufacturing firms across 29 developing countries to find that lower levels of energy intensity are associated with higher total factor productivity for the majority of these countries. The results are robust to a variety of checks. Suggestive cross-country evidence points towards the same relation measured at the macro-level as well. - Highlights: •Total factor productivity is an accurate proxy of technological change. •Energy efficiency triggers total factor productivity especially in manufacturing. •Technological change via energy efficiency in manufacturing is an engine of growth.

  11. Advanced technologies and atomic energy

    International Nuclear Information System (INIS)

    1995-01-01

    The expert committee on the research 'Application of advanced technologies to nuclear power' started the activities in fiscal year 1994 as one of the expert research committees of Atomic Energy Society of Japan. The objective of its foundation is to investigate the information on the advanced technologies related to atomic energy and to promote their practice. In this fiscal year, the advanced technologies in the fields of system and safety, materials and measurement were taken up. The second committee meeting was held in March, 1995. In this report, the contents of the lectures at the committee meeting and the symposium are compiled. The topics in the symposium were the meaning of advanced technologies, the advanced technologies and atomic energy, human factors and control and safety systems, robot technology and microtechnology, and functionally gradient materials. Lectures were given at two committee meetings on the development of atomic energy that has come to the turning point, the development of advanced technologies centering around ULSI, the present problems of structural fine ceramics and countermeasures of JFCC, the material analysis using laser plasma soft X-ray, and the fullerene research of advanced technology development in Power Reactor and Nuclear Fuel Development Corporation. (K.I.)

  12. SIHTI - The research and development program of energy and environmental technology

    International Nuclear Information System (INIS)

    Pietilae, S.

    1991-01-01

    The SIHTI programme consists of the environmental part of the energy research programmes in Finland funded by the Ministry of Trade and Industry. Also industry participates in the funding of the projects especially the development projects. The main subject areas of the SIHTI programme are: Monitoring of international energy and environmental technology and national solution models, emissions from energy production, traffic emissions and emissions and discharges from fuel chains

  13. Development of water demand coefficients for power generation from renewable energy technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2017-01-01

    Highlights: • Water consumption and withdrawals coefficients for renewable power generation were developed. • Six renewable energy sources (biomass, nuclear, solar, wind, hydroelectricity, and geothermal) were studied. • Life cycle water footprints for 60 electricity generation pathways were considered. • Impact of cooling systems for some power generation pathways was assessed. - Abstract: Renewable energy technology-based power generation is considered to be environmentally friendly and to have a low life cycle greenhouse gas emissions footprint. However, the life cycle water footprint of renewable energy technology-based power generation needs to be assessed. The objective of this study is to develop life cycle water footprints for renewable energy technology-based power generation pathways. Water demand is evaluated through consumption and withdrawals coefficients developed in this study. Sixty renewable energy technology-based power generation pathways were developed for a comprehensive comparative assessment of water footprints. The pathways were based on the use of biomass, nuclear, solar, wind, hydroelectricity, and geothermal as the source of energy. During the complete life cycle, power generation from bio-oil extracted from wood chips, a biomass source, was found to have the highest water demand footprint and wind power the lowest. During the complete life cycle, the water demand coefficients for biomass-based power generation pathways range from 260 to 1289 l of water per kilowatt hour and for nuclear energy pathways from 0.48 to 179 l of water per kilowatt hour. The water demand for power generation from solar energy-based pathways ranges from 0.02 to 4.39 l of water per kilowatt hour, for geothermal pathways from 0.04 to 1.94 l of water per kilowatt hour, and for wind from 0.005 to 0.104 l of water per kilowatt hour. A sensitivity analysis was conducted with varying conversion efficiencies to evaluate the impact of power plant performance on

  14. NEDO Forum 2001. Session on development of energy and environmental technologies (For promotion of comprehensive development of hydrocarbon-based energy); NEDO Forum 2001. Energy kankyo gijutsu kaihatsu session (tanka suisokei energy no sogo kaihatsu suishin no tame ni)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-20

    The presentations made at the above-named session of the NEDO (New Energy and Industrial Technology Development Organization) forum held in Tokyo on September 20, 2001, are collected in this report. Pointed out in a lecture entitled 'How technology development for hydrocarbon-based energy resources should be' was the need of technologies for clean energy production; CO2 emission reduction; NOx, SOx, soot, and dust reduction; and the expansion of exploitation of resources now left unused. Reported in a lecture entitled 'Cooperation with China on coal liquefaction' were the result of a coal liquefaction demonstration plant feasibility study conducted for coal from Inner Mongolia, and so forth. Reported in a lecture entitled 'Development of coal oil upgrading technology' were the result of the operation of a test plant, and so forth. Reported in a lecture entitled 'Research and development of HyperCoal' were the result of HyperCoal manufacturing technology research and development, designing of a HyperCoal-fired gas turbine power generation system, and so forth. In addition, development of technology for high efficiency conversion of biomass energy and development of technology for refuse gasification/melting power generation were reported. (NEDO)

  15. Promoting renewable energy technologies

    DEFF Research Database (Denmark)

    Olsen, O.J.; Skytte, K.

    2004-01-01

    % of its annual electricity production. In this paper, we present and discuss the Danish experience as a case of promoting renewable energy technologies. The development path of the two technologies has been very different. Wind power is considered an outright success with fast deployment to decreasing...... technology and its particular context, it is possible to formulate some general principles that can help to create an effective and efficient policy for promoting new renewable energy technologies....

  16. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2001-01-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  17. Sustainable energy for cashew production chain using innovative clean technology project developments

    Energy Technology Data Exchange (ETDEWEB)

    Pannir Selvam, P.V.; Nandenha, Julio; Santiago, Brunno Henrique de Souza; Silva, Rosalia Tatiane da [Universidade Federal do Rio Grande do Norte (GPEC/DEQ/UFRN), Lagoa Nova, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos e Processos], e-mail: pannirbr@gmail.com

    2006-07-01

    The main objective is to develop a new process synthesis based on the residual biomass waste for the energy production applied to the fruit processing plant with co-production of hot, cold thermal energy using biogas from the wood biomass and animal wastes. After carried out the bibliographical research about the current state of art technology, an engineering project had been developed with the use of the software Super Pro Designer V 4.9. Some simulations of processes of the fast pyrolysis, gasification, bio digestion, generation of energy have been realized including the system integration of energy production as innovation of the present work. Three cases study have been developed: first, the current process of conventional energy using combustion, another one using combined pyrolysis and gasification, and the last one with bio digestion for combined power, heat and chilling. The results about the project investment and the cost analysis, economic viability and cash balance were obtained using software Orc 2004. Several techno-economic parameters of the selected cases study involving process innovation were obtained and compared, where a better energy and materials utilization were observed in relation to conventional process. This project which is still in development phase, involves small scale energy integrated system design. The energy and the process integration cashew fruit production chain, based on the clean technology process design, has enable significant improvement in terms of economic and environmental using optimal system configurations with viability and sustainability. (author)

  18. The importance of iteration and deployment in technology development: A study of the impact on wave and tidal stream energy research, development and innovation

    International Nuclear Information System (INIS)

    MacGillivray, Andrew; Jeffrey, Henry; Wallace, Robin

    2015-01-01

    The technological trajectory is the pathway through which an innovative technology develops as it matures. In this paper we model the technological trajectory for a number of energy technologies by analysing technological change (characterised by unit-level capacity up-scaling) and diffusion (characterised by growth in cumulative deployed capacity) using sigmoidal 5 Parameter Logistic (5PL) functions, observed and reported as a function of unit deployment. Application of 5PL functions allows inference of technology development milestones, such as initiation of unit-level up-scaling or industry growth, with respect to the number of unit deployments. This paper compares the technological trajectory followed by mature energy technologies to that being attempted by those in the nascent wave and tidal energy sectors, particularly with regards to unit deployment within a formative phase of development. We identify that the wave and tidal energy sectors are attempting to bypass a formative phase of technological development, which is not in line with technological trajectories experienced by historic energy technologies that have successfully diffused into widespread commercial application, suggesting that demand-pull support mechanisms are premature, and a need for technology push focused policy support mechanisms is vital for stimulating economically sustainable development and deployment of wave and tidal stream energy. - Highlights: • Technology up-scaling should take place after a formative phase of development. • Ocean energy technologies are attempting to bypass a formative phase. • Unit up-scaling has taken place prior to successful technology demonstration. • The cost of the formative phase may be insurmountable using MW-scale technology. • A shift in the research, development and innovation environment is necessary.

  19. International Development Partnerships and Diffusion of Renewable Energy Technologies in Developing Countries: Cases in Latin America

    Science.gov (United States)

    Platonova, Inna

    Access to energy is vital for sustainable development and poverty alleviation, yet billions of people in developing countries continue to suffer from constant exposure to open fires and dangerous fuels, such as kerosene. Renewable energy technologies are being acknowledged as suitable solutions for remote rural communities in much of the developing world and international development non-governmental organizations (NGOs) increasingly play important roles in the diffusion of these technologies via development partnerships. While these partnerships are widely promoted, many questions related to their functioning and effectiveness remain open. To advance the theory and practice, this interdisciplinary exploratory research provides in-depth insights into the nature of international NGO-driven development partnerships in rural renewable energy and their effectiveness based on the case studies in Talamanca, Costa Rica and Cajamarca, Peru. The analysis of the nature of development partnerships shows that partnerships in the case studies differ in structure, size and diversity of actors due to differentiation in the implementation strategies, technological complexities, institutional and contextual factors. A multi-theoretical approach is presented to explain the multiple drivers of the studied development partnerships. The research highlights partnership constraints related to the provision of rural renewable energy, the organizational type and institutional environments. Based on the case studies this research puts forward theoretical propositions regarding the factors that affect the effectiveness of the partnerships. In terms of the partnership dynamics dimension, several key factors of success are confirmed from the existing literature, namely shared values and goals, complementary expertise and capacities, confidence and trust, clear roles and responsibilities, effective communication. Additional factors identified are personality match and continuity of staff. In

  20. Investigation on innovation of technology development by means of strategic energy intelligence; Energy senryakurontekina approach ni yoru gijutsu kaihatsu no kakushin ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    For the purpose of developing the future innovative energy technology, the paper described a strategic point of view. Effects of the energy issue are remarkable on the next generation and thereafter as seen in the finite of energy resource, global-scale environmental changes, the increasing energy demand, natural/social influences of large-scale technology development. If the technological development is going on in the same way as until now, there will appear limits. Relating to the strategies, to seek what energy should be among the strategies, it is necessary to consider not only global-scale problems but particular conditions in Japan (self-sufficiency, international cooperation, creativity, etc.) Also, wisdom and technique are necessary to attain it. Technological development in a wide sense plays a major role in the energy strategy. Technology innovation must be advanced according to the energy strategy. Integrating ideology into the development of energy technology and selecting therefrom developmental subjects which meet the purpose, required is the construction of the energy system with high flexibility and functionality. Looking at the conventional way of thinking from a different angle and posing a future pull plan, Japan should show leadership to the world. 20 refs., 25 figs., 8 tabs.

  1. US Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.; Backus, P.M.; Conley, T.B.; Coyle, G.J.; Lurk, P.W.; Wolf, S.M.

    1993-01-01

    Department of Energy (DOE) mixed waste is contaminated with both chemically hazardous and radioactive species. The DOE is responsible for regulating radioactive species while the Environmental Protection Agency (EPA) is responsible for regulating hazardous species. Dual regulations establish treatment standards and therefore affect the treatment technologies used to process mixed waste. This duality is reflected in technology development initiatives. Significant technology development has been conducted for either radioactive or hazardous waste, but limited technology development, specifically addressing mixed waste treatment issues, has been completed. Technology has not been designed, developed, demonstrated, or tested to produce a low-risk final waste form that increases the probability that the final waste form will be disposed

  2. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  3. Study on the Evolvement of Technology Development and Energy Efficiency—A Case Study of the Past 30 Years of Development in Shanghai

    Directory of Open Access Journals (Sweden)

    William X. Wei

    2016-05-01

    Full Text Available Previous research in regional energy efficiency by using macro statistical data has demonstrated that technology development could improve regional energy efficiency. Since the start of reform and opening up in 1978, China has mainly adopted energy import and foreign direct investment to promote economic growth. At the same time, the country has also increased the input of technology and R&D to prompt technological reformation and imported technology absorption. However, there is limited research on the relationship between technology development and energy efficiency. Using the grounded theory method, the authors of this paper study the relationship between technology input-output and energy utilization efficiency in Shanghai over the past 30 years. They conclude that although the tactics of technology import and foreign direct investment can improve energy efficiency in the initial stages of modern industrialization, they cannot improve it continuously. In the more advanced stages of modern industrialization, the improvement of energy efficiency relies not only on increased R&D investment but also on R&D investment structure optimization and independent technological innovation.

  4. Explaining the Diffusion of Renewable Energy Technology in Developing Countries

    NARCIS (Netherlands)

    Pfeiffer, B.; Mulder, P.

    2013-01-01

    In this paper we study the diffusion of non-hydro renewable energy (NHRE) technologies for electricity generation across 108 developing countries between 1980 and 2010. We use two-stage estimation methods to identify the determinants behind the choice of whether or not to adopt NHRE as well as about

  5. New energy technologies. Report

    International Nuclear Information System (INIS)

    2004-01-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  6. A health and research organization to meet complex needs of developing energy technologies

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    An increasing number of laboratories are conducting studies in a wide variety of energy technologies. Laboratories that once dealt with nuclear energy development are now involved in studies of fossil fuels, geothermal energy sources, and solar energy. Often the primary safety organization is required to expand its expertise into nonnuclear areas. At Lawrence Livermore Laboratory, the Special Projects Division of the Hazards Control Department provides health and safety technology development support to the Laboratory-wide safety program. The division conducts studies in fire science, industrial hygiene, and industrial safety as well as health physics. Availability of experts in fields such as aerosol physics, engineering, industrial hygiene, health physics, and fire science permits the solution of problems in a multidisciplined manner, with a minimum of duplication of resources and effort. (H.K.)

  7. Good Practice Policy Framework for Energy Technology Research Development and Demonstration (RD and D)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The transition to a low carbon economy clearly requires accelerating energy innovation and technology adoption. Governments have an important role in this context. They can help by establishing the enabling environment in which innovation can thrive, and within which effective and efficient policies can be identified, with the specific goal of advancing research, development, demonstration and, ultimately, deployment (RDD&D) of clean energy technologies. At the front end of the innovation process, significant increases in, and restructuring of, global RD&D efforts will be required, combined with well-targeted government RD&D policies. The development of a clear policy framework for energy technology RD&D, based on good practices, should include six elements: Coherent energy RD&D strategy and priorities; Adequate government RD&D funding and policy support; Co-ordinated energy RD&D governance; Strong collaborative approach, engaging industry through public private partnerships (PPPs); Effective RD&D monitoring and evaluation; and Strategic international collaboration. While countries have been favouring certain technologies over others, based on decisions on which areas are to receive funding, clear priorities are not always determined through structured analysis and documented processes. A review of stated energy RD&D priorities, based on announced technology programmes and strategies, and recent spending trends reveals some important deviations from stated priorities and actual RD&D funding.

  8. Future implications of China's energy-technology choices

    International Nuclear Information System (INIS)

    Larson, E.D.; Wu Zongxin; DeLaquil, Pat; Chen Wenying; Gao Pengfei

    2003-01-01

    This paper summarizes an assessment of future energy-technology strategies for China that explored the prospects for China to continue its social and economic development while ensuring national energy-supply security and promoting environmental sustainability over the next 50 years. The MARKAL energy-system modeling tool was used to build a model of China's energy system representing all sectors of the economy and including both energy conversion and end-use technologies. Different scenarios for the evolution of the energy system from 1995 to 2050 were explored, enabling insights to be gained into different energy development choices. The analysis indicates a business-as-usual strategy that relies on coal combustion technologies would not be able to meet all environmental and energy security goals. However, an advanced technology strategy emphasizing (1) coal gasification technologies co-producing electricity and clean liquid and gaseous energy carriers (polygeneration), with below-ground storage of some captured CO 2 ; (2) expanded use of renewable energy sources (especially wind and modern biomass); and (3) end-use efficiency would enable China to continue social and economic development through at least the next 50 years while ensuring security of energy supply and improved local and global environmental quality. Surprisingly, even when significant limitations on carbon emissions were stipulated, the model calculated that an advanced energy technology strategy using our technology-cost assumptions would not incur a higher cumulative (1995-2050) total discounted energy system cost than the business-as-usual strategy. To realize such an advanced technology strategy, China will need policies and programs that encourage the development, demonstration and commercialization of advanced clean energy conversion technologies and that support aggressive end-use energy efficiency improvements

  9. Energy, environment and technological innovation

    Directory of Open Access Journals (Sweden)

    Fernando José Pereira da Costa

    2015-08-01

    Full Text Available The development problems can not be addressed without taking account of the environmental and energy issues, as well as the intimate relationship and the intense interaction between the two. In fact, the energy issue can not be analyzed separately from environmental issues, nor the advances in technological innovation, integrating dynamic-systemic way and so positioning address the issue of the development model to set the bulge the transition process experienced by the world since the seventies of the twentieth century. This transition, in turn, implies the passage of Paradigm of Fossil Fuels to Renewable Energy also called the Paradigm of renewable sources of energy, not just holding the energy problem, but towards to environmental and technological components. It is within this relatively slow and long process, instigator of high levels of volatility, turbulence inducing and motor of technological innovation, which is (re raises the question of the development model that defines how a new model/style development.

  10. Morgantown Energy Technology Center, technology summary

    International Nuclear Information System (INIS)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. METC's R ampersand D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities

  11. Developing technology for large-scale production of forest chips. Wood Energy Technology Programme 1999-2003. Interim report

    International Nuclear Information System (INIS)

    Hakkila, P.

    2003-01-01

    Finland is enhancing its use of renewable sources in energy production. From the 1995 level, the use of renewable energy is to be increased by 50 % by 2010, and 100 % by 2025. Wood-based fuels will play a leading role in this development. The main source of wood-based fuels is processing residues from the forest industries. However, as all processing residues are already in use, an increase is possible only as far as the capacity and wood consumption of the forest industries grow. Energy policy affects the production and availability of processing residues only indirectly. Another large source of wood-based energy is forest fuels, consisting of traditional firewood and chips comminuted from low-quality biomass. It is estimated that the reserve of technically harvest-able forest biomass is 10-16 Mm' annually, when no specific cost limit is applied. This corresponds to 2-3 Mtoe or 6-9 % of the present consumption of primary energy in Finland. How much of this re-serve it will actually be possible to harvest and utilize depends on the cost competitiveness of forest chips against alternative sources of energy. A goal of Finnish energy and climate strategies is to use 5 Mm' forest chips annually by 2010. The use of wood fuels is being promoted by means of taxation, investment aid and support for chip production from young forests. Furthermore, research and development is being supported in order to create techno-economic conditions for the competitive production of forest chips. In 1999, the National Technology Agency Tekes established the five-year Wood Energy Technology Programme to stimulate the development of efficient systems for the large-scale production of forest chips. Key tar-gets are competitive costs, reliable supply and good quality chips. The two guiding principles of the programme are: (1) close cooperation between researchers and practitioners and (2) to apply research and development to the practical applications and commercialization. As of November

  12. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  13. Energy technologies at the cutting edge: international energy technology collaboration IEA Implementing Agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pottinger, C. (ed.)

    2007-05-15

    Ensuring energy security and addressing climate change issues in a cost-effective way are the main challenges of energy policies and in the longer term will be solved only through technology cooperation. To encourage collaborative efforts to meet these energy challenges, the IEA created a legal contract - Implementing Agreement - and a system of standard rules and regulations. This allows interested member and non-member governments or other organisations to pool resources and to foster the research, development and deployment of particular technologies. For more than 30 years, this international technology collaboration has been a fundamental building block in facilitating progress of new or improved energy technologies. There are now 41 Implementing Agreements. This is the third in the series of publications highlighting the recent results and achievements of the IEA Implementing Agreements. This document is arranged in the following sections: Cross-cutting activities (sub-sectioned: Climate technology initiative; Energy Technology Data Eexchange; and Energy technology systems analysis programme); End-use technologies (sub-sectioned: Buildings; Electricity; Industry; and Transport; Fossil fuels (sub-sectioned: Clean Coal Centre; Enhanced oil recovery Fluidized bed conversion; Greenhouse Gas R & D; Multiphase flow sciences); Fusion power; Renewable energies and hydrogen; and For more information (including detail on the IEA energy technology network; IEA Secretariat Implementing Agreement support; and IEA framework. Addresses are given for the Implementing Agreements. The publication is based on core input from the Implementing Agreement Executive Committee.

  14. Frameworks for Understanding and Promoting Solar Energy Technology Development

    Directory of Open Access Journals (Sweden)

    Chelsea Schelly

    2015-02-01

    Full Text Available In this paper, the contrasting theories of metabolic rift and ecological modernization theory (EMT are applied to the same empirical phenomenon. Metabolic rift argues that the natural metabolic relationship between humans and nature has been fractured through modernization, industrialization and urbanization. EMT, in contrast, argues that societies in an advanced state of industrialization adopt ecologically benign production technologies and political policies, suggesting that modern societies could be on course to alleviate the ecological damage caused by capitalism. These two theories are fundamentally different in their assumptions about modern economies and technologies, yet both can be used as a theoretical lens to examine the phenomenon of solar energy technology adoption. Furthermore, both theories shed light on the increasing adoption of solar energy technologies in both “developing” and “developed” regions and the potential social conditions for promoting renewable energy technology adoption.

  15. Renewable energy development in China

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li

    1996-12-31

    This paper presents the resources availability, technologies development and their costs of renewable energies in China and introduces the programs of renewable energies technologies development and their adaptation for rural economic development in China. As the conclusion of this paper, renewable energies technologies are suitable for some rural areas, especially in the remote areas for both household energy and business activities energy demand. The paper looks at issues involving hydropower, wind energy, biomass combustion, geothermal energy, and solar energy.

  16. An energy pricing scheme for the diffusion of decentralized renewable technology investment in developing countries

    International Nuclear Information System (INIS)

    Thiam, Djiby Racine

    2011-01-01

    The purpose of this paper is to investigate price support for market penetration of renewable energy in developing nations through a decentralized supply process. We integrate the new decentralized energy support: renewable premium tariff, to analyze impacts of tariff incentives on the diffusion of renewable technology in Senegal. Based on photovoltaic and wind technologies and an assessment of renewable energy resources in Senegal, an optimization technique is combined with a cash flow analysis to investigate investment decisions in renewable energy sector. Our findings indicate that this support mechanism could strengthen the sustainable deployment of renewable energy in remote areas of Senegal. Although different payoffs emerged, profits associated with a renewable premium tariff are the highest among the set of existing payoffs. Moreover in analyzing impacts of price incentives on social welfare, we show that price tariffing schemes must be strategically scrutinized in order to minimize welfare loss associated with price incentives. Finally we argue that a sustainable promotion of incentive mechanisms supporting deployment of renewable technology in developing nations should be carried out under reliable institutional structures. The additional advantage of the proposed methodology is its ability to integrate different stakeholders (producers, investors and consumers) in the planning process. - Highlights: → We simulate impacts of price support for market penetration of renewable technology in developing nations. → An array of price incentive mechanisms strengthens diffusion of renewable technology in Senegal. → Moreover, reliable institutional frameworks in developing nations are a requirement in order to strengthen diffusion path of renewable technologies.

  17. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  18. Framework for energy policy and technology assessment in developing countries: a case study of Peru

    Energy Technology Data Exchange (ETDEWEB)

    Mubayi, V.; Palmedo, P.F.; Doernberg, A.B.

    1979-12-01

    The potential of various energy sources and technology options in meeting national economic and social development goals in developing countries is assessed. The resource options that are of interest are the development of indigenous resources. In general, two categories of options can be considered: those which correspond to the accelerated implementation of existing elements of the energy system and those which correspond to the introduction of a new technology, such as solar electricity. The various resource and technology options that must be analyzed with respect to a number of criteria or payoff functions are: total demand and fuel mix; reduction of oil consumption; national social goals; total energy costs; and environmental quality. First, a view is constructed of the energy implications of current national economic development plans. A consistent description of the future energy system of the country, under the assumption of current trends and policies is constructed for certain reference years in the future. The values of the payoff functions selected are then calculated for that reference case. The major resource and technology options are identified and the rates at which they can be implemented are determined. Finally, the impact on the various payoff functions of the implementation of each option is calculated. The basic element of the framework is the Reference Energy System, discussed in Secton 3. The energy policy analysis for Peru is used as a reference case. 11 references, 10 figures, 2 tables.

  19. Renewable Energy Technology

    Science.gov (United States)

    Daugherty, Michael K.; Carter, Vinson R.

    2010-01-01

    In many ways the field of renewable energy technology is being introduced to a society that has little knowledge or background with anything beyond traditional exhaustible forms of energy and power. Dotson (2009) noted that the real challenge is to inform and educate the citizenry of the renewable energy potential through the development of…

  20. On promotion of base technologies of atomic energy. Aiming at breakthrough in atomic energy technologies in 21st century

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.).

  1. U.S. Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.

    1993-01-01

    Both chemically hazardous and radioactive species contaminate mixed waste. Historically, technology has been developed to treat either hazardous or radioactive waste. Technology specifically designed to produce a low-risk final waste form for mixed low-level waste has not been developed, demonstrated, or tested. Site-specific solutions to management of mixed waste have been initiated; however, site-specific programs result in duplication of technology development effort between various sites. There is a clear need for technology designed to meet the unique requirements for mixed-waste processing and a system-wide integrated strategy for developing technology and managing mixed waste. This paper discusses the US Department of Energy (DOE) approach to addressing these unique requirements through a national technology development effort

  2. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  3. Energy and development

    Energy Technology Data Exchange (ETDEWEB)

    Gururaja, J.

    1980-03-15

    The developing countries will require higher per capita energy for improving the quality of life. This paper examines the goals and strategies for development vis-a-vis those of the developed countries. Crucial issues in India are listed. The role of technology in the utilization of energy is discussed. Difficulties in choosing the technology are pointed out. The problem of integrating several alternative energy sources in villages is mentioned. Environmental issues are considered. (DLC)

  4. New energy technologies. Research, development and demonstration; Denmark; Nye energiteknologier. Forskning, udvikling og demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, B.; Muenster, M.

    2010-12-15

    This report was commissioned by the Danish Climate Commission in 2009 to analyse how research, development and demonstration (RD and D) on sustainable energy technologies can contribute to make Denmark independent on fossil energy by 2050. It focuses on the RD and D investments needed as well as adequate framework conditions for Danish knowledge production and diffusion within this field. First part focuses on the general aspects related to knowledge production and the challenges related to research. Energy technologies are categorized and recent attempt to optimize Danish efforts are addressed, including RD and D prioritisation, public-private partnerships and international RD and D cooperation. Part two describes the development and organisation of the Danish public RD and D activities, including benchmark with other countries. The national energy RD and D programmes and their contribution to the knowledge value chain are described as well as the coordination and alignment efforts. Part Three illustrates three national innovation systems for highly different technologies - wind, fuel cells and intelligent energy systems. Finally, six recommendations are put forward: to make a national strategic energy technology plan; to enforce the coordination and synergy between national RD and D programmes; to strengthen social science research related to the transition to a sustainable energy system; to increase public RD and D expenditure to at least 0.1% of GDP per year; to strengthen international RD and D cooperation; and to make a comprehensive analysis of the capacity and competence needs for the energy sector. (Author)

  5. Increasing synergies between institutions and technology developers: Lessons from marine energy

    International Nuclear Information System (INIS)

    Corsatea, Teodora Diana

    2014-01-01

    This paper describes innovation activities in the marine energy sector across ten European countries in 2011. Intense knowledge creation occurred in the UK and northern European countries, while European research networks encouraged public–private partnerships facilitating knowledge diffusion. An analysis based on a technological innovation system (TIS) has identified challenges for the system to evolve from one phase of development to another, i.e. from pre-development to take-off phase. In order for marine energy to pass successfully through the commercialisation ‘valley of death’, entrepreneurial experimentation and production is crucial. Entrepreneurial initiatives were developed mainly in the United Kingdom, Denmark, Norway and Ireland, whereas France, Germany and Sweden were active through venture capital initiatives. Additional system-builders, such as the authorities in charge of energy policies, could offer guidance for research, ensure legitimacy and effectively mobilise resources for system development. Although public support was efficient in stimulating private investment, national targets seemed less efficient in creating a long time horizon for private investors, due to consecutive, unexpected changes. In contrast, positive interactions between technology developers and policy-makers could empower market formation. Ultimately, the creation of a policy community, also involving local communities, could foster a positive environment for the development of innovation activities. - Highlights: • Intense knowledge creation takes place in the UK and in Nordic countries. • European research network facilitates knowledge diffusion between first and late movers. • Business opportunities are intensified by French, German and Swedish participants. • Public funding complements private research initiatives, especially in UK, Norway, Denmark and France. • Policy variations induce new risks on marine energy finance

  6. Energy and the environment: Technology assessment and policy options

    International Nuclear Information System (INIS)

    Silveira, M.P.W.

    1990-01-01

    While the energy crisis of the 1970s stimulated technological innovation in developed countries, it often had the opposite effect in the third world. However, developing countries can be considered to have two types of energy systems: ''connected'' and ''disconnected''. The connected system is affected by changes in the price of commercial energy, but the disconnected system is usually rural and remote. Commercial forms of energy may be needed in the disconnected system, but they are largely unavailable. In some of the developing countries, new energy technologies have therefore been developed which adapt traditional technologies still existing in the disconnected sector. In this article some of the work of the United National Centre for Science and Technology for Development is described. Through its ATAS (Advance Technology Alert System) programme, international and regional workshops are held to discuss policy questions arising in regard to new technologies and developments. Workshops have been held in Moscow on new energy technologies in the industry subsystem (connected), in Guatemala City on new energy technologies and the disconnected system, and in Ottawa on new energy technologies, transportation and development. Initial assessments made by or through these workshops are outlined here. A fourth workshop will be held in June 1990 in Saarbrucken on energy technologies and climate change. (author). 3 figs

  7. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Dohee; Park, Seongwon; Chang, Moonhee

    2013-08-15

    All the countries of the world are promoting the use of atomic energy to provide against high oil prices, climatic changes, and energy security initiative. A domestic and foreign environment for nuclear energy is changing rapidly and 13 leading countries including Korea are trying to develop advanced technologies on Gen IV nuclear energy system through Gen IV International Forum (GIF). To enhance the effectiveness of the future nuclear energy system development plan, a strategic approach is necessary for GIF program and the connection process with the 4th Nuclear Energy Promotion Program and Nuclear Energy R and D Medium and Long Term 5 year Plan for 2012 ∼ 2016 needs to be prepared. This study was to analyze the global nuclear trends of 2012 and the status of GIF program which is international cooperation activities. Also we examined the domestic R and D status of future nuclear energy systems for developing core technology and commercialization of Gen-IV nuclear energy system. A successful performance of this project enables the effective national cooperation with GIF and promotes the public acceptance by suggesting the technical alternatives for the nuclear safety and the spent fuel management.

  8. Health and research organization to meet complex needs of developing energy technologies

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    At the Lawrence Livermore Laboratory, a unique safety technology organization has been established that is especially geared to respond to interdisciplinary health and safety questions in response to rapidly growing energy technology problems. This concept can be adopted by smaller organizations at a more modest cost, and still maintains the efficiency, flexibility, and technical rigor that are needed more and more in support of any industry health and safety problem. The separation of the technology development role from the operation safety organization allows the operational safety specialists to spend more time upgrading the occupational health and safety program but yet provides the opportunity for interchange with health and safety technology development specialists. In fact, a personnel assignment flow between an operational health and safety organization and a special technology development organization provides a mechanism for upgrading the overall safety capability and program provided by a given industrial or major laboratory

  9. Implications of Danish Regulatory Policies for Technologies Supporting Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    1997-01-01

    The goal of the official Danish energy plans is to establish a sustainable energy development.This goal has been promoted by government programmes and regulations in different ways. Thus, the government has established test stations to secure a high quality of the new technologies and to certify...... of the electricity market is raising serious questions for a sustainable development. The above points are discussed in the paper....... the new products. Extensive development and demonstration programmes have ben sponsored by government money in the fields of biogas and wind power, followed up by government investment subsidies. Regulations by the EU Commission have been counterproductive in several cases, and the present liberalisation...

  10. Technology policy and sustainability: An empirical study of renewable energy development in India

    Science.gov (United States)

    Iyer, Maithili

    In the debate over sustainability and development paradigms, energy assumes a unique position by virtue of its direct link with environmental sustainability and its role as an essential vehicle for development. Agenda 21 recognizes that coupling end-use energy efficiency with renewable sources of energy will help meet a large share of the world's energy needs while reducing the environmental impacts of energy use. Nevertheless, the extent and scope of diffusion of new and renewable energy technologies is contingent upon the capabilities of the countries concerned to realize firstly, a need, and subsequently, the resources for utilizing the technologies. India has one of the largest renewable energy programs (REPs) in the world, however, renewables continue to remain a marginal contributor to the total energy supply. The need to fundamentally change the program design of REPs has been suggested by many critics and experts in view of the implementation problems. However, mainstream thinking maintains that Poor financial conditions in the energy sector, not program design flaws, are at the heart of poor implementation results, leading to the premise that infusion of capital and efforts at market transformation through the involvement of the private sector could solve the problem. This dissertation uses case studies on solar photovoltaics, wind energy, and biogas in India to analyze the implementation of renewable energy technologies. Based on stakeholder interviews, documents, and site visits, this dissertation argues that the problems currently recognized are in reality symptomatic of a combination of three underlying problems: (1) An inadequate understanding of the needs of energy users and the complex interplay of existing policies and technological choices with user needs and behavior; (2) An institutional network, both at the local and the national level, that lacks the capacity to facilitate information exchange within and between institutions, thereby losing

  11. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. [comps.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  12. Hawai‘i Distributed Energy Resource Technologies for Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    HNEI has conducted research to address a number of issues important to move Hawai‘i to greater use of intermittent renewable and distributed energy resource (DER) technologies in order to facilitate greater use of Hawai‘i's indigenous renewable energy resources. Efforts have been concentrated on the Islands of Hawai‘i, Maui, and O‘ahu, focusing in three areas of endeavor: 1) Energy Modeling and Scenario Analysis (previously called Energy Road mapping); 2) Research, Development, and Validation of Renewable DER and Microgrid Technologies; and 3) Analysis and Policy. These efforts focused on analysis of the island energy systems and development of specific candidate technologies for future insertion into an integrated energy system, which would lead to a more robust transmission and distribution system in the state of Hawai‘i and eventually elsewhere in the nation.

  13. Fiscal 1999 survey report on survey of long-term strategy on energy technology. Long-term energy technological strategy survey (Long-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (choki energy gijutsu senryaku chosa))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To enhance still more effectively the research and development of energy-related/environmental technologies, research and development strategies have to be worked out from a long-term view point and policy resources such as investment in research and development should be optimally distributed after clarifying and defining the course to follow toward the achievement of research and development goals. This project aims to conduct studies, and to show the course to follow in the future, towards the establishment of a long-term energy technological strategy by investigating energy systems for around 2050, interim energy systems at the intermediate stage, and innovative energy technologies for realizing such energy systems. In Chapter 1, the position of the survey and its purpose and prerequisites are shown. In Chapter 2, the history of social and economic conditions surrounding energy/environmental technologies and of energy situation up to the present time is compiled, and the outlook is analyzed and predicted. In Chapter 3, formulation of a long-term energy technological strategy is discussed. In Chapter 5, how to embody such a strategy is shown. (NEDO)

  14. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  15. The development of new energy technologies on a national and international scale

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    1976-01-01

    This is a survey of the development of new energy technologies 1) for medium- and long-term energy supply in the FRG, with a partial substitution for natural oil and gas; 2) to reduce the coupling between gross national product and energy; 3) to improve the competitive strength of the economy on an international scale. Boundary conditions are, among others the consideration of environmental protection and long-term energy supply at a reasonable price for the national economy. (HP) [de

  16. Energy provision and housing development: Re-thinking professional and technological relations

    International Nuclear Information System (INIS)

    Shaw, Isabel; Ozaki, Ritsuko

    2013-01-01

    This paper questions policy's approach to the implementation of sustainable technologies as part of the UK environmental policy (Code for Sustainable Homes—‘the Code’). Current policy adopts a market-based model promoting rational choice and technological determinism as a solution to the environmental challenges of carbon emissions and energy reduction. We argue that this approach externalises professional actors' situated practices by singling out isolated factors impeding policy's rationale of implementing the Code (e.g. cost). Drawing on our empirical study we identify diverse practices that transpire from professional-technology interactions, demonstrating how sustainable technologies and professional practices are mutually shaped. The important implication of our study is that these ‘black-boxed’ interactions directly impact on how energy is provided, with consequences for future energy consumption. - Highlights: • Current policy externalises professional–technological interactions. • Professional practises and sustainable technologies are mutually shaped. • How energy is provided affects future energy consumption. • Changes to professional practices influence energy provision

  17. The National Energy Strategy - The role of geothermal technology development: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

  18. Essays on Energy Technology Innovation Policy

    Science.gov (United States)

    Chan, Gabriel Angelo Sherak

    Motivated by global climate change, enhancing innovation systems for energy technologies is seen as one of the largest public policy challenges of the near future. The role of policy in enhancing energy innovation systems takes several forms: public provision of research and develop funding, facilitating the private sector's capability to develop new technologies, and creating incentives for private actors to adopt innovative and appropriate technologies. This dissertation explores research questions that span this range of policies to develop insights in how energy technology innovation policy can be reformed in the face of climate change. The first chapter of this dissertation explores how decision making to allocate public research and development funding could be improved through the integration of expert technology forecasts. I present a framework to evaluate and optimize the U.S. Department of Energy's research and development portfolio of applied energy projects, accounting for spillovers from technical complimentary and competition for the same market share. This project integrates one of the largest and most comprehensive sets of expert elicitations on energy technologies (Anadon et al., 2014b) in a benefit evaluation framework. This work entailed developing a new method for probability distribution sampling that accommodates the information that can be provided by expert elicitations. The results of this project show that public research and development in energy storage and solar photovoltaic technologies has the greatest marginal returns to economic surplus, but the methodology developed in this chapter is broadly applicable to other public and private R&D-sponsoring organizations. The second chapter of this dissertation explores how policies to transfer technologies from federally funded research laboratories to commercialization partners, largely private firms, create knowledge spillovers that lead to further innovation. In this chapter, I study the U

  19. Technologies for power and thermal energy generation. Bring our energies together

    International Nuclear Information System (INIS)

    2014-05-01

    On behalf of ADEME, the DREAL and the Region of Brittany and produced by ENEA, consulting company in energy and sustainable development, this brochure presents main technologies for power and thermal energy generation in an effort to maintain objectivity (efficiency, intrinsic features of each technology and key figures as regards power and energy). If most of the technologies are operational or in development in Brittany, such as ocean energy, the scope has been extended to encompass all existing technologies in France in order to give useful references. The French Brittany is a peninsula, with regards to both its geographic situation and its energy context. The region has decided to investigate energy and climate issue through the Brittany Energy Conference and to commit for energy transition. Discussions which have taken place since 2010 at the regional level as well as the national debate on energy transition in 2013 have highlighted the need for educational tools for the main energy generation technologies. Thus, the purpose of this brochure is to share energy stakes with a broad audience

  20. Data book on new energy technology development in FY 1997. Cogeneration; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Various policies are being implemented in the field of new energy technology in line with progress in technological development. Examples are about assistance mechanism, field test projects and advisory projects to support the introduction of new energy technology. In order to promote the introduction of new energy efficiently, it is necessary to compile the various information regarding new energy in a comprehensive and systematic way, and formulate a basic data set. Among various new energy technologies, cogeneration is discussed in this report. The latest published data on the respective technologies are compiled particularly regarding their overall systems, examples of introduction, assistance mechanisms and state of implementation in foreign countries. Items included in this report are the trend of cogeneration, outline of system, state of introduction, forecast of introduction, overview of policies, basic terms, and related organizations. 9 figs.

  1. Development of a global computable general equilibrium model coupled with detailed energy end-use technology

    International Nuclear Information System (INIS)

    Fujimori, Shinichiro; Masui, Toshihiko; Matsuoka, Yuzuru

    2014-01-01

    Highlights: • Detailed energy end-use technology information is considered within a CGE model. • Aggregated macro results of the detailed model are similar to traditional model. • The detailed model shows unique characteristics in the household sector. - Abstract: A global computable general equilibrium (CGE) model integrating detailed energy end-use technologies is developed in this paper. The paper (1) presents how energy end-use technologies are treated within the model and (2) analyzes the characteristics of the model’s behavior. Energy service demand and end-use technologies are explicitly considered, and the share of technologies is determined by a discrete probabilistic function, namely a Logit function, to meet the energy service demand. Coupling with detailed technology information enables the CGE model to have more realistic representation in the energy consumption. The proposed model in this paper is compared with the aggregated traditional model under the same assumptions in scenarios with and without mitigation roughly consistent with the two degree climate mitigation target. Although the results of aggregated energy supply and greenhouse gas emissions are similar, there are three main differences between the aggregated and the detailed technologies models. First, GDP losses in mitigation scenarios are lower in the detailed technology model (2.8% in 2050) as compared with the aggregated model (3.2%). Second, price elasticity and autonomous energy efficiency improvement are heterogeneous across regions and sectors in the detailed technology model, whereas the traditional aggregated model generally utilizes a single value for each of these variables. Third, the magnitude of emissions reduction and factors (energy intensity and carbon factor reduction) related to climate mitigation also varies among sectors in the detailed technology model. The household sector in the detailed technology model has a relatively higher reduction for both energy

  2. Commercialisation of Renewable Energy Technologies for Various Consumption Needs

    Energy Technology Data Exchange (ETDEWEB)

    Jiahua Pan [Chinese Academy of Social Sciences (China)

    2005-12-15

    Can renewable energy technologies meet various consumption needs? It may be argued that without commercial viability, renewable energy technologies cannot compete with conventional energy technologies in this respect. The following issues are to be examined in this paper: (1) the types of renewable energy technologies needed in relation to consumption needs; (2) whether these technologies are commercially viable; (3) the extent to which these technologies can supply the energy needed for industrialisation and economic development in developing countries; (4) policy implications of commercialising renewable energy technologies; and, (5) the role of Asia-Europe cooperation on technological development, diffusion and transfer. The evaluation will concentrate on market potential rather than technological potential, as some of the renewable energy technologies are yet to be commercial. This examination will be made in the context of the specific consumption needs of a major developing country like China in its current period of high economic growth rates and rapid industrialisation. Asia-Europe co-operation on renewable energy technologies can speed up the process of commercialisation through demonstration, direct investment, joint venture, Build-Operate-Transfer (BOT), financial aid and capacity building (both technological know-how and institutional)

  3. Energy Technology Perspectives 2012: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Energy Technology Perspectives (ETP) is the International Energy Agency's most ambitious publication on new developments in energy technology. It demonstrates how technologies -- from electric vehicles to smart grids -- can make a decisive difference in achieving the objective of limiting the global temperature rise to 2 C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  4. Dish concentrators for solar thermal energy - Status and technology development

    Science.gov (United States)

    Jaffe, L. D.

    1981-01-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  5. Emerging energy-efficient technologies for industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-01-01

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  6. Development of energy-saving technologies providing comfortable microclimate conditions for mining

    OpenAIRE

    Б. П. Казаков; Л. Ю. Левин; А. В. Шалимов; А. В. Зайцев

    2017-01-01

    The paper contains analysis of natural and technogenic factors influencing properties of mine atmosphere, defining level of mining safety and probability of emergencies. Main trends in development of energy-saving technologies providing comfortable microclimate conditions are highlighted. A complex of methods and mathematical models has been developed to carry out aerologic and thermophysical calculations. Main ways of improvement for existing calculation methods of stationary and non-station...

  7. SI-Ocean Strategic technology agenda for the ocean energy sector: From development to market

    OpenAIRE

    MAGAGNA DAVIDE; TZIMAS Evangelos; HANMER Clare; BADCOCK-BROE Abbie; MACGILLIVRAY Andy; JEFFREY Henry; RAVENTOS Alex

    2014-01-01

    This paper focuses on the development of the ocean energy sector, identifying the necessary steps that are required in order to facilitate the development and deployment of ocean energy technologies towards the formation of a viable and successful industry. Europe, in particular the Atlantic Arc region, has a vast wave and tidal energy resource, which could supply a significant part of the European electricity demand and play an important role in the future European energy mix. The ...

  8. FY 1974 report on the results of the Sunshine Project. Technology assessment of hydrogen energy technology; 1974 nendo suiso energy gijutsu no technology assessment seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-04-30

    This is aimed at studying the relation between the technology development of hydrogen energy and the society. In Chapter 1, a meaning of technology assessment was examined. When applying it to the hydrogen energy technology, the paper presented what content it has. In Chapter 2, the needs for hydrogen energy in society were made clear in comparison with the energy supply/demand structure in Japan and characteristics of hydrogen energy. In Chapter 3, the paper showed what kinds of technology are being developed to meet the needs in this society and arranged viewpoints for evaluating the effectiveness of the technology. In Chapter 4, the paper studied the positioning of hydrogen energy technology in the future society, and presented as examples more than one hydrogen energy/system plans which become the base to describe the impact of the technology on the society. If taking technology assessment as a part of the communication activities between the technology development and the society as did in this study, these system plans are something like the ring for people in each field to talk with. In Chapter 5, the study made from each aspect was arranged. (NEDO)

  9. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  10. Renewable energy-driven innovative energy-efficient desalination technologies

    International Nuclear Information System (INIS)

    Ghaffour, Noreddine; Lattemann, Sabine; Missimer, Thomas; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary

    2014-01-01

    Highlights: • Renewable energy-driven desalination technologies are highlighted. • Solar, geothermal, and wind energy sources were explored. • An innovative hybrid approach (combined solar–geothermal) has also been explored. • Innovative desalination technologies developed by our group are discussed. • Climate change and GHG emissions from desalination are also discussed. - Abstract: Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m 3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3–4 kW h e /m 3 ). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h e /m 3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source

  11. Nordic energy technology scoreboard. Full version

    Energy Technology Data Exchange (ETDEWEB)

    Kiltkou, Antje; Iversen, Eric; Scortato, Lisa

    2010-07-01

    The Nordic Energy Technology Scoreboard provides a tool for understanding the state of low-carbon energy technology development in the Nordic region. It assesses the five Nordic countries of Denmark, Finland, Iceland, Norway and Sweden, alongside reference countries and regions including: The United Kingdom, Germany, Spain, Portugal, France, Italy, the Netherlands, Austria, USA, Japan and the EU 27. It focuses on five low-carbon energy technologies: Wind, photovoltaic (PV) solar, bio-fuels, geothermal, and carbon capture and storage (CCS). This scoreboard was developed as a pilot project with a limited scope of technologies, countries and indicators. In addition to providing a tool for decision-makers, it aimed to act as a catalyst for the future development of scoreboards and a vehicle to promote better data collection. Low-carbon energy technologies are not easy to measure. This is due to a variety of factors that much be kept in account when developing scoreboards for this purpose. Many low-carbon technologies are still at immature stages of development. Sound comparable data requires common definitions and standards to be adopted before collection can even take place. This process often lags behind the development of low-carbon technologies, and there are therefore considerable data availability and categorisation issues. The diversity of technologies and their different stages of development hamper comparability. The IEA classifies low-carbon technologies into three categories. The most mature includes hydropower, onshore wind, biomass CHP, and geothermal energy, the second most mature includes PV solar and offshore wind power, while the least mature includes concentrating solar power, CCS and ocean energy. This is problematic as less mature technologies are underrepresented in later stages of the innovation system. Many low-carbon technologies are systemic, meaning progress in developing one technology may hinge on developments in a connected technology

  12. On promotion of base technologies of atomic energy

    International Nuclear Information System (INIS)

    1988-01-01

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.)

  13. Technological trends in energy industry

    International Nuclear Information System (INIS)

    Martin Moyano, R.

    1995-01-01

    According to the usual meaning, technological trends are determined by main companies and leading countries with capacity for the development and marketing of technology. Presently, those trends are addressed to: the development of cleaner and more efficient process for fossil fuels utilization (atmospheric and pressurized fluidized beds, integrated gasification in combined cycle, advanced combined cycles, etc), the development of safer and more economic nuclear reactors; the efficiency increase in both generation and utilisation of energy, including demand side management and distribution automation; and the reduction of cost of renewable energies. Singular points of these trends are: the progress in communication technologies (optical fibre, trucking systems, etc.); the fuel cells; the supercritical boilers; the passive reactors; the nuclear fusion; the superconductivity; etc. Spain belongs to the developed countries but suffer of certain technology shortages that places it in a special situation. (Author)

  14. Wave energy technology. Strategy for research, development and demonstration 2012; Boelgekraftteknologi. Strategi for forskning, udvikling og demonstration 2012

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, K.; Krogh, J.; Kofoed, J.P. [Aalborg Univ., Aalborg (Denmark); Jensen, N.E.H. [Energinet.dk, Fredericia (Denmark); Friis-Madsen, E. [Boelgekraftforeningen, Hurup (Denmark); Mikkelsen, B.V. [Hanstholm Havneforum (Denmark); Jensen, A. [DanWEC, Thisted (Denmark)

    2012-06-15

    The vision for Danish development of wave energy technology is that Danish industrial and commercial firms gain skills for marketing of competitive wave energy technologies in both the Danish and the international market. Utilization of wave power is a prerequisite for that there in the future can be built offshore energy parks at greater sea depths. The development of wave energy technology should from 2030 at the latest provide the opportunity for cost-effective, sustainable electricity from offshore energy parks in Denmark. This strategy contains a detailed development plan and overview of the investment required to achieve the expected technological development. The objective to produce 1500 GWh / year at a reduced price of 0.10 DKK / kWh compared to pure offshore wind power will require a public investment of approx. 1.5 billion DKK over the next 20 years. This investment will, at the reduced electricity production cost alone, be paid back in 10 years. (LN)

  15. Dish concentrators for solar thermal energy: Status and technology development

    Science.gov (United States)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  16. Fiscal 1975 Sunshine Project research report. Technology assessment on hydrogen energy technology. Part 2; 1975 nendo suiso energy gijutsu no technology assessment seika hokokuksho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-31

    This research assesses the impact of development of practical hydrogen energy technology on the economy, society and environment in Japan, and proposes some effective countermeasures, the required technical development target and a promising promotion system. The example of technology assessment assuming practical technology several tens years after is hardly found. Hydrogen energy technology is in the first stage among (1) initial planning stage, (2) technical research and development stage, (3) practical technology stage and (4) service operation stage. In the first fiscal year, as the first stage of determination of the communication route between society and technology, study was made on the concrete system image of practical technology. In this fiscal year, study was made entirely on preparation of the scenario for imaging the future economy and society concretely, modifying the planning of the hydrogen energy system. Through comparison of the scenario and system, the meaning and problem of the hydrogen energy technology were clarified. (NEDO)

  17. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  18. Developing markets for renewable energy technologies

    International Nuclear Information System (INIS)

    Charters, W.W.S.

    2001-01-01

    Although renewable energy resources are now being utilised more on a global scale than ever before, there is no doubt their contribution to the energy economy can still be greatly increased. Recently international support for developing these relatively new sources of energy has been driven by their benefits as assessed by reduced environmental impact, particularly reduced greenhouse gas emissions. After several decades of continuous but somewhat erratic funding for research and development of renewables, it is time to take stock of the key issues to be addressed in terms of implementation of major renewable energy programmes on a large scale worldwide. One of the first steps in this process is the identification and encouragement of reliable continuous markets both in developed and developing nations. Future energy policy and planning scenarios should take into account the factors necessary to integrate renewables in all their diverse forms into the normal energy economy of the country. Other critical factors in market development will include the mass production of high quality, reliable and reasonable cost technical products and the provision of adequate finance for demonstrating market ready and near market renewables equipment. Government agencies need to aid in the removal of legislative and institutional barriers hindering the widespread introduction of non-conventional energy sources and to encourage the implementation of government purchasing schemes. Recent moves by companies in Australia to market 'green energy' to customers should also aid in the public awareness of the ultimate potential of renewables leading to greater use in the industrial, commercial and domestic sectors. (author)

  19. Developments in Interpreting Learning Curves and Applications to Energy Technology Policy

    International Nuclear Information System (INIS)

    Van der Zwaan, B.C.C.; Wene, C.O.

    2011-01-01

    The book 'Learning Curves: Theory, Models, and Applications' first draws a learning map that shows where learning is involved within organizations, then examines how it can be sustained, perfected, and accelerated. The book reviews empirical findings in the literature in terms of different sources for learning and partial assessments of the steps that make up the actual learning process inside the learning curve. Chapter 23 on 'Developments in Interpreting Learning Curves and Applications to Energy Technology Policy' is written by Bob van der Zwaan and Clas-Otto Wene. In this chapter they provide some interpretations of experience and learning curves starting from three different theoretical platforms. These interpretations are aimed at explaining learning rates for different energy technologies. The ultimate purpose is to find the role that experience and learning curves can legitimately play in designing efficient government deployment programs and in analyzing the implications of different energy scenarios. The 'Component Learning' section summarizes recent work by the authors that focuses on the disaggregation of technologies in their respective components and argues that traditional learning for overall technology should perhaps be replaced by a phenomenology that recognizes learning for individual components. The 'Learning and Time' section presents an approach that departs more strongly from the conventional learning curve methodology, by suggesting that exponential growth and progress may be the deeper underlying processes behind observed learning-by-doing. Contrary to this view, the cybernetic approach presented in the 'Cybernetic Approach' section sees learning curves as expressing a fundamental property of organizations in competitive markets and applies the findings from second order cybernetics to calculate the learning rates for operationally closed systems. All three interpretations find empirical support. The 'Conclusions' section summarizes the

  20. Developments in Interpreting Learning Curves and Applications to Energy Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zwaan, B.C.C. [Energy research Centre of the Netherlands, ECN Policy Studies, Petten (Netherlands); Wene, C.O. [Wenergy, Lund (Sweden)

    2011-06-15

    The book 'Learning Curves: Theory, Models, and Applications' first draws a learning map that shows where learning is involved within organizations, then examines how it can be sustained, perfected, and accelerated. The book reviews empirical findings in the literature in terms of different sources for learning and partial assessments of the steps that make up the actual learning process inside the learning curve. Chapter 23 on 'Developments in Interpreting Learning Curves and Applications to Energy Technology Policy' is written by Bob van der Zwaan and Clas-Otto Wene. In this chapter they provide some interpretations of experience and learning curves starting from three different theoretical platforms. These interpretations are aimed at explaining learning rates for different energy technologies. The ultimate purpose is to find the role that experience and learning curves can legitimately play in designing efficient government deployment programs and in analyzing the implications of different energy scenarios. The 'Component Learning' section summarizes recent work by the authors that focuses on the disaggregation of technologies in their respective components and argues that traditional learning for overall technology should perhaps be replaced by a phenomenology that recognizes learning for individual components. The 'Learning and Time' section presents an approach that departs more strongly from the conventional learning curve methodology, by suggesting that exponential growth and progress may be the deeper underlying processes behind observed learning-by-doing. Contrary to this view, the cybernetic approach presented in the 'Cybernetic Approach' section sees learning curves as expressing a fundamental property of organizations in competitive markets and applies the findings from second order cybernetics to calculate the learning rates for operationally closed systems. All three interpretations find empirical

  1. Impacts of FDI Renewable Energy Technology Spillover on China’s Energy Industry Performance

    Directory of Open Access Journals (Sweden)

    Weiwei Liu

    2016-08-01

    Full Text Available Environmental friendly renewable energy plays an indispensable role in energy industry development. Foreign direct investment (FDI in advanced renewable energy technology spillover is promising to improve technological capability and promote China’s energy industry performance growth. In this paper, the impacts of FDI renewable energy technology spillover on China’s energy industry performance are analyzed based on theoretical and empirical studies. Firstly, three hypotheses are proposed to illustrate the relationships between FDI renewable energy technology spillover and three energy industry performances including economic, environmental, and innovative performances. To verify the hypotheses, techniques including factor analysis and data envelopment analysis (DEA are employed to quantify the FDI renewable energy technology spillover and the energy industry performance of China, respectively. Furthermore, a panel data regression model is proposed to measure the impacts of FDI renewable energy technology spillover on China’s energy industry performance. Finally, energy industries of 30 different provinces in China based on the yearbook data from 2005 to 2011 are comparatively analyzed for evaluating the impacts through the empirical research. The results demonstrate that FDI renewable energy technology spillover has positive impacts on China’s energy industry performance. It can also be found that the technology spillover effects are more obvious in economic and technological developed regions. Finally, four suggestions are provided to enhance energy industry performance and promote renewable energy technology spillover in China.

  2. Energy technologies and the environment: Environmental information handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acid rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).

  3. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  4. Fiscal 1999 survey report on long-term energy technological strategies and the like. Long-term energy technological strategy survey (Medium-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (chuki energy gijutsu senryaku chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Energy strategies to be implemented under the New Sunshine Program by around 2010 have been compiled, with nation's industrial technological strategies, long-term energy outlook, and the like taken into consideration. The present survey aims to work out medium-term energy technological strategies. In Chapter 2, by conducting studies on the state of energy strategies in the national industry technological strategies as primarily compiled, long-term energy supply and demand outlook, and the history so far of the New Sunshine Program, and social conditions surrounding energy/environmental technologies and energy conditions are arranged in order and then analyzed with a view to deriving social needs. In Chapter 3, in view of the derived social needs, medium-term energy technological strategies are broken down into strategic target details, based on the important regions and major and minor strategic targets of the national industry technological strategies. In Chapter 4, medium-term energy technological strategies are worked out. In Chapter 5, 'basic ideas,' 'measures for promoting technology development,' 'return of the fruits to society' are mentioned as the methods of realizing the strategies. In Chapter 6, surveys and researches are summarized, and future development is predicted. (NEDO)

  5. Solar Energy Technologies Office Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2018-03-13

    The U.S. Department of Energy Solar Energy Technologies Office (SETO) supports early-stage research and development to improve the affordability, reliability, and performance of solar technologies on the grid. The office invests in innovative research efforts that securely integrate more solar energy into the grid, enhance the use and storage of solar energy, and lower solar electricity costs.

  6. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  7. Development of treatment technologies of the processing of U.S. Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Backus, P.M.; Berry, J.B.; Coyle, G.J. Jr.; Lurk, P.; Wolf, S.M.

    1994-01-01

    Waste contaminated with chemically hazardous and radioactive species is defined as mixed waste. Significant technology development has been conducted for separate treatment of hazardous and radioactive waste, but technology development addressing mixed-waste treatment has been limited. In response to the need for a comprehensive and consistent approach to mixed-waste technology development, the Office of Technology Development of the US Department of Energy (DOE) has established the Mixed Waste Integrated Program. The program is identifying and evaluating treatment technologies to treat present and estimated future mixed wastes at DOE sites. The status of the technical initiatives in chemical/physical treatment, waste destruction/stabilization technology, off-gas treatment, and final waste form production/assessment is described in this paper

  8. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  9. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  10. Energy poverty: A special focus on energy poverty in India and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bhide, Anjali; Monroy, Carlos Rodriguez [Department of Business Administration, School of Industrial Engineering, Technical University of Madrid, Jose Gutierrez Abascal, 2, 28006 Madrid (Spain)

    2011-02-15

    As a large percentage of the world's poor come from India, development in India is a key issue. After the establishment of how access to energy enhances development and the achievement of the millennium development goals, energy poverty has become a major issue. In India there is a great interest in addressing the subject of energy poverty, in order to reach development goals set by the Government. This will imply an increase in India's energy needs. In a climate of change and environmental consciousness, sustainable alternatives must be considered to address these issues. Renewable energy technologies could provide a solution to this problem. The Government of India has been focussing in implementing electricity policies as well as on promoting renewable energy technologies. The focus of this article is to bring to light the problems faced in India in terms of energy consumption as well as the hindrances faced by renewable-based electrification networks. Government policies aimed at addressing these issues, as well as the current state of renewable energy technologies in India are discussed, so as to analyse the possibility of a solution to the problems of finding a sustainable method to eradicate energy poverty in India. The research reveals that the Government of India has been unable to meet some of its unrealistic development goals, and in order to achieve the remaining goals it will have to take drastic steps. The Government will have to be more aggressive in the promotion of renewable energy technologies in order to achieve sustainable development in India. (author)

  11. Achievement report for fiscal 1998 on development of wide-area energy utilization network system. Eco-energy urban system (Research of systematization technology and evaluation technology out of energy system designing technology researches); Koiki energy riyo network system kaihatsu (eko energy toshi system) 1998 nendo seika hokokusho. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the realization of urban society respecting enhanced energy efficiency and environmental protection, cities and surrounding industrial facilities are investigated for the development of element technologies involving energy recovery, conversion, transportation, storage, delivery, utilization, etc., and for the compounding of urban energy systems. In the study of the effect of introduction, assumption is made of delivery of heat to an urban heat accumulation district from a plant equivalent to a district air-conditioning system which is covered by the existing technologies. Also assumed are the delivery of exhaust heat to the said plant utilizing eco-energy element technologies and the replacement of existing technologies by eco-energy element technologies. Comparison is established in terms of energy efficiency, environmental protection, and economy, and then it is found that the eco-energy element technologies for the utilization of exhaust heat are in all cases superior to the conventional technologies as far as energy efficiency and environmental protection are concerned. It is found, however, that they are inferior from the economic viewpoint. The energy efficiency technology in heat transportation is superior to the existing technology in energy efficiency and environmental protection but roughly equal to the existing ones in economy. (NEDO)

  12. Development and commercialization of renewable energy technologies in Canada: An innovation system perspective

    International Nuclear Information System (INIS)

    Jagoda, Kalinga; Lonseth, Robert; Lonseth, Adam; Jackman, Tom

    2011-01-01

    The increased environmental awareness coupled with the recent changes in the oil prices triggered the necessity of focusing on effective management of energy systems. Global climate change has caused many people to consider ways of reducing greenhouse gases Renewable energy has become an essential feature in curtailing emission of Green House Gases, while meeting the demand for energy. This paper presents an innovation system framework for development and diffusion of renewable energy technologies. The framework is used to identify opportunities for small and medium enterprises in the renewable energy sector. A case study on a successful development, installation and implementation of solar thermal systems households in Calgary, Alberta, by an entrepreneurial firm, is also presented. (author)

  13. Development and commercialization of renewable energy technologies in Canada: An innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Jagoda, Kalinga; Lonseth, Robert; Lonseth, Adam [Bissett School of Business, Mount Royal University, 4825 Mount Royal Gate SW, Calgary AB T3E 6K6 (Canada); Jackman, Tom [Simple Solar Heating Limited, P.O. Box 988, Okotoks AB T1S 1B1 (Canada)

    2011-04-15

    The increased environmental awareness coupled with the recent changes in the oil prices triggered the necessity of focusing on effective management of energy systems. Global climate change has caused many people to consider ways of reducing greenhouse gases Renewable energy has become an essential feature in curtailing emission of Green House Gases, while meeting the demand for energy. This paper presents an innovation system framework for development and diffusion of renewable energy technologies. The framework is used to identify opportunities for small and medium enterprises in the renewable energy sector. A case study on a successful development, installation and implementation of solar thermal systems households in Calgary, Alberta, by an entrepreneurial firm, is also presented. (author)

  14. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  15. New developments in illumination, heating and cooling technologies for energy-efficient buildings

    International Nuclear Information System (INIS)

    Han, H.J.; Jeon, Y.I.; Lim, S.H.; Kim, W.W.; Chen, K.

    2010-01-01

    This paper gives a concise review of new designs and developments of illumination, heating and air-conditioning systems and technologies for energy-efficient buildings. Important breakthroughs in these areas include high-efficiency and/or reduced cost solar system components, LED lamps, smart windows, computer-controlled illumination systems, compact combined heat-power generation systems, and so on. To take advantage of these new technologies, hybrid or cascade energy systems have been proposed and/or investigated. A survey of innovative architectural and building envelope designs that have the potential to considerably reduce the illumination and heating and cooling costs for office buildings and residential houses is also included in the review. In addition, new designs and ideas that can be easily implemented to improve the energy efficiency and/or reduce greenhouse gas emissions and environmental impacts of new or existing buildings are proposed and discussed.

  16. Progressing opportunities for Australian renewable energy technology research, development and demonstration

    International Nuclear Information System (INIS)

    Beckitt, A.; Kile, R.

    2004-01-01

    In May 2004, a team of experienced Australian specialists in the field of renewable energy technology conducted a Mission to the United States of America led by the Renewable and Sustainable Energy ROUNDTABLE. The Mission was made possible by a generous grant from the Department of Education Science and Training (DEST), administered through the Australian Academy of Technological Sciences and Engineering (ATSE) under the Innovation Access Programme. Mission participants engaged in a three day structured workshop with the US National Renewable Energy Laboratory (NREL), and the opportunity was taken to meet leading USA research teams and visit relevant facilities ranging from solar thermal and photovoltaic testing, wind through to bioenergy an biorefining. The Mission concluded in Washington DC with a series of meetings with the US Department of Energy, the World Bank and Austrade. The Mission was extremely successful in terms of relationship building, technical learning and the development of future commercial opportunities for Australian businesses. It was conducted within the context of the United States - Australia Climate Action Partnership (CAP). This paper provides an overview of the Mission, its objectives and key outcomes

  17. Fiscal 1999 survey report on long-term energy technological strategies and the like. Long-term energy technological strategy survey (Medium-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (chuki energy gijutsu senryaku chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Energy strategies to be implemented under the New Sunshine Program by around 2010 have been compiled, with nation's industrial technological strategies, long-term energy outlook, and the like taken into consideration. The present survey aims to work out medium-term energy technological strategies. In Chapter 2, by conducting studies on the state of energy strategies in the national industry technological strategies as primarily compiled, long-term energy supply and demand outlook, and the history so far of the New Sunshine Program, and social conditions surrounding energy/environmental technologies and energy conditions are arranged in order and then analyzed with a view to deriving social needs. In Chapter 3, in view of the derived social needs, medium-term energy technological strategies are broken down into strategic target details, based on the important regions and major and minor strategic targets of the national industry technological strategies. In Chapter 4, medium-term energy technological strategies are worked out. In Chapter 5, 'basic ideas,' 'measures for promoting technology development,' 'return of the fruits to society' are mentioned as the methods of realizing the strategies. In Chapter 6, surveys and researches are summarized, and future development is predicted. (NEDO)

  18. Fiscal 2000 collection of manuscripts for technology development committee on hydrogen energy and the like; 2000 nendo suiso energy nado kanren gijutsu kaihatsu iinkai yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-07

    The subjects listed in the collection are (1) the research and development of international clean energy system technology utilizing hydrogen (WE-NET - World Energy Network), including the outline of the project as a whole; research on system evaluation; research and development of safety measures; development of technologies for liquid hydrogen transportation and storage; research on low-temperature materials; development of hydrogen supply station and hydrogen-driven automobile system; development of supply station for hydrogen produced by electrolysis of water; development of hydrogen fuel system; development of hydrogen production technology; development of hydrogen absorbing alloys for dispersed hydrogen transportation and storage; development of polymer electrolyte fuel cell fed with pure hydrogen; and the development of power generation technology, (2) the development of closed type high-efficiency turbine technology capable of carbon dioxide recovery, and (3) the development of frontier technology of carburation using sensible heat in coke oven gas. (NEDO)

  19. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  20. Energy technology programmes 1993-1998. Evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    In the late 1980s Finland`s Ministry of Trade and Industry (KTM) initiated a series of research and development (R and D) programmes in the field of energy technology. Subsequently, in 1993, it launched a further suite of eleven Energy Technology Programmes scheduled to run over the period 1993-1998. Aimed at the development of efficient and environmentally sound energy technologies intended to be competitive in the international marketplace, the programmes sought to involve the research, industrial and public sectors in some FIM 1.2 billion of research and development activity. The technology areas spanned: Combustion and gasification techniques Bioenergy, Advanced energy systems and technologies (e.g. wind, solar energy), Fusion, Energy and environmental technology, Energy and the environment in transportation, Energy use in buildings, Energy in steel and metal production, Energy in paper and board production, District heating, Electricity distribution automation. In early 1995, the Technology Development Centre of Finland (Tekes) assumed responsibility for the funding, management and administration of the programmes. As the final year of activities began, Tekes commissioned Technopolis to assemble a team to conduct a major review of all eleven programmes over the course of 1998. The broad aim of the exercise was to review the experience of the eleven technology R and D programmes and to make suggestions for the future. In particular, the intention was to cover a number of distinct levels. Most important were the Programme and Portfolio levels. At the individual Programme level, the review was to comment on the relevance, calibre and impact of programmes, concentrating in particular on the following: Relevance - were programme and project level goals in line with Finnish interests and comparable agendas in other countries; Efficiency - how well were the programmes implemented and managed; Quality - how did the scientific and technological quality of the work

  1. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J.; Chang, J. H.; Hahn, D. H.; Bae, Y. Y.; Kim, W. W.; Jeong, I.; Lee, D. S.; Lee, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-06-15

    Generation IV International Forum(GIF), where 13 countries including Korea collaborate to develop future nuclear energy systems, put into force 'Generation IV International Forum Project Arrangement' in 2007 for the international research and development of Gen IV Systems, following the entry into force of Framework Agreement in 2005. The International Nuclear Research Initiative(I-NERI) between Korea and United States and the International Project on Innovative Nuclear Energy Systems and Fuel Cycles(INPRO) of IAEA are continued in this year, produced lots of visible outcomes. These international activities have a common goal of the collaborative development of advanced nuclear system technologies but differ in the main focusing areas and aspects, so Korea needs to establish the integrated strategy based on the distinguished and complementary approach for the participation of each international programs, as examples the GIF for the advanced system technology development, INPRO for the set-up of institution and infra-structure, and I-NERI for the access of the core technologies and acquisition of the transparency of nuclear R and D.

  2. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    International Nuclear Information System (INIS)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J.; Chang, J. H.; Hahn, D. H.; Bae, Y. Y.; Kim, W. W.; Jeong, I.; Lee, D. S.; Lee, J. H.

    2008-06-01

    Generation IV International Forum(GIF), where 13 countries including Korea collaborate to develop future nuclear energy systems, put into force 'Generation IV International Forum Project Arrangement' in 2007 for the international research and development of Gen IV Systems, following the entry into force of Framework Agreement in 2005. The International Nuclear Research Initiative(I-NERI) between Korea and United States and the International Project on Innovative Nuclear Energy Systems and Fuel Cycles(INPRO) of IAEA are continued in this year, produced lots of visible outcomes. These international activities have a common goal of the collaborative development of advanced nuclear system technologies but differ in the main focusing areas and aspects, so Korea needs to establish the integrated strategy based on the distinguished and complementary approach for the participation of each international programs, as examples the GIF for the advanced system technology development, INPRO for the set-up of institution and infra-structure, and I-NERI for the access of the core technologies and acquisition of the transparency of nuclear R and D

  3. Socio-economic research for innovative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [Tokyo Univ., High Temperature Plasma Center, Kashiwa, Chiba (Japan); Okano, Kunihiko [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2006-10-15

    In the 21st century global environment and energy issues become very important, and this is characterized by the long-term (in the scale of a few tens years) and world-wide issue. In addition, future prospect of these issues might be quite uncertain, and scientific prediction could be very difficult. For these issues vigorous researches and various efforts have been carried out from various aspects; e.g., world-wide discussion such as COP3 in Kyoto, promotion of the energy-saving technology and so on. Development of environment-friendly energy has been promoted, and new innovative technologies are explored. Nuclear fusion is, of course, a promising candidate. While, there might be some criticism for nuclear fusion from the socio-economic aspect; e.g., it would take long time and huge cost for the fusion reactor development. In addition, other innovative energy technologies might have their own criticism, as well. Therefore, socio-economic research might be indispensable for future energy resources. At first we have selected six items as for the characteristics, which might be important for future energy resources; i.e., energy resource, environmental load, economics, reliability/stability, flexibility on operation and safety/security. Concerning to innovative energy technologies, we have nominated seven candidates; i.e., advanced coal technology with CO2 recovery system, SOFC top combined cycle, solar power, wind power, space solar power station, advanced fission and fusion. Based on questionnaires for ordinary people and fusion scientists, we have tried to assess the fusion energy development, comparing with other innovative energy technologies. (author)

  4. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  5. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  6. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  7. A Study on Establishing National Technology Strategy of Fusion Energy Development: Combining PEST-SWOT Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Han Soo; Choi, Won Jae; Tho, Hyun Soo; Kang, Dong Yup; Kim, In Chung [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source. It can also, provide an adequate amount of fuel to power civilization for a long time compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. To overcome this, Korea enacted a law to promote the development of fusion as an energy source in 2007. In accordance with this law, the government will establish a promotion plan to develop fusion energy, including policy goals, a framework, strategies, infrastructure, funding, human resources, international cooperation and etc. This will be reviewed every five years. This paper is focused on the combining PEST (political, economic, social and technological) method with SWOT (strength, weakness, opportunity and threat) analysis, which is a prerequisite to form national fusion energy technology strategy

  8. A Study on Establishing National Technology Strategy of Fusion Energy Development: Combining PEST-SWOT Methodologies

    International Nuclear Information System (INIS)

    Chang, Han Soo; Choi, Won Jae; Tho, Hyun Soo; Kang, Dong Yup; Kim, In Chung

    2012-01-01

    Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source. It can also, provide an adequate amount of fuel to power civilization for a long time compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. To overcome this, Korea enacted a law to promote the development of fusion as an energy source in 2007. In accordance with this law, the government will establish a promotion plan to develop fusion energy, including policy goals, a framework, strategies, infrastructure, funding, human resources, international cooperation and etc. This will be reviewed every five years. This paper is focused on the combining PEST (political, economic, social and technological) method with SWOT (strength, weakness, opportunity and threat) analysis, which is a prerequisite to form national fusion energy technology strategy

  9. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  10. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  11. Energy 2007. Research, development, demonstration; Energi 07. Forskning, udvikling, demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Byriel, I.P.; Justesen, Helle; Beck, A.; Borup Jensen, J.; Rosenfeldt Jakobsen, Kl; Jacobsen, Steen Hartvig (eds.)

    2007-08-10

    Danish energy research is in an exciting and challenging situation. Rising oil prices, unstable energy supply, climate policy responsibilities and globalization have brought development of new environmentally friendly and more efficient energy technologies into focus. Promising international markets for newly developed energy technologies are emerging, and at the same time well established Danish positions of strength are challenged by new strong actors on the global market. The Danish government has set to work on its vision of an appreciable strengthening of public energy research funding through the recent law on the energy technological development and demonstration programme EUDP and the realization of globalization funds. The interaction between basic and applied research must be kept intact. In this report the various Danish energy research programmes administered by Energinet.dk, Danish Energy Authority, Danish Energy Association, Danish Council for Strategic Research's Programme Commission on Energy and Environment and Danish National Advanced Technology Foundation, coordinate their annual reports for the first time. The aim of Energy 2007 is to give the reader an idea of how the energy research programmes collaborate on solving the major energy technology challenges - also in an international context. (BA)

  12. New technology and possible advances in energy storage

    International Nuclear Information System (INIS)

    Baker, John

    2008-01-01

    Energy storage technologies may be electrical or thermal. Electrical energy stores have an electrical input and output to connect them to the system of which they form part, while thermal stores have a thermal input and output. The principal electrical energy storage technologies described are electrochemical systems (batteries and flow cells), kinetic energy storage (flywheels) and potential energy storage, in the form of pumped hydro and compressed air. Complementary thermal storage technologies include those based on the sensible and latent heat capacity of materials, which include bulk and smaller-capacity hot and cold water storage systems, ice storage, phase change materials and specific bespoke thermal storage media. For the majority of the storage technologies considered here, the potential for fundamental step changes in performance is limited. For electrochemical systems, basic chemistry suggests that lithium-based technologies represent the pinnacle of cell development. This means that the greatest potential for technological advances probably lies in the incremental development of existing technologies, facilitated by advances in materials science, engineering, processing and fabrication. These considerations are applicable to both electrical and thermal storage. Such incremental developments in the core storage technologies are likely to be complemented and supported by advances in systems integration and engineering. Future energy storage technologies may be expected to offer improved energy and power densities, although, in practice, gains in reliability, longevity, cycle life expectancy and cost may be more significant than increases in energy/powerdensity per se

  13. Stimulating R and D of industrial energy-efficient technology. Policy lessons--impulse technology

    International Nuclear Information System (INIS)

    Luiten, Esther; Blok, Kornelis

    2004-01-01

    Stimulating research and development (R and D) of innovative energy-efficient technologies for industry is an attractive option for reducing greenhouse gas emissions. Impulse technology, an innovative papermaking technology, is always included in studies assessing the long-term potential of industrial energy efficiency. Aim of this article is to analyse the R and D trajectory of impulse technology in order to explore how government can stimulate the development of industrial energy-efficient technology. The concept of 'momentum' is used to characterise the network of actors and to understand the effect of government R and D support in this particular case study. The network analysis convincingly shows that although marketed as an energy-efficient technology, other benefits were in fact driving forces. Researchers at various national pulp and paper research institutes were successful in attracting government R and D support by claiming an improved energy efficiency. The momentum of the technology network was modest between 1980 and 1990. Therefore, government R and D support accelerated the development of impulse technology in this period. However, when the perspectives of the technology deteriorated--momentum decreased--researchers at national research institutes continued to attract government R and D support successfully. But 25 years of R and D--and over 15 years government R and D support--have not yet resulted in a proven technology. The case study illustrates the risk of continuing R and D support too long without taking into account actors' drivers to invest in R and D. Once momentum decreased, government should have been more circumspect in evaluating the (energy efficiency) promise of impulse technology. The major policy lesson is that government has to look beyond claimed energy efficiencies; government has to value (qualitative) information on (changing) technology networks in deciding upon starting, continuing or pulling out financial R and D support to

  14. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Butera, F.; Farinelli, U.

    1992-01-01

    With the use of critical analyses of some examples of technology transfer by industrialized to third world countries, this paper illustrates the importance, in technology transfer, of giving due consideration to the specific social and marketing contexts of the targeted developing country and its physical and financial capability to acquire all the technology necessary to make the total realization of a desired industrial scheme feasible from the economic, technical and social points of view. It also indicates that the most effective transfers are those in which efforts are made to optimize local work force learning levels, process scheme efficiency and cost through the careful integration of innovative with conventional technologies

  15. 17th Business Report Meeting of New Energy Industrial Technology Development Organization (NEDO). Outline of business; Dai 17 kai NEDO jigyo hokokukai. Gyomu gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-25

    This is a report on the 17th Business Report Meeting of NEDO held in September, 1997. In Chapter 1, NEDO's business activities were outlined in terms of new energy, industrial technology, coal policy, compensation for coal mine pollution, alcohol production, etc. In Chapter 2, described were NEDO's budget and account settlement. In Chapter 3, reported were the FY 1996 results of the development of new energy, that is, the development of solar energy utilization technology, geothermal resource development, development of geothermal energy utilization technology, development of coal energy utilization technology, development of coal resource, development of fuel/storage technology, development of hydrogen/alcohol/biomass technology, development of other petroleum substituting energy technology, project for promotion of new energy introduction, project on international energy policy, project on development/introduction survey, and project on information service by NEDO Information Center. In Chapter 4, as the FY 1996 results of the R and D of industrial technology, etc., described were R and D projects, medical/welfare equipment related project, R and D projects on environmental technology, and international industry technology related projects. In Chapters 5 and 6, stated was the coal related project. In Chapter 7, mentioned was the alcohol production project. (NEDO)

  16. 17th Business Report Meeting of New Energy Industrial Technology Development Organization (NEDO). Outline of business; Dai 17 kai NEDO jigyo hokokukai. Gyomu gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-25

    This is a report on the 17th Business Report Meeting of NEDO held in September, 1997. In Chapter 1, NEDO's business activities were outlined in terms of new energy, industrial technology, coal policy, compensation for coal mine pollution, alcohol production, etc. In Chapter 2, described were NEDO's budget and account settlement. In Chapter 3, reported were the FY 1996 results of the development of new energy, that is, the development of solar energy utilization technology, geothermal resource development, development of geothermal energy utilization technology, development of coal energy utilization technology, development of coal resource, development of fuel/storage technology, development of hydrogen/alcohol/biomass technology, development of other petroleum substituting energy technology, project for promotion of new energy introduction, project on international energy policy, project on development/introduction survey, and project on information service by NEDO Information Center. In Chapter 4, as the FY 1996 results of the R and D of industrial technology, etc., described were R and D projects, medical/welfare equipment related project, R and D projects on environmental technology, and international industry technology related projects. In Chapters 5 and 6, stated was the coal related project. In Chapter 7, mentioned was the alcohol production project. (NEDO)

  17. Technology Development and Innovation | Wind | NREL

    Science.gov (United States)

    Technology Development and Innovation Technology Development and Innovation Technology Development Technology Center (NWTC) supports efforts to reduce bird and bat fatalities at wind energy projects and photo of wind turbines at the National Wind Technology Center. Wildlife technology research and

  18. SIHTI 2 - Energy and environmental technology

    International Nuclear Information System (INIS)

    Saviharju, K.; Johansson, A.

    1993-01-01

    The programme is divided into system and technology parts. The aim of system studies is to determine, on the basis of lifecycle analyses, long-term environmental-technological aims for various fields (energy, industry) and to find out an optimum strategy for reaching these aims. The analysis will give data on emission reduction costs and on fields, where technical improvements are required, and will determine the limits set by environmental factors for future technical development. Environmental impacts will be discussed from national and economic viewpoints. Technological development is dependent on new ideas. The aim is to indicate possibilities for reducing emissions from energy use of peat and wood, for low-emission production at least on one industrial field (wood-processing industry), to establish emission measuring and control methods, to indicate utilization alternatives for solid matter separated at power plants, and to find out operable alternatives for the energy use of wastes. Other ventures of significance will also be financed: survey of 'new' emissions and development of their measuring and purification methods. The field of the programme will be divided into synergic sub-fields: systematics of emission chains, fields of operation (energy and environment problems in the wood-processing industries), development of flue gas purification technology, measuring and control technology, by-products of power plants, emissions from peat production, etc

  19. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gelman, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomberlin, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  20. Fusion technology development. Annual report to the US Department of Energy, October 1, 1996--September 30, 1997

    International Nuclear Information System (INIS)

    1998-03-01

    In FY97, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work was supported by the Office of Fusion Energy Sciences, International and Technology Division, of the US Department of Energy. The work is reported in the following sections on Fusion Power Plant Studies (Section 2), Plasma Interactive Materials (Section 3), Magnetic Diagnostic Probes (Section 4) and RF Technology (Section 5). Meetings attended and publications are listed in their respective sections. The overall objective of GA's fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, we carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and we conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. We continue to be committed to the development of fusion power and its commercialization by US industry

  1. Finnish energy technologies for the future

    International Nuclear Information System (INIS)

    2007-01-01

    The global energy sector is going through major changes: the need for energy is growing explosively, while at the same time climate change is forcing US to find new, and cleaner, ways to generate energy. Finland is one of the forerunners in energy technology development, partly because of its northern location and partly thanks to efficient innovations. A network of centres of expertise was established in Finland in 1994 to boost the competitiveness and internationalisation of Finnish industry and, consequently, that of the EU region. During the expertise centre programme period 2007-2013, substantial resources will be allocated to efficient utilisation of top level expertise in thirteen selected clusters of expertise. The energy cluster, focusing on developing energy technologies for the future, is one of these

  2. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  3. Emerging energy technologies impacts and policy implications

    International Nuclear Information System (INIS)

    Grubb, M.

    1992-01-01

    Technical change is a key factor in the energy world. Failure to recognize the potential for technical change, and the pace at which it may occur, has limited the accuracy and usefulness of past energy projections. conversely, programs to develop and deploy advanced energy technologies have often proved disappointing in the face of technical and commercial obstacles. This book examines important new and emerging energy technologies, and the mechanisms by which they may develop and enter the market. The project concentrates on the potential and probable role of selected energy technologies-which are in existence and likely to be of rapidly growing importance over the next decade-and the way in which market conditions and policy environment may affect their implementation

  4. Soft Energy Paths Revisited: Politics and Practice in Energy Technology Transitions

    Directory of Open Access Journals (Sweden)

    Chelsea Schelly

    2016-10-01

    Full Text Available This paper argues that current efforts to study and advocate for a change in energy technologies to reduce their climate and other environmental impacts often ignore the political, social, and bodily implications of energy technology choices. Framing renewable energy technologies exclusively in terms of their environmental benefits dismisses important questions about how energy infrastructures can be designed to correspond to democratic forms of socio-politics, forms of social organization that involve independence in terms of meeting energy needs, resilience in terms of adapting to change, participatory decision making and control, equitable distribution of knowledge and efficacy, and just distribution of ownership. Recognizing technological choices as political choices brings explicit attention to the kinds of socio-political restructuring that could be precipitated through a renewable energy technology transition. This paper argues that research on energy transitions should consider the political implications of technological choices, not just the environmental consequences. Further, emerging scholarship on energy practices suggests that social habits of energy usage are themselves political, in that they correspond to and reinforce particular arrangements of power. Acknowledging the embedded politics of technology, as the decades’ old concept of soft path technologies encourages, and integrating insights on the politics of technology with insights on technological practices, can improve future research on energy policy and public perceptions of energy systems. This paper extends insights regarding the socio-political implications of energy paths to consider how understandings of energy technologies as constellations of embedded bodily practices can help further develop our understanding of the consequences of energy technologies, consequences that move beyond environmental implications to the very habits and behaviors of patterned energy

  5. ImSET: Impact of Sector Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  6. Uncertainty and entrepreneurial action. The role of uncertainty in the development of emerging energy technologies

    NARCIS (Netherlands)

    Meijer, I.S.M.

    2008-01-01

    To counteract the environmental problems of the existing energy system, more sustainable technologies need to be developed and implemented on a large scale. Entrepreneurs play a crucial role in this, since their actions help turn the outcomes of R&D activities into commercial technological products.

  7. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  8. Norwegian focus on new energy technology

    International Nuclear Information System (INIS)

    Bull-Hansen, Eivind

    2001-01-01

    Norsk Hydro Technology Ventures, a venture capital fund recently set up by Norsk Hydro, will raise equity capital to companies that are developing promising new projects on new energy technology or to investment funds promoting such projects. Norsk Hydro will withdraw from the investments when the projects have reached commercialization or are listed on the stock exchange. There is a well-developed market for venture capital in the energy sector and a strong international competition for investments in good projects. The sharp environmental focus on fossil fuels and climate gases has boosted the research on new energy technologies. Another and more important factor is the fact that modern society with its heavy dependence on the computer is vulnerable to power failure

  9. Technologies for a sustainable development; Technologies pour un developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The European Event on Technology (EET), a recurrent annual event since 1992, is a major meeting opportunity for researchers and engineers as well as private and public decision-makers, on technologies, their evolution and their industrial and social implications. In less than a decade, sustainable development has become both an economic and a political priority. It was urgent and legitimate that those who are the mainsprings should take hold of the subject and give it technological content, estimate its costs and define clear timetables. The debates consist of: plenary sessions on environmental, social and economic stakes of sustainable development and the challenges for, and commitment of engineers, managers and politicians with respect to these goals; and workshops, which provide an overview of recently acquired or upcoming technologies developed by sector: energy, transports, new information technologies, new industrial manufacturing technologies (materials, products, services), waste management, global environment monitoring, water management, bio-technologies, and innovation management. This document brings together the different talks given by the participants. Among these, the following ones fall into the energy and environment scope: energy efficiency of buildings: towards energy autonomy; superconductors enable in new millennium for electric power industry; advanced gas micro-turbine-driven generator technology; environmental and technical challenges of an offshore wind farm; future nuclear energy systems; modelling combustion in engines: progress and prospects for reducing emissions; on-board computers: reduction in consumption and emissions of engine-transmission units for vehicles; polymer-lithium batteries: perspectives for zero-emission traction; hybrid vehicles and energy/environmental optimization: paths and opportunities; fuel cells and zero-emission: perspectives and developments; global change: causes, modeling and economic issues; the GMES

  10. The role of the clean development mechanism in facilitating the application of biomass renewable energy technologies in Malaysia

    International Nuclear Information System (INIS)

    Kheng, Wong Hwee; Hvid, Joergen

    2003-01-01

    The Malaysian Government's move to ratify the Kyoto Protocol in September 2001 reaffirms the country's support to combat global climate change. Although Malaysia is not bound by any commitments to reduce its greenhouse gas emissions, the opportunities that exist through the Clean Development Mechanism (CDM) could be two-fold: to contribute to the country's sustainable development objectives and to improve the energy supply security through the application of clean energy technologies such as renewable energy technologies. Malaysia is very dependent on fossil fuel based technologies for electricity generation and energy production. In 2001 almost 90% of the total energy input to power stations was derived from fossil fuels. Although the energy mix will continue to be predominantly based on fossil fuels, indigenous renewable energy resources may come to play a noticeable role in complementing the depleting fossil fuels. This paper focuses on how best to utilize the oil palm residues for electricity generation and energy production as these residues are the 'low hanging fruits' that are readily available. It compares the use of two different technological uses of residues: distributes power generation and co-firing with coal in large-scale power plants. The paper analyses the financial, economic and environmental impacts of these technologies, and it discusses the relative benefits of the technologies. In addition, the paper look into the barriers associated with each of the technologies, and it suggests possible policy interventions to be adopted in order to promote a viable and environmentally efficient use of the limited biomass resources. (au)

  11. Global Nuclear Energy Partnership Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  12. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  13. Proceedings of the 8. Brazilian congress on energy: energy policy, regulation and sustainable development. v. 3: technological innovation, renewable sources and rural energization

    International Nuclear Information System (INIS)

    1999-01-01

    These proceedings cover the papers presented in the 8. Brazilian congress on energy held at Rio de Janeiro from November, 30 to December, 02, 1999, focusing energy policy, regulation and sustainable development, specifically the contribution of energy to a satisfactory quality of life for everyone. Within such a context, the congress technical programme has been structured around six different divisions: energy, environment and development; energy sector regulation; energy policy and planning; technology innovation; energy conservation; renewable energy sources and rural areas energy supply

  14. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  15. Energy technology monitoring - New areas and in-depth investigations

    International Nuclear Information System (INIS)

    Rigassi, R.; Eicher, H.; Steiner, P.; Ott, W.

    2005-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined long-term trends in the energy technology area in order to provide information that is to form the basis for political action and the distribution of energy research funding in Switzerland. Energy-technology areas examined include variable-speed electrical drives, ventilation systems for low-energy-consumption buildings, membrane technology and the use of plastics in lightweight automobiles. Examples are quoted and the current state of the appropriate technologies and market aspects are examined. Also, the potential and future developments in the areas listed are looked at. The consequences for energy policy and future developments in the technology-monitoring area are considered

  16. Development of treatment technologies for the processing of US Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Backus, P.M.; Berry, J.B.; Coyle, G.J.; Lurk, P.W.; Wolf, S.M.

    1993-01-01

    Waste contaminated with chemically hazardous and radioactive species is defined as mixed waste. Significant technology development has been conducted for separate treatment of hazardous and radioactive waste, but technology development addressing mixed-waste treatment has been limited. Management of mixed waste requires treatment which must meet the standards established by the US Environmental Protection Agency for the specific hazardous constituents while also providing adequate control of the radionuclides. Technology has not been developed, demonstrated, or tested to produce a low-risk final waste form specifically for mixed waste. Throughout the US Department of Energy (DOE) complex, mixed waste is a problem because definitive treatment standards have not been established and few disposal facilities are available. Treatment capability and capacity are also limited. Site-specific solutions to the management of mixed waste have been initiated; however, site-specific programs result in duplication of technology development between various sites. Significant progress is being made in developing technology for mixed waste under the Mixed Waste Integrated Program. The status of the technical initiatives in chemical/physical treatment, destruction/stabilization technology, off-gas treatment, and final waste form production/assessment is described in this paper

  17. World Energy Resources and New Technologies

    Science.gov (United States)

    Szmyd, Janusz S.

    2016-01-01

    The development of civilisation is linked inextricably with growing demand for electricity. Thus, the still-rapid increase in the level of utilisation of natural resources, including fossil fuels, leaves it more and more urgent that conventional energy technologies and the potential of the renewable energy sources be made subject to re-evaluation. It is estimated that last 200 years have seen use made of more than 50% of the available natural resources. Equally, if economic forecasts prove accurate, for at least several more decades, oil, natural gas and coal will go on being the basic primary energy sources. The alternative solution represented by nuclear energy remains a cause of considerable public concern, while the potential for use to be made of renewable energy sources is seen to be very much dependent on local environmental conditions. For this reason, it is necessary to emphasise the impact of research that focuses on the further sharpening-up of energy efficiency, as well as actions aimed at increasing society's awareness of the relevant issues. The history of recent centuries has shown that rapid economic and social transformation followed on from the industrial and technological revolutions, which is to say revolutions made possible by the development of power-supply technologies. While the 19th century was "the age of steam" or of coal, and the 20th century the era of oil and gas, the question now concerns the name that will at some point come to be associated with the 21st century. In this paper, the subjects of discussion are primary energy consumption and energy resources, though three international projects on the global scale are also presented, i.e. ITER, Hydrates and DESERTEC. These projects demonstrate new scientific and technical possibilities, though it is unlikely that commercialisation would prove feasible before 2050. Research should thus be focused on raising energy efficiency. The development of high-efficiency technologies that

  18. Energy Technology Programmes 1993-1998. Intermediate report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Tekes energy technology research programmes were launched in 1993. The aim is to produce innovative solutions that are efficient, environmentally sound and widely - even globally - applicable. Now Tekes manages a total of 12 energy technology research programmed. Research programmed form a network linking academia and industry. Total funding for the energy technology programmed during the years 1993-1998 is estimated at some FIM 1.5 billion, about half of which will be put up by the Tekes and the rest by the industry. Funding by the Ministry of Trade and Industry covers the first full-scale applications (demonstrations) resulting from the research and development activities. Finnish technology is front-ranking in the efficient use of energy, combustion technology, renewable energy sources and environmental technology. In this report the results and the research activities of the separate programmes is presented and discussed

  19. Effects of under-development and oil-dependency of countries on the formation of renewable energy technologies: A comparative study of hydrogen and fuel cell technology development in Iran and the Netherlands

    International Nuclear Information System (INIS)

    Nasiri, Masoud; Ramazani Khorshid-Doust, Reza; Bagheri Moghaddam, Nasser

    2013-01-01

    Countries face many problems for the development of renewable energy technologies. However these problems are not the same for different countries. This paper provides insight into the development of Hydrogen and Fuel Cell Technology (HFCT) in Iran (1993–2010), as an alternative for increasing sustainability of energy system in long-term. This is done by applying the Technological Innovation System (TIS) approach and studying the structure and dynamics of seven key processes that affect the formation of HFCT TIS. Thereafter, the pattern of HFCT development in Iran is compared with the Netherlands, using a multi-level perspective. Then, it is shown that under-development and oil-dependency, which are two macro-economic factors at landscape level, can explain the main differences between these countries at regime and niche levels. This means that macro-economic factors cause Iran and the Netherlands to experience different ways for the development of HFCT. - Highlights: • Hydrogen and fuel cell technology development is modeled, using innovation systems. • This technology development in Iran and Netherlands are compared. • The causes of underdevelopment of this technology in Iran are explained

  20. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, NorEddine; Lattemann, Sabine; Missimer, Thomas M.; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary L.

    2014-01-01

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group's contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  1. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, Noreddine

    2014-04-13

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group\\'s contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  2. Workshop Proceedings on Financing the Development and Deployment of Renewable Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-05-16

    The Working Party on Renewable Energy (REWP) of the International Energy Agency (IEA) organized a two-day seminar on the role of financing organizations in the development and deployment of renewable energy (RE). The World Bank (WB) and the US Department of Energy (USDOE) hosted the workshop. Delegates were mainly senior government representatives from the 23 IEA member countries, whose responsibilities are related to all or most of the renewable sources of energy. In addition, representatives of the European Union, United Nations, trade organizations, utilities and industries and the WB attended the meeting. The workshop was recognized as an important first step in a dialog required between the parties involved in the development of RE technology, project preparation and the financing of RE. It was also recognized that much more is required--particularly in terms of increased collaboration and coordination, and innovative financing--for RE to enter the market at an accelerated pace, and that other parties (for example from the private sector and recipient countries) need to have increased involvement in future initiatives.

  3. Advanced fusion technology research and development. Annual report to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    2001-01-01

    OAK-B135 The General Atomics (GA) Advanced Fusion Technology program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility, the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility. The report summarizes GA's FY00 work in the areas of Fusion Power Plant Studies, Next Step Options, Advanced Liquid Plasma Facing Surfaces, Advanced Power Extraction Study, Plasma Interactive Materials, Radiation Testing of Magnetic Coil, Vanadium Component Demonstration, RF Technology, Inertial Fusion Energy Target Supply System, ARIES Integrated System Studies, and Spin-offs Brochure. The work in these areas continues to address many of the issues that must be resolved for the successful construction and operation of next-generation experiments and, ultimately, the development of safe, reliable, economic fusion power plants

  4. Market introduction of renewable energy technologies

    International Nuclear Information System (INIS)

    1997-01-01

    On 11 and 12 November 1997 the VDI Society for Energy Technology (VDI-GET) held a congress in Neuss on the ''Market introduction of renewable energy technologies'' The focal topics of the congress were as follows: market analyses for renewable energy technologies, the development of markets at home and abroad, and the framework conditions governing market introduction. Specifically it dealt with the market effects of national and international introduction measures, promotion programmes and their efficiency, the legal framework conditions governing market introduction, advanced and supplementary training, market-oriented research (e.g., for cost reduction), and improved marketing [de

  5. Market penetration of energy supply technologies

    Science.gov (United States)

    Condap, R. J.

    1980-03-01

    Techniques to incorporate the concepts of profit-induced growth and risk aversion into policy-oriented optimization models of the domestic energy sector are examined. After reviewing the pertinent market penetration literature, simple mathematical programs in which the introduction of new energy technologies is constrained primarily by the reinvestment of profits are formulated. The main results involve the convergence behavior of technology production levels under various assumptions about the form of the energy demand function. Next, profitability growth constraints are embedded in a full-scale model of U.S. energy-economy interactions. A rapidly convergent algorithm is developed to utilize optimal shadow prices in the computation of profitability for individual technologies. Allowance is made for additional policy variables such as government funding and taxation. The result is an optimal deployment schedule for current and future energy technologies which is consistent with the sector's ability to finance capacity expansion.

  6. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. (comps.)

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  7. Characterizing emerging industrial technologies in energy models

    Energy Technology Data Exchange (ETDEWEB)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  8. THE SUBSTANTIATION OF THE METHODICAL APPROACH FOR ESTIMATION OF DYNAMICS OF DEVELOPMENT OF TECHNOLOGIES OF OFFSHORE WIND ENERGY USING (THE GERMAN EXAMPLE

    Directory of Open Access Journals (Sweden)

    A. A. Gorlov

    2018-01-01

    Full Text Available Purpose: the introduction of renewable energy technologies (RES occurs against the backdrop of a developed hydrocarbon energy market, which raises the risk of seeing unreasonable decisions by investors. The development and use of various analytical tools can reduce such risks. Economic models based on calculations by dozens of experts of a number of macro- and micro-economic factors have been used to study the replacement of traditional energy technologies with already developed RES technologies. At the same time, simpler but more effective econometric methods are being developed, based on the data of real projects and allowing to conduct research for the recently launched RES technologies. The main purpose of this article is to substantiate one of such methodologies used to asses growth dynamics of developing offshore wind energy based on the example of Germany – the leading country in the North Sea basin.Methods: many foreign and domestic authoritative organizations have developed a number of fairly complex models in order to study the economic substitution processes in fuel and energy complexes of different countries, calculate trends and forecasts in this area. Such models take into account findings of dozens of experts focusing on various macro and micro economic parameters and factors, including GDP, growth of employment, welfare, trade and many others. However, econometric methods based on the study of learning curves and calculations of the present value of LCOE electricity according to real energy projects tend to be simpler and effective tool used in order to estimates the recently developed RES technologies for which substantial volumes of data have not yet developed. This article considers substantiation of such methodical and mathematical approaches used to evaluate the dynamics of the development of offshore wind energy technologies using the model "Times model", modified by the author.Results: the feasibility analysis of using

  9. Technology Roadmaps: How2Guide for Wind Energy Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Whether in OECD, emerging or developing country economies, governments are increasingly looking to diversify their energy mix beyond simply fossil fuels. While wind energy is developing towards a mainstream, competitive and reliable technology, a range of barriers can delay progress, such as financing, grid integration, social acceptance and aspects of planning processes. National and regional technology roadmaps can play a key role in supporting wind energy development and implementation, helping countries to identify priorities and pathways tailored to local resources and markets. Recognising this, the IEA has started the How2Guides - a new series co-ordinated by the International Low-Carbon Energy Technology Platform to address the need for more focused guidance in the development of national roadmaps, or strategies, for specific low-carbon technologies. This builds on the success of the IEA global technology roadmap series and responds to a growing number of requests for IEA guidance to adapt the findings of the IEA global technology roadmaps to national circumstances. A successful roadmap contains a clear statement of the desired outcome, followed by a specific pathway for reaching it. The How2Guide for Wind Energy builds on the IEA well established methodology for roadmap development and shares wind specific recommendations on how to address the four phases to developing and implementing a wind energy roadmap: Planning; Visioning; Development; and Implementation. The manual also offers menus of recommendations on policy and technical options for deployment of utility-scale wind energy installations. A matrix of barriers-versus-realistic solutions options is cross-listed with considerations such as planning, development, electricity market and system, infrastructure, and finance and economics. Drawing on several case studies from around the globe, as well as on the IEA Technology Roadmap for Wind Energy, the How2Guide for Wind Energy it is intended as a

  10. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 3. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 3. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements during fiscal 1998 on researching part of the energy transportation and storage technologies, energy supply and utilization technologies, environmental load reducing technologies, and optimal system design in the 'research on highly efficient and effective energy utilization technology'. With regard to energy transportation and storage technologies, researches and developments were performed on a vacuum adiabatic transportation piping system, surfactants used for high-density heat transportation and high-density latent heat transportation technologies. In the field of energy supply and utilization technologies, researches and developments were carried out on a heat supply system using high-performance heat pumps capable of using multiple kinds of fuels, and a compression and absorption type hybrid heat utilization system. For the environmental load reducing technologies, research and development were performed on a power saving heat pump system utilizing natural coolant. In researching the optimal system design technologies, overall adjustment was made on the element technologies, whereas technological discussions and site surveys were executed by the committees at the same time. The latest achievements accomplished to date was published in a book. (NEDO)

  11. Report of the summative evaluation by the advisory committee on research and development of nuclear energy technology

    International Nuclear Information System (INIS)

    2005-03-01

    The Research Evaluation Committee of the Japan Atomic Energy Research Institute (JAERI) set up an advisory Committee on Research and Development of Nuclear Energy Technology in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations. The Advisory Committee on Research and Development of Nuclear Energy Technology evaluated the adequacy of the plans of safety research to be succeeded from JAERI to a new research institute which will be established by integration of JAERI and the Japan Nuclear Cycle Development Institute (JNC). The Advisory Committee consisted of nine specialists from outside the JAERI conducted its activities from July 2004 to August 2004. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Advisory Committee meeting which was held on August 10, 2004, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Advisory Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on December 1, 2004. This report describes the result of the evaluation by the Advisory Committee on Research and Development on Nuclear Energy Technology. (author)

  12. ECH Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  13. New energy technologies report; Nouvelles technologies de l'energie rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  14. Technology transfer program at the Morgantown Energy Technology Center: FY 87 program report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.A.; Lessing, K.B.

    1987-10-01

    The Morgantown Energy Technology Center (METC), located in Morgantown, West Virginia, is an energy research center of the US Department of Energy's (DOE's) Office of Fossil Energy. The research and development work is different from research work conducted by other Government agencies. In DOE research, the Government is not the ultimate ''customer'' for the technologies developed; the ''customer'' is business and industry in the private sector. Thus, tehcnology transfer is a fundamental goal of the DOE. The mission of the Fossil Energy program is to enhance the use of the nations's fossil energy resources. METC's mission applies to certain technologies within the broad scope of technologies encompassed by the Office of Fossil Energy. The Government functions as an underwriter of risk and as a catalyst to stimulate the development of technologies and technical information that might otherwise proceed at a slower pace because of the high-risk nature of the research involved. The research programs and priorities are industry driven; the purpose is to address the perceived needs of industry such that industry will ultimately bring the technologies to the commercial market. As evidenced in this report, METC has an active and effective technology transfer program that is incorporated into all aspects of project planning and execution. Technology transfer at METC is a way of life---a part of everyday activities to further this goal. Each person has a charge to communicate the ideas from within METC to those best able to utilize that information. 4 figs., 20 tabs.

  15. Towards sustainable development in Austria. Renewable energy contributions

    International Nuclear Information System (INIS)

    Faninger, G.

    2003-01-01

    Besides energy conservation, the exploration of renewable energy sources, in particular biomass and solar energy, are central aspects of the Austrian energy policy, regarded as an optimal option for achieving CO2-emission reduction objectives. The market penetration of Renewable Energy Technologies in the last twenty years was supported by the Austrian Energy Research Programme. The result of successful developments of biomass heating, solar thermal, solar electrical and wind energy technologies is the key for the market development of these renewable energy technologies. With the market penetration of renewable energy technologies new business areas were established and employment created. Today, some renewable energy technologies in Austria have reached economic competitiveness. Some technologies not reached commercialisation, and need more development to improve efficiency, reliability and cost to become commercial. This would include material and system development, pilot plants or field experiments to clarify technical problems, and demonstration plants to illustrate performance capabilities and to clarify problems for commercialisation

  16. Energy Systems and Technologies for the coming Century

    DEFF Research Database (Denmark)

    Sønderberg Petersen, Leif; Larsen, Hans Hvidtfeldt

    for the extended utilisation of sustainable energy - Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal - Centralised energy production technologies such as clean coal technologies, CCS and nuclear - Renewable energy for the transport sector......Risø International Energy Conference 2011 took place 10 – 12 May 2011. The conference focused on: - Future global energy development options, scenarios and policy issues - Intelligent energy systems of the future, including the interaction between supply and end-use - New and emerging technologies...... and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011....

  17. Energy Technology Perspectives 2012: Executive Summary [Italian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  18. Energy Technology Perspectives 2012: Executive Summary [French version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  19. Energy Technology Perspectives 2012: Executive Summary [Spanish version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  20. Energy Technology Perspectives 2012: Executive Summary [Arabic version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  1. Energy Technology Perspectives 2012: Executive Summary [Portuguese version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  2. Project of Atomic Energy Technology Record

    International Nuclear Information System (INIS)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.

    2012-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records

  3. Promoting clean energy technology entrepreneurship: The role of external context

    International Nuclear Information System (INIS)

    Malen, Joel; Marcus, Alfred A.

    2017-01-01

    This study examines how political, social and economic factors influence clean energy technology entrepreneurship (CETE). Government policies supporting clean energy technology development and the development of markets for clean energy create opportunities for CETE. However, the extent to which such opportunities lead to the emergence of new clean energy businesses depends on a favorable external context promoting CETE. This study employs a novel dataset combining indicators of the policy and social context of CETE with information on clean energy technology startup firms in the USA to provide empirical evidence that technological and market conditions supporting clean energy induce more extensive CETE under contexts where local attention to clean energy issues and successful firms commercializing clean energy technologies are more prominent. By establishing that CETE is contingent upon a supportive local environment as well as technology and market opportunities, the study holds relevance for policy makers and clean energy technology firms. - Highlights: • Influence of political, social and economic factors on clean energy technology entrepreneurship (CETE). • CETE more prominent with clean energy technology availability. • Greater when local attention interacts with technology availability and market opportunities. • Greater when local firms successfully commercialize technologies. • Novel dataset and Arellano-Bond dynamic panel estimation.

  4. Marine renewable energies: status and development perspectives

    International Nuclear Information System (INIS)

    2011-01-01

    This document proposes an overview of the marine renewable energy (MRE) market, of the development perspectives, of the industrial, academic and institutional actors, of current technologies and technologies under development, and of French and European research and development programs. These energies comprise: tidal energy, the exploitation of sea temperature differences with respect with depth, wave energy, marine current power energy, osmotic and marine biomass energy

  5. Development and application of high energy imaging technology

    International Nuclear Information System (INIS)

    Chen Shengzu

    1999-01-01

    High Energy Positron Imaging (HEPI) is a new technology. The idea of positron imaging can be traced back to early 1950's. HEPI imaging is formed by positron emitter radionuclide produced by cyclotron, such as 15 O, 13 N, 11 C and 18 F, which are most abundant elements in human body. Clinical applications of HEPI have been witnessed rapidly in recent years. HEPI imaging can be obtained by both PET and SPECT, namely high energy collimation imaging, Mdecular Coincidence Detection (MCD) and positron emission tomography

  6. Proceedings of the 11. Brazilian congress on energy; 1. Brazilian seminar on technological innovation in energy sector. Technological innovation and sustainable development

    International Nuclear Information System (INIS)

    2006-01-01

    Theoretical papers are presented in this congress, comprising the following subjects: energy supply logistic, energy distributed generation, energy and environment, renewable energy sources, petroleum and natural gas, politics and technological management, energy efficiency, norms, quality and regulation, nuclear energy

  7. Advanced Energy Industries, Inc. SEGIS developments.

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  8. The importance of learning when supporting emergent technologies for energy efficiency-A case study on policy intervention for learning for the development of energy efficient windows in Sweden

    International Nuclear Information System (INIS)

    Kiss, Bernadett; Neij, Lena

    2011-01-01

    The role of policy instruments to promote the development and diffusion of energy efficient technologies has been repeatedly accentuated in the context of climate change and sustainable development. To better understand the impact of policy instruments and to provide insights into technology change, assessments of various kinds are needed. This study analyzes the introduction and development of energy efficient windows in Sweden and the policy incentives applied to support this process. The study focuses on the assessment of technology and market development of energy efficient windows in Sweden; and by applying the concept of learning, it assesses how conditions for learning-by-searching, learning-by-doing, learning-by-using and learning-by-interacting have been supported by different policies. The results show successful progress in technology development and an improvement in best available technology of Swedish windows from 1.8 W/m 2 K in the 1970s to 0.7 W/m 2 K in 2010; in the same time period the market share of energy efficient windows increased from 20% in 1970 (average U-value of 2.0 W/m 2 K) to 80-85% in 2010 (average U-value of 1.3-1.2 W/m 2 K). The assessment shows that various policy instruments have facilitated all four learning processes resulting in the acknowledged slow but successful development of energy efficient windows. - Highlights: → Policy instruments for learning and technology change are assessed. → The development and diffusion of energy efficient windows (EEWs) in Sweden is taken as showcase. → Learning has been supported by various policies resulting in successful development of EEWs. → The thermal performance of EEWs improved with 2/3 and their market share increased by 3/5 in 40 years. → Main policies for learning are RD and D, technology procurement, testing and voluntary initiatives.

  9. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  10. Department of energy technology

    International Nuclear Information System (INIS)

    1983-04-01

    The general development of the Department of Energy Technology at Risoe during 1982 is presented, and the activities within the major subject fields are described in some detail. List of staff, publications and computer programs are included. (author)

  11. Technological change of the energy innovation system: From oil-based to bio-based energy

    International Nuclear Information System (INIS)

    Wonglimpiyarat, Jarunee

    2010-01-01

    This paper concerns the structural developments and the direction of technological change of the energy innovation system, based on the studies of Kuhn's model of scientific change and Schumpeter's model of technological change. The paper uses the case study of Thai government agencies for understanding the way governments can facilitate technological innovation. The analyses are based on a pre-foresight exercise to examine the potential of the bio-based energy and investigate a set of development policies necessary for the direction of energy system development. The results have shown that bio-based energy is seen as the next new wave for future businesses and one of the solutions to the problem of high oil prices to improve the world's economic security and sustainable development. (author)

  12. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  13. Perspectives of China's wind energy development

    Institute of Scientific and Technical Information of China (English)

    He Dexin; Wang Zhongying

    2009-01-01

    Wind energy is a kind of clean renewable energy, which is also relatively mature in technology, with large-scale development conditions and prospect for the commercialization. The development of wind energy is a systematic project, involving policy, law, technology, economy, society, environment, education and other aspects. The relation-ship among all the aspects should be well treated and coordinated. This paper has discussed the following relationships which should be well coordinated: relationship between wind resources and wind energy development, relationship be-tween the wind turbine generator system and the components, relationship between wind energy technology and wind en-ergy industry, relationship between off-grid wind power and grid-connected wind power, relationship between wind farm and the power grid, relationship between onshore wind power and offshore wind power, relationship between wind energy and other energies, relationship between technology introduction and self-innovation, relationship among foreign-funded, joint ventured and domestic-funded enterprises and relationship between the government guidance and the market regula-tion, as well as giving out some suggestions.

  14. Overview of current development in electrical energy storage technologies and the application potential in power system operation

    International Nuclear Information System (INIS)

    Luo, Xing; Wang, Jihong; Dooner, Mark; Clarke, Jonathan

    2015-01-01

    Highlights: • An overview of the state-of-the-art in Electrical Energy Storage (EES) is provided. • A comprehensive analysis of various EES technologies is carried out. • An application potential analysis of the reviewed EES technologies is presented. • The presented synthesis to EES technologies can be used to support future R and D and deployment. - Abstract: Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges, whereby energy is stored in a certain state, according to the technology used, and is converted to electrical energy when needed. However, the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles, technical and economic performance features and the current research and development of important EES technologies, sorted into six main categories based on the types of energy stored. Following this, a comprehensive comparison and an application potential analysis of the reviewed technologies are presented

  15. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  16. Social assessment on fusion energy technology

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu

    1981-01-01

    In regard to the research and development for fusion energy technologies which are still in the stage of demonstrating scientific availability, it is necessary to accumulate the demonstrations of economic and environmental availability through the demonstration of technological availability. The purpose of this report is to examine how the society can utilize the new fusion energy technology. The technical characteristics of fusion energy system were analyzed in two aspects, namely the production techniques of thermal energy and electric energy. Also on the social characteristics in the fuel cycle stage of fusion reactors, the comparative analysis with existing fission reactors was carried out. Then, prediction and evaluation were made what change of social cycle fusion power generation causes on the social system formalized as a socio-ecological model. Moreover, the restricting factors to be the institutional obstacles to the application of fusion energy system to the society were analyzed from three levels of the decision making on energy policy. Since the convertor of fusion energy system is steam power generation system similar to existing system, the contents and properties of the social cycle change in the American society to which such new energy technology is applied are not much different even if the conversion will be made in future. (Kako, I.)

  17. Alternative energy technologies as a cultural endeavor. A case study of hydrogen and fuel cell development in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Galich, Ante [Luxembourg Univ., Walferdange (Luxembourg). Faculty of Language and Literature, Humanities, Arts and Education; Wissenschaftszentrum Berlin fuer Sozialforschung gGmbH, Berlin (Germany). Abt. ' ' Kulturelle Quellen von Neuheit' ' ; Marz, Lutz [Wissenschaftszentrum Berlin fuer Sozialforschung gGmbH, Berlin (Germany). Abt. ' ' Kulturelle Quellen von Neuheit' '

    2012-12-15

    The wider background to this article is the shift in the energy paradigm from fossil energy sources to renewable sources which should occur in the twenty-first century. This transformation requires the development of alternative energy technologies that enable the deployment of renewable energy sources in transportation, heating, and electricity. Among others, hydrogen and fuel cell technologies have the potential to fulfill this requirement and to contribute to a sustainable and emission-free transport and energy system. However, whether they will ever reach broad societal acceptance will not only depend on technical issues alone. The aim of our study is to reveal the importance of nontechnical issues. Therefore, the article at hand presents a case study of hydrogen and fuel cells in Germany and aims at highlighting the cultural context that affects their development. Our results were obtained from a rich pool of data generated in various research projects through more than 30 in-depth interviews, direct observations, and document analyses. We found that individual and collective actors developed five specific supportive practices which they deploy in five diverse arenas of meaning in order to attach certain values to hydrogen and fuel cell technologies. Based on the results, we drew more general conclusions and deducted an overall model for the analysis of culture in technological innovations that is outlined at the end of the article. It constitutes our contribution to the interdisciplinary collaboration required for tackling the shift in this energy paradigm.

  18. Energy conservation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Courtright, H.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  19. Proceedings of the workshop on new material development. Nano-technology and hydrogen energy society

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Asano, Masaharu; Ohshima, Takeshi; Sugimoto, Masaki; Ohgaki, Junpei

    2005-03-01

    We have newly held the Workshop on New Material Development in order to enhance the research activities on new material development using radiation. Theme of this workshop was 'nano-technology and hydrogen', both of which are considered to have great influence on our social life and have shown rapid progress in the related researches, recently. Researchers from domestic universities, research institutes, and private companies have attended at the workshop and had the opportunity to exchange information and make discussions about the latest trend in the leading edge researches, and have contributed to the material development in future. The technology for manufacturing and evaluation of very fine materials, which is essential for the nano-technology, and the development of new functional materials, which will support the hydrogen energy society in future, have increasingly become important and have been intensively investigated by many research groups. In such investigation, the ionizing radiation is indispensable as the tool for probing and modifying materials. For this reason, this workshop was held at JAERI, Takasaki, a center of excellence for radiation application in Japan. This workshop was held by JAERI, Takasaki, on November 19, 2004 under the joint auspices of the Atomic Energy Society of Japan, the Chemical Society of Japan, the Polymer Science Society of Japan and the Japanese Society of Radiation Chemistry. The workshop was attended by 97 participates. We believe that this workshop supported by many academic societies will largely contribute to the research on new material development in the field of nano-technology and hydrogen. The 10 of the presented papers are indexed individually. (J.P.N.)

  20. Advancing clean energy technology in Canada

    International Nuclear Information System (INIS)

    Munro, G.

    2011-01-01

    This paper discusses the development of clean energy technology in Canada. Energy is a major source of Canadian prosperity. Energy means more to Canada than any other industrialized country. It is the only OECD country with growing oil production. Canada is a stable and secure energy supplier and a major consumer. Promoting clean energy is a priority to make progress in multiple areas.

  1. Technology research and development

    International Nuclear Information System (INIS)

    Haas, G.M.; Abdov, M.A.; Baker, C.C.; Beuligmann, R.F.

    1985-01-01

    The U.S. Dept. of Energy discusses the new program plan, the parameters of which are a broad scientific and technology knowledge base, an attractive plasma configuration to be determined, and other issues concerning uncertainty as to what constitutes attractive fusion options to be determined in the future, and increased collaboration. Tables show changing directions in magnetic fusion energy, two examples of boundary condition impacts on long-term technology development, and priority classes of the latter. The Argonne National Laboratory comments on the relationship between science, technology and the engineering aspects of the fusion program. UCLA remarks on the role of fusion technology in the fusion program plan, particularly on results from the recent studies of FINESSE. General Dynamics offers commentary on the issues of a reduced budget, and new emphasis on science which creates an image of the program. A table illustrates technology research and development in the program plan from an industrial perspective

  2. Long-term energy futures: the critical role of technology

    International Nuclear Information System (INIS)

    Grubler, A.

    1999-01-01

    The paper briefly reviews the results of a 5-year study conducted by IIASA jointly with the World Energy Council (WEC) on long term-energy perspectives. After summarizing the study's main findings, the paper addresses the crucial role of technological change in the evolution of long-term energy futures and in responding to key long-term uncertainties in the domains of energy demand growth, economics, as well as environmental protection. Based on most recent empirical and methodological findings, long-term dynamics of technological change portray a number of distinct features that need to be taken account of in technology and energy policy. First, success of innovation efforts and ultimate outcomes of technological are uncertain. Second, new, improved technologies are not a free good, but require continued dedicated efforts. Third, technological knowledge (as resulting from R and D and accumulation of experience, i.e. technological learning) exhibits characteristics of (uncertain) increasing returns. Forth, due to innovation - diffusion lags, technological interdependence, and infrastructure needs (network externalities), rates of change in large-scale energy systems are necessarily slow. This implies acting sooner rather than later as a contigency policy to respond to long-term social, economic and environmental uncertainties, most notably possible climate change. Rather than picking technological 'winners' the results of the IIASA-WEC scenario studies are seen most appropriate to guide technology and R and D portfolio analysis. Nonetheless, robust persistent patterns of technological change invariably occur across all scenarios. Examples of primising groups of technologies are given. The crucial importance of meeting long-energy demand in developing countries, assuring large-scale infrastructure investments, maintaining a strong and diversified R AND D protfolio, as well as to dvise new institutional mechnisms for technology development and diffusion for instance

  3. United States Department Of Energy Office Of Environmental Management Waste Processing Annual Technology Development Report 2008

    International Nuclear Information System (INIS)

    Bush, S.

    2009-01-01

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  4. The development and deployment of low-carbon energy technologies: The role of economic interests and cultural worldviews on public support

    International Nuclear Information System (INIS)

    Cherry, Todd L.; García, Jorge H.; Kallbekken, Steffen; Torvanger, Asbjørn

    2014-01-01

    Large-scale deployment of low-carbon energy technologies is crucial to mitigating climate change, and public support is an important barrier to policies and projects that facilitate deployment. This paper provides insights to the origins of public opposition that can impede the adoption of low-carbon technologies by investigating how perceptions are shaped by local economic interests and individual cultural worldviews. The research considers both carbon capture and storage and wind energy technologies because they differ in maturity, economic impact and resource base. Further, for each technology, the research examines support for two types of policies: deployment in local community and public funding for research and development. Results indicate the influence of economic interests and cultural worldviews is policy specific. Individual cultural worldviews do not affect support for the deployment of technology, but they do significantly influence a person's support for publicly funded research and development. Conversely, local economic interests have a significant role in determining support for deployment, while they do not affect support for research and development. - Highlights: • We investigate factors that shape public support for low-carbon energy technologies. • We consider two low-carbon energy technologies and two stages of implementation. • Economic interests and cultural worldviews influence support but in different stages

  5. Global energy scenarios, climate change and sustainable development

    International Nuclear Information System (INIS)

    Nakicenovic, Nebojsa

    2003-01-01

    Energy scenarios provide a framework for exploring future energy perspectives, including various combinations of technology options and their implications. Many scenarios in the literature illustrate how energy system developments may affect global change. Examples are the new emissions scenarios by the Intergovernmental Panel on Climate Change (IPCC) and the energy scenarios by the World Energy Assessment (WEA). Some of these scenarios describe energy futures that are compatible with sustainable development goals; such as improved energy efficiencies and the adoption of advanced energy supply technologies. Sustainable development scenarios are also characterized by low environmental impacts (at local, regional and global scales) and equitable allocation of resources and wealth. They can help explore different transitions toward sustainable development paths and alternative energy perspectives in general. The considerable differences in expected total energy requirements among the scenarios reflect the varying approaches used to address the need for energy services in the future and demonstrate effects of different policy frameworks, changes in human behavior and investments in the future, as well as alternative unfolding of the main scenario driving forces such as demographic transitions, economic development and technological change. Increases in research, development and deployment efforts for new energy technologies are a prerequisite for achieving further social and economic development in the world. Significant technological advances will be required, as well as incremental improvements in conventional energy technologies. In general, significant policy and behavioral changes will be needed during the next few decades to achieve more sustainable development paths and mitigate climate change toward the end of the century. (au)

  6. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  7. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  8. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  9. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 1. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 1. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements of the researches during fiscal 1998 on researching a highly efficient and effective energy utilization technology. With regard to technologies to recover and convert unutilized energies, a process simulator was developed, basic internal structure was discussed by experiments and simulation, and substance migrating and heat exchanging characteristics were identified by using partial testing devices. These researches and developments were performed for the waste heat reforming and recovering systems used in chemical plants. In developing a thermoelectric generation system using low calorie exhaust gases, thermoelectric power generating materials were developed, a powder manufacturing technology was developed, a thermoelectric conversion element bulking technology was developed, a thermoelectric power generation system using porous structures was simulated, development and concept design were carried out on system element technologies. In the research and development of the thermoelectric generation system using low calorie exhaust gases, advanced materials and modules were manufactured, the modules were evaluated, and power generation systems were researched. In addition, researches were performed on energy transportation, supply and utilization technologies, and on environmental load reducing technologies. (NEDO)

  10. New energy technologies report; Nouvelles technologies de l'energie rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  11. New energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Kuester, W J; Wagner, H F

    1977-01-01

    In the Federal Republic of Germany, analyses and forecasts of the energy supply and energy consumption have revealed five major sectors in which extensive R and D activities should be carried out: nuclear energy, coal technology, the utilization of solar energy, techniques for the economical use of energy, and nuclear fusion. Of these sectors, only nuclear energy will be able to make a major contribution to our energy supply both in the near future and over a longer period. The available capacity for mining the large deposits of coal in the Federal Republic of Germany can be increased only gradually and will therefore not make an appreciable contribution until a later date. Another fact to be considered is that a rapidly expanding utilization of this source of energy entails very heavy pollution of the environment. The utilization of solar energy in Central Europe will probably be possible only for supplying warm water for industry and for heating buildings. In the long term, solar energy will contribute only a small percentage of energy to the supply required by the Federal Republic of Germany. Intensive efforts are being made to develop technologies for the more economical use of energy. The priorities in this sector are the installation of district heating systems using waste heat from power stations, and the improved heat insulation of houses. It is not anticipated that the technical utilization of nuclear fusion will be introduced before the end of this century. Nonetheless, this source of energy still constitutes a possibility offering an extremely great potential in the long term, with the result that every effort is being made to put it to good use. The work being carried out in this field in the Federal Republic of Germany is being closely coordinated with the relevant activities undertaken by the other member countries of the European Community.

  12. Solar thermal technology development: Estimated market size and energy cost savings. Volume 2: Assumptions, methodology and results

    Science.gov (United States)

    Gates, W. R.

    1983-02-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.

  13. Solar thermal technology development: Estimated market size and energy cost savings. Volume 2: Assumptions, methodology and results

    Science.gov (United States)

    Gates, W. R.

    1983-01-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. Three fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. Solar thermal technology research and development (R&D) is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), depending on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest. Analysis is also provided regarding two federal incentives currently in use: The Federal Business Energy Tax Credit and direct R&D funding.

  14. Water Power Technologies Office 2017 Marine Energy Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Water Power Technologies Office

    2018-04-01

    The U.S. Department of Energy's Water Power Technologies Office's marine and hydrokinetic portfolio has numerous projects that support industry advancement in wave, tidal, and ocean and river current technologies. In order to strengthen state-of-the-art technologies in these fields and bring them closer to commercialization, the Water Power Technologies Office funds industry, academia, and the national laboratories. A U.S. chapter on marine and hydrokinetic energy research and development was included in the Ocean Energy Systems' Technology Programme—an intergovernmental collaboration between countries, which operates under a framework established by the International Energy Agency. This brochure is an overview of the U.S. accomplishments and updates from that report.

  15. Advanced Grid Control Technologies Workshop Series | Energy Systems

    Science.gov (United States)

    : Smart Grid and Beyond John McDonald, Director, Technical Strategy and Policy Development, General Control Technologies Workshop Series In July 2015, NREL's energy systems integration team hosted workshops the Energy Systems Integration Facility (ESIF) and included a technology showcase featuring projects

  16. Climate-smart technologies. Integrating renewable energy and energy efficiency in mitigation and adaptation responses

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Mannke, Franziska; Schulte, Veronika [Hamburg Univ. of Applied Sciences (Germany). Faculty of Life Sciences; Mohee, Romeela; Surroop, Dinesh (eds.) [Mauritius Univ., Reduit (Mauritius). Chemical and Environmental Engineering Dept.

    2013-11-01

    Explores the links between climate change and technologies. Relates to the links between renewable energy and climate change. Documents and promotes a collection of experiences from island nations. Has a strong international focus and value to developing countries. The book addresses the perceived need for a publication with looks at both, climate smart technologies and the integration of renewable energy and energy efficiency in mitigation and adaptation responses. Based on a set of papers submitted as part of the fifth on-line climate conference (CLIMATE 2012) and a major conference on renewable energy on island States held in Mauritius in 2012, the book provides a wealth of information on climate change strategies and the role of smart technologies. The book has been produced in the context of the project ''Small Developing Island Renewable Energy Knowledge and Technology Transfer Network'' (DIREKT), funded by the ACP Science and Technology Programme, an EU programme for cooperation between the European Union and the ACP region.

  17. NEDO's white paper on renewable energy technologies

    International Nuclear Information System (INIS)

    2010-01-01

    This document proposes a synthesis of a 'white paper' published by the Japanese institution NEDO (New Energy and Industrial Technology Development Organization) on the development of technologies in the field of renewable energies. For the various considered energies, this report gives indications of the world market recent evolutions, of Japanese productions and objectives in terms of productions and costs. The different energies treated in this report are: solar photovoltaic, wind, biomass, solar thermal, waves, seas, hydraulic, geothermal, hot springs, snow and ice, sea currents, electricity production by thermo-electrical effect or by piezoelectric modules, reuse of heat produced by factories, use of the thermal gradient between air and water, intelligent communities and networks

  18. Prospective of the nuclear energy, technological tendency

    International Nuclear Information System (INIS)

    Cruz F, G. De la; Salaices A, M.

    2004-01-01

    The world's concern about the energy supply in the near future, has had as an answer diverse proposals in which two multinational initiatives are highlighted, that of the International Project on Nuclear Innovative Reactors and Fuel Cycles (INPRO) and that of the Generation-l V International Forum (GIF). Both initiatives direct their efforts to the development of new technologies in nuclear energy that would satisfy the energy requirements of the future. In this article, an analysis based on a) the available information on these technologies, b) a joint study (IEA/OECD/IAEA) on the new technologies regarding its capacity to confront the current challenges of the nuclear energy, and c) the authors' experience and knowledge about the phenomenology, design and security of nuclear facilities, is presented. Moreover, the technologies that, in the authors' opinion, will have the better possibilities to compete successfully in the energy markets and could be one of the viable options to satisfy the energy demands of the future, are described. (Author)

  19. Energy and technology review

    International Nuclear Information System (INIS)

    Carr, R.B.; Bathgate, M.B.; Crawford, R.B.; McCaleb, C.S.; Prono, J.K.

    1976-05-01

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices

  20. Energy, society and environment. Technology for a sustainable future

    International Nuclear Information System (INIS)

    Elliott, D.

    1997-04-01

    Energy, Society and Environment examines energy and energy use, and the interactions between technology, society and the environment. The book is clearly structured to examine; Key environmental issues, and the harmful impacts of energy use; New technological solutions to environmental problems; Implementation of possible solutions, and Implications for society in developing a sustainable approach to energy use. Social processes and strategic solutions to problems are located within a clear, technological context with topical case studies. (UK)

  1. Present status of development of alternative energy technology from environment protection point of view

    International Nuclear Information System (INIS)

    Tanaka, T.

    1992-01-01

    This paper reports that Japan lacks fossil fuel resources. Consequently, almost all fossil fuels are imported from abroad. Therefore, change in international affairs affects on Japan's politics and social life, as learned from experience of economic social life, as learned from experience of economic confusion caused by the oil crisis of 1973. For this reason, research and development (R and D) of alternative energy technologies was initiated in July 1974, which was promoted as one of national energy development programs called Sunshine Project. Presently, their technical developments are being continued to put practical use under this project. However, Japan's dependency of primary energy resources on oil is still high among major advanced countries and energy supply structure is significantly weak. Furthermore, from indetermination of the recent political condition in the Middle East, the importance of security against supply and demand of petroleum in middle and long term is generally recognized with the increasing cost of oil

  2. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  3. A personal history: Technology to energy strategy

    International Nuclear Information System (INIS)

    Starr, C.

    1995-01-01

    This personal history spans a half century of participation in the frontiers of applies science and engineering ranging from the nuclear weapons project of World War II, through the development of nuclear power, engineering education, and risk analysis, to today's energy research and development. In each of these areas, this account describes some of the exciting opportunities for technology to contribute to society's welfare, as well as the difficulties and constraints imposed by society's institutional and political systems. The recounting of these experiences in energy research and development illustrates the importance of embracing social values, cultures, and environmental views into the technologic design of energy options. The global importance of energy in a rapidly changing and unpredictable world suggests a strategy for the future based on these experiences which emphasizes the value of applied research and development on a full spectrum of potential options

  4. Enabling technologies for industrial energy demand management

    International Nuclear Information System (INIS)

    Dyer, Caroline H.; Hammond, Geoffrey P.; Jones, Craig I.; McKenna, Russell C.

    2008-01-01

    This state-of-science review sets out to provide an indicative assessment of enabling technologies for reducing UK industrial energy demand and carbon emissions to 2050. In the short term, i.e. the period that will rely on current or existing technologies, the road map and priorities are clear. A variety of available technologies will lead to energy demand reduction in industrial processes, boiler operation, compressed air usage, electric motor efficiency, heating and lighting, and ancillary uses such as transport. The prospects for the commercial exploitation of innovative technologies by the middle of the 21st century are more speculative. Emphasis is therefore placed on the range of technology assessment methods that are likely to provide policy makers with a guide to progress in the development of high-temperature processes, improved materials, process integration and intensification, and improved industrial process control and monitoring. Key among the appraisal methods applicable to the energy sector is thermodynamic analysis, making use of energy, exergy and 'exergoeconomic' techniques. Technical and economic barriers will limit the improvement potential to perhaps a 30% cut in industrial energy use, which would make a significant contribution to reducing energy demand and carbon emissions in UK industry. Non-technological drivers for, and barriers to, the take-up of innovative, low-carbon energy technologies for industry are also outlined

  5. Development of hydrogen production technology using FBR

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Otaki, Akira; Chikazawa, Yoshitaka; Nakagiri, Toshio; Sato, Hiroyuki; Sekine, Takashi; Ooka, Makoto

    2004-06-01

    This report describes the features of technology, the schedule and the organization for the research and development regarding the hydrogen production technology using FBR thermal energy. Now, the hydrogen production system is proposed as one of new business models for FBR deployment. This system is the production of hydrogen either thermal energy at approximately from 500degC to 550degC or electricity produced by a sodium cooled FBR. Hydrogen is expected to be one of the future clean secondary energies without carbon-dioxide emission. Meanwhile the global energy demand will increase, especially in Asian countries, and the energy supply by fossil fuels is not the best choice considering the green house effect and the stability of energy supply. The development of the hydrogen technology using FBR that satisfies 'sustainable energy development' and 'utilization of energies free from environmental pollution' will be one of the promising options. Based on the above mentioned recognition, we propose the direction of the development, the issues to be solved, the time schedule, the budget, and the organization for R and D of three hydrogen production technologies, the thermochemical hybrid process, the low temperature steam reforming process, and the high temperature steam electrolysis process in JNC. (author)

  6. Public policy performance for social development: solar energy approach to assess technological outcome in Mexico City Metropolitan Area.

    Science.gov (United States)

    Arenas-Aquino, Angel Raúl; Matsumoto-Kuwabara, Y; Kleiche-Dray, M

    2017-11-01

    Mexico City Metropolitan Area (MCMA) is the most populated urban area in the country. In 2010, MCMA required 14.8% of total energy domestic demand, but greenhouse gas emissions accounted for 7.7% of domestic emissions. Mexico has massive renewable energy potential that could be harnessed through solar photovoltaic (PV) technology. The problem to explore is the relationship between local and federal public strategies in MCMA and their stance on energy transition concern, social empowerment, new technology appropriation, and the will to boost social development and urban sustainability. A public policy typology was conducted through instruments of State intervention approach, based on political agenda articulation and environmental local interactions. Social equality is encouraged by means of forthright funding and in-kind support and energy policies focus on non-renewable energy subsidies and electric transmission infrastructure investment. There is a lack of vision for using PV technology as a guiding axis for marginalized population development. It is essential to promote economic and political rearrangement in order to level and structure environmental governance. It is essential to understand people's representation about their own needs along with renewable energy.

  7. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  8. Office of Technology Development integrated program for development of in situ remediation technologies

    International Nuclear Information System (INIS)

    Peterson, M.

    1992-08-01

    The Department of Energy's Office of Technology Development has instituted an integrated program focused on development of in situ remediation technologies. The development of in situ remediation technologies will focus on five problem groups: buried waste, contaminated soils, contaminated groundwater, containerized wastes and underground detonation sites. The contaminants that will be included in the development program are volatile and non volatile organics, radionuclides, inorganics and highly explosive materials as well as mixtures of these contaminants. The In Situ Remediation Integrated Program (ISR IP) has defined the fiscal year 1993 research and development technology areas for focusing activities, and they are described in this paper. These R ampersand D topical areas include: nonbiological in situ treatment, in situ bioremediation, electrokinetics, and in situ containment

  9. How might renewable energy technologies fit in the food-water-energy nexus?

    Science.gov (United States)

    Newmark, R. L.; Macknick, J.; Heath, G.; Ong, S.; Denholm, P.; Margolis, R.; Roberts, B.

    2011-12-01

    Feeding the growing population in the U.S. will require additional land for crop and livestock production. Similarly, a growing population will require additional sources of energy. Renewable energy is likely to play an increased role in meeting the new demands of electricity consumers. Renewable energy technologies can differ from conventional technologies in their operation and their siting locations. Many renewable energy technologies have a lower energy density than conventional technologies and can also have large land use requirements. Much of the prime area suitable for renewable energy development in the U.S. has historically been used for agricultural production, and there is some concern that renewable energy installations could displace land currently producing food crops. In addition to requiring vast expanses of land, both agriculture and renewable energy can require water. The agriculture and energy sectors are responsible for the majority of water withdrawals in the U.S. Increases in both agricultural and energy demand can lead to increases in water demands, depending on crop management and energy technologies employed. Water is utilized in the energy industry primarily for power plant cooling, but it is also required for steam cycle processes and cleaning. Recent characterizations of water use by different energy and cooling system technologies demonstrate the choice of fuel and cooling system technologies can greatly impact the withdrawals and the consumptive use of water in the energy industry. While some renewable and conventional technology configurations can utilize more water per unit of land than irrigation-grown crops, other renewable technology configurations utilize no water during operations and could lead to reduced stress on water resources. Additionally, co-locating agriculture and renewable energy production is also possible with many renewable technologies, avoiding many concerns about reductions in domestic food production. Various

  10. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  11. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    Mitigating climate change and achieving stabilisation of greenhouse gas atmospheric concentrations will require deep reductions in global emissions of energy-related carbon dioxide emissions. Developing and disseminating new, low-carbon energy technology will thus be needed. Two previous AIXG papers have focused on possible drivers for such a profound technological change: Technology Innovation, Development and Diffusion, released in June 2003, and International Energy Technology Collaboration and Climate Change Mitigation, released in June 2004. The first of these papers assesses a broad range of technical options for reducing energy-related CO2 emissions. It examines how technologies evolve and the role of research and development efforts, alternative policies, and short-term investment decisions in making long-term options available. It considers various policy tools that may induce technological change, some very specific, and others with broader expected effects. Its overall conclusion is that policies specifically designed to promote technical change, or 'technology push', could play a critical role in making available and affordable new energy technologies. However, such policies would not be sufficient to achieve the Convention's objective in the absence of broader policies. First, because there is a large potential for cuts that could be achieved in the short run with existing technologies; and second, the development of new technologies requires a market pull as much as a technology push. The second paper considers the potential advantages and disadvantages of international energy technology collaboration and transfer for promoting technological change. Advantages of collaboration may consist of lowering R and D costs and stimulating other countries to invest in R and D; disadvantage may include free-riding and the inefficiency of reaching agreement between many actors. This paper sets the context for further discussion on the role of

  12. Foreign cooperative technology development and transfer

    International Nuclear Information System (INIS)

    Schassburger, R.J.; Robinson, R.A.

    1988-01-01

    It is the policy of the US Department of Energy (DOE) that, in pursuing the development of mined geologic repositories in the United States, the waste isolation program will continue to actively support international cooperation and exchange activities that are judged to be in the best interest of the program and in compliance with the Nuclear Waste Policy Act of 1982, Sec. 223. Because there are common technical issues and because technology development often requires large expenditures of funds and dedication of significant capital resources, it is advantageous to cooperate with foreign organizations carrying out similar activities. The DOE's Office of Civilian Radioactive Waste Management is working on cooperative nuclear waste isolation technology development programs with the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA), Canada's Atomic Energy of Canada, Limited (AECL), Sweden, Switzerland, and the Federal Republic of Germany. This paper describes recent technology results that have been obtained in DOE's foreign cooperative programs. Specific technology development studies are discussed for cooperative efforts with Canada, OECD/NEA, and a natural analog project in Brazil

  13. Renewable energy technologies: costs and markets

    International Nuclear Information System (INIS)

    Nitsch, J.; Langniss, O.

    1997-01-01

    A prominent feature of renewable energy utilisation is the magnitude of renewable energy that is physically available worldwide. The present paper attempts an economic valuation of development strategies for renewable energy sources (RES) on the basis of the past development of RES markets. It comes to the conclusion that if current energy prices remain largely unchanged, it will be necessary to promote RES technologies differentially according to the technique and type of energy employed or to provide start-up funding. The more probable a long-term increase in energy prices becomes, the greater will be the proportion of successfully promoted technologies. Energy taxes on exhaustible or environmentally harmful energy carriers and other instruments to this end would contribute greatly to the attractivity of RES investment both in terms of national economy and from the viewpoint of the private investor. Renewable energies will play an important role in the hardware and services sectors of the energy market in the decades to come. Long-term promotion of market introduction programmes and unequivocal energy-political aims on the part of the government are needed if the German industry is to have a share in this growing market and be able to offer internationally competitive products [de

  14. Prediction of energy-related technology for next 30 years

    Energy Technology Data Exchange (ETDEWEB)

    Hashiguchi, Isao; Kondo, Satoru

    1987-12-01

    The report outlines major results of a survey concerning technologies expected to emerge during the next 30 years that was carried out by the Japan's Science and Technology Agency using the DELPHI method. The survey covered 51 technical issues in energy-related areas including fossil energy, nucler energy, natural energy, biomass and energy utilization techniques, and process-related areas including exploration, collection/extraction, transportation/storage, power generation, resources conversion and substitution. For each technical issue, investigation is made on its importance, time of realization, restrictions, procedure and responsible organization for promoting research and development, and government policy. Results show that the importance of nuclear energy will continue to increase and that diversification of energy sources, such as shift to coal, will also become more important. It is indicated that technological breakthroughs, such as the development of new superconducting materials, will accelerate the development of other techniques in related areas and simultaneously increase the importance of such techniques. The survey provides valuable basic data serving for predicting future social changes that may be caused by technical innovation or a shift in view on technology in the economic areas or in the society. (2 figs, 1 tab)

  15. Sustainable Development Technology Canada : partnering for real results

    International Nuclear Information System (INIS)

    Sharpe, V.

    2002-01-01

    The mission of Sustainable Development Technology Canada (SDTC) is to act as the primary catalyst in building a sustainable development technology infrastructure in Canada. Their mandate is to develop new technologies that focus on climate change and clean air, and to foster new partnership throughout Canada. This Power Point presentation identified the combustion research at SDTC with particular reference to the technologies that deal with: (1) the reduction of energy intensity, emissions and waste, (2) the efficient conversion of fuel to electricity, and (3) the capture, treatment and storage of carbon dioxide at large facilities. Graphs and charts depicting the impact of GHG emissions and climate change were also included. The presentation made reference to energy efficiency efforts at the DuPont Adipic Pipe Plant, the Allentown Pennsylvania wastewater treatment plant, and the pulp and paper dryer at Clean Energy Technologies. It was noted that each of the technologies mentioned have commercial value and SDTC helps in funding projects related to energy efficiency in the transportation sector, energy production, and enabling technologies. 2 figs

  16. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    Science.gov (United States)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on

  17. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Bathgate, M.B.; Crawford, R.B.; McCaleb, C.S.; Prono, J.K. (eds.)

    1976-05-01

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices.

  18. A fuzzy analytic hierarchy/data envelopment analysis approach for measuring the relative efficiency of hydrogen R and D programs in the sector of developing hydrogen energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongkon; Kim, Jongwook [Korea Institute of Energy Research (Korea, Republic of). Energy Policy Research Center; Mogi, Gento [Tokyo Univ. (Japan). Graduate School of Engineering; Hui, K.S. [Hong Kong City Univ. (China). Manufacturing Engineering and Engineering Management

    2010-07-01

    Korea takes 10th place of largest energy consuming nations in the world since it spends 222 million ton of oil equivalent per year and depends on the most amount of consumed energy resources, which account for 96% import in 2008 with the 5.6% selfsufficiency ratio of energy resources. The interest of energy technology development has increased due to its poor energy environments. Specifically, the fluctuation of oil prices has been easily affecting Korean energy environments and economy. Considering its energy environments, energy technology development can be one of the optimal solution and breakthrough to solve Korea's energy circumstances, energy security, and the low carbon green growth with Korea's sustainable development. Moreover, energy and environment issues are the key factors for leading the future sustainable competitive advantage and green growth of one nation over the others nations. Lots of advanced nations have been trying to develop the energy technologies with the establishment of the strategic energy technology R and D programs for creating and maintain a competitive advantage and leading the global energy market. In 2005, we established strategic hydrogen energy technology roadmap in the sector of developing hydrogen energy technologies for coping with next 10 years from 2006 to 2015 as an aspect of hydrogen energy technology development. Hydrogen energy technologies are environmentally sound and friendly comparing with conventional energy technologies. Hydrogen energy technologies can play a key role and is the one of the best alternatives getting much attentions coping with UNFCCC and the hydrogen economy. Hydrogen energy technology roadmap shows meaningful guidelines for implementing the low carbon green growth society. We analyzed the world energy outlook to make hydrogen ETRM and provide energy policy directions in 2005. It focuses on developing hydrogen energy technology considering Korea's energy circumstance. We make a

  19. Energy solutions for sustainable development. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L; Larsen, Hans [eds.

    2007-05-15

    The Risoe International Energy Conference took place 22 - 24 May 2007. The conference focused on: 1) Future global energy development options. 2) Scenario and policy issues. 3) Measures to achieve low-level stabilization at, for example, 500 ppm CO2 concentrations in the atmosphere. 4) Local energy production technologies such as fuel cells, hydrogen, bio-energy and wind energy. 5) Centralized energy technologies such as clean coal technologies. 6) Providing renewable energy for the transport sector. 7) Systems aspects, differences between the various major regions throughout the world. 8) End-use technologies, efficiency improvements and supply links. 9) Security of supply with regard to resources, conflicts, black-outs, natural disasters and terrorism. (au)

  20. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Balachandra, P.; Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara

    2010-01-01

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  1. Bringing solutions to big challenges. Energy - climate - technology (ECT)

    International Nuclear Information System (INIS)

    2008-01-01

    The conference contains 45 presentations within the sections integrated policy and strategic perspectives on energy, climate change and technology, energy efficiency with prospects and measures, climate change and challenges for offshore energy and technology, possibilities for technology utilization, nuclear technology developments including some papers on thorium utilization, ethics of energy resource use and climate change, challenges and possibilities for the Western Norway and sustainability and security in an ECT-context. Some economic aspects are discussed as well. 16 of the 45 papers have been indexed for the database (tk)

  2. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.

    2014-01-01

    We try to understand the role of technological change and diffusion of energy efficient technologies in order to explain the trend of energy intensity developments in the German steel industry. We selected six key energy efficient technologies and collected data to derive their diffusion since their

  3. Energy technology evaluation report: Energy security

    Science.gov (United States)

    Koopman, R.; Lamont, A.; Schock, R.

    1992-09-01

    Energy security was identified in the National Energy Strategy (NES) as a major issue for the Department of Energy (DOE). As part of a process designed by the DOE to identify technologies important to implementing the NES, an expert working group was convened to consider which technologies can best contribute to reducing the nation's economic vulnerability to future disruptions of world oil supplies, the working definition of energy security. Other working groups were established to deal with economic growth, environmental quality, and technical foundations. Energy Security working group members were chosen to represent as broad a spectrum of energy supply and end-use technologies as possible and were selected for their established reputations as experienced experts with an ability to be objective. The time available for this evaluation was very short. The group evaluated technologies using criteria taken from the NES which can be summarized for energy security as follows: diversifying sources of world oil supply so as to decrease the increasing monopoly status of the Persian Gulf region; reducing the importance of oil use in the US economy to diminish the impact of future disruptions in oil supply; and increasing the preparedness of the US to deal with oil supply disruptions by having alternatives available at a known price. The result of the first phase of the evaluation process was the identification of technology groups determined to be clearly important for reducing US vulnerability to oil supply disruptions. The important technologies were mostly within the high leverage areas of oil and gas supply and transportation demand but also included hydrogen utilization, biomass, diversion resistant nuclear power, and substitute industrial feedstocks.

  4. Limits to leapfrogging in energy technologies? Evidence from the Chinese automobile industry

    International Nuclear Information System (INIS)

    Gallagher, Kelly Sims

    2006-01-01

    Limits to leapfrogging in energy technologies? One of the most attractive notions in the field of sustainable energy development is the concept of energy-technology 'leapfrogging'. Leapfrogging through international technology transfer can be especially problematic because often developing countries do not have the technological capabilities to produce or integrate the advanced energy technologies themselves. Until they have acquired the capabilities to produce the advanced technologies themselves, most late-industrializing countries buy their new technologies from industrialized countries, usually through licensing or joint-venture arrangements. Empirical case studies of the three main Sino-US passenger-car joint ventures reveal that until the late 1990s, little energy or environmental leapfrogging occurred in the Chinese automobile industry as the result of the introduction of US automotive technology. An improvement in Chinese capabilities and more stringent Chinese energy and environmental policies are needed to induce energy leapfrogging in the Chinese automobile industry. Foreign firms also have a social responsibility to contribute to China's sustainable industrial development. In order to realize the promise of the leapfrogging, the limits to leapfrogging must be identified and acknowledged so that strategies can be devised to surmount the barriers to the introduction of advanced energy technologies in developing countries

  5. Achievement report for fiscal 1976 on Sunshine Program. Technology assessment of hydrogen energy technologies III; 1976 nendo suiso energy gijutsu no technology assessment. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-31

    This report contains the ultimate results of the 3-year research endeavor on 'Technology assessment of hydrogen energy technologies.' The scientists engaged in the project express their impressions at the conclusion of the research, stating: 'In the development of hydrogen energy technologies, what is the most important at the present stage is to define the formation of the energy more clearly - in what shape or at what place - so that various activities in this connection will be organized.' They say also: 'Although the type of research effort of looking into technological possibilities is quite important naturally, yet such should been carried out with a sense of purpose which is definite and concrete.' Before what are stated above may be complied with, of course, systems for development have to be arranged allowing the scientists to act in the above-suggested way. This report consists of a general discussion part and an itemized discussion part. The former summarizes the intention, aim, premise, contents, findings, opinions, etc., concerning the research work; and the latter carries a gist of the 'Hydrogen energy system concept (draft)' which constitutes the foundation on which the above-mentioned details are discussed in the former. (NEDO)

  6. Energy systems and technologies for the coming century. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L; Larsen, Hans [eds.

    2011-05-15

    Risoe International Energy Conference 2011 took place 10 - 12 May 2011. The conference focused on: 1) Future global energy development options, scenarios and policy issues. 2) Intelligent energy systems of the future, including the interaction between supply and end-use. 3) New and emerging technologies for the extended utilisation of sustainable energy. 4) Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal. 5) Centralised energy production technologies such as clean coal technologies, CCS and nuclear. 6) Renewable energy for the transport sector and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011. (Author)

  7. Development and demonstration of energy saving technologies in agriculture; Udvikling og demonstration af energibesparende teknologi til landbruget

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Joergen; Trenel, P.; Krogh Hansen, T.; Andersen, Mathias

    2010-07-01

    The energy consumption for agriculture is approx. 10% of the total corporate energy use in Denmark and is therefore a major source of total CO2 emission. This project aims to show that there is great potential for reducing energy use in agriculture. The project focused on saving energy in pig production, as this is the largest branch of production in farming and also the most energy consuming. The energy consumption in selected herds has been monitored with high accuracy making it possible to track down energy consumption, on system level, minute by minute. The energy consumption for light, ventilation and heating systems has been followed in various sections of different farms to compare the level of consumption. In the project 4 technologies were developed and tested. The results are: 1) Two new EC (electronically commuted) fans for livestock facilities makes it possible to reduce power consumption for ventilation with over 50% compared with frequency controlled fans; 2) An intelligent shelter for two climate stables was developed to regulate heat in the piglet pens. The system showed a 43% energy saving for heating compared to identical climate stables with normal floor heating; 3) An hour-based energy management system called Elspot was tested. The Elspot module can automatically activate and deactivate electrically powered equipment according to the energy price. The study found that farms can reduce their spending on electricity by 25% using the Elspot module on a feed mill; 4) A web interface for energy monitoring was designed specifically for farmers. This system makes it possible for farmers to monitor their energy consumption at and benchmark this against normative values or new technologies. The initial goal of the project was to develop and demonstrate solutions that could potentially reduce energy consumption in agriculture by 20%. Since the work was done only with energy saving technologies in livestock production, this corresponds to an energy

  8. The importance of advancing technology to America's energy goals

    International Nuclear Information System (INIS)

    Greene, D.L.; Boudreaux, P.R.; Dean, D.J.; Fulkerson, W.; Gaddis, A.L.; Graham, R.L.; Graves, R.L.; Hopson, J.L.; Hughes, P.; Lapsa, M.V.; Mason, T.E.; Standaert, R.F.; Wilbanks, T.J.; Zucker, A.

    2010-01-01

    A wide range of energy technologies appears to be needed for the United States to meet its energy goals. A method is developed that relates the uncertainty of technological progress in eleven technology areas to the achievement of CO 2 mitigation and reduced oil dependence. We conclude that to be confident of meeting both energy goals, each technology area must have a much better than 50/50 probability of success, that carbon capture and sequestration, biomass, battery electric or fuel cell vehicles, advanced fossil liquids, and energy efficiency technologies for buildings appear to be almost essential, and that the success of each one of the 11 technologies is important. These inferences are robust to moderate variations in assumptions.

  9. A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options

    International Nuclear Information System (INIS)

    Kikuchi, Yasunori; Kimura, Seiichiro; Okamoto, Yoshitaka; Koyama, Michihisa

    2014-01-01

    Highlights: • Energy flow model was represented as the functionals of technology options. • Relationships among available technologies can be visualized by developed model. • Technology roadmapping can be incorporated into the model as technical scenario. • Combination of technologies can increase their contribution to the environment. - Abstract: The design of energy systems has become an issue all over the world. A single optimal system cannot be suggested because the availability of infrastructure and resources and the acceptability of the system should be discussed locally, involving all related stakeholders in the energy system. In particular, researchers and engineers of technologies related to energy systems should be able to perform the forecasting and roadmapping of future energy systems and indicate quantitative results of scenario analyses. We report an energy flow model developed for analysing scenarios of future Japanese energy systems implementing a variety of feasible technology options. The model was modularized and represented as functionals of appropriate technology options, which enables the aggregation and disaggregation of energy systems by defining functionals for single technologies, packages integrating multi-technologies, and mini-systems such as regions implementing industrial symbiosis. Based on the model, the combinations of technologies on both energy supply and demand sides can be addressed considering not only the societal scenarios such as resource prices, economic growth and population change but also the technical scenarios including the development and penetration of energy-related technologies such as distributed solid oxide fuel cells in residential sectors and new-generation vehicles, and the replacement and shift of current technologies such as heat pumps for air conditioning and centralized power generation. The developed model consists of two main modules; namely, a power generation dispatching module for the

  10. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  11. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  12. Research, development and demonstration on energy technologies for the United Kingdom

    International Nuclear Information System (INIS)

    1980-02-01

    The subject is covered in sections, entitled: introduction -the general energy situation (global aspects); the UK's needs for energy R, D and D (relative importance to the UK of R, D and D on different energy technologies including nuclear power); energy conservation R, D and D; R, D and D on the supply and use of conventional fuels (including nuclear fuels); R, D and D on renewable energy sources; the national strategy for energy R, D and D. (U.K.)

  13. Innovation in nuclear energy technology

    International Nuclear Information System (INIS)

    Dujardin, Th.; Bertel, E.; Kwang Seok, Lee; Foskolos, K.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its sustainable future. Many research and development programmes focus on enhancing the performance of power plants in operation, current fuel design and characteristics, and fuel cycle processes used in existing facilities. Generally performed under the leadership of the industry. Some innovation programmes focus on evolutionary reactors and fuel cycles, derived from systems of the current generation. Such programmes aim at achieving significant improvements, in the field of economics or resource management for example, in the medium term. Often, they are undertaken by the industry with some governmental support as they require basic research together with technological development and adaptation. Finally, large programmes, often undertaken in an international, intergovernmental framework are devoted to design and development of a new generation of systems meeting the goals of sustainable development in the long term. Driving forces for nuclear innovation vary depending on the target technology, the national framework and the international context surrounding the research programme. However, all driving factors can be grouped in three categories: market drivers, political drivers and technology drivers. Globally, innovation in the nuclear energy sector is a success story but is a lengthy process that requires careful planning and adequate funding to produce successful outcomes

  14. Structured Innovation of High-Performance Wave Energy Converter Technology: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jochem W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laird, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-25

    Wave energy converter (WEC) technology development has not yet delivered the desired commercial maturity nor, and more importantly, the techno-economic performance. The reasons for this have been recognized and fundamental requirements for successful WEC technology development have been identified. This paper describes a multi-year project pursued in collaboration by the National Renewable Energy Laboratory and Sandia National Laboratories to innovate and develop new WEC technology. It specifies the project strategy, shows how this differs from the state-of-the-art approach and presents some early project results. Based on the specification of fundamental functional requirements of WEC technology, structured innovation and systemic problem solving methodologies are applied to invent and identify new WEC technology concepts. Using Technology Performance Levels (TPL) as an assessment metric of the techno-economic performance potential, high performance technology concepts are identified and selected for further development. System performance is numerically modelled and optimized and key performance aspects are empirically validated. The project deliverables are WEC technology specifications of high techno-economic performance technologies of TPL 7 or higher at TRL 3 with some key technology challenges investigated at higher TRL. These wave energy converter technology specifications will be made available to industry for further, full development and commercialisation (TRL 4 - TRL 9).

  15. High Penetration Photovoltaic Power Electronics and Energy Management Technology Research, Development and Demonstration: Cooperative Research and Development Final Report, CRADA Number CRD-13-517

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-25

    Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.

  16. New energy technologies part 2, storage and low emission technologies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.

    2007-01-01

    After a first volume devoted to renewable energy sources, this second volume follows the first one and starts with a detailed presentation of energy storage means and technologies. This first chapter is followed by a prospective presentation of innovative concepts in the domain of nuclear energy. A detailed analysis of cogeneration systems, which aim at optimizing the efficiency of heat generation facilities by the adjunction of a power generation unit, allows to outline the advantages and limitations of this process. The next two chapters deal with the development of hydrogen industry as energy vector and with its application to power generation using fuel cells in several domains of use. Content: - forewords: electric power, the new paradigm, the decentralized generation, the energy conversion means; - chapter 1: energy storage, applications in relation with the electricity vector (energy density, storage problems, storage systems); - chapter 2: nuclear fission today and tomorrow, from rebirth to technological jump (2006 energy green book, keeping all energy options opened); nuclear energy in the world: 50 years of industrial experience; main actors: common needs, international vision and strategic instruments; at the eve of a technological jump: research challenges and governmental initiatives; generation 2 (today): safety of supplies and respect of the environment; generation 3 (2010): rebirth with continuous improvements; generation 4 (2040): technological jump to satisfy new needs; education and training: general goals; conclusion: nuclear power as part of the solution for a sustainable energy mix; - chapter 3: cogeneration (estimation of cogeneration potential, environmental impact, conclusions and perspectives); - chapter 4: hydrogen as energy vector (context, energy vector of the future, hydrogen generation, transport, distribution and storage; applications of hydrogen-energy, risks, standards, regulations and acceptability; hydrogen economics; hydrogen

  17. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  18. Risoe energy report 6. Future options for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L [eds.

    2007-11-15

    Fossil fuels provide about 80% of the global energy demand, and this will continue to be the situation for decades to come. In the European Community we are facing two major energy challenges. The first is sustainability, and the second is security of supply, since Europe is becoming more dependent on imported fuels. These challenges are the starting point for the present Risoe Energy Report 6. It gives an overview of the energy scene together with trends and emerging energy technologies. The report presents status and trends for energy technologies seen from a Danish and European perspective from three points of view: security of supply, climate change and industrial perspectives. The report addresses energy supply technologies, efficiency improvements and transport. The report is volume 6 in a series of reports covering energy issues at global, regional and national levels. The individual chapters of the report have been written by staff members from the Technical University of Denmark and Risoe National Laboratory together with leading Danish and international experts. The report is based on the latest research results from Risoe National Laboratory, Technical University of Denmark, together with available internationally recognized scientific material, and is fully referenced and refereed by renowned experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, funding organizations, the Danish government and international organizations including the European Union, the International Energy Agency and the United Nations. (au)

  19. Technology assessment of solar energy utilization

    Science.gov (United States)

    Jaeger, F.

    1985-11-01

    The general objectives and methods of Technology Assessment (TA) are outlined. Typical analysis steps of a TA for solar energy are reviewed: description of the technology and its further development; identification of impact areas; analysis of boundary conditions and definition of scenarios; market penetration of solar technologies; projection of consequences in areas of impact; and assessment of impacts and identification of options for action.

  20. NEDO's white paper on renewable energy technologies; Livre blanc de la NEDO sur les technologies des energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This document proposes a synthesis of a 'white paper' published by the Japanese institution NEDO (New Energy and Industrial Technology Development Organization) on the development of technologies in the field of renewable energies. For the various considered energies, this report gives indications of the world market recent evolutions, of Japanese productions and objectives in terms of productions and costs. The different energies treated in this report are: solar photovoltaic, wind, biomass, solar thermal, waves, seas, hydraulic, geothermal, hot springs, snow and ice, sea currents, electricity production by thermo-electrical effect or by piezoelectric modules, reuse of heat produced by factories, use of the thermal gradient between air and water, intelligent communities and networks

  1. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  2. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    Science.gov (United States)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  3. Renewable energy technology acceptance in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Kardooni, Roozbeh; Yusoff, Sumiani Binti; Kari, Fatimah Binti

    2016-01-01

    Despite various policies, renewable energy resources have not been developed in Malaysia. This study investigates the factors that influence renewable energy technology acceptance in Peninsular Malaysia and attempts to show the impact of cost and knowledge on the perceived ease of use and perceived usefulness of renewable energy technology. The results show that cost of renewable energy has an indirect effect on attitudes towards using renewable energy through the associated impact on the perceived ease of use and perceived usefulness. The results also indicate that public knowledge in Peninsular Malaysia does not affect perceived ease of use, although the positive impact of knowledge on perceived usefulness is supported. Furthermore, our results show that the current business environment in Peninsular Malaysia does not support the adoption of renewable energy technology, and thus, renewable energy technology is not commercially viable in Peninsular Malaysia. Additionally, the population of Peninsular Malaysia associates the use of renewable energy with a high level of effort and therefore has a negative attitude towards the use of renewable energy technology. There is, therefore, a definite need to pay more attention to the role of public perception and awareness in the successes and failures of renewable energy policy. - Highlights: • Public acceptance is an essential element in the diffusion of renewable energy. • Perceived ease of use and perceived usefulness affect intention to use renewables. • It is important to reduce the cost of renewable energy, particularly for end users. • Renewable energy policies should address issues of public perception and awareness.

  4. Environmental regulation and the export dynamics of energy technologies

    International Nuclear Information System (INIS)

    Costantini, Valeria; Crespi, Francesco

    2008-01-01

    The pollution haven hypothesis affirms that an open market regime will encourage the flow of low-technology polluting industries towards developing countries because of potential comparative advantages related to low environmental standards. In contrast, the hypothesis suggested by Porter and van der Linde claims that innovating firms operate in a dynamic competitive situation which allows global diffusion of environmental-friendly technologies. Environmental regulation may represent a relevant mechanism through which technological change is induced. In this way, countries that are subject to more stringent environmental regulations may become net exporters of environmental technologies. This paper provides new evidence on the evolution of export flows of environmental technologies across different countries for the energy sector. Advanced economies, particularly the European Union, have increasingly focused on the role of energy policies as tools for sustaining the development path. The Kyoto Protocol commitments, together with growing import dependence on energy products, have brought attention to the analysis of innovation processes in this specific sector. The analysis uses a gravity model in order to test the determinants and the transmission channels through which environmental technologies for renewable energies and energy efficiency are exported to advanced and developing countries. Our results are consistent with the Porter and van der Linde hypothesis where environmental regulation represents a significant source of comparative advantages. What strongly emerges is that the stringency of environmental regulation supplemented by the strength of the National Innovation System is a crucial driver of export performance in the field of energy technologies. (author)

  5. Survey on construction of the database for new energy technology development. Cogeneration; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the activity promoting use of new energy, the data related to cogeneration were systematically compiled. For new energy technology, such various policies for introducing new energy are in promotion with a progress of technological development as preparation of subsidy systems, field test business, and support advisory business for introducing new energy. For further effective promotion, integral systematic compilation of various data, and arrangement as basic data are necessary. Such latest announced data in a cogeneration field were collected and compiled as outline of new energy systems, concrete applications, subsidy systems, and approaches to new energy of various countries. Main data items are as follows: trend of cogeneration, outline of system, domestic and foreign concrete applications, prediction data on the use of new energy, overview of domestic and foreign policies for cogeneration, basic terminology, and tables of main related enterprises and organizations. This database is useful for the present activities promoting use of new energy, and preparation of the future vision. 29 figs., 33 tabs.

  6. Renewable energy strategies for sustainable development

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    This paper discusses the perspective of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development. Such strategies typically involve three major technological changes: energy savings on the demand side, efficiency improvements in the energy...... production, and replacement of fossil fuels by various sources of renewable energy. Consequently, large-scale renewable energy implementation plans must include strategies of how to integrate the renewable sources in coherent energy systems influenced by energy savings and efficiency measures. Based...... on the case of Denmark, this paper discusses the problems and perspectives of converting present energy systems into a 100 percent renewable energy system. The conclusion is that such development will be possible. The necessary renewable energy sources are present, if further technological improvements...

  7. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  8. Household appliances using solar energy technology

    International Nuclear Information System (INIS)

    Gul, H.

    2000-01-01

    Many solar energy technologies are now sufficiently developed to make it possible to use these to replace some of our conventional energy sources, but still need improvement and reduction in cost. It is, therefore, necessary to focus attention on household uses of solar energy. This paper describes the recent developments and current position in respect of several such devices, which include; solar cooker, with curved concentrator, Panel Cooker, Solar Dryer, solar water heater, Solar Still, Solar Water Pump, Solar Water Disinfection, Solar space Heating and greenhouse solar Reflectors, Development and Extension activities on these should be taken up at various levels. (author)

  9. Optimal policy of energy innovation in developing countries: Development of solar PV in Iran

    International Nuclear Information System (INIS)

    Shafiei, Ehsan; Saboohi, Yadollah; Ghofrani, Mohammad B.

    2009-01-01

    The purpose of this study is to apply managerial economics and methods of decision analysis to study the optimal pattern of innovation activities for development of new energy technologies in developing countries. For this purpose, a model of energy research and development (R and D) planning is developed and it is then linked to a bottom-up energy-systems model. The set of interlinked models provide a comprehensive analytical tool for assessment of energy technologies and innovation planning taking into account the specific conditions of developing countries. An energy-system model is used as a tool for the assessment and prioritization of new energy technologies. Based on the results of the technology assessment model, the optimal R and D resources allocation for new energy technologies is estimated with the help of the R and D planning model. The R and D planning model is based on maximization of the total net present value of resulting R and D benefits taking into account the dynamics of technological progress, knowledge and experience spillovers from advanced economies, technology adoption and R and D constraints. Application of the set of interlinked models is explained through the analysis of the development of solar PV in Iranian electricity supply system and then some important policy insights are concluded

  10. Solar energy for buildings: clean energies utilisation and development

    International Nuclear Information System (INIS)

    Omer, Abdeen M.

    2015-01-01

    The move towards a de-carbonized world, driven partly by climate science and partly by the business opportunities it offers, will need the promotion of environmentally friendly alternatives, if an acceptable stabilization level of atmospheric carbon dioxide is to be achieved. This requires the harnessing and use of natural resources that produce no air pollution or greenhouse gases and provides comfortable coexistence of human, livestock, and plants. This article presents a comprehensive review of energy sources, and the development of sustainable technologies to explore these energy sources. It also includes potential renewable energy technologies, efficient energy systems, energy savings techniques and other mitigation measures necessary to reduce climate changes. The article concludes with the technical status of the ground source heat pumps (GSHP) technologies. (full text)

  11. Impact of the technological change on energy technology. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H

    1976-01-01

    The development of electrical engineering, and its contribution and importance to energy supply are briefly reviewed. Starting with the specific characteristics of electric current as an energy carrier, the close interaction between possibilities for using electric power and innovations in the field of equipment production are explained and illustrated with examples. Further, it is shown how progress in other disciplines influence the technological development of electric power generation, tansmission, distribution, and use.

  12. Electrical Power and Illumination Systems. Energy Technology Series.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electrical power and illumination systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  13. Energy Technology Initiatives - Implementation Through Multilateral Co-operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    New technologies will be critical in addressing current global energy challenges such as energy security. More must be done, however, to push forward the development and deployment of the technologies we need today and will need in the future. Government leaders have repeatedly underlined the crucial role of industry and businesses in advancing energy technologies and the importance of strong collaboration among all stakeholders to accelerate technology advances. To attain these goals, increased co-operation between industries, businesses and government energy technology research is indispensable. The public and private sectors must work together, share burdens and resources, while at the same time multiplying results and outcomes. The 42 multilateral technology initiatives (Implementing Agreements) supported by the IEA are a flexible and effective framework for IEA member and non-member countries, businesses, industries, international organisations and non-government organisations to research breakthrough technologies, to fill existing research gaps, to build pilot plants, to carry out deployment or demonstration programmes -- in short to encourage technology-related activities that support energy security, economic growth and environmental protection. This publication highlights the significant accomplishments of the IEA Implementing Agreements.

  14. Development and demonstration of treatment technologies for the processing of US Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Berry, J.B.; Bloom, G.A.; Kuchynka, D.J.

    1994-01-01

    Mixed waste is defined as waste contaminated with chemically hazardous (governed by the Resource Conservation and Recovery Act) and radioactive species [governed by US Department of Energy (DOE) orders]. The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. The Program also provides a forum for stakeholder and customer involvement in the technology development process. MWIP is composed of six technical areas that support a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas is described in this paper

  15. Energy research and technology in Bavaria; Energieforschung und -technologie in Bayern

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The intensification of research and development of new energy conversion technologies contribute significantly to the energy supply. In particular, the research and development in the fields of power generation, energy supply, energy conservation and efficient use of energy in buildings and production processes, innovation in grids and infrastructure as well as improved, promoted innovative storage technologies are intensively reported. This brochure shows how the research and development have an important contribution to the success of the energy policy tunaround in Bavaria.

  16. FY 2000 report on the results of the development of the environmentally friendly type high efficiency energy utilization system. Part 2. Study of the effective utilization technology of high efficiency energy (Study of the optimum system design technology); 2000 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The paper conducted the development of the environmentally friendly type high efficiency energy utilization system and the R and D of the high efficiency energy effective utilization technology, and the FY 2000 results were summed up. As to the energy transportation/storage technology, the R and D were made on the following: methanol/energy system, non-equilibrium high efficiency methanol decomposition reaction technology, development of multiple functions of catalyst, high efficiency heat pump technology using hydrogen storage alloys, heat-hydrogen recovery/transportation/utilization technology, vacuum insulated heat transport piping system, surfactant used for high density heat transport, high density latent heat transportation technology, etc. Concerning the energy supply/utilization technology, the R and D were made of the heat supply system using high efficient heat pump corresponding to multiple fuels. Relating to the environmental load reduction technology, the energy conserved heat pump system using natural coolant. As to the optimum system design technology, the comprehensive preparation of element technology, etc. (NEDO)

  17. Technology diffusion of energy-related products in residential markets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  18. Sustainable development and energy indicators

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan

    2002-01-01

    Starting from the basic definition of sustainable development and its four dimensions, the role of indicators for sustainable energy development is analysed. In particular, it is shown that important energy efficiency indicators belong in fact to energy supply efficiency, while the end-use energy efficiency could be more pertinently represented by energy intensity indicators. Furthermore, the negentropic effects of science and technology related sustainable energy scenarios are pointed out. Finally, the sustainable development is related to wisdom, interpreted as a sum of knowledge, morality and timing. (Author)

  19. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  20. Technology Teachers' Attitudes toward Nuclear Energy and Their Implications for Technology Education

    Science.gov (United States)

    Lee, Lung-Sheng; Yang, Hsiu-Chuan

    2013-01-01

    The purpose of this paper was to explore high-school (grades 10-12) technology teachers' attitudes toward nuclear energy and their implications to technology education. A questionnaire was developed to solicit 323 high-school technology teachers' responses in June 2013 and 132 (or 41%) valid questionnaires returned. Consequently, the following…

  1. A technology developed at CERN captures the sun's energy

    CERN Multimedia

    Alizée Dauvergne

    2010-01-01

    A civil-engineering company has recently started using thermal solar panels based on ultra-high vacuum technology developed at CERN. By efficiently preventing heat loss, the technology allows water to be heated to several hundred degrees, even in a temperate climate.   The field of solar panels using technology developed at CERN. On Tuesday 15 June the Geneva branch of the civil-engineering company Colas opened a new solar power plant based on ultra-high vacuum technology developed at CERN. Measuring a total of 80 square metres, the environmentally friendly "solar field" heats close to 80,000 litres of bitumen to 180 degrees. "To be able to reach such a high temperature, I drew on the ultra-high vacuum technologies I learned about at CERN", explains Cristoforo Benvenuti, who invented the panels. The ultra-high vacuum is what makes these solar panels so innovative. "It's very attractive because it minimises heat loss", continues Benvenuti. &...

  2. Scenarios for a Clean Energy Future: Interlaboratory Working Group on Energy-Efficient and Clean-Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2000-12-18

    This study estimates the potential for public policies and R and D programs to foster clean energy technology solutions to the energy and environmental challenges facing the nation. These challenges include global climate change, air pollution, oil dependence, and inefficiencies in the production and use of energy. The study uses a scenario-based approach to examine alternative portfolios of public policies and technologies. Although the report makes no policy recommendations, it does present policies that could lead to impressive advances in the development and deployment of clean energy technologies without significant net economic impacts. Appendices are available electronically at: www.nrel.gov/docs/fy01osti/29379appendices.pdf (6.4 MB).

  3. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  4. Current technological trends in development of NPP systems

    International Nuclear Information System (INIS)

    Florescu, Gheorghe; Panaitescu, Valeriu

    2010-01-01

    The recent nuclear research issues look for new technologies and continuous progress in finding different and efficient solutions for sustained and upraising energy demand. The trend of increasing energy consumption and occurring of new and large consumers, especially from Asian countries, imposes finding of new means for clean, large scale and sustained energy production. NPPs availability was continuously monitored and improved; at the same time the safety of the nuclear energy production was under surveillance. The present development of the new technologies, the discoveries of new materials and development of efficient technological processes offer the opportunities for their appropriate implementation and use in the NPP system configurations and functioning/operation. The new technologies and scientific discoveries, and also the international cooperation, offer the opportunities to mitigate the actual barriers in order to cumulate and use advanced energy production, to find new energy sources and to build improved, reliable and safe power plants. The monitoring systems, intelligent sensors and SSCs, nanotechnologies and new/intelligent materials constitute the main ways for improvement of the NPP systems configuration and processes. The paper presents: - The state of the art in the level of the currently applied technologies for nuclear power systems development; - The actual technological limits that need to be over passed for improving the NPP systems ; - The main systems that need improvement and reconfiguration for development of currently operating NPPs as well as raising the operation efficiency, availability and total safety; - The actual energy production issues; - The key arguments in sustaining the R and D new NPP systems development; - Future trends in NPP development; - The limitations in industrial processes knowledge and use. Appropriate R and D in the field of NPP systems have specific characteristics that were considered in paper completion

  5. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  6. Tribology: research and development needs in advanced energy technology

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1977-01-01

    Poorly controlled wear and friction affects energy conservation, material conservation, and the reliability and safety of mechanical systems, and is estimated to cost U.S. industries $16 billion/yr. ERDA's National Friction, Wear, and Self-Welding Program and its accomplishments are described. This program includes studies of wear and friction problems in high temperature and unusual environments, e.g., as experienced by LMFBR components, and common to much technology involving energy conversion using fossil-fuel, geothermal, nuclear, and solar resources. Program activities for tribology information handling and wear and friction testing are discussed

  7. Quarterly Report to the New Energy and Industrial Technology Development Organization, Washington, D.C., by Analysis Review and Critique, dated August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-31

    The solar energy programs of the Sacramento, California, Municipal Utility District, Department of Energy local assistance programs, and United States Government energy efficiency assistance for lesser developed countries are reported. The Sacramento solar energy program aims to save 800MW by energy conservation efforts and to supply 400MW by solar and other advanced energy technologies. Its solar energy program in 1992 comprises four elements: solar domestic water heating implementation, solar buildings, solar cooling, and solar electric power. The Office of Technical and Financial Assistance of the Department of Energy supports local governments, industries, and energy-oriented institutions in energy conservation and renewable energy technologies. The aim is to accelerate commercialization of these technologies by expanding and using local networks. A report is made on organizations, programs, and appropriations for helping less developed countries improve on energy efficiency. (NEDO)

  8. Renewable energies for the South. New support for clean energy investment in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W; Schmitz-Borchert, H P [eds.

    2001-07-01

    At the beginning of the 21st century there are still more than two billion people in the world without access to electricity and basic energy services. 'Energy poverty' impedes sustainable economic, social and environmental development of rural areas in developing countries. Large-scale diffusion of renewable energy technologies can help to overcome this situation. Major barriers are now beginning to be removed. This volume is the result of an international symposium on 'Renewable Energies for the South', held at the Science Park Gelsenkirchen, Gelsenkirchen/Germany. In took place on June 5-6, 2000 with more than 200 participants from 27 countries. The conference aimed at enhancing the dialogue between the multiple groups and actors involved in the development, transfer and application of renewable energy technologies. The following issues are covered in this book: - technology needs and framework conditions in developing countries - appropriate renewable energy technologies - financing renewable energy investment - capacity building and training programmes. (orig.)

  9. Renewable energies for the South. New support for clean energy investment in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W.; Schmitz-Borchert, H.P. (eds.)

    2001-07-01

    At the beginning of the 21st century there are still more than two billion people in the world without access to electricity and basic energy services. 'Energy poverty' impedes sustainable economic, social and environmental development of rural areas in developing countries. Large-scale diffusion of renewable energy technologies can help to overcome this situation. Major barriers are now beginning to be removed. This volume is the result of an international symposium on 'Renewable Energies for the South', held at the Science Park Gelsenkirchen, Gelsenkirchen/Germany. In took place on June 5-6, 2000 with more than 200 participants from 27 countries. The conference aimed at enhancing the dialogue between the multiple groups and actors involved in the development, transfer and application of renewable energy technologies. The following issues are covered in this book: - technology needs and framework conditions in developing countries - appropriate renewable energy technologies - financing renewable energy investment - capacity building and training programmes. (orig.)

  10. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies

    International Nuclear Information System (INIS)

    Amirante, Riccardo; Cassone, Egidio; Distaso, Elia; Tamburrano, Paolo

    2017-01-01

    Highlights: • World energy demand is analyzed. • Promising energy storage systems are shown to explore their potentials. • Different storage are considered and compared. • The efficiency and costs of each are shown. • Easy guidelines for selection of energy storage are provided. - Abstract: Energy production is changing in the world because of the need to reduce greenhouse gas emissions, to reduce the dependence on carbon/fossil sources and to introduce renewable energy sources. Despite the great amount of scientific efforts, great care to energy storage systems is necessary to overcome the discontinuity in the renewable production. A wide variety of options and complex characteristic matrices make it difficult and so in this paper the authors show a clear picture of the available state-of-the-art technologies. The paper provides an overview of mechanical, electrochemical and hydrogen technologies, explaining operation principles, performing technical and economic features. Finally a schematic comparison among the potential utilizations of energy storage systems is presented.

  11. The renewable energy development framework - II. The foundations of renewable energy development: Economic foundations of renewable energies; International foundations of renewable energies; European foundations of renewable energy development; Foundations of renewable energy development in internal law

    International Nuclear Information System (INIS)

    Combes Motel, Pascale; Thebaut, Matthieu; Loic Grard; Michallet, Isabelle

    2012-01-01

    A first article analysis the reasons for the development of renewable energies (economic and environmental reasons, European commitments in terms of production objectives), how these renewable energies can be developed (acceptation by the population, administrative, technological, and financial constraints, political instruments related to market, taxes and purchase prices). A second article proposes a discussion about the way international law deals with renewable energies as far as texts as well as actors are concerned. The third article describes the European ambitions regarding renewable energies as a product of national perspectives (national action plans and projects) as well as of European perspectives (financing, integrated actions). The last article presents and comments various legal texts dealing with the development of renewable energies in France (texts concerning the right to energy, the environment law, planning tools, incentive measures)

  12. Measures of International Manufacturing and Trade of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David; Mann, Margaret

    2017-05-25

    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metrics for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.

  13. Sustainable electric energy supply by decentralized alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, A., E-mail: Ahmad.Zahedi@jcu.edu.au [James Cook University, Queensland (Australia). School of Engineering and Physical Sciences

    2010-07-01

    The most available and affordable sources of energy in today's economic structure are fossil fuels, namely, oil, gas, and coal. Fossil fuels are non-renewable, have limited reserves, and have serious environmental problems associated with their use. Coal and nuclear energy are used in central and bulky power stations to produce electricity, and then this electricity is delivered to customers via expensive transmission lines and distribution systems. Delivering electric power via transmission and distribution lines to the electricity users is associated with high electric power losses. These power losses are costly burdens on power suppliers and users. One of the advantages of decentralized generation (DG) is that DG is capable of minimizing power losses because electric power is generated at the demand site. The world is facing two major energy-related issues, short term and long term. These issues are (i) not having enough and secure supplies of energy at affordable prices and (ii) environmental damages caused by consuming too much energy in an unsustainable way. A significant amount of the current world energy comes from limited resources, which when used, cannot be replaced. Hence the energy production and consumption do not seem to be sustainable, and also carries the threat of severe and irreversible damages to the environment including climate change.The price of energy is increasing and there are no evidences suggesting that this trend will reverse. To compensate for this price increase we need to develop and use high energy efficient technologies and focusing on energy technologies using renewable sources with less energy conversion chains, such as solar and wind. The world has the potential to expand its capacity of clean, renewable, and sustainable energy to offset a significant amount of greenhouse gas emissions from conventional power use. The increasing utilization of alternative sources such as hydro, biomass, geothermal, ocean energy, solar and

  14. The constraints in managing a transition towards clean energy technologies in developing nations: reflection on energy governance and alternative policy options.

    NARCIS (Netherlands)

    Thiam, D.R.; Moll, H.C.

    2012-01-01

    The purpose of this paper is to provide a conceptual framework stimulating a sustainable energy transition in developing nations. Based on the existing literature, we first index theoretical factors preventing deployment of low carbon technologies. After having identified these factors, we provide

  15. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  16. New energy technologies report

    International Nuclear Information System (INIS)

    2004-01-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  17. Robotics Technology Development Program Cross Cutting and Advanced Technology

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Horschel, D.S.

    1994-01-01

    Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy's complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems

  18. Demonstration of EnergyNest thermal energy storage (TES) technology

    Science.gov (United States)

    Hoivik, Nils; Greiner, Christopher; Tirado, Eva Bellido; Barragan, Juan; Bergan, Pâl; Skeie, Geir; Blanco, Pablo; Calvet, Nicolas

    2017-06-01

    This paper presents the experimental results from the EnergyNest 2 × 500 kWhth thermal energy storage (TES) pilot system installed at Masdar Institute of Science & Technology Solar Platform. Measured data are shown and compared to simulations using a specially developed computer program to verify the stability and performance of the TES. The TES is based on a solid-state concrete storage medium (HEATCRETE®) with integrated steel tube heat exchangers cast into the concrete. The unique concrete recipe used in the TES has been developed in collaboration with Heidelberg Cement; this material has significantly higher thermal conductivity compared to regular concrete implying very effective heat transfer, at the same time being chemically stable up to 450 °C. The demonstrated and measured performance of the TES matches the predictions based on simulations, and proves the operational feasibility of the EnergyNest concrete-based TES. A further case study is analyzed where a large-scale TES system presented in this article is compared to two-tank indirect molten salt technology.

  19. Uncertainty in the learning rates of energy technologies. An experiment in a global multi-regional energy system model

    International Nuclear Information System (INIS)

    Rout, Ullash K.; Blesl, Markus; Fahl, Ulrich; Remme, Uwe; Voss, Alfred

    2009-01-01

    The diffusion of promising energy technologies in the market depends on their future energy production-cost development. When analyzing these technologies in an integrated assessment model using endogenous technological learning, the uncertainty in the assumed learning rates (LRs) plays a crucial role in the production-cost development and model outcomes. This study examines the uncertainty in LRs of some energy technologies under endogenous global learning implementation and presents a floor-cost modeling procedure to systematically regulate the uncertainty in LRs of energy technologies. The article narrates the difficulties of data assimilation, as compatible with mixed integer programming segmentations, and comprehensively presents the causes of uncertainty in LRs. This work is executed using a multi-regional and long-horizon energy system model based on 'TIMES' framework. All regions receive an economic advantage to learn in a common domain, and resource-ample regions obtain a marginal advantage for better exploitation of the learning technologies, due to a lower supply-side fuel-cost development. The lowest learning investment associated with the maximum LR mobilizes more deployment of the learning technologies. The uncertainty in LRs has an impact on the diffusion of energy technologies tested, and therefore this study scrutinizes the role of policy support for some of the technologies investigated. (author)

  20. Key energy technologies for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO{sub 2} capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  1. Key energy technologies for Europe

    International Nuclear Information System (INIS)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO 2 capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  2. Research and development of grid computing technology in center for computational science and e-systems of Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2007-01-01

    Center for Computational Science and E-systems of the Japan Atomic Energy Agency (CCSE/JAEA) has carried out R and D of grid computing technology. Since 1995, R and D to realize computational assistance for researchers called Seamless Thinking Aid (STA) and then to share intellectual resources called Information Technology Based Laboratory (ITBL) have been conducted, leading to construct an intelligent infrastructure for the atomic energy research called Atomic Energy Grid InfraStructure (AEGIS) under the Japanese national project 'Development and Applications of Advanced High-Performance Supercomputer'. It aims to enable synchronization of three themes: 1) Computer-Aided Research and Development (CARD) to realize and environment for STA, 2) Computer-Aided Engineering (CAEN) to establish Multi Experimental Tools (MEXT), and 3) Computer Aided Science (CASC) to promote the Atomic Energy Research and Investigation (AERI). This article reviewed achievements in R and D of grid computing technology so far obtained. (T. Tanaka)

  3. Quarterly Report to the New Energy and Industrial Technology Development Organization, Washington, D.C., by Analysis Review and Critique. Report No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-01-30

    The history of the US Federal Government programs on research and development of renewable energy and the status of development as of 1990 are stated. Described are the fields in which funds have been invested, objectives and goals of development, and the levels of efforts dedicated to development. Special remarks involve the US Department of Energy and its activities. First, policy and philosophy of the recovery energy programs and general objectives are summarized. Trends in the Federal Government budget and the basic system of the Department of Energy are also shown. Next, seven programs which respectively cover solar buildings (passive/active solar heating/cooling), solar thermal, wind energy, biofuels and municipal waste, ocean energy, geothermal energy, and photovoltaics are described. Every one of the seven programs consists of the background (technology, effect of energy), industry status, program goal and objective, budget (especially for main technology development), priority and future direction, and an appendix. (NEDO)

  4. Energy and technology review

    International Nuclear Information System (INIS)

    Quirk, W.J.; Bookless, W.A.

    1994-05-01

    The Lawrence Livermore National Laboratory, operated by the University of California for the United States Department of Energy, was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, in response to new national needs, we have added other major programs, including technology transfer, laser science (fusion, isotope separation, materials processing), biology and biotechnology, environmental research and remediation, arms control and nonproliferation, advanced defense technology, and applied energy technology. These programs, in turn, require research in basic scientific disciplines, including chemistry and materials science, computing science and technology, engineering, and physics. The Laboratory also carries out a variety of projects for other federal agencies. Energy and Technology Review is published monthly to report on unclassified work in all our programs. This issue reviews work performed in the areas of modified retoring for waste treatment and underground stripping to remove contamination

  5. Renewable Energy Development in Hermosa Beach, California

    Science.gov (United States)

    Morris, K.

    2016-12-01

    The City of Hermosa Beach, California, with the support of the AGU's TEX program, is exploring the potential for renewable energy generation inside the City, as part of the implementation of the City's 2015 Municipal Carbon Neutral Plan. Task 1: Estimate the technical potential of existing and future technologies Given the City's characteristics, this task will identify feasible technologies: wind, solar, tidal/wave, wastewater biogas, landfill biogas, microscale anaerobic digestion (AD), and complementary energy storage. Some options may be open to the City acting alone, but others will require working with municipal partners and private entities that provide services to Hermosa Beach (e.g., wastewater treatment). Energy storage is a means to integrate intermittent renewable energy output. Task 2: Review transaction types and pathways In this task, feasible technologies will be further examined in terms of municipal ordinances and contractual paths: (a) power purchase agreements (PPAs) with developers, under which the City would purchase energy or storage services directly; (b) leases with developers, under which the City would rent sites (e.g., municipal rooftops) to developers; (c) ordinances related to permitting, under which the City would reduce regulatory barriers to entry for developers; (d) pilot projects, under which the City would engage with developers to test new technologies such as wind/wave/microscale AD (pursuant to PPAs and/or leases); and (e) existing projects, under which the City would work with current wastewater and landfill contractors to understand (i) current plans to develop renewable energy, and (ii) opportunities for the City to work with such contractors to promote renewable energy. Task 3: Estimate costs by technology Finally, the last task will gather existing information about the costs, both current and projected, of the feasible technologies, including (i) overnight construction cost (capital); (ii) integration costs (e

  6. Green energy strategies for sustainable development

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim; Ay, Murat

    2006-01-01

    In this study we propose some green energy strategies for sustainable development. In this regard, seven green energy strategies are taken into consideration to determine the sectoral, technological, and application impact ratios. Based on these ratios, we derive a new parameter as the green energy impact ratio. In addition, the green energy-based sustainability ratio is obtained by depending upon the green energy impact ratio, and the green energy utilization ratio that is calculated using actual energy data taken from literature. In order to verify these parameters, three cases are considered. Consequently, it can be considered that the sectoral impact ratio is more important and should be kept constant as much as possible in a green energy policy implementation. Moreover, the green energy-based sustainability ratio increases with an increase of technological, sectoral, and application impact ratios. This means that all negative effects on the industrial, technological, sectoral and social developments partially and/or completely decrease throughout the transition and utilization to and of green energy and technologies when possible sustainable energy strategies are preferred and applied. Thus, the sustainable energy strategies can make an important contribution to the economies of the countries where green energy (e.g., wind, solar, tidal, biomass) is abundantly produced. Therefore, the investment in green energy supply and progress should be encouraged by governments and other authorities for a green energy replacement of fossil fuels for more environmentally benign and sustainable future

  7. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  8. Technology Road-map - Nuclear Energy. 2015 edition

    International Nuclear Information System (INIS)

    Houssin, Didier; Dujardin, Thierry; Cameron, Ron; Tam, Cecilia; Paillere, Henri; Baroni, Marco; Bromhead, Amos; Baritaud, Manual; Cometto, Marco; Gaghen, Rebecca; Herzog, Antoine; Remme, Uwe; Urso, Maria-Elena; Vance, Robert

    2015-01-01

    Since the release in 2010 of Technology Road-map: Nuclear Energy (IEA/NEA, 2010), a number of events have had a significant impact on the global energy sector and on the outlook for nuclear energy. They include the Fukushima Daiichi nuclear power plant (NPP) accident in March 2011, the global financial and economic crises that hit many industrialised countries during the period 2008-10 and failings in both electricity and CO 2 markets. Despite these additional challenges, nuclear energy still remains a proven low-carbon source of base-load electricity, and many countries have reaffirmed the importance of nuclear energy within their countries' energy strategies. To achieve the goal of limiting global temperature increases to just 2 deg. C by the end of the century, a halving of global energy-related emissions by 2050 will be needed. A wide range of low-carbon energy technologies will be needed to support this transition, including nuclear energy. This edition of the nuclear road-map prepared jointly by the IEA and NEA take into account recent challenges facing the development of this technology. The 2015 edition of the Nuclear Energy Technology Road-map aims to: Outline the current status of nuclear technology development and the need for additional R and D to address increased safety requirements and improved economics. Provide an updated vision of the role that nuclear energy could play in a low-carbon energy system, taking into account changes in nuclear policy in various countries, as well as the current economics of nuclear and other low-carbon electricity technologies. Identify barriers and actions needed to accelerate the development of nuclear technologies to meet the Road-map vision. Share lessons learnt and good practices in nuclear safety and regulation, front- and back-end fuel cycle practices, construction, decommissioning, financing, training, capacity building and communication. Key findings: Nuclear power is the largest source of low

  9. Energy Science and Technology Software Center

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, E.M.

    1995-03-01

    The Energy Science and Technology Software Center (ESTSC), is the U.S. Department of Energy`s (DOE) centralized software management facility. It is operated under contract for the DOE Office of Scientific and Technical Information (OSTI) and is located in Oak Ridge, Tennessee. The ESTSC is authorized by DOE and the U.S. Nuclear Regulatory Commission (NRC) to license and distribute DOE-and NRC-sponsored software developed by national laboratories and other facilities and by contractors of DOE and NRC. ESTSC also has selected software from the Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) through a software exchange agreement that DOE has with the agency.

  10. Energy Sector of Russia’s Far East in 2050 Perspective: Technological Aspect

    Directory of Open Access Journals (Sweden)

    Dyomina O. V.

    2012-06-01

    Full Text Available Advanced energy technologies are analyzed: energy generation from fossil fuels, energy production from renewable sources, and nuclear power industry in the world, in Russia and the Russian Far East. It is shown that the high provision with internal energy resources and high prices in the world energy markets hamper the development of energy technologies in Russia: research and development in the field of generation based on traditional and renewable energy sources are aimed at improving the facilities, reducing the unit cost and operating costs; global leadership is only possible in nuclear technology. Prospects for the use of energy technologies in the Russian Far East will be determined by the conditions of extraction of fossil fuels and the related energy production

  11. Risoe energy report 1. New and emerging technologies - options for the future

    International Nuclear Information System (INIS)

    Larsen, H.; Soenderberg Petersen, L.

    2002-10-01

    All over the world, increasing energy consumption, liberalisation of energy markets and the need to take action on climate change are producing new challenges for the energy sector. At the same time there is increasing pressure for research, new technology and industrial products to be socially acceptable and to generate prosperity. The result is a complex and dynamic set of conditions affecting decisions on investment in research and new energy technology. To meet these challenges in the decades ahead, industrialists and policymakers need appropriate analyse energy systems, plus knowledge of trends for existing technologies and prospects for emerging technologies. This is the background for this first Risoe Energy Report, which sets out the global, European and Danish energy scene together with trends in development and emerging technologies. The report is the first in a new series from Risoe National Laboratory. The global energy developments are presented based on the latest available information from authoritative sources like IEA, WEC, World Energy Assessment etc. Some of the major challenges are presented in terms of the changing energy markets in all regions, the focus on environmental concerns in the industrialised countries, and energy for development and access to energy for the poor in developing countries. The report presents the status of R and D in progress for supply technologies. The various technologies are assessed with respect to status, trends and perspectives for the technology, and international R and D plans. For the technologies where Risoe is undertaking R and D this is highlighted in a separate section. Recent studies of emerging energy technologies from international organisations and leading research organisations are reviewed. There are reviews of national research activities on new energy technologies in a number of countries as well as in Risoe National Laboratory. Conclusions for Danish energy supply, Danish industry, and Danish

  12. Sustainable energy development

    International Nuclear Information System (INIS)

    Afgan, N.; Al Gobaisi, D.; Carvalho, M.; Cumo, M.

    1998-01-01

    It is shown that present energy strategy requires adaptation of new criterions to be followed in the future energy system development. No doubt that there is a link between energy consumption and environment capacity reduction. This is an alarming sign, which recently has become the leading theme for our near and distant future. Modern engineering science has to be oriented to those areas which may directly assist in our future energy planning. In this respect, it is demanding need that our attention be oriented to the global aspect og the energy development. Modern technology will help to adopt essential principles of the sustainable energy development. With the appropriate renewable energy resources introduction in our energy future and with the increase of safety of nuclear energy, it will be possible to comply with the main principles to be adapted in the sustainable energy strategy. in order to promote the sustainable energy development the respective education system is required. It was recognized that the present energy education system can not meet future demand for the knowledge dissemination. It was shown that the potential option for the future education system is the distance learning with multimedia telematic system. (authors). 46 refs, 14 figs, 1 tab

  13. Quality assurance of underground energy storage. The development of a quality mark by Kiwa and IF Technology; Kwaliteitsborging ondergrondse energieopslag. Kiwa en IF Technology ontwikkelen een kwaliteitskeur

    Energy Technology Data Exchange (ETDEWEB)

    Bakema, G. [IF Technology, Arnhem (Netherlands); Veldhuizen, A.G. [KIWA Inspectie, Rijswijk (Netherlands)

    2005-12-01

    In the last few years the market for energy storage showed a strong development from an innovative technology to a demonstrated technology. In the coming years the number of energy storage systems will increase. Therefore, quality control and assurance will be necessary and the development of a quality mark is required. [Dutch] De markt voor energieopslag heeft de laatste jaren een sterke ontwikkeling doorgemaakt. De opslag van energie is doorgegroeid van een innovatieve technologie naar een bewezen techniek. De verwachting is dat het aantal systemen zich de komende jaren nog sterk zal gaan uitbreiden. Kwaliteitsborging is een logisch gevolg, en een kwaliteitskeur een eerste aanzet.

  14. Advanced energy systems and technologies (NEMO 2). Final report 1993-1998

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.; Konttinen, P. [eds.

    1998-12-31

    NEMO2 has been the major Finnish energy research programme on advanced energy systems and technologies during 1993-1998. The main objective of the programme has been to support industrial technology development but also to increase the utilisation of wind and solar energy in Finland. The main technology fields covered are wind and solar energy. In addition, the programme has supported projects on energy storage and other small-scale energy technologies such as fuel cells that support the main technology fields chosen. NEMO2 is one of the energy research programmes of the Technology Development Centre of Finland (TEKES). The total R and D funding over the whole programme period was FIM 130 million (ECU 22 million). The public funding of the total programme costs has been 43 %. The industrial participation has been strong. International co-operation has been an important aspect in NEMO2: the programme has stimulated 24 EU-projects and participation in several IEA co-operative tasks. International funding adds nearly 20 % to the NEMO2 R and D funding. (orig.)

  15. Advanced energy systems and technologies (NEMO 2). Final report 1993-1998

    International Nuclear Information System (INIS)

    Lund, P.; Konttinen, P.

    1998-01-01

    NEMO2 has been the major Finnish energy research programme on advanced energy systems and technologies during 1993-1998. The main objective of the programme has been to support industrial technology development but also to increase the utilisation of wind and solar energy in Finland. The main technology fields covered are wind and solar energy. In addition, the programme has supported projects on energy storage and other small-scale energy technologies such as fuel cells that support the main technology fields chosen. NEMO2 is one of the energy research programmes of the Technology Development Centre of Finland (TEKES). The total R and D funding over the whole programme period was FIM 130 million (ECU 22 million). The public funding of the total programme costs has been 43 %. The industrial participation has been strong. International co-operation has been an important aspect in NEMO2: the programme has stimulated 24 EU-projects and participation in several IEA co-operative tasks. International funding adds nearly 20 % to the NEMO2 R and D funding. (orig.)

  16. Technology data for energy plants

    Energy Technology Data Exchange (ETDEWEB)

    2010-06-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in March 2005. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The ambition of the present publication has been to reduce the level of inconsistency to a minimum without compromising the fact that the real world

  17. Wind energy development as a part of Poland's industrial development

    DEFF Research Database (Denmark)

    Stoerring, Dagmara; Hvelplund, Frede Kloster

    2003-01-01

    The paper concludes with recommendations on how to make wind energy development a part of the industrial development in Poland by introducing renewable energy support mechanisms to improve the conditions for companies to develop wind technology in Poland....

  18. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  19. Accelerating the Pace of Change in Energy Technologies Through an Integrated Federal Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-11-01

    In this report, the President’s Council of Advisors on Science and Technology (PCAST) calls for the development of a coordinated government-wide Federal energy policy. This will be a major undertaking, given the large number of Federal policies that affect the development, implementation, and use of energy technologies. For that reason, we recommend that the Administration initiate a process analogous to the Quadrennial Defense Review undertaken every four years by the Department of Defense

  20. Essentials of energy technology sources, transport, storage, conservation

    CERN Document Server

    Fricke, Jochen

    2013-01-01

    An in-depth understanding of energy technology, sources, conversion, storage, transport and conservation is crucial for developing a sustainable and economically viable energy infrastructure. This need, for example, is addressed in university courses with a special focus on the energy mix of renewable and depletable energy resources. Energy makes our lives comfortable, and the existence of amenities such as heaters, cars, warm water, household appliances and electrical light is characteristic for a developed economy. Supplying the industrial or individual energy consumer with energy 24 hours

  1. Energy and technology review

    International Nuclear Information System (INIS)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P.

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs

  2. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  3. Energy and technology review

    International Nuclear Information System (INIS)

    Brown, P.S.

    1983-06-01

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base

  4. Tiger Team Assessment, Energy Technology Engineering Center

    International Nuclear Information System (INIS)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies

  5. Tiger Team Assessment, Energy Technology Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  6. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  7. New energy technologies in Singapore; Les Nouvelles technologies de l'energie a Singapour

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Singapore is considered as an interesting example: this country has become the third world oil refining centre and the first Asian oil trade place, but has also implemented a series of strategic measures to promote a sustainable development. The Singapore Green Plan was launched in 1992 and defines important objectives in terms of reduction of carbon emissions, of water consumption, of improvement of waste management services, and so on. This policy results in investments in experimental programs for the development of new energy technologies. This paper presents the public actors (institutions and public agencies) and their projects, the academic projects and programs, and the private sector projects. These programs and projects are concerning the search for clean energies, the development of the solar capacity, various renewable energies, or the automotive industry (projects conducted by Bosch, Renault and Nissan, Daimler, this last one on biofuels)

  8. Analysis and evaluation of the applicability of green energy technology

    Science.gov (United States)

    Xu, Z. J.; Song, Y. K.

    2017-11-01

    With the seriousness of environmental issues and the shortage of resources, the applicability of green energy technology has been paid more and more attention by scholars in different fields. However, the current researches are often single in perspective and simple in method. According to the Theory of Applicable Technology, this paper analyzes and defines the green energy technology and its applicability from the all-around perspectives of symbiosis of economy, society, environment and science & technology etc., and correspondingly constructs the evaluation index system. The paper further applies the Fuzzy Comprehensive Evaluation to the evaluation of its applicability, discusses in depth the evaluation models and methods, and explains in detail with an example. The author holds that the applicability of green energy technology involves many aspects of economy, society, environment and science & technology and can be evaluated comprehensively by an index system composed of a number of independent indexes. The evaluation is multi-object, multi-factor, multi-level and fuzzy comprehensive, which is undoubtedly correct, effective and feasible by the Fuzzy Comprehensive Evaluation. It is of vital theoretical and practical significance to understand and evaluate comprehensively the applicability of green energy technology for the rational development and utilization of green energy technology and for the better promotion of sustainable development of human and nature.

  9. Environmental control technology activities of the Department of Energy in FY 1977

    International Nuclear Information System (INIS)

    1977-11-01

    The Department of Energy is responsible for the research, development, and demonstration of emerging energy technologies and the promotion of energy conservation. An integral and significant part of that responsibility includes the balancing of energy goals with environmental requirements to protect and enhance the general health, safety, and welfare of the nation. This requires that environmental effects be considered and mitigating measures be taken in all energy processes through incorporation of environmental and safety controls which are developed as an integral part of energy system design. This inventory of environmental control technology activities was initiated by the Administrator, ERDA, prior to the incorporation of that administration within the Department of Energy. This compilation of total Energy Research and Development Administration (ERDA) environmental control technology activities, and associated funding, related to environmental control technology identifies the resources committed by ERDA to demonstrate its objective to protect and enhance the general health, safety, and welfare of the nation in the research, development, and demonstration of energy systems. Only ERDA research, development, and demonstration activities are covered in this report. The compilation for FY 1978 will encompass all of the DOE activities

  10. Inter-technology knowledge spillovers for energy technologies

    International Nuclear Information System (INIS)

    Nemet, Gregory F.

    2012-01-01

    Both anecdotal evidence and the innovation literature indicate that important advances in energy technology have made use of knowledge originating in other technological areas. This study uses the set of U.S. patents granted from 1976 to 2006 to assess the role of knowledge acquired from outside each energy patent's technological classification. It identifies the effect of external knowledge on the forward citation frequency of energy patents. The results support the claim above. Regression coefficients on citations to external prior art are positive and significant. Further, the effect of external citations is significantly larger than that of other types of citations. Conversely, citations to prior art that is technologically near have a negative effect on forward citation frequency. These results are robust across several alternative specifications and definitions of whether each flow of knowledge is external. Important energy patents have drawn heavily from external prior art categorized as chemical, electronics, and electrical; they cite very little prior art from computers, communications, and medical inventions.

  11. Energy perspectives of France by 2020-2050. Technological evolutions

    International Nuclear Information System (INIS)

    2007-09-01

    The different technologies in phase of research and development and concerning the energy production or storage, are examined and presented in function of their probability of emergence at the industrial level: the projects which are going to appear in planed time on the market, the projects based on known technologies which should appear but at non predicted date and the possible projects but based on a new technology. The different type of energy, from the fossil fuels to the renewable energies are concerned. (A.L.B.)

  12. SIHTI - Energy and environmental technology

    International Nuclear Information System (INIS)

    Estlander, A.; Pietilae, S.

    1993-01-01

    The research and development program SIHTI was carried out during 1991-1992, mainly concentrating on energy and environmental technology. SIHTI focused on examining emissions from various sources of energy in all stages of the production chain. The objective was to create new methods and equipment, with which the environmental drawbacks of energy production can be reduced. Also a development work aiming at reduced traffic emissions was included in the program. Totally the program included 53 projects, which were divided into the following subsections: energy production, traffic, fuel chains and other projects. In the energy production projects the main attention was paid to reduction of sulphur dioxide, nitrogen oxide and particulate emissions. Furthermore waste utilization and possibilities of reducing carbon dioxide emissions were studied. The traffic study was focused on developing of more environmental-friendly liquid fuels. The research of emissions at low ambient temperatures was developed to an international level. Further the use of gases and the rape seed oil ester as traffic fuel was studied in practical tests. In the fuel chain study the emissions from the most important fuel chains were examined all the way from the purchase of the primary energy to the final end product. Methods for further reduction of water discharges from peat production were developed. The other projects were concentrated on modelling development, environmental impact assessment and emission surveys

  13. Prices, technology development and the rebound effect

    International Nuclear Information System (INIS)

    Birol, F.; Keppler, J.H.

    2000-01-01

    Energy efficiency is the critical parameter for policies that aim at reducing energy consumption while maintaining or even boosting economic growth. The two main options to influence energy efficiency are changes in relative prices, i.e., raising the price of energy through economic instruments, or to introduce new technologies which increase the productivity of each unit of energy. This paper is based on the notion that in an equilibrium economy the marginal economic productivity is identical for all factors, i.e., energy, labour, knowledge and capital. From this premise two main conclusions can be drawn. First, any change in price or technology will have an impact on the whole economy by creating feedbacks through the substitution of factors of production and goods, as well as increased wealth. Second, the two policy approaches, changing relative prices and technology development, are not opposite to each other. They are the two faces of the same reality and should be developed and promoted simultaneous and consistently. (Author)

  14. Implications of technological learning on the prospects for renewable energy technologies in Europe

    International Nuclear Information System (INIS)

    Uyterlinde, Martine A.; Junginger, Martin; Vries, Hage J. de; Faaij, Andre P.C.; Turkenburg, Wim C.

    2007-01-01

    The objective of this article is to examine the consequences of technological developments on the market diffusion of different renewable electricity technologies in the EU-25 until 2020, using a market simulation model (ADMIRE REBUS). It is assumed that from 2012 a harmonized trading system will be implemented, and a target of 24% renewable electricity (RES-E) in 2020 is set and met. By comparing optimistic and pessimistic endogenous technological learning scenarios, it is found that diffusion of onshore wind energy is relatively robust, regardless of technological development, but diffusion rates of offshore wind energy and biomass gasification greatly depend on their technological development. Competition between these two options and (existing) biomass combustion options largely determines the overall costs of electricity from renewables and the choice of technologies for the individual member countries. In the optimistic scenario, in 2020 the market price for RES-E is 1 Euro ct/kWh lower than in the pessimistic scenario (about 7 vs. 8 Euro ct/kWh). As a result, total RES-E production costs are 19% lower, and total governmental expenditures for RES-market stimulation are 30% lower in the optimistic scenario

  15. ORNL superconducting technology program for electric energy systems

    Science.gov (United States)

    Hawsey, R. A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY-92 Peer Review of Projects, which was conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  16. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  17. Load leveling air conditioning technology development by unused energy high-level utilization. Summary of achievements by development themes; Miriyo energy kodo katsuyo fuka heijunka reidanbo gijutsu kaihatsu. Kaihatsu temabetsu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This paper introduces a number of research and development cases on utilization of unutilized energies. In developing the component technology for a thermal plant utilizing low-temperature unutilized energies, the paper introduces a heat exchanger system to collect heat from sea water, a heat exchanger system to collect heat from waste heated area in subways and urban sewage plants, and a high-density heat transportation system using ice plus water slurry or PCM-C plus water slurry. Furthermore, with regard to the heat pump system using low-temperature unutilized hear sources, development was introduced on a 'heat source load responsive heat pump system', which combines a load variation responsive heat pump utilizing river waters with a latent heat storage system using nighttime electric power serving for electric power load leveling. In developing the component technology for a heat plant utilizing high-temperature unutilized energies, introduction was given on a turbine driven turbo type heat pump system, a high-efficiency absorption type heat pump, a waste heat driven absorption type freezer, and an urban type underground heat storage tank. (NEDO)

  18. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  19. INFORMATION TECHNOLOGIES IN MANAGEMENT OF ENERGY SAVING PROJECTS

    Directory of Open Access Journals (Sweden)

    Дмитро Валерійович МАРГАСОВ

    2015-06-01

    Full Text Available The information technology structure is considered of energy saving projects. The project management diagram of energy saving projects is developed, using GIS, ICS, BIM and other control and visual systems.

  20. Accelerating the market penetration of renewable energy technologies in South Africa

    International Nuclear Information System (INIS)

    Martens, J.W.; De Lange, T.J.; Cloin, J.; Szewczuk, S.; Morris, R.; Zak, J.

    2001-03-01

    There exists a large potential for renewable energy technologies in South Africa and despite the fact that rapid growth of the application of renewable energy takes place in many parts of the world, the current installed renewable capacity in South Africa is negligible. The objective of this study is to address this gap by analysing ways to accelerate the market penetration of renewable energy technologies in South Africa. The activities undertaken in this study comprise two major components: a thorough analysis of South Africa's specific constraints and barriers to renewable energy implementation, and a review of the lessons learnt from Member States of the European Union (EU) on the promotion of renewable energy development. The focus of the study was restricted to the analysis of electricity generating technologies, in particular solar energy, biomass, wind power and mini-hydro renewable energy technologies. Recommendations to stimulate the market penetration of renewable energy technologies in South Africa are formulated. They are structured in: actions to enhance the policy framework for renewable power generation, actions to enhance the policy framework for off-grid renewable energy, and recommendations to stimulate renewable energy project development. 44 refs

  1. Long-Term Monitoring of Utility-Scale Solar Energy Development and Application of Remote Sensing Technologies: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Grippo, Mark A. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Smith, Karen P. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division

    2014-09-30

    In anticipation of increased utility-scale solar energy development over the next 20 to 50 years, federal agencies and other organizations have identified a need to develop comprehensive long-term monitoring programs specific to solar energy development. Increasingly, stakeholders are requesting that federal agencies, such as the U.S. Department of the Interior Bureau of Land Management (BLM), develop rigorous and comprehensive long-term monitoring programs. Argonne National Laboratory (Argonne) is assisting the BLM in developing an effective long-term monitoring plan as required by the BLM Solar Energy Program to study the environmental effects of solar energy development. The monitoring data can be used to protect land resources from harmful development practices while at the same time reducing restrictions on utility-scale solar energy development that are determined to be unnecessary. The development of a long-term monitoring plan that incorporates regional datasets, prioritizes requirements in the context of landscape-scale conditions and trends, and integrates cost-effective data collection methods (such as remote sensing technologies) will translate into lower monitoring costs and increased certainty for solar developers regarding requirements for developing projects on public lands. This outcome will support U.S. Department of Energy (DOE) Sunshot Program goals. For this reason, the DOE provided funding for the work presented in this report.

  2. Renewable energy in Iran: Challenges and opportunities for sustainable development

    International Nuclear Information System (INIS)

    Atabi, F.

    2004-01-01

    Around the globe, developing countries have reported different cases of successfully implemented renewable energy program supported by bilateral or multilateral funding. In developing countries subsidy has played a big role in renewable energy program marketing and whether this will lead to sustainable development is yet to be determined. The adoption of implementation strategies that will support sustainable development and overcoming barriers that hinder expansion of renewable energy technologies still remains as a big challenge to stake holders involved in promotion of renewable energy resources in developing countries. In this respect, developing countries need to re-examine their environmental policy for promotion of renewable energy technologies in order to define its role in revitalization of their economics. This paper reviews by policy incentives for promotion of renewable energy technologies in the Islamic Republic of Iran. Setting-up international collaborative business ventures between local industry in Iran and companies in developed countries is proposed as an implementation strategy that will appropriate diffusion of renewable energy technologies in the country. An organizational framework that may help to attain this objective is discussed and a structural model for renewable energy business partnership is presented. It is concluded that with appropriate policy formulations and strategies, renewable energy technologies can bring about the required socio-economic development in Iran

  3. Energy intensity developments in 40 major economies: Structural change or technology improvement?

    International Nuclear Information System (INIS)

    Voigt, Sebastian; De Cian, Enrica; Schymura, Michael; Verdolini, Elena

    2014-01-01

    This study analyzes energy intensity trends and drivers in 40 major economies using the WIOD database, a novel harmonized and consistent dataset of input–output table time series accompanied by environmental satellite data. We use logarithmic mean Divisia index decomposition to (1) attribute efficiency changes to either changes in technology or changes in the structure of the economy, (2) study trends in global energy intensity between 1995 and 2007, and (3) highlight sectoral and regional differences. For the country analysis we apply the traditional two factor index decomposition approach, while for the global analysis we use a three factor decomposition which includes the consideration of regional structural changes in the global economy. We first show that heterogeneity within each sector across countries is high. These general trends within sectors are dominated by large economies, first and foremost the United States. In most cases, heterogeneity is lower within each country across the different sectors. Regarding changes of energy intensity at the country level, improvements between 1995 and 2007 are largely attributable to technological change while structural change is less important in most countries. Notable exceptions are Japan, the United States, Australia, Taiwan, Mexico and Brazil where a change in the industry mix was the main driver behind the observed energy intensity reduction. At the global level we find that despite a shift of the global economy to more energy-intensive countries, aggregate energy efficiency improved mostly due to technological change

  4. Geothermal energy technology: issues, R and D needs, and cooperative arrangements

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In 1986, the National Research Council, through its Energy Engineering Board, formed the Committee on Geothermal Energy Technology. The committee's study addressed major issues in geothermal energy technology, made recommendations for research and development, and considered cooperative arrangements among government, industry, and universities to facilitate RandD under current severe budget constraints. The report addresses four types of geothermal energy: hydrothermal, geopressured, hot dry rock, and magma systems. Hydrothermal systems are the only type that are now economically competitive commercially. Further technology development by the Department of Energy could make the uneconomical hydrothermal resources commercially attractive to the industry. The economics are more uncertain for the longer-term technologies for extracting energy from geopressured, hot dry rock, and magma systems. For some sites, the cost of energy derived from geopressured and hot dry rock systems is projected within a commercially competitive range. The use of magma energy is too far in the future to make reasonable economic calculations.

  5. New energy technologies. Research program proposition

    International Nuclear Information System (INIS)

    2005-02-01

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO 2 , the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  6. On the economics of technology diffusion and energy efficiency

    International Nuclear Information System (INIS)

    Mulder, P.

    2003-01-01

    Energy is an essential factor that fuels economic growth and serves human well-being. World energy use has grown enormously since the middle of the 19th century. This increase in the scale of energy demand comes at a certain price, including environmental externalities, such as the enhanced greenhouse effect. Notwithstanding the need for renewable energy sources, these environmental problems also necessitate further improvements in energy efficiency. Technological change plays a crucial role in realizing energy efficiency improvements and, hence, in ameliorating the conflict between economic growth and environmental quality. At the same time, it is known that not only innovation, but also diffusion of new technologies is a costly and lengthy process, and that many firms do not invest in best-practice technologies. This study aims to contribute to a better understanding of the inter. play between economic growth, energy use and technological change, with much emphasis on the adoption and diffusion of energy-saving technologies. The thesis presents a mix of theoretical and empirical analyses inspired by recent developments in economic theorizing on technological change that stress the role of accumulation and distribution of knowledge (learning), uncertainty, path dependency and irreversibility. The theoretical part of the study examines how several characteristics of technological change as well as environmental policy affect the dynamics of technology choice. The empirical part of the study explores long-run trends in energy- and labour productivity performance across a range of OECD countries at a detailed sectoral level

  7. FY1998 survey on preparation of data collection related to new energy technology development (cogeneration); 1998 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa (cogeneration) chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    New energy technologies have had the subsidy institutions established in association with advancement of the technologies, and such introduction promoting measures developed as the introduction assistance and advisory project. To promote this development more effectively, it is necessary that different data related to new energies are put into order comprehensively and systematically to be retained as the basic data. Therefore, this paper collects and puts into order the latest published data on cogeneration from among other new energy technology areas, with main regard to system listing, specific introduction examples, subsidy institutions, and how other countries are working on the technologies. Hydroelectric power generation uses up head energy of water by installing power plants along a river from higher location to lower location. Similarly the cogeneration is a kind of multi-stage energy utilization (cascade utilization) system that uses up energy serially from as high oil and natural gas combustion temperature as 1,500 degrees C or higher down to temperature levels used for hot water supply and air conditioning as low as 45 to 50 degrees C. It generates electric power by using a thermal engine, and utilizes waste heat effectively. (NEDO)

  8. Sustainability assessment of energy technologies via social indicators: Results of a survey among European energy experts

    International Nuclear Information System (INIS)

    Gallego Carrera, Diana; Mack, Alexander

    2010-01-01

    Sustainability assessment of energy technologies oftentimes fails to account for social repercussions and long-term negative effects and benefits of energy systems. As part of the NEEDS project, an expert-based set of social indicators was developed and verified by the European stakeholders with the objective of contributing in the development of social indicators for the assessment of societal effects of energy systems. For this purpose, scientific experts from four sample countries France, Germany, Italy and Switzerland were interviewed to assess 16 different energy systems on a specific stakeholder reviewed indicator set. The indicator set covers the four main criteria: 'security and reliability of energy provision; 'political stability and legitimacy'; 'social and individual risks' and 'quality of life'. This article will review the process of indicator development and assessment and highlight results for today's most prominent and future energy technologies and some likely to make an impact in the future. Expert judgments varied considerably between countries and energy systems, with the exception of renewable technologies, which were overall positively assessed on almost all evaluation criteria.

  9. Technology choice and development in Brazil: An assessment of Brazil's alternative fuel program and the agriculture, manufacturing, energy, and service sectors

    Science.gov (United States)

    Nolan, Lucy A.

    Technology choice profoundly affects a country's development process because capital-intensive and labor-intensive technologies have different socioeconomic linkages within the economy. This research examines the impacts of technology choice through the use of a social accounting matrix (SAM) framework. SAM-based modeling determines the direct and indirect effects of technology choice on development, particularly poverty alleviation in Brazil. Brazil's alternative fuel program was analyzed as a special example of technology choice. Two ethanol production technologies and the gasoline sector were compared; to make the study more robust, labor and capital intensive technologies were evaluated in the production of agriculture, manufacturing, energy, and services. Growth in these economic sectors was examined to assess the effects on employment, factor and household income, energy intensity, and carbon dioxide costs. Poverty alleviation was a focus, so income to unskilled agriculture labor, unskilled non-agriculture labor, and income to rural and urban households in poverty was also analyzed. The major research finding is that overall, labor-intensive technologies generate more employment, factor and household income, environmental and energy benefits to Brazil's economy than capital-intensive technologies. In addition, labor-intensive technologies make a particular contribution to poverty alleviation. The results suggest that policies to encourage the adoption of these technologies, especially in the agriculture and renewable energy sectors, are important because of their intersectoral linkages within the economy. Many studies have shown that Brazil's fuel ethanol program has helped to realize multiple macroeconomic objectives. However, this is the first empirical study to quantify its household income effects. The ethanol industry generated the most household income of the energy sectors. The research confirms a key finding of the appropriate technology literature

  10. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.S. (ed.)

    1983-06-01

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base. (GHT)

  11. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  12. Accelerating the development and diffusion of new energy technologies: Beyond the 'valley of death'

    International Nuclear Information System (INIS)

    Weyant, John P.

    2011-01-01

    There are at least three motivations for government intervention in GHG mitigation: (1) inducing the private sector to reduce GHG emissions directly by setting a price on emissions, (2) increasing the amount of innovative activity in GHG mitigation technology development, and (3) educating the public regarding GHG-reducing investment opportunities, allowing consumers to make better private decisions. This paper discusses the pros and cons of policy instruments that might be used to respond to these motivations and makes recommendations for an appropriate mix of policy instruments over time given both economic and policital/instituional considerations. - Research Highlights: → Increases in pre-competitive energy R and D and energy efficiency technology diffusion policies in the US are highly desirable. → The cost of well designed programs in these areas can be low and the pay off very high. → Such policies make sense even if the GHG externality is internalized through a GHG tax or equivalent, but are even more desirable if they are not.

  13. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  14. Developing countries' motivation to use nuclear technology

    International Nuclear Information System (INIS)

    Ratsch, U.

    1990-01-01

    Governments of various developing countries see nuclear energy as an important tool for at least three political goals: Firstly, the expected rise in future energy demand, so they argue, can only be met if nuclear electricity production in the Third World is expanded. Fossil sources are supposed to become increasingly scarce and expensive, and they are also seen to be ecologically damaging. Technologies to harness renewable energy sources are not yet mature and still too costly. Secondly, nuclear technology is seen as one of the most advanced technologies. Mastering of it might help to diminish the technological gap between the First and the Third World. Thirdly, scientific progress in developing countries is hoped to be accelerated by operating research reactors in these countries. All of these arguments ought to be taken as serious motivations. (orig./HSCH) [de

  15. Marginalization of end-use technologies in energy innovation for climate protection

    Science.gov (United States)

    Wilson, Charlie; Grubler, Arnulf; Gallagher, Kelly S.; Nemet, Gregory F.

    2012-11-01

    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies.

  16. Energy and economic milestones in Nigeria: Role of nuclear technology

    International Nuclear Information System (INIS)

    Dahunsi, S.O.A.

    2011-01-01

    Electric power supply could be the driving force critical to poverty reduction, economic growth and sustainable development in developing countries like Nigeria. Comparative analysis of several promising technologies that could be explored to achieve energy sufficiency however shows that nuclear power is more economically competitive and outstanding despite the relatively high initial capital cost. Furthermore, one of the critical conditions in deciding to invest in a specific electric power technology is the overall cost component of the new technology, nuclear therefore is in many places competitive with other forms of electricity generation. The fundamental attraction is about harnessing the sources of energy which takes cognizance of the environmental effects of burning fossil fuel and its security of supply. This paper therefore highlights the benefits of inclusion of nuclear energy in the Nigeria energy mix, a sine qua non for economic and social development, safer environment, wealth creation and a long term energy security.

  17. Separations Technology for Clean Water and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, Gordon D [Los Alamos National Laboratory

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  18. ISV technology development plan for buried waste

    International Nuclear Information System (INIS)

    Nickelson, D.F.; Callow, R.A.; Luey, J.K.

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy's Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K)

  19. Special course for global nuclear human resource development in cooperation with Hitachi-GE nuclear energy in Tokyo institute of technology

    International Nuclear Information System (INIS)

    Ujita, H.; Futami, T.; Saito, M.; Murata, F.; Shimizu, M.

    2012-01-01

    Many Asian countries are willing to learn Japanese nuclear power plants experiences, and are interested in introducing nuclear power generation to meet their future energy demand. Special course for Global Nuclear Human Resource Development was established in April, 2011 in the Department of Nuclear Engineering at Graduate School of Tokyo Institute of Technology in cooperation with Hitachi-GE Nuclear Energy. Purpose of the special course is to develop global nuclear engineers and researchers not only in the Tokyo Institute of Technology but also in the educational institutes of Southeast Asian countries

  20. Development and application of eLearning software for education in energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Teir, S.

    2002-07-01

    The general aim of this project was to develop an eLearning environment for the Laboratory of Energy Engineering and Environmental Protection and implement it on their courses. This report presents the results of the research made on the concept known as eLearning, eLearning projects that had an impact on the implementation, and case studies in eLearning. After a preliminary common plan for the environment was made, the work eventually split into three separate parts: development of a course platform, course material and a process simulation interface. The section of the work regarding the course platform did not just present the research and selection of the platform. It also explained in detail what a course platform is, how it functions and how it can be used. Several different course platforms have been reviewed and the chosen one, Blackboard, is presented in detail. The presentation is not made for demonstrating Blackboard's features; it is written to show a detailed example of the features of a course platform. The course platform was implemented on most of the courses provided in autumn 2001, which provided valuable experience and feedback. The development of online course material (or eBook) for the Steam Boiler Technology course was initiated. Tools were chosen and a common layout and navigational tools were designed. The course material consists of HTML and Flash based Web pages, providing presentation, interaction and information about Steam Boiler Technology. Due to the development of the process simulation interface, which incidentally took four months to develop, only one chapter of course material was created. The course material is still under development and is expected to be ready when the course starts in autumn 2002. A Web based interface for PROSIM was developed. The interface allows the developer to use models created with PROSIM and build a graphical Web based interface around the models. These models are meant for educational use such

  1. New energy technologies. Research program proposition; Nouvelles technologies de l'energie. Proposition de programme de recherche

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-01

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO{sub 2}, the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  2. Technology Roadmaps: A guide to development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    New low-carbon technologies show clear potential for transforming the global energy system, but a key challenge remains: what steps do governments and industry need to take to ensure their development and deployment? Roadmapping, used for decades in technology-intensive industries, is a useful tool to help address complicated issues strategically at the national, regional and global levels. To help turn political statements and analytical work into concrete action, the International Energy Agency (IEA) is developing a series of global roadmaps devoted to low-carbon energy technologies. This guide is aimed at providing countries and companies with the context, information and tools they need to design, manage and implement an effective energy roadmap process.

  3. Solar thermal technology development: Estimated market size and energy cost savings. Volume 1: Executive summary

    Science.gov (United States)

    Gates, W. R.

    1983-02-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.

  4. Solar thermal technology development: Estimated market size and energy cost savings. Volume 1: Executive summary

    Science.gov (United States)

    Gates, W. R.

    1983-01-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.

  5. Methane mitigation timelines to inform energy technology evaluation

    Science.gov (United States)

    Roy, Mandira; Edwards, Morgan R.; Trancik, Jessika E.

    2015-11-01

    Energy technologies emitting differing proportions of methane (CH4) and carbon dioxide (CO2) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH4-emitting technologies prior to an optimal switching year, followed by CH4-light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers.

  6. Methane mitigation timelines to inform energy technology evaluation

    International Nuclear Information System (INIS)

    Roy, Mandira; Edwards, Morgan R; Trancik, Jessika E

    2015-01-01

    Energy technologies emitting differing proportions of methane (CH 4 ) and carbon dioxide (CO 2 ) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH 4 -emitting technologies prior to an optimal switching year, followed by CH 4 -light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH 4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers. (letter)

  7. Technology policy and sustainable development: the case of renewable energy

    International Nuclear Information System (INIS)

    Wohlgemuth, N.

    2000-01-01

    Policies to address long-term energy concerns include a wide range of initiatives. Taxes can internalise costs; financial mechanisms, including subsidies, can target particularly favourable but otherwise non-competitive investments; regulation can apply standards to raise performance of appliances; information programmes can improve decision making; and R and D can make available new options. The 1987 report of the World Commission on Environment and development, found that 'energy efficiency can only buy for the world to develop 'low-energy-paths' based on renewable sources...'. Although many renewable energy systems are in a relatively early stage of development, they offer the world 'a potentially huge primary energy source, sustainable in perpetuity and available in various forms to every nation on Earth.' It suggested that an R and D programme of renewable energy is required to attain the same level of primary energy that is now obtained from a mix of fossil, nuclear, and renewable energy resources. Since renewable energy contributes to all dimensions of sustainable development, one policy challenge is to ensure that renewable energy has a fair opportunity to complete with other resources required for the provision of energy services, especially on 'liberalised' energy markets. This paper gives an overview of rationales for government intervention in energy-related R and D, and international energy R and D trends. it concludes that the liberalisation of energy markets has an overall negative impact on private sector investments in energy R and D and that without a sustained and diverse programme of energy R and D and implementation, we are crippling our ability to make the necessary improvements in the global energy system, especially in light of sustainable development requirements. (author)

  8. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O' Neal, E.; Van Dyke, P. (eds.)

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

  9. Energy, sustainability and development

    International Nuclear Information System (INIS)

    Llewellyn Smith, Ch.

    2006-01-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  10. Energy, sustainability and development

    Energy Technology Data Exchange (ETDEWEB)

    Llewellyn Smith, Ch

    2006-07-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  11. Green technological change. Renewable energies, policy mix and innovation. Results of the GRETCHEN project on the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany

    International Nuclear Information System (INIS)

    Rogge, Karoline S.; Breitschopf, Barbara; Mattes, Katharina; Cantner, Uwe; Graf, Holger; Herrmann, Johannes; Kalthaus, Martin; Lutz, Christian; Wiebe, Kirsten

    2015-09-01

    The report on the GRETCHEN project that was concerned with the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany covers the following issues: market and technology development of renewable energy electricity production technologies; the policy mix for renewable electricity production technologies, innovative impact of the policy mix; subordinate conclusions for politics and research.

  12. New energy technologies in Singapore

    International Nuclear Information System (INIS)

    2009-01-01

    Singapore is considered as an interesting example: this country has become the third world oil refining centre and the first Asian oil trade place, but has also implemented a series of strategic measures to promote a sustainable development. The Singapore Green Plan was launched in 1992 and defines important objectives in terms of reduction of carbon emissions, of water consumption, of improvement of waste management services, and so on. This policy results in investments in experimental programs for the development of new energy technologies. This paper presents the public actors (institutions and public agencies) and their projects, the academic projects and programs, and the private sector projects. These programs and projects are concerning the search for clean energies, the development of the solar capacity, various renewable energies, or the automotive industry (projects conducted by Bosch, Renault and Nissan, Daimler, this last one on biofuels)

  13. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    2006-01-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  14. Evaluating the impacts of energy supply technology options

    International Nuclear Information System (INIS)

    Peachey, B.R.

    2009-01-01

    The newly formed Chemical Institute of Canada (CIC)/Canadian Society for Chemical Engineering (CSChE) Energy Subject Division is working to develop a methodology for assessing and communicating to governments, regulators and the public the relative merits of different technologies for meeting energy demand requirements or reducing energy consumption. The focus is on developing a process that considers a broader range of issues than basic economics, or greenhouse gas (GHG) emissions. The 12 assessment criteria proposed would address five major areas of concerns including: a) how well assumptions have been tested against the scientific method over the life cycle of an energy development, b) impacts on the availability of the basic requirements for life, c) maintaining the quality of human life, d) maintaining the quality of the local environment (air, land and water), in the area where a specific technology is used, and e) considers the potential global impacts of GHG emissions. (author)

  15. Space assets, technology and services in support of energy policy

    Science.gov (United States)

    Vasko, C. A.; Adriaensen, M.; Bretel, A.; Duvaux-Bechon, I.; Giannopapa, C. G.

    2017-09-01

    Space can be used as a tool by decision and policy makers in developing, implementing and monitoring various policy areas including resource management, environment, transport, security and energy. This paper focuses on the role of space for the energy policy. Firstly, the paper summarizes the European Union's (EU) main objectives in energy policy enclosed in the Energy Strategy 2020-2030-2050 and demonstrates how space assets can contribute to achieving those objectives. Secondly, the paper addresses how the European Space Agency (ESA) has established multiple initiatives and programs that directly finance the development of space assets, technology and applications that deliver services in support of the EU energy policy and sector. These efforts should be continued and strengthened in order to overcome identified technological challenges. The use of space assets, technology and applications, can help achieve the energy policy objectives for the next decades.

  16. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Chapas, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colwell, Jeffery A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  17. Nuclear energy: A female technology

    International Nuclear Information System (INIS)

    Tennenbaum, J.

    1994-01-01

    Amongst the important scientific and technological revolutions of history there is none in which women have played such a substantial and many-sided role as in the development of nuclear energy. The birth of nuclear energy is not only due to Marie Curie and Lise Meitner but also to a large number of courageous 'nuclear women' who decided against all sorts of prejudices and resistances in favour of a life in research. Therefore the revolution of the atom has also become the greatest breakthrough of women in natural sciences. This double revolution is the subject of this book. Here the history of nuclear energy itself is dealt with documented with the original work and personal memories of different persons - mainly women - who have been substantially involved in this development. (orig./HP) [de

  18. US public policy and emerging technologies: the case of solar energy

    International Nuclear Information System (INIS)

    Rahm, Dianne

    1993-01-01

    Public policy is generally believed to have an effect on the emergence and rate of diffusion of technology. Solar energy technologies are no exception. This article explores the relationship between a variety of United States (US) public policies and the emergence and diffusion of solar energy technologies using data gathered as part of the National Solar Energy Policy Study. The article presents findings regarding the status and policy position of US renewable energy research and development (R and D) and manufacturing organizations. Specific policy options which could be adopted to speed emergence and diffusion of solar energy technology products are discussed. (Author)

  19. UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S

    2008-08-12

    The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste

  20. Enabling science and technology for marine renewable energy

    International Nuclear Information System (INIS)

    Mueller, Markus; Wallace, Robin

    2008-01-01

    This paper describes some of the key challenges to be met in the development of marine renewable energy technology, from its present prototype form to being a widely deployed contributor to future energy supply. Since 2000, a number of large-scale wave and tidal current prototypes have been demonstrated around the world, but marine renewable energy technology is still 10-15 years behind that of wind energy. UK-based developers are leading the way, with Pelamis from Pelamis Wave Power demonstrated in the open sea, generating electricity into the UK network and securing orders from Portugal. However, having started later, the developing technology can make use of more advanced science and engineering, and it is therefore reasonable to expect rapid progress. Although progress is underway through deployment and testing, there are still key scientific challenges to be addressed in areas including resource assessment and predictability, engineering design and manufacturability, installation, operation and maintenance, survivability, reliability and cost reduction. The research priorities required to meet these challenges are suggested in this paper and have been drawn from current roadmaps and vision documents, including more recent consultations within the community by the UK Energy Research Centre Marine Research Network. Many scientific advances are required to meet these challenges, and their likelihood is explored based on current and future capabilities

  1. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2016-01-01

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  2. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  3. Technical descriptions of ten irrigation technologies for conserving energy

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Wilfert, G.L.

    1983-05-01

    Technical description of ten technologies which were researched to save energy in irrigated agriculture are presented. These technologies are: well design and development ground water supply system optimization, column and pump redesign, variable-speed pumping, pipe network optimization, reduced-pressure center-pivot systems, low-energy precision application, automated gated-pipe system, computerized irrigation scheduling, and instrumented irrigation scheduling. (MHR)

  4. Renewable energy technology portfolio planning with scenario analysis: A case study for Taiwan

    International Nuclear Information System (INIS)

    Chen, T.-Y.; Yu, Oliver S.; Hsu, George Jyh-yih; Hsu, Fang-Ming; Sung, W.-N.

    2009-01-01

    This paper presents the results of a case study of applying a systematic and proven process of technology portfolio planning with the use of scenario analysis to renewable energy developments in Taiwan. The planning process starts with decision values of technology development based on a survey of society leaders. It then generates, based on expert opinions and literature search, a set of major technology alternatives, which in this study include: wind energy, photovoltaic, bio-energy, solar thermal power, ocean energy, and geothermal energy. Through a committee of technical experts with diversified professional backgrounds, the process in this study next constructs three scenarios ('Season in the Sun', 'More Desire than Energy', and 'Castle in the Air') to encompass future uncertainties in the relationships between the technology alternatives and the decision values. Finally, through a second committee of professionals, the process assesses the importance and risks of these alternative technologies and develops a general strategic plan for the renewable energy technology portfolio that is responsive and robust for the future scenarios. The most important contributions of this paper are the clear description of the systematic process of technology portfolio planning and scenario analysis, the detailed demonstration of their application through a case study on the renewable energy development in Taiwan, and the valuable results and insights gained from the application.

  5. Integrating energy and environmental goals. Investment needs and technology options

    International Nuclear Information System (INIS)

    2004-04-01

    Economic and population growth will continue to drive an expansion of the global energy market. The Earth's energy resources are undoubtedly adequate to meet rising demand for at least the next three decades. But the projected increases in energy consumption and market developments raise serious concerns about the security of energy supplies, investment in energy infrastructure, the threat of environmental damage caused by energy use and the uneven access of the world's population to modern energy. The first two sections of this background paper provide an outlook for energy demand and emissions over the next thirty years, based on findings in the IEA's World Energy Outlook 2002. Section four presents projections for global investment needs from the latest WEO publication, the World Energy Investment Outlook 2003. For both the energy and investment outlooks, an alternative scenario for OECD countries is examined. The scenarios describe a world in which environmental and energy supply security concerns will continue to plague policy makers. Clearly, changes in power generation, automotive engines and fuel technologies will be required to change trends in energy demand and emissions over the next thirty years and beyond. Improvements in energy efficiency will also play a fundamental role. A number of technologies offer the long term potential to diversify the energy sector away from its present heavy reliance on fossil fuels. Based on various IEA studies, section five evaluates those technologies that offer the potential to reduce emissions, including renewable energy, fossil-fuel use with CO2 capture and storage, nuclear, hydrogen, biofuels and efficient energy end use. No single technology can meet the challenge by itself. Different regions and countries will require different combinations of technologies to best serve their needs and best exploit their indigenous resources. Developing countries, in particular, will face far greater challenges in the years ahead

  6. A Study on the Planning of Technology Development and Research for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-08-15

    This study aimed at the planning the domestic technology development of the Gen IV and the formulating the international collaborative project contents and executive plan for 'A Validity Assessment and Policies of the R and D of Generation IV Nuclear Energy Systems'. The results of the study include follows; - Survey of the technology state in the fields of the Gen IV system specific technologies and the common technologies, and the plans of the international collaborative research - Drawing up the executive research and development plan by the experts of the relevant technology field for the systems which Korean will participate in. - Formulating the effective conduction plan of the program reflecting the view of the experts from the industry, the university and the research institute. - Establishing the plan for estimation of the research fund and the manpower for the efficient utilization of the domestic available resources. This study can be useful material for evaluating the appropriateness of the Korea's participation in the international collaborative development of the Gen IV, and can be valuably utilized to establish the strategy for the effective conduction of the program. The executive plan of the research and development which was produced in this study will be used to the basic materials for the establishing the guiding direction and the strategic conduction of the program when the research and development is launched in the future.

  7. Commercialization of new energy technologies. Appendix A. Case study 1: central station electric power generation technologies

    International Nuclear Information System (INIS)

    1976-06-01

    The results of a survey on Technologies for Central Power Generation are presented. The central power generation technologies selected for consideration were: fusion; breeder reactors; solar electric (thermal); geothermal; and magnetohydrodynamics. The responses of industry executives who make key investment decisions concerning new energy technologies and who to identify the problems faced in the development and commercialization of new energy systems are presented. Evaluation of these responses led to the following recommendations: increase industry input into the R, D and D planning process; establish and advocate priorities for new technologies based on detailed analysis of a technology's value in terms of overall national goals; create a mechanism for a joint ERDA/industry appraisal of priorities and programs; increase level of federal funding or subsidy of new technology demonstrations; and focus the activities of the national laboratories on basic research and very early product development; and emphasize industry involvement in systems development

  8. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 13. Integration of Renewable Energy Technologies in the national curriculum SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia)

    2011-11-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report focuses on the achievements for settling a national curriculum for Renewable Energy Technologies (RET) within the framework of national programme SPECTRUM, which includes all curricula of the medium technical schools in Indonesia.

  9. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  10. ABC Technology Development Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: 'Provide a weapon's grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon's grade plutonium to be disposed on in [20] years.' This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments

  11. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  12. Oil substitution and energy saving - A research and development strategy of the International Energy Agency /IEA/

    Science.gov (United States)

    Rath-Nagel, S.

    1981-03-01

    Systems analyses were carried out by the International Energy Agency for the participating 15 countries in order to work out strategies and scenarios for lessening the dependence on imported oil and for developing new energy technologies. MARKAL model computations show the technology and energy mixes necessary for achieving a reduction of oil imports by two thirds over the next 40 years. The scenario 'high social security' examines the projected rise in energy consumption, the development of oil substitutes, the increase in alternative heating sources, the development of markets for liquid energy products, the demand for gas, and the relative usage of various energy generation methods. The recommended strategy involves as the most important points an increase in coal consumption, greater nuclear energy reliance and development of alternative technologies.

  13. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  14. Techno-economical study of solar energy technologies in Russia and in Israel and development of conceptions for the use of solar energy in various fields

    International Nuclear Information System (INIS)

    Wolf, D.; Saksonov, G.; Kiselman, U.; Shpielrain, E.

    1993-01-01

    A techno-economical study was made on the Russian and Israeli solar energy research and development and application. The main objective were to evaluate the present state of art in both countries and to identify topics of mutual interest for cooperation on research and development and application including commercialization. The Israeli and Russian teams have visited many institutions and have consulted with many people involved in solar energy work, and have analyzed the following main topics: Low potential solar heat, electricity production via thermodynamic cycles, electricity production via photovoltaic cells and solar energy for technological processes. A wide variety of subjects were identified to have potential for cooperation, and a number of institutes and scientists and engineers have expressed interest in joint work. In the proposed course of action we gave higher priorities for cooperation on photovoltaic cells, parabolic troughs and DSG development, solar tower and high temperature technology, solar collectors and heating and cooling systems. Except perhaps for water heating, the economic analysis shows marginal to poor economics for solar energy utilization. Depending on fuel costs and additional restrictions planned on fuels combustion, the economics may change in some cases, for example for solar ponds. (authors)

  15. Reagan Administration policies for new energy technologies. Report prepared by the Congressional Research Serivce Library of Congress for the Subcommittee on Energy Development and Applications and the Subcommittee on Energy Research and Production transmitted to the Committee on Science and Technology, US House of Representatives, Ninety-Seventh Congress, Second Session, June 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The five papers in the seminar present a broad overview of the implications of current administration policies for nuclear energy, synthetic fuels, and renewable energy technologies. The basic approach of the administration is market-oriented rather than government-controlled in order to minimize government intervention. Economic recovery takes precedence over energy resource and technology development. The private sector must assume responsibility for the cost and decision making in technology innovations and the development of synfuels. Budget cuts may make some renewable energy technologies uncompetitive, but the administration believes that fuel deregulation will balance the costs. Efforts to expedite nuclear plant licensing and investment tax credits may help the ailing nuclear industry, but the future of the breeder and reprocessing programs remains in doubt. (DCK)

  16. Rational use of energy. Finnish technology cases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This publication has been produced within the THERMIE B project `Interactive Promotion of Energy Technologies between Finland and Other EUCountries and to Estonia` (STR-0622-95-FI) as carried out for DG XVII of the European Commission. MOTIVA of Finntech Finnish Technology Ltd Oy has acted as the project co-ordinating body, with Ekono B.E., Ekono Energy Ltd and Friedemann and Johnson Consultants GmbH as partners. The main aim of the second phase of the project, as documented here, was to produce a publication in English on Finnish energy technologies, primarily in the building, industry and traffic sectors. The target distribution for this publication is primarily the EU countries through public and commercial information networks. During the work, the latest information on Finnish energy technologies has been collected, reviewed, screened and analysed in relation to the THERMIE programme. The following presentation consists of descriptions of case technologies; their background, technical aspects and energy saving potentials where applicable. The three RUE sectors; buildings, industry and traffic, are put forward in separate chapters. The building sector concentrates mostly in different control systems. New lighting and heating systems increase energy savings both in the large industrial sites and in private homes. In the industry sector new enhanced processes are introduced along with new products to increase energy efficiency. Traffic sector concentrates in traffic control and reducing exhaust gas emissions by new systems and programmes. The aim in Finland is to reduce exhaust gas emissions both by controlling the traffic efficiently and by developing fuels with lower emission levels. A lot is being done by educating the drivers and the public in efficient driving methods

  17. Report on the FY 1999 results of the development of the wide area energy utilization network system - Eco/energy urban system. 2/2. Study of the systematization technology/evaluation technology out of the study of the energy system design technology (Study of the application method of element technology/system and trial calculation of the introduction effect); Koiki energy riyo network system kaihatsu (eco energy toshi system). 2/2. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu 1999 nendo seika hokokusho (zenkoku no netsu juyo no bunpu jokyo chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of smoothly introducing the equipment technology and system technology being studied in the development of element technology in the eco/energy urban project, the paper conducted the study of conditions/application method in applying the technology to the actual energy supply system, analysis of the introduction effect, arrangement of the subjects on technical development, etc. In the study, for the methanol/hydrogen base technology, heat pump technology, heat recovery technology, heat transport technology and heat power generation technology, the quantitative analysis was made in terms of the lifecycle energy consumption amount, lifecycle CO2 emission amount and lifecycle expenses. As to the methanol base system, the subject is the reduction in auxiliary power. Concerning the heat pump technology, the subject is the enlargement of simple equipment. As regards the heat recovery technology, the subject is the development of system with long useful year. Relating to the heat transport technology, subjects are the completion of the menu of large-diameter piping in the vacuum thermal insulation heat transport piping system, and reduction in conveyance power of heat medium. About the heat power generation technology, subjects are the stability/durability of the system. (NEDO).

  18. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation

  19. Wind energy developments in the Americas

    International Nuclear Information System (INIS)

    Swisher, R.; Ancona, D.F.

    1990-01-01

    This paper will highlight the key wind energy activities and programs of American countries. In South and Central America, wind technology awareness and opportunity is spreading. Countries have projects in the beginning stages of development and many sites with excellent wind resources are believed to exist. Argentina, Costa Rica, Colombia, Mexico, and several Caribbean countries are among those active in wind energy development. In Canada, after a decade of research and systems development, the Department of Energy Mines and Resources is conducting a review of all renewable energy technologies, including wind, to develop a strategic plan for future activities. Canadian industry continues development of various vertical axis projects and the Province of Alberta has begun a program to assess wind potential in that region. In the United States, commercial application of wind energy is continuing to expand. During 1989, over 140 MW of new wind turbine capacity was installed in wind power plants, bringing the total operating in the U.S. to 14600 turbines and 1,400 MW. During 1989, these machines produced over 2.1 billion kWh, enough to supply the residential needs of Washington D.C. or San Francisco. This is an increase of 15% over the 1988 total, even though installed operating capacity dropped by about 10% as smaller, out-dated turbines were phased out or replaced. The U.S. government is in the process of formulating a new National Energy Strategy. It seems clear that renewable energy and energy efficiency will play an increasingly important role in this strategy. The U.S. wind program continues to emphasize broad-based technology development, but has also initiated conceptual design studies for an advanced wind turbine for power generation in the late 1990s. (Author)

  20. User-led innovations and participation processes: lessons from sustainable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ornetzeder, Michael [ZSI - Centre for Social Innovation, Linke Wienzeile 246, A-1150 Vienna (Austria); Rohracher, Harald [IFF/IFZ - Inter-University Research Centre for Technology, Work and Culture, Schloegelgasse 2, A-8010 Graz (Austria)

    2006-01-01

    In this paper we will pose the question whether a higher level of user participation could be used as a strategy to improve the development and dissemination of sustainable energy technologies. We will especially focus on user-led innovation processes with a high involvement of individual end-users. In our argument we will draw on several case studies in the field of renewable energy technologies-in particular solar collectors and biomass heating systems-and sustainable building technologies. Users in these case studies were involved in the design or planning processes, sometimes in a very selective way and with limited influence, sometimes very active and for quite a long period of time. Especially in the case of renewable energy technologies self-building groups were highly successful and resulted in improved and widely disseminated technologies. Based on the empirical results of our case studies we will critically discuss the potential of user involvement (especially in self-building groups) for the development and promotion of sustainable energy technologies and outline technological and social pre-conditions for the success of such approaches. (author)

  1. User-led innovations and participation processes: lessons from sustainable energy technologies

    International Nuclear Information System (INIS)

    Ornetzeder, Michael; Rohracher, Harald

    2006-01-01

    In this paper we will pose the question whether a higher level of user participation could be used as a strategy to improve the development and dissemination of sustainable energy technologies. We will especially focus on user-led innovation processes with a high involvement of individual end-users. In our argument we will draw on several case studies in the field of renewable energy technologies-in particular solar collectors and biomass heating systems-and sustainable building technologies. Users in these case studies were involved in the design or planning processes, sometimes in a very selective way and with limited influence, sometimes very active and for quite a long period of time. Especially in the case of renewable energy technologies self-building groups were highly successful and resulted in improved and widely disseminated technologies. Based on the empirical results of our case studies we will critically discuss the potential of user involvement (especially in self-building groups) for the development and promotion of sustainable energy technologies and outline technological and social pre-conditions for the success of such approaches

  2. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  3. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  4. Dynamic life cycle assessment (LCA) of renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pehnt, M. [Institut for Energy and Environmental Research, Heidelberg (Germany)

    2006-01-01

    Before new technologies enter the market, their environmental superiority over competing options must be asserted based on a life cycle approach. However, when applying the prevailing status-quo Life Cycle Assessment (LCA) approach to future renewable energy systems, one does not distinguish between impacts which are 'imported' into the system due to the 'background system' (e.g. due to supply of materials or final energy for the production of the energy system), and what is the improvement potential of these technologies compared to competitors (e.g. due to process and system innovations or diffusion effects). This paper investigates a dynamic approach towards the LCA of renewable energy technologies and proves that for all renewable energy chains, the inputs of finite energy resources and emissions of greenhouse gases are extremely low compared with the conventional system. With regard to the other environmental impacts the findings do not reveal any clear verdict for or against renewable energies. Future development will enable a further reduction of environmental impacts of renewable energy systems. Different factors are responsible for this development, such as progress with respect to technical parameters of energy converters, in particular, improved efficiency; emissions characteristics; increased lifetime, etc.; advances with regard to the production process of energy converters and fuels; and advances with regard to 'external' services originating from conventional energy and transport systems, for instance, improved electricity or process heat supply for system production and ecologically optimized transport systems for fuel transportation. The application of renewable energy sources might modify not only the background system, but also further downstream aspects, such as consumer behavior. This effect is, however, strongly context and technology dependent. (author)

  5. Collaborative technologies for distributed science: fusion energy and high-energy physics

    International Nuclear Information System (INIS)

    Schissel, D P; Gottschalk, E E; Greenwald, M J; McCune, D

    2006-01-01

    This paper outlines a strategy to significantly enhance scientific collaborations in both Fusion Energy Sciences and in High-Energy Physics through the development and deployment of new tools and technologies into working environments. This strategy is divided into two main elements, collaborative workspaces and secure computational services. Experimental and theory/computational programs will greatly benefit through the provision of a flexible, standards-based collaboration space, which includes advanced tools for ad hoc and structured communications, shared applications and displays, enhanced interactivity for remote data access applications, high performance computational services and an improved security environment. The technologies developed should be prototyped and tested on the current generation of experiments and numerical simulation projects. At the same time, such work should maintain a strong focus on the needs of the next generation of mega-projects, ITER and the ILC. Such an effort needs to leverage existing computer science technology and take full advantage of commercial software wherever possible. This paper compares the requirements of FES and HEP, discuss today's solutions, examine areas where more functionality is required, and discuss those areas with sufficient overlap in requirements that joint research into collaborative technologies will increase the benefit to both

  6. Technology development and transfer in environmental management

    International Nuclear Information System (INIS)

    Katz, J.; Karnovitz, A.; Yarbrough, M.

    1994-01-01

    Federal efforts to develop and employ the innovative technologies needed to clean up contaminated facilities would greatly benefit from a greater degree of interaction and integration with the energies and resources of the private sector. Yet there are numerous institutional, economic, and regulatory obstacles to the transfer and commercialization of environmental restoration and waste management technologies. These obstacles discourage private sector involvement and investment in Federal efforts to develop and use innovative technologies. A further effect is to impede market development even where private sector interest is high. Lowering these market barriers will facilitate the commercialization of innovative environmental cleanup technologies and expedite the cleanup of contaminated Federal and private facilities. This paper identifies the major barriers to transfer and commercialization of innovative technologies and suggests possible strategies to overcome them. Emphasis is placed on issues particularly relevant to the Department of Energy's Environmental Restoration and Waste Management (EM) program, but which are applicable to other Federal agencies confronting complex environmental cleanup problems

  7. Technology development and applications at Fernald

    International Nuclear Information System (INIS)

    Pettit, P.J.; Skriba, M.C.; Warner, R.D.

    1995-01-01

    At the Fernald Environmental Management Project (FEMP) northwest of Cincinnati, Ohio, the U.S. Department of Energy and contractor Fernald Environmental Restoration Management Corporation (FERMCO) are aggressively pursuing both the development and the application of improved, innovative technology to the environmental restoration task. Application of emerging technologies is particularly challenging in a regulatory environment that places pressure on operational managers to develop and meet tight schedules. The regulatory and operational needs make close communication essential between technology developers and technology users (CERCLA/RCRA Unit managers). At Fernald this cooperation and communication has led, not only to the development and demonstration of new technologies with applications at other sites, but also to application of new technologies directly to the Fernald clean up. New technologies have been applied to improve environmental safety and health, improve the effectiveness of restoration efforts, and to cut restoration costs. The paper will describe successful efforts to develop and apply new technologies at the FEMP and will emphasize those technologies that have been applied and are planned for use in the clean up of this former uranium production facility

  8. Evolutionary analysis of technological innovations: the example of solar photovoltaic and wind energy

    International Nuclear Information System (INIS)

    Taillant, Pierre

    2005-01-01

    The objective of this research thesis is to study the building up and the development of technologies for renewable energies considered as environmental radical innovations. In a first part, the author discusses the systemic aspects of innovation and the environmental challenges associated with energy technologies. He examines the main evolutions of energy systems over a long period. In a second part, he addresses innovation incentives in the case of environmental technologies and within the frame of the neo-classical economic theory. The next parts aim at presenting the theoretical framework of the evolutionary analysis of innovation and technical change, and at applying it to the case of technological innovations for renewable energies (photovoltaic and wind energy). World PV market trends are discussed and the technological competition context of this sector is analysed. The evolution of the solar PV technological system in Germany is discussed, as well as the specific case of development of the wind energy technological system in Denmark

  9. Progress in Energy Storage Technologies: Models and Methods for Policy Analysis

    Science.gov (United States)

    Matteson, Schuyler W.

    Climate change and other sustainability challenges have led to the development of new technologies that increase energy efficiency and reduce the utilization of finite resources. To promote the adoption of technologies with social benefits, governments often enact policies that provide financial incentives at the point of purchase. In their current form, these subsidies have the potential to increase the diffusion of emerging technologies; however, accounting for technological progress can improve program success while decreasing net public investment. This research develops novel methods using experience curves for the development of more efficient subsidy policies. By providing case studies in the field of automotive energy storage technologies, this dissertation also applies the methods to show the impacts of incorporating technological progress into energy policies. Specific findings include learning-dependent tapering subsidies for electric vehicles based on the lithium-ion battery experience curve, the effects of residual learning rates in lead-acid batteries on emerging technology cost competitiveness, and a cascading diffusion assessment of plug-in hybrid electric vehicle subsidy programs. Notably, the results show that considering learning rates in policy development can save billions of dollars in public funds, while also lending insight into the decision of whether or not to subsidize a given technology.

  10. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  11. Drying and energy technologies

    CERN Document Server

    Lima, A

    2016-01-01

    This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter- and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.

  12. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two

  13. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, P.T. [comp.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

  14. Program for Energy Research and Technologies 1977--1980. Annual report 1977 on efficient uses of energy fossil sources of primary energy new sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main objectives within the policy of the Federal Government Program for Energy Research and Technologies 1977--1980 can be summarized as follows: guaranteeing the continuity of energy supply in the medium to long term in the Federal Republic at economically favourable costs considering the requirements necessary for the protection of the environment and population. The financial support is effected under the general headings of Development of Energy Resources, Energy Conservation and Efficient Use of Energy. An additional aspect of the support policy is the development of technologies which are of importance for other countries, specifically for the developing countries. Support of a project is effected through a research and development grant from the Federal Government and this can range from less than 50% to 100%. For this the Government receives an irrevocable, free of charge and non-exclusive right to make use of research and development results. In special cases full repayment is agreed subject to commercial success. Based on agreements signed by the Federal Minister of Research and Technology and the Federal Minister of Economic Affairs on the one hand and the Juelich Nuclear Research Establishment (KFA) on the other, the Project Management for Energy Research (PLE) in KFA Juelich is acting on behalf of these Ministries. The Project Management's activities in non-nuclear energy research in general (for the Federal Ministry of Research and Technology) and development and innovation in coal mining and preparation (for the Federal Ministry of Economic Affairs) have the following general objectives: to improve the efficiency of Government support; to ensure that projects are efficiently handled; and to reduce the workload of the Ministries. The individual projects are listed and described briefly.

  15. Role of State Policy in Renewable Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.; Busche, S.; Hockett, S.; McLaren, J.

    2009-07-01

    State policies can support renewable energy development by driving markets, providing certainty in the investment market, and incorporating the external benefits of the technologies into cost/benefit calculations. Using statistical analyses and policy design best practices, this paper quantifies the impact of state-level policies on renewable energy development in order to better understand the role of policy on development and inform policy makers on the policy mechanisms that provide maximum benefit. The results include the identification of connections between state policies and renewable energy development, as well as a discussion placing state policy efforts in context with other factors that influence the development of renewable energy (e.g. federal policy, resource availability, technology cost, public acceptance).

  16. Developing Energy Technology Course for Undergraduate Engineering Management Study Program in Lake Toba Area with Particular Focus to Sustainable Energy Systems in Development Context

    Science.gov (United States)

    Manik, Yosef; Sinaga, Rizal; Saragi, Hadi

    2018-02-01

    Undergraduate Engineering Management Study Program of Institut Teknologi Del is one of the pioneers for its field in Indonesia. Located in Lake Toba Area, this study program has a mission to provide high quality Engineering Management education that produces globally competitive graduates who in turn will contribute to local development. Framing the Energy Technology course—one of the core subjects in Engineering Management Body of Knowledge—in the context of sustainable development of Lake Toba Area is very essential. Thus, one particular focus in this course is sustainable energy systems in local development context that incorporates identification and analysis of locally available energy resources. In this paper we present our experience in designing such course. In this work, we introduce the domains that shape the Engineering Management Body of Knowledge. Then, we explain the results of our evaluation on the key considerations to meet the rapidly changing needs of society in local context. Later, we present the framework of the learning outcomes and the syllabus as a result of mapping the road map with the requirement. At the end, the summary from the first two semesters of delivering this course in academic year 2015/2016 and 2016/2017 are reported.

  17. The energy-development-environment nexus

    International Nuclear Information System (INIS)

    Schneider, Bertrand

    1992-01-01

    Energy is the key factor in tackling two of the major problems now facing humanity: the environment and development. Adequate and appropriate energy supplies are essential to economic and social development, especially for Third World countries, but at the same time energy production and utilization are responsible for much of the damage being done to the environment. As everyone now knows, the combustion of fossil fuels is the main source of greenhouse gases and of the threat to the stability of world climate. Nuclear power, which once seemed an answer to the constantly increasing demand for energy, is now challenged by public opinion in many countries as a result of various nuclear accidents and the problems of processing and storing nuclear waste. So how do we extricate ourselves from the energy environment-development tangle? Clearly, advanced countries have an interest in transferring environment-friendly technologies to developing countries in order to reduce the pollution which puts the global as well as the local environment at risk. The North is, by and large, becoming aware of the choices involved in protecting the environment versus industrial growth and unlimited use of motor vehicles. For the South, these choices are a luxury they can ill afford, given the imperative of rapid development. The solution must be for greater international co-operation, with the North assisting the South (and the former Communist bloc) financially and through transfer of appropriate technologies at affordable cost. Reconciling the environment and development with respect to the energy cycle is a task of fundamental importance for the future. The prime responsibility for this task obviously lies with industries, but action is also required from governments, to enable them to play their part effectively. Advanced countries must demonstrate that development is fully compatible with protecting the environment. They can do so by using market forces, provided that the appropriate

  18. Accelerating the deployment of offshore renewable energy technologies. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Mott

    2011-02-15

    Offshore wind energy and ocean energy (i.e. wave and tidal) are at different stages of technology development and deployment, and, as such, they require different approaches for successful deployment. However, regardless of their deployment stage, these technologies may face common hurdles in their way to market competitiveness. IEA-RETD has completed a study with the overall objective to assist policy makers and project developers in a better understanding of these barriers and the specifics of offshore renewable energy and to give them practical guidelines. These include an offshore energy deployment framework, substantiated by evidence-based analyses, and recommendations for future policies design, including best practices for allocation of seafloor rights.

  19. Creation and development of energy technologies and energy-policy support in Switzerland; Generierung und Uebernahme von Energietechnologien und energiepolitische Foerderung in der Schweiz - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Arvanitis, S.; Ley, M.

    2010-08-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents and discusses the results of the 2009 Energy Technology Survey and the factors determining the adoption of energy-saving technologies in Swiss companies. Also, innovations in the area of energy efficiency and public support for energy efficiency technologies in Switzerland are discussed. This research project relies on a unique survey of Swiss enterprises in order to provide empirical insights on some relevant issues concerning the generation and use of energy-efficient technology. One of the questions addressed is: What are the determinants for the widespread adoption and application of such new technologies, once they have reached maturity?.

  20. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Arts, F.; De Ruiter, W.; Turkenburg, W.C.

    1994-01-01

    The purposes of the title workshop were to exchange ideas on the possible impact of nuclear energy on the sustainable development of the society, to outline the marginal conditions that have to be fulfilled by nuclear energy technology to fit in into sustainable development, to asses and determine the differences or agreements of the workshop participants and their argumentations, and to determine the part that the Netherlands could or should play with respect to a further development and application of nuclear energy. 35 Dutch experts in the field of energy and environment attended the workshop which is considered to be a success. It is recommended to organize a follow-up workshop

  1. Clean Energy Technology Incubator Initiative Launched in Texas

    Science.gov (United States)

    - including the State Energy Conservation Office, the General Land Office, the Texas Natural Resources Conservation Commission, the Texas Energy Coordination Council and the Texas Department of Economic Development from market entry. The alliance is interested in a broad range of company types, from technology-based

  2. Evaluation of the Danish Energy Technology Development and Demonstration Programme EDDP 2007-2010; Evaluering af Energiteknologisk Udviklings- og Demonstrationsprogram EUDP 2007-2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    As one of the largest recipients of energy research and development funds in Denmark, EDDP (Energy Technology Development and Demonstration Programme) is a central granting programme. The programme allocates funds to interesting and promising energy technologies that are either under development or ready to be tested in real life - also called demonstration. The 'Act on Energy Technology Development and Demonstration programme' shows that EDDP projects must contribute to meeting the energy and climate policy objectives for security of supplies, respect for the global climate and a cleaner environment and cost efficiency. These three objectives are related, which means that the projects supported in principle must contribute to several objectives. In addition, the programme shall support the further development of the Danish energy technological strategic strongholds, where prospects for Danish research and industry looks particularly favorable. With the desire to reveal which outputs EDDP actually generates, the EDDP's Board in January 2011 launched an evaluation of the EDDP's results and effects. The focus of the evaluation has particularly been to identify the programme's industrial effects and its contribution to reach the energy and climate policy objectives. The evaluation is thus an effect evaluation and not an actual programme evaluation. Participants from both completed and uncompleted projects participated in the evaluation. The evaluation reveals, therefore, both the results and effects that have already been achieved under the auspices of EDDP projects, and the results and effects which the various project participants expect to achieve in the longer term based on their project participation. In brief, the evaluation shows that: - EDDP projects are largely expected to contribute to Denmark's energy and climate policy objectives; - Satisfactory technological results are created in the projects; - Many projects also generate

  3. Technology, market and policy aspects of geothermal energy in Europe

    Science.gov (United States)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    The Strategic Energy Technology Plan (SET-Plan) is the technology pillar of the EU's energy and climate policy. The goal of the SET-Plan is to achieve EU worldwide leadership in the production of energy technological solutions capable of delivering EU 2020 and 2050 targets for a low carbon economy. The Joint Research Centre (JRC) runs and manages the SET-Plan Information System (SETIS) to support the SET-Plan. Under SETIS, the JRC publishes a number of regularly updated key references on the state of low carbon technology, research and innovation in Europe. Within the framework of the SET-Plan, the geothermal sector is placed into context with other power and heat generation technologies. The talk will give an introduction to some of JRC's geothermal research activities. Amongst others, the JRC Geothermal status report will be presented. This report aims to contribute to the general knowledge about the geothermal sector, its technology, economics and policies, with a focus on innovation, research, development and deployment activities as well as policy support schemes within the European Union. The speech will present the main findings of the report, providing an overview of the activities and progress made by the geothermal energy sector, the status of its sub-technologies and current developments. In addition, the speech will discuss the economic, market and policy aspects of geothermal energy for power production, direct use and ground source heat pumps in Europe and beyond.

  4. 17th Business Report Meeting of New Energy Industrial Technology Development Organization (NEDO). Section Meeting on Solar Technology; Dai 17 kai jigyo hokokukai. Taiyo gijutsu bunkakai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    In this section meeting, reports were made on the following themes: 1) outline of NEDO solar technology development; 2) commercialization study of thin film polycrystal solar cell production technology; 3) development of CdTe solar cell module production technology; 4) R and D of construction material monolithic solar cell modules; 5) development of the project overseas for solar energy technology development. In 1), outlined were the development of commercialization technology of photovoltaic power system, internationally joint demonstration development of photovoltaic power system, development of production facilities of solar cell use compound semiconductors, development of commercialization technology of solar system for industrial use, etc., and a large wind power system. In 2), the results of the study 'low cost Si substrate production by continuous cast method' were reported. In 3), the results were reported of the increase in efficiency and development of low cost production technology for large area modules. In 4), 3 kinds and 6 systems of R and D for house roofs and building walls were conducted, and possibilities of commercialization were obtained in terms of performance and economical efficiency as construction material. In 5), with the use of natural conditions and social systems in Nepal, Mongol, Thailand and Malaysia, the development for commercialization of this system is being made by joint research with each country. (NEDO)

  5. History of nuclear technology development in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp [Visiting Professor, at the Faculty of Petroleum and Renewable Energy Engineering, University Teknologi Malaysia Johor Bahru 81310 (Malaysia); General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195 (Japan)

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  6. History of nuclear technology development in Japan

    Science.gov (United States)

    Yamashita, Kiyonobu

    2015-04-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  7. History of nuclear technology development in Japan

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu

    2015-01-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident

  8. Participating to the Transition Towards New Energy Technology Systems

    International Nuclear Information System (INIS)

    Tosato, G.

    2008-01-01

    The paper analyses possible implications for Croatia of a global transition towards new energy technology systems, as depicted by the recent report on scenarios and strategies to 2050 of the International Energy Agency [ETP2008]. The analysis is based upon the present Croatian energy balance. It takes into account some draft results of the USAID-supported Regional Energy Demand Planning (REDP) study under the South East Europe Regional Energy Market Support (SEE REMS) Project. The paper then presents ongoing EC-funded energy research projects, such as RES2020 (Monitoring and Evaluation of the Renewable Energy Sources directives implementation in EU27 and policy recommendations for 2020), REACCESS (Risk of Energy Availability: Common Corridors for Europe Supply Security) and REALISEGRID (REseArch, methodoLogIes and technologieS for the effective development of pan-European key GRID infrastructures to support the achievement of a reliable, competitive and sustainable electricity supply). The participation of Croatian research organizations to EC-funded research projects could make the transition towards new energy system an opportunity for economic development.(author)

  9. Countermeasures for Developing New Energy Bus Standards in China

    Science.gov (United States)

    Shi, Xin

    2018-01-01

    With the rapid development of new energy vehicle technology, new energy bus has become more and more popular in China, and the relevant standards and policy are urgently needed to guide the market. According to the assessment of the development situation on new energy vehicle technology and new energy bus, combing with traffic policy guidance and the development trend of new energy vehicles, this paper aims to put forward the countermeasures of the new energy bus standard in China, including standard system, key standards and relevant recommendations. Research result is expected to provide decision support for the wide application of new energy bus in China.

  10. Innovative energy technologies in energy-economy models: assessing economic, energy and environmental impacts of climate policy and technological change in Germany.

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.

    2007-04-18

    Energy technologies and innovation are considered to play a crucial role in climate change mitigation. Yet, the representation of technologies in energy-economy models, which are used extensively to analyze the economic, energy and environmental impacts of alternative energy and climate policies, is rather limited. This dissertation presents advanced techniques of including technological innovations in energy-economy computable general equilibrium (CGE) models. New methods are explored and applied for improving the realism of energy production and consumption in such top-down models. The dissertation addresses some of the main criticism of general equilibrium models in the field of energy and climate policy analysis: The lack of detailed sectoral and technical disaggregation, the restricted view on innovation and technological change, and the lack of extended greenhouse gas mitigation options. The dissertation reflects on the questions of (1) how to introduce innovation and technological change in a computable general equilibrium model as well as (2) what additional and policy relevant information is gained from using these methodologies. Employing a new hybrid approach of incorporating technology-specific information for electricity generation and iron and steel production in a dynamic multi-sector computable equilibrium model it can be concluded that technology-specific effects are crucial for the economic assessment of climate policy, in particular the effects relating to process shifts and fuel input structure. Additionally, the dissertation shows that learning-by-doing in renewable energy takes place in the renewable electricity sector but is equally important in upstream sectors that produce technologies, i.e. machinery and equipment, for renewable electricity generation. The differentiation of learning effects in export sectors, such as renewable energy technologies, matters for the economic assessment of climate policies because of effects on international

  11. Alternative energy development strategies for China towards 2030

    Institute of Scientific and Technical Information of China (English)

    Linwei MA; Zheng LI; Feng FU; Xiliang ZHANG; Weidou NI

    2009-01-01

    The purposes, objectives and technology path-ways for alternative energy development are discussed with the aim of reaching sustainable energy development in China. Special attention has been paid to alternative power and alternative vehicle fuels. Instead of limiting alternative energy to energy sources such as nuclear and renewable energy, the scope of discussion is extended to alternative technologies such as coal power with carbon capture and sequestration (CCS), electric and hydrogen vehicles. In order to take account of the fact that China's sustainable energy development involves many dimen-sions, a six-dimensional indicator set has been established and applied with the aim of comprehensively evaluating different technology pathways in a uniform way. The ana-lysis reaches the following conclusions: (a) in the power sector, wind power, nuclear power and hydro power should be developed as much as possible, while R&D of solar power and coal power with CCS should be strengthened continuously for future deployment. (b) in the transporta-tion sector, there is no foreseeable silver bullet to replace oil on a large scale within the time frame of 20 to 30 years. To ease the severe energy security situation, expedient choices like coal derived fuels could be developed. However, its scale should be optimized in accordance to the trade-off of energy security benefits, production costs and environmental costs. Desirable alternative fuels (or technologies) like 2nd generation biofuels and electrical vehicles should be the subject of intensive R&D with the objective to be cost effective as early as possible.

  12. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Alazard-Toux, N.; His, S.; Douard, F.; Duplan, J.L.; Monot, F.; Jaudin, F.; Le Bel, L.; Labeyrie, P.

    2007-01-01

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  13. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise

  14. Canadian nuclear desalination/cogeneration technology development

    International Nuclear Information System (INIS)

    Humphries, J.R.

    1996-01-01

    The goal of the CANDESAL program has been to develop innovative applications of existing technologies that would offer an energy efficient, cost effective mechanism for the production of potable water and electricity. Large scale seawater desalination will be an important element in the solution of the global water shortage problem. For nuclear desalination to capture a significant share of this growing market, it must be economically competitive, as well as offer other advantages over more traditional fossil-fueled alternatives. The focus of activities in Canada has been on development of the technology in directions that would result in improved water production efficiency, reduced energy consumption, reduced environmental burden and reduced costs

  15. Perspectives on Promoting Regional Renewable Energy Research and Development

    International Nuclear Information System (INIS)

    Dresselhaus, M.

    2008-01-01

    Recent discussions at the Washington International Renewable Energy Conference (WIREC), hosted in March 2008 by the United States Government, with nearly 9000 participants including 103 ministers from 126 countries, concluded that a major acceleration in the adoption of renewable energy technologies was needed by mid-century. Because of different climatic conditions and societal preferences, regional cooperation is expected to play a major role in the efficient adoption of appropriate renewable energy technologies, and countries with special expertise in specific technologies seem eager to collaborate internationally to promote global goals in renewable energy. A review will be given of what we learned from this conference about renewable energy research and development strategies with a special focus given to using this basic knowledge base to promote the development of renewable energy technologies appropriate to specific regions of the world.(author)

  16. Evaluating Internal Technological Capabilities in Energy Companies

    Directory of Open Access Journals (Sweden)

    Mingook Lee

    2016-03-01

    Full Text Available As global competition increases, technological capability must be evaluated objectively as one of the most important factors for predominance in technological competition and to ensure sustainable business excellence. Most existing capability evaluation models utilize either quantitative methods, such as patent analysis, or qualitative methods, such as expert panels. Accordingly, they may be in danger of reflecting only fragmentary aspects of technological capabilities, and produce inconsistent results when different models are used. To solve these problems, this paper proposes a comprehensive framework for evaluating technological capabilities in energy companies by considering the complex properties of technological knowledge. For this purpose, we first explored various factors affecting technological capabilities and divided the factors into three categories: individual, organizational, and technology competitiveness. Second, we identified appropriate evaluation items for each category to measure the technological capability. Finally, by using a hybrid approach of qualitative and quantitative methods, we developed an evaluation method for each item and suggested a method to combine the results. The proposed framework was then verified with an energy generation and supply company to investigate its practicality. As one of the earliest attempts to evaluate multi-faceted technological capabilities, the suggested model can support technology and strategic planning.

  17. Engineering research, development and technology

    International Nuclear Information System (INIS)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report

  18. Progress of liquid metal technology and application in energy industries

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kamei, Mitsuru; Nei, Hiromichi.

    1990-01-01

    Liquid metals are excellent energy transport media, and recently remarkable development has been observed in the technology of handling sodium and the machinery and equipment. In nuclear fusion, the development of the use of lithium as the coolant is advanced. For space technology, attention has been paid from the early stage to various liquid metals. For general industries, liquid metals have been used for high temperature heat pipes and the utilization of solar heat, and mercury vapor turbines were manufactured for trial. Besides, attention is paid anew to liquid metal MHD electric power generation. The development of the NaS batteries for electric cars and electric power storage and the interchange of liquid metal technology with the fields of iron and steel, metallurgy and so on advance. It is expected that liquid metal technology bears future advanced energy engineering while deepening the interchange with other advanced fields also in order to reactivate atomic energy technology. Liquid metals have the features of high electric and thermal conductivities, chemical activity and opaque property as metals, and fluidity and relatively high boiling point and melting point as liquids. FBRs, fusion reactors and the power sources for space use are described. (K.I.)

  19. Renewable energy: RD&D priorities. Insights from IEA technology programmes

    Energy Technology Data Exchange (ETDEWEB)

    none

    2006-12-19

    In order to substantially enhance the share of renewable energy technologies in the energy portfolio, it is imperative to accelerate technological advancement and subsequently reduce costs, in combination with novel applications and deployment. This outcome can be significantly supported by a range of RD and D initiatives, if properly designed and implemented. This publication reviews the current status of the renewable energy technologies portfolio and provides guidance on their mid- and long-term development. The study explores the options for the RD&D to achieve breakthroughs that will lead to large-scale markets and identifies what activities should take priority. It also looks at the benefits of increased RD&D funding in terms of technological advancement and cost improvement. It covers renewable energy technologies in the early research stage through to those that have reached a level of maturity. It also lists national renewable energy RD and D trends in IEA member countries.

  20. Energy technology X: a decade of progress. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.F. (ed.)

    1983-06-01

    The characterization, development, and availability of various energy sources for large scale energy production are discussed. Attention is given to government, industry, and international policies on energy resource development and implementation. Techniques for energy analysis, planning, and regulation are examined, with consideration given to conservation practices, military energy programs, and financing schemes. Efficient energy use is examined, including energy and load management, building retrofits, and cogeneration installations, as well as waste heat recovery. The state of the art of nuclear, fossil, and geothermal power extraction is investigated, with note taken of synthetic fuels, fluidized bed combustion, and pollution control in coal-powered plants. Finally, progress in renewable energy technologies, including solar heating and cooling, biomass, and large and small wind energy conversion devices is described.