WorldWideScience

Sample records for energy technologies final

  1. Quantification of environmental impacts of various energy technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Selfors, A. [ed.

    1994-10-01

    This report discusses problems related to economic assessment of the environmental impacts and abatement measures in connection with energy projects. Attention is called to the necessity of assessing environmental impacts both in the form of reduced economic welfare and in the form of costs of abatement measures to reduce the impact. In recent years, several methods for valuing environmental impacts have been developed, but the project shows that few empirical studies have been carried out. The final report indicates that some important factors are very difficult to evaluate. In addition environmental impacts of energy development in Norway vary considerably from project to project. This makes it difficult to obtain a good basis for comparing environmental impacts caused by different technologies, for instance hydroelectric power versus gas power or wind versus hydroelectric power. It might be feasible however to carry out more detailed economic assessments of environmental impacts of specific projects. 33 refs., 1 fig., 4 tabs.

  2. Diffusion of energy-efficient technologies in industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.Y.

    1979-01-01

    United States energy policies aim at cutting down dependence on foreign oil in two ways: by energy conservation and by finding new domestic supplies. The study investigates how the first goal can be achieved in the industrial sector (manufacturing) of the economy, which accounts for about 40% (about 7.3 million barrels per day) of the total energy consumption in the US. It is noted that industry is able to conserve as much as 25 to 30% of its energy consumption by adopting simple conservation measures and energy-efficient technologies. These technologies can be implemented without major alterations of the original equipment. The schools of thought on innovative processes are discussed; these will serve as the conceptual and methodological base of the project. (MCW)

  3. Accelerating the deployment of offshore renewable energy technologies. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Mott

    2011-02-15

    Offshore wind energy and ocean energy (i.e. wave and tidal) are at different stages of technology development and deployment, and, as such, they require different approaches for successful deployment. However, regardless of their deployment stage, these technologies may face common hurdles in their way to market competitiveness. IEA-RETD has completed a study with the overall objective to assist policy makers and project developers in a better understanding of these barriers and the specifics of offshore renewable energy and to give them practical guidelines. These include an offshore energy deployment framework, substantiated by evidence-based analyses, and recommendations for future policies design, including best practices for allocation of seafloor rights.

  4. Regional application of fossil energy technologies: an analytical approach. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rebello, W.; Canete, D.; Phipps, H.; Smith, R.

    1979-09-01

    Energy supply/demand profiles are presented for the 50 states and the nine US census regions using 1974 statistics. These profiles include quantity and type of energy reserves, annual primary resource production, and consumption by end-use sector. Each state's and region's energy balance is presented for fossil fuels, quantitatively designating the state or region as a net importer or exporter of these fuels. Finally, the dependence of each consumption sector on each energy source is tabulated. A major part of the project was devoted to the development of a method for use by energy planners in assessing the effects of policy decisions on energy profiles. A series of energy indices is derived for each census region. The indices are defined to include the effect of consumption of relatively scarce fuels (oil and gas) versus plentiful fuels (coal). The fuel-weighting factors, incorporated into the indices, are based upon national depletion rates, i.e., production. The energy indices technique can be used as a basis for comparisons between consumption sectors in a region, similar sectors in two or more regions, etc. A number of fossil-energy technologies under development at DOE are described. The potential impact of the maturation of these technologies on each census region's energy posture is discussed in conjuncton with any regional constraints that may exist. Finally, a number of sample what if scenarios are discussed and the impact of fossil-fuel replacements on national, regional, and sector energy consumption quantitatively assessed.

  5. Final Technical Report Laramie County Community College: Utility-Scale Wind Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Douglas P. Cook

    2012-05-22

    The Utility-Scale Wind Energy Technology U.S. Department of Energy (DOE) grant EE0000538, provided a way ahead for Laramie County Community College (LCCC) to increase educational and training opportunities for students seeking an Associate of Applied Science (AAS) or Associate of Science (AS) degree in Wind Energy Technology. The DOE grant enabled LCCC to program, schedule, and successfully operate multiple wind energy technology cohorts of up to 20-14 students per cohort simultaneously. As of this report, LCCC currently runs four cohorts. In addition, the DOE grant allowed LCCC to procure specialized LABVOLT electronic equipment that directly supports is wind energy technology curriculum.

  6. Advanced energy systems and technologies (NEMO 2). Final report 1993-1998

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.; Konttinen, P. [eds.

    1998-12-31

    NEMO2 has been the major Finnish energy research programme on advanced energy systems and technologies during 1993-1998. The main objective of the programme has been to support industrial technology development but also to increase the utilisation of wind and solar energy in Finland. The main technology fields covered are wind and solar energy. In addition, the programme has supported projects on energy storage and other small-scale energy technologies such as fuel cells that support the main technology fields chosen. NEMO2 is one of the energy research programmes of the Technology Development Centre of Finland (TEKES). The total R and D funding over the whole programme period was FIM 130 million (ECU 22 million). The public funding of the total programme costs has been 43 %. The industrial participation has been strong. International co-operation has been an important aspect in NEMO2: the programme has stimulated 24 EU-projects and participation in several IEA co-operative tasks. International funding adds nearly 20 % to the NEMO2 R and D funding. (orig.)

  7. ASEAN--USAID Buildings Energy Conservation Project final report. Volume 2, Technology

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.D.; Busch, J.F. [eds.

    1992-06-01

    This volume reports on research in the area of energy conservation technology applied to commercial buildings in the Association of Southeast Asian Nations (ASEAN) region. Unlike Volume I of this series, this volume is a compilation of original technical papers prepared by different authors in the project. In this regard, this volume is much like a technical journal. The papers that follow report on research conducted by both US and ASEAN researchers. The authors representing Indonesia, Malaysia, Philippines, and Thailand, come from a range of positions in the energy arena, including government energy agencies, electric utilities, and universities. As such, they account for a wide range of perspectives on energy problems and the role that technology can play in solving them. This volume is about using energy more intelligently. In some cases, the effort is towards the use of more advanced technologies, such as low-emittance coatings on window glass, thermal energy storage, or cogeneration. In others, the emphasis is towards reclaiming traditional techniques for rendering energy services, but in new contexts such as lighting office buildings with natural light, or cooling buildings of all types with natural ventilation. Used in its broadest sense, the term ``technology`` encompasses all of the topics addressed in this volume. Along with the more customary associations of technology, such as advanced materials and equipment and the analysis of their performance, this volume treats design concepts and techniques, analysis of ``secondary`` impacts from applying technologies (i.e., unintended impacts, or impacts on parties not directly involved in the purchase and use of the technology), and the collection of primary data used for conducting technical analyses.

  8. Office technology energy use and savings potential in New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Piette, M.A., Cramer, M., Eto, J., Koomey, J.

    1995-06-01

    This report discusses energy use by office equipment in New York State and the energy savings potential of energy-efficient equipment. A model containing equipment densities and energy-use characteristics for major categories of office equipment has been developed. The model specifies power requirements and hours of use for three modes of average operation for each device: active, standby, and suspend. The energy-use intensity for each device is expressed as a function of the average device density (number of units/1,000 sq ft), the hours of operation in each mode, and the average power requirements in each mode. Output includes an estimate of total energy use (GWh) for each device by building type. Three scenarios are developed. First is a business-as-usual efficiency baseline. Second is a future with increased use of power-managed devices projected under the current Energy Star Computers program sponsored by the US EPA. Third is a scenario that examines energy savings from greater use of products that go well beyond the standard Energy Star products. A series of sensitivity analyses were conducted to explore uncertainties in model inputs. The business-as-usual baseline forecast confirms that office equipment energy use has been rising over the past decade, and may continue to increase for the next decade and beyond. Office equipment currently consumes about 2,900 GWh/year in the State of New York. Under the business-as-usual baseline forecast, this load may increase to 3,300 GWh/year by the year 2000, and approximately double again before 2010. Widespread use of power management technologies adopted with the promotion of the Energy Star program could reduce this load growth by about 30% by the year 2000. Use of more advanced energy-efficient technology could reduce total energy use by office equipment to about 1,900 GWh/year in 2010, which is less than current consumption.

  9. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    White, Thornton C [SCRA Appiled R& D

    2014-03-31

    Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) is a balanced portfolio of R&D tasks that address energy-saving opportunities in the metalcasting industry. E-SMARRT was created to: • Improve important capabilities of castings • Reduce carbon footprint of the foundry industry • Develop new job opportunities in manufacturing • Significantly reduce metalcasting process energy consumption and includes R&D in the areas of: • Improvements in Melting Efficiency • Innovative Casting Processes for Yield Improvement/Revert Reduction • Instrumentation and Control Improvement • Material properties for Casting or Tooling Design Improvement The energy savings and process improvements developed under E-SMARRT have been made possible through the unique collaborative structure of the E-SMARRT partnership. The E-SMARRT team consisted of DOE’s Office of Industrial Technology, the three leading metalcasting technical associations in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders’ Society of America; and SCRA Applied R&D, doing business as the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. This team provided collaborative leadership to a complex industry composed of approximately 2,000 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, these new processes and technologies that enable energy efficiencies and environment-friendly improvements would have been slow to develop and had trouble obtaining a broad application. The E-SMARRT R&D tasks featured low-threshold energy efficiency improvements that are attractive to the domestic industry because they do not require major capital investment. The results of this portfolio of projects are significantly reducing metalcasting process energy consumption while improving the important capabilities of metalcastings. Through June

  10. Revitalize the US silicon/ferrosilicon industry through energy-efficient technology. Part 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H.R.; Welborn, J.H.

    1995-02-01

    It is concluded that silicon metal and ferrosilicon can be very effectively produced in a DC submerged arc furnace. Specific energy consumption factors measured were favorable to the technology. Significant energy savings over conventional AC practice are likely. Hollow electrode feeding of the furnace does not appear feasible. Electrode consumption was 0.144 lbs/lb so silicon while making metal, much of which occurred above the burden pile. Silicon loss to fume averaged 19.5% of the silicon charge. In this furnace, 50% FeSi was more difficult to produce than silicon metal, and the furnace could not be run with full burden; it was operated successfully about 3/4 full. In the silicon metal portion, the furnace was operated in a fully submerged mode for several 3-day test campaigns. The industry must seriously consider the identified benefits of DC plasma arc technology for retrofit or new added silicon capacity.

  11. Environmental aspects of alternative wet technologies for producing energy/fuel from peat. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.T.

    1981-05-01

    Peat in situ contains up to 90% moisture, with about 50% of this moisture trapped as a colloidal gel. This colloidal moisture cannot be removed by conventional dewatering methods (filter presses, etc.) and must be removed by thermal drying, solvent extraction, or solar drying before the peat can be utilized as a fuel feedstock for direct combustion or gasification. To circumvent the drying problem, alternative technologies such as wet oxidation, wet carbonization, and biogasification are possible for producing energy or enhanced fuel from peat. This report describes these three alternative technologies, calculates material balances for given raw peat feed rates of 1000 tph, and evaluates the environmental consequences of all process effluent discharges. Wastewater discharges represent the most significant effluent due to the relatively large quantities of water removed during processing. Treated process water returned to the harvested bog may force in situ, acidic bog water into recieving streams, disrupting local aquatic ecosystems.

  12. Technology programme SULA 2. Energy in steel and base metal production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    SULA 2 is the energy research programme of the steel and metal producing industry. Central steel and metal producing companies are Outokumpu, Rautaruukki, Imatra Steel and Fundia Wire which is a subsidiary of Rautaruukki. The priorities of the SULA 2 programme are in process development. Worthwhile areas of concentration in energy research by Finland include the following: Iron and steel production; Zinc production; The production of ferrochromium and stainless steel; The pyrometallurgical production of copper and nickel and Rolling and heat treatment of steel In addition to the steel and metal producers the following companies participate in some projects: Kuusakoski, Kumera, Fiskars Tools and BETKER. Research work is performed in the following universities and research centers: Helsinki University of Technology, Oulu University, Aabo Akademi University, Tampere University of Technology, VTT Energy and VTT Building Technology. The total number of projects in SULA 2 programme is 51. Of these 20 are research institute projects, 21 are company R and D projects and 10 are energy conservation projects funded by Ministry of Trade and Industry. The total research costs are ca. 130 million FIM. The major part of costs is carried by the participating companies, 62 % and by public funding (Ministry of Trade and Industry, TEKES, The Academy of Finland) 36 %. In six projects the objective of research was studying and inventing new production processes or equipment. Results so far are a new production process for the Tornio stainless steel plant and a new design of ore concentrate rotary dryer, which has been commercialized. The electric energy consumption of the melting shop in Tornio has decreased by 25 %, and the production capacity has increased accordingly. Considerable savings in production process energy consumption, estimable from production reports have been achieved in several projects. The total amount of estimable saving in specific energy consumption is about 900

  13. Geolocation Technologies Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Magnoli, D E

    2003-06-02

    This paper is the final report for LL998 In Situ Sensing Subtask 7 (Geo-location) undertaken for NNSA NA-22 enabling technologies R&D for Counterproliferation Detection. A few state-of-the-art resolution parameters are presented for accelerometers, indoor and outdoor GPS (Global Positioning Satellite) systems, and INSs (Inertial Navigation Systems). New technologies are described, including one which has demonstrated the ability to track within a building to a resolution of under a foot.

  14. NREL Topic 1 Final Report: Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sparn, Bethany F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Seal, Brian [Electric Power Research Institute (EPRI)

    2018-02-21

    This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set of leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.

  15. Capital cost estimates of selected advanced thermal energy storage technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, W.T.

    1980-06-01

    A method for evaluating the first cost of diverse advances TES concepts on a common basis is presented. For a total sample of at least 20 baseline and advanced TES technologies, the methodology developed was to be applied in the calculation of actual cost and performance measures. Work on the development of TES has focused on 5 types of application areas: electric power generation, with solar input in which TES is used to store energy for use during cloudy periods or at night; conventional fuel-fired electric power generation, in which TES is used to improve load factors; cyclic losses, in which TES is used to reduce losses that occur when devices start and stop; batch losses, in which TES is used to recover waste heat; and source/sink mismatch, in which TES is used to increase the efficiency of processes that are dependent upon ambient temperatures. Chapter 2 defines reference operating characteristics; Chapter 2 gives the costing methodology; Chapter 4 describes the system; Chapter 5 describes the baseline systems; Chapter 6 analyzes the effect of input-storage-temperature requirements on solar-collector-hardware costs and the input-temperature requirements of off-peak electric-storage systems on compressor operating costs; and in Chapter 7, the effects of chemical heat pump COP and collector temperature on storage size and collector area are considered. (MCW)

  16. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    L. R. Zirker; J. E. Francfort; J. J. Fielding

    2006-03-01

    This Oil Bypass Filter Technology Evaluation final report documents the feasibility of using oil bypass filters on 17 vehicles in the Idaho National Laboratory (INL) fleet during a 3-year test period. Almost 1.3 million test miles were accumulated, with eleven 4-cycle diesel engine buses accumulating 982,548 test miles and six gasoline-engine Chevrolet Tahoes accumulating 303,172 test miles. Two hundred and forty oil samples, taken at each 12,000-mile bus servicing event and at 3,000 miles for the Tahoes, documented the condition of the engine oils for continued service. Twenty-eight variables were normally tested, including the presence of desired additives and undesired wear metals such as iron and chrome, as well as soot, water, glycol, and fuel. Depending on the assumptions employed, the INL found that oil bypass filter systems for diesel engine buses have a positive payback between 72,000 and 144,000 miles. For the Tahoes, the positive payback was between 66,000 and 69,000 miles.

  17. National Renewable Energy Laboratory (NREL) Topic 2 Final Report: End-to-End Communication and Control System to Support Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carrillo, Ismael M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simmins, John [Electric Power Research Institute (EPRI)

    2018-02-21

    This document is the final report of a two-year development, test, and demonstration project, 'Cohesive Application of Standards- Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL's) Integrated Network Testbed for Energy Grid Research and Technology (INTEGRATE) initiative hosted at Energy Systems Integration Facility (ESIF). This project demonstrated techniques to control distribution grid events using the coordination of traditional distribution grid devices and high-penetration renewable resources and demand response. Using standard communication protocols and semantic standards, the project examined the use cases of high/low distribution voltage, requests for volt-ampere-reactive (VAR) power support, and transactive energy strategies using Volttron. Open source software, written by EPRI to control distributed energy resources (DER) and demand response (DR), was used by an advanced distribution management system (ADMS) to abstract the resources reporting to a collection of capabilities rather than needing to know specific resource types. This architecture allows for scaling both horizontally and vertically. Several new technologies were developed and tested. Messages from the ADMS based on the common information model (CIM) were developed to control the DER and DR management systems. The OpenADR standard was used to help manage grid events by turning loads off and on. Volttron technology was used to simulate a homeowner choosing the price at which to enter the demand response market. Finally, the ADMS used newly developed algorithms to coordinate these resources with a capacitor bank and voltage regulator to respond to grid events.

  18. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology final report

    Energy Technology Data Exchange (ETDEWEB)

    Wade, D.W.; Trammell, B.C.; Dixit, B.S.; McCurry, D.C.; Rindt, B.A.

    1979-12-01

    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. This report develops the concept of an HP-WHR system, evaluates the potential performance and economics of such a system, and examines the potential for application. A thermodynamic performance analysis of a hypothetical system projects an overall system Coefficient of Performance (C.O.P.) of from 2.181 to 2.264 for waste-water temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the nationwide implementation of this system is projected to be 6.0 QUADS-fuel oil, or 8.5 QUADS - natural gas, or 29.7 QUADS - coal for the period 1980 to 2000, depending upon the type and mix of conventional space conditioning systems which could be displaced with the HP-WHR system. Site-specific HP-WHR system designs are presented for two application communities in Georgia. Performance analyses for these systems project annual cycle system C.O.P.'s of 2.049 and 2.519. Economic analysis on the basis of a life cycle cost comparison shows one site-specific system design to be cost competitive in the immediate market with conventional residential and light commercial HVAC systems. The second site-specific system design is shown through a similar economic analysis to be more costly than conventional systems due mainly to the current low energy costs for natural gas. It is anticipated that, as energy costs escalate, this HP-WHR system will also approach the threshold of economic viability.

  19. Final Report - Energy Reduction and Advanced Water Removal via Membrane Solvent Extraction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Reed, John; Fanselow, Dan; Abbas, Charles; Sammons, Rhea; Kinchin, Christopher

    2014-08-06

    3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.

  20. Final Technical Report: Hawaii Energy and Environmental Technologies Initiative 2009 (HEET)

    Science.gov (United States)

    2016-05-25

    and inverter response times, as well as meter sensing delays. An improvement in this area is likely to have applications in real-world micro-grids...benefit and long-term battery health. Under Subtask 4.3, PV module and inverter technologies were tested to characterize performance and durability...under differing environmental conditions. PV test platforms were installed at Hawaii Project Frog classrooms on Oahu and Kauai for side-by-side

  1. Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 4. Technology appendix. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    Volume IV of the ISTUM documentation gives information on the individual technology specifications, but relates closely with Chapter II of Volume I. The emphasis in that chapter is on providing an overview of where each technology fits into the general-model logic. Volume IV presents the actual cost structure and specification of every technology modeled in ISTUM. The first chapter presents a general overview of the ISTUM technology data base. It includes an explanation of the data base printouts and how the separate-cost building blocks are combined to derive an aggregate-technology cost. The remaining chapters are devoted to documenting the specific-technology cost specifications. Technologies included are: conventional technologies (boiler and non-boiler conventional technologies); fossil-energy technologies (atmospheric fluidized bed combustion, low Btu coal and medium Btu coal gasification); cogeneration (steam, machine drive, and electrolytic service sectors); and solar and geothermal technologies (solar steam, solar space heat, and geothermal steam technologies), and conservation technologies.

  2. Energy Audits. Energy Technology Series.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy audits is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored training…

  3. Environmental impact study due to end use energy technologies; Estudio prospectivo del impacto ambiental debido a tecnologias de uso final de la energia

    Energy Technology Data Exchange (ETDEWEB)

    Manzini Poli, Fabio

    1997-11-01

    Two thirds of the internal offer of energy in Mexico is consumed by end use sectors through end use technologies (TUF). Here is presented an integral conceptual frame for the environmental impact evaluation due to end use technologies, then the evolution of the interactions between technology-environment-fuel is analyzed in the long term (year 2025) according to three possible scenarios: business as usual, blocks and sustainable. [Spanish] Dos terceras partes de la oferta interna de energia en Mexico la utilizan los sectores de consumo final mediante tecnologias de uso final energetico. En el presente trabajo se introduce un marco conceptual integral para evaluar los impactos ambientales debidos a la utilizacion de tecnologias de uso final de la energia (TUF), luego se analiza la evolucion de las interacciones entre tecnologia-energetico-ambiente a largo plazo (ano 2025) de acuerdo a tres escenarios posibles: tendencial, bloques y sustentable.

  4. Technology transfer: Developing dual-degree programs with major universities in three energy-related careers. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    In 1983, Fort Valley State University (FVSU) received start-up funds from the US Department of Energy`s Office of Minority Economic Impact to develop a Cooperative Developmental Energy Program (CDEP). The objective of CDEP is to develop a mutually beneficial long-term synergistic relationship among FVSU, two major universities, and the private and governmental sectors of the nation`s energy industry by creating a technology oriented labor base for minorities and women. FVSU accomplishes this objective by (1) developing dual-degree curricula with the University of Oklahoma and the University of Nevada at Las Vegas in energy related disciplines such as engineering, geosciences, and health physics; (2) by recruiting academically talented minority and female students to pursue careers in the above disciplines; and (3) by developing participatory alliances with major energy companies and governmental agencies via internship, co-op, and employment programs. Since its inception in 1983, CDEP has provided over 650 energy internships for FVSU students, they have gained over 250,000 hours of hands-on work experience, and earned over $3 million to help finance their education. Approximately, 900 students have been in the CDEP program. Over 30 have found employment in the energy industry and approximately 35 have gone on to earn Master`s or Ph.D. degrees.

  5. Final Report to the National Energy Technology Laboratory on FY14- FY15 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittal, Vijay [Arizona State Univ., Tempe, AZ (United States); Lampis, Anna Rosa [Arizona State Univ., Tempe, AZ (United States)

    2018-01-16

    The Power System Engineering Research Center (PSERC) engages in technological, market, and policy research for an efficient, secure, resilient, adaptable, and economic U.S. electric power system. PSERC, as a founding partner of the Consortium for Electric Reliability Technology Solutions (CERTS), conducted a multi-year program of research for U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) to develop new methods, tools, and technologies to protect and enhance the reliability and efficiency of the U.S. electric power system as competitive electricity market structures evolve, and as the grid moves toward wide-scale use of decentralized generation (such as renewable energy sources) and demand-response programs. Phase I of OE’s funding for PSERC, under cooperative agreement DE-FC26-09NT43321, started in fiscal year (FY) 2009 and ended in FY2013. It was administered by DOE’s National Energy Technology Laboratory (NETL) through a cooperative agreement with Arizona State University (ASU). ASU provided sub-awards to the participating PSERC universities. This document is PSERC’s final report to NETL on the activities for OE, conducted through CERTS, from September 2015 through September 2017 utilizing FY 2014 to FY 2015 funding under cooperative agreement DE-OE0000670. PSERC is a thirteen-university consortium with over 30 industry members. Since 1996, PSERC has been engaged in research and education efforts with the mission of “empowering minds to engineer the future electric energy system.” Its work is focused on achieving: • An efficient, secure, resilient, adaptable, and economic electric power infrastructure serving society • A new generation of educated technical professionals in electric power • Knowledgeable decision-makers on critical energy policy issues • Sustained, quality university programs in electric power engineering. PSERC core research is funded by industry, with a budget supporting

  6. Final Technical Report: The Incubation of Next-Generation Radar Technologies to Lower the Cost of Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John [Texas Tech Univ., Lubbock, TX (United States); Hirth, Brian [Texas Tech Univ., Lubbock, TX (United States); Guynes, Jerry [Texas Tech Univ., Lubbock, TX (United States)

    2017-03-15

    The National Wind Institute (NWI) at Texas Tech University (TTU) has had an impressive and well documented 46-year history of wind related research activities (http://www.depts.ttu.edu/nwi/). In 2011 with funding from the United States Department of Energy (DOE), an NWI team applied radar technologies and techniques to document the complex flows occurring across a wind plant. The resulting efforts yielded measurements that exceeded the capabilities of commercial lidar technologies with respect to maximum range, range resolution and scan speed. The NWI team was also the first to apply dual-Doppler synthesis and objective analysis techniques to resolve the full horizontal wind field (i.e. not just the line-of-sight wind speeds) to successfully define turbine inflow and wake flows across large segments of wind plants. While these successes advanced wind energy interests, the existing research radar platforms were designed to serve a diversity of meteorological applications, not specifically wind energy. Because of this broader focus and the design choices made during their development, the existing radars experienced technical limitations that inhibited their commercial viability and wide spread adoption. This DOE project enabled the development of a new radar prototype specifically designed for the purpose of documenting wind farm complex flows. Relative to other “off the shelf” radar technologies, the specialized transmitter and receiver chains were specifically designed to enhance data availability in non-precipitating atmospheres. The new radar prototype was integrated at TTU using components from various suppliers across the world, and installed at the Reese Technology Center in May 2016. Following installation, functionality and performance testing were completed, and subsequent comparative analysis indicated that the new prototype greatly enhances data availability by a factor of 3.5-50 in almost all atmospheric conditions. The new prototype also provided

  7. Solar Thermal Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Pitsenbarger, J. [eds.

    1996-02-01

    Solar Thermal Energy Technology (PST) announces on a bimonthly basis the current worldwide research and development information that would expand the technology base required for the advancement of solar thermal systems as a significant energy resource.

  8. Energy Consumption of Information and Communication Technology (ICT) in Germany up to 2010. Summary of the final report

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.; Eichhammer, W.; Friedewald, M.; Georgieff, P.; Rieth-Hoerst, S.; Schlomann, B.; Zoche, P.; Aebischer, B.; Huser, A.

    2003-01-01

    Increasing power consumption for ICT applications represents a basic risk both with regard to climate protection and against the background of the expected shutdown of nuclear power stations in Germany. On the other hand, the prospects for improved energy use due to ICT applications should not be neglected. These are found in existing electricity saving potentials in the ICT sector itself, which could be exploited to a greater extent, as well as in possibilities to save energy in other sectors through increased use of new ICT applications (e.g. through remote monitoring in the transport sector, in the intelligent home, in energy technology auxiliary systems, especially in contracting and in logistics). Neither aspect has been the subject of much research so far. Nor have the indirect impacts of ICT on energy consumption been analysed to any great extent so far. This is particularly true for transport services which, on the one hand, may become unnecessary due to electronic services (e.g. electronic banking services, telephone conferences, decentralised printing of daily newspapers), but, on the other, may create additional transport services (e.g. e-commerce). (orig.)

  9. Comparative assessment of hydrogen storage and international electricity trade for a Danish energy system with wind power and hydrogen/fuel cell technologies. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Bent (Roskilde University, Energy, Environment and Climate Group, Dept. of Environmental, Social and Spatial Change (ENSPAC) (DK)); Meibom, P.; Nielsen, Lars Henrik; Karlsson, K. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Systems Analysis Dept., Roskilde (DK)); Hauge Pedersen, A. (DONG Energy, Copenhagen (DK)); Lindboe, H.H.; Bregnebaek, L. (ea Energy Analysis, Copenhagen (DK))

    2008-02-15

    This report is the final outcome of a project carried out under the Danish Energy Agency's Energy Research Programme. The aims of the project can be summarized as follows: 1) Simulation of an energy system with a large share of wind power and possibly hydrogen, including economic optimization through trade at the Nordic power pool (exchange market) and/or use of hydrogen storage. The time horizon is 50 years. 2) Formulating new scenarios for situations with and without development of viable fuel cell technologies. 3) Updating software to solve the abovementioned problems. The project has identified a range of scenarios for all parts of the energy system, including most visions of possible future developments. (BA)

  10. Buildings Energy Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Buildings Energy Technology (BET) announces on a monthly basis the current worldwide information available on the technology required for economic energy conservation in buildings and communities. Each issue of BET also will include an article presenting a program overview or highlighting a current energy conservation technology project of DOE's Office of Building Technologies (OBT) plus a listing of scheduled meetings of interest. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  11. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  12. Key energy technologies for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO{sub 2} capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  13. Renewable Energy Technology

    Science.gov (United States)

    Daugherty, Michael K.; Carter, Vinson R.

    2010-01-01

    In many ways the field of renewable energy technology is being introduced to a society that has little knowledge or background with anything beyond traditional exhaustible forms of energy and power. Dotson (2009) noted that the real challenge is to inform and educate the citizenry of the renewable energy potential through the development of…

  14. Buildings Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Emmanuel, L. [eds.

    1996-11-01

    BET announces on a monthly basis current worldwide information available on the technology required for economic energy conservation in buildings and communities. It contains abstracts of DOE reports, journal articles, conference papers,patents,theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through IEA`s Energy Technology Data Exchange or government- to-government agreements. The citations are available for online searching and retrieval; current information, added daily, is available to DOE and its contractors.

  15. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  16. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  17. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  18. Final Report to the National Energy Technology Laboratory on FY09-FY13 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittal, Vijay [Arizona State Univ., Mesa, AZ (United States)

    2015-11-04

    The Consortium for Electric Reliability Technology Solutions (CERTS) was formed in 1999 in response to a call from U.S. Congress to restart a federal transmission reliability R&D program to address concerns about the reliability of the U.S. electric power grid. CERTS is a partnership between industry, universities, national laboratories, and government agencies. It researches, develops, and disseminates new methods, tools, and technologies to protect and enhance the reliability of the U.S. electric power system and the efficiency of competitive electricity markets. It is funded by the U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability (OE). This report provides an overview of PSERC and CERTS, of the overall objectives and scope of the research, a summary of the major research accomplishments, highlights of the work done under the various elements of the NETL cooperative agreement, and brief reports written by the PSERC researchers on their accomplishments, including research results, publications, and software tools.

  19. Promoting Renewable Energy Technologies

    DEFF Research Database (Denmark)

    Olsen, Ole Jess; Skytte, Klaus

    % of its annual electricity production. In this paper, we present and discuss the Danish experience as a case of promoting renewable energy technologies. The development path of the two technologies has been very different. Wind power is considered an outright success with fast deployment to decreasing...... technology and its particular context, it is possible to formulate some general principles that can help to create an effective and efficient policy for promoting new renewable energy technologies.......Wind power and combined heat and power (CHP) using biomass (for combustion, gasification or fermentation) are two of the most promising renewable technologies for generation of electricity. Denmark has a long and well-established tradition for these technologies that now account for approx. 25...

  20. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  1. The Role of Emerging Energy-Efficient Technology in PromotingWorkplace Productivity and Health: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satish; Fisk, William J.

    2002-02-13

    Research into indoor environmental quality (IEQ) and itseffects on health, comfort, and performance of occupants is becoming anincreasing priority as interest in high performance buildings andorganizational productivity advances. Facility managers are interested inIEQ's close relationship to energy use in facilities and employers wantto enhance employee comfort and productivity, reduce absenteeism andhealth costs, and reduce or even eliminate litigation by providingexcellent indoor environments to employees. The increasing interest inthis field as architects, engineers, facility managers, buildinginvestors, health officials, jurists, and the public seek simple andgeneral guidelines on creating safe, healthy, and comfortable indoorenvironment, has put additional pressure on the research community. Inthe last twenty years, IEQresearchers have advanced our understanding ofthe influence of IEQ on health and productivity, but many uncertaintiesremain. Consequently, there is a critical need to expand research in thisfield, particularly research that is highly multidisciplinary. Inaddition, there is a strong need to better communicate knowledgecurrently documented in research publications to building professionalsin order to encourage implementation of designs and practices thatenhance health and productivity. Against this background, the IndoorHealth and Productivity (IHP) project aims to develop a fullerunderstanding of the relationships between physical attributes of theworkplace (e.g. thermal, lighting, ventilation, and air quality) innon-residential and non-industrial buildings and the health andproductivity of occupants. A particular emphasis of the IHP project is toidentify and communicate key research findings, with their practical andpolicy implications, to policymakers, design practitioners, facilitymanagers, construction and energy services companies, and buildinginvestors.The IHP project has a steering committee of sponsors and seniorscientists. Advisory

  2. Drying and energy technologies

    CERN Document Server

    Lima, A

    2016-01-01

    This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter- and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.

  3. Institute for Clean Energy Technology Mississippi State University NSR&D Aged HEPA Filter Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacks, Robert [Mississippi State Univ., Mississippi State, MS (United States); Stormo, Julie [Mississippi State Univ., Mississippi State, MS (United States); Rose, Coralie [Mississippi State Univ., Mississippi State, MS (United States); Rickert, Jaime [Mississippi State Univ., Mississippi State, MS (United States); Waggoner, Charles A. [Mississippi State Univ., Mississippi State, MS (United States)

    2017-03-22

    as establishing a selfimproving, NQA-1 program capable of advancing the service lifetime study of HEPA filters. The data and reports are available for careful and critical review by subject matter experts before the next set of filters is tested and can be found in the appendices of this final report. NSR&D funds have not only initiated the Aged HEPA Filter Study alluded to in Appendix C of the NACH, but have also enhanced the technical integrity and effectiveness of all of the follow-on testing for this long-term study.

  4. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Bathgate, M.B.; Crawford, R.B.; McCaleb, C.S.; Prono, J.K. (eds.)

    1976-05-01

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices.

  5. High Penetration Photovoltaic Power Electronics and Energy Management Technology Research, Development and Demonstration: Cooperative Research and Development Final Report, CRADA Number CRD-13-517

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-25

    Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.

  6. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  7. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers.

  8. Energy and Technology Review

    Science.gov (United States)

    Bookless, W. A.; Wheatcraft, D.

    1995-03-01

    This journal contains two feature articles. The first article reports on the background, design, and capabilities of the Portable Tritium Processing System currently being used to clean up and decontaminate the Laboratory's Tritium Facility. The second article discusses the development of a x-ray lasers as a probe to obtain high-resolution images of high-density plasmas produced at the Nova laser facility. Finally, two research programs are highlighted. They are silicon microcomponents and modern technology for advanced military training.

  9. Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 1. Primary model documentation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Roger E.; Herod, J. Steven; Andrews, Gwen L.; Budzik, Philip M.; Eissenstat, Richard S.; Grossmann, John R.; Reiner, Gary M.; Roschke, Thomas E.; Shulman, Michael J.; Toppen, Timothy R.; Veno, William R.; Violette, Daniel M.; Smolinski, Michael D.; Habel, Deborah; Cook, Alvin E.

    1979-10-01

    ISTUM is designed to predict the commercial market penetration of various energy technologies in the industrial sector out to the year 2000. It is a refinement and further development of Market Oriented Program Planning Study task force in 1977. ISTUM assesses the comparative economic competitiveness of each technology and competes over 100 energy technologies - conventionals, fossil/energy, conservation, cogeneration, solar, and geothermal. A broad overview of the model, the solution of the model, and an in-depth discussion of strength and limitations of the model are provided in Volume I. (MCW)

  10. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    This chapter describes the present mainstream development of the wind turbine technology at present. The turbine technology development trend is characterized by up-scaling to turbines with larger capacity for both onshore and offshore applications, larger rotors and new drivetrain solution...... turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  11. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O' Neal, E.; Van Dyke, P. (eds.)

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

  12. EDITORIAL: Renewing energy technology Renewing energy technology

    Science.gov (United States)

    Demming, Anna

    2011-06-01

    Renewable energy is now a mainstream concern among businesses and governments across the world, and could be considered a characteristic preoccupation of our time. It is interesting to note that many of the energy technologies currently being developed date back to very different eras, and even predate the industrial revolution. The fuel cell was first invented as long ago as 1838 by the Swiss--German chemist Christian Friedrich Schönbein [1], and the idea of harnessing solar power dates back to ancient Greece [2]. The enduring fascination with new means of harnessing energy is no doubt linked to man's innate delight in expending it, whether it be to satisfy the drive of curiosity, or from a hunger for entertainment, or to power automated labour-saving devices. But this must be galvanized by the sustained ability to improve device performance, unearthing original science, and asking new questions, for example regarding the durability of photovoltaic devices [3]. As in so many fields, advances in hydrogen storage technology for fuel cells have benefited significantly from nanotechnology. The idea is that the kinetics of hydrogen uptake and release may be reduced by decreasing the particle size. An understanding of how effective this may be has been hampered by limited knowledge of the way the thermodynamics are affected by atom or molecule cluster size. Detailed calculations of individual atoms in clusters are limited by computational resources as to the number of atoms that can studied, and other innovative approaches that deal with force fields derived by extrapolating the difference between the properties of clusters and bulk matter require labour-intensive modifications when extending such studies to new materials. In [4], researchers in the US use an alternative approach, considering the nanoparticle as having the same crystal structure as the bulk but relaxing the few layers of atoms near the surface. The favourable features of nanostructures for catalysis

  13. Energy conservation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Courtright, H.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  14. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.S. (ed.)

    1983-06-01

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base. (GHT)

  15. Exploiting rod technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-06-01

    ROD development was proceeding apace until recent budgetary decisions caused funding support for ROD development to be drastically reduced. The funding which was originally provided by DARPA and the Balanced Technology Initiative (BTI) Office has been cut back to zero from $800K. To determine the aeroballistic coefficients of a candidate dart, ARDEC is currently supporting development out of its own 6.2 funds at about $100K. ARDEC has made slow progress toward achieving this end because of failures in the original dart during testing. It appears that the next dart design to be tested will diverge from the original concept visualized by DARPA and Science and Technology Associates (STA). STA, the design engineer, takes exception to these changes on the basis of inappropriate test conditions and insufficient testing. At this time, the full resolution of this issue will be difficult because of the current management structure, which separates the developer (ARDEC) from the designer (STA).

  16. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  17. FinalReport for completed IPP-0110 and 0110A Projects:"High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications"

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ian

    2009-09-01

    The DOE-supported IPP (Initiatives for Proliferation Prevention) Project, IPP-0110, and its accompanying 'add-on project' IPP-0110A, entitled 'High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications' was a collaborative project involving the Lawrence Berkeley National Laboratory (LBNL) as the U.S. DOE lab; the US surface modification company, Phygen, Inc., as the US private company involved; and the High Current Electronics Institute (HCEI) of the Russian Academy of Sciences, Tomsk, Siberia, Russia, as the NIS Institute involved. Regular scientific research progress meetings were held to which personnel came from all participating partners. The meetings were held mostly at the Phygen facilities in Minneapolis, Minnesota (with Phygen as host) with meetings also held at Tomsk, Russia (HCEI as host), and at Berkeley, California (LBNL as host) In this way, good exposure of all researchers to the various different laboratories involved was attained. This report contains the Final Reports (final deliverables) from the Russian Institute, HCEI. The first part is that for IPP-0110A (the 'main part' of the overall project) and the second part is that for the add-on project IPP-0110A. These reports are detailed, and contain all aspects of all the research carried out. The project was successful in that all deliverables as specified in the proposals were successfully developed, tested, and delivered to Phygen. All of the plasma hardware was designed, made and tested at HCEI, and the performance was excellent. Some of the machine and performance parameters were certainly of 'world class'. The goals and requirements of the IPP Project were well satisfied. I would like to express my gratitude to the DOE IPP program for support of this project throughout its entire duration, and for the unparalleled opportunity thereby provided for all of the diverse participants in the project to join

  18. Liquefaction technology assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    A survey of coal liquefaction technology and analysis of projected relative performance of high potential candidates has been completed and the results are reported here. The key objectives of the study included preparation of a broad survey of the status of liquefaction processes under development, selection of a limited number of high potential process candidates for further study, and an analysis of the relative commercial potential of these candidates. Procedures which contributed to the achievement of the above key goals included definition of the characteristics and development status of known major liquefaction process candidates, development of standardized procedures for assessing technical, environmental, economic and product characteristics for the separate candidates, and development of procedures for selecting and comparing high potential processes. The comparisons were made for three production areas and four marketing areas of the US. In view of the broad scope of the objectives the survey was a limited effort. It used the experience gained during preparation of seven comprehensive conceptual designs/economic evaluations plus comprehensive reviews of the designs, construction and operation of several pilot plants. Results and conclusions must be viewed in the perspective of the information available, how this information was treated, and the full context of the economic comparison results. Comparative economics are presented as ratios; they are not intended to be predictors of absolute values. Because the true cost of constructing and operating large coal conversion facilities will be known only after commercialization, relative values are considered more appropriate. (LTN)

  19. Coordination of the U.S. DOE-Argentine National Atomic Energy Commission (CNEA) science and technology implementing arrangement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.

    1998-01-01

    In 1989, the US Department of Energy (DOE) established the Office of Environmental Management (EM) and delegated to the office the responsibility of cleaning up the US nuclear weapons complex. EM`s mission has three primary activities: (1) to assess, remediate, and monitor contaminated sites and facilities; (2) to store, treat, and dispose of wastes from past and current operations; and (3) to develop and implement innovative technologies for environmental remediation. To this end, EM has established domestic and international cooperative technology development programs, including one with the Republic of Argentina. Cooperating with Argentine scientific institutes and industry meets US cleanup objectives by: (1) identifying and accessing Argentine EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) fostering the development of innovative environmental technologies by increasing US private sector opportunities in Argentina in EM-related areas. Florida International University`s Hemispheric Center for Environmental Technology (FIU-HCET) serves as DOE-OST`s primary technology transfer agent. FIU-HCET acts as the coordinating and managing body for the Department of Energy (DOE)-Argentina National Atomic Energy Commission (CNEA) Arrangement. Activities include implementing standard operating procedures, tracking various technical projects, hosting visiting scientists, advising DOE of potential joint projects based on previous studies, and demonstrating/transferring desired technology. HCET hosts and directs the annual Joint Coordinating Committee for Radioactive and Mixed Waste Management meeting between the DOE and CNEA representatives. Additionally, HCET is evaluating the possibility of establishing similar arrangements with other Latin American countries.

  20. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Poggio, A.J. (ed.)

    1988-10-01

    This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an x-ray microscope for biological research.

  1. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  2. Geopressured energy availability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Near- and long-term prospects that geopressured/geothermal energy sources could become a viable alternative fuel for electric power generation were investigated. Technical questions of producibility and power generation were included, as well as economic and environmental considerations. The investigators relied heavily on the existing body of information, particularly in geotechnical areas. Statistical methods were used where possible to establish probable production values. Potentially productive geopressured sediments have been identified in twenty specific on-shore fairways in Louisiana and Texas. A total of 232 trillion cubic feet (TCF) of dissolved methane and 367 x 10/sup 15/ Btu (367 quads) of thermal energy may be contained in the water within the sandstone in these formations. Reasonable predictions of the significant reservoir parameters indicate that a maximum of 7.6 TCF methane and 12.6 quads of thermal energy may be producible from these potential reservoirs.

  3. Burst of Energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Discovery Center of Idaho (DCI) was the recipient of a grant from US DOE`s Museum Science Education Program to build six permanent energy related exhibits to provide the public with hands-on experience with energy issues. Because of its volunteer support system, DC was able to build eleven exhibits. These exhibits are described and photographs are included. The signs used for the exhibits are reproduced as well as the materials used to advertise them to the public. Examples of DCI`s newsletter are included that mention the new exhibits.

  4. Energy Smart Colorado, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gitchell, John M. [Program Administrator; Palmer, Adam L. [Program Manager

    2014-03-31

    Energy Smart Colorado is an energy efficiency program established in 2011 in the central mountain region of Colorado. The program was funded through a grant of $4.9 million, awarded in August 2010 by the U.S. Department of Energy’s Better Buildings Program. As primary grant recipient, Eagle County coordinated program activities, managed the budget, and reported results. Eagle County staff worked closely with local community education and outreach partner Eagle Valley Alliance for Sustainability (now Walking Mountains Science Center) to engage residents in the program. Sub-recipients Pitkin County and Gunnison County assigned local implementation of the program in their regions to their respective community efficiency organizations, Community Office for Resource Efficiency (CORE) in Pitkin County, and Office for Resource Efficiency (ORE) in Gunnison County. Utility partners contributed $166,600 to support Home Energy Assessments for their customers. Program staff opened Energy Resource Centers, engaged a network of qualified contractors, developed a work-flow, an enrollment website, a loan program, and a data management system to track results.

  5. Examination of the factors and issues for an environmental technology utilization partnership between the private sector and the Department of Energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brouse, P.

    1997-05-01

    The Department of Energy (DOE) held a meeting on November 12, 1992 to evaluate the DOE relations with industry and university partners concerning environmental technology utilization. The goal of this meeting was to receive feedback from DOE industry and university partners for the identification of opportunities to improve the DOE cooperative work processes with the private sector. The meeting was designed to collect information and to turn that information into action to improve private sector partnerships with DOE.

  6. Technology data for energy plants

    Energy Technology Data Exchange (ETDEWEB)

    2010-06-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in March 2005. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The ambition of the present publication has been to reduce the level of inconsistency to a minimum without compromising the fact that the real world

  7. Appendix A: Energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  8. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  9. Energy management subsystem. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wightman, C.W.

    1997-03-01

    In todays environment-conscious world, increasing levels of automotive emissions have been recognized as a major source of pollutants and greenhouse gases. Despite increasingly stringent tailpipe emission standards, the increased use of the automobile has more than offset the lowered per-vehicle emissions. Consequently, there is a great deal of interest in so-called zero-emission vehicles, such as electric and hybrid-electric automobiles. Although very attractive in terms of emissions, these vehicle present some design challenges which are not generally part of conventional automotive design. One such challenge is the development of an effective energy management strategy for the vehicle. While a conventional automobile has an engine whose power output far exceeds the average vehicle needs, hybrid electric vehicles generally have very limited energy reserves and efficiency in the use of these reserves is paramount if acceptable overall performance is to be achieved. Man aspects of the vehicle design (such as aerodynamics, powertrain design, gross weight, etc.) strongly influence the overall vehicle efficiency. However, the actual performance achieved by any given driver is strongly dependent on his or her driving skills. One way to reduce the effect of differences in driving skills is to provide for automatic accelerator control, permitting the vehicle to be driven in an efficient manner without necessitating extensive driver training. This report describes an accelerator/brake control systems developed for use on the Zia Roadrunner New Mexico Tech`s entry in the 1993 Sunrayce for solar-electric hybrid vehicles.

  10. Industrial Energy Conservation Technology

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  11. Industrial energy conservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P.S.; Williams, M.A. (eds.)

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  12. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Selden, R.W.

    1977-05-01

    Topics covered include: geothermal energy development at LLL, energy conversion engineering, continuing education at LLL, and the Western states uranium resource survey. Separate abstracts were prepared for 3 sections. (MCG)

  13. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  14. Morgantown Energy Technology Center, technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  15. Emerging wind energy technologies

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Grivel, Jean-Claude; Faber, Michael Havbro

    2014-01-01

    This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive.......This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive....

  16. DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research

    Energy Technology Data Exchange (ETDEWEB)

    Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

    2009-07-31

    General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

  17. Innovative Technology Development Program. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    Beller, J.

    1995-08-01

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) Program. The plan is part of the DOE`s program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE`s clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process.

  18. Wearable Biomechanical Energy Harvesting Technologies

    Directory of Open Access Journals (Sweden)

    Young-Man Choi

    2017-09-01

    Full Text Available Energy harvesting has been attracting attention as a technology that is capable of replacing or supplementing a battery with the development of various mobile electronics. In environments where stable electrical supply is not possible, energy harvesting technology can guarantee an increased leisure and safety for human beings. Harvesting with several watts of power is essential for directly driving or efficiently charging mobile electronic devices such as laptops or cell phones. In this study, we reviewed energy harvesting technologies that harvest biomechanical energy from human motion such as foot strike, joint motion, and upper limb motion. They are classified based on the typical principle of kinetic energy harvesting: piezoelectric, triboelectric, and electromagnetic energy harvesting. We focused on the wearing position of high-power wearable biomechanical energy harvesters (WBEHs generating watt-level power. In addition, the features and future trends of the watt-level WBEHs are discussed.

  19. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Research is described in three areas, high-technology design of unconventional, nonnuclear weapons, a model for analyzing special nuclear materials safeguards decisions, and a nuclear weapons accident exercise (NUWAX-81). (GHT)

  20. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Shay, H.D.; Crawford; Genin, M.S.; Prono, J.K.; Staehie, J.T. (eds.)

    1978-03-01

    A report is given on the accomplishments of the energy and environmental research and on the unclassified portion of the weapons program at Lawrence Livermore Laboratory for the month of March, 1978. (PMA)

  1. Final report on testing of ACONF technology for the US Coast Guard National Distress Systems : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Leanne M.; Byrd, Thomas M., Jr.; Murray, Aaron T.; Ginn, Jerry W.; Symons, Philip C. (Electrochemical Engineering Consultants, Inc., Morgan Hill, CA); Corey, Garth P.

    2005-08-01

    This report documents the results of a six month test program of an Alternative Configuration (ACONF) power management system design for a typical United States Coast Guard (USCG) National Distress System (NDS) site. The USCG/USDOE funded work was performed at Sandia National Laboratories to evaluate the effect of a Sandia developed battery management technology known as ACONF on the performance of energy storage systems at NDS sites. This report demonstrates the savings of propane gas, and the improvement of battery performance when utilizing the new ACONF designs. The fuel savings and battery performance improvements resulting from ACONF use would be applicable to all current NDS sites in the field. The inherent savings realized when using the ACONF battery management design was found to be significant when compared to battery replacement and propane refueling at the remote NDS sites.

  2. Energy and Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; Quirk, W.J. [eds.

    1994-06-01

    This report discusses: The Clementine satellite, the first US satellite to the Moon in more than two decades, sent back more than 1.5 million images of the lunar surface using cameras designed and calibrated by LLNL. An LLNL-developed laser ranger provided information that will be used to construct a relief map of the Moon`s surface; and Uncertainty and the Federal Role in Science and Technology, Ralph E. Gomory was a recent participate in the Director`s Distinguished Lecturer Series at LLNL. In his lecture, he addressed some of the tensions, conflicts, and possible goals related to federal support for science and technology.

  3. Energy and Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; McElroy, L.; Wheatcraft, D.; Middleton, C.; Shang, S. [eds.

    1994-10-01

    Two articles are included: the industrial computing initiative, and artificial hip joints (applying weapons expertise to medical technology). Three research highlights (briefs) are included: KEN project (face recognition), modeling groundwater flow and chemical migration, and gas and oil national information infrastructure.

  4. Solar energy - new photovoltaic technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sommr-Larsen, P.

    2009-09-15

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission's Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics to photovoltaics with a special focus on the new photovoltaic technologies that promises ultra low cost solar cells. Unlike many other renewable energy technologies, a pipeline of new technologies is established and forms a road towards low cost energy production directly from the sun. (au)

  5. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Brief reviews are presented of research programs at Lawrence Livermore Laboratory. In one, fast and precise measurement techniques to meet the demanding specifications for microsphere targets used in inertial-confinement fusion experiments are described. Another program is described in which a Raman-spectroscopy microprobe is used to perform molecular-structure analyses on submicron-size particles. Finally, the first year of the controlled thermonuclear reactions program is described. (GHT)

  6. Gas and energy technology 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    Norway has a long tradition as an energy producing nation. No other country administers equally large quantities of energy compared to the number of inhabitants. Norway faces great challenges concerning the ambitions of utilizing natural gas power and living up to its Kyoto protocol pledges. Tekna would like to contribute to increased knowledge about natural gas and energy, its possibilities and technical challenges. Topics treated include carrying and employing natural gas, aspects of technology, energy and environment, hydrogen as energy carrier, as well as other energy alternatives, CO{sub 2} capture and the value chain connected to it.

  7. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.

    1994-04-01

    This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

  8. Wind energy technology

    OpenAIRE

    Brandao, R. Mesquita; Carvalho, J. Beleza; Barbosa, F. P. Maciel

    2009-01-01

    Electricity is regarded as one of the indispensable means to growth of any country’s economy. This source of power is the heartbeat of everything from the huge metropolitans, industries, worldwide computer networks and our global communication systems down to our homes. Electrical energy is the lifeline for any economic and societal development of a region or country. It is central to develop countries for maintaining acquired life styles and essential to developing countr...

  9. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures. (GHT)

  10. Clean Energy Works Oregon Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andria [City of Portland; Cyr, Shirley [Clean Energy Works

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  11. Evaluating Internal Technological Capabilities in Energy Companies

    Directory of Open Access Journals (Sweden)

    Mingook Lee

    2016-03-01

    Full Text Available As global competition increases, technological capability must be evaluated objectively as one of the most important factors for predominance in technological competition and to ensure sustainable business excellence. Most existing capability evaluation models utilize either quantitative methods, such as patent analysis, or qualitative methods, such as expert panels. Accordingly, they may be in danger of reflecting only fragmentary aspects of technological capabilities, and produce inconsistent results when different models are used. To solve these problems, this paper proposes a comprehensive framework for evaluating technological capabilities in energy companies by considering the complex properties of technological knowledge. For this purpose, we first explored various factors affecting technological capabilities and divided the factors into three categories: individual, organizational, and technology competitiveness. Second, we identified appropriate evaluation items for each category to measure the technological capability. Finally, by using a hybrid approach of qualitative and quantitative methods, we developed an evaluation method for each item and suggested a method to combine the results. The proposed framework was then verified with an energy generation and supply company to investigate its practicality. As one of the earliest attempts to evaluate multi-faceted technological capabilities, the suggested model can support technology and strategic planning.

  12. Computational fluid dynamics assessment: Volume 1, Computer simulations of the METC (Morgantown Energy Technology Center) entrained-flow gasifier: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Celik, I.; Chattree, M.

    1988-07-01

    An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situations in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.

  13. Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 3. Appendix on service and fuel demands. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This book is the third volume of the ISTUM report. The first volume of the report describes the primary model logic and the model's data inputs. The second volume lists and evaluates the results of one model run. This and the fourth volume give supplementary information in two sets of model data - the energy consumption base and technology descriptions. Chapter III of Vol. I, Book 1 describes the ISTUM demand base and explains how that demand base was developed. This volume serves as a set of appendices to that chapter. The chapter on demands in Vol. I describes the assumptions and methodology used in constructing the ISTUM demand base; this volume simply lists tables of data from that demand base. This book divides the demand tables into two appendices. Appendix III-1 contains detailed tables on ISTUM fuel-consumption estimates, service-demand forecasts, and size and load-factor distributions. Appendix III-2 contains tables detailing ISTUM allocations of each industry's fuel consumption to service sectors. The tables show how the ECDB was used to develop the ISTUM demand base.

  14. Energy Impact Illinois - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Daniel [Senior Energy Efficiency Planner; Plagman, Emily [Senior Energy Planner; Silberhorn, Joey-Lin [Energy Efficiency Program Assistant

    2014-02-18

    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  15. Real Time Technology Application Demonstration Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, John [Univ of KY, Center for Applied Energy Research, Kentucky Research Consortium for Energy and Environment; Hampson, Steve [Univ of KY, Center for Applied Energy Research, Kentucky Research Consortium for Energy and Environment; Johnson, Robert L [Argonne National Lab, Environmental Science Div.

    2008-09-01

    The work and results described in this final report pertain to the demonstration of real-time characterization technologies applied to potentially contaminated surface soils in and around Area of Concern (AOC) 492 at the Paducah Gaseous Diffusion Plant (PGDP). The work was conducted under the auspices of Kentucky Research Consortium for Energy and Environment (KRCEE). KRCEE was created to support the Department of Energy's (DOE) efforts to complete the expeditious and economically viable environmental restoration of the Paducah Gaseous Diffusion Plant (PGDP), the Western Kentucky Wildlife Management Area (WKWMA), and surrounding areas.

  16. Assessment of control technology for stationary sources. Volume II: control technology data tables. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, D.; Herther, M.; Babb, L.; Kuby, W.

    1980-02-01

    This report, the Control Technology Data Tables, is the second volume of the three-volume final report for the contract. It presents in tabular format, qualitative descriptions of control options for the various sources and quantitative information on control technology cost, efficiency, reliability, energy consumption, other environmental impacts and application status. Also included is a code list which classifies the stationary sources examined by industry, process, and emission source.

  17. Energy & Technology Review, April 1994

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D; McElroy, L.; Kroopnick, H. [eds.

    1994-04-01

    The Lawrence Livermore National Laboratory was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, other major programs have been added, including technology transfer, laser science, biology and biotechnology, environmental research and remediation, arms control and nonproliferation, advanced defense technology, and applied energy technology. These programs in turn require research in basic scientific disciplines including chemistry, and materials science, computing science and technology, engineering and physics. This review highlights two R&D 100 award winning research topics: (1) The world`s fastest digitizer which captures 30 ps transient electrical events, and (2) the MACHO camera system which fully exploits the power of large format digital imagers and integrates into one package the taking and analysis of images at a prodigious rate and the storage and archiving of extensive amounts of data. (GHH)

  18. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  19. Flywheel Energy Storage technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  20. Final environmental assessment: Sacramento Energy Service Center

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Sacramento Area Office (SAO) of the Western Area Power Administration (Western) needs to increase the security of operations, to eliminate overcrowding at the current leased location of the existing facilities, to provide for future growth, to improve efficiency, and to reduce operating costs. The proposed action is to construct an approximate 40,000-square foot building and adjacent parking lot with a Solar Powered Electric Vehicle Charging Station installed to promote use of energy efficient transportation. As funding becomes available and technology develops, additional innovative energy-efficient measures will be incorporated into the building. For example the proposed construction of the Solar Powered Electric Vehicle Charging.

  1. New Generation Flask Sampling Technology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James R. [AOS, Inc., Colorado Springs, CO (United States)

    2017-11-09

    Scientists are turning their focus to the Arctic, site of one of the strongest climate change signals. A new generation of technologies is required to function within that harsh environment, chart evolution of its trace gases and provide new kinds of information for models of the atmosphere. Our response to the solicitation tracks how global atmospheric monitoring was launched more than a half century ago; namely, acquisition of discrete samples of air by flask and subsequent analysis in the laboratory. AOS is proposing to develop a new generation of flask sampling technology. It will enable the new Arctic programs to begin with objective high density sampling of the atmosphere by UAS. The Phase I program will build the prototype flask technology and show that it can acquire and store mol fractions of CH4 and CO2 and value of δ13C with good fidelity. A CAD model will be produced for the entire platform including a package with 100 flasks and the airframe with auto-pilot, electronic propulsion and ground-to-air communications. A mobile flask analysis station will be prototyped in Phase I and designed to final form in Phase II. It expends very small sample per analysis and will interface directly to the flask package integrated permanently into the UAS fuselage. Commercial Applications and Other Benefits: • The New Generation Flask Sampling Technology able to provide a hundred or more samples of air per UAS mission. • A mobile analysis station expending far less sample than the existing ones and small enough to be stationed at the remote sites of Arctic operations. • A new form of validation for continuous trace gas observations from all platforms including the small UAS. • Further demonstration to potential customers of the AOS capabilities to invent, build, deploy and exploit entire platforms for observations of Earth’s atmosphere and ocean. Key Words: Flask Sampler, Mobile Analysis Station, Trace Gas, CO2, CH4, δC13, UAS, Baseline Airborne Observatory

  2. Renewable Firming EnergyFarm Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stepien, Tom [Primus Power, Hayward, CA (United States); Collins, Mark [Primus Power, Hayward, CA (United States)

    2017-01-26

    The American Recovery and Reinvestment Act (ARRA) of 2009 (Recovery Act) provided the U.S. Department of Energy (DOE) with funds to modernize the electric power grid. One program under this initiative is the Smart Grid Demonstration program (SGDP). The SGDP mandate is to demonstrate how a suite of existing and emerging smart grid technologies can be innovatively applied and integrated to prove technical, operational, and business-model feasibility. Primus Power is a provider of low cost, long life and long duration energy storage systems. The Company’s flow batteries are shipping to US and international microgrid, utility, military, commercial and industrial customers. Primus Power’s EnergyPod® is a modular battery system for grid scale applications available in configurations ranging from 25 kW to more than 25 MW. The EnergyPod provides nameplate power for 5 hours. This long duration unlocks economic benefits on both sides of the electric meter. It allows commercial and industrial customers to shift low cost electricity purchased at night to offset afternoon electrical peaks to reduce utility demand charges. It also allows utilities to economically reduce power peaks and defer costly upgrades to distribution infrastructure. An EnergyPod contains one or more EnergyCells-a highly engineered flow battery core made from low cost, readily available materials. An EnergyCell includes a membrane-free stack of titanium electrodes located above a novel liquid electrolyte management system. This patented design enables reliable, low maintenance operation for decades. It is safe and robust, featuring non-flammable aqueous electrolyte, sophisticated fault detection and built-in secondary containment. Unlike Li Ion batteries, the EnergyCell is not susceptible to thermal runaway. This cooperative agreement project was started in Feb 2010. The objectives of the project are: 1. Trigger rapid adoption of grid storage systems in the US by demonstrating a low cost, robust and

  3. Hydrogen energy systems studies. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

    1996-08-13

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

  4. Technology Pathway Partnership Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John C. Dr.; Godby, Larry A.

    2012-04-26

    This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at the photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.

  5. Photovoltaic industry manufacturing technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  6. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This three-volume report is responsive to the requirements of Contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program of computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. This section of the three volume report is a final report appendix with information on the National Energy Peak Leveling Program (NEPLP).

  7. Technology for aircraft energy efficiency

    Science.gov (United States)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  8. Massachusetts Institute of Technology Clean Energy Entrepreneurship Prize 2008 Final Report DOE Award # DE-FG36-07GO17110

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-08-09

    The MIT Clean Energy Prize was established to accelerate the pace of innovation in the energy space, specifically with regard to clean energy and to reduce our dependence on foreign oil. Through a prize structure designed to incent new ideas to be brought forward coupled with a supporting infrastructure to educate, mentor, network and provide a platform for visibility, it was believed we could achieve this goal in a very efficient and effective manner. The grand prize of $200K was meant to be the highly visible and attractive carrot to achieve this and through a public-private partnership of sponsors who held a long term view (i.e., they were not Venture Capitalists or law firms looking for short term business through advantaged deal flow). It was also designed to achieve this in a highly inclusive manner. Towards this end, while MIT was the platform on which the competition was run, and this brought some instant cache and differentiation, the competition was open to all teams which had at least one US citizen. Both professional teams and student teams were eligible.

  9. Energy Technology Programs: program summaries for 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Energy Technology Programs in the BNL Department of Energy and Environment cover a broad range of activities, namely: electrochemical research, chemical energy storage, chemical heat pumps, solar technology, fossil technology, catalytic systems development, space-conditioning technology, and technical support/program management. Summaries of the individual tasks associated with these activities along with publications, significant accomplishments, and program funding levels are presented.

  10. Essays on Energy Technology Innovation Policy

    Science.gov (United States)

    Chan, Gabriel Angelo Sherak

    .S. Department of Energy's National Laboratories, and provide the first quantitative evidence that technology transfer agreements at the Labs lead to greatly increased rates of innovation spillovers. This chapter also makes a key methodological contribution by introducing a technique to utilize automated text analysis in an empirical matching design that is broadly applicable to other types of social science studies. This work has important implications for how policies should be designed to maximize the social benefits of the $125 billion in annual federal funding allocated to research and development and the extent to which private firms can benefit from technology partnerships with the government. The final chapter of this dissertation explores the effectiveness of international policy to facilitate the deployment of low-emitting energy technologies in developing countries. Together with Joern Huenteler, I examine wind energy deployment in China supported through international climate finance flows under the Kyoto Protocol's Clean Development Mechanism. Utilizing a project-level financial model of wind energy projects parameterized with high-resolution observations of Chinese wind speeds, we find that the environmental benefits of projects financed under the Clean Development Mechanism are substantially lower than reported, as many Chinese wind projects would have been built without the Mechanism's support, and thus do not represent additional clean energy generation. Together, the essays in this dissertation suggest several limitations of energy technology innovation policy and areas for reform. Public funds for energy research and development could be made more effective if decision making approaches were better grounded in available technical expertise and developed in framework that captures the important interactions of technologies in a research and development portfolio. The first chapter of this dissertation suggests a politically feasible path towards this type of

  11. Energy technologies for post Kyoto targets in the medium term

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L.; Larsen, H. (eds.)

    2003-09-01

    The Risoe International Energy Conference took place 19 - 21 May 2003 and the aim was to present and discuss new developments and trends in energy technologies which may become main contributors to the energy scene in 15 to 20 years. The conference addressed R&D related to the individual technologies as well as system integration. The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 25 June 2003. (au)

  12. Disruptive technologies and transportation : final report.

    Science.gov (United States)

    2016-06-01

    Disruptive technologies refer to innovations that, at first, may be considered unproven, lacking refinement, relatively unknown, or even impractical, but ultimately they supplant existing technologies and/or applications. In general, disruptive techn...

  13. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  14. Energy systems and technologies for the coming century. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L.; Larsen, Hans (eds.)

    2011-05-15

    Risoe International Energy Conference 2011 took place 10 - 12 May 2011. The conference focused on: 1) Future global energy development options, scenarios and policy issues. 2) Intelligent energy systems of the future, including the interaction between supply and end-use. 3) New and emerging technologies for the extended utilisation of sustainable energy. 4) Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal. 5) Centralised energy production technologies such as clean coal technologies, CCS and nuclear. 6) Renewable energy for the transport sector and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011. (Author)

  15. Energy Systems and Technologies for the coming Century

    DEFF Research Database (Denmark)

    Sønderberg Petersen, Leif; Larsen, Hans Hvidtfeldt

    for the extended utilisation of sustainable energy - Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal - Centralised energy production technologies such as clean coal technologies, CCS and nuclear - Renewable energy for the transport sector......Risø International Energy Conference 2011 took place 10 – 12 May 2011. The conference focused on: - Future global energy development options, scenarios and policy issues - Intelligent energy systems of the future, including the interaction between supply and end-use - New and emerging technologies...... and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011....

  16. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  17. GreenSynFuels. Economical and technological statement regarding integration and storage of renewable energy in the energy sector by production of green synthetic fuels for utilization in fuel cells. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Lebaek, J. (Danish Technological Institute, Aarhus (Denmark)); Boegild Hansen, J. (Haldor Topsoee, Kgs. Lyngby (Denmark)); Mogensen, Mogens (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2011-03-15

    The purpose of the project is to select and validate technology concepts for the establishment of a Danish production of green synthetic fuels primarily for fuel cells. The feasibility of the selected concepts is assessed trough a techno-economical calculation, which includes mass and energy balances and economics including CAPEX and OPEX assessments. It is envisioned by the project partners that a production of green synthetic fuels, such as methanol, can 1) bring stability to a future electricity grid with a high share of renewable energy, 2) replace fossil fuels in the transport sector, and 3) boost Danish green technology export. In the project, two technology concepts were derived through carefully considerations and plenum discussions by the project group members: Concept 1): Methanol/DME Synthesis based on Electrolysis assisted Gasification of Wood. Concept 2): Methanol/DME synthesis based on biogas temporarily stored in the natural gas network. Concept 1) is clearly the most favored by the project group and is therefore analyzed for its techno-economic feasibility. Using mass and energy balances the technical perspectives of the concept were investigated, along with an economic breakdown of the CAPEX and OPEX cost of the methanol production plant. The plant was technically compared to a traditional methanol production plant using gasified biomass. The project group has decided to focus on large scale plants, as the scale economics favor large scale plants. Therefore, the dimensioning input of the concept 1) plant is 1000 tons wood per day. This is truly a large scale gasification plant; however, in a methanol synthesis context the plant is not particularly large. The SOEC electrolyzer unit is dimensioned by the need of hydrogen to balance the stoichiometric ratio of the methanol synthesis reaction, which will result in 141 MW installed SOEC. The resulting methanol output is 1,050 tons methanol per day. In comparison to a traditional methanol synthesis plant

  18. Final Report of the Advanced Coal Technology Work Group

    Science.gov (United States)

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  19. Zero-emission vehicle technology assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T.

    1995-08-01

    This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

  20. Smart Gun Technology project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D.R.

    1996-05-01

    The goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user form firing a law officer`s firearm by implementing user-recognizing-and-authorizing (or {open_quotes}smart{close_quotes}) surety technologies. This project was funded by the National Institute of Justice. This report lists the findings and results of the project`s three primary objectives. First, to find and document the requirements for a smart firearm technology that law enforcement officers will value. Second, to investigate, evaluate, and prioritize technologies that meet the requirements for a law enforcement officer`s smart firearm. Third, to demonstrate and document the most promising technology`s usefulness in models of a smart firearm.

  1. Griffith Energy Project Final Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-04-02

    Griffith Energy Limited Liability Corporation (Griffith) proposes to construct and operate the Griffith Energy Project (Project), a natural gas-fuel, combined cycle power plant, on private lands south of Kingman, Ariz. The Project would be a ''merchant plant'' which means that it is not owned by a utility and there is currently no long-term commitment or obligation by any utility to purchase the capacity and energy generated by the power plant. Griffith applied to interconnect its proposed power plant with the Western Area Power Administration's (Western) Pacific Northwest-Pacific Southwest Intertie and Parker-Davis transmission systems. Western, as a major transmission system owner, needs to provide access to its transmission system when it is requested by an eligible organization per existing policies, regulations and laws. The proposed interconnection would integrate the power generated by the Project into the regional transmission grid and would allow Griffith to supply its power to the competitive electric wholesale market. Based on the application, Western's proposed action is to enter into an interconnection and construction agreement with Griffith for the requested interconnections. The proposed action includes the power plant, water wells and transmission line, natural gas pipelines, new electrical transmission lines and a substation, upgrade of an existing transmission line, and access road to the power plant. Construction of segments of the transmission lines and a proposed natural gas pipeline also require a grant of right-of-way across Federal lands administered by the Bureau of Land Management. Public comments on the Draft EIS are addressed in the Final EIS, including addenda and modifications made as a result of the comments and/or new information.

  2. Key energy technologies for Europe

    DEFF Research Database (Denmark)

    Jørgensen, B.H.

    2005-01-01

    , is responsible for the report, which is based on literature studies. Post Doc Stefan Krüger Nielsen, Risø National Laboratory, has contributed to parts of the report, including the description of the IEA energyscenarios, the IEA statistics on R&D and the description of the science and technology base of biomass....... The study was commissioned in December 2004, and a first meeting was held in Brussels on 17 January 2005. A first draft was submitted on 28 March, asecond draft was submitted on 22 June 2005 and the final draft 22 September 2005 Valuable help and comments to earlier drafts of this report have been...... contributed by Scientific Officer Edgar Thielmann, DG TREN, Head of Department Hans Larsen, RisøNational Laboratory, Senior Asset Manager Aksel Hauge Pedersen, DONG VE, Consultant Timon Wehnert, IZT-Berlin, and Senior Scientist Martine Uyterlinde, ECN...

  3. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This three-volume report is responsive to the requirements of Contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program of computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. This section of the three volume report is a final report appendix with information on the financial management of load leveling, audit procedures, and building operating profiles.

  4. Final Technical Report: Characterizing Emerging Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The Characterizing Emerging Technologies project focuses on developing, improving and validating characterization methods for PV modules, inverters and embedded power electronics. Characterization methods and associated analysis techniques are at the heart of technology assessments and accurate component and system modeling. Outputs of the project include measurement and analysis procedures that industry can use to accurately model performance of PV system components, in order to better distinguish and understand the performance differences between competing products (module and inverters) and new component designs and technologies (e.g., new PV cell designs, inverter topologies, etc.).

  5. Energy harvesting through piezoelectricity - technology foresight

    DEFF Research Database (Denmark)

    Laumann, Felix; Sørensen, Mette Møller; Hansen, Tina Mølholm

    2017-01-01

    scientific articles. In contrast to this, is found a low level of ability to convert the technology from academia to commercialization. A decision making model is proposed including a requirement for better understanding of niches, niche definitions and configuration of energy harvesting design......Energy harvesting is important in designing low power intelligent networks, such as Internet-of-Things. Energy harvesting can ensure wireless and lossless energy supply to energy dependent technological solutions with independence of infrastructure. Electrical energy created through...

  6. Interior LED Lighting Technology. Navy Energy Technology Validation (Techval) Program

    Science.gov (United States)

    2015-09-01

    Approved for public release: distribution unlimited TDS-NAVFAC EXWC-PW-1601 Sep 2015 Interior LED Lighting Technology Navy Energy...NAVFAC EXWC) to determine the potential energy savings for Interior LED lighting technology in office environments. NAVAFAC EXWC concluded that... Interior LED Lighting Technology can save money in comparison to the conventional incandescent, halogen, and where cost-effective, compact fluorescent

  7. Final Report for NIREC Renewable Energy Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Walt [Nevada Institute for Renewable Energy Commercialization (NIREC), Las Vegas, NV (United States)

    2017-05-02

    This report is a compilation of progress reports and presentations submitted by NIREC to the DOE’s Solar Energy Technologies Office for award number DE-FG36-08GO88161. This compilation has been uploaded to OSTI by DOE as a substitute for the required Final Technical Report, which was not submitted to DOE by NIREC or received by DOE. Project Objective: The primary goal of NIREC is to advance the transformation of the scientific innovation of the institutional partner’s research in renewable energy into a proof of the scientific concept eventually leading to viable businesses with cost effective solutions to accelerate the widespread adoption of renewable energy. NIREC will a) select research projects that are determined to have significant commercialization potential as a result of vetting by the Technology and commercialization Advisory Board, b) assign an experienced Entrepreneur-in-Residence (EIR) to each manage the scientific commercialization-preparedness process, and c) facilitate connectivity with venture capital and other private-sector capital sources to fund the rollout, scaling and growth of the resultant renewable energy business.

  8. Waste forms technology and performance: final report

    National Research Council Canada - National Science Library

    Committee on Waste Forms Technology and Performance; National Research Council

    2011-01-01

    "The Department of Energy's Office of Environmental Management (DOE-EM) is responsible for cleaning up radioactive waste and environmental contamination resulting from five decades of nuclear weapons production and testing...

  9. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  10. Solar applications of thermal energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Taylor, L.; DeVries, J.; Heibein, S.

    1979-01-01

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  11. Final Report: Radiation Health Technology Curriculum.

    Science.gov (United States)

    Marshall, Dwight A.; Hunt, Hiram M.

    This report describes all aspects of a radiation health technology program at a lower-division college level. Such a program must include certain basic courses, plus supplementary ones to meet the needs of local employers. To implement and sustain a curriculum, the college must (1) determine the need for it, (2) establish its objectives, (3)…

  12. Student Outreach With Renewable Energy Technology

    Science.gov (United States)

    Clark, Eric B. (Technical Monitor); Buffinger, D.; Fuller, C.; Kalu, A.

    2003-01-01

    The Student Outreach with Renewable Energy Technology (SORET) program is a joint grant that involves a collaboration between three HBCU's (Central State University, Savannah State University, and Wilberforce University) and NASA John H. Glenn Research Center at Lewis Field. The overall goal of the grant is to increase the interest of minority students in the technical disciplines, to encourage participating minority students to continue their undergraduate study in these disciplines, and to promote graduate school to these students. As a part of SORET, Central State University has developed an undergraduate research associates program over the past two years. As part of this program, students are required to take special laboratory courses offered at Wilberforce University that involve the application of renewable energy systems. The course requires the students to design, construct, and install a renewable energy project. In addition to the applied renewable energy course, Central State University provided four undergraduate research associates the opportunity to participate in summer internships at Texas Southern University (Renewable Energy Environmental Protection Program) and the Cleveland African-American Museum (Renewable Energy Summer Camp for High School Students) an activity co sponsored by NASA and the Cleveland African-American Museum. Savannah State University held a high school summer program with a theme of the Direct Impact of Science on Our Every Day Lives. The purpose of the institute was to whet the interest of students in science, mathematics, engineering, and technology (SMET) by demonstrating the effectiveness of science to address real world problems. The 2001 institute involved the design and installation of a PV water pumping system at the Center for Advanced Water Technology and Energy Systems at Savannah State. Both high school students and undergraduates contributed to this project. Wilberforce University has used NASA support to provide

  13. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  14. Addressing Energy Poverty through Smarter Technology

    Science.gov (United States)

    Oldfield, Eddie

    2011-01-01

    Energy poverty is a key detriment to labor productivity, economic growth, and social well-being. This article presents a qualitative review of literature on the potential role of intelligent communication technology, web-based standards, and smart grid technology to alleviate energy costs and improve access to clean distributed energy in developed…

  15. Technical Assistance for Southwest Solar Technologies Inc. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Surety Engineering and Analysis; Brainard, James Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). National Security Applications; McIntyre, Annie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Surety Engineering and Analysis; Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics; Akin, Lili A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis; Nicol, Katherine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Surety Engineering and Analysis; Hayden, Herb [Southwest Solar Technologies, Inc., Phoenix, AZ (United States)

    2012-07-01

    Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwest Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.

  16. Promoting greater Federal energy productivity [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Mark; Dudich, Luther

    2003-03-05

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  17. Energy harvesting through piezoelectricity - technology foresight

    DEFF Research Database (Denmark)

    Laumann, Felix; Sørensen, Mette Møller; Hansen, Tina Mølholm

    2017-01-01

    Energy harvesting is important in designing low power intelligent networks, such as Internet-of-Things. Energy harvesting can ensure wireless and lossless energy supply to energy dependent technological solutions with independence of infrastructure. Electrical energy created through piezoelectric......Energy harvesting is important in designing low power intelligent networks, such as Internet-of-Things. Energy harvesting can ensure wireless and lossless energy supply to energy dependent technological solutions with independence of infrastructure. Electrical energy created through...... scientific articles. In contrast to this, is found a low level of ability to convert the technology from academia to commercialization. A decision making model is proposed including a requirement for better understanding of niches, niche definitions and configuration of energy harvesting design...

  18. Emerging clean energy technology investment trends

    Science.gov (United States)

    Bumpus, A.; Comello, S.

    2017-06-01

    Early-stage capital providers and clean energy technology incubators are supporting a new wave of innovations focused on end-use efficiency and demand control. This wave complements expanding investments in supply technologies required for electricity sector decarbonization.

  19. Integrated environmentally compatible soldering technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Frear, D.R.; Iman, R.L.; Keicher, D.M.; Lopez, E.P.; Peebles, H.C.; Sorensen, N.R.; Vianco, P.T.

    1994-05-01

    Chemical fluxes are typically used during conventional electronic soldering to enhance solder wettability. Most fluxes contain very reactive, hazardous constituents that require special storage and handling. Corrosive flux residues that remain on soldered parts can severely degrade product reliability. The residues are removed with chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), or other hazardous solvents that contribute to ozone depletion, release volatile organic compounds into the atmosphere, or add to the solvent waste stream. Alternative materials and processes that offer the potential for the reduction or elimination of cleaning are being developed to address these environmental issues. Timing of the effort is critical, since the targeted chemicals will soon be heavily taxed or banned. DOE`s Office of Environmental Restoration and Waste Management (DOE/EM) has supported Sandia National Laboratories` Environmentally Conscious Manufacturing Integrated Demonstration (ECMID). Part of the ECM program involves the integration of several environmentally compatible soldering technologies for assembling electronics devices. Fluxless or {open_quotes}low-residue/no clean{close_quotes} soldering technologies (conventional and ablative laser processing, controlled atmospheres, ultrasonic tinning, protective coatings, and environmentally compatible fluxes) have been demonstrated at Sandia (SNL/NM), the University of California at Berkeley, and Allied Signal Aerospace-Kansas City Division (AS-KCD). The university demonstrations were directed under the guidance of Sandia staff. Results of the FY93 Soldering ID are presented in this report.

  20. Energy technologies and their impact on demand

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.

    1995-06-01

    Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

  1. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  2. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  3. Water and emerging energy technologies: Summary report

    Science.gov (United States)

    1981-03-01

    An assessment of possible energy development in structural basins of the Pacific Northwest is presented. The energy technologies examined include small hydro, geothermal electric, geothermal heat, biomass/cogeneration, and coal gasification.

  4. Development of Ocean Energy Technologies: A Case Study of China

    Directory of Open Access Journals (Sweden)

    Qin Guodong

    2013-01-01

    Full Text Available For the energy shortage in China's coastal areas, which has exerted severe impact on economy development, a growing number of attentions have been paid to ocean energy utilization. In this paper, a review of related researches as well as development of ocean energy in China is given. The main part of this paper is the investigation into ocean energy distribution and technology status of tidal energy, wave energy, and thermal energy, especially that of the tidal energy and wave energy. Finally, some recommendations for the future development of ocean energy in China are also provided. For further research in this field and development of ocean energy utilization in China, this review can be taken as reference.

  5. Energy Policy is Technology Politics The Hydrogen Energy Case

    Energy Technology Data Exchange (ETDEWEB)

    Carl-Jochen Winter [ENERGON, Obere St. Leonhardstr. 9, 88662 Uberlingen, T 07551 944 5940, F 07551 944 5941 (Germany)

    2006-07-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics{exclamation_point} Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy{exclamation_point} Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense{exclamation_point} Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  6. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  7. Bionic models for new sustainable energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Tributsch, H. [Hahn-Meitner Inst., Dept. Solare Energetik, Berlin (Germany)

    2004-07-01

    Within the boundary conditions of an abundant, but diluted solar energy supply nature has successfully evolved sophisticated regenerative energy technologies, which are not yet familiar to human engineering tradition. Since until the middle of this century a substantial contribution of renewable energy to global energy consumption is required in order to limit environmental deterioration, bionic technologies may contribute to the development of commercially affordable technical options. Four biological energy technologies have been selected as examples to discuss the challenges, both in scientific and technological terms, as well as the material research aspects involved: photovoltaics based on irreversible kinetics, tensile water technology, solar powered protonic energy circuits, fuel cell catalysis based on abundant transition metals. (orig.)

  8. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....

  9. Energy management: theory and practice. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, R.A.; Gibbons, J.H.; Henry, H.W.; Moore, J.R.; Snyder, W.T.; Symonds, F.W.

    1983-11-01

    Purpose of this project was to develop an MBA-level course in Energy Management at the University of Tennessee, and to develop educational materials for energy management. The course BA 5610 was timely and informative, with both students and the nation benefiting. A marketing plan for the educational materials developed is included. (DLC)

  10. Renewable Energy Feasibility Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, Tim [Antares Group Inc.

    2013-10-30

    The Gila River Indian Community (GRIC or the Community) contracted the ANTARES Group, Inc. (“ANTARES”) to assess the feasibility of solar photovoltaic (PV) installations. A solar energy project could provide a number of benefits to the Community in terms of potential future energy savings, increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a solar project’s overall feasibility, including: Technical appropriateness; Solar resource characteristics and expected system performance; Levelized cost of electricity (LCOE) economic assessment. The Gila River Indian Community (GRIC or the Community) contracted the ANTARES Group, Inc. (“ANTARES”) to prepare a biomass resource assessment study and evaluate the feasibility of a bioenergy project on Community land. A biomass project could provide a number of benefits to the Community in terms of increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a biomass project’s overall feasibility, including: Resource analysis and costs; Identification of potential bioenergy projects; Technical and economic (levelized cost of energy) modeling for selected project configuration.

  11. Final Report. Montpelier District Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Jessie [City of Montpelier Vermont, Montpelier, VT (United States). Dept. of Public Works; Motyka, Kurt [City of Montpelier Vermont, Montpelier, VT (United States). Dept. of Public Works; Aja, Joe [State of Vermont, Montpelier, VT (United States). Dept. of Buildings and General Services; Garabedian, Harold T. [Energy & Environmental Analytics, Montpelier, VT (United States)

    2015-03-30

    The City of Montpelier, in collaboration with the State of Vermont, developed a central heat plant fueled with locally harvested wood-chips and a thermal energy distribution system. The project provides renewable energy to heat a complex of state buildings and a mix of commercial, private and municipal buildings in downtown Montpelier. The State of Vermont operates the central heat plant and the system to heat the connected state buildings. The City of Montpelier accepts energy from the central heat plant and operates a thermal utility to heat buildings in downtown Montpelier which elected to take heat from the system.

  12. Energy efficient affordable housing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    In 1994, the Southface Energy Institute, working with support from US DOE, initiated a program to provide technical assistance to nonprofit organizations developing affordable housing in the Olympic target communities of Atlanta. The specific project goals were: Identify the barriers that nonprofit affordable housing providers face in increasing the energy and resource efficiency of affordable housing; Assist them in developing the resources to overcome these barriers; Develop specific technical materials and program models that will enable these affordable housing groups to continue to improve the energy efficiency of their programs; and, To transfer the program materials to other affordable housing providers. This report summarizes the progress made in each of these areas.

  13. Final PSD Permit Extension Letter - Energy Answers Arecibo, LLC/Energy Answers Arecibo Puerto Rico Renewable Energy Project, PR

    Science.gov (United States)

    This page contains the Final PSD Permit Extension Letter for Energy Answers Arecibo Puerto Rico Renewable Energy Project, issued on April 10, 2017 and the EPA Public Announcement for Final PSD Permit Extension for Energy Answers Arecibo, PR.

  14. Green Energy Technologies Create Green Jobs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-01

    The U.S. Department of Energy (DOE) is developing advanced energy technologies that can help address climate change and reduce U.S. dependence on oil. As these new technologies are launched into commercial use, they create new jobs for American workers.

  15. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  16. Wind energy. Technology and Planning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    On this bilingual CD-ROM (English and German), we would like to offer you information on all different aspects of wind energy utilisation. Our aim is the worldwide spread of know-how on wind energy - one basic aim of WWEA. The CD-ROM and the correspondent website www.world-wind-energy.info addresses all who are interested in wind energy, especially on students and learners, staff members of administrations, companies, associations, etc, who want to inform themselves and further their education of wind energy. We hope that this CD-ROM may be use to you and we would appreciate your feedback and comments. (orig.)

  17. Transactive Campus Energy Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haack, Jereme N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Woohyun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, Donna J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Akyol, Bora A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Allwardt, Craig H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carpenter, Brandon J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutes, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ngo, Hung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Underhill, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-26

    Transactive energy refers to the combination of economic and control techniques to improve grid reliability and efficiency. The fundamental purpose of transactive energy management is to seamlessly coordinate the operation of large numbers of new intelligent assets—such as distributed solar, energy storage and responsive building loads—to provide the flexibility needed to operate the power grid reliably and at minimum cost, particularly one filled with intermittent renewable generation such as the Pacific Northwest. It addresses the key challenge of providing smooth, stable, and predictable “control” of these assets, despite the fact that most are neither owned nor directly controlled by the power grid. The Clean Energy and Transactive Campus (CETC) work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) and the Washington State Department of Commerce (Commerce) through the Clean Energy Fund (CEF). The project team consisted of PNNL, the University of Washington (UW) and Washington State University (WSU), to connect the PNNL, UW, and WSU campuses to form a multi-campus testbed for transaction-based energy management—transactive—solutions. Building on the foundational transactive system established by the Pacific Northwest Smart Grid Demonstration (PNWSGD), the purpose of the project was to construct the testbed as both a regional flexibility resource and as a platform for research and development (R&D) on buildings/grid integration and information-based energy efficiency. This report provides a summary of the various tasks performed under the CRADA.

  18. Power Technologies Energy Data Book - Third Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2005-04-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  19. Power Technologies Energy Data Book - Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  20. Solar energy: its technologies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Auh, P.C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  1. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  2. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...... to photovoltaics with a special focus on the new photovoltaic technologies that promises ultra low cost solar cells. Unlike many other renewable energy technologies, a pipeline of new technologies is established and forms a road towards low cost energy production directly from the sun....

  3. Energy forecast. Final report; Energiudsigten. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    2010-04-15

    A number of instruments, i.e. Internet, media campaigns, boxes displaying electricity prices (SEE1) and spot contract has been tested for households to shift their electricity consumption to times when prices are low. Of the implemented media campaigns, only the daily viewing of Energy forecast on TV had an impact. Consumers gained greater knowledge of electricity prices and electricity consumption loads, but only showed little interest in shifting electricity consumption. However, a measurable effect appeared at night with the group that had both concluded a spot contract and received an SEE1. These factors increase the awareness of the price of electricity and the possibility of shifting electricity consumption. (Energy 10)

  4. Energy technology review, July--August 1991

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.C. (ed.)

    1991-01-01

    This issue of Energy Technology Review'' gives the annual review of the programs at Lawrence Livermore National Laboratory. This State of the Laboratory issue includes discussions of all major programs: Defense Systems; Laser Research; Magnetic Fusion Energy; Energy and Earth Sciences; Environmental Technology Program; Biomedical and Environmental Science; Engineering; Physics; Chemistry and Materials Science; Computations; and Administrative and Institutional Services. An index is also given of the 1991 achievements with contact names and telephone number.

  5. Pecan Street Grid Demonstration Program. Final technology performance report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-10

    This document represents the final Regional Demonstration Project Technical Performance Report (TPR) for Pecan Street Inc.’s (Pecan Street) Smart Grid Demonstration Program, DE-OE-0000219. Pecan Street is a 501(c)(3) smart grid/clean energy research and development organization headquartered at The University of Texas at Austin (UT). Pecan Street worked in collaboration with Austin Energy, UT, Environmental Defense Fund (EDF), the City of Austin, the Austin Chamber of Commerce and selected consultants, contractors, and vendors to take a more detailed look at the energy load of residential and small commercial properties while the power industry is undergoing modernization. The Pecan Street Smart Grid Demonstration Program signed-up over 1,000 participants who are sharing their home or businesses’s electricity consumption data with the project via green button protocols, smart meters, and/or a home energy monitoring system (HEMS). Pecan Street completed the installation of HEMS in 750 homes and 25 commercial properties. The program provided incentives to increase the installed base of roof-top solar photovoltaic (PV) systems, plug-in electric vehicles with Level 2 charging, and smart appliances. Over 200 participants within a one square mile area took advantage of Austin Energy and Pecan Street’s joint PV incentive program and installed roof-top PV as part of this project. Of these homes, 69 purchased or leased an electric vehicle through Pecan Street’s PV rebate program and received a Level 2 charger from Pecan Street. Pecan Street studied the impacts of these technologies along with a variety of consumer behavior interventions, including pricing models, real-time feedback on energy use, incentive programs, and messaging, as well as the corresponding impacts on Austin Energy’s distribution assets.The primary demonstration site was the Mueller community in Austin, Texas. The Mueller development, located less than three miles from the Texas State Capitol

  6. SMUD Community Renewable Energy Deployment Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sison-Lebrilla, Elaine [Sacramento Municipal Utility District, Sacramento, CA (United States); Tiangco, Valentino [Sacramento Municipal Utility District, Sacramento, CA (United States); Lemes, Marco [Sacramento Municipal Utility District, Sacramento, CA (United States); Ave, Kathleen [Sacramento Municipal Utility District, Sacramento, CA (United States)

    2015-06-08

    This report summarizes the completion of four renewable energy installations supported by California Energy Commission (CEC) grant number CEC Grant PIR-11-005, the US Department of Energy (DOE) Assistance Agreement, DE-EE0003070, and the Sacramento Municipal Utility District (SMUD) Community Renewable Energy Deployment (CRED) program. The funding from the DOE, combined with funding from the CEC, supported the construction of a solar power system, biogas generation from waste systems, and anaerobic digestion systems at dairy facilities, all for electricity generation and delivery to SMUD’s distribution system. The deployment of CRED projects shows that solar projects and anaerobic digesters can be successfully implemented under favorable economic conditions and business models and through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region. In addition to reducing GHG emissions, the projects also demonstrate that solar projects and anaerobic digesters can be readily implemented through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region.

  7. Energy Efficiency Adult Tracking Report - Final

    Energy Technology Data Exchange (ETDEWEB)

    Gibson-Grant, Amy [Ad Council, NY (United States)

    2014-09-30

    Postwave tracking study for the Energy Efficiency Adult Campaign This study serves as measure of key metrics among the campaign’s target audience, homeowners age 25+. Key measures include: Awareness of messages relating to the broad issue; Recognition of the PSAs; Relevant attitudes, including interest, ease of taking energy efficient steps, and likelihood to act; Relevant knowledge, including knowledge of light bulb alternatives and energy efficient options; and Relevant behaviors, including specific energy-saving behaviors mentioned within the PSAs. Wave 1: May 27 – June 7, 2011 Wave 2: May 29 – June 8, 2012 Wave 3: May 29 – June 19, 2014 General market sample of adults 25+ who own their homes W1 sample: n = 704; W2: n=701; W3: n=806 Online Survey Panel Methodology Study was fielded by Lightspeed Research among their survey panel. Sample is US Census representative of US homeowners by race/ethnicity, income, age, region, and family status. At least 30% of respondents were required to have not updated major appliances in their home in the past 5 years (dishwasher, stove, refrigerator, washer, or dryer).

  8. Solar Energy Installers Curriculum Guides. Final Report.

    Science.gov (United States)

    Walker, Gene C.

    A project was conducted to develop solar energy installers curriculum guides for use in high school vocational centers and community colleges. Project activities included researching job competencies for the heating, ventilation, and air conditioning industry and determining through interviews and manufacturers' literature what additional…

  9. Technological Aspects of Russian Energy Diplomacy

    Directory of Open Access Journals (Sweden)

    Stanislaw Z. Zhiznin

    2016-01-01

    Full Text Available In the present study we examined the impact of technology on the development of world energy in the world, as well as on the development of international energy relations. The important role of international cooperation in the field of energy technologies as a key factor in the development and global deployment of energy technologies in the industry. The most effective technology in the world of multilateral cooperation under the auspices of the International Energy Agency (IEA and other international organizations. It allows the joint efforts of the countries concerned to develop new technologies, test them and implement in production. For Russia, it is very important, because at the moment our country is not only a leading exporter of energy resources, but also has a significant impact on global energy security. At the same time Russia's FEC requires urgent and serious modernization through the development and introduction of innovative technologies on the basis of the study of international experience. Therefore the question of modernization of Russian fuel and energy complex has an international character. One way to accelerate the process of modernization of the organization is a public-private partnership that will largely depend on the nature and possibilities of Russian energy diplomacy, given the geopolitical and economic realities in connection with the sanctions imposed by Western countries against our country.

  10. Renewable Energy: Markets and Prospects by Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This information paper accompanies the IEA publication Deploying Renewables 2011: Best and Future Policy Practice (IEA, 2011a). It provides more detailed data and analysis, and explores the markets, policies and prospects for a number of renewable energy technologies. This paper provides a discussion of ten technology areas: bioenergy for electricity and heat, biofuels, geothermal energy, hydro energy, ocean energy, solar energy (solar photovoltaics, concentrating solar power, and solar heating), and wind energy (onshore and offshore). Each technology discussion includes: the current technical and market status; the current costs of energy production and cost trends; the policy environment; the potential and projections for the future; and an analysis of the prospects and key hurdles to future expansion.

  11. Energy technology X: a decade of progress. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.F. (ed.)

    1983-06-01

    The characterization, development, and availability of various energy sources for large scale energy production are discussed. Attention is given to government, industry, and international policies on energy resource development and implementation. Techniques for energy analysis, planning, and regulation are examined, with consideration given to conservation practices, military energy programs, and financing schemes. Efficient energy use is examined, including energy and load management, building retrofits, and cogeneration installations, as well as waste heat recovery. The state of the art of nuclear, fossil, and geothermal power extraction is investigated, with note taken of synthetic fuels, fluidized bed combustion, and pollution control in coal-powered plants. Finally, progress in renewable energy technologies, including solar heating and cooling, biomass, and large and small wind energy conversion devices is described.

  12. Technological Change During the Energy Transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, Sjak A.

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth

  13. Technological Change during the Energy Transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, J.A.

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth

  14. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  15. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    ), Battery Energy Storage (BES), Flow Battery Energy Storage (FBES), Flywheel Energy Storage (FES), Supercapacitor Energy Storage (SCES), Superconducting Magnetic Energy Storage (SMES), Hydrogen Energy Storage System (HESS), Thermal Energy Storage (TES), and Electric Vehicles (EVs). The objective...... than PHES depending on the availability of suitable sites. FBES could also be utilised in the future for the integration of wind, but it may not have the scale required to exist along with electric vehicles. The remaining technologies will most likely be used for their current applications...

  16. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  17. Market penetration of energy supply technologies

    Science.gov (United States)

    Condap, R. J.

    1980-03-01

    Techniques to incorporate the concepts of profit-induced growth and risk aversion into policy-oriented optimization models of the domestic energy sector are examined. After reviewing the pertinent market penetration literature, simple mathematical programs in which the introduction of new energy technologies is constrained primarily by the reinvestment of profits are formulated. The main results involve the convergence behavior of technology production levels under various assumptions about the form of the energy demand function. Next, profitability growth constraints are embedded in a full-scale model of U.S. energy-economy interactions. A rapidly convergent algorithm is developed to utilize optimal shadow prices in the computation of profitability for individual technologies. Allowance is made for additional policy variables such as government funding and taxation. The result is an optimal deployment schedule for current and future energy technologies which is consistent with the sector's ability to finance capacity expansion.

  18. Final Technical Report_Clean Energy Program_SLC-SELF

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Glenn; Coward, Doug

    2014-01-22

    This is the Final Technical Report for DOE's Energy Efficiency and Conservation Block Grant, Award No. DE-EE0003813, submitted by St. Lucie County, FL (prime recipient) and the Solar and Energy Loan Fund (SELF), the program's third-party administrator. SELF is a 501(c)(3) and a certified Community Development Financial Institution (CDFI). SELF is a community-based lending organization that operates the Clean Energy Loan Program, which focuses on improving the overall quality of life of underserved populations in Florida with an emphasis on home energy improvements and cost-effective renewable energy alternatives. SELF was launched in 2010 through the creation of the non-profit organization and with a $2.9 million Energy Efficiency and Conservation Block (EECBG) grant from the U.S. Department of Energy (DOE). SELF has its main office and headquarters in St. Lucie County, in the region known as the Treasure Coast in East-Central Florida. St. Lucie County received funding to create SELF as an independent non-profit institution, outside the control of local government. This was important for SELF to create its identity as an integral part of the business community and to help in its quest to become a Community Development Financial Institution (CDFI). This goal was accomplished in 2013, allowing SELF to focus on its mission to increase energy savings while serving markets that have struggled to find affordable financial assistance. These homeowners are most impacted by high energy costs. Energy costs are a disproportionate percentage of household expenses for low to moderate income (LMI) households. Electricity costs have been steadily rising in Florida by nearly 5% per year. Housing in LMI neighborhoods often includes older inefficient structures that further exacerbate the problem. Despite the many available clean energy solutions, most LMI property owners do not have the disposable income or equity in their homes necessary to afford the high upfront cost

  19. Solar Energy Research and Education Foundation. Final reports by task

    Energy Technology Data Exchange (ETDEWEB)

    von Reis, K.; Waegel, A.S.; Totten, M.

    1997-12-10

    This document contains final reports for the following tasks: kiosk for the children`s museum renewable energy exhibit and display, internet promotional and educational material, Aurora renewable energy science and engineering, CD-ROM training materials, presentations and traveling display, radio show `Energy Matters`, and newspaper articles and weekly news column.

  20. Energy & technology review, April 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; Stull, S. [eds.

    1995-04-01

    This publication presents research overviews on projects from the Lawrence Livermore laboratory. This issue provides information on microsphere targets for inertial confinement fusion experiments; laser fabrication of berllium components; and the kinetic energy interceptor.

  1. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  2. Environmental impacts of energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R. [Univ. of Northumbria, Newcastle upon Tyne (United Kingdom). Newcastle Photovoltaics Applications Centre

    1994-12-31

    The cost of energy which society uses has components which we do not pay to utilities but which are met from taxation or through reduced wellbeing. These external costs are often related to environmental impacts, but also include social costs related to energy production in ways which are not simple or direct. This paper discusses the methodologies by which external costs can be quantified and addresses some of the issues on which an international consensus has not yet been reached. (author)

  3. Cosmic Visions Dark Energy: Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-04-26

    A strong instrumentation and detector R&D program has enabled the current generation of cosmic frontier surveys. A small investment in R&D will continue to pay dividends and enable new probes to investigate the accelerated expansion of the universe. Instrumentation and detector R&D provide critical training opportunities for future generations of experimentalists, skills that are important across the entire Department of Energy High Energy Physics program.

  4. Hawai‘i Distributed Energy Resource Technologies for Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    HNEI has conducted research to address a number of issues important to move Hawai‘i to greater use of intermittent renewable and distributed energy resource (DER) technologies in order to facilitate greater use of Hawai‘i's indigenous renewable energy resources. Efforts have been concentrated on the Islands of Hawai‘i, Maui, and O‘ahu, focusing in three areas of endeavor: 1) Energy Modeling and Scenario Analysis (previously called Energy Road mapping); 2) Research, Development, and Validation of Renewable DER and Microgrid Technologies; and 3) Analysis and Policy. These efforts focused on analysis of the island energy systems and development of specific candidate technologies for future insertion into an integrated energy system, which would lead to a more robust transmission and distribution system in the state of Hawai‘i and eventually elsewhere in the nation.

  5. University of Washington/ Northwest National Marine Renewable Energy Center Tidal Current Technology Test Protocol, Instrumentation, Design Code, and Oceanographic Modeling Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-11-452

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Frederick R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation system and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.

  6. Energy efficient ammonia heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Claus; Pijnenburg, B.; Schumann Grindorf, H. [Danish Technological Institute, Aarhus (Denmark); Christensen, Rolf [Alfa Laval, Lund (Sweden); Rasmussen, Bjarne D. [Grundfos, Bjerringbro (Denmark); Gram, S.; Fredborg Jakobsen, D. [Svedan Industri Koeleanlaeg, Greve (Denmark)

    2013-09-15

    The report describes the development of a highly effective ammonia heat pump. Heat pumps play an increasingly important role in the search for more effective use of energy in our society. Highly efficient heat pumps can contribute to reduced energy consumption and improved economy of the systems which they are a part of. An ammonia heat pump with high pressure reciprocating compressor and a novel split condenser was developed to prove potential for efficiency optimization. The split of the condenser in two parts can be utilized to obtain smaller temperature approaches and, thereby, improved heat pump efficiency at an equal heat exchanger area, when compared to the traditional solution with separate condenser and de-superheater. The split condenser design can also be exploited for heating a significant share of the total heating capacity to a temperature far above the condensing temperature. Furthermore, the prototype heat pump was equipped with a plate type evaporator combined with a U-turn separator with a minimum liquid height and a liquid pump with the purpose of creating optimum liquid circulation ratio for the highest possible heat transfer coefficients at the lowest possible pressure drop. The test results successfully confirmed the highest possible efficiency; a COP of 4.3 was obtained when heating water from 40 deg. C to 80 deg. C while operating with evaporating/condensing temperatures of +20 deg C/+73 deg C. (Author)

  7. Energy Materials Center at Cornell: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Abruña, Héctor [Cornell Univ., Ithaca, NY (United States); Mutolo, Paul F [Cornell Univ., Ithaca, NY (United States)

    2015-01-02

    The mission of the Energy Materials Center at Cornell (emc2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for; the development and improved performance of materials for both electrodes at which storage or conversion occurs; understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods for structuring them to enable high mass transport as well as high ionic and electronic conductivity; development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed; and development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.

  8. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  9. Emerging electrochemical energy conversion and storage technologies.

    Science.gov (United States)

    Badwal, Sukhvinder P S; Giddey, Sarbjit S; Munnings, Christopher; Bhatt, Anand I; Hollenkamp, Anthony F

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  10. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  11. Emerging electrochemical energy conversion and storage technologies

    Directory of Open Access Journals (Sweden)

    Sukhvinder P.S. BADWAL

    2014-09-01

    Full Text Available Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  12. Investigations in terms of energy economy for determining the usefulness of sorption and compression refrigerating technology. T. A: Expert report. Final report; Energiewirtschaftliche Untersuchungen zur Abgrenzung der Sinnfaelligkeit von Sorptions- und Kompressionskaeltetechnik. T. A: Fachbericht. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sager, J.

    2001-09-30

    In the frame of the study 'Investigations in terms of energy economy for determining the usefulness of sorption and compression refrigerating technology' a comparison was made between thermal cold generation by means of one-phase absorption refrigerating machines and electro-mechanical cold generation. The comparison was based upon ideal and real processes, which also included the provision of thermal energy by means of combined-cycle generation or the provision of electric energy reconnected in compensation power plants. Absorption cold generation including the use of thermal energy from a combined-cycle generation process is termed combined-cycle generation. Due to the general character of the comparison the results can also be transferred to other processes of thermal cold generation. (orig.) [German] Im Rahmen der Studie 'Energiewirtschaftliche Untersuchungen zur Abgrenzung der Sinnfaelligkeit von Sorptions- und Kompressionskaeltetechnik' wurde ein Vergleich der thermischen Kaelteerzeugung anhand einstufiger Absorptionskaeltemaschinen mit der elektro-mechanischen Kaelteerzeugung unter Zugrundelegung idealer und realer Prozesse angestellt, in den auch die Bereitstellung der thermischen Energie in Kraft-Waerme-Kopplung bzw. der elektrichen Energie umgekoppelt in Kondensationskraftwerken einbezogen wurde. Die Absorptionskaelteerzeugung unter Verwendung thermischer Energie aus einem KWK-Prozess wird mit Kraft-Waerme-Kopplung bezeichnet. Aufgrund des allgemeingueltigen Charakters des Vergleichs sind die Ergebnisse auch auf andere Verfahren der thermischen Kaelteerzeugung uebertragbar. (orig.)

  13. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  14. Plus energy house. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Yde, L.

    1996-05-01

    A description of a demonstration project, located near Viborg in Denmark, involving a 400 m{sup 2} house with low energy consumption which has a 200 m{sup 2} living/working area, a 240 m{sup 2} mobile insulated glass facade and a solar greenhouse of 200 m{sup 2} which in addition to plant production can be used for recreational purposes. Humidity in the greenhouse is regulated by heat pumps condensing the water-laden air and thus producing hot water for space heating. The heat pumps maintain a 70% relative humidity in the greenhouse and surplus heat to the amount of 300 kWh/m{sup 2} of glass facade area is produced annually. Excess heat to the amount of 75.000 kWh is available for space heating in adjoining houses. The glazed roof of the house and greenhouse is constructed of two layers of tempered glass. The 20 cm space between the layers, when filled with polystyrene beads, provides thermal insulation equal to that of traditionally insulated outer house-walls. The beads can be sucked in and out of the roof space and can also be used for shading during the summer. It is concluded that the house (400 m{sup 2}) consumes the same quantity of energy as houses of a similar size and at the same time produces 300 kWh/m{sup 2} p.a. with the glass south facade, corresponding to what a solar collector produces per m{sup 2}. (AB)

  15. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  16. Possible future environmental issues for fossil fuel technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, L.D.

    1979-07-01

    The work reported here was carried out for the Department of Energy's Office of Fossil Energy to identify and assess 15 to 20 major environmental issues likely to affect the implementation of fossil energy technologies between 1985 and 2000. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; and true and modified in situ oil shale retorting. Environmental analysis of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. The 16 environmental issues identified as those most likely for future regulatory actions and the main features of, and the possible regulatory actions associated with, each are as follows: disposal of solid waste from coal conversion and combustion technologies; water consumption by coal and oil shale conversion technologies; siting of coal conversion facilities; the carbon dioxide greenhouse effect; emission of polycyclic organic matter (POM); impacts of outer continental shelf (OCS) oil development; emission of trace elements; groundwater contamination; liquefied natural gas (LNG), safety and environmental factors; underground coal mining - health and safety; fugitive emissions from coal gasification and liquefaction - health and safety; boomtown effects; emission of fine particulates from coal, oil and oil shale technologies; emission of radioactivity from the mining and conversion of coal; emission of nitrogn oxides; and land disturbance from surface mining. (LTN)

  17. Sustainable energy catalogue - for European decision-makers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gram, S.; Jacobsen, Soeren

    2006-10-15

    The Green paper - A European Strategy for Sustainable, Competitive and Secure Energy, 2006 states that Europe has a rising dependency on imported energy reserves, which are concentrated in a few countries. The Rising gas and oil prices along with demands on lower emissions of CO2 adds pressure on the need for a new energy future for Europe. EU has since 1990 planned to become world leader in the renewable energy field. Therefore the EU member states have agreed that by 2010 21% of the consumed electricity and 5,75% of the consumed gasoline and diesel should originate from renewable energy sources. If the EU countries are to reach their goals, a commitment on several levels to develop and install energy from sustainable energy sources is needed. The purpose of this catalogue is to offer planners and decision-makers in EU states an inspirational tool to be used during local or regional transition towards sustainable energy technologies. The catalogue can also be used by everyone else who needs an overview of the sustainable energy technologies and their current development level and future potential, among others educational use is relevant. The catalogue provides an introduction to the following technologies that are already or are estimated to become central to a development with renewable energy in EU: Technologies for wind energy, wave energy, geothermal energy, bioenergy, solar energy, hydropower and fuel cells. The catalogue also includes a section about energy systems, which also includes a part about technologies for efficient use of energy. The catalogue could have included a few other technologies as e.g. heating pumps, but due to the size of the catalogue a priority was necessary. The catalogue does not claim to give all answers or to be complete regarding all details about the individual technologies; even so it offers information, which cannot easily be looked up on the Internet. In the back of the catalogue, under 'References and links' there

  18. Use of mobile learning technology among final year medical ...

    African Journals Online (AJOL)

    abp

    2015-06-15

    Jun 15, 2015 ... Abstract. Introduction: Mobile phone penetration has increased exponentially over the last decade as has its application in nearly all spheres of life including health and medical education. This study aimed at assessing the use of mobile learning technology and its challenges among final year.

  19. Use of mobile learning technology among final year medical ...

    African Journals Online (AJOL)

    Introduction: Mobile phone penetration has increased exponentially over the last decade as has its application in nearly all spheres of life including health and medical education. This study aimed at assessing the use of mobile learning technology and its challenges among final year undergraduate students in the College ...

  20. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  1. Sustainable Energy Technology Acceptance : A psychological perspective

    NARCIS (Netherlands)

    Huijts, N.M.A.

    2013-01-01

    Sustainable energy systems are designed to overcome the large problems resulting from current fossil fuel use, such as climate change, air pollution and energy insecurity. Citizens’ opinions and responses are crucial to the successful implementation of new technologies. This thesis explains public

  2. Guide to Employing Renewable Energy and Energy Efficient Technologies

    Science.gov (United States)

    2012-09-01

    Energy and Energy Efficient Technologies NOTE Unless this X-File states otherwise, masculine nouns and pronouns refer to both men and women...shelter walls. Constructed with non- toxic and non- carcinogenic materials, the RBB is puncture and tear resistant and does not promote the growth of fungi

  3. Finnish energy technologies for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The global energy sector is going through major changes: the need for energy is growing explosively, while at the same time climate change is forcing US to find new, and cleaner, ways to generate energy. Finland is one of the forerunners in energy technology development, partly because of its northern location and partly thanks to efficient innovations. A network of centres of expertise was established in Finland in 1994 to boost the competitiveness and internationalisation of Finnish industry and, consequently, that of the EU region. During the expertise centre programme period 2007-2013, substantial resources will be allocated to efficient utilisation of top level expertise in thirteen selected clusters of expertise. The energy cluster, focusing on developing energy technologies for the future, is one of these.

  4. Finnish energy technologies for the future

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The global energy sector is going through major changes: the need for energy is growing explosively, while at the same time climate change is forcing US to find new, and cleaner, ways to generate energy. Finland is one of the forerunners in energy technology development, partly because of its northern location and partly thanks to efficient innovations. A network of centres of expertise was established in Finland in 1994 to boost the competitiveness and internationalisation of Finnish industry and, consequently, that of the EU region. During the expertise centre programme period 2007-2013, substantial resources will be allocated to efficient utilisation of top level expertise in thirteen selected clusters of expertise. The energy cluster, focusing on developing energy technologies for the future, is one of these

  5. Energy technology programmes 1993-1998. Evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    In the late 1980s Finland`s Ministry of Trade and Industry (KTM) initiated a series of research and development (R and D) programmes in the field of energy technology. Subsequently, in 1993, it launched a further suite of eleven Energy Technology Programmes scheduled to run over the period 1993-1998. Aimed at the development of efficient and environmentally sound energy technologies intended to be competitive in the international marketplace, the programmes sought to involve the research, industrial and public sectors in some FIM 1.2 billion of research and development activity. The technology areas spanned: Combustion and gasification techniques Bioenergy, Advanced energy systems and technologies (e.g. wind, solar energy), Fusion, Energy and environmental technology, Energy and the environment in transportation, Energy use in buildings, Energy in steel and metal production, Energy in paper and board production, District heating, Electricity distribution automation. In early 1995, the Technology Development Centre of Finland (Tekes) assumed responsibility for the funding, management and administration of the programmes. As the final year of activities began, Tekes commissioned Technopolis to assemble a team to conduct a major review of all eleven programmes over the course of 1998. The broad aim of the exercise was to review the experience of the eleven technology R and D programmes and to make suggestions for the future. In particular, the intention was to cover a number of distinct levels. Most important were the Programme and Portfolio levels. At the individual Programme level, the review was to comment on the relevance, calibre and impact of programmes, concentrating in particular on the following: Relevance - were programme and project level goals in line with Finnish interests and comparable agendas in other countries; Efficiency - how well were the programmes implemented and managed; Quality - how did the scientific and technological quality of the work

  6. Energy & Technology Review, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.; Van Dyke, P. [eds.

    1994-03-01

    This monthly report of research activities at Lawrence Livermore Laboratory highlights three different research programs. First, the Forensic Science Center supports a broad range of analytical techniques that focus on detecting and analyzing chemical, biological, and nuclear species. Analyses are useful in the areas of nonproliferation, counterterrorism, and law enforcement. Second, starting in 1977, the laboratory initiated a series of studies to understand a high incidence of melanoma among employees. Continued study shows that mortality from this disease has decreased from the levels seen in the 1980`s. Third, to help coordinate the laboratory`s diverse research projects that can provide better healthcare tools to the public, the lab is creating the new Center for Healthcare Technologies.

  7. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  8. Risoe energy report 6. Future options for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2007-11-15

    Fossil fuels provide about 80% of the global energy demand, and this will continue to be the situation for decades to come. In the European Community we are facing two major energy challenges. The first is sustainability, and the second is security of supply, since Europe is becoming more dependent on imported fuels. These challenges are the starting point for the present Risoe Energy Report 6. It gives an overview of the energy scene together with trends and emerging energy technologies. The report presents status and trends for energy technologies seen from a Danish and European perspective from three points of view: security of supply, climate change and industrial perspectives. The report addresses energy supply technologies, efficiency improvements and transport. The report is volume 6 in a series of reports covering energy issues at global, regional and national levels. The individual chapters of the report have been written by staff members from the Technical University of Denmark and Risoe National Laboratory together with leading Danish and international experts. The report is based on the latest research results from Risoe National Laboratory, Technical University of Denmark, together with available internationally recognized scientific material, and is fully referenced and refereed by renowned experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, funding organizations, the Danish government and international organizations including the European Union, the International Energy Agency and the United Nations. (au)

  9. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  10. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  11. INL Control System Situational Awareness Technology Final Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Gordon Rueff; Bryce Wheeler; Todd Vollmer; Tim McJunkin

    2013-01-01

    The Situational Awareness project is a comprehensive undertaking of Idaho National Laboratory (INL) in an effort to produce technologies capable of defending the country’s energy sector infrastructure from cyber attack. INL has addressed this challenge through research and development of an interoperable suite of tools that safeguard critical energy sector infrastructure. The technologies in this project include the Sophia Tool, Mesh Mapper (MM) Tool, Intelligent Cyber Sensor (ICS) Tool, and Data Fusion Tool (DFT). Each is designed to function effectively on its own, or they can be integrated in a variety of customized configurations based on the end user’s risk profile and security needs.

  12. Policies for the Energy Technology Innovation System (ETIS)

    NARCIS (Netherlands)

    Grubler, A.; Aguayo, F.; Gallagher, K.; Hekkert, M.P.; Jiang, K.; Mytelka, L.; Neij, L.; Nemet, G.; Wilson, C.

    2012-01-01

    Innovation and technological change are integral to the energy system transformations described in the Global Energy Assessment (GEA) pathways. Energy technology innovations range from incremental improvements to radical breakthroughs and from technologies and infrastructure to social institutions

  13. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  14. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  15. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  16. Energy technologies at the cutting edge: international energy technology collaboration IEA Implementing Agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pottinger, C. (ed.)

    2007-05-15

    Ensuring energy security and addressing climate change issues in a cost-effective way are the main challenges of energy policies and in the longer term will be solved only through technology cooperation. To encourage collaborative efforts to meet these energy challenges, the IEA created a legal contract - Implementing Agreement - and a system of standard rules and regulations. This allows interested member and non-member governments or other organisations to pool resources and to foster the research, development and deployment of particular technologies. For more than 30 years, this international technology collaboration has been a fundamental building block in facilitating progress of new or improved energy technologies. There are now 41 Implementing Agreements. This is the third in the series of publications highlighting the recent results and achievements of the IEA Implementing Agreements. This document is arranged in the following sections: Cross-cutting activities (sub-sectioned: Climate technology initiative; Energy Technology Data Eexchange; and Energy technology systems analysis programme); End-use technologies (sub-sectioned: Buildings; Electricity; Industry; and Transport; Fossil fuels (sub-sectioned: Clean Coal Centre; Enhanced oil recovery Fluidized bed conversion; Greenhouse Gas R & D; Multiphase flow sciences); Fusion power; Renewable energies and hydrogen; and For more information (including detail on the IEA energy technology network; IEA Secretariat Implementing Agreement support; and IEA framework. Addresses are given for the Implementing Agreements. The publication is based on core input from the Implementing Agreement Executive Committee.

  17. Networking with energy. Final report; Netwerken met energie. Eindrapport

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, G.; Noorman, K.J. [KNN Milieu, Groningen (Netherlands); Kok, R.; Benders, R.M.J.; Moll, H.C. [Centrum voor Energie en Milieukunde IVEM, Rijksuniversiteit Groningen, Groningen (Netherlands); Abrahamse, W.; Steg, L. [Basiseenhied Psychologie, Rijksuniversiteit Groningen, Groningen (Netherlands); Van der Valk, M. (ed.)

    2003-08-21

    The aim of the project was to reduce the direct (-5%) and the indirect (also -5%) consumption of energy by means of a change of behavior. One of the tools to realize this was setting up a website for advice and feedback. [Dutch] Het doel van het project was om bij circa 300 huishoudens in Groningen het directe (-5%) en indirecte (ook -5%) energiegebruik te verminderen via gedragsverandering. Een van de middelen om dit doel te bereiken was het opzetten van een website voor advies en feedback.

  18. Smart and Green Energy (SAGE) for Base Camps Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Engels, Matthias; Boyd, Paul A.; Koehler, Theresa M.; Goel, Supriya; Sisk, Daniel R.; Hatley, Darrel D.; Mendon, Vrushali V.; Hail, John C.

    2014-02-11

    The U.S. Army Logistics Innovation Agency’s (LIA’s) Smart and Green Energy (SAGE) for Base Camps project was to investigate how base camps’ fuel consumption can be reduced by 30% to 60% using commercial off-the-shelf (COTS) technologies for power generation, renewables, and energy efficient building systems. Field tests and calibrated energy models successfully demonstrated that the fuel reductions are achievable.

  19. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, Noreddine

    2014-04-13

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group\\'s contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  20. Market penetration of new energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Packey, D.J.

    1993-02-01

    This report examines the characteristics, advantages, disadvantages, and, for some, the mathematical formulas of forecasting methods that can be used to forecast the market penetration of renewable energy technologies. Among the methods studied are subjective estimation, market surveys, historical analogy models, cost models, diffusion models, time-series models, and econometric models. Some of these forecasting methods are more effective than others at different developmental stages of new technologies.

  1. Energy of the future: final report; Energias do futuro: relatorio final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This report presents the analysis of the main factors that may restrict the future energy demand and preferences for technology choices and types of fuels. The work is based on a literature review on the state of the art of leading energy technologies. In addition, information is gathered to assist the characterization of amounts and forms of energy that will be important in the period 2030-2050, as well as major consuming sectors. At the end of a presentation is made a summary diagram that indicates the degree of effort in R and D that may be necessary taking into consideration the state of the art technologies, an array of challenges and demand and future energy matrix.

  2. Rational use of energy. Finnish technology cases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This publication has been produced within the THERMIE B project `Interactive Promotion of Energy Technologies between Finland and Other EUCountries and to Estonia` (STR-0622-95-FI) as carried out for DG XVII of the European Commission. MOTIVA of Finntech Finnish Technology Ltd Oy has acted as the project co-ordinating body, with Ekono B.E., Ekono Energy Ltd and Friedemann and Johnson Consultants GmbH as partners. The main aim of the second phase of the project, as documented here, was to produce a publication in English on Finnish energy technologies, primarily in the building, industry and traffic sectors. The target distribution for this publication is primarily the EU countries through public and commercial information networks. During the work, the latest information on Finnish energy technologies has been collected, reviewed, screened and analysed in relation to the THERMIE programme. The following presentation consists of descriptions of case technologies; their background, technical aspects and energy saving potentials where applicable. The three RUE sectors; buildings, industry and traffic, are put forward in separate chapters. The building sector concentrates mostly in different control systems. New lighting and heating systems increase energy savings both in the large industrial sites and in private homes. In the industry sector new enhanced processes are introduced along with new products to increase energy efficiency. Traffic sector concentrates in traffic control and reducing exhaust gas emissions by new systems and programmes. The aim in Finland is to reduce exhaust gas emissions both by controlling the traffic efficiently and by developing fuels with lower emission levels. A lot is being done by educating the drivers and the public in efficient driving methods

  3. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  4. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  5. Energy technology progress for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu, D.E.; Drennen, T.E.

    1997-03-01

    Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

  6. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, Michael (Northern Plains Power Technologies, Brookings, SD); Gonzalez, Sigifredo; Schaffer, Alan (Lakeland Electric Utilities, Lakeland, FL); Katz, Stanley (Satcon Technology Corporation, Boston, MA); Perkinson, Jim (Satcon Technology Corporation, Boston, MA); Bower, Ward Isaac; Prestero, Mark (Satcon Technology Corporation, Boston, MA); Casey, Leo (Satcon Technology Corporation, Boston, MA); Moaveni, Houtan (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Click, David (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Davis, Kristopher (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Reedy, Robert (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  7. Final Technical Report. Training in Building Audit Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Brosemer, Kathleen [Sault Sainte Marie Tribe of Chippewa Indians, Marie, MI (United States)

    2015-03-27

    In 2011, the Tribe proposed and was awarded the Training in Building Audit Technologies grant from the DOE in the amount of $55,748 to contract for training programs for infrared cameras, blower door technology applications and building systems. The coursework consisted of; Infrared Camera Training: Level I - Thermal Imaging for Energy Audits; Blower Door Analysis and Building-As-A-System Training, Building Performance Institute (BPI) Building Analyst; Building Envelope Training, Building Performance Institute (BPI) Envelope Professional; and Audit/JobFLEX Tablet Software. Competitive procurement of the training contractor resulted in lower costs, allowing the Tribe to request and receive DOE approval to additionally purchase energy audit equipment and contract for residential energy audits of 25 low-income Tribal Housing units. Sault Tribe personnel received field training to supplement the classroom instruction on proper use of the energy audit equipment. Field experience was provided through the second DOE energy audits grant, allowing Sault Tribe personnel to join the contractor, Building Science Academy, in conducting 25 residential energy audits of low-income Tribal Housing units.

  8. Energy Effectiveness Assessment of Composting Technologies

    OpenAIRE

    Plūme, I.

    2006-01-01

    The incorrect biomass composting improperly results in considerable emission of greenhouse gases, loss of effluent and composting heat into environment. The composting heat and gases utilisation is especially suitable for plant enrichment and heating of greenhouses. The mathematical model is worked out for assessment of energy effectiveness and sustainability of biomass composting process. Coefficient of energy effectiveness for traditional litter manure composting technologies is 0.45 and ca...

  9. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  10. Management support services to the Office of Utility Technologies. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-16

    The Office of Utility Technologies works cooperatively with industry and the utility sector to realize the market potential for energy efficiency and renewable energy technologies. Under this contract, BNF has provided management support services for OUT R&D activities for the following Program offices: (1) Office of Energy Management; (2) Office of Solar Energy Conversion; (3) Office of Renewable Energy Conversion; and (4) Deputy Assistant Secretary. During the period between 4/17/91 and 9/17/93, BNF furnished the necessary personnel, equipment, materials, facilities and travel required to provide management support services for each of the above Program Offices. From 9/18/93 to 12/17/93, BNF has been involved in closeout activities, including final product deliverables. Research efforts that have been supported in these Program Offices are: (1) for Energy Management -- Advanced Utility Concepts Division; Utility Systems Division; Integrated Planning; (2) for Solar Energy Conversion -- Photovoltaics Division; Solar Thermal and Biomass Power Division; (3) for Renewable Energy Conversion -- Geothermal Division; Wind, Hydroelectric and Ocean Systems Division; (4) for the Deputy Assistant Secretary -- support as required by the Supporting Staff. This final report contains summaries of the work accomplished for each of the Program Offices listed above.

  11. Energy saving screw compressor technology; Energiebesparende schroefcompressortechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, A. [RefComp, Lonigo (Italy); Neus, M. [Delta Technics Engineering, Breda (Netherlands)

    2011-03-15

    Smart solutions to reduce the energy consumption are continuously part of investigation in the refrigeration technology. This article subscribed the technology on which way energy can be saved at the operation of screw compressors which are used in air conditioners and refrigerating machinery. The combination of frequency control and Vi-control (intrinsic volumetric ratio) such as researched in the laboratory of RefComp is for the user attractive because the energy efficiency during part load operation is much better. Smart uses of thermodynamics, electric technology and electronic control are the basics of these applications. According to the manufacturer's information it is possible with these new generation screw compressors to save approx. 26% energy in comparison with the standard screw compressor. [Dutch] In dit artikel wordt de technologie omschreven waarmee veel energie bespaard kan worden bij schroefcompressoren die worden gebruikt in airconditioningsystemen en koel- en vriesinstallaties. De combinatie van frequentieregeling en Vi- regeling (Vi is de intrinsieke volumetrische verhouding) zoals onderzocht in het laboratorium van RefComp biedt de gebruiker veel voordelen doordat de energie-efficintie van de compressor tijdens deellast enorm wordt verbeterd. Slim gebruik van thermodynamika, elektrotechniek en elektronica vormen de basis van deze toepassing. Volgens de fabrikant kan met deze nieuwe generatie schroefcompressoren circa 26 procent op het energiegebruik tijdens deellast worden bespaard in vergelijking met de standaard serie schroefcompressoren.

  12. Energy in synthetic fertilizers and pesticides: Revisited. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.G.; English, B.C.; Turhollow, A.F.; Nyangito, H.O. [Tennessee Univ., Knoxville, TN (United States). Dept. of Agricultural Economics and Rural Sociology

    1994-01-01

    Agricultural chemicals that are derived from fossil-fuels are the major energy intensive inputs in agriculture. Growing scarcity of the world`s fossil resources stimulated research and development of energy-efficient technology for manufacturing these chemicals in the last decade. The purpose of this study is to revisit the energy requirements of major plant nutrients and pesticides. The data from manufacturers energy survey conducted by The Fertilizer Institute are used to estimate energy requirements of fertilizers. Energy estimates for pesticides are developed from consulting previously published literature. The impact of technical innovation in the fertilizer industry to US corn, cotton, soybean and wheat producers is estimated in terms of energy-saving.

  13. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  14. Energy Technology Allocation for Distributed Energy Resources: A Technology-Policy Framework

    Science.gov (United States)

    Mallikarjun, Sreekanth

    Distributed energy resources (DER) are emerging rapidly. New engineering technologies, materials, and designs improve the performance and extend the range of locations for DER. In contrast, constructing new or modernizing existing high voltage transmission lines for centralized generation are expensive and challenging. In addition, customer demand for reliability has increased and concerns about climate change have created a pull for swift renewable energy penetration. In this context, DER policy makers, developers, and users are interested in determining which energy technologies to use to accommodate different end-use energy demands. We present a two-stage multi-objective strategic technology-policy framework for determining the optimal energy technology allocation for DER. The framework simultaneously considers economic, technical, and environmental objectives. The first stage utilizes a Data Envelopment Analysis model for each end-use to evaluate the performance of each energy technology based on the three objectives. The second stage incorporates factor efficiencies determined in the first stage, capacity limitations, dispatchability, and renewable penetration for each technology, and demand for each end-use into a bottleneck multi-criteria decision model which provides the Pareto-optimal energy resource allocation. We conduct several case studies to understand the roles of various distributed energy technologies in different scenarios. We construct some policy implications based on the model results of set of case studies.

  15. Assessment of the magnesium primary production technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flemings, M.C.; Kenney, G.B.; Sadoway, D.R.; Clark, J.P.; Szekely, J.

    1981-02-01

    At current production levels, direct energy savings achievable in primary magnesium production are 1.2 milliquads of energy per annum. Were magnesium to penetrate the automotive market to an average level of 50 pounds per vehicle, the resultant energy savings at the production stage would be somewhat larger, but the resulting savings in gasoline would conserve an estimated 325 milliquads of energy per year. The principal barrier to more widespread use of magnesium in the immediate future is its price. A price reduction of magnesium of 10% would lead to widespread conversion of aluminum die and permanent mold castings to magnesium. This report addresses the technology of electrolytic and thermic magnesium production and the economics of expanded magnesium production and use.

  16. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-15

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO{sub 2} prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a

  17. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  18. Alternative Energy Center, Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dillman, Howard D.; Marshall, JaNice C.

    2007-09-07

    The Lansing Community College Alternative Energy Center was created with several purposes in mind. The first purpose was the development of educational curricula designed to meet the growing needs of advanced energy companies that would allow students to articulate to other educational institutions or enter this growing workforce. A second purpose was the professional development of faculty and teachers to prepare them to train tomorrow's workforce and scholars. Still another purpose was to design, construct, and equip an alternative energy laboratory that could be used for education, demonstration, and public outreach. Last, the Center was to engage in community outreach and education to enhance industry partnerships, inform decision makers, and increase awareness and general knowledge of hydrogen and other alternative energy technologies and their beneficial impacts on society. This project has enabled us to accomplish all of our goals, including greater faculty understanding of advanced energy concepts, who are now able to convey this knowledge to students through a comprehensive alternative energy curriculum, in a facility well-equipped with advanced technologies, which is also being used to better educate the public on the advantages to society of exploring alternative energy technologies.

  19. World Energy Resources and New Technologies

    Science.gov (United States)

    Szmyd, Janusz S.

    2016-01-01

    The development of civilisation is linked inextricably with growing demand for electricity. Thus, the still-rapid increase in the level of utilisation of natural resources, including fossil fuels, leaves it more and more urgent that conventional energy technologies and the potential of the renewable energy sources be made subject to re-evaluation. It is estimated that last 200 years have seen use made of more than 50% of the available natural resources. Equally, if economic forecasts prove accurate, for at least several more decades, oil, natural gas and coal will go on being the basic primary energy sources. The alternative solution represented by nuclear energy remains a cause of considerable public concern, while the potential for use to be made of renewable energy sources is seen to be very much dependent on local environmental conditions. For this reason, it is necessary to emphasise the impact of research that focuses on the further sharpening-up of energy efficiency, as well as actions aimed at increasing society's awareness of the relevant issues. The history of recent centuries has shown that rapid economic and social transformation followed on from the industrial and technological revolutions, which is to say revolutions made possible by the development of power-supply technologies. While the 19th century was "the age of steam" or of coal, and the 20th century the era of oil and gas, the question now concerns the name that will at some point come to be associated with the 21st century. In this paper, the subjects of discussion are primary energy consumption and energy resources, though three international projects on the global scale are also presented, i.e. ITER, Hydrates and DESERTEC. These projects demonstrate new scientific and technical possibilities, though it is unlikely that commercialisation would prove feasible before 2050. Research should thus be focused on raising energy efficiency. The development of high-efficiency technologies that

  20. Novel energy saving technologies evaluation tool

    NARCIS (Netherlands)

    Klemeš, J.; Bulatov, I.; Koppejan, J.

    2009-01-01

    The lead-time for the development of a new energy technology, from the initial idea to the commercial application, can take many years. The reduction of this time has been the main objective of the EC DGTREN, who have funded two related recent projects, EMINENT and EMINENT2 (Early Market

  1. LiDAR Application for WInd Energy Efficiency : Final report

    NARCIS (Netherlands)

    Boorsma, K; Wagenaar, J.W.; Savenije, F.J.; Boquet, M.; Bierbooms, W.A.A.M.; Giyanani, A.H.; Rutteman, R.

    2016-01-01

    ECN with its partners TU DelŌ, Avent LiDAR Technologies and XEMC Darwind executed the four-year TKI Wind op Zee project LAWINE (LiDAR ApplicaƟon for WInd Energy Efficiency). In this project the applica Ɵon of LiDAR technology has been developed and validated so that it can be used to improve the

  2. Values and Technologies in Energy Savings

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    2000-01-01

    The chapter is based on the assumption, that technology improvement is not sufficient to achieve a sustainable world community. Changes in people´s values are necessary. A simple model suggest how values, together with basic needs and with the environmental and societal frames, determine people......´s behavioural pattern and lifestyles. Deliberate changes in social values are illustrated by a historical example. From the side of technology the basic principles in the economy of energy savings are briefly described. The marginally profitable energy savings provides an economic saving. The application...... of this saving can cause what is called the rebound effect, which reduces the savings obtained from the technology. Ways to avoid this effect are suggested, and they require value changes, primarly around frugality, consumption, and hard-working. There are indications that some of the necessary changes are well...

  3. Trends in Wind Energy Technology Development

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.

    2011-01-01

    . The development of new and larger turbines to some extent stagnated, and costs even rose due to high demand and rising materials costs. We believe, however – and this is supported by recent trends – that the next decade will be a new period of technology development and further scale-up, leading to more cost......-effective, reliable and controllable wind turbines and new applications. This is partly due to increased international competition, but also because the industry is increasingly dominated by high-technology international companies. The move to install more capacity offshore also favours larger wind turbines....... The huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a secure global energy supply. Between the mid-1980s, when the wind industry took off, and 2005 wind...

  4. Information technology applications in improving energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M.; Heine, P. (Helsinki Univ. of Technology, Power systems, Espoo (Finland)); Koski, P. (Motiva, Helsinki (Finland)), email: pertti.koski@motiva.fi

    2009-07-01

    The goal of the project was to study how the different statistical analysis and optimization methods can be applied in the data obtained from data systems and energy measurement databases, in order to increase the energy efficiency in small and medium size industry, in commercial and public sector and in households. The project had two subtasks: (1) Development of analysis techniques and their applications in kWh-metering databases, combined with data from various other databases, like customer data bases, data bases of building authorities etc. The aim is to identify the key technologies of energy efficiency, and their potential. (2) Development of business models for energy saving activities: How to find motivation for increasing energy efficiency, howto divide benefits, how to divide activities between different parties. (orig.)

  5. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  6. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  7. Technology review of commercial food service equipment - final report

    Energy Technology Data Exchange (ETDEWEB)

    Rahbar, S.; Krsikapa, S. [Canadian Gas Research Inst., Don Mills, ON (Canada); Fisher, D.; Nickel, J.; Ardley, S.; Zabrowski, D. [Fisher Consultants (Canada); Barker, R.F. [ed.

    1996-05-15

    Market and technical information on gas fired equipment used in the commercial food service sector in Canada and in each province or territory was presented. Results of a market study and technology review were integrated to establish energy consumption and energy saving potential in this sector. Eight categories of commercial cooking appliances were studied. They were: fryers, griddles, broilers, ranges, ovens, tilting skillets, steam kettles and steamers. Focus was on gas fired appliances, although electric appliances were also included. The total energy consumption of the appliances was estimated at 76,140.37 GBtu in 1994. Gas appliances accounted for 63 per cent of the total inventory and consumed 83 per cent of the total energy used. Cooking energy efficiencies for the gas fired commercial cooking equipment ranged from 10 per cent to 60 per cent. The electric appliances had cooking energy efficiencies ranging from 35 per cent to 95 per cent. A list of recommendations were made for the many opportunities to introduce higher efficiency commercial cooking appliances, essential to slow down or to stabilize the energy consumption of cooking appliances over the next decade. 66 refs., 14 tabs., 18 figs.

  8. Modern drying technology. Vol. 4. Energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsas, Evangelos [Magdeburg Univ. (Germany). Thermal Process Engineergin; Mujumdar, Arun S. (eds.) [National Univ. of Singapore (Singapore). Dept. of Mechanical Engineering

    2012-07-01

    This five-volume series provides a comprehensive overview of all important aspects of modern drying technology, concentrating on the transfer of cutting-edge research results to industrial use. Volume 4 deals with energy savings and the optimization of various drying processes in a variety of areas. Reduction of energy usage in drying is becoming an important consideration in industry in order to conserve the finite fossil fuel resources, reduce carbon footprint and combat climate change. This volume focuses on the following areas: Energy analysis of dryers, solid-liquid separation processes and techniques, osmotic dehydration, heat pump assisted drying technology, zeolite usage, solar drying, drying and heat treatment for solid wood and other biomass sources, and sludge thermal processing. (orig.)

  9. Technology Learning Ratios in Global Energy Models; Ratios de Aprendizaje Tecnologico en Modelos Energeticos Globales

    Energy Technology Data Exchange (ETDEWEB)

    Varela, M.

    2001-07-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this tend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy systems including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs.

  10. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    international collaboration by describing the globalisation of the economy and current efforts of technology collaboration and transfer. Finally, it considers various ways to strengthen international energy technology collaboration. This paper is one of six case-studies designed in an effort to provide practical insights on the role international technology collaboration could play to achieve the objectives of the UNFCCC. They will all consider the past achievements of international technology collaboration, and the role it could play in helping to develop and disseminate new technologies in the future: what worked, what did not work and why, and what lessons might be drawn from past experiences. Most case studies consider energy technologies that could help mitigate greenhouse gas emissions. A few others consider areas not directly related to greenhouse gas emissions but where international technology collaboration has proven particularly successful in the past. This case study reviews past and current experience in international collaboration in the field of concentrating solar technologies in order to identify lessons that may be relevant for more general climate-friendly technology collaboration. It presents concentrating solar technologies in their current status, recent achievements and development prospects. It analyses the present successes and failures of different forms of international collaboration in this field, and draws lessons for further elaboration of international technology collaboration in addressing climate change.

  11. Energy and Technology Review, August--September

    Energy Technology Data Exchange (ETDEWEB)

    Sefcik, J A [ed.

    1992-01-01

    This issue of Energy and Technology Review focuses on cooperative research and development agreements (CRADAs)-one of the Laboratory's most effective means of technology transfer. The first article chronicles the legislative evolution of these agreements. The second article examines the potential beneficial effects of CRADAs on the national economy and discusses their role in the development and marketing of Laboratory technologies. The third article provides information on how to initiate and develop CRADAs at LLNL, and the fourth and fifth articles describe the Laboratory's two most prominent technology transfer projects. One is a 30-month CRADA with General Motors to develop advanced lasers for cutting, welding, and heat-treating operations. The cover photograph shows this laser cutting through a piece of steel 1/16 of an inch thick. The other project is a three-year CRADA with Amoco, Chevron-Conoco, and Unocal to refine our oil shale retorting process.

  12. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  13. Renewable Energy Systems: Technology Overview and Perspectives

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.; Yang, Yongheng

    2017-01-01

    In this chapter, essential statistics demonstrating the increasing role of renewable energy generation are first discussed. A state-of-the-art review section covers the fundamentals of wind turbine and photovoltaic (PV) systems. Schematic diagrams illustrating the main components and system...... topologies are included. Also, the increasing role of power electronics is explained as an enabler for renewable energy integration and for future power systems and smart grids. Recent examples of research and development, including new devices and system installations for utility power plants......, including PV and concentrating solar power; wave energy; fuel cells; and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in the final section....

  14. Storage exploratory project. Energy program. Final report; Projet exploratoire Stockage. Programme Energie. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Y. [Laboratoire d' Electrotechnique de Grenoble, UMR 5529 INPG/UJF - CNRS, ENSIEG, 38 - Saint-Martin-d' Heres (France); Ozil, P. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces (LEPMI), ENSEEG, 38 - Saint Martin d' Heres (France); Cheron, Y. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, CNRS, 31 - Toulouse (France); Multon, B. [Laboratoire des Sciences de l' Information et des Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), 94 - Cachan (France); Carillo, S. [Centre Interuniversitaire de recherche et d' Ingenierie sur les Materiaux (CIRIMAT), 31 - Toulouse (France)

    2004-07-01

    The aim of this exploratory project was the analysis of the most efficient possibilities of electric power storage. It was limited to the electrochemical storage, the lead batteries which behavior is not completely characterized, the flywheel energy storage and the development of simulation. This report presents the results of the works. (A.L.B.)

  15. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  16. Revised CTUIR Renewable Energy Feasibility Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John Cox; Thomas Bailor; Theodore Repasky; Lisa Breckenridge

    2005-10-31

    This preliminary assessment of renewable energy resources on the Umatilla Indian Reservation (UIR) has been performed by CTUIR Department of Science and Engineering (DOSE). This analysis focused primarily identifying renewable resources that may be applied on or near the Umatilla Indian Reservation. In addition preliminary technical and economic feasibility of developing renewable energy resources have been prepared and initial land use planning issues identified. Renewable energies examined in the course of the investigation included solar thermal, solar photovoltaic, wind, bioethanol, bio-diesel and bio-pellet fuel. All renewable energy options studied were found to have some potential for the CTUIR. These renewable energy options are environmentally friendly, sustainable, and compliment many of the policy goals of the CTUIR. This report seeks to provide an overall review of renewable energy technologies and applications. It tries to identify existing projects near to the CTUIR and the efforts of the federal government, state government and the private sector in the renewable energy arena. It seeks to provide an understanding of the CTUIR as an energy entity. This report intends to provide general information to assist tribal leadership in making decisions related to energy, specifically renewable energy deve lopment.

  17. Nordic energy technology scoreboard. Full version

    Energy Technology Data Exchange (ETDEWEB)

    Kiltkou, Antje; Iversen, Eric; Scortato, Lisa

    2010-07-01

    The Nordic Energy Technology Scoreboard provides a tool for understanding the state of low-carbon energy technology development in the Nordic region. It assesses the five Nordic countries of Denmark, Finland, Iceland, Norway and Sweden, alongside reference countries and regions including: The United Kingdom, Germany, Spain, Portugal, France, Italy, the Netherlands, Austria, USA, Japan and the EU 27. It focuses on five low-carbon energy technologies: Wind, photovoltaic (PV) solar, bio-fuels, geothermal, and carbon capture and storage (CCS). This scoreboard was developed as a pilot project with a limited scope of technologies, countries and indicators. In addition to providing a tool for decision-makers, it aimed to act as a catalyst for the future development of scoreboards and a vehicle to promote better data collection. Low-carbon energy technologies are not easy to measure. This is due to a variety of factors that much be kept in account when developing scoreboards for this purpose. Many low-carbon technologies are still at immature stages of development. Sound comparable data requires common definitions and standards to be adopted before collection can even take place. This process often lags behind the development of low-carbon technologies, and there are therefore considerable data availability and categorisation issues. The diversity of technologies and their different stages of development hamper comparability. The IEA classifies low-carbon technologies into three categories. The most mature includes hydropower, onshore wind, biomass CHP, and geothermal energy, the second most mature includes PV solar and offshore wind power, while the least mature includes concentrating solar power, CCS and ocean energy. This is problematic as less mature technologies are underrepresented in later stages of the innovation system. Many low-carbon technologies are systemic, meaning progress in developing one technology may hinge on developments in a connected technology

  18. COSTS OF THERMAL ENERGY STORAGE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Debrayan Bravo Hidalgo

    2017-10-01

    Full Text Available Thermal accumulation facilities allow energy to be available in the absence of sunlight. This fact reduces the difficulty of the intermittence in the incidence of the king star in our planet. Thermal accumulation technology also contributes to smooth the fluctuations in energy demand during different times of the day. This contribution identifies the nations with the most favorable research results in this area; as well as the main research lines that are being developed today. A compendium of various thermal energy storage materials, their current costs per unit mass, and their physical properties are presented. Techniques for implementing thermal accumulation technologies can be classified as areas of high, medium and low temperature. In the high temperature area, inorganic materials such as nitrate salts are the most widely used thermal energy storage materials, while in the medium and lower temperature areas; organic materials such as commercial paraffin are more common. Currently, one of the research trends in this area are the projects aimed at optimizing the chemical and physical characteristics of thermal storage materials, because the success of any thermos-energetic storage technology has a strong dependence on the cost of the materials selected for thermal storage.

  19. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  20. Project of Atomic Energy Technology Record

    Energy Technology Data Exchange (ETDEWEB)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.; and others

    2012-12-15

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records.

  1. Urban Consortium Energy Task Force - Year 21 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

  2. Environmental data energy technology characterizations: synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides documentation on synthetic fuels (coal-derived and oil shale). The transformation of the energy in coal and oil shale into a more useful form is described in this publication in terms of major activity areas in the synthetic fuel cycles, that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are coal liquefaction, coal gasification, in-situ gasification, and oil shales. These activities represent both well-documented and advanced activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The advanced activity areas examined are those like coal liquefaction and in-situ retorting of oil shale. For these areas, data from pilot or demonstration plants were used where available; otherwise, engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary volume. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  3. Innovation, Diffusion, and Regulation in Energy Technologies

    Science.gov (United States)

    Fetter, Theodore Robert

    The innovation and diffusion of new technologies is one of the central concerns of economics. New inventions or technological combinations do not spring fully formed into the world; as firms encounter and learn about new technologies they experiment, refine, and learn about them, improving productivity (and sometimes earning economic rents). Understanding the processes by which firms learn, and how these processes interact with regulations, is fundamental to understanding the emergence of new technologies, their contribution to growth, and the interaction of innovation and regulation. This dissertation addresses how firms learn and respond to regulations in the context of emerging technologies. Within this framework, I address several questions. When production inputs are socially controversial, do firms respond to disclosure laws by voluntarily constraining their inputs? Do these public disclosure laws facilitate knowledge transmission across firms, and if so, what are the implications for public welfare - for instance, do the gains from trade outweigh any effects of reduced incentives for innovation? I study these questions in the context of hydraulic fracturing, though the results offer insight for more general settings. Panning out to a much broader view, I also explore how energy-related technologies - in both generation and consumption - diffuse across national boundaries over time, and whether innovation and diffusion of energy-efficient technologies has led to more or less energy-efficient economic growth. In my first paper, I contribute to improved understanding of the conditions in which information-based regulations, which are increasingly common in multiple policy domains, decrease externalities such as environmental pollution. Specifically, I test whether information disclosure regulations applied to hydraulic fracturing chemicals caused firms to decrease their use of toxic inputs. Prior to these mandatory disclosure laws, some operators voluntarily

  4. Comparing energy technology alternatives from an environmental perspective

    Energy Technology Data Exchange (ETDEWEB)

    House, P W; Coleman, J A; Shull, R D; Matheny, R W; Hock, J C

    1981-02-01

    A number of individuals and organizations advocate the use of comparative, formal analysis to determine which are the safest methods for producing and using energy. Some have suggested that the findings of such analyses should be the basis upon which final decisions are made about whether to actually deploy energy technologies. Some of those who support formal comparative analysis are in a position to shape the policy debate on energy and environment. An opposing viewpoint is presented, arguing that for technical reasons, analysis can provide no definitive or rationally credible answers to the question of overall safety. Analysis has not and cannot determine the sum total of damage to human welfare and ecological communities from energy technologies. Analysis has produced estimates of particular types of damage; however, it is impossible to make such estimates comparable and commensurate across different classes of technologies and environmental effects. As a result of the deficiencies, comparative analysis connot form the basis of a credible, viable energy policy. Yet, without formal comparative analysis, how can health, safety, and the natural environment be protected. This paper proposes a method for improving the Nation's approach to this problem. The proposal essentially is that health and the environment should be considered as constraints on the deployment of energy technologies, constraints that are embodied in Government regulations. Whichever technologies can function within these constraints should then compete among themselves. This competition should be based on market factors like cost and efficiency and on political factors like national security and the questions of equity.

  5. Student Outreach with Renewable Energy Technology

    Science.gov (United States)

    Buffinger, D. R.; Fuller, C. W.; Gordon, E. M.; Kalu, A.; Hepp, Aloysius F. (Technical Monitor)

    2000-01-01

    The Student Outreach with Renewable Energy Technology (SORET) program is an education program involving three Historically Black Colleges and Universities and NASA's John H. Glenn Research Center at Lewis Field. These three universities; Central State University (CSU), Savannah State University (SSU) and Wilberforce University (WU) are working together with NASA Glenn to use the theme of renewable energy to improve the science, engineering and technology education of minority students and to attract minority students to these fields. In this vein, a renewable energy laboratory course is being offered at WU with the goal of giving the students of WU and CSU hands on experiences. As part of this course, the students are constructing solar light posts for a local high school with a high minority population. A Physics teacher from this school and some of his high school students are involved with this project. A lecture course on energy systems and sustainability is being developed by SSU to be delivered via distance reaming to the other institutions. Summer activities are being planned at all three institutions involving student projects in renewable energy. For example, WU students will work on a study of the synthesis and properties of photovoltaic materials. In addition, CSU will present a weeklong summer program to high school students with the assistance of WU. This presentation will focus on the student involvement and achievements in the educational area to date and plot the future course of this program.

  6. The new energy technologies in Australia; Les nouvelles technologies de l'energie en Australie

    Energy Technology Data Exchange (ETDEWEB)

    Le Gleuher, M.; Farhi, R

    2005-06-15

    The large dependence of Australia on the fossil fuels leads to an great emission of carbon dioxide. The Australia is thus the first greenhouse gases emitter per habitant, in the world. In spite of its sufficient fossil fuels reserves, the Australia increases its production of clean energies and the research programs in the domain of the new energies technology. After a presentation of the australia situation, the authors detail the government measures in favor of the new energy technologies and the situation of the hydroelectricity, the wind energy, the wave and tidal energy, the biomass, the biofuels, the solar energy, the ''clean'' coal, the hydrogen and the geothermal energy. (A.L.B.)

  7. Thermionic energy conversion technology - Present and future

    Science.gov (United States)

    Shimada, K.; Morris, J. F.

    1977-01-01

    Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.

  8. Summary of solar energy technology characterizations

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Dr., Robert R.

    1980-09-01

    This report summarizes the design, operating, energy, environmental, and economic characteristics of 38 model solar systems used in the Technology Assessment of Solar Energy Systems Project including solar heating and cooling of buildings, agricultural and industrial process heat, solar electric conversion, and industrial biomass systems. The generic systems designs utilized in this report were based on systems studies and mission analyses performed by the DOE National Laboratories and the MITRE Corporation. The purpose of those studies were to formulate materials and engineering cost data and performance data of solar equipment once mass produced.

  9. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  10. Leading trends in environmental regulation that affect energy development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R V; Attaway, L D; Christerson, J A; Kikel, D A; Kuebler, J D; Lupatkin, B M; Liu, C S; Meyer, R; Peyton, T O; Sussin, M H

    1980-01-01

    Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive survey of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.

  11. Invention in energy technologies: Comparing energy efficiency and renewable energy inventions at the firm level

    OpenAIRE

    Rexhäuser, Sascha; Löschel, Andreas

    2014-01-01

    Many countries, especially in Europe, have ambitious goals to transform their national energy systems towards renewable energies. Technological change in both renewable production and efficient use of energy can help to make these targets come true. Using a panel of German firms linked to the PATSTAT patent data, we study invention in both types of energy technologies and how their inventors differ in terms of central firm-specific characteristics. More importantly, we study th...

  12. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  14. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  15. Energy study of pipeline transportation systems. Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.

    1977-12-31

    The basic objectives of the overall study were to (1) characterize the pipeline industry and understand its energy consumption in each of the five major pipeline-industry segments: gas, oil, slurry, fresh water, and waste water; (2) identify opportunities for energy conservation in the pipeline industry, and to recommend the necessary R, D, and D programs to exploit those opportunities; (3) characterize and understand the influence of the Federal government on introduction of energy conservative innovations into the pipeline industry; and (4) assess the future potential of the pipeline industry for growth and for contribution to the national goal of energy conservation. This project final report is an executive summary presenting the results from the seven task reports.

  16. Ceramic Electrolyte Membrane Technology: Enabling Revolutionary Electrochemical Energy Storage

    Science.gov (United States)

    2015-10-05

    Sep-2014 Approved for Public Release; Distribution Unlimited Final Report: Ceramic Electrolyte Membrane Technology : Enabling Revolutionary...2601 30-Sep-2014 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Ceramic Electrolyte Membrane Technology : Enabling... technology to fabricate larger LLZO ceramic membranes . The goal of this work is to develop ceramic processing technology to fabricate LLZO membranes that

  17. Tiger Team Assessment, Energy Technology Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  18. Releasing the full potential of AIKAN - a dry anaerobic digestion biogas technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Joernsgaerd, B.; Broegger Kristensen, M.; Wittrup Hansen, M. [Solum Gruppen, Hedehusene (Denmark); Uellendahl, H. [Aalborg Univ. (AAU), Aalborg (Denmark)

    2013-07-15

    This final project report contains a summary of the findings and documentation which have been carried out as a part of the EUDP-supported project ''Documentation and En-ergy Yield Optimisation of AIKAN{sup }- a dry anaerobic digestion biogas technology''. The aim was to improve documentation of the AIKAN{sup }technology, improve performance of the AIKAN{sup }technology and thus remove important barriers for market entry on principal export markets caused by the lack of performance documentation. The final report also contains a description of the subsequent process and technology improvements which have been carried out in order to improve and optimize the production process at the full scale AIKAN{sup }biogas plant, Biovaekst, in Audebo, Denmark. The relevant analyses carried out as part of the different work packages are attached as appendixes to the report. It is the intention that the final report and the attached appendices should function as a work of reference for the employees involved in the day to day running and optimization of the AIKAN{sup }technology. (Author)

  19. Creation and development of energy technologies and energy-policy support in Switzerland; Generierung und Uebernahme von Energietechnologien und energiepolitische Foerderung in der Schweiz - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Arvanitis, S.; Ley, M.

    2010-08-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents and discusses the results of the 2009 Energy Technology Survey and the factors determining the adoption of energy-saving technologies in Swiss companies. Also, innovations in the area of energy efficiency and public support for energy efficiency technologies in Switzerland are discussed. This research project relies on a unique survey of Swiss enterprises in order to provide empirical insights on some relevant issues concerning the generation and use of energy-efficient technology. One of the questions addressed is: What are the determinants for the widespread adoption and application of such new technologies, once they have reached maturity?.

  20. Termo technology programme. Final report 1993-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The TERMO-technology programme was realised in 1993-1997. The aim of the programme was to promote the profitability and sustainable development of district heating by means of research and development actions. The programme included 36 research projects that were distributed to four research areas. These included heat distribution, metering, information and control systems, the economy of district heating as well as system development. The costs totaled to FIM 12 million. The programme was financed by the participating companies and the Technology Development Centre TEKES. Around eighty Finnish companies and institutions participated in the programme. In addition, the programme participated in international research cooperation in the framework of the Nordic Council of Ministers and the International Energy Agency programmes. The research area Heat Distribution included projects on rehabilitation and status control of district heating networks, pumping, thermal stresses in district heating pipes, material questions, water treatment, steam pipe systems as well as drag reducing additives in district heating water. The research area Metering, Information and Control Systems included projects on forecasts of district heating load, calibration of flow meters, heat cost allocation in buildings, control systems and their qualifications in buildings and improved cooling of district heating water in the consumer equipment. The research area Economy included projects on determination of subscribed heat demand, pricing methods of district heating, success factors of energy companies as well as long term prospects of district heating in Finland. The research area System Development included projects on changing heat loads, district cooling as well as combined heat and power production. After the TERMO programme joint efforts will be continued for the development of district heating technology. The emphasis will be to improve the feasibility of combined heat and power

  1. Vehicle technologies heavy vehicle program : FY 2008 benefits analysis, methodology and results --- final report.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Energy Systems; TA Engineering

    2008-02-29

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the Vehicle Technologies (VT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, and (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 08 the Heavy Vehicles program continued its involvement with various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. These changes are the result of a planning effort that first occurred during FY 04 and was updated in the past year. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY08 Budget Request. The energy savings models are utilized by the VT program for internal project management purposes.

  2. Advanced Thermionic Technology Program: summary report. Volume 4. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. Volume 4 (Part E) is a highly technical discussion of the attempts made by the Program to push the state-of-the-art beyond the current generation of converters and is directed toward potential researchers engaged in this same task. These technical discussions are complemented with Appendices where appropriate.

  3. High-R window technology development. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arasteh, D.

    1991-01-01

    Of all building envelope elements, windows always have had the highest heat loss rates. However, recent advances in window technologies such as low-emissivity (low-E) coatings and low- conductivity gas fillings have begun to change the status of windows in the building energy equation, raising the average R-value (resistance to heat flow) from 2 to 4 h-ft{sup 2}-{degrees}F/Btu. Building on this trend and using a novel combination of low-E coatings, gas-fills, and three glazing layers, the authors developed a design concept for R-6 to R-10 ``super`` windows. Three major window manufacturers produced prototype superwindows based this design for testing and demonstration in three utility-sponsored and -monitored energy-conserving homes in northwestern Montana. This paper discusses the design and tested performance of these three windows and identifies areas requiring further research if these window concepts are to be successfully developed for mass markets.

  4. Educational and technological approaches to renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Gottwald, Julia (eds.)

    2012-07-01

    This book documents and disseminates a number of educational and technological approaches to renewable energy, with a special emphasis on European and Latin American experiences, but also presenting experiences from other parts of the world. It was prepared as part of the project JELARE (Joint European-Latin American Universities Renewable Energy Project), undertaken as part of the ALFA III Programme of the European Commission involving countries in Latin America (e.g. Bolivia, Brazil, Chile, Guatemala) as well as in Europe (Germany and Latvia). Thanks to its approach and structure, this book will prove useful to all those dedicated to the development of the renewable energy sector, especially those concerned with the problems posed by lack of expertise and lack of training in this field.

  5. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  6. Differences in Public Perceptions of Geothermal Energy Technology in Australia

    OpenAIRE

    Simone Carr-Cornish; Lygia Romanach

    2014-01-01

    In Australia, geothermal energy technology is still considered an emerging technology for energy generation. Like other emerging energy technologies, how the public perceive the technology and under what conditions they are likely to accept or oppose the technology, remains relatively unknown. In response, this exploratory research utilised online focus groups to identify: (1) the extent of agreement with geothermal technology before and after information, including media reports focusing on ...

  7. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This three-volume report is responsive to the requirements of contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program for computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. The report consists of the following three volumes: Volume I: management overview; Volume II: methodology and technology; and Volume III; appendices.

  8. Energy and technology review, March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; Wheatcraft, D. [eds.

    1995-03-01

    This journal contains two feature articles. The first article reports on the background, design, and capabilities of the Portable Tritium Processing System currently being used to clean up and decontaminate the Laboratory`s Tritium Facility. The second article discusses the development of a x-ray lasers as a probe to obtain high-resolution images of high-density plasmas produced at the Nova laser facility. Finally, two research programs are highlighted. They are silicon microcomponents and modern technology for advanced military training.

  9. Final report on the energy edge impact evaluation of 28 new, low-energy commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, M.A.; Diamond, R.; Nordman, B. [and others

    1994-08-01

    This report presents the findings of the Energy Edge Impact Evaluation. It is the fourth and final report in a series of project impact evaluation reports. Energy Edge is a research-oriented demonstration of energy efficiency in 28 new commercial buildings. Beginning in 1985,the project, sponsored by the Bonneville Power Administration (BPA), was developed to evaluate the potential for electricity conservation in new commercial buildings. By focusing on the construction of new commercial buildings, Energy Edge meets the region`s goal of capturing otherwise lost opportunities to accomplish energy conservation. That is, the best time to add an energy-efficiency measure to a building is during the construction phase.

  10. Advanced Technology Display House. Volume 2: Energy system design concepts

    Science.gov (United States)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  11. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  12. Essays in energy, environment and technological change

    Science.gov (United States)

    Zhou, Yichen Christy

    This dissertation studies technological change in the context of energy and environmental economics. Technology plays a key role in reducing greenhouse gas emissions from the transportation sector. Chapter 1 estimates a structural model of the car industry that allows for endogenous product characteristics to investigate how gasoline taxes, R&D subsidies and competition affect fuel efficiency and vehicle prices in the medium-run, both through car-makers' decisions to adopt technologies and through their investments in knowledge capital. I use technology adoption and automotive patents data for 1986-2006 to estimate this model. I show that 92% of fuel efficiency improvements between 1986 and 2006 were driven by technology adoption, while the role of knowledge capital is largely to reduce the marginal production costs of fuel-efficient cars. A counterfactual predicts that an additional 1/gallon gasoline tax in 2006 would have increased the technology adoption rate, and raised average fuel efficiency by 0.47 miles/gallon, twice the annual fuel efficiency improvement in 2003-2006. An R&D subsidy that would reduce the marginal cost of knowledge capital by 25% in 2006 would have raised investment in knowledge capital. This subsidy would have raised fuel efficiency only by 0.06 miles/gallon in 2006, but would have increased variable profits by 2.3 billion over all firms that year. Passenger vehicle fuel economy standards in the United States will require substantial improvements in new vehicle fuel economy over the next decade. Economic theory suggests that vehicle manufacturers adopt greater fuel-saving technologies for vehicles with larger market size. Chapter 2 documents a strong connection between market size, measured by sales, and technology adoption. Using variation consumer demographics and purchasing pattern to account for the endogeneity of market size, we find that a 10 percent increase in market size raises vehicle fuel efficiency by 0.3 percent, as compared

  13. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  14. Selecting appropriate energy efficiency indicators for the Thai Energy Conservation Promotion Programme. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Gruber, E.; Cremer, C.

    2000-06-01

    In 1992 the Thai Government passed the Energy Conservation Promotion (ECP) Act to improve energy efficiency in Thai industry and commerce. The Thai-German Energy Efficiency Promotion Project (ENEP) is supporting the Department of Energy Development and Promotion (DEDP) in its effort to implement the Energy Conservation Program for large buildings and designated factories. About 4000 buildings and factories under the Compulsory Program, have to report every 6 months their energy consumption data to DEDP. Every 3 years energy audits have to be conducted by registered energy consultants, to identify energy saving opportunities, to set saving targets and to recommend energy conservation measures. Investments in energy efficient technologies are subsidized from an Energy Conservation Fund. Data from the energy consumption reports and the energy audit reports are collected in DEDP's database for further processing. The database is structured according to the Thai Standard Industrial Classification. In order to exploit the wealth of information provided by the auditing procedure the objective of the present work carried out by the consultant FhG-ISI for DEDP/BERC on behalf of the German Gesellschaft fuer Technische Zusammenarbeit (GTZ) was to recommend an appropriate set of energy efficiency indicators. This indicator set should allow DEDP to extract from the energy consumption reports, energy audit reports and other sources, useful statistical information to monitor and improve energy efficiency in Thailand. (orig.)

  15. Energy system analyses of the marginal energy technology in life cycle assessments

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Münster, Marie; Fruergaard, Thilde

    2007-01-01

    In life cycle assessments consequential LCA is used as the “state-of-the-art” methodology, which focuses on the consequences of decisions made in terms of system boundaries, allocation and selection of data, simple and dynamic marginal technology, etc.(Ekvall & Weidema 2004). In many LCA studies......, the energy demand applied is decisive for the results. In this extended abstract, consequential LCA methodology is examined with electricity as the case. The aim is to answer three questions: Which are the expected vs. the actual marginal electricity production technologies and what may be the future...... in historical and potential future energy systems. Subsequently, key LCA studies of products and different waste flows are analysed in relation to the recom- mendations in consequential LCA. Finally, a case of increased waste used for incineration is examined using an energy system analysis model...

  16. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  17. Energy technologies for Post Kyoto targets in the medium term. Proceedings

    DEFF Research Database (Denmark)

    2003-01-01

    The Risø International Energy Conference took place 19 - 21 May 2003 and the aim was to present and discuss new developments and trends in energy technologies which may become main contributors to the energy scene in 15 to 20 years. The conferenceaddressed R&D related to the individual technologies...... as well as system integration. The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 25 June 2003....

  18. MIST Final Report: Multi-sensor Imaging Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Michael A.; Medvick, Patricia A.; Foley, Michael G.; Foote, Harlan P.; Heasler, Patrick G.; Thompson, Sandra E.; Nuffer, Lisa L.; Mackey, Patrick S.; Barr, Jonathan L.; Renholds, Andrea S.

    2008-03-15

    The Multi-sensor Imaging Science and Technology (MIST) program was undertaken to advance exploitation tools for Long Wavelength Infra Red (LWIR) hyper-spectral imaging (HSI) analysis as applied to the discovery and quantification of nuclear proliferation signatures. The program focused on mitigating LWIR image background clutter to ease the analyst burden and enable a) faster more accurate analysis of large volumes of high clutter data, b) greater detection sensitivity of nuclear proliferation signatures (primarily released gasses) , and c) quantify confidence estimates of the signature materials detected. To this end the program investigated fundamental limits and logical modifications of the more traditional statistical discovery and analysis tools applied to hyperspectral imaging and other disciplines, developed and tested new software incorporating advanced mathematical tools and physics based analysis, and demonstrated the strength and weaknesses of the new codes on relevant hyperspectral data sets from various campaigns. This final report describes the content of the program and the outlines the significant results.

  19. Solar preheated ventilation -- innovative solar technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gaberson, H.; Do, T.

    1999-02-01

    Many installations such as shops, garages, hangers, offices, and residential buildings face the problem of heating ventilation air during the cold season. Solar Walls are efficient, reliable, zero maintenance, solar air preheaters that offer many opportunities for Navy facilities to save money on their annual energy bill. This innovative technology applies to both new construction or rehabilitation projects. This TDS introduces this low maintenance solar technology for consideration in all future industrial ventilation or HVAC projects. Preheating saves energy. Currently, two preheating alternatives exist: heat recovery wheels and solar wall preheaters. The solar wall consists of dark metal siding with small holes set off a few inches from the south wall of the building. The siding is sealed at its edges so that a fan can withdraw heated air from the space between the siding and the wall. The heated layer of outside air touching the solar wall is drawn through the small holes into the space behind the siding. Once inside this space, the air is further heated because of continued contact with the hot siding. A 40 deg F air temperature rise is typical. A fan, usually near the top of the solar wall, draws the warmed air from this space and distributes it through the space to be ventilated. Frequently it is distributed through inflated fabric ducts with holes in the side that emit the warmed air into the hot stratified air trapped near the ceiling of the building, causing circulation of the warmed air, a beneficial destratification effect. In a combined effort, the solar wall concept was recently developed by Conserval Systems, Inc., and personnel at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Extensive research into optimizing the performance of the concept and the development of design criteria and procedures were conducted at both NREL and Conserval.

  20. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  1. Final Energy Consumption Trends and Drivers in Czech Republic and Latvia

    OpenAIRE

    Zhiqian Yu; Dalia Streimikiene; Tomas Balezentis; Rimantas Dapkus; Radislav Jovovic; Veselin Draskovic

    2017-01-01

    This paper analyses the trends of final energy consumption in Latvia and Czech Republic. Analysis of final energy consumption during 2000-2013 period indicated the main driving forces of final energy consumption during and after world financial crisis of 2008. The paper aimed to evaluate the impact of economic activity and other factors on final energy consumption. The decomposition of the final energy consumption is assessed by analyzing effect of different drivers by the main end-users sect...

  2. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  3. USD Catalysis Group for Alternative Energy - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoefelmeyer, James

    2014-10-03

    I. Project Summary Catalytic processes are a major technological underpinning of modern society, and are essential to the energy sector in the processing of chemical fuels from natural resources, fine chemicals synthesis, and energy conversion. Advances in catalyst technology are enormously valuable since these lead to reduced chemical waste, reduced energy loss, and reduced costs. New energy technologies, which are critical to future economic growth, are also heavily reliant on catalysts, including fuel cells and photo-electrochemical cells. Currently, the state of South Dakota is underdeveloped in terms of research infrastructure related to catalysis. If South Dakota intends to participate in significant economic growth opportunities that result from advances in catalyst technology, then this area of research needs to be made a high priority for investment. To this end, a focused research effort is proposed in which investigators from The University of South Dakota (USD) and The South Dakota School of Mines and Technology (SDSMT) will contribute to form the South Dakota Catalysis Group (SDCG). The multidisciplinary team of the (SDCG) include: (USD) Dan Engebretson, James Hoefelmeyer, Ranjit Koodali, and Grigoriy Sereda; (SDSMT) Phil Scott Ahrenkiel, Hao Fong, Jan Puszynski, Rajesh Shende, and Jacek Swiatkiewicz. The group is well suited to engage in a collaborative project due to the resources available within the existing programs. Activities within the SDCG will be monitored through an external committee consisting of three distinguished professors in chemistry. The committee will provide expert advice and recommendations to the SDCG. Advisory meetings in which committee members interact with South Dakota investigators will be accompanied by individual oral and poster presentations in a materials and catalysis symposium. The symposium will attract prominent scientists, and will enhance the visibility of research in the state of South Dakota. The SDCG requests

  4. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  5. Modular, Reconfigurable, High-Energy Technology Development

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  6. The future of UK final user energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, R.; Pearson, P.; Hawdon, D.; Robinson, C.; Stevens, P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Centre for Environmental Technology

    1997-02-01

    Anticipation of final user energy demand is central to supplers` and policy makers` plans. Recent developments in dynamic econometrics, have enabled energy modellers to study long run relationships between demand and its determinants, principally economic activity and real prices. The purpose of this paper is to present the SEECEM output, elasticity estimates and forecasts using the cointegration approach, as well as the methodology and analysis underlying them. As economic activity is expected to grow in all but the iron and steel sector, the long run relationships indicate that most sectors will increase overall fuel use up to the year 2000. Despite weak but potentially volatile world oil prices and given stable environmental policies, average real oil prices should remain broadly constant except in the transport sector. Economic activity elasticities and increased competition in supply industries imply that natural gas and electricity are likely to take an increasing share of final user requirements at the expense of petroleum products and coal. This continued shift towards cleaner fuels is likely to ameliorate adverse environmental consequences resulting from the overall growth in final user fuel demand. 24 refs., 4 figs., 5 tabs.

  7. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  8. Energy and technology review, June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.A.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.; Kroopnick, H.; McElroy, L.; Sanford, N.M.; Van Dyke, P.T. [eds.

    1993-06-01

    The Lawrence Livermore National Laboratory was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then other major programs have been added, including laser fusion and laser isotope separation, biomedical and environmental science, strategic defense, and applied energy technology. These programs require basic research in chemistry, materials science, computer science, engineering and physics. This bulletin is published on a monthly basis to report on unclassified work in all of the programs. There are two articles in this issue. Herbert F. York reminisces about the early days in Livermore, emphasizing the legacy of E.O. Lawrence, and comments on the role of the Laboratory in the future. COG, a new,high-resolution code for modeling radiation transport is described. The code is a new Monte Carlo neutron/photon transport code that solves complex radiation shielding and nuclear criticality problems. It is now available for high-speed desktop workstations as well as mainframes.

  9. Commercialization of aquifer thermal energy storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  10. Final Technical Report for the Net-Zero Energy Commercial Buildings Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Fazeli, Sandy [National Association of State Energy Officials, Arlington, VA (United States)

    2014-09-30

    The Commercial Buildings Consortium (CBC) was established in 2009, under the chairmanship of the National Association of State Energy Officials (NASEO), as a supporting organization to the Commercial Buildings Initiative (CBI). The CBI was created by Congress through the Energy Independence and Security Act of 2007 (EISA) and launched by the Department of Energy (DOE) in 2008 with the goal to “develop and disseminate technologies, practices, and policies for establishment of zero net energy commercial buildings.”. The impact of the CBC since 2009 has been multifold, resulting in increased collaboration, increased innovation, and increased demonstration and deployment. During the project performance period of 2009-2014, the CBC provided an organizational framework for sustained public-private collaboration among more than 600 commercial building professionals, researchers and educators, utilities, and government agencies at federal, state, and local level. The CBC’s research has identified emerging technologies, market strategies, and innovative public and corporate policies to help advance CBI’s zero-net-energy. Finally, the CBC worked in close partnership with DOE’s commercial building teams and the Better Buildings Alliances to identify opportunities for proving out and deploying energy-saving technologies and practices.

  11. High-R Window Technology Development : Phase II Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Arasteh, Dariush

    1991-01-01

    Of all building envelope elements, windows always have had the highest heat loss rates. However, recent advances in window technologies such as low-emissivity (low-E) coatings and low- conductivity gas fillings have begun to change the status of windows in the building energy equation, raising the average R-value (resistance to heat flow) from 2 to 4 h-ft{sup 2}-{degrees}F/Btu. Building on this trend and using a novel combination of low-E coatings, gas-fills, and three glazing layers, the authors developed a design concept for R-6 to R-10 super'' windows. Three major window manufacturers produced prototype superwindows based this design for testing and demonstration in three utility-sponsored and -monitored energy-conserving homes in northwestern Montana. This paper discusses the design and tested performance of these three windows and identifies areas requiring further research if these window concepts are to be successfully developed for mass markets.

  12. Electric energy savings from new technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, R.J.; Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-01-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for ten technologies were prepared. The total projected annual savings for the year 2000 for all ten technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Thus, the savings projected here represent between 4% and 14% of total consumption projected for 2000. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference forecast, reducing projected electricity consumption from what it otherwise would have been, the savings estimated here should not be directly subtracted from the reference forecast.

  13. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  14. Geospatial Technologies to Improve Urban Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Bharanidharan Hemachandran

    2011-07-01

    Full Text Available The HEAT (Home Energy Assessment Technologies pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA and Canadian built Thermal Airborne Broadband Imager technology (TABI-320 to provide users with timely, in-depth, easy to use, location-specific waste-heat information; as well as opportunities to save their money and reduce their green-house-gas emissions. We first report on the HEAT Phase I pilot project which evaluates 368 residences in the Brentwood community of Calgary, Alberta, Canada, and describe the development and implementation of interactive waste heat maps, energy use models, a Hot Spot tool able to view the 6+ hottest locations on each home and a new HEAT Score for inter-city waste heat comparisons. We then describe current challenges, lessons learned and new solutions as we begin Phase II and scale from 368 to 300,000+ homes with the newly developed TABI-1800. Specifically, we introduce a new object-based mosaicing strategy, an adaptation of Emissivity Modulation to correct for emissivity differences, a new Thermal Urban Road Normalization (TURN technique to correct for scene-wide microclimatic variation. We also describe a new Carbon Score and opportunities to update city cadastral errors with automatically defined thermal house objects.

  15. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  16. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This multisectioned three-Volume report is responsive to the requirements of Contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program of computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. This section of volume III contains appendixes of information on load shedding determination, analysis, socio-economic study, contractual cross references, and definitions.

  17. Africa's technology options for renewable energy production and distribution

    CSIR Research Space (South Africa)

    Amigun, B

    2011-12-01

    Full Text Available This chapter presents a critical appraisal of Africa's modern energy technologies for renewable energy. It highlights issues of scale and location-specific attributes. A critical review of different renewable energies is presented, the state...

  18. Energy implications of CO{sub 2} stabilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffert, M.I.; Caldeira, K.; Jain, A.K. [and others

    1997-12-01

    Analysis of carbon emissions paths stabilizing atmospheric CO{sub 2} in the 350--750 ppmv range reveals that implementing the UN Climate Convention will become increasingly difficult as the stabilization target decreases because of increasing dependence on carbon-free energy sources. Even the central Intergovernmental Panel on Climate Change scenario (IS92a) requires carbon-free primary power by 2050 equal to the humankind`s present fossil-fuel-based primary power consumption {approximately}10 TW (1 TW = 10{sup 12} W). The authors describe and critique the assumptions on which this projection is based, and extend the analysis to scenarios in which atmospheric CO{sub 2} stabilizes. For continued economic growth with CO{sub 2} stabilization, new, cost-effective, carbon-free technologies that can provide primary power of order 10 TW will be needed in the coming decades, and certainly by mid-century, in addition to improved economic productivity of primary energy.

  19. A roadmap for nuclear energy technology

    Science.gov (United States)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge

  20. Safe Active Scanning for Energy Delivery Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scheibel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Engels, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reiger, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into the details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.

  1. Energy Systems and Technologies for the coming Century:Proceedings

    OpenAIRE

    Sønderberg Petersen, Leif; Larsen, Hans Hvidtfeldt

    2011-01-01

    Risø International Energy Conference 2011 took place 10 – 12 May 2011. The conference focused on: - Future global energy development options, scenarios and policy issues - Intelligent energy systems of the future, including the interaction between supply and end-use - New and emerging technologies for the extended utilisation of sustainable energy - Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal - Centralised energy ...

  2. Geothermal Energy Development in the Eastern United States. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    This document represents the final report from the Applied Physics Laboratory (APL) of The Johns Hopkins University on its efforts on behalf of the Division of Geothermal Energy (DGE) of the Department of Energy (DOE). For the past four years, the Laboratory has been fostering development of geothermal energy in the Eastern United States. While the definition of ''Eastern'' has changed somewhat from time to time, basically it means the area of the continental United States east of the Rocky Mountains, plus Puerto Rico but excluding the geopressured regions of Texas and Louisiana. During these years, the Laboratory developed a background in geology, hydrology, and reservoir analysis to aid it in establishing the marketability of geothermal energy in the east. Contrary to the situation in the western states, the geothermal resource in the east was clearly understood to be inferior in accessible temperature. On the other hand, there were known to be copious quantities of water in various aquifers to carry the heat energy to the surface. More important still, the east possesses a relatively dense population and numerous commercial and industrial enterprises, so that thermal energy, almost wherever found, would have a market. Thus, very early on it was clear that the primary use for geothermal energy in the east would be for process heat and space conditioning--heating and cool electrical production was out of the question. The task then shifted to finding users colocated with resources. This task met with modest success on the Atlantic Coastal Plain. A great deal of economic and demographic analysis pinpointed the prospective beneficiaries, and an intensive ''outreach'' campaign was mounted to persuade the potential users to invest in geothermal energy. The major handicaps were: (1) The lack of demonstrated hydrothermal resources with known temperatures and expected longevity; and (2) The lack of a &apos

  3. Energy Technologies Research and Education Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Abbas [New Mexico State Univ., Las Cruces, NM (United States); Ranade, Satish [New Mexico State Univ., Las Cruces, NM (United States)

    2014-12-31

    For this project, the intended goal of the microgrid component was to investigate issues in policy and technology that would drive higher penetration of renewable energy, and to demonstrate implementation in a utility system. The work accomplished on modeling the dynamics of photovoltaic (PV) penetration can be expanded for practical application. Using such a tool those involved in public policy can examine what the effect of a particular policy initiative, e.g., renewable portfolio standards (RPS) requirements, might be in terms of the desired targets. The work in the area of microgrid design, protection, and operation is fundamental to the development of microgrids. In particular the “Energy Delivery” paradigm provides new opportunities and business models for utilities. Ultimately, Energy Delivery could accrue significant benefits in terms of costs and resiliency. The experimental microgrid will support continued research and allow the demonstration of technology for better integration of renewables. The algal biofuels component of the project was developed to enhance the test facility and to investigate the technical and economic feasibility of a commercial-scale geothermal algal biofuels operation for replication elsewhere in the arid Southwest. The project was housed at New Mexico State University’s (NMSU’s) Geothermal Aquaculture Facility (GAF) and a design for the inoculation train and algae grow-out process was developed. The facility was upgraded with modifications to existing electrical, plumbing and structural components on the GAF and surrounding grounds. The research work was conducted on biomass-processing, harvesting, dewatering, and extraction. Additionally, research was conducted to determine viability of using low-cost, wastewater from municipal treatment plants in the cultivation units as make-up water and as a source of nutrients, including nitrogen and soluble phosphorus. Data was collected on inputs and outputs, growth evaluation and

  4. Technology assessment of portable energy RDT and P, phase 1

    Science.gov (United States)

    Spraul, J. R. (Compiler)

    1975-01-01

    A technological assessment of portable energy research, development, technology, and production was undertaken to assess the technical, economic, environmental, and sociopolitical issues associated with portable energy options. Those courses of action are discussed which would impact aviation and air transportation research and technology. Technology assessment workshops were held to develop problem statements. The eighteen portable energy problem statements are discussed in detail along with each program's objective, approach, task description, and estimates of time and costs.

  5. Wind energy. Energy technologies in national, European and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  6. Energy Technology Division research summary -- 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  7. Methodology for evaluating energy R&D. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carter, C.

    1997-04-23

    Recent budgetary shortfalls and hightened concern over balancing the federal budget have placed increasing demand on federal agencies to document the cost effectiveness of the programs they manage. In fact, the 1993 Government Performance and Results Act (GPRA) requires that by 1997 each executive agency prepare a Strategic Plan that includes measurable performance goals. By the year 2000, the first round of Annual Reports will become due which describes actual program performance. Despite the growing emphasis on measuring performance of government programs, the technology policy literature offers little in terms of models that program managers can implement in order to assess the cost effectiveness of the programs they manage. While GPRA will pose a major challenge to all federal government agencies, that challenge is particularly difficult for research-oriented agencies such as the Department of Energy. Its basic research programs provide benefits that are difficult to quantify since their values are uncertain with respect to timing, but are usually reflected in the value assigned to applied programs. The difficulty with quantifying benefits of applied programs relates to the difficulties of obtaining complete information on industries that have used DOE`s supported technologies in their production processes and data on cost-savings relative to conventional technologies. Therefore, DOE is one of several research-oriented agencies that has a special need for methods by which program offices can evaluate the broad array of applied and basic energy research programs they administer. The general findings of this report are that few new methods are applicable for evaluation of R&D programs. It seems that peer review and bibliometrics are methods of choice for evaluating basic research programs while more quantitative approaches such as ROI, cost-benefits, etc. might be followed in evaluating applied programs.

  8. Photosynthesis energy factory: analysis, synthesis, and demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This quantitative assessment of the potential of a combined dry-land Energy Plantation, wood-fired power plant, and algae wastewater treatment system demonstrates the cost-effectiveness of recycling certain by-products and effluents from one subsystem to another. Designed to produce algae up to the limit of the amount of carbon in municipal wastewater, the algae pond provides a positive cash credit, resulting mainly from the wastewater treatment credit, which may be used to reduce the cost of the Photosynthesis Energy Factory (PEF)-generated electricity. The algae pond also produces fertilizer, which reduces the cost of the biomass produced on the Energy Plantation, and some gas. The cost of electricity was as low as 35 mills per kilowatt-hour for a typical municipally-owned PEF consisting of a 65-MWe power plant, a 144-acre algae pond, and a 33,000-acre Energy Plantation. Using only conventional or near-term technology, the most cost-effective algae pond for a PEF is the carbon-limited secondary treatment system. This system does not recycle CO/sub 2/ from the flue gas. Analysis of the Energy Plantation subsystem at 15 sites revealed that plantations of 24,000 to 36,000 acres produce biomass at the lowest cost per ton. The following sites are recommended for more detailed evaluation as potential demonstration sites: Pensacola, Florida; Jamestown, New York; Knoxville, Tennessee; Martinsville, Virginia, and Greenwood, South Carolina. A major possible extension of the PEF concept is to include the possibility for irrigation.

  9. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two

  10. Public Discourse in Energy Policy Decision-Making: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Idaho Citizen; Eileen DeShazo; John Freemuth; Tina Giannini; Troy Hall; Ann Hunter; Jeffrey C. Joe; Michael Louis; Carole Nemnich; Jennie Newman; Steven J. Piet; Stephen Sorensen; Paulina Starkey; Kendelle Vogt; Patrick Wilson

    2010-08-01

    The ground is littered with projects that failed because of strong public opposition, including natural gas and coal power plants proposed in Idaho over the past several years. This joint project , of the Idaho National Laboratory, Boise State University, Idaho State University and University of Idaho has aimed to add to the tool box to reduce project risk through encouraging the public to engage in more critical thought and be more actively involved in public or social issues. Early in a project, project managers and decision-makers can talk with no one, pro and con stakeholder groups, or members of the public. Experience has shown that talking with no one outside of the project incurs high risk because opposition stakeholders have many means to stop most (if not all) energy projects. Talking with organized stakeholder groups provides some risk reduction from mutual learning, but organized groups tend not to change positions except under conditions of a negotiated settlement. Achieving a negotiated settlement may be impossible. Furthermore, opposition often arises outside pre-existing groups. Standard public polling provides some information but does not reveal underlying motivations, intensity of attitudes, etc. Improved methods are needed that probe deeper into stakeholder (organized groups and members of the public) values and beliefs/heuristics to increase the potential for change of opinions and/or out-of-box solutions. The term “heuristics” refers to the mental short-cuts, underlying beliefs, and paradigms that everyone uses to filter and interpret information, to interpret what is around us, and to guide our actions and decisions. This document is the final report of a 3-year effort to test different public discourse methods in the subject area of energy policy decision-making. We analyzed 504 mail-in surveys and 80 participants in groups on the Boise State University campus for their preference, financial support, and evaluations of eight attributes

  11. Technology Assessment for Powertrain Components Final Report CRADA No. TC-1124-95

    Energy Technology Data Exchange (ETDEWEB)

    Tokarz, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gough, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    LLNL utilized its defense technology assessment methodologies in combination with its capabilities in the energy; manufacturing, and transportation technologies to demonstrate a methodology that synthesized available but incomplete information on advanced automotive technologies into a comprehensive framework.

  12. Deployment Effects of Marin Renewable Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for

  13. Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN

    DEFF Research Database (Denmark)

    Münster, Marie

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy...... technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows...... the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also...

  14. Environmental implications of increased biomass energy use. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States)

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  15. 48 CFR 952.223 - Clauses related to environment, energy and water efficiency, renewable energy technologies...

    Science.gov (United States)

    2010-10-01

    ... environment, energy and water efficiency, renewable energy technologies, occupational safety, and drug-free workplace. 952.223 Section 952.223 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... related to environment, energy and water efficiency, renewable energy technologies, occupational safety...

  16. Energy & technology review, November--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L. [eds.

    1993-11-01

    For the 40-plus years of the Cold War, both the United States and the Soviet Union built up nuclear stockpiles of tens of thousands of weapons. Now, as the Cold War has ended and tensions between the superpowers have subsided, the US faces the task of significantly reducing its nuclear arsenal. Many thousands of nuclear weapons are being removed from the stockpile as a result of recent treaties and unilateral decisions. This issue of Energy and Technology Review describes the Laboratory`s role in the nation`s effort to dismantle these weapons safely and rapidly. The dismantlement of the United States` nuclear weapons takes place at the Department of Energy`s Pantex facility near Amarillo, Texas. The first article in this issue summarizes the Laboratory`s involvement in dismantling Livermore-designed nuclear weapons. LLNL (like Los Alamos) has responsibility for the weapons it designed, from design concept to retirement. In the past, the responsibilities ended when the weapon was retired from the stockpile. Now however, the role has been extended to include dismantlement. The second article reports on an incident that occurred in November 1992, in which the pit of a W48 warhead cracked during dismantlement. The Laboratory was called upon to handle the pit safely and determine the causes of the cracking. The third article explores a variety of methods proposed for reusing the high explosives after they are removed from the weapon. In the past, Laboratory work on nuclear weapons focused primarily on design and development. However, as the size and composition of the US stockpile changes with evolving international conditions, they will be called upon with increasing frequency to provide the scientific and technical expertise needed to dismantle the nation`s retired nuclear weapons safely and efficiently.

  17. Today's and future challenges in applications of renewable energy technologies for desalination

    KAUST Repository

    Goosen, Mattheus F A

    2013-08-28

    Recent trends and challenges in applications of renewable energy technologies for water desalination are critically reviewed with an emphasis on environmental concerns and sustainable development. After providing an overview of wind, wave, geothermal, and solar renewable energy technologies for fresh water production, hybrid systems are assessed. Then scale-up and economic factors are considered. This is followed with a section on regulatory factors, environmental concerns, and globalization, and a final segment on selecting the most suitable renewable energy technology for conventional and emerging desalination processes. © 2014 Copyright Taylor & Francis Group, LLC.

  18. Final prototype of magnetically suspended flywheel energy storage system

    Science.gov (United States)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.

    1991-01-01

    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  19. A review of experience curve analyses for energy demand technologies

    NARCIS (Netherlands)

    Weiss, M.|info:eu-repo/dai/nl/156419912; Patel, M.K.|info:eu-repo/dai/nl/18988097X; Junginger, H.M.|info:eu-repo/dai/nl/202130703; Blok, K.|info:eu-repo/dai/nl/07170275X

    2009-01-01

    Transitioning towards a sustainable energy system requires the large-scale introduction of novel energy demand and supply technologies. Such novel technologies are often expensive at the point of their market introduction but eventually become cheaper due to technological learning. In order to

  20. New energy technologies report; Nouvelles technologies de l'energie rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  1. Networking and Information Technology Workforce Study: Final Report

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This report presents the results of a study of the global Networking and Information Technology NIT workforce undertaken for the Networking and Information...

  2. Environmental effects of marine energy development around the world. Annex IV Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea; Hanna, Luke; Whiting, Johnathan; Geerlofs, Simon; Grear, Molly; Blake, Kara (Pacific Northwest National Laboratory, Richland, WA (United States)); Coffey, Anna; Massaua, Meghan; Brown-Saracino, Jocelyn; Battey, Hoyt (US Dept. of Energy, Washington, DC (United States))

    2013-01-15

    Annex IV is an international collaborative project to examine the environmental effects of marine energy devices among countries through the International Energy Agency’s Ocean Energy Systems Initiative (OES). The U.S. Department of Energy (DOE) serves as the Operating Agent for the Annex, in partnership with the Bureau of Ocean Energy Management (BOEM; formerly the Minerals Management Service), the Federal Energy Regulatory Commission (FERC), and National Oceanographic and Atmospheric Administration (NOAA). Numerous ocean energy technologies and devices are being developed around the world, and the few data that exist about the environmental effects of these technologies are dispersed among countries and developers. The purpose of Annex IV is to facilitate efficient government oversight of the development of ocean energy systems by compiling and disseminating information about the potential environmental effects of marine energy technologies and to identify methods of monitoring for these effects. Beginning in 2010, this three-year effort produced a publicly available searchable online database of environmental effects information (Tethys). It houses scientific literature pertaining to the environmental effects of marine energy systems, as well as metadata on international ocean energy projects and research studies. Two experts’ workshops were held in Dublin, Ireland (September 2010 and October 2012) to engage with international researchers, developers, and regulators on the scope and outcomes of the Annex IV project. Metadata and information stored in the Tethys database and feedback obtained from the two experts’ workshops were used as resources in the development of this report. This Annex IV final report contains three case studies of specific interactions of marine energy devices with the marine environment that survey, compile, and analyze the best available information in one coherent location. These case studies address 1) the physical interactions

  3. Smart energy technology adoption : Identity has many faces

    NARCIS (Netherlands)

    Peters, A.M.; van der Werff, E.; Steg, L.

    2015-01-01

    Smart energy technology adoption: identity has many faces. People increasingly adopt Smart Energy Technologies (SET), including solar panels, and electric vehicles. These are radical innovations that are expected to significantly reduce fossil energy use. Yet, SETs may challenge the stability of

  4. Status and prospect of NDT technology for nuclear energy industry in Korea

    Science.gov (United States)

    Lee, Joon Hyun

    2016-02-01

    Innovative energy technology is considered to be one of the key solutions for meeting the challenges of climate change and energy security, which is why global leaders are focusing on enhancing energy technology R&D. In accordance with the global movements to accelerate energy R&D, the Korean government has made significant investments in a broad spectrum of energy R&D programs, including energy efficiency, resources, CCS, new and renewable energy, power generation and electricity delivery, nuclear power and nuclear waste management. In order to manage government sponsored energy R&D programs in an efficient and effective way, the government established the Korea Institute of Energy technology Evaluation and Planning (KETEP) in 2009. Main activities of KETEP include developing energy technology roadmaps, planning, evaluating, and managing R&D programs, fostering experts in the field of energy, promoting international cooperation programs, gathering and analyzing energy statistics, and supporting infrastructure and commercialization. KETEP assists the Ministry of Trade, Industry and Energy in developing national R&D strategies while also working with researchers, universities, national institutes and the private sector for their successful energy technology and deployment. This presentation consists of three parts. First, I will introduce the characteristics of energy trends and mix in Korea. Then, I'll speak about the related national R&D strategies of energy technology. Finally, I'll finish up with the status and prospect of NDT technology for nuclear energy industry in Korea. The development of the on-line structural integrity monitoring systems and the related techniques in Korean nuclear power plant for the purpose of condition based maintenance is introduced. The needs of NDT techniques for inspection and condition monitoring for GEN IV including SFR, small module reactor etc., are also discussed.

  5. Brazilian energy balance 2011 - year 2010. Final report; Balanco energetico nacional 2011 - ano base 2010. Relatorio final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Brazilian energy balance - BEB - is divided into eight chapters and ten annexes, whose contents are as follow: chapter 1 - Energy Analysis and Aggregated Data - presents energy highlights per source in 2010 and analyses the evolution of the internal offer of energy and its relationship with economic growth in 2010; chapter 2 - Energy Supply and Demand by Source - has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, desegregated total per socioeconomic sector in the country; chapter 3 - Energy Consumption by Sector - presents the final energy consumption classified by primary and secondary source for each sector of the economy; chapter 4 - Energy Imports and Exports - presents the evolution of the data on the import and export of energy and the dependence on external energy; chapter 5 - Balance of Transformation Centers - presents the energy balances for the energy transformation centers including their losses; chapter 6 - Energy Resources and Reserves - has the basic concepts use in the survey of resources and reserves of primary energy sources, with the evolution of the data from 1974 to 2010, through graphs and tables; chapter 7 - Energy and Socioeconomics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; chapter 8 - State Energy Data - presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential. (author)

  6. Energy Technology Perspectives 2012: Executive Summary [French version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  7. Energy Technology Perspectives 2012: Executive Summary [Spanish version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  8. Energy Technology Perspectives 2012: Executive Summary [Italian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  9. Energy Technology Perspectives 2012: Executive Summary [Portuguese version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  10. Energy Technology Perspectives 2012: Executive Summary [Arabic version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  11. Adoption of bioenergy technologies for a sustainable energy system

    OpenAIRE

    Bjørnstad, Even

    2011-01-01

    A future sustainable energy system must achieve great improvements in energy efficiency and the energy supply must be based on renewable energy sources. Bioenergy will be an important part of this system. Changing from the current fossil-dependent energy system to a truly sustainable energy system will require fundamental changes in basic structures of society, in the technologies we utilize in the living of our lives and in the way we as citizens and consumers behave relative to energy use. ...

  12. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  13. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  14. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.

    2014-01-01

    We try to understand the role of technological change and diffusion of energy efficient technologies in order to explain the trend of energy intensity developments in the German steel industry. We selected six key energy efficient technologies and collected data to derive their diffusion since their

  15. Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, Rebecca [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carpenter Petri, Alberta C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Riddle, Matt [Argonne National Laboratory; Graziano, Diane [Argonne National Laboratory

    2017-10-09

    Energy-efficient manufacturing technologies can reduce energy consumption and lower operating costs for an individual manufacturing facility, but increased process complexity and the resulting risk of disruption means that manufacturers may be reluctant to adopt such technologies. In order to quantify potential energy savings at scales larger than a single facility, it is necessary to account for how quickly and how widely the technology will be adopted by manufacturers. This work develops a methodology for estimating energy-efficient manufacturing technology adoption rates using quantitative, objectively measurable technology characteristics, including energetic, economic and technical criteria. Twelve technology characteristics are considered, and each characteristic is assigned an importance weight that reflects its impact on the overall technology adoption rate. Technology characteristic data and importance weights are used to calculate the adoption score, a number between 0 and 1 that represents how quickly the technology is likely to be adopted. The adoption score is then used to estimate parameters for the Bass diffusion curve, which quantifies the change in the number of new technology adopters in a population over time. Finally, energy savings at the sector level are calculated over time by multiplying the number of new technology adopters at each time step with the technology's facility-level energy savings. The proposed methodology will be applied to five state-of-the-art energy-efficient technologies in the carbon fiber composites sector, with technology data obtained from the Department of Energy's 2016 bandwidth study. Because the importance weights used in estimating the Bass curve parameters are subjective, a sensitivity analysis will be performed on the weights to obtain a range of parameters for each technology. The potential energy savings for each technology and the rate at which each technology is adopted in the sector are quantified

  16. Technology as a driver of climate and energy politics

    Science.gov (United States)

    Schmidt, Tobias S.; Sewerin, Sebastian

    2017-06-01

    Technological innovation, often induced by national and subnational policies, can be a key driver of global climate and energy policy ambition and action. A better understanding of the technology-politics feedback link can help to further increase ambitions.

  17. Controlling electron energy distributions for plasma technologies

    Science.gov (United States)

    Kushner, Mark

    2009-10-01

    The basic function of low temperature plasmas in society benefiting technologies is to channel power into specific modes of atoms and molecules to excite desired states or produce specified radicals. This functionality ultimately depends on the ability to craft an electron energy distribution (EED) to match cross sections. Given electric fields, frequencies, gas mixtures and pressures, predicting EEDs and excitation rates can in large part be reliably done. The inverse problem, specifying the conditions that produce a given EED, is less well understood. Early strategies to craft EEDs include adjusting gas mixtures, such as the rare gas-Hg mixtures in fluorescent lamps, and externally sustained discharges, such as electron-beam sustained plasmas for molecular lasers. More recent strategies include spiker-sustainer circuitry which produces desired EEDs in non-self-sustained plasmas; and adjusting frequency in capacitively coupled plasmas. In this talk, past strategies for customizing EEDs in low pressure plasmas will be reviewed and prospects for improved control of plasma kinetics will be discussed using results from 2-dimensional computer models.

  18. New energy technologies in Singapore; Les Nouvelles technologies de l'energie a Singapour

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Singapore is considered as an interesting example: this country has become the third world oil refining centre and the first Asian oil trade place, but has also implemented a series of strategic measures to promote a sustainable development. The Singapore Green Plan was launched in 1992 and defines important objectives in terms of reduction of carbon emissions, of water consumption, of improvement of waste management services, and so on. This policy results in investments in experimental programs for the development of new energy technologies. This paper presents the public actors (institutions and public agencies) and their projects, the academic projects and programs, and the private sector projects. These programs and projects are concerning the search for clean energies, the development of the solar capacity, various renewable energies, or the automotive industry (projects conducted by Bosch, Renault and Nissan, Daimler, this last one on biofuels)

  19. Technology data for energy plants. Generation of electricity and district heating, energy storage and energy carrier generation and conversion

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in June 2010. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The current update has been developed with an unbalanced focus, i.e. most attention to technologies which are most essential for current and short

  20. Energy technology perspectives - scenarios and strategies to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-03

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  1. Energy technology perspectives: scenarios and strategies to 2050 [Russian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  2. DOE Solar Energy Technologies Program: Overview and Highlights

    Energy Technology Data Exchange (ETDEWEB)

    2006-05-01

    A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

  3. UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B M.K. [Principal Investigator, ed.; Goetz, J; Lapik, A; Korolija, M; Prakhov, S; Starostin, A [ed.

    2011-05-18

    This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup 0}, 2{pi}{sup }0, 3{pi}{sup 0}, {eta} , {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4 . It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, G-parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta} ,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta} and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular

  4. North American Board of Certified Energy Practitioners Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Richard [North American Board of Certified Energy Practitioners, Inc., Clifton Park, NY (United States)

    2014-01-31

    The U.S. DOE’s Office of EERE National Solar Energy Technology Program (SETP) calls for a “National Accreditation and Certification Program for Installation and Acceptance of Photovoltaic Systems.” A near-term goal listed in the U.S. Photovoltaic Industry’s Roadmap, 2000 - 2020 is to work to establish standards, codes, and certifications which are essential for consumer protection and acceptance as part of the goal of building toward a viable future PV industry. This program paves the way for a voluntary national certification program for PV system practitioners and installers, initiation of the first steps toward certification of hardware, and reinforcement of all five of the technical objectives in the Systems category of SETPs Multi-Year technical Plan. Through this project, NABCEP will direct the continued initiation of and sustained implementation and administration of the NABCEP Solar PV Installer Certification Program (hereafter the “Program”). The NABCEP Program is a national, voluntary program designed to provide certification for those PV installers who demonstrate the requisite skills, abilities and knowledge typically required to install and maintain PV systems. The core document upon which the Program was developed and upon which the national exam is based, is referred to as the (Program) Task Analysis. It is a thorough descriptive document containing specific psychomotor and cognitive tasks for the purposes of identifying the types of training/assessment methods that apply. Psychomotor skills require measuring, assembling, fastening and related activities. Cognitive skills require knowledge processing, decision-making and computations. NABCEP effectively evaluates an applicant’s psychomotor skills through review of a candidate’s PV installations and hands-on training received. NABCEP evaluates the candidate’s cognitive skills through administration of its national Program exam. By first qualifying for and then obtaining the required

  5. Development of vehicle magnetic air conditioner (VMAC) technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, Karl A., Jr.; Pecharsky, V.K.; Jiles, David; Zimm, Carl B.

    2001-08-28

    The objective of Phase I was to explore the feasibility of the development of a new solid state refrigeration technology - magnetic refrigeration - in order to reduce power consumption of a vehicle air conditioner by 30%. The feasibility study was performed at Iowa State University (ISU) together with Astronautics Corporation of America Technology Center (ACATC), Madison, WI, through a subcontract with ISU.

  6. Adapting construction staking to modern technology : final report.

    Science.gov (United States)

    2017-08-01

    This report summarizes the tasks and findings of the ICT Project R27-163, Adapting Construction Staking to Modern Technology, which aims to develop written procedures for the use of modern technologies (such as GPS and civil information modeling) in ...

  7. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  8. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  9. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  10. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  11. A Numerical and Graphical Review of Energy Storage Technologies

    Directory of Open Access Journals (Sweden)

    Siraj Sabihuddin

    2014-12-01

    Full Text Available More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.

  12. High Energy Physics at Tufts University Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Gary R. [Tufts Univ., Medford, MA (United States); Oliver, William P. [Tufts Univ., Medford, MA (United States); Napier, Austin [Tufts Univ., Medford, MA (United States); Gallagher, Hugh R. [Tufts Univ., Medford, MA (United States)

    2012-07-18

    In this Final Report, we the researchers of the high energy physics group at Tufts University summarize our works and achievements in three frontier areas of elementary particle physics: (i) Neutrino physics at the Intensity Frontier, (ii) Collider physics at the Energy Frontier, and (iii) Theory investigations of spin structure and quark-gluon dynamics of nucleons using quantum chromodynamics. With our Neutrino research we completed, or else brought to a useful state, the following: Data-taking, physics simulations, physics analysis, physics reporting, explorations of matter effects, and detector component fabrication. We conducted our work as participants in the MINOS, NOvA, and LBNE neutrino oscillation experiments and in the MINERvA neutrino scattering experiment. With our Collider research we completed or else brought to a useful state: Data-taking, development of muon system geometry and tracking codes, software validation and maintenance, physics simulations, physics analysis, searches for new particles, and study of top-quark and B-quark systems. We conducted these activities as participants in the ATLAS proton-proton collider experiment at CERN and in the CDF proton-antiproton collider experiment at Fermilab. In our Theory research we developed QCD-based models, applications of spin phenomenology to fundamental systems, fitting of models to data, presenting and reporting of new concepts and formalisms. The overarching objectives of our research work have always been: 1) to test and clarify the predictions of the Standard Model of elementary particle physics, and 2) to discover new phenomena which may point the way to a more unified theoretical framework.

  13. Biomass Support for the China Renewable Energy Law: Final Report, December 2005

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    Final subcontractor report giving an overview of the biomass power generation technologies used in China. Report covers resources, technologies, foreign technologies and resources for comparison purposes, biomass potential in China, and finally government policies in China that support/hinder development of the using biomass in China for power generation.

  14. Energy Technology Programmes 1993-1998. Intermediate report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Tekes energy technology research programmes were launched in 1993. The aim is to produce innovative solutions that are efficient, environmentally sound and widely - even globally - applicable. Now Tekes manages a total of 12 energy technology research programmed. Research programmed form a network linking academia and industry. Total funding for the energy technology programmed during the years 1993-1998 is estimated at some FIM 1.5 billion, about half of which will be put up by the Tekes and the rest by the industry. Funding by the Ministry of Trade and Industry covers the first full-scale applications (demonstrations) resulting from the research and development activities. Finnish technology is front-ranking in the efficient use of energy, combustion technology, renewable energy sources and environmental technology. In this report the results and the research activities of the separate programmes is presented and discussed

  15. Evaluating the Best Renewable Energy Technology For Sustainable Energy Planning

    OpenAIRE

    Demirtas, Ozgur

    2013-01-01

    Energy is one of the main factors that must be considered in the discussions of sustainable development. The basic dimensions of sustainability of energy production are environmentally, technically, economically and socially sustainable supply of energy resources that, in the long term, is reliable, adequate and affordable. Renewable, clean and cost effective energy sources are preferred but unfortunately no one of the alternative energy sources can meet these demands solely. So, the problem ...

  16. Evaluating the Best Renewable Energy Technology for Sustainable Energy Plannin

    OpenAIRE

    Ozgur Demirta

    2013-01-01

    Energy is one of the main factors that must be considered in the discussions of sustainable development. The basic dimensions of sustainability of energy production are environmentally, technically, economically and socially sustainable supply of energy resources that, in the long term, is reliable, adequate and affordable. Renewable, clean and cost effective energy sources are preferred but unfortunately no one of the alternative energy sources can meet these demands solely. So, the problem ...

  17. The influence of advanced generations of equipment of information- and communication technology on the energy consumption in Germany up to the year 2010 - possibilities to increase energy efficiency and -conservation in this domains. Final report. Summary of final report. Annex; Der Einfluss moderner Geraetegenerationen der Informations- und Kommunikationstechnik auf den Energieverbrauch in Deutschland bis zum Jahr 2010 - Moeglichkeiten zur Erhoehung der Energieeffizienz und zur Energieeinsparung in diesen Bereichen. Abschlussbericht. Kurzfassung des Abschlussberichts. Summary of the final report. Anhang zum Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.; Eichhammer, W.; Friedewald, M.; Georgieff, P.; Rieth-Hoerst, S.; Schlomann, B.; Zoche, P.; Aebischer, B.; Huser, A.

    2003-01-01

    For 2001, this study ascertained an electricity demand of 38 TWh for ICT end-use appliances in households and offices and their associated infrastructure. This corresponds to a share of almost 8% of the total electricity consumption of final consumption sectors in Germany (AGEB 2002). About 50% of the power demand are accounted for by household end-use appliances, a further 20% by office end-use appliances, the remaining 30% by the infrastructure required. A clear increase in the power demand by 45% up to 55.4 TWh is anticipated up to 2010 which is primarily caused by the increasing significance of ICT infrastructure. The stock of appliances and systems of ICT infrastructure will grow noticeably and since these devices, such as servers or mobile communications systems, are continuously operated, the consumption growth in normal mode is the strongest. The consumption in standby mode shows an increasing tendency, most notably up to the middle of the decade, whereas it decreases in off-mode. However, this has less to do with efforts for greater efficiency and more to do with the expected substitution of the off- by the standby mode (especially in televisions). (orig.) [German] Fuer das Jahr 2001 wurde in dieser Untersuchung ein den IuK-Endgeraeten in Haushalten und Bueros und der zugehoerigen Infrastruktur zuzurechnender Strombedarf in Hoehe von 38 TWh ermittelt. Dies entspricht einem Anteil von knapp 8% am gesamten Stromverbrauch der Endverbrauchssektoren in Deutschland (AGEB 2002). Rund 50% des Strombedarfs entfallen dabei auf die Haushalts-Endgeraete, weitere gut 20% auf die Buero-Endgeraete, die restlichen rund 30% auf die dafuer erforderliche Infrastruktur. Bis 2010 wird mit einem deutlichen Anstieg des Strombedarfs um 45% auf 55,4 TWh gerechnet, der vor allem durch die zunehmende Bedeutung der IuK-Infrastruktur verursacht wird. Da die meisten der im Bestand deutlich wachsenden Geraete und Anlagen der IuK-Infrastruktur wie Server oder Mobilfunkanlagen dauerhaft

  18. Technology review of commercial food service equipment - final report

    Energy Technology Data Exchange (ETDEWEB)

    Rahbar, S.; Krsikapa, S. [Canadian Gas Research Inst., Don Mills, ON (Canada); Fisher, D.; Nickel, J.; Ardley, S.; Zabrowski, D. [Fisher Consultants (Canada); Barker, R.F. [ed.

    1996-05-15

    Technical information on commercial gas cooking appliances was presented. This second volume provided an appliance-by-appliance comprehensive assessment of the energy performance of commercial food service equipment. Energy assessments were made for the following categories of cooking equipment: fryers, griddles, broilers, ranges, Chinese ranges, ovens, steamers, steam kettles, and braising pans. Recommendations were made for improving the energy efficiency and overall performance of gas appliances to support of the Canadian gas utilities marketing and energy conservation initiatives. 71 refs., 37 tabs., 58 figs.

  19. Energy-related inventions program invention 637. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The final technical report for the Pegasus plow, a stalk and root embedding apparatus, describes progress from the development stage to the product support stage. The US Department of Agriculture - Agriculture Research Service (ARS) is now in the second year of a three year study comparing the Pegasus to conventional tillage. So far, no downside has been with the Pegasus and the following benefits have been documented: (1) Energy savings of 65.0 kilowatt hours per hectare over conventional tillage. This is when the Pegasus plow is used to bury whole stalks, and represents a 70% savings over conventional tillage (92.5 kilowatt hours per hectare). (2) Four to seven fewer passes of tillage, depending on the particular situation. This represents a substantial time savings to farmers. (3) So far, no differences in cotton yields. Recent cotton boll counts in one study indicate a higher yield potential with the Pegasus. (4) No disease problems. (5) Significantly higher levels of organic matter in the soil. A hypothesis of the study is that whole stalk burial may reduce plant disease problems. This hypothesis has not yet been proven. (6) Significantly higher levels of nitrate nitrogen. Total nitrogen and ammonia nitrogen trended higher but were not significantly different. This shows that whole stalk burial does not adversely affect the nitrogen cycle in the soil and may actually improve it. The marketing support stage of the project is also described in the report.

  20. BMDO: New Mexico Technology Transfer Demonstration Project. Interim final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The BMDO-New Mexico Technology Transfer Demonstration Project(BMDO-NM) was a collaborative effort among the national laboratories to identify and evaluate the commercial potential of selected SDI-funded technologies. The project was funded by BMDO (formerly known as the Strategic Defense Initiative Office or SDIO), the Technology Enterprise Division (NM-TED) of the NM Economic Development Division, and the three National Laboratories. The project was managed and supervised by SAGE Management Partners of Albuquerque, and project funding was administered through the University of New Mexico. The BMDO-NM Demonstration Project focused on the development of a process to assist technology developers in the evaluation of selected BMDO technology programs so that commercialization decisions can be made in an accelerated manner. The project brought together BMDO, the NM-TED, the University of New Mexico, and three New Mexico Federal laboratories -- Los Alamos (DOE), Phillips (DOD) and Sandia (DOE). Each national laboratory actively participated throughout the project through its technology transfer offices. New Mexico was selected as the site for the Demonstration Program because of its three national and federal research laboratories engaged in BMDO programs, and the existing relationship among state govemment, the labs, universities and local economic development and business assistance organizations. Subsequent Commercialization and Implementation phases for the selected technologies from LANL and SNL were completed by SAGE and the Project Team. Funding for those phases was provided by the individual labs as well as BMDO and NM-TED in kind services. NM-TED played a proactive role in this New Mexico partnership. Its mandate is to promote technology-based economic development, with a commitment to facilitate the use of technology by industry and business statewide. TED assumed the role of program manager and executing agent for BMDO in this demonstration project.

  1. Final Energy Consumption Trends and Drivers in Czech Republic and Latvia

    Directory of Open Access Journals (Sweden)

    Zhiqian Yu

    2017-08-01

    Full Text Available This paper analyses the trends of final energy consumption in Latvia and Czech Republic. Analysis of final energy consumption during 2000-2013 period indicated the main driving forces of final energy consumption during and after world financial crisis of 2008. The paper aimed to evaluate the impact of economic activity and other factors on final energy consumption. The decomposition of the final energy consumption is assessed by analyzing effect of different drivers by the main end-users sector (industry, transport, households, agriculture, services, activity, demography, lifestyles, structural effects, energy savings etc. The results show that the reduction in final energy consumption in most EU members states before and after year 2008 can be related to the decline in energy intensities within endusers sectors. At the same time, the increase in final energy intensity after the year 2008 is attributed to expansion of energy demand sectors. Comparison of final energy consumption trends and drivers in Latvia and Czech Republic indicated that Czech Republic implemented more policies and measures in industry and tertiary sector and this provided for final energy consumption decreased and huge energy savings in these sectors.

  2. Final report. CIRP seminar on micro and nano technology. November 2003

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    This final reports contains a description of the 1st international CIRP seminar on micro and nano technology held at DTU in November 2003.......This final reports contains a description of the 1st international CIRP seminar on micro and nano technology held at DTU in November 2003....

  3. Rural public transportation technologies : user needs and applications : final report

    Science.gov (United States)

    1998-07-01

    The Rural Public Transportation Technologies: User Needs and Applications study was conducted as part of the U.S. Department of Transportations (DOT) overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportuniti...

  4. Stirling total energy systems study. Final report, May 15, 1976--June 13, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Lehrfeld, D.

    1977-08-01

    The application of Stirling cycle prime movers to total energy power generation systems was investigated. Electrical, heating, and cooling demand profiles for a typical residential complex, hospital, and office building were studied, and alternative Stirling total energy systems were conceptualized for each site. These were analyzed in detail and contrasted with purchased-power systems for these sites to determine fuel-energy savings and investment attractiveness. The residential complex and hospital would be excellent candidates for total energy systems, and prime movers in the 1000 kW output range would be required. Stirling engines with so large an output have not been built to date, although there would be no fundamental technical barrier to prevent this. However, careful consideration must be given to the following technological decision areas before arriving at a final design, if its potential is to be realized: engine configuration, hotside heat exchange interface, engine control system, internal gas seals, and advanced coal combustion technology. The principal advantage of a Stirling prime mover in this application, in view of national concern over present and future dependence on oil, is that it could utilize low-grade liquid fuels and coal.

  5. Geothermal energy: opportunities for California commerce. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    This report provides a preliminary engineering and economic assessment of five direct use projects using low and moderate temperature geothermal resources. Each project site and end-use application was selected because each has a high potential for successful, near-term (2 to 5 years) commercial development. The report also includes an extensive bibliography, and reference and contact lists. The five projects are: Wendel Agricultural Complex, East Mesa Livestock Complex, East Mesa Vegetable Dehydration Facility, Calapatria Heating District and Bridgeport Heating District. The projects involve actual investors, resource owners, and operators with varying financial commitments for project development. For each project, an implementation plan is defined which identifies major barriers to development and methods to overcome them. All projects were determined to be potentially feasible. Three of the projects cascade heat from a small-scale electric generator to direct use applications. Small-scale electric generation technology (especially in the 0.5 to 3 MW range) has recently evolved to such a degree as to warrant serious consideration. These systems provide a year-round heating load and substantially improve the economic feasibility of most direct use energy projects using geothermal resources above 200/sup 0/F.

  6. Future Energy Technology. A Basic Teaching Unit on Energy. Revised.

    Science.gov (United States)

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 7-12 language arts, science, and social studies classes, this 5-7 day unit encourages students to investigate alternative energy sources through research. Focusing on geothermal energy, tide and ocean, fusion, wind, biomass, and solar energy as possible areas of consideration, the unit attempts to create an awareness of the…

  7. Renewable energy and technological development; Energia renovable y desarrollo tecnologico

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias Ramos, Rogelio [Fideicomiso para el ahorro de energia, (Mexico)

    2007-06-15

    In this presentation is widely described the work carried out by the Trust Fund for Electrical Energy Savings (FIDE) with reference to renewable energy foster. In the first part, it is found the FIDE's mission, which is focused on achieving the efficient use of the energy. Then, there are quiet briefly described the processes -carried out by the FIDE- in favour of the groundbreaking technology that achieves to decrease the energy squandering. In addition, there are mentioned different means boosting the energy savings. Then, there are described the issues the energy system should change in order to improve the actual situation of many Mexicans. There are briefly mentioned not only the environmental but also the social benefits of the use of renewable energy; besides, there are given the necessary elements in order to make it possible. Then, there are explained why the use of renewable energy would be profitable. Finally, it is described the methodology that should be followed in case it is wanted to find sponsors up to 100% for a project related to improvement of the energy production. [Spanish] Esta presentacion describe ampliamente la labor que realiza el Fideicomiso para el ahorro de energia (FIDE) en relacion con el fomento de la energia renovable, asi como el desarrollo de tecnologias que refuercen el uso de este tipo de energia. En la primera parte, se encuentra la mision del FIDE, que se enfoca en lograr que el uso de la energia sea apropiado. Enseguida, de forma breve se describen los procesos que realiza el FIDE en favor de la tecnologia innovadora que haga decrecer el dispendio de energia. Luego, se explican las aspectos endebles del sistema energetico de Mexico. Se describen escuetamente los beneficios, no solo ambientales sino tambien sociales, del uso de energia renovable; ademas, se mencionan los elementos necesarios para que esto pueda lograrse. Mas adelante, se dan las razones por las que para Mexico seria rentable el uso de energia renovable

  8. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  9. Technical descriptions of ten irrigation technologies for conserving energy

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Wilfert, G.L.

    1983-05-01

    Technical description of ten technologies which were researched to save energy in irrigated agriculture are presented. These technologies are: well design and development ground water supply system optimization, column and pump redesign, variable-speed pumping, pipe network optimization, reduced-pressure center-pivot systems, low-energy precision application, automated gated-pipe system, computerized irrigation scheduling, and instrumented irrigation scheduling. (MHR)

  10. Electrical Power and Illumination Systems. Energy Technology Series.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electrical power and illumination systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  11. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig W

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy's Wind and Hydropower Technologies Program's goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and

  12. Thermal Energy Storage for Space Cooling--Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  13. Thermal Energy for Space Cooling--Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  14. Small Island States Green Energy Initiative. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, Nasir [Climate Inst., Washington, DC (United States)

    1999-10-15

    This report covers the activities carried out during a one year period from 7/15/99 to 7/15/00 as part of the Small Islands Green Energy Initiative. The three activities were: 1) Energy Ministerial conference in the Caribbean; 2) Training session on renewable energy for utility engineers; and 3) Case studies compilation on renewable energy in the Caribbean.

  15. Technology diffusion of energy-related products in residential markets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  16. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  17. [Advanced information technologies for financial services industry]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The project scope is to develop an advanced user interface utilizing speech and/or handwriting recognition technology that will improve the accuracy and speed of recording transactions in the dynamic environment of a foreign exchange (FX) trading floor. The project`s desired result is to improve the base technology for trader`s workstations on FX trading floors. Improved workstation effectiveness will allow vast amounts of complex information and events to be presented and analyzed, thus increasing the volume of money and other assets to be exchanged at an accelerated rate. The project scope is to develop and demonstrate technologies that advance interbank check imaging and paper check truncation. The following describes the tasks to be completed: (1) Identify the economics value case, the legal and regulatory issues, the business practices that are affected, and the effects upon settlement. (2) Familiarization with existing imaging technology. Develop requirements for image quality, security, and interoperability. Adapt existing technologies to meet requirements. (3) Define requirements for the imaging laboratory and design its architecture. Integrate and test technology from task 2 with equipment in the laboratory. (4) Develop and/or integrate and test remaining components; includes security, storage, and communications. (5) Build a prototype system and test in a laboratory. Install and run in two or more banks. Develop documentation. Conduct training. The project`s desired result is to enable a proof-of-concept trial in which multiple banks will exchange check images, exhibiting operating conditions which a check experiences as it travels through the payments/clearing system. The trial should demonstrate the adequacy of digital check images instead of paper checks.

  18. Green Lighting. Energy-efficient integrated lighting systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Linhart, F.; Scartezzini, J.-L.

    2009-10-15

    The objective of the Green Lighting project was to develop a High Performance Integrated Lighting System, based on advanced technologies for day- and electric lighting, achieving a Lighting Power Density (LPD) that does not exceed 3 W/m{sup 2}. The project has revealed that Anidolic Daylighting Systems (ADS) are an ideal basis for High Performance Integrated Lighting Systems. Not only are they able to provide adequate illumination (i.e. sufficiently high illuminance) in office rooms during large fractions of normal office hours, under various sky conditions and over the entire year, but they are also highly appreciated by office occupants at the condition that glare control mechanisms are available. Complementary electric lighting is, however, still necessary to back up the ADS at times when there is insufficient daylight flux available. It was shown during this project, that the most interesting trade-offs between energy-efficiency and visual comfort are obtained by using a combination of ceiling-mounted directly emitting luminaires with very high optical efficiencies for ambient lighting and portable desk lamps for temporary task lighting. The most appropriate lamps for the ceiling-mounted luminaires are currently highly efficient fluorescent tubes, but white LED tubes can be considered a realistic option for the future. The most suitable light sources for desk lamps for temporary task lighting are Compact Fluorescent Lamps (CFLs) and white LED light bulbs. Based on the above-mentioned technologies, a High Performance Integrated Lighting System with a very low LPD has been developed over the last three years. The system has been set up in an office room of the LESO solar experimental building located on the EPFL campus; it has been tested intensively during a Post-Occupancy Evaluation (POE) study involving twenty human subjects. This study has revealed that the subjects' performance and subjective visual comfort was improved by the new system, compared to

  19. Information and Communication Technology (ICT) Standards and Guidelines. Final rule.

    Science.gov (United States)

    2017-01-18

    We, the Architectural and Transportation Barriers Compliance Board (Access Board or Board), are revising and updating, in a single rulemaking, our standards for electronic and information technology developed, procured, maintained, or used by Federal agencies covered by section 508 of the Rehabilitation Act of 1973, as well as our guidelines for telecommunications equipment and customer premises equipment covered by Section 255 of the Communications Act of 1934. The revisions and updates to the section 508-based standards and section 255-based guidelines are intended to ensure that information and communication technology covered by the respective statutes is accessible to and usable by individuals with disabilities.

  20. Final report: U.S. competitive position in automotive technologies

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  1. Solar Energy Technologies Program Newsletter - September 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  2. Solar Energy Technologies Program Newsletter - July 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  3. A Kind of Energy Storage Technology: Metal Organic Frameworks

    OpenAIRE

    Ozturk, Zeynel; Kose, D. A.; Asan, A; Ozturk, B.

    2016-01-01

    For last fifteen years energy has been transferred by using electricity and as an energy carrier media electricity has some disadvantages like its wire need for transportation and its being non-storable for large amounts. To store more energy safely and for transportation it easily, new storing medias and devices are needed. For easy and safe energy transport there are many technologies and some of these contain hydrogen energy. Metal hydrides, carbon nanotubes, metal organic frameworks (MOFs...

  4. Brazilian energy balance 2013 - calendar year 2012: final report; Balanco energetico nacional 2013 - ano base 2012: relatorio final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The BEB is divided into eight chapters and ten annexes, whose contents are as follow: Chapter 1- Energy analysis and aggregated data- presents energy highlights per source in 2012 and analyses the evolution of the domestic energy supply and its relationship with economic growth in 2012; Chapter 2- Energy supply and demand by source- has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; Chapter 3- Energy consumption by sector- presents the final energy consumption classified by primary and secondary source for each sector of the economy; Chapter 4- Energy imports and exports- presents the evolution of the data on the import and export of energy and the dependence on external energy; Chapter 5- Balance of transformation centers- presents the energy balances for the energy transformation centers including their losses; Chapter 6- Energy resources and reserves- has the basic concepts use in the survey of resources and reserves of primary energy sources; Chapter 7- Energy and socioeconomics- contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8- State energy data- presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential; Relating to annexes the current structure is presented bellow: Annex 1- Installed capacity- shows the installed capacity of electricity generation, the installed capacity of Itaipu hydro plant and the installed capacity for oil refining; Annex 2- Self-production of electricity- presents disaggregated data of self-production, considering sources and sectors. Annex 3- World energy data- presents the main indicators for the production, import, export and consumption per energy source and region; Annex 4- Useful

  5. Brazilian energy balance 2014 - calendar year 2013: final report; Balanco energetico nacional 2014 - ano base 2013: relatorio final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-01

    The BEB is divided into eight chapters and ten annexes, whose contents are as follow: Chapter 1- Energy analysis and aggregated data- presents energy highlights per source in 2012 and analyses the evolution of the domestic energy supply and its relationship with economic growth in 2013; Chapter 2- Energy supply and demand by source- has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; Chapter 3- Energy consumption by sector- presents the final energy consumption classified by primary and secondary source for each sector of the economy; Chapter 4- Energy imports and exports- presents the evolution of the data on the import and export of energy and the dependence on external energy; Chapter 5- Balance of transformation centers- presents the energy balances for the energy transformation centers including their losses; Chapter 6- Energy resources and reserves- has the basic concepts use in the survey of resources and reserves of primary energy sources; Chapter 7- Energy and socioeconomics- contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8- State energy data- presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential; Relating to annexes the current structure is presented bellow: Annex 1- Installed capacity- shows the installed capacity of electricity generation, the installed capacity of Itaipu hydro plant and the installed capacity for oil refining.; Annex 2- Self-production of electricity- presents disaggregated data of self-production, considering sources and sectors. Annex 3- World energy data- presents the main indicators for the production, import, export and consumption per energy source and region; Annex 4- Useful

  6. Modeling technological change in energy systems - From optimization to agent-based modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tieju [School of Business, East China University of Science and Technology, Meilong Road 130, Shanghai 200237 (China); Transition to New Technology Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg (Austria); Nakamori, Yoshiteru [School of Knowledge Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2009-07-15

    Operational optimization models are one of the main streams in modeling energy systems. Agent-based modeling and simulation seem to be another approach getting popular in this field. In either optimization or agent-based modeling practices, technological change in energy systems is a very important and inevitable factor that researchers need to deal with. By introducing three stylized models, namely, a traditional optimization model, an optimization model with endogenous technological change, and an agent-based model, all of which were developed based on the same deliberately simplified energy system, this paper compares how technological change is treated differently in different modeling practices for energy systems, the different philosophies underlying them, and the advantages/disadvantages of each modeling practice. Finally, this paper identifies the different contexts suitable for applying optimization models and agent-based models in decision support regarding energy systems. (author)

  7. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies

    Directory of Open Access Journals (Sweden)

    Min-Gyu Kang

    2016-02-01

    Full Text Available Energy harvesting is the most effective way to respond to the energy shortage and to produce sustainable power sources from the surrounding environment. The energy harvesting technology enables scavenging electrical energy from wasted energy sources, which always exist everywhere, such as in heat, fluids, vibrations, etc. In particular, piezoelectric energy harvesting, which uses a direct energy conversion from vibrations and mechanical deformation to the electrical energy, is a promising technique to supply power sources in unattended electronic devices, wireless sensor nodes, micro-electronic devices, etc., since it has higher energy conversion efficiency and a simple structure. Up to now, various technologies, such as advanced materials, micro- and macro-mechanics, and electric circuit design, have been investigated and emerged to improve performance and conversion efficiency of the piezoelectric energy harvesters. In this paper, we focus on recent progress of piezoelectric energy harvesting technologies based on PbZrxTi1-xO3 (PZT materials, which have the most outstanding piezoelectric properties. The advanced piezoelectric energy harvesting technologies included materials, fabrications, unique designs, and properties are introduced to understand current technical levels and suggest the future directions of piezoelectric energy harvesting.

  8. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rutter, A. [Sustainability Solutions LLC (Guam); Briggs, D. [Naval Base Guam, Santa Rita (Guam)

    2014-03-01

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  9. Final Report for the Soboba Strategic Tribal Energy Planning Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Kim [EPA Specialist

    2013-09-17

    In 2011 the Tribe was awarded funds from the Department of Energy to formulate the Soboba Strategic Tribal Energy Plan. This will be a guiding document used throughout the planning of projects focused on energy reduction on the Reservation. The Soboba Strategic Tribal Energy Plan's goal is to create a Five Year Energy Plan for the Soboba Band of Luiseno Indians in San Jacinto, California. This plan will guide the decision making process towards consistent progress leading to the Tribal goal of a 25% reduction in energy consumption in the next five years. It will additionally outline energy usage/patterns and will edentify areas the Tribe can decrease energy use and increase efficiency. The report documents activities undertaken under the grant, as well as incldues the Tribe's strategif energy plan.

  10. Data sources and methods for industrial energy analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-08-01

    Following an introductory and overview section of industrial energy-use patterns, Section II of this report describes a number of the major industrial-energy-use data bases often used to analyze industrial energy use. Section III gives the results of an analysis which used a number of energy and industrial-location data bases to estimate plant-specific energy use in ten of the largest energy-using industries. The section summarizes the results of the analysis and discusses the implications of the energy use per plant distributions for the industrial market for high- and low-Btu coal gasification and coal liquefaction. Section IV outlines a methodology for segmenting the industrial energy market and evaluating the competitiveness of low- and medium-Btu gas relative to other alternatives. The methodology demonstrates the uses of the industrial energy data bases in performing market penetration analysis.

  11. Integrated System Health Management (ISHM) Technology Demonstration Project Final Report

    Science.gov (United States)

    Mackey, Ryan; Iverson, David; Pisanich, Greg; Toberman, Mike; Hicks, Ken

    2006-01-01

    Integrated System Health Management (ISHM) is an essential capability that will be required to enable upcoming explorations mission systems such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV), as well as NASA aeronautics missions. However, the lack of flight experience and available test platforms have held back the infusion by NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) of ISHM technologies into future space and aeronautical missions. To address this problem, a pioneer project was conceived to use a high-performance aircraft as a low-cost proxy to develop, mature, and verify the effectiveness of candidate ISHM technologies. Given the similarities between spacecraft and aircraft, an F/A-18 currently stationed at Dryden Flight Research Center (DFRC) was chosen as a suitable host platform for the test bed. This report describes how the test bed was conceived, how the technologies were integrated on to the aircraft, and how these technologies were matured during the project. It also describes the lessons learned during the project and a forward path for continued work.

  12. Artificial intelligence technologies for power system operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, S.N.; Cardozo, E.

    1986-01-01

    Researchers in this study examined the potential of artificial intelligence (AI) technologies for improving problem-solving strategies in 16 power system operations. To demonstrate the use of AI in the area they considered most promising, contingency selection-security assessment, they also developed two programs - one to simulate network protection schemes, the other to diagnose faults.

  13. Technology, Division of Labor and Alienation From Work. Final Report.

    Science.gov (United States)

    Shepard, Jon M.

    This study investigated the theory that a worker's relationship to technology instills in him identifiable attitudes about work. Using samples of office workers from a bank and five insurance companies, and samples of factory workers from the oil refining and automobile industries, a total of 1,888 workers were divided into (1) office and factory…

  14. Energy technologies and the environment: Environmental information handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acid rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).

  15. Global development of renewable enregy technologies. Shizen energy gijutsu no global na kaihatsu keikaku

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, H. (Environmental Research Center, Tokyo (Japan))

    1990-01-25

    A consideration was given on the case where renewable energy technology development is handled as one policy option to deal with global warming problems. Any renewable energy technology may be effective as a measure for global warming problems if the result of its energy balance analysis is not too poor. Developing global natural energy utilizing technologies requires an international organization to aid researches and developments using adequate methods, and popularize and promote the technologies matching with quality and size of energy demand in final applications in each region in the world. Comparing simply the fossil fuels that are already extensively distributed with renewable energies in economic aspects may find often the renewable energies more disadvantageous. It is necessary to promote works to evaluate the possibility of the renewable energy utilizing technologies in terms of socio-economic effects. Unless an opportunity is grasped on a global basis that can replace fossil fuels with renewable energies most economically, and capital investments are made and developments are carried out, temperature rise as anticipated currently would not be evaded. 4 refs., 1 fig., 2 tabs.

  16. Noise-control needs in the developing energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Keast, D.N.

    1978-03-01

    The noise characteristics of existing energy conversion technologies, e.g., from obtaining and processing fossil fuels to power plants operations, and of developing energy technologies (wind, geothermal sources, solar energy or fusion systems) are discussed in terms of the effects of noise on humans, animals, structures, and equipment and methods for noise control. Regulations for noise control are described. Recommendations are made for further research on noise control and noise effects. (LCL)

  17. Energy systems analysis of waste to energy technologies by use of EnergyPLAN

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.

    2009-04-15

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO{sub 2} reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together, the two solutions may contribute to an alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority given to combined heat and power plants with high electrical efficiencies. (author)

  18. 75 FR 72836 - Notice of Availability of Final Environmental Impact Statement for the Tonopah Solar Energy...

    Science.gov (United States)

    2010-11-26

    ...: 14X5017] Notice of Availability of Final Environmental Impact Statement for the Tonopah Solar Energy Crescent Dunes Solar Energy Project, Nye County, NV AGENCY: Bureau of Land Management, Interior. ACTION... (BLM) has prepared a Final Environmental Impact Statement (EIS) for the Crescent Dunes Solar Energy...

  19. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  20. Global Nuclear Energy Partnership Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  1. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  2. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  3. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  4. Iowa's renewable energy and infrastructure impacts : final report

    Science.gov (United States)

    2010-04-01

    The federal government is aggressively promoting biofuels as an answer to global climate change and dependence on imported sources : of energy. Iowa has quickly become a leader in the bioeconomy and wind energy production, but meeting the United Stat...

  5. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gelman, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomberlin, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  6. The project for an energy-enriched curriculum: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The Project for an Energy-Enriched Curriculum (PEEC) reported was a long-running effort at infusing energy/environment/economics (E/E/E) themes into the K-12 curriculum. While it was conducted as a single integrated effort by the National Science Teachers Association (NSTA), it is supported by a series of contracts and grants, during the period 1976 to 1984, from the Energy Research and Development Administration (ERDA) and the US Department of Energy (DOE).

  7. Power electronics - The key technology for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    solutions, can pave the way for renewable energies. In light of this, some of the most emerging renewable energies, e.g. wind energy and photovoltaic, which by means of power electronics are changing character as a major part in the electricity generation, are explored in this paper. Issues like technology...

  8. Efficient district heating in the future energy system. Final report; Effektiv fjernvarme i fremtidens energisystem. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    The purpose of this project is to illustrate how district heating can develop its role in the future Danish energy system, for example by reducing energy losses and the dynamic use of common technologies such as cogeneration and heat storage, and less widespread technologies such as heat pumps, geothermal heating, and cooling. The aim is also to analyse how electricity and district heating can interact more effectively, and to point out how framework conditions are important for district heating's continued development and efficiency. In the project, a linear optimization model is developed and applied as to analyse the interaction between district heating supply on the one hand, and energy savings, CO{sub 2} targets, wind power and the international electricity market on the other hand. Furthermore, more close-case operational analyses of district heating systems have been made in Ringkoebing and the metropolitan area, based on data from the district heating companies. Finally, a wide range of challenges for district heating in the long term were discussed and analysed during meetings with the project's reference group, including the need for development and demonstration projects. (ln)

  9. Community Geothermal Technology Program: Hawaii glass project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. [comp.; Irwin, B.

    1988-01-20

    Objective was to develop a glass utilizing the silica waste material from geothermal energy production, and to supply local artists with this glass to make artistic objects. A glass composed of 93% indigenous Hawaiian materials was developed; 24 artists made 110 objects from this glass. A market was found for art objects made from this material.

  10. Dechlorination Technology Manual. Final report. [Utility cooling water discharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Aschoff, A.F.; Chiesa, R.J.; Jacobs, M.H.; Lee, Y.H.; Mehta, S.C.; Meko, A.C.; Musil, R.R.; Sopocy, D.M.; Wilson, J.A.

    1984-11-01

    On November 19, 1982, the United States Environmental Protection Agency (EPA) promulgated regulations severely restricting chlorination practices as they relate to utility cooling water discharge systems. EPRI authorized the preparation of a manual on dechlorination technology to assist utilities in evaluating the various alternatives available to them to meet these new requirements. The Dechlorination Technology Manual emphasizes the engineering aspects involved in the selection and design of dechlorination systems. However, background information is included concerning chemistry, regulatory requirements, environmental considerations and aquatic impacts. There is also a brief discussion of the various alternatives to dechlorination. Case studies are given to acquaint the user with the use of the manual for the design of chlorination facilities given various site-related characteristics, such as salt versus fresh waters. Numerous graphs and tables are presented to facilitate the selection and design process. 207 references, 66 figures, 60 tables.

  11. N+2 Advanced Low NOx Combustor Technology Final Report

    Science.gov (United States)

    Herbon, John; Aicholtz, John; Hsieh, Shih-Yang; Viars, Philip; Birmaher, Shai; Brown, Dan; Patel, Nayan; Carper, Doug; Cooper, Clay; Fitzgerald, Russell

    2017-01-01

    In accordance with NASAs technology goals for future subsonic vehicles, this contract identified and developed new combustor concepts toward meeting N+2 generation (2020) LTO (landing and take-off) NOx emissions reduction goal of 75 from the standard adopted at Committee on Aviation Environmental Protection 6 (CAEP6). Based on flame tube emissions, operability, and autoignition testing, one concept was down selected for sector testing at NASA. The N+2 combustor sector successfully demonstrated 75 reduction for LTO NOx (vs. CAEP6) and cruise NOx (vs. 2005 B777-200 reference) while maintaining 99.9 cruise efficiency and no increase in CO and HC emissions.The program also developed enabling technologies for the combustion system including ceramic matrix composites (CMC) liner materials, active combustion control concepts, and laser ignition for improved altitude relight.

  12. Integrating Geospatial Technologies in an Energy Unit

    Science.gov (United States)

    Kulo, Violet A.; Bodzin, Alec M.

    2011-01-01

    This article presents a design-based research study of the implementation of an energy unit developed for middle school students. The unit utilized Google Earth and a geographic information system (GIS) to support student understanding of the world's energy resources and foster their spatial thinking skills. Findings from the prototype study…

  13. Innovation versus monopoly: geothermal energy in the West. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, S.L.; Stover, D.F.; Nelson, P.A.; Lamont, W.J.

    1977-07-01

    The following subjects are covered: geothermal energy and its use, electric utilities and the climate for geothermal development, the raw fuels industry and geothermal energy, and government and energy. The role of large petroleum companies and large public utilities is emphasized. (MHR)

  14. Assessment of the Fusion Energy Sciences Program. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-05-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study.

  15. Flexible Assembly Solar Technology (FAST) Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Toister, Elad [BrightSource Energy Inc., Jerusalem (Israel)

    2014-11-06

    The Flexible Assembly Solar Technology (FAST) project was initiated by BrightSource in an attempt to provide potential solar field EPC contractors with an effective set of tools to perform specific construction tasks. These tasks are mostly associated with heliostat assembly and installation, and require customized non-standard tools. The FAST concept focuses on low equipment cost, reduced setup time and increased assembly throughput as compared to the Ivanpah solar field construction tools.

  16. EMSP Final Report: Electrically Driven Technologies for Radioactive Aerosol Abatement

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.

    2003-01-22

    The purpose of this research project was to develop an improved understanding of how electrically driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume. There was anecdotal evidence in the literature that acoustic agglomeration and electrical coalescence could be used together to change the size distribution of aerosol particles in such a way as to promote easier filtration and less frequent maintenance of filtration systems. As such, those electrically driven technologies could potentially be used as remote technologies for improved treatment; however, existing theoretical models are not suitable for prediction and design. To investigate the physics of such systems, and also to prototype a system for such processes, a collaborative project was undertaken between Oak Ridge National Laboratory (ORNL) and the University of Texas at Austin (UT). ORNL was responsible for the larger-scale prototyping portion of the project, while UT was primarily responsible for the detailed physics in smaller scale unit reactors. It was found that both electrical coalescence and acoustic agglomeration do in fact increase the rate of aggregation of aerosols. Electrical coalescence requires significantly less input power than acoustic agglomeration, but it is much less effective in its ability to aggregate/coalesce aerosols. The larger-scale prototype showed qualitatively similar results as the unit reactor tests, but presented more difficulty in interpretation of the results because of the complex multi-physics coupling that necessarily occur in all larger

  17. Essentials of energy technology sources, transport, storage, conservation

    CERN Document Server

    Fricke, Jochen

    2013-01-01

    An in-depth understanding of energy technology, sources, conversion, storage, transport and conservation is crucial for developing a sustainable and economically viable energy infrastructure. This need, for example, is addressed in university courses with a special focus on the energy mix of renewable and depletable energy resources. Energy makes our lives comfortable, and the existence of amenities such as heaters, cars, warm water, household appliances and electrical light is characteristic for a developed economy. Supplying the industrial or individual energy consumer with energy 24 hours

  18. Biomass Energy Technological Paradigm (BETP: Trends in This Sector

    Directory of Open Access Journals (Sweden)

    Meihui Li

    2017-04-01

    Full Text Available Renewable energy plays a significant role in the world for obvious environmental and economic reasons with respect to the increasing energy crisis and fossil fuel environmental problems. Biomass energy, one of the most promising renewable energy technologies, has drawn increasing attention in recent years. However, biomass technologies still vary without an integrated framework. Considering the theory of a technological paradigm and implementing a literature analysis, biomass technological development was found to follow a three-stage technological paradigm, which can be divided into: BETP (biomass energy technological paradigm competition, BETP diffusion, and BETP shift. Further, the literature review indicates that waste, like municipal solid waste (MSW, has the potential to be an important future trend in the world and waste-to-energy (WTE is designed for sustainable waste management. Among WTE, anaerobic digestion has the potential to produce energy from waste sustainably, safely, and cost-effectively. The new BETP technological framework proposed in this paper may offer new research ideas and provide a significant reference for scholars.

  19. Implications of Regional Transmission Organization Design for Renewable Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Porter, K.

    2002-05-01

    This report summarizes the development of Regional Transmission Organizations (RTOs) and assesses the potential implications of market rules for renewable energy technologies. The report focuses on scheduling provisions, as these have proved problematic in some cases for intermittent renewable energy technologies. Market rules of four RTOs-the Pennsylvania-Maryland-New Jersey ISO, the ERCOT ISO, the Midwest ISO and the New York ISO (NYISO)-were examined to determine the impact on intermittent renewable energy projects such as wind energy generators. Also, a more general look was taken at how biomass power may fare in RTOs, specifically whether these technologies can participate in ancillary service markets. Lastly, an assessment was made regarding the implications for renewable energy technologies of a Northeast-wide RTO that would combine the three existing Northeast ISOs (the aforementioned PJM and NYISOs, as well as ISO New England).

  20. Investigating load management technology options: a survey of technologies and issues. Final report. [Competitive interrelationships of LM, conservation, and renewables

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    Load-management-technology options are commercially available and may be desirable in many utility-service areas. Energy-conservation and renewable-energy-supply technologies are also cost-effective in many applications and, where installed, may reduce the effectiveness and attractiveness of load-management options. Recent energy legislation has not addressed these competitive interrelationships; future legislation is unlikely to do so unless a coordinated task-force effort among relevant DOE offices is pursued to derive strategic technology and policy recommendations on this issue. R and D strategies should help formulate these recommendations.

  1. Brazilian energy balance 2015: year 2014 - final report; Balanco energetico nacional 2015: ano base 2014 - relatorio final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The Balance (BEB) contains the accounting relative to energy supply and consumption, as well the conversion processes and foreign trade. It presents in a single document the historical series of these operations and information about reserves, installed capacities and Federal States data. The BEB is divided into eight chapters and ten annexes, whose contents are as follow. Chapters' content can be described as follows: Chapter 1 - Energy Analysis and Aggregated Data - presents energy highlights per source in 2014 and analyses the evolution of the domestic energy supply and its relationship with economic growth. Chapter 2 - Energy Supply and Demand by Source - has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country. Chapter 3 - Energy Consumption by Sector - presents the final energy consumption classified by primary and secondary source for each sector of the economy. Chapter 4 - Energy Imports and Exports - presents the evolution of the data on the import and export of energy and the dependence on external energy. Chapter 5 - Balance of Transformation Centers - presents the energy balances for the energy transformation centers including their losses. Chapter 6 - Energy Resources and Reserves - has the basic concepts use in the survey of resources and reserves of primary energy sources. Chapter 7 - Energy and Socio economics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports. Chapter 8 - State Energy Data - presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential. Relating to annexes the current structure is presented bellow: Annex I - Installed Capacity - shows the installed capacity of electricity generation, the installed

  2. Electrical energy efficiency technologies and applications

    CERN Document Server

    Sumper, Andreas

    2012-01-01

    The improvement of electrical energy efficiency is fast becoming one of the most essential areas of sustainability development, backed by political initiatives to control and reduce energy demand. Now a major topic in industry and the electrical engineering research community, engineers have started to focus on analysis, diagnosis and possible solutions. Owing to the complexity and cross-disciplinary nature of electrical energy efficiency issues, the optimal solution is often multi-faceted with a critical solutions evaluation component to ensure cost effectiveness. This single-source refer

  3. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t

  4. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); South China Univ. of Technology (SCUT), Guangzhou (China); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid- and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

  5. 2005 Final Report: New Technologies for Future Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Peter McIntyre; Al McInturff

    2005-12-31

    This document presents an annual report on our long-term R&D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress man-agement, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles. The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ‘free’ su-perconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A&M group ‘comes of age’ in the family of superconducting magnet R&D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of model dipoles that each build incrementally upon a proven core design.

  6. Mediated Electrochemical Oxidation (MEO) based technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-18

    The goal of this CRADA was the continued research and development by LLNL, and the commercialization by EOSystems, Inc., of the waste treatment technology known as Mediated Electrochemical Oxidation. MEO is a non-thermal electrochemical technology developed in part at LLNL for the destruction of organic waste streams; this technology has wide applications in the government, manufacturing, biomedical and industrial sectors. The system uses an electrochemical cell to generate highly oxidizing {open_quote}mediators{close_quote} in an acidic aqueous solution, which subsequently react with organic waste and convert it to carbon dioxide and water. The broad research responsibilities of LLNL in this CRADA were the investigation of numerous cell electrode materials and materials of construction, the evaluation of the process chemistry, and the testing of a flow visualization cell and a functional prototype. Major deliverables included: a determination of suitable electrode materials, an investigation of the destruction efficiency for numerous organic substrates, the construction and testing of a flow visualization cell, and the testing of a functional prototype commercial cell. The responsibilities of EOSystems included the definition of the market and potential customers, the design and engineering of the flow visualization and prototype cells, and the commercialization of the MEO units. Deliverables included the selection of the process and ancillary systems, the design of a flow visualization cell, and the design and construction of a prototype cell. In general, most of the deliverables were met by both partners, although unexpected technical difficulties delayed some of the delivery dates and forced the adoption of a modified statement of work. However, the primary, original project goals were completed on-time and on-budget.

  7. Breakthrough Energy Savings with Waterjet Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee W. Saperstein; R. Larry Grayson; David A. Summers; Jorge Garcia-Joo; Greg Sutton; Mike Woodward; T.P. McNulty

    2007-05-15

    Experiments performed at the University of Missouri-Rolla's Waterjet Laboratory have demonstrated clearly the ability of waterjets to disaggregate, in a single step, four different mineral ores, including ores containing iron, lead and copper products. The study focused mainly on galena-bearing dolomite, a lead ore, and compared the new technology with that of traditional mining and milling to liberate the valuable constituent for the more voluminous host rock. The technical term for the disintegration of the ore to achieve this liberation is comminution. The potential for energy savings if this process can be improved, is immense. Further, if this separation can be made at the mining face, then the potential energy savings include avoidance of transportation (haulage and hoisting) costs to move, process and store this waste at the surface. The waste can, instead, be disposed into the available cavities within the mine. The savings also include the elimination of the comminution, crushing and grinding, stages in the processing plant. Future prototype developments are intended to determine if high-pressure waterjet mining and processing can be optimized to become cheaper than traditional fragmentation by drilling and blasting and to optimize the separation process. The basic new mining process was illustrated in tests on two local rock types, a low-strength sandstone with hematite inclusions, and a medium to high-strength dolomite commonly used for construction materials. Illustrative testing of liberation of minerals, utilized a lead-bearing dolomite, and included a parametric study of the optimal conditions needed to create a size distribution considered best for separation. The target goal was to have 50 percent of the mined material finer than 100 mesh (149 microns). Of the 21 tests that were run, five clearly achieved the target. The samples were obtained as run-of-mine lumps of ore, which exhibited a great deal of heterogeneity within the samples. This

  8. Coal-fueled diesel: Technology development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, G.; Hsu, B.; Flynn, P.

    1989-03-01

    This project consisted of four tasks: (1) to determine if CWM could be ignited and burned rapidly enough for operation in a 1000-rpm diesel engine, (2) to demonstrate that a durable CWM-fueled engine could in principle be developed, (3) to assess current emissions control technology to determine the feasibility of cleaning the exhaust of a CWM-fueled diesel locomotive, and (4) to conduct an economic analysis to determine the attractiveness of powering US locomotives with CWM. 34 refs., 125 figs., 28 tabs.

  9. Remote equipment technology. Final report for GFY 1880

    Energy Technology Data Exchange (ETDEWEB)

    Wadekamper, D.C.

    1980-09-01

    An interactive graphics terminal and a desk-top computer were utilized to perform a Computer Aided Remote Maintenance simulation of a hypothetical equipment item. The equipment item included an electrical connection, hydraulic fitting, and simple bolt pattern which were maintained by remote manipulators during the simulation. These remote maintenance operations demonstrated that the Computer Aided Remote Maintenance simulation technology could be extended to complex equipment items. As a result, these equipment items can be evaluated from the standpoint of remote operation and maintenance prior to purchase or installation in a remote processing or cell arrangement.

  10. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  11. Energy and Technology Review, November 1988

    Energy Technology Data Exchange (ETDEWEB)

    Poggio, A.J.; Crawford, R.; Gleason, K.; Hendry, D.P.; Sanford, N.M.; Taft, S.O.

    1988-01-01

    This review by Lawrence Livermore National Laboratory contains papers related to: cratering phenomenology revealed through discrete-element modeling; high-intensity short-pulse lasers; localized transmission of wave energy; and evidence of localized wave transmission.

  12. Energy conservation technologies based on thermodynamic principles

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Masaru [Shibaura Institute of Technology of Technology, Tokyo (Japan)

    1996-12-31

    In order to reduce CO{sub 2} emission to prevent global warming, the most promising way for electric generation in the Northeast Asia is to introduce cogeneration and {open_quotes}repowering{close_quotes} technologies based on high temperature gas turbines fueled by natural gas. Especially the old type coal burning boiler-steam turbine plants should be retrofit by introducing gas turbines to become highly efficient combined cycle. Same technologies should be applied to the old garbage incineration plants and/or even to the nuclear power plants. The exhaust heat or steam should become much increased and it should be utilized as the process heat for industries or heat supply as the distinct heating or cooling for residential area. This paper introduces a brief survey of these new technologies.

  13. Assessing Rare Metal Availability Challenges for Solar Energy Technologies

    Directory of Open Access Journals (Sweden)

    Leena Grandell

    2015-08-01

    Full Text Available Solar energy is commonly seen as a future energy source with significant potential. Ruthenium, gallium, indium and several other rare elements are common and vital components of many solar energy technologies, including dye-sensitized solar cells, CIGS cells and various artificial photosynthesis approaches. This study surveys solar energy technologies and their reliance on rare metals such as indium, gallium, and ruthenium. Several of these rare materials do not occur as primary ores, and are found as byproducts associated with primary base metal ores. This will have an impact on future production trends and the availability for various applications. In addition, the geological reserves of many vital metals are scarce and severely limit the potential of certain solar energy technologies. It is the conclusion of this study that certain solar energy concepts are unrealistic in terms of achieving TW scales.

  14. Space assets, technology and services in support of energy policy

    Science.gov (United States)

    Vasko, C. A.; Adriaensen, M.; Bretel, A.; Duvaux-Bechon, I.; Giannopapa, C. G.

    2017-09-01

    Space can be used as a tool by decision and policy makers in developing, implementing and monitoring various policy areas including resource management, environment, transport, security and energy. This paper focuses on the role of space for the energy policy. Firstly, the paper summarizes the European Union's (EU) main objectives in energy policy enclosed in the Energy Strategy 2020-2030-2050 and demonstrates how space assets can contribute to achieving those objectives. Secondly, the paper addresses how the European Space Agency (ESA) has established multiple initiatives and programs that directly finance the development of space assets, technology and applications that deliver services in support of the EU energy policy and sector. These efforts should be continued and strengthened in order to overcome identified technological challenges. The use of space assets, technology and applications, can help achieve the energy policy objectives for the next decades.

  15. Washoe Tribe Alternative Energy Feasibility Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jennifer [Washoe Tribe of NV and CA

    2014-10-01

    The Washoe Tribe of Nevada and California was awarded funding to complete the Washoe Tribe Alternative Energy Feasibility Study project. The main goal of the project was to complete an alternative energy feasibility study. This study was completed to evaluate “the potential for development of a variety of renewable energy projects and to conduct an alternative energy feasibility study that determines which alternative energy resources have the greatest economic opportunity for the Tribe, while respecting cultural and environmental values” (Baker-Tilly, 2014). The study concluded that distributed generation solar projects are the best option for renewable energy development and asset ownership for the Washoe Tribe. Concentrating solar projects, utility scale wind projects, geothermal, and biomass resource projects were also evaluated during the study and it was determined that these alternatives would not be feasible at this time.

  16. Maximizing Residential Energy Savings: Net Zero Energy House (ZEH) Technology Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Roberts, D.

    2008-11-01

    To meet current U.S. Department of Energy zero-energy home performance goals, new technologies and solutions must increase whole-house efficiency savings by an additional 40% relative to those provided by best available components and systems.

  17. GRANITE CUTTING WASTE: TECHNOLOGICAL INNOVATION FOR THE FINAL DESTINATION

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2015-06-01

    Full Text Available The granite processing market is one of the most promising business areas of the mineral sector, with an average growth of the world production of about 6% per year. The granite extraction generates residues in the form of powder rock of 20-25 wt.% of the total benefited. The granite dust must be carefully managed since it can cause siltation of rivers and human health risks. This paper presents two routes for the final destination of this waste: the vitrification process aiming the production of fibers for thermo-acoustic insulation, and the magnetic separation in order to recover the steel grit. Results showed that the forms of treatments presented are economically and ecologically viable since they represent a cost reduction in the waste disposal, and also provide the production of new materials with commercial value.

  18. Proceedings of the second international symposium on nonconventional energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This book presents the papers given at a symposium on emerging energy systems. Topics considered at the symposium included a quantum ramjet for interstellar flight, oil and gas exploration, advanced propulsion technology, motional field generators, electromagnetics, the fundamental properties of matter, magnetic monopoles, controlled fusion, ball lighting, homopolar faraday generator, free energy, fundamental ac energy and power measurement techniques in non-conventional energy, advanced alternators, ambient temperature superconducting filaments, and geometrical models of field wave forms.

  19. Energy/environment/technology two visions, two directions

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Penner, P.

    1995-12-31

    This paper compares the energy policies proposed by the U.S. Congress and the U.S. Department of Energy (DOE). Connections between energy, economy, environment, and technology are discussed in some detail. The National Energy Policy Plan of the DOE is summarized, and the impact of budget cuts proposed by Congress are projected. Aspects of the DOE plan which are emphasized include research and development, minimization of regulation, and eliminating redundant government and private industry efforts. 5 figs., 5 tabs.

  20. An innovative educational program for residential energy efficiency. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Laquatra, J.; Chi, P.S.K.

    1996-09-01

    Recognizing the importance of energy conservation, under sponsorship of the US Department of Energy, Cornell University conducted a research and demonstration project entitled An Innovative Educational Program for Residential Energy Efficiency. The research project examined the amount of residential energy that can be saved through changes in behavior and practices of household members. To encourage these changes, a workshop was offered to randomly-selected households in New York State. Two surveys were administered to household participants (Survey 1 and Survey 2, Appendix A) and a control group; and a manual was developed to convey many easy but effective ways to make a house more energy efficient (see Residential Manual, Appendix B). Implementing methods of energy efficiency will help reduce this country`s dependence on foreign energy sources and will also reduce the amount of money that is lost on inefficient energy use. Because Cornell Cooperative Extension operates as a component of the land-grant university system throughout the US, the results of this research project have been used to develop a program that can be implemented by the Cooperative Extension Service nationwide. The specific goals and objectives for this project will be outlined, the population and sample for the research will be described, and the instruments utilized for the survey will be explained. A description of the workshop and manual will also be discussed. This report will end with a summary of the results from this project and any observed changes and/or recommendations for future surveys pertaining to energy efficiency.

  1. Soft Energy Paths Revisited: Politics and Practice in Energy Technology Transitions

    Directory of Open Access Journals (Sweden)

    Chelsea Schelly

    2016-10-01

    Full Text Available This paper argues that current efforts to study and advocate for a change in energy technologies to reduce their climate and other environmental impacts often ignore the political, social, and bodily implications of energy technology choices. Framing renewable energy technologies exclusively in terms of their environmental benefits dismisses important questions about how energy infrastructures can be designed to correspond to democratic forms of socio-politics, forms of social organization that involve independence in terms of meeting energy needs, resilience in terms of adapting to change, participatory decision making and control, equitable distribution of knowledge and efficacy, and just distribution of ownership. Recognizing technological choices as political choices brings explicit attention to the kinds of socio-political restructuring that could be precipitated through a renewable energy technology transition. This paper argues that research on energy transitions should consider the political implications of technological choices, not just the environmental consequences. Further, emerging scholarship on energy practices suggests that social habits of energy usage are themselves political, in that they correspond to and reinforce particular arrangements of power. Acknowledging the embedded politics of technology, as the decades’ old concept of soft path technologies encourages, and integrating insights on the politics of technology with insights on technological practices, can improve future research on energy policy and public perceptions of energy systems. This paper extends insights regarding the socio-political implications of energy paths to consider how understandings of energy technologies as constellations of embedded bodily practices can help further develop our understanding of the consequences of energy technologies, consequences that move beyond environmental implications to the very habits and behaviors of patterned energy

  2. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  3. Measures of International Manufacturing and Trade of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David; Mann, Margaret

    2017-05-25

    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metrics for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.

  4. Energy Technology Initiatives - Implementation Through Multilateral Co-operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    New technologies will be critical in addressing current global energy challenges such as energy security. More must be done, however, to push forward the development and deployment of the technologies we need today and will need in the future. Government leaders have repeatedly underlined the crucial role of industry and businesses in advancing energy technologies and the importance of strong collaboration among all stakeholders to accelerate technology advances. To attain these goals, increased co-operation between industries, businesses and government energy technology research is indispensable. The public and private sectors must work together, share burdens and resources, while at the same time multiplying results and outcomes. The 42 multilateral technology initiatives (Implementing Agreements) supported by the IEA are a flexible and effective framework for IEA member and non-member countries, businesses, industries, international organisations and non-government organisations to research breakthrough technologies, to fill existing research gaps, to build pilot plants, to carry out deployment or demonstration programmes -- in short to encourage technology-related activities that support energy security, economic growth and environmental protection. This publication highlights the significant accomplishments of the IEA Implementing Agreements.

  5. Analysis and evaluation of the applicability of green energy technology

    Science.gov (United States)

    Xu, Z. J.; Song, Y. K.

    2017-11-01

    With the seriousness of environmental issues and the shortage of resources, the applicability of green energy technology has been paid more and more attention by scholars in different fields. However, the current researches are often single in perspective and simple in method. According to the Theory of Applicable Technology, this paper analyzes and defines the green energy technology and its applicability from the all-around perspectives of symbiosis of economy, society, environment and science & technology etc., and correspondingly constructs the evaluation index system. The paper further applies the Fuzzy Comprehensive Evaluation to the evaluation of its applicability, discusses in depth the evaluation models and methods, and explains in detail with an example. The author holds that the applicability of green energy technology involves many aspects of economy, society, environment and science & technology and can be evaluated comprehensively by an index system composed of a number of independent indexes. The evaluation is multi-object, multi-factor, multi-level and fuzzy comprehensive, which is undoubtedly correct, effective and feasible by the Fuzzy Comprehensive Evaluation. It is of vital theoretical and practical significance to understand and evaluate comprehensively the applicability of green energy technology for the rational development and utilization of green energy technology and for the better promotion of sustainable development of human and nature.

  6. How might renewable energy technologies fit in the food-water-energy nexus?

    Science.gov (United States)

    Newmark, R. L.; Macknick, J.; Heath, G.; Ong, S.; Denholm, P.; Margolis, R.; Roberts, B.

    2011-12-01

    Feeding the growing population in the U.S. will require additional land for crop and livestock production. Similarly, a growing population will require additional sources of energy. Renewable energy is likely to play an increased role in meeting the new demands of electricity consumers. Renewable energy technologies can differ from conventional technologies in their operation and their siting locations. Many renewable energy technologies have a lower energy density than conventional technologies and can also have large land use requirements. Much of the prime area suitable for renewable energy development in the U.S. has historically been used for agricultural production, and there is some concern that renewable energy installations could displace land currently producing food crops. In addition to requiring vast expanses of land, both agriculture and renewable energy can require water. The agriculture and energy sectors are responsible for the majority of water withdrawals in the U.S. Increases in both agricultural and energy demand can lead to increases in water demands, depending on crop management and energy technologies employed. Water is utilized in the energy industry primarily for power plant cooling, but it is also required for steam cycle processes and cleaning. Recent characterizations of water use by different energy and cooling system technologies demonstrate the choice of fuel and cooling system technologies can greatly impact the withdrawals and the consumptive use of water in the energy industry. While some renewable and conventional technology configurations can utilize more water per unit of land than irrigation-grown crops, other renewable technology configurations utilize no water during operations and could lead to reduced stress on water resources. Additionally, co-locating agriculture and renewable energy production is also possible with many renewable technologies, avoiding many concerns about reductions in domestic food production. Various

  7. Wind Energy Technology: Training a Sustainable Workforce

    Science.gov (United States)

    Krull, Kimberly W.; Graham, Bruce; Underbakke, Richard

    2009-01-01

    Through innovative teaching and technology, industry and educational institution partnerships, Cloud County Community College is preparing a qualified workforce for the emerging wind industry estimated to create 80,000 jobs by 2020. The curriculum blends on-campus, on-line and distance learning, land-lab, and field training opportunities for…

  8. Technologies for building integrated energy supply; Teknologier for bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Katic, I.

    2011-07-15

    The current report is part of the deliverables from the project ''Building Integrated Energy Supply'' supported by the Danish Energy Authority R and D program. It describes a range of technologies for individual supply of heat and/or electricity to dwellings with respect to their stage of development and possible application in the near future. Energy supply of buildings is becoming more and more complex, partly as a result of increasing demands for comfort, efficiency and reduced emissions, partly as a result of rising oil prices and improved competitiveness of alternative energy sources. The days where ordinary boilers were the dominant source of individual supply of dwellings are becoming past these years. The challenge of the new range of technologies lies to a high extent in the fluctuating nature of their energy conversion and their interaction with the supply grids for heat and electricity. There is thus an increasing demand to understand the nature of the different supply technologies, besides a regular update of their economical key figures. The technologies briefly described in this study are: Solar heating, passive solar energy, biofuel boilers, heat pumps, micro CHP, solar photovoltaic and energy storage systems. The selected technologies are all assessed to play an important role in future's mix of supply technologies in Denmark, especially heat pumps and solar. (Author)

  9. Evaluation of the energy efficiency of alternative processes and technology chains (BEAT). Research for the production of tomorrow. Focus: Simulation and evaluation. Final report for the research project; Bewertung der Energieeffizienz alternativer Prozesse und Technologieketten (BEAT). Forschung fuer die Produktion von morgen. Schwerpunkt: Simulation und Bewertung. Abschlussbericht fuer das Verbundprojekt

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Satisfying the needs of people in a globalized world requires a sustainable development. The production of goods is a key role in the development of this sustainable development. The sustainable development of manufacturing companies requires the implementation of new lifecycle assessment methods for manufacturing processes and manufacturing technology chains. This final report under consideration describes the development of a methodology for the evaluation and assessment of technology chains using the production of a gear wheel and an injector.

  10. 78 FR 31997 - Greatmat Technology Corp., Kentucky USA Energy, Inc., Solar Energy Ltd., and Visiphor Corp...

    Science.gov (United States)

    2013-05-28

    ... COMMISSION Greatmat Technology Corp., Kentucky USA Energy, Inc., Solar Energy Ltd., and Visiphor Corp., Order... lack of current and accurate information concerning the securities of Solar Energy Ltd. because it has... concerning the securities of Kentucky USA Energy, Inc. because it has not filed any periodic reports since...

  11. ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION

    Energy Technology Data Exchange (ETDEWEB)

    Kate Burke

    2004-01-01

    This multi-state collaborative project will coordinate federal, state, and private sector resources and high-priority school-related energy research under a comprehensive initiative that includes tasks that increase adoption of advanced energy efficiency high-performance technologies in both renovation of existing schools and building new ones; educate and inform school administrators, architects, engineers, and manufacturers nationwide as to the energy, economic, and environmental benefits of energy efficiency technologies; and improve the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in schools.

  12. Final Report - Wind and Hydro Energy Feasibility Study - June 2011

    Energy Technology Data Exchange (ETDEWEB)

    Jim Zoellick; Richard Engel; Rubin Garcia; Colin Sheppard

    2011-06-17

    This feasibility examined two of the Yurok Tribe's most promising renewable energy resources, wind and hydro, to provide the Tribe detailed, site specific information that will result in a comprehensive business plan sufficient to implement a favorable renewable energy project.

  13. SUSTAINABLE ENERGY POLICY INTEGRATED ASSESSMENT “SEPIA” - Final Report

    OpenAIRE

    LAES, Eric; COUDER, Johan; VERBRUGGEN, Aviel; EGGERMONT, Gilbert; HUGE, Jean; MAES, Fré; MESKENS, Gaston; RUAN, Da; SCHROEDER, Jantine; Jacquemain, Marc; Italiano, Patrick

    2011-01-01

    The report summarizes a 3 years research program aimed at developping long term sustainable scenarios for Belgian the energy system. The research included expert participation, stakeholders assessment, quantitative modelling and fuzzy-logic analysis of the assessments. It produced three scenarios for a sustainable energy system in Belgium 2050.

  14. Urban and energy planning in Santiago de Compostela : Final Report

    NARCIS (Netherlands)

    Fernandez Maldonado, A.M.

    2015-01-01

    The purpose of Deliverable 4.2 is to give an overview of urban energy planning in the six PLEEC partner cities. The six reports illustrate how cities deal with different challenges of the urban energy transformation from a structural perspective including issues of urban governance and spatial

  15. ALINET: a model for assessing energy conservation opportunities in the food processing industry. Final technical report, September 1977-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Levis, A H; Ducot, E R; Levis, I S; Webster, T F

    1979-12-01

    ALINET is a network model designed for the analysis of energy use in the food processing and distribution sector and for the evaluation of the potential effectiveness of energy conserving technologies. The conceptual framework of the model, as well as the design and implementation of the computer software are described. The wheat system at the national, state, and facility-specific level is used to illustrate the model's operation and use. A pilot project, carried out in cooperation with industry, is described in which energy use in (a) hard wheat milling, and (b) durum milling and pasta manufacture is analyzed. Finally, the introduction of an alternative technology for pasta drying is assessed in terms of energy conservation and cost. Recommendation for further applications and institutionalization of the model are made.

  16. Small Town Energy Program (STEP) Final Report revised

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Charles (Chuck) T.

    2014-01-02

    University Park, Maryland (“UP”) is a small town of 2,540 residents, 919 homes, 2 churches, 1 school, 1 town hall, and 1 breakthrough community energy efficiency initiative: the Small Town Energy Program (“STEP”). STEP was developed with a mission to “create a model community energy transformation program that serves as a roadmap for other small towns across the U.S.” STEP first launched in January 2011 in UP and expanded in July 2012 to the neighboring communities of Hyattsville, Riverdale Park, and College Heights Estates, MD. STEP, which concluded in July 2013, was generously supported by a grant from the U.S. Department of Energy (DOE). The STEP model was designed for replication in other resource-constrained small towns similar to University Park - a sector largely neglected to date in federal and state energy efficiency programs. STEP provided a full suite of activities for replication, including: energy audits and retrofits for residential buildings, financial incentives, a community-based social marketing backbone and local community delivery partners. STEP also included the highly innovative use of an “Energy Coach” who worked one-on-one with clients throughout the program. Please see www.smalltownenergy.org for more information. In less than three years, STEP achieved the following results in University Park: • 30% of community households participated voluntarily in STEP; • 25% of homes received a Home Performance with ENERGY STAR assessment; • 16% of households made energy efficiency improvements to their home; • 64% of households proceeded with an upgrade after their assessment; • 9 Full Time Equivalent jobs were created or retained, and 39 contractors worked on STEP over the course of the project. Estimated Energy Savings - Program Totals kWh Electricity 204,407 Therms Natural Gas 24,800 Gallons of Oil 2,581 Total Estimated MMBTU Saved (Source Energy) 5,474 Total Estimated Annual Energy Cost Savings $61,343 STEP clients who

  17. Energy in transition 1985 to 2010: overview. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This study by the Committee on Nuclear and Alternative Energy Systems (CONAES) examines in detail all aspects of the nations energy situation. Some technical and economic observation that decision makers may find useful as they develop energy policy in the larger context of the future of society are offered. The observations focusing on the prime importance of energy conservation; the critical near-term problem of fluid fuel supply; the desirability of a balanced combination of coal and nuclear fission as the only large-scale intermediate-term options for electricity generation; the need to keep the breeder option open; and the importance of investing now in research and development to ensure the availability of a strong range of new energy options sustainable over the long term are discussed in detail. (MCW)

  18. Final Rule for Control of Hazardous Air Pollutants From Mobile Sources: Early Credit Technology Requirement Revision

    Science.gov (United States)

    EPA is taking final action to revise the February 26, 2007 mobile source air toxics rule’s requirements that specify which benzene control technologies a refiner may utilize to qualify to generate early benzene credits.

  19. The role of technology in high-energy research

    CERN Document Server

    Carreras, Rafel

    1974-01-01

    A brief survey of the activities of CERN is presented, and examples of technological problems occurring in the performance of high-energy physics experiments are given. The main fields discussed are: acceleration, production of particles, detectors, and data handling.

  20. Energy Technology Initiatives 2013. Implementation through Multilateral Co-operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    Ensuring energy security and addressing climate change cost-effectively are key global challenges. Tackling these issues will require efforts from stakeholders worldwide. To find solutions, the public and private sectors must work together, sharing burdens and resources, while at the same time multiplying results and outcomes. Through its broad range of multilateral technology initiatives (Implementing Agreements), the IEA enables member and non-member countries, businesses, industries, international organisations and non-governmental organisations to share research on breakthrough technologies, to fill existing research gaps, to build pilot plants and to carry out deployment or demonstration programmes across the energy sector. This publication highlights the most significant recent achievements of the IEA Implementing Agreements. At the core of the IEA energy technology network, these initiatives are a fundamental building block for facilitating the entry of new and improved energy technologies into the marketplace.

  1. Solar Energy Technologies Program Newsletter - First Quarter 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-22

    The first quarter 2010 edition of the Solar Energy Technologies Program newsletter summarizes the activities for the past three months, funding opportunities, highlights from the national labs, and upcoming events.

  2. Revolution Now: The Future Arrives for Four Clean Energy Technologies

    Science.gov (United States)

    Tillemann, Levi; Beck, Fredric; Brodrick, James; Brown, Austin; Feldman, David; Nguyen, Tien; Ward, Jacob

    2013-09-17

    For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technology matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market, they are growing rapidly. The four key technologies this report focuses on are: onshore wind power, polysilicon photovoltaic modules, LED lighting, and electric vehicles.

  3. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    Energy Technology Data Exchange (ETDEWEB)

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  4. Technology Teachers' Attitudes toward Nuclear Energy and Their Implications for Technology Education

    Science.gov (United States)

    Lee, Lung-Sheng; Yang, Hsiu-Chuan

    2013-01-01

    The purpose of this paper was to explore high-school (grades 10-12) technology teachers' attitudes toward nuclear energy and their implications to technology education. A questionnaire was developed to solicit 323 high-school technology teachers' responses in June 2013 and 132 (or 41%) valid questionnaires returned. Consequently, the following…

  5. Guidelines for Energy Simulation of Commercial Buildings: Final.

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Michael; Caner, Phoebe

    1992-03-01

    This report distills the experience gained from intensive computer building simulation work for the Energy Edge project. The purpose of this report is twofold: to use that experience to guide conservation program managers in their use of modeling, and to improve the accuracy of design-phase computer models. Though the main emphasis of the report is on new commercial construction, it also addresses modeling as it pertains to retrofit construction. To achieve these purposes, this report will: (1) discuss the value of modeling for energy conservation programs; (2) discuss strengths and weaknesses of computer models; (3) provide specific guidelines for model input; (4) discuss input topics that are unusually large drivers of energy use and model inaccuracy; (5) provide guidelines for developing baseline models; (6) discuss types of energy conservation measures (ECMs) and building operation that are not suitable to modeling and present possible alternatives to modeling for analysis; and (7) provide basic requirements for model documentation. This project was initiated to determine whether commercial buildings can be designed and constructed to use at least 30% less energy than if they were designed and built to meet the current regional model energy code, the Model Conservation Standards (MCS) developed by the Pacific Northwest Electric Power and Conservation Planning Council. Secondary objectives of the project are to determine the incremental energy savings of a wide variety of ECMs and to compare the predictive accuracy of design-phase models with models that are carefully tuned to monitored building data.

  6. Energy conserving site design case study: Shenandoah, Georgia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The case study examines the means by which energy conservation can be achieved at an aggregate community level by using proper planning and analytical techniques for a new town, Shenandoah, Georgia, located twenty-five miles southwest of Atlanta's Hartsfield International Airport. A potentially implementable energy conservation community plan is achieved by a study team examining the land use options, siting characteristics of each building type, alternate infrastructure plans, possible decentralized energy options, and central utility schemes to determine how community energy conservation can be achieved by use of pre-construction planning. The concept for the development of mixed land uses as a passively sited, energy conserving community is based on a plan (Level 1 Plan) that uses the natural site characteristics, maximizes on passive energy siting requirement, and allows flexibility for the changing needs of the developers. The Level 2 Plan is identical with Level 1 plan plus a series of decentraized systems that have been added to the residential units: the single-family detached, the apartments, and the townhouses. Level 3 Plan is similar to the Level 1 Plan except that higher density dwellings have been moved to areas adjacent to central site. The total energy savings for each plan relative to the conventional plan are indicated. (MCW)

  7. JPRS Report, Science & Technology, China: Energy

    Science.gov (United States)

    1988-03-18

    Doumeingts, assistant director at the Grai laboratory of Bordeaux 1 University, which took part in the integration of the production control...long been under develop- ment in France—being from the Gironde region I cannot but mention the fermentation of grape juice, i.e., wine production...Technologies for Europe) has only been running since 1985, and yet it has already been successful in creating a climate of close cooperation in industrial

  8. Technology verification phase. Dynamic isotope power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  9. Technology Cost and Schedule Estimation (TCASE) Final Report

    Science.gov (United States)

    Wallace, Jon; Schaffer, Mark

    2015-01-01

    During the 2014-2015 project year, the focus of the TCASE project has shifted from collection of historical data from many sources to securing a data pipeline between TCASE and NASA's widely used TechPort system. TCASE v1.0 implements a data import solution that was achievable within the project scope, while still providing the basis for a long-term ability to keep TCASE in sync with TechPort. Conclusion: TCASE data quantity is adequate and the established data pipeline will enable future growth. Data quality is now highly dependent the quality of data in TechPort. Recommendation: Technology development organizations within NASA should continue to work closely with project/program data tracking and archiving efforts (e.g. TechPort) to ensure that the right data is being captured at the appropriate quality level. TCASE would greatly benefit, for example, if project cost/budget information was included in TechPort in the future.

  10. Building Design Guidelines for Solar Energy Technologies

    Science.gov (United States)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  11. Technology Roadmap: Wind Energy. 2013 edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The IEA Wind Power Technology Roadmap 2013 Edition recognises the very significant progress made since the first edition was published in 2009. The technology continues to improve rapidly, and costs of generation from land-based wind installations continue to fall. Wind power is now being deployed in countries with good resources without any dedicated financial incentives. The 2013 Edition targets an increased share (15% to 18%) of global electricity to be provided by wind power in 2050, compared to 12% in the original roadmap of 2009. However, increasing levels of low-cost wind still require predictable, supportive regulatory environments and appropriate market designs. The challenges of integrating higher levels of variable wind power into the grid need to be addressed. For offshore wind, much remains to be done to develop appropriate large-scale systems and to reduce costs. The 2013 Wind Power Roadmap also provides updated analysis on the barriers that exist for the technology and suggests ways to address them, including legal and regulatory recommendations.

  12. Photovoltaic module energy rating procedure. Final subcontract report

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, C.M.; Newmiller, J.D. [Endecon Engineering (United States)

    1998-01-01

    This document describes testing and computation procedures used to generate a photovoltaic Module Energy Rating (MER). The MER consists of 10 estimates of the amount of energy a single module of a particular type (make and model) will produce in one day. Module energy values are calculated for each of five different sets of weather conditions (defined by location and date) and two load types. Because reproduction of these exact testing conditions in the field or laboratory is not feasible, limited testing and modeling procedures and assumptions are specified.

  13. Energy efficiency in figures. Final report; Energieeffizienz in Zahlen. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Graichen, Verena; Gores, Sabine; Penninger, Gerhard; Zimmer, Wiebke; Cook, Vanessa [Oeko-Institut, Berlin (Germany); Schlomann, Barbara; Fleiter, Tobias; Strigel, Adrian; Eichhammer, Wolfgang [Fraunhofer-Institut fuer System- und Innovationsforschung (FhG-ISI), Karlsruhe (Germany); Ziesing, Hans-Joachim

    2011-07-15

    To examine whether the development of energy productivity and energy efficiency in Germany is in line with targets set by policy, a series of energy efficient indicators and parameters have been developed on the national and sectoral level, the data for which can be regularly updated and documented. It is not sufficient to carry out this analysis on a national macro level; rather it is necessary to use an approach that differentiates between sectors as accurately as possible. Only in this way can the reasons for changes in efficiency and the factors which could have compensated the impact of measures be clearly shown. (orig.)

  14. Solar energy legal bibliography. Final report. [160 references

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, D.; Euser, B.; Joyce, C.; Morgan, G. H.; Laitos, J. G.; Adams, A.

    1979-03-01

    The Solar Energy Legal Bibliography is a compilation of approximately 160 solar publications abstracted for their legal and policy content (through October 1978). Emphasis is on legal barriers and incentives to solar energy development. Abstracts are arranged under the following categories: Antitrust, Biomass, Building Codes, Consumer Protection, Environmental Aspects, Federal Legislation and Programs, Financing/Insurance, International Law, Labor, Land Use (Covenants, Easements, Nuisance, Zoning), Local Legislation and Programs, Ocean Energy, Patents and Licenses, Photovoltaics, Solar Access Rights, Solar Heating and Cooling, Solar Thermal Power Systems, Standards, State Legislation and Programs, Tax Law, Tort Liability, Utilities, Warranties, Wind Resources, and General Solar Law.

  15. Assessment of Wind Energy Technology Potential in Indian Context

    OpenAIRE

    Pachauri, Rupendra Kumar; Yogesh K Chauhan

    2016-01-01

    Wind energy is highly preferred alternative as compared to conventional sources of power. India plays a leading role in the global wind energy market, but it is still not use its full wind potential, which is far from the exhausted condition. Moreover, these resources can lead to growth in Indian power sector. In this paper, the assessment of wind technology is explored for Indian context vis-a-vis indices related to wind technology. The state wise status, challenges, development of wind powe...

  16. Energy Address Delivery Technologies and Thermal Transformations in Food Production

    Directory of Open Access Journals (Sweden)

    Burdo O.G.

    2016-08-01

    Full Text Available In this article, energetic and technical paradoxes in food nanotechnologies and traditional approaches to evaluation of energy recourses using are considered. Hypotheses of improvement of food production energy technologies are formulated. Classification of principles of address delivery of energy to food raw materials elements is given. We had substantiated the perspective objectives for heat-pumps installations and biphasic heat-transfer systems. The energy efficiency of new technolo-gies is compared on base of the number of energy impact. Principles of mass transfer modeling in ex-traction, dehydration and pasteurization combined processes are considered by food production exam-ple. The objectives of mathematical modeling of combined hydrodynamic and heat and mass transfer processes in modern energy technologies are set. The fuel energy conversion diagrams for drying, in-novative installations on the base of thermal siphons, heat pumps and electromagnetic energy genera-tors are represented. In this article, we illustrate how electromagnetic field, biphasic heat-transfer sys-tems and heat pumps can be effective tools for energy efficiency technologies.

  17. Technology Roadmaps: How2Guide for Wind Energy Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Whether in OECD, emerging or developing country economies, governments are increasingly looking to diversify their energy mix beyond simply fossil fuels. While wind energy is developing towards a mainstream, competitive and reliable technology, a range of barriers can delay progress, such as financing, grid integration, social acceptance and aspects of planning processes. National and regional technology roadmaps can play a key role in supporting wind energy development and implementation, helping countries to identify priorities and pathways tailored to local resources and markets. Recognising this, the IEA has started the How2Guides - a new series co-ordinated by the International Low-Carbon Energy Technology Platform to address the need for more focused guidance in the development of national roadmaps, or strategies, for specific low-carbon technologies. This builds on the success of the IEA global technology roadmap series and responds to a growing number of requests for IEA guidance to adapt the findings of the IEA global technology roadmaps to national circumstances. A successful roadmap contains a clear statement of the desired outcome, followed by a specific pathway for reaching it. The How2Guide for Wind Energy builds on the IEA well established methodology for roadmap development and shares wind specific recommendations on how to address the four phases to developing and implementing a wind energy roadmap: Planning; Visioning; Development; and Implementation. The manual also offers menus of recommendations on policy and technical options for deployment of utility-scale wind energy installations. A matrix of barriers-versus-realistic solutions options is cross-listed with considerations such as planning, development, electricity market and system, infrastructure, and finance and economics. Drawing on several case studies from around the globe, as well as on the IEA Technology Roadmap for Wind Energy, the How2Guide for Wind Energy it is intended as a

  18. Timelines for mitigating methane emissions from energy technologies

    CERN Document Server

    Roy, Mandira; Trancik, Jessika E

    2015-01-01

    Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

  19. Technology, market and policy aspects of geothermal energy in Europe

    Science.gov (United States)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    The Strategic Energy Technology Plan (SET-Plan) is the technology pillar of the EU's energy and climate policy. The goal of the SET-Plan is to achieve EU worldwide leadership in the production of energy technological solutions capable of delivering EU 2020 and 2050 targets for a low carbon economy. The Joint Research Centre (JRC) runs and manages the SET-Plan Information System (SETIS) to support the SET-Plan. Under SETIS, the JRC publishes a number of regularly updated key references on the state of low carbon technology, research and innovation in Europe. Within the framework of the SET-Plan, the geothermal sector is placed into context with other power and heat generation technologies. The talk will give an introduction to some of JRC's geothermal research activities. Amongst others, the JRC Geothermal status report will be presented. This report aims to contribute to the general knowledge about the geothermal sector, its technology, economics and policies, with a focus on innovation, research, development and deployment activities as well as policy support schemes within the European Union. The speech will present the main findings of the report, providing an overview of the activities and progress made by the geothermal energy sector, the status of its sub-technologies and current developments. In addition, the speech will discuss the economic, market and policy aspects of geothermal energy for power production, direct use and ground source heat pumps in Europe and beyond.

  20. Texas transportation planning for future renewable energy projects : final report.

    Science.gov (United States)

    2017-03-01

    There will be a significant increase in the number of renewable energy production facilities in Texas. The : construction of wind farms requires the transport of wind turbine components that create increased loads on : rural roads and bridges. These ...