WorldWideScience

Sample records for energy systems research

  1. Energy Systems Modelling Research and Analysis

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Alberg Østergaard, Poul

    2015-01-01

    This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out b...... by 11 university and industry partners has improved the basis for decision-making within energy planning and energy scenario making by providing new and improved tools and methods for energy systems analyses.......This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out...

  2. Energy research information system projects report, volume 5, number 1

    Science.gov (United States)

    Johnson, J.; Schillinger, L.

    1980-07-01

    The system (ERIS) provides an inventory of the energy related programs and research activities from 1974 to the present in the states of Montana, Nebraska, North Dakota, South Dakota and Wyoming. Areas of research covered include coal, reclamation, water resources, environmental impacts, socioeconomic impacts, energy conversion, mining methodology, petroleum, natural gas, oilshale, renewable energy resources, nuclear energy, energy conservation and land use. Each project description lists title, investigator(s), research institution, sponsor, funding, time frame, location, a descriptive abstract of the research and title reports and/or publications generated by the research. All projects are indexed by location, personal names, organizations and subject keywords.

  3. Energy research

    International Nuclear Information System (INIS)

    1979-03-01

    Status reports are given for the Danish Trade Ministry's energy research projects on uranium prospecting and extraction, oil and gas recovery, underground storage of district heating, electrochemical energy storage systems, wind mills, coal deposits, coal cambustion, energy consumption in buildings, solar heat, biogas, compost heat. (B.P.)

  4. Energy and Environmental Systems Division 1981 research review

    International Nuclear Information System (INIS)

    1982-04-01

    To effectively manage the nation's energy and natural resources, government and industry leaders need accurate information regarding the performance and economics of advanced energy systems and the costs and benefits of public-sector initiatives. The Energy and Environmental Systems Division (EES) of Argonne National Laboratory conducts applied research and development programs that provide such information through systems analysis, geophysical field research, and engineering studies. During 1981, the division: analyzed the production economics of specific energy resources, such as biomass and tight sands gas; developed and transferred to industry economically efficient techniques for addressing energy-related resource management and environmental protection problems, such as the reclamation of strip-mined land; determined the engineering performance and cost of advanced energy-supply and pollution-control systems; analyzed future markets for district heating systems and other emerging energy technologies; determined, in strategic planning studies, the availability of resources needed for new energy technologies, such as the imported metals used in advanced electric-vehicle batteries; evaluated the effectiveness of strategies for reducing scarce-fuel consumption in the transportation sector; identified the costs and benefits of measures designed to stabilize the financial condition of US electric utilities; estimated the costs of nuclear reactor shutdowns and evaluated geologic conditions at potential sites for permanent underground storage of nuclear waste; evaluated the cost-effectiveness of environmental regulations, particularly those affecting coal combustion; and identified the environmental effects of energy technologies and transportation systems

  5. Research for the energy transition. The organization of the energy systems

    International Nuclear Information System (INIS)

    2017-01-01

    The volume on research for the energy transition includes contributions to the FVEE annual meeting 2016 concerning the following issues: status and perspectives of the energy transition, key technologies for the energy transition, political boundary conditions, development trends in photovoltaics, components for the energy supply (wind energy, hydrogen technologies, smart bioenergy concept, contribution of the geosphere), grids and storage systems for the energy transition, research network renewable energies.

  6. Integrated modelling of ecosystem services and energy systems research

    Science.gov (United States)

    Agarwala, Matthew; Lovett, Andrew; Bateman, Ian; Day, Brett; Agnolucci, Paolo; Ziv, Guy

    2016-04-01

    The UK Government is formally committed to reducing carbon emissions and protecting and improving natural capital and the environment. However, actually delivering on these objectives requires an integrated approach to addressing two parallel challenges: de-carbonising future energy system pathways; and safeguarding natural capital to ensure the continued flow of ecosystem services. Although both emphasise benefiting from natural resources, efforts to connect natural capital and energy systems research have been limited, meaning opportunities to improve management of natural resources and meet society's energy needs could be missed. The ecosystem services paradigm provides a consistent conceptual framework that applies in multiple disciplines across the natural and economic sciences, and facilitates collaboration between them. At the forefront of the field, integrated ecosystem service - economy models have guided public- and private-sector decision making at all levels. Models vary in sophistication from simple spreadsheet tools to complex software packages integrating biophysical, GIS and economic models and draw upon many fields, including ecology, hydrology, geography, systems theory, economics and the social sciences. They also differ in their ability to value changes in natural capital and ecosystem services at various spatial and temporal scales. Despite these differences, current models share a common feature: their treatment of energy systems is superficial at best. In contrast, energy systems research has no widely adopted, unifying conceptual framework that organises thinking about key system components and interactions. Instead, the literature is organised around modelling approaches, including life cycle analyses, econometric investigations, linear programming and computable general equilibrium models. However, some consistencies do emerge. First, often contain a linear set of steps, from exploration to resource supply, fuel processing, conversion

  7. Sustainable energy systems and the EURATOM research programme

    International Nuclear Information System (INIS)

    Webster, S.; Van Goethem, G.; )

    2007-01-01

    We are at a turning point in European research. With the launch of the EU's 7th Framework Programme, committing some Euro 53 billion of public funds to the European research effort over the next 7 years, Europe has finally woken up to the importance of Research and Development in the realisation of the most fundamental objectives defining the Union: growth, competitiveness, and knowledge. At the same time, and with strong links to growth and competitiveness but also to environmental protection, the Union is in the throws of an intense debate on future energy policy and climate change. Part of the research budget, some would say too small a part, is earmarked for energy - in particular the technological aspects of low carbon systems such renewables. This effort, together with measures to improve the EU's security and independence of supply, are essential if Europe is to respond effectively to solve the future energy conundrum. But where does nuclear fit in all this? What will the Union be doing in the area of nuclear research? Indeed, does nuclear figure at all in the long-term plans of the Union? Through the EURATOM part of the Framework Programme, the EU is maintaining important support to up-stream research in the area of advanced reactor technologies. This effort is being coordinated at the global level through EURATOM's membership of the Generation-IV International Forum. Though EU research in this field still has its critics among the Member States, and despite the relatively small sums currently committed, the leverage effect of current actions is significant and this is set to grow in the future. The imminent setting up of a Strategic Energy Technology Plan, as part of the European Commission on-going activities in the field of energy policy, and the feedback from independent experts in the Advisory Group on Energy and the EURATOM Scientific and Technical Committee all point to following conclusions: EU support for research on advanced nuclear fission

  8. The Research and Development of the Radioisotope Energy Conversion System

    International Nuclear Information System (INIS)

    Steinfelds, E.V.; Ghosh, T.K.; Prelas, M.A.; Tompson, R.V.; Loyalka, S.K.

    2001-01-01

    The project of developing radioisotope energy conversion system (RECS) involves analytical computational assisted design and modeling and also laboratory research. The computational analysis consists of selecting various geometries and materials for the main RECS container and the internally located radioisotope, computing the fluxes of the beta (-) particles and of the visible (or ultraviolet) photons produced by the beta (-) s, computing the transport of these photons to the photovoltaic cells, and computing the overall efficiency of useful conversion of the radioisotope power

  9. Fenestration system energy performance research, implementation, and international harmonization

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Raymond F [National Fenestration Rating Council, Greenbelt, MD (United States)

    2014-12-23

    The research conducted by the NFRC and its contractors adds significantly to the understanding of several areas of investigation. NFRC enables manufacturers to rate fenestration energy performance to comply with building energy codes, participate in ENERGY STAR, and compete fairly. NFRC continuously seeks to improve its ratings and also seeks to simplify the rating process. Several research projects investigated rating improvement potential such as • Complex Product VT Rating Research • Window 6 and Therm 6 Validation Research Project • Complex Product VT Rating Research Conclusions from these research projects led to important changes and increased confidence in the existing NFRC rating process. Conclusions from the Window 6/Therm 6 project will enable window manufacturers to rate an expanded array of products and improve existing ratings. Some research lead to an improved new rating method called the Component Modeling Approach. A primary goal of the CMA was a simplification of the commercial energy rating process to increase participation and make the commercial industry more competitive and code compliant. The project below contributed towards CMA development: • Component Modeling Approach Condensation Resistance Research NFRC continues to implement the Component Modeling Approach program. The program includes the CMA software tool, CMAST, and several procedural documents to govern the certification process. This significant accomplishment was a response the commercial fenestration industry’s need for a simplification of the present NFRC energy rating method (named site built). To date, most commercial fenestration is self-rated by a variety of techniques. The CMA enables commercial fenestration manufacturers to rate according to the NFRC 100/200 as most commercial energy codes require. International Harmonization NFRC achieved significant international harmonization success by continuing its licensing agreements with the Australian Fenestration

  10. Swedish Energy Research 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Swedish Energy Research 2009 provides a brief, easily accessible overview of the Swedish energy research programme. The aims of the programme are to create knowledge and skills, as needed in order to commercialise the results and contribute to development of the energy system. Much of the work is carried out through about 40 research programmes in six thematic areas: energy system analysis, the building as an energy system, the transport sector, energy-intensive industries, biomass in energy systems and the power system. Swedish Energy Research 2009 describes the overall direction of research, with examples of current research, and results to date within various thematic areas and highlights

  11. California Energy Commission Public Interest EnergyResearch/Energy System Integration -- Transmission-Planning Research&Development Scoping Project

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-07-01

    The objective of this Public Interest Energy Research (PIER)scoping project is to identify options for public-interest research and development (R&D) to improve transmission-planning tools, techniques, and methods. The information presented was gathered through a review of current California utility, California Independent System Operator (ISO), and related western states electricity transmission-planning activities and emerging needs. This report presents the project teams findings organized under six topic areas and identifies 17 distinct R&D activities to improve transmission-planning in California and the West. The findings in this report are intended for use, along with other materials, by PIER staff, to facilitate discussions with stakeholders that will ultimately lead to development of a portfolio of transmission-planning R&D activities for the PIER program.

  12. Research on Battery Energy Storage System Based on User Side

    Science.gov (United States)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  13. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  14. Research for the energy transition. The organization of the energy systems; Forschung fuer die Energiewende. Die Gestaltung des Energiesystems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-03-15

    The volume on research for the energy transition includes contributions to the FVEE annual meeting 2016 concerning the following issues: status and perspectives of the energy transition, key technologies for the energy transition, political boundary conditions, development trends in photovoltaics, components for the energy supply (wind energy, hydrogen technologies, smart bioenergy concept, contribution of the geosphere), grids and storage systems for the energy transition, research network renewable energies.

  15. Distributed Energy Resources Interconnection Systems: Technology Review and Research Needs

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, N. R.

    2002-09-01

    Interconnecting distributed energy resources (DER) to the electric utility grid (or Area Electric Power System, Area EPS) involves system engineering, safety, and reliability considerations. This report documents US DOE Distribution and Interconnection R&D (formerly Distributed Power Program) activities, furthering the development and safe and reliable integration of DER interconnected with our nation's electric power systems. The key to that is system integration and technology development of the interconnection devices that perform the functions necessary to maintain the safety, power quality, and reliability of the EPS when DER are connected to it.

  16. Fiber optic transmission system delivered to Fusion Research Center of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hayashida, Mutsuo; Hiramoto, Kiyoshi; Yamazaki, Kunihiro

    1983-01-01

    In general there are many electromagnetically induced noises in the premises of factories, power plants and substations. Under such electrically bad environments, for the computer data transmission that needs high speed processing and high reliability, the optical fiber cable is superion to the coaxial cable or the flat-type cable in aspects of the inductionlessness and a wide bandwidth. Showa Electric Wire and Cable Co., Ltd. has delivered and installed a computer data transmission system consisting of optical modems and optical fiber cables for connecting every experiment building in the premises of Fusion Research Center of Japan Atomic Energy Research Institute. This paper describes the outline of this system. (author)

  17. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01

    This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and

  18. Characterization system for research on energy storage capacitors

    Science.gov (United States)

    Noriega, J. R.; Iyore, O. D.; Budime, C.; Gnade, B.; Vasselli, J.

    2013-05-01

    In this work a characterization system for high energy-density capacitors is described and demonstrated. Capacitors are being designed using thin-film technology in an attempt to achieve higher energy-density levels by operating the devices at a high voltage. These devices are fabricated from layers of 100 nm aluminum and a layer of polyvinylidene fluoride-hexafluoropropylene on a polyethylene naphthalate plastic substrate. The devices have been designed to store electrical charge at up to 200 V. Characterizations of these devices focus on the measurement of capacitance vs bias voltage and temperature, equivalent series resistance, and charge/discharge cycles. For the purpose of the characterization of these capacitors, an electronic charge/discharge interface was designed and tested.

  19. Research using energy landscape

    International Nuclear Information System (INIS)

    Kim, Hack Jin

    2007-01-01

    Energy landscape is a theoretical tool used for the study of systems where cooperative processes occur such as liquid, glass, clusters, and protein. Theoretical and experimental researches related to energy landscape are introduced in this review

  20. Researches on the CAES (Compressed Air Energy Storage) system

    Energy Technology Data Exchange (ETDEWEB)

    Shin Hee Soon; Kang, Sang Soo; Kwon, Kwang Soo [Korea Institute of Geology Mining and Materials, Taejon (Korea)] [and others

    1998-12-01

    CAES which is called as a compressed air energy storage was firstly developed at Huntorf, German in 1978. The capacity of that system was 290 MW, and it can be treated as a first commercial power plant. CAES has a lot of merits, such as saving the unit price of power generation, averaging the peak demand, improvement of maintenance, enlarging the benefit of dynamic use. According to the literature survey, the unlined rock cavern should be proposed to be a reasonable storing style as a method of compressed air storage in Korea. In this study, the most important techniques were evaluated through the investigation of the foreign construction case studies, especially on the unlined rock caverns in hard rock mass. We decided the hill of the Korea Institute of Geology, Mining and materials as CAES site. If we construct the underground spaces in this site, the demand for electricity nearby Taejon should be considered. So we could determine the capacity of the power plant as a 350 MW. This capacity needs a underground space of 200,000 m{sup 3}, and we can conclude 4 parallel tunnels through the numerical studies. Design parameters were achieved from 300 m depth boring job and image processing job. Moreover the techniques for determination of joint characteristics from the images could be obtained. Blasting pattern was designed on the underground spaces, and automatic gas control system and thermomechanical characteristics on caverns were also studied. (author). 51 refs., 79 tabs., 114 figs.

  1. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  2. Energy Research - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  3. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  4. Transformation research for a sustainable energy system. Contributions; Transformationsforschung fuer ein nachhaltiges Energiesystem. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    Stadermann, Gerd; Szczepanski, Petra; Wunschick, Franziska; Martin, Niklas (comps.)

    2012-03-15

    Within the 2011 annual meeting of the Renewable Energy Research Association (Berlin, Federal Republic of Germany) from 12th to 13th October 2011, the following lectures were held: (1) Environmentally safe and socially compatible transformation of energy systems (G. Schuette); (2) Open questions on the transformation of energy systems (E. Weber); (3) System analysis on the transformation of energy systems up to 2050 (J. Schmid); (4) Economic aspects: Chances, markets and workplaces (F. Staiss); (5) Perspectives for an interplay of energy efficiency and renewable energy resources as well as their implementation in the energy system (A. Bett); (6) New accents of research promotion for a more rapid development of renewable energy sources (K. Deller); (7) The 6th Energy Research Program of the Federal Government (R. Tryfonidou); (8) Recommendations of the FVEE for the research policy of the Research Government (G. Sadermann); (9) How can research and politics promote the system transformation (M. Hustedt); (10) The energy system of tomorrow - Strategies and research for the transformation of high amounts of renewable energy resources (W. Duerrschmidt); (11) Long-term strategies for the development of renewable energies in Germany (J. Nitsch); (12) Development of storage capacities for an efficient power generation by renewable energy resources in Germany and Europe by 2050 (Y. Scholz); (13) Prognoses of temporal and spatial variability of renewable energy resources (B. Lange); (14) Smart Grids - Transformation of our electrical energy supply (G. Ebert); (15) Model regions for intelligently networked energy systems; (16) Cities and concepts of neighbourhood - model cities (D. Schmidt); (17) Transformation of the German power system to a decentral regenerative economy (U. Leprich); (18) Alteration of the general conditions for new incentive models, heat acts, restoration of buildings (M. Schmidt); (19) Acceptance and participation research on energy sustainability (P

  5. Hydrogen and fuel cell research: Institute for Integrated Energy Systems (IESVic)

    International Nuclear Information System (INIS)

    Pitt, L.

    2006-01-01

    Vision: IESVic's mission is to chart feasible paths to sustainable energy. Current research areas of investigation: 1. Energy system analysis 2. Computational fuel cell engineering; Fuel cell parameter measurement; Microscale fuel cells 3. Hydrogen dispersion studies for safety codes 4. Active magnetic refrigeration for hydrogen liquifaction and heat transfer in metal hydrides 5. Hydrogen and fuel cell system integration (author)

  6. Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, D. J.; Orr, F. M.; Benson, S. M.; Celia, M.; Felmy, A.; Nagy, K. L.; Fogg, G. E.; Snieder, R.; Davis, J.; Pruess, K.; Friedmann, J.; Peters, M.; Woodward, N. B.; Dobson, P.; Talamini, K.; Saarni, M.

    2007-06-01

    To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

  7. Frontiers in transport phenomena research and education: Energy systems, biological systems, security, information technology and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, T.L.; Faghri, A. [Department of Mechanical Engineering, The University of Connecticut, Storrs, CT 06269-3139 (United States); Viskanta, R. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States)

    2008-09-15

    A US National Science Foundation-sponsored workshop entitled ''Frontiers in Transport Phenomena Research and Education: Energy Systems, Biological Systems, Security, Information Technology, and Nanotechnology'' was held in May of 2007 at the University of Connecticut. The workshop provided a venue for researchers, educators and policy-makers to identify frontier challenges and associated opportunities in heat and mass transfer. Approximately 300 invited participants from academia, business and government from the US and abroad attended. Based upon the final recommendations on the topical matter of the workshop, several trends become apparent. A strong interest in sustainable energy is evident. A continued need to understand the coupling between broad length (and time) scales persists, but the emerging need to better understand transport phenomena at the macro/mega scale has evolved. The need to develop new metrology techniques to collect and archive reliable property data persists. Societal sustainability received major attention in two of the reports. Matters involving innovation, entrepreneurship, and globalization of the engineering profession have emerged, and the responsibility to improve the technical literacy of the public-at-large is discussed. Integration of research thrusts and education activities is highlighted throughout. Specific recommendations, made by the panelists with input from the international heat transfer community and directed to the National Science Foundation, are included in several reports. (author)

  8. Fiscal 1974 Sunshine Project result report. Research on solar energy utilization systems (total system); 1974 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Total system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    The current most important solar energy utilization fields are solar energy power generation (solar heat and photovoltaic power generation), and solar heat cooling and heating. A solar heat power system collects or stores solar thermal energy as energy source of power systems, and converts it to electric power through heat exchange systems. To establish such system, not only R and D on a collector, absorption capsule, storage unit and heat transfer unit, but also complete study on an optimum system configuration and environmental impact are necessary. A photovoltaic power system converts solar energy to electric power directly by photoelectric conversion device such solar cell. Except specific local uses, drastic cost reduction and improvement of a conversion efficiency (at present 12-15%) and life (several years) are necessary for solar cells. Although a lot of solar heat cooling and heating systems is in practical use in Japan, for its further diffusion an important research task is development of heat collector excellent in efficiency, cost, life and maintainability. (NEDO)

  9. Future perspective of nuclear energy utilization and expected role of HTGR. JAERI's energy systems analysis research

    International Nuclear Information System (INIS)

    Sato, Osamu

    1996-01-01

    Studies have been made in JAERI in order to assess the possibility of using nuclear energy symbiotically with fossil and biomass fuels, and to evaluate its implications for the environment. The application system of high temperature nuclear heat has been designed for this purpose with various technology options. The core of the system is a set of technologies for hydrogen production and its application to produce clean and convenient fuels from fossil or biomass sources. The results of analytical studies using the MARKAL model have indicated sufficient possibilities of combining nuclear energy effectively with fossil or biomass fuels via hydrogen produced by high temperature nuclear heat. In addition to providing clean and convenient liquid fuels on a large scale, the combined system will contribute to the substantial reduction of long-term CO 2 emissions. The relatively high cost of this system will be well justified when CO 2 emission penalties are taken into account. (J.P.N.)

  10. Energy research for tomorrow

    International Nuclear Information System (INIS)

    Arzberger, Isolde; Breh, Wolfgang; Brendler, Vinzenz; Danneil, Friederike; Eulenburg, Katharina; Messner, Frank; Ossing, Franz; Saupe, Stephan; Sieber, Julia; Zeiss, Erhard

    2011-04-01

    One of the central challenges of the 21st century is to ensure a sustainable energy supply for the world's people and its economy. That's why scientists are searching for solutions that will provide sufficient amounts of energy - reliably, affordably and without endangering the natural environment on which our lives are based. One thing everyone agrees on is that there are no obvious solutions. No single energy carrier or technology will suffice to safeguard our future energy supply. Consequently, researchers must examine a broad range of options and develop many different kinds of technologies. This is the only way to create a sustainable energy system that adequately takes local environmental, political, social and economic conditions into account. Germany's largest scientific organisation, the Helmholtz Association of German Research Centres, is carrying out world-class research into diverse aspects of this existential challenge in its Research Field Energy. A broad spectrum of energy sources such as the sun, nuclear fusion, fossil fuels, geothermal energy, water, wind, nuclear fission and biomass are being investigated - but this is not all. Technologies for energy storage, energy distribution and efficient energy use also play a key role. This comprehensive approach corresponds to the energy concept of the government of the Federal Republic of Germany, which calls for a dynamic energy mix that includes the expanded use of renewable energies, a corresponding extension of the power grid, the development of new energy storage systems and increased energy efficiency. The scientists of the Helmholtz Association are investigating entire chains of energy processes, including boundary conditions and side effects such as the impact on the climate and the environment and acceptance issues. They are taking into account interactions with other sectors such as the raw materials, construction and mobility industries. Energy research is directed at industrial application and

  11. Energy research for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Arzberger, Isolde; Breh, Wolfgang; Brendler, Vinzenz; Danneil, Friederike; Eulenburg, Katharina; Messner, Frank; Ossing, Franz; Saupe, Stephan; Sieber, Julia; Zeiss, Erhard (eds.)

    2011-04-15

    One of the central challenges of the 21st century is to ensure a sustainable energy supply for the world's people and its economy. That's why scientists are searching for solutions that will provide sufficient amounts of energy - reliably, affordably and without endangering the natural environment on which our lives are based. One thing everyone agrees on is that there are no obvious solutions. No single energy carrier or technology will suffice to safeguard our future energy supply. Consequently, researchers must examine a broad range of options and develop many different kinds of technologies. This is the only way to create a sustainable energy system that adequately takes local environmental, political, social and economic conditions into account. Germany's largest scientific organisation, the Helmholtz Association of German Research Centres, is carrying out world-class research into diverse aspects of this existential challenge in its Research Field Energy. A broad spectrum of energy sources such as the sun, nuclear fusion, fossil fuels, geothermal energy, water, wind, nuclear fission and biomass are being investigated - but this is not all. Technologies for energy storage, energy distribution and efficient energy use also play a key role. This comprehensive approach corresponds to the energy concept of the government of the Federal Republic of Germany, which calls for a dynamic energy mix that includes the expanded use of renewable energies, a corresponding extension of the power grid, the development of new energy storage systems and increased energy efficiency. The scientists of the Helmholtz Association are investigating entire chains of energy processes, including boundary conditions and side effects such as the impact on the climate and the environment and acceptance issues. They are taking into account interactions with other sectors such as the raw materials, construction and mobility industries. Energy research is directed at industrial

  12. Advances in energy research

    CERN Document Server

    Acosta, Morena J

    2013-01-01

    This book presents a comprehensive review of energy research studies from authors around the globe, including recent research in new technologies associated with the construction of nuclear power plants; oil disperse systems study using nuclear magnetic resonance relaxometry (NMRR); low energy consumption for cooling and heating systems; experimental investigation of the performance of a ground-source heat pump system for buildings heating and cooling; sustainable development of bioenergy from agricultural wastes and the environment; hazard identification and parametric analysis of toxic pollutants dispersion from large liquid hydrocarbon fuel-tank fires; maintenance benchmarking in petrochemicals plants by means of a multicriteria model; wind energy development innovation; power, people and pollution; nature and technology of geothermal energy and clean sustainable energy for the benefit of humanity and the environment; and soil thermal properties and the effects of groundwater on closed loops.

  13. Energy in transition, 1985-2010. Final report of the Committee on Nuclear and Alternative Energy Systems, National Research Council

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This exhaustive study, in assessing the roles of nuclear and alternative energy systems in the nation's energy future, focuses on the period between 1985 and 2010. Its intent is to illuminate the kinds of options the nation may wish to keep open in the future and to describe the actions, policies, and R and D programs that may be required to do so. The timing and the context of these decisions depend not only on the technical, social, and economic features of energy-supply technologies, but also on assumptions about future demand for energy and the possibilities for energy conservation through changes in consumption patterns and improved efficiency of the supply and end-use systems. The committee developed a three-tiered functional structure for the project. The first tier was CONAES itself, whose report embodies the ultimate findings, conclusions, and judgments of the study. To provide scientific and engineering data and economic analyses for the committee, a second tier of four panels was appointed by the committee to examine (1) energy demand and conservation, (2) energy supply and delivery systems, (3) risks and impacts of energy supply and use, and (4) various models of possible future energy systems and decision making. Each panel in turn established a number of resource groups - some two dozen in all - to address in detail an array of more particular matters. Briefly stated, recommended strategies are: (1) increased energy conservation; (2) expansion of the nation's balanced coal and nuclear electrical generation base; (3) retention of the breeder option; (4) stimulation of fluid energy development; and (5) immediate increase in research and development of new energy options to ensure availability over the long term.

  14. ENERGY EFFICIENCY, ENERGY SAVING POTENTIAL AND ENVIRONMENTAL IMPACT RESEARCH OF LPG CARRIER REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    V. О. Bedrosov

    2016-12-01

    Full Text Available Nowadays energy efficiency improvement and global warming are issues of current interest because of the natural resources depletion and extreme climate change. Thus, the problem of formation of strict regulations regarding emissions into the air arises. This paper presents the study of cascade refrigeration system for re-condensing of associated petroleum gas during sea transportation for LPG carrier. The structural optimization has been performed. LPG gas carriers with 266 000 m3 ethane capacity require 15 MW cascade refrigeration system for re-condensing if the temperature in the coastal LPG storage is -70°C, and the temperature for transported Ethan is maintained at  -75°C. For current storage conditions the required system cooling capacity is only 1,078 MW intended for the heat gain rejection from the environment during Ethane transportation. The replacement of ozone-depleting refrigerant R22 to alternative agents: R407C, R404A, R402A, R717, R290, R1270 was estimated. The results of analysis have shown that the proposed improvements can be used to optimize the LPG carrier cascade refrigeration system

  15. Academic Design Of Canada's Energy Systems And Nuclear Science Research Centre

    International Nuclear Information System (INIS)

    Bereznai, G.; Perera, S.

    2010-01-01

    The University of Ontario Institute of Technology (UOIT) is at the forefront of alternative energy and nuclear research that focuses on the energy challenges that are faced by the province of Ontario, the industrial heartland of Canada. While the university was established as recently as 2002 and opened its doors to its first students in 2003, it has already developed a comprehensive set of undergraduate and graduate programs, and a reputation for research intensiveness. UOIT offers dedicated programs in nuclear engineering and energy systems engineering to ensure a continued supply of trained employees in these fields. The ability to provide talented and skilled personnel to the energy sector has emerged as a critical requirement of ensuring Ontario's energy future, and to meet this need UOIT requires additional teaching and research space in order to offer its energy related programs. The Governments of Canada and of the Province of Ontario recognized UOIT's achievements and contributions to post-secondary education in the field of clean energy in general and nuclear power in particular, and as part of the economic stimuli funded by both levels of government, approved $45 M CAD for the construction of a 10,000 m 2 'Energy Systems and Nuclear Science Research Centre' at UOIT. The building is scheduled to be ready for occupancy in the summer of 2011. The paper presents the key considerations that lead to the design of the building, and gives details of the education and research programs that were the key in determining the design and layout of the research centre. (authors)

  16. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES`s share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  17. Advanced energy systems and technologies research in Finland. NEMO 2 annual report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Advanced energy technologies were linked to the national energy research in beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry set up many energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on technological solutions. In the beginning of the 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies such as energy storage and hydrogen technology. Resources has been focused on three specific areas: Arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). It seems that in Finland the growth of the new energy technology industry is focused on these areas. The sales of the industry have been growing considerable due to the national research activities and support of technology development. The sales have increased 6 - 7 times compared to the year 1987 and is now over 200 million FIM. The support to industries and their involvement in the program has grown more than 15 times compared to 1988. The total funding of the NEMO 2 program me was 30 million FIM in 1994 and 21 million FIM in 1995. The programme consists of 20 research projects, 15 joint development projects, and 5 EU projects. In this report, the essential research projects of the programme in 1994-1995 are described. The total funding for these projects was about 25 million FIM, of which the TEKES`s share was about half. When the research projects and joint development projects are

  18. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    International Nuclear Information System (INIS)

    1998-01-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES's share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  19. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  20. Research with respect to environmental-friendly energy prospects: experiences with energy system models

    International Nuclear Information System (INIS)

    Kram, T.

    1994-01-01

    The costs and the effects of four basic options with respect to the reduction of CO 2 -emissions are evaluated. The dominant strategy for the nuclear option consists in the substitution of fossil fuel by nuclear energy. At a 50 percent reduction of CO 2 emissions, heating by natural gas is replaced electric power and conventional cars will be replaced by cars. In the carbon dioxide fixation option, fossil fuel remains the dominant energy vector. In this option, CO 2 emissions can be reduced by replacing coal by natural gas, and by introducing carbon dioxide fixation technology in power plants. The option renewable energy sources favours the use of off-shore wind energy and biogas, resulting in a reduction of carbon dioxide emissions up to 40 percent. Higher reduction rates can only be achieved by the use of more expensive technologies such as geothermal and solar energy. In the option rational use of energy, the reduction of carbon dioxide emissions is achieved by energy saving and, among others, the use of fuel cells. The results of the modelling can contribute to identify the most effective or cost-efficient options in view of reducing carbon dioxide emissions. It is concluded that energy saving alone can not contribute to considerable carbon dioxide emission reductions. Carbon dioxide fixations is technically feasible and appears to be the cheapest option. The substitution of fossil fuel by nuclear energy is only cost-efficient for traditional markets. The public acceptance of nuclear energy, its risks and the disposal of radioactive waste have also to be taken into account. (A.S.)

  1. Energy systems

    International Nuclear Information System (INIS)

    Haefele, W.

    1974-01-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  2. Energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [Nuclear Research Centre, Applied Systems Analysis and Reactor Physics, Karlsruhe (Germany); International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1974-07-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  3. NATO Advanced Research Institute on the Application of Systems Science to Energy Policy Planning

    CERN Document Server

    Cherniavsky, E; Laughton, M; Ruff, L

    1981-01-01

    The Advanced Research Institute (ARI) on "The Application of Systems Science to Energy Policy Planning" was held under the auspices of the NATO Special Programme Panel on Systems Science in collaboration with the National Center for Analysis of Energy Sys­ tems, Brookhaven National Laboratory, USA, as a part of the NATO Science Committee's continuous effort to promote the advancement of science through international cooperation. Advanced Research Institutes are sponsored by the NATO Science Committee for the purposes of bringing together senior scientists to seek consensus on an assessment of the present state of knowl­ edge on a specific topic and to make recommendations for future research directions. Meetings are structured to encourage inten­ sive group discussion. Invitees are carefully selected so that the group as a whole will contain the experience and expertise neces­ sary to make the conclusions valid and significant. A final report is published presenting the various viewpoints and conclusions....

  4. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    -ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

  5. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    International Nuclear Information System (INIS)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-01-01

    -ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales

  6. The trend of the research and development for the upgrade of the high current energy system

    International Nuclear Information System (INIS)

    2010-01-01

    The high current energy technology ranges from a basic technology of the electric power field to a state-of-the-art technology and has been used extremely variously. In addition, as the energy technology advances, the expansion of applied field, such as the nuclear fusion and the exhaust thing processing, etc., requires a further upgrade of the large current technology. In this report, the trend of the research and development for the upgrade of the high current energy technology are summarized. In the following, the elemental technology including arc/plasma phenomena and the pulse power system is described in Chapter 2. In Chapter 3, the trend of the research and development for the upgrade of various equipments and devices such as the nuclear fusion development, the superconducting applications of SMES and the maglev transportation system, and the arc application of the exhaust processing for a medical waste, the radio active waste and a detrimental gas and the next generation lithography system. In Chapter 4, the analysis and the measurement technology of the arc phenomenon and the standardization of current shunt, etc are described. We hope this research report can contribute to the promotion of technical exchanges in different fields, and offer guidelines for future development in this high current energy technology. (author)

  7. A review of the recent research on vibration energy harvesting via bistable systems

    International Nuclear Information System (INIS)

    Harne, R L; Wang, K W

    2013-01-01

    The investigation of the conversion of vibrational energy into electrical power has become a major field of research. In recent years, bistable energy harvesting devices have attracted significant attention due to some of their unique features. Through a snap-through action, bistable systems transition from one stable state to the other, which could cause large amplitude motion and dramatically increase power generation. Due to their nonlinear characteristics, such devices may be effective across a broad-frequency bandwidth. Consequently, a rapid engagement of research has been undertaken to understand bistable electromechanical dynamics and to utilize the insight for the development of improved designs. This paper reviews, consolidates, and reports on the major efforts and findings documented in the literature. A common analytical framework for bistable electromechanical dynamics is presented, the principal results are provided, the wide variety of bistable energy harvesters are described, and some remaining challenges and proposed solutions are summarized. (topical review)

  8. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  9. Results from a workshop on research needs for modeling aquifer thermal energy storage systems

    Science.gov (United States)

    Drost, M. K.

    1990-08-01

    A workshop an aquifer thermal energy storage (ATES) system modeling was conducted by Pacific Northwest Laboratory (PNL). The goal of the workshop was to develop a list of high priority research activities that would facilitate the commercial success of ATES. During the workshop, participants reviewed currently available modeling tools for ATES systems and produced a list of significant issues related to modeling ATES systems. Participants assigned a priority to each issue on the list by voting and developed a list of research needs for each of four high-priority research areas; the need for a feasibility study model, the need for engineering design models, the need for aquifer characterization, and the need for an economic model. The workshop participants concluded that ATES commercialization can be accelerated by aggressive development of ATES modeling tools and made specific recommendations for that development.

  10. An Integrated Research Infrastructure for Validating Cyber-Physical Energy Systems

    DEFF Research Database (Denmark)

    Strasser, T. I.; Moyo, C.; Bründlinger, R.

    2017-01-01

    quality and ensure security of supply. At the same time, the increased availability of advanced automation and communication technologies provides new opportunities for the derivation of intelligent solutions to tackle the challenges. Previous work has shown various new methods of operating highly...... interconnected power grids, and their corresponding components, in a more effective way. As a consequence of these developments, the traditional power system is being transformed into a cyber-physical energy system, a smart grid. Previous and ongoing research have tended to mainly focus on how specific aspects...... of smart grids can be validated, but until there exists no integrated approach for the analysis and evaluation of complex cyber-physical systems configurations. This paper introduces integrated research infrastructure that provides methods and tools for validating smart grid systems in a holistic, cyber...

  11. Achievement report for fiscal 1998 on development of wide-area energy utilization network system. Eco-energy urban system (Research of systematization technology and evaluation technology out of energy system designing technology researches); Koiki energy riyo network system kaihatsu (eko energy toshi system) 1998 nendo seika hokokusho. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the realization of urban society respecting enhanced energy efficiency and environmental protection, cities and surrounding industrial facilities are investigated for the development of element technologies involving energy recovery, conversion, transportation, storage, delivery, utilization, etc., and for the compounding of urban energy systems. In the study of the effect of introduction, assumption is made of delivery of heat to an urban heat accumulation district from a plant equivalent to a district air-conditioning system which is covered by the existing technologies. Also assumed are the delivery of exhaust heat to the said plant utilizing eco-energy element technologies and the replacement of existing technologies by eco-energy element technologies. Comparison is established in terms of energy efficiency, environmental protection, and economy, and then it is found that the eco-energy element technologies for the utilization of exhaust heat are in all cases superior to the conventional technologies as far as energy efficiency and environmental protection are concerned. It is found, however, that they are inferior from the economic viewpoint. The energy efficiency technology in heat transportation is superior to the existing technology in energy efficiency and environmental protection but roughly equal to the existing ones in economy. (NEDO)

  12. Beam energy variability and other system considerations for a deuteron linac materials research neutron source

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1989-01-01

    There are many overall system aspects and tradeoffs that must be considered in the design of a deuteron linac based neutron source for materials research, in order to obtain a facility with the best possible response to the user's needs, efficient and reliable operation and maintenance, at the optimum construction and operating cost. These considerations should be included in the facility design from the earliest conceptual stages, and rechecked at each stage to insure consistency and balance. Some of system requirements, particularly that of beam energy variability and its implications, are outlined in this talk. (author)

  13. Integrated library system in the library of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Yonezawa, Minoru; Mineo, Yukinobu; Itabashi, Keizo

    1987-01-01

    Integrated library system has been developed using a stand-alone mini-computer in the Japan Atomic Energy Research Institute library. This system consists of three subsystems for serials control, books acquisition and circulation control. Serials control subsystem deals with subscription, acquisition, claiming and inquiry of journals. This has been operating since the beginning of 1985. Book acquisition sub-system, which has been started since April 1986, deals with accounting and cataloguing of books. Circulation control sub-system deals with circulation, statistics compilation, book inventory and retrieval, which has been operating since April 1987. This system contributes greatly not only to the reduction of the circulation work load but also to the promotion of the library services. However, the convenience in circulation processing should be improved for materials without catalogue information stored in the computer. The pertinence for maximum number of books retrieved has to be also reconsidered. (author)

  14. A Study on the Planning of Technology Development and Research for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-08-15

    This study aimed at the planning the domestic technology development of the Gen IV and the formulating the international collaborative project contents and executive plan for 'A Validity Assessment and Policies of the R and D of Generation IV Nuclear Energy Systems'. The results of the study include follows; - Survey of the technology state in the fields of the Gen IV system specific technologies and the common technologies, and the plans of the international collaborative research - Drawing up the executive research and development plan by the experts of the relevant technology field for the systems which Korean will participate in. - Formulating the effective conduction plan of the program reflecting the view of the experts from the industry, the university and the research institute. - Establishing the plan for estimation of the research fund and the manpower for the efficient utilization of the domestic available resources. This study can be useful material for evaluating the appropriateness of the Korea's participation in the international collaborative development of the Gen IV, and can be valuably utilized to establish the strategy for the effective conduction of the program. The executive plan of the research and development which was produced in this study will be used to the basic materials for the establishing the guiding direction and the strategic conduction of the program when the research and development is launched in the future.

  15. Research on the energy and ecological efficiency of mechanical equipment remanufacturing systems

    Science.gov (United States)

    Shi, Junli; Cheng, Jinshi; Ma, Qinyi; Wang, Yajun

    2017-08-01

    According to the characteristics of mechanical equipment remanufacturing system, the dynamic performance of energy consumption and emission is explored, the equipment energy efficiency and emission analysis model is established firstly, and then energy and ecological efficiency analysis method of the remanufacturing system is put forward, at last, the energy and ecological efficiency of WD615.87 automotive diesel engine remanufacturing system as an example is analyzed, the way of energy efficiency improvementnt and environmental friendly mechanism of remanufacturing process is put forward.

  16. Research for energy

    International Nuclear Information System (INIS)

    Garbers, C.F.

    1983-01-01

    This paper deals with energy R D and its funding in the South African public sector. The objectives of the National Programme for Energy Research are discussed within the framework of the country's manpower and financial needs and limitations. It is shown that energy research is multidisciplinary where the focus is on infrastructure development within the constraints of technical, economic and environmental factors. Possible mechanisms to cater for the country's energy research funding are suggested

  17. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  18. Research and development on super heat pump energy accumulation system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This is the final report on research and development of super heat pump energy accumulation system, which has been carried out from FY 1985 to 1992. It describes outline of the research and development program, R and D results, final evaluation methodology, evaluation of the R and D, proposals for the commercialization, and so on. The super high performance compression heat pumps are technically evaluated for highly efficient type (for heating, and cooling and heating), high temperature type (utilizing high temperature heat source, and low temperature heat source), working fluids (alcohol-based and nonalcohol-based), stainless steel plate fin type heat exchanger, EHD heat exchanger, and so on. The other techniques evaluated include those for chemical heat storage, combined systems, plant simulation, and systemization. The evaluation works are also directed to the economic and environmental aspects. Finally, the R and D themes are proposed to leap over various hurdles, e.g., reliability and economic viability, for the eventual commercialization of the energy accumulation system. (NEDO)

  19. Energy research 2003 - Overview

    International Nuclear Information System (INIS)

    2004-01-01

    This publication issued by the Swiss Federal Office of Energy (SFOE) presents an overview of advances made in energy research in Switzerland in 2003. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energies, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, combustion, fuel cells and in the process engineering areas. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, small-scale hydro, geothermal energy and wind energy are presented. Work being done on nuclear safety and disposal regulations as well as controlled thermonuclear fusion are discussed

  20. Modeling decentralized energy systems: a tool for analyzing, researching and modeling energy efficiency, sustainability and flexibility of biogas chains operating as load balancer within decentralized (smart) energy systems

    OpenAIRE

    Pierie, Frank

    2015-01-01

    During the opening of the Hanze Energy Transition Centre or EnTranCe posters were on display for the King and for the public. These posters where accompanied by the researchers to explain their research in more detail if questions did arise.

  1. Modeling decentralized energy systems : a tool for analyzing, researching and modeling energy efficiency, sustainability and flexibility of biogas chains operating as load balancer within decentralized (smart) energy systems

    NARCIS (Netherlands)

    Pierie, Frank

    2015-01-01

    During the opening of the Hanze Energy Transition Centre or EnTranCe posters were on display for the King and for the public. These posters where accompanied by the researchers to explain their research in more detail if questions did arise.

  2. Renewable energy for America`s cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D&D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  3. Renewable energy for America's cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  4. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  5. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  6. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  7. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  8. Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983

    Science.gov (United States)

    Hertzberg, A.

    1983-01-01

    Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.

  9. Danish energy research

    International Nuclear Information System (INIS)

    1976-04-01

    Review of current Danish research and development on energy, with the main weight laid on public financing. Based on this review, a proposal is presented for extended research and development i Denmark. (B.P.)

  10. Research of home energy management system based on technology of PLC and ZigBee

    Science.gov (United States)

    Wei, Qi; Shen, Jiaojiao

    2015-12-01

    In view of the problem of saving effectively energy and energy management in home, this paper designs a home energy intelligent control system based on power line carrier communication and wireless ZigBee sensor networks. The system is based on ARM controller, power line carrier communication and wireless ZigBee sensor network as the terminal communication mode, and realizes the centralized and intelligent control of home appliances. Through the combination of these two technologies, the advantages of the two technologies complement each other, and provide a feasible plan for the construction of energy-efficient, intelligent home energy management system.

  11. European Union Energy Research

    International Nuclear Information System (INIS)

    Valdalbero, D.R.; Schmitz, B.; Raldow, W.; Poireau, M.

    2007-01-01

    This article presents an extensive state of the art of the energy research conducted at European Union level between 1984 and 2006, i.e. from the first to the sixth European Community Framework Programmes (FP1-FP6) for Research, Technological Development and Demonstration (RTD and D). The FP is the main legal tool and financial instrument of EU RTD and D policy. It sets the objectives, priorities and budgets for a period of several years. It has been complemented over time with a number of policy oriented initiatives and notably with the launch of the European Research Area. FP7 will cover the period 2007-2013 and will have a total budget of more than euros 50 billion. Energy has been a main research area in Europe since the founding Treaties (European Coal and Steel Community, European Atomic Energy Community-Euratom and European Economic Community), and energy RTD and D has always been a substantial part of common EU research. Nevertheless, when inflation and successive European enlargements are taken into account, over time the RTD and D effort in the field of energy has decreased significantly in relative terms. In nominal terms it has remained relatively stable at about euros 500 million per year. For the next years (FP7), it is expected that energy will still represent about 10 % of total EU research effort but with an annual budget of more than euros 800 million per year. This article presents a detailed review of the thematic areas and budget in both European nuclear energy research (fusion and fission) and non-nuclear energy research (energy efficiency/rational use of energy, fossil fuels, CO 2 capture and storage, fuel cells and hydrogen, renewable energy sources, strategic energy research/socio-economy). (authors)

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  13. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  14. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  15. Energy research program 83

    International Nuclear Information System (INIS)

    1983-01-01

    The energy research program 83 (EFP-83) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81 and EFP-82. The new program is a continuation of the activities in the period 1983-85 with a total budget of 111 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  16. Energy research program 85

    International Nuclear Information System (INIS)

    1985-01-01

    The energy research program 85 (EFP-85) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, and EFP-84. The new program is a continuation of the activities in the period 1985-87 with a total budget of 110 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  17. Energy research program 82

    International Nuclear Information System (INIS)

    1982-01-01

    The energy research program 82 (EFP-82) is prepared by the Danish ministry of energy in order to continue the extension of the Danish energy research and development started through the former trade ministry's programs EM-1 (1976) and EM-2 (1978), and the energy ministry's programs EFP-80 and EFP-81. The new program is a continuation of the activities in the period 1982-84 with a total budget of 100 mio.Dkr. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (BP)

  18. Energy research program 86

    International Nuclear Information System (INIS)

    1986-01-01

    The energy research program 86 (EFP-86) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, EFP-84, and EFP-85. The new program is a continuation of the activities in the period 1986-88 with a total budget of 116 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  19. Energy research program 84

    International Nuclear Information System (INIS)

    1984-01-01

    The energy research program 84 (EFP-84) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82 and EFP-83. The new program is a continuation of the activities in the period 1984-86 with a total budget of 112 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  20. Progress of fusion fuel processing system development at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; O'Hira, Shigeru; Hayashi, Takumi; Nakamura, Hirofumi; Kobayashi, Kazuhiro; Suzuki, Takumi; Yamada, Masayuki; Konishi, Satoshi

    2000-01-01

    The Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute has been working on the development of fuel processing technology for fusion reactors as a major activity. A fusion fuel processing loop was installed and is being tested with tritium under reactor relevant conditions. The loop at the TPL consists of ZrCo based tritium storage beds, a plasma exhaust processing system using a palladium diffuser and an electrolytic reactor, cryogenic distillation columns for isotope separation, and analytical systems based on newly developed micro gas chromatographs and Raman Spectroscopy. Several extended demonstration campaigns were performed under realistic reactor conditions to test tritiated impurity processing. A sophisticated control technique of distillation column was performed at the same time, and integrated fuel circulation was successfully demonstrated. Major recent design work on the International Thermonuclear Experimental Reactor (ITER) tritium plant at the TPL is devoted to water detritiation based on liquid phase catalytic exchange for improved tritium removal from waste water

  1. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    Science.gov (United States)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  2. Fossil energy research meeting

    Energy Technology Data Exchange (ETDEWEB)

    Kropschot, R. H.; Phillips, G. C.

    1977-12-01

    U.S. ERDA's research programs in fossil energy are reviewed with brief descriptions, budgets, etc. Of general interest are discussions related to the capabilities for such research of national laboratories, universities, energy centers, etc. Of necessity many items are treated briefly, but a general overview of the whole program is provided. (LTN)

  3. Research and application of active hollow core slabs in building systems for utilizing low energy sources

    International Nuclear Information System (INIS)

    Xu, Xinhua; Yu, Jinghua; Wang, Shengwei; Wang, Jinbo

    2014-01-01

    Highlights: • A review on the development and modeling of active hollow core slab is presented. • The applications and performance evaluation of the slab in building are reviewed. • Finite element or finite difference method is often used in multidimensional model. • Performance evaluations of building using active slabs for ventilation are limited. • More works on the active hollow core slab are worthwhile. - Abstract: The society and the building professionals have paid much concern in recent years on building energy efficiency and the development and applications of low energy technologies for buildings/green buildings allowing the elimination, or at least reduction of dependence on electricity or fossil fuel while maintaining acceptable indoor environment. Utilizations of favorable diurnal temperature difference and ground thermal source for air conditioning are among these low energy technologies. Utilization of the hollow cores in the prefabricated slab for ventilation and the mass of the slab for thermal storage is widely used in building systems in Europe by exploiting the low energy source of the ambient air. These hollow core slabs aim at enlarging the heat transfer surface between the slab mass and the air in the core, which permits substantial heat flows even for relatively small temperature differences. This, in turn, allows the use of low energy cooling or heating sources, such as the ground, outside air or recovered process heat. In this paper, we present a comprehensive review of the research and application of active hollow core slabs in building systems for utilizing low energy sources. The principle and development of active hollow core slabs in building systems for leveling the indoor temperature fluctuation by ventilation air passing the cores are described. Calculation models of the active hollow core concrete slab as well as the practical applications and performance evaluation of the slab applied in building systems for air

  4. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 3. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 3. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements during fiscal 1998 on researching part of the energy transportation and storage technologies, energy supply and utilization technologies, environmental load reducing technologies, and optimal system design in the 'research on highly efficient and effective energy utilization technology'. With regard to energy transportation and storage technologies, researches and developments were performed on a vacuum adiabatic transportation piping system, surfactants used for high-density heat transportation and high-density latent heat transportation technologies. In the field of energy supply and utilization technologies, researches and developments were carried out on a heat supply system using high-performance heat pumps capable of using multiple kinds of fuels, and a compression and absorption type hybrid heat utilization system. For the environmental load reducing technologies, research and development were performed on a power saving heat pump system utilizing natural coolant. In researching the optimal system design technologies, overall adjustment was made on the element technologies, whereas technological discussions and site surveys were executed by the committees at the same time. The latest achievements accomplished to date was published in a book. (NEDO)

  5. Systems-Level Energy Audit for Main Complex, Construction Engineering Research Laboratory

    National Research Council Canada - National Science Library

    Lin, Mike

    2003-01-01

    ... (Buildings 1, 2, and 3) was conducted. The goals of the audit were to review energy and water use in the current main complex building, to review and inventory energy system equipment, and to devise short- and long-term energy improvement...

  6. FY 1999 Technical research and development for environmentally friendly and highly efficient energy utilization system. Technical research and development for highly efficient and effective energy utilization (Technical research and development for optimum system designs - Part 3); 1999 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 3. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Research and development program is conducted for the elementary techniques as part of the eco-energy urban project of New Sunshine Project. Described herein are the FY 1999 results for the (techniques for transportation and storage of energy (continued), energy supply and utilization, reducing environmental loads, and designing the optimum systems). The R and D on heat transfer system through the vacuum heat insulation pipes involves fabrication, on a trial basis, the vacuum insulation covers for the vacuum insulation tubes, joints, flanges and valves for the 80A pipes, and the heat loss evaluation test for each item. The R and D on the energy supply and utilization techniques involves the heat transfer systems for a variety of fuels by the highly functional heat pump, and compression/absorption hybrid type heat-utilization system. The hybrid type heat-utilization system simulation results suggest possibility of achieving exergy efficiency of 56% as the development target by use of the new medium. The R and D on the environmental load reduction involves the power-saving type heat pump systems which use a natural coolant. (NEDO)

  7. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  8. Energy research information system (eris) projects report. volume 4, number 1. Report for December 1978-June 1979

    International Nuclear Information System (INIS)

    Boyd, C.A.; Jelinek, J.

    1979-06-01

    The goal of the Energy Research Information System (ERIS) is to provide an inventory of the energy related programs and research activities from 1974 to the present in the States of Montana, Nebraska, North Dakota, South Dakota and Wyoming. Areas of research covered include: coal, petroleum, oil shales, fission fuels, synthetic fuels, hydro-energy, renewable energy, resources, energy policy, reclamation, socioeconomic impacts, environmental impacts and land use. Each project description lists title, investigator(s), research institution, sponsor, funding, time frame, location, a descriptive abstract of the research and the titles of reports and/or publications generated by the research. All projects are indexed by location, personal names, organizations and subject keywords

  9. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  10. Fiscal 1976 Sunshine Project result report. Research on solar energy utilization systems (total system); 1976 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Total system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    For every solar energy utilization field, its background, feasibility, impact in practical use, and R and D policy in Japan were studied. Heating and hot water supply by solar energy are already practical because of less technical problems and reasonable profitability, and cooling is also practical as far as a technical viewpoint. At present, the technical level of solar heat power generation is in the stage of basic technology, however, in the future, development of economically reasonable systems will be demanded as well as establishment of its technology. The most difficult problem for realizing practical solar cell power generation systems is cost reduction. It is also another problem that a big demand of Si for solar cells further exceeds the current yield of Si in a semiconductor industry. A small-scale hybrid solar cell power generation system applicable to the roof of general residences is already feasible. Although a solar furnace is still poor in application to industrial fields, it is expected as the leading part for a future solar heat chemical industry. (NEDO)

  11. Research and development for solar thermal energy system. Research on advanced solar component; Taiyonetsu energy system no kenkyu kaihatsu. Kiki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Doi, T; Takashima, T; Ando, Y; Masuda, T; Fujii, T [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for research on advanced solar components as part of research and development of solar thermal energy. The catalyst for liquid-film reactions is prepared, and the flask tests are conducted as the preliminary experiments for development of the reactor in which 2-propanol is fallen in liquid film over the catalyst dispersed to accelerate its decomposition. It is decomposable when fallen in liquid film even in the presence of 35% of acetone. The catalyst of ruthenium carried by activated coal is used to produce 2-propanol under an exothermic condition from acetone and hydrogen. Diisopropyl ether and 4-methyl-2-pentanone are produced as by-products, when the reactor tube is kept at 140 to 200{degree}C at the external wall, diminishing as temperature is increased. There is a temperature differential of 20 to 30{degree}C in the reactor tube between the center axis and external wall. 3 figs.

  12. A stepwise validation of a wearable system for estimating energy expenditure in field-based research

    International Nuclear Information System (INIS)

    Rumo, Martin; Mäder, Urs; Amft, Oliver; Tröster, Gerhard

    2011-01-01

    Regular physical activity (PA) is an important contributor to a healthy lifestyle. Currently, standard sensor-based methods to assess PA in field-based research rely on a single accelerometer mounted near the body's center of mass. This paper introduces a wearable system that estimates energy expenditure (EE) based on seven recognized activity types. The system was developed with data from 32 healthy subjects and consists of a chest mounted heart rate belt and two accelerometers attached to a thigh and dominant upper arm. The system was validated with 12 other subjects under restricted lab conditions and simulated free-living conditions against indirect calorimetry, as well as in subjects' habitual environments for 2 weeks against the doubly labeled water method. Our stepwise validation methodology gradually trades reference information from the lab against realistic data from the field. The average accuracy for EE estimation was 88% for restricted lab conditions, 55% for simulated free-living conditions and 87% and 91% for the estimation of average daily EE over the period of 1 and 2 weeks

  13. "Solvent-in-salt" systems for design of new materials in chemistry, biology and energy research.

    Science.gov (United States)

    Azov, Vladimir A; Egorova, Ksenia S; Seitkalieva, Marina M; Kashin, Alexey S; Ananikov, Valentine P

    2018-02-21

    Inorganic and organic "solvent-in-salt" (SIS) systems have been known for decades but have attracted significant attention only recently. Molten salt hydrates/solvates have been successfully employed as non-flammable, benign electrolytes in rechargeable lithium-ion batteries leading to a revolution in battery development and design. SIS with organic components (for example, ionic liquids containing small amounts of water) demonstrate remarkable thermal stability and tunability, and present a class of admittedly safer electrolytes, in comparison with traditional organic solvents. Water molecules tend to form nano- and microstructures (droplets and channel networks) in ionic media impacting their heterogeneity. Such microscale domains can be employed as microreactors for chemical and enzymatic synthesis. In this review, we address known SIS systems and discuss their composition, structure, properties and dynamics. Special attention is paid to the current and potential applications of inorganic and organic SIS systems in energy research, chemistry and biochemistry. A separate section of this review is dedicated to experimental methods of SIS investigation, which is crucial for the development of this field.

  14. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  15. Research on the full life cycle management system of smart electric energy meter

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  16. Fiscal 1976 Sunshine Project result report. Research on solar energy utilization systems (solar heat power generation); 1976 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyonetsu hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Research was made on solar heat power generation following last fiscal year, as a part of solar energy utilization technologies. In this fiscal year, in particular, research was made on the following: selection of suitable sites for solar heat power plants in Japan, estimation of expected power supply, positioning of a solar heat power system among future power systems, operation policy of solar heat power systems, survey on suitable sites for the 1,000kW pilot power plant, operation characteristics of the small test plant, design of the 1,000kW pilot power plant, test methods and facilities for every element equipment of solar heat power systems, an environmental test method for mostly solar collectors, and the profitability of solar heat power systems. Optimum operation temperature levels were nearly 350 degrees C for distributed systems and nearly 400 degrees C for centralized ones. The distributed system is profitable in a unit capacity range less than 5-10MWe, while the centralized system is profitable in a range over 10MWe. Under some assumptions, the power cost of solar heat power systems was estimated to be 20-30yen/kWH. (NEDO)

  17. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 1. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 1. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements of the researches during fiscal 1998 on researching a highly efficient and effective energy utilization technology. With regard to technologies to recover and convert unutilized energies, a process simulator was developed, basic internal structure was discussed by experiments and simulation, and substance migrating and heat exchanging characteristics were identified by using partial testing devices. These researches and developments were performed for the waste heat reforming and recovering systems used in chemical plants. In developing a thermoelectric generation system using low calorie exhaust gases, thermoelectric power generating materials were developed, a powder manufacturing technology was developed, a thermoelectric conversion element bulking technology was developed, a thermoelectric power generation system using porous structures was simulated, development and concept design were carried out on system element technologies. In the research and development of the thermoelectric generation system using low calorie exhaust gases, advanced materials and modules were manufactured, the modules were evaluated, and power generation systems were researched. In addition, researches were performed on energy transportation, supply and utilization technologies, and on environmental load reducing technologies. (NEDO)

  18. Achievement report for fiscal 1981 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1981 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    In this research, studies are conducted relative to the time point, form, and magnitude of the introduction of hydrogen into Japan's total energy system. The research aims to construct a hydrogen energy total system consisting of hydrogen energy subsystems to be available in the future and to clearly define the stage at which transfer to the target system will be carried out. In the research for fiscal 1981, studies continue about the feasibility of hydrogen as automobile and aviation fuels and as a material for use in chemical engineering, about conversion into each other of hydrogen and various synthetic fuels and electric power with which hydrogen will have to compete in the domain into which it will be supplied, and about technologies of their utilization for comparison between such energies in the search for their interchangeability. Surveys are conducted on technical data about local energies. The Yakushima island is chosen, for instance, and a conceptual hydrogen energy base is constructed there and the cost for the construction is estimated. At the last part, the feasibility of the introduction of hydrogen into Japan's energy system in the future is discussed for assessment. (NEDO)

  19. Energy research strategic plan

    International Nuclear Information System (INIS)

    1995-08-01

    Research and development is an essential element of economic prosperity and a traditional source of strength for the U.S. economy. During the past two decades, the way of introducing technological developments into the national economy has changed steadily. Previously, industry did most long-term technology development and some basic research with private funding. Today, the Nation's industry relies mostly on federally-funded research to provide the knowledge base that leads to new technologies and economic growth. In the 1980s, U.S. firms lost major technology markets to foreign competition. In response, many firms increased emphasis on technology development for near term payoff while decreasing long term research for new technology. The purpose of the Office of Energy Research of the U.S. Department of Energy (DOE) is to provide basic research and technology development that triggers and drives economic development and helps maintain U.S. world leadership in science. We do so through programs of basic and applied research that support the Department's energy, environmental and national defense missions and that provide the foundation for technical advancement. We do so by emphasizing research that maintains our world leadership in science, mathematics, and engineering and through partnerships with universities, National Laboratories, and industries across the Nation

  20. Research on Control Strategy of the Micro Grid’s Hybrid Energy System

    Science.gov (United States)

    Gao, Zi-jun; Li, Yang; Wang, Yan-ping; Zong, Ke-yong; Zhang, Jing

    2018-03-01

    This paper study the structure and operating characteristic of the hybrid energy system which is made of super-capacitor and battery. The system is controlled by strategy of bus voltage following. The bus voltage can change the state from swings to stable quickly when load mutation occurs in the micro grid. The transient impact also can be reduced by this way. The passage set up the model of energy system and make an analysis by the software named MATLAB/Simulink. At last, the passage proves the correctness and the effectiveness of the control strategy and draws a conclusion that the transient impact can be inhibited which occurs in the bus voltage of energy system.

  1. Research and development of utilization technology of solar thermal energy system for industrial and other use. International joint technology development for solar energy utilization systems; Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Taiyo energy riyo system kokusai kyodo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for international joint technology development for solar energy utilization systems. The joint study with an Indonesian research institute takes a model of lumber drying plant for the design and feasibility study. All the parts it needs are technically available in Indonesia, except carbon fiber sheets and electronic devices for controlling purposes. The drying cost is higher than that of a plant which procures charge-free wood fuel, but lower than that of a plant which procures fuel at 30$/t. A cacao drying plant model is also studied. The feasibility study shows that the initial investment for the blowing-up model is much higher by 60% to 100% than that for the conventional plant. Its fuel cost is lower by 11% than that of residual oil but 27% higher than that of wood. 4 figs.

  2. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  3. FY 1999 Technical research and development for environmentally friendly and highly efficient energy utilization system. Technical research and development for highly efficient and effective energy utilization (Technical research and development for optimum system designs - Part 1); 1999 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 1 Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Research and development program is conducted for the elementary techniques as part of the eco-energy urban project of New Sunshine Project. Described herein are the FY 1999 results for the 'techniques for recovery and conversion of unutilized energy'. The R and D on waste heat recovery and conversion for chemical plants designs an internal structure of the 'wetted wall column for shell side as the stripping section' for increasing quantity of heat exchanged inside, and stably operates the bench plant for 100 hours or more. The R and D on thermoelectric power generating systems using low calorie exhaust gases involves development of materials, production of fine particle materials and sinters, and evaluation of their functions, among others. The program for application of the techniques to commercial plants confirms applicability of a 3kg thermoelectric power generating system to automobile coating process. The R and D on systems for thermoelectric recovery of low-temperature waste heat finds cracks on the ceramic plate for the power generating system WATT100, disassembled for repair. (NEDO)

  4. FY 1999 Technical research and development for environmentally friendly and highly efficient energy utilization system. Technical research and development for highly efficient and effective energy utilization (Technical research and development for optimum system designs - Part 2); 1999 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Research and development program is conducted for the elementary techniques as part of the eco-energy urban project of New Sunshine Project. Described herein are the FY 1999 results for the (techniques for transportation and storage of energy). The R and D on methanol energy systems involves the R and D on decomposition and synthesis catalyst of methanol and methyl formate for the waste heat sources of relatively low temperature. The R and D on high-efficiency techniques using hydrogen-occluding alloys involves development of heat exchangers of low sensible heat ratio, fabrication of double-effect type MH heat pump cycle devices, and demonstration tests for the system operation. It is found that the heat output of the hydrogen-occluding alloy for high temperature use is 0.18kW/kg at 90 degrees C, and that the alloy can be massively produced. A thermal utilization efficiency COP of 0.68 is obtained for the double-effect type MH heat pump cycles. The R and D on the heat-hydrogen recovery, transportation and utilization techniques involves designs and fabrication on a trial basis of a sensible heat recovery unit. (NEDO)

  5. Energy research program 80

    International Nuclear Information System (INIS)

    1980-01-01

    The energy research program 80 contains an extension of the activities for the period 1980-82 within a budget of 100 mio.kr., that are a part of the goverment's employment plan for 1980. The research program is based on a number of project proposals, that have been collected, analysed, and supplemented in October-November 1979. This report consists of two parts. Part 1: a survey of the program, with a brief description of the background, principles, organization and financing. Part 2: Detailed description of the different research programs. (LN)

  6. Development of a wide-area energy utilization network system (research on a technology to design an energy system). FY 1998 report on achievements of research on systematizing ECO and ENERGY cities; Koiki energy riyo network system kaihatsu (energy system sekkei gijutsu no kenkyu). 1998 nendo eko ene toshi no system ka kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    As a research on systematizing ECO and ENERGY cities, surveys and analyses were performed on the actual state of introducing district heat supply systems utilizing difference waste heats including factory waste heat. Waste heat from electric power generation is utilized for district heat supply in Japan at 122 points or about 20% of the district heat supply points in operation as of March 1998. The number is in the increasing trend in recent years, and the future potential of its introduction can be said high as the history thereof is still short. Its introduction form is accounted mostly for by building cogeneration or plant cogeneration. Back-up facilities for the case when waste heat supply stops because of regular facility checks are provided by the heat supply business operators, which impede the economy of the system. In the U.S., the Public Utility Regulatory Policy act motivated installation of cogeneration and off-peak power generation systems for district heat supply. Technical maps (for waste heat sources and different waste heat utilization systems) were prepared based on the surveys to discuss the future measures. (NEDO)

  7. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  8. Strategic research on CO2 emission reduction for China. Application of MARKAL to China energy system

    International Nuclear Information System (INIS)

    Wang Yongping

    1995-09-01

    MARKAL was applied to the energy system for analyzing the CO 2 emission reduction in China over the time period from 1990 to 2050. First the Chinese Reference Energy System (CRES) was established based on the framework of MARKAL model. The following conclusions can be drawn from this study. When shifting from scenario LH (low useful energy demand and high import fuel prices) to HL (high demand and low prices), another 33 EJ of primary energy will be consumed and another 2.31 billion tons of CO 2 will be emitted in 2050. Detailed analyses on the disaggregation of CO 2 emissions by Kaya Formula show. The energy intensity (primary energy/GDP) decreases much faster in scenario HL, but the higher growth rate of GDP per capita is the overwhelming factor that results in higher CO 2 emission per capita in the baseline case of scenario HL in comparison with LH. When the carbon taxes are imposed on CO 2 emissions, the residential sector will make the biggest contribution to CO 2 emission abatement from a long-term point of view. However, it's difficult to stabilize CO 2 emission per capita before 2030 in both scenarios even with heavy carbon taxes. When nuclear moratorium occurs, more 560 million tons of CO 2 will be emitted to the atmosphere in 2050 under the same CO 2 tax regime. From the analysis of value flow, CO 2 emission reduction depends largely on new or advanced technologies particularly in the field of electricity generation. The competent technologies switch to those CO 2 less-emitting technologies when surcharging CO 2 emissions. Nuclear power shows significant potential in saving fossil energy resources and reducing CO 2 emissions. (J.P.N.)

  9. Coherent energy and environmental system analysis. A strategic research project financed by The Danish Council for Strategic Research Programme Commission on Sustainable Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Lund, H. (ed.); Hvelplund, F.; Vad Mathiesen, B. (and others)

    2011-11-15

    The main focus of this project has been A) to further develop and integrate existing tools and methodologies of environmental life cycle assessment and energy system and market analysis into coherent energy and environmental analysis tools. B) to apply such integrated tools and methodologies to the analysis of future sustainable energy systems with an emphasis on: 1) how to integrate the transport sector including considerations of limitations in biomass resources; 2) how to develop future power systems suitable for the integration of distributed renewable energy sources; and 3) how to develop efficient public regulation in an international market environment. It is found that the transition from the present energy system dominated by fossil fuels to a system dominated by renewable energy sources requires significant changes in existing policies on both supply and demand sides. In order to succeed, such change requires the system based on renewables to be supported by strong and efficient energy conservation. In Denmark, wind power and biomass are expected to be the two dominant resources in the short and medium term perspectives. In order to ease the pressure on wind and biomass resources, energy conservation becomes essential and so does the inclusion of contributions from additional sources such as solar and geothermal energy. The change requires infrastructure where intermittent renewable energy sources can be managed in such a way that energy is available at the right time and in the right amount for the consumers. A main challenge for the transition planning is to obtain an efficient coordination between investments in the electricity, transportation, and heat sectors. The policy instruments include new systems of taxes, subsidies, tariffs, and other economic conditions in order to obtain an optimal effect. One main problem is to assure an energy-efficient use of low-temperature sources from CHP, waste incineration, industrial surplus heat and geothermal

  10. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  11. Research on multi-spectrum detector in high-energy dual-energy X-ray imaging system

    International Nuclear Information System (INIS)

    Li Qinghua; Wang Xuewu; Li Jianmin; Kang Kejun; Li Yuanjing; Zhong Huaqiang

    2008-01-01

    The high-energy dual-energy X-ray imaging system can discriminate the material of the objects inspected, but when the objects are too thin, the discrimination becomes very difficult. This paper proposes the use of multi-spectrum detector to improve the ability to discriminate thin material, and a series of simulation were done with the Monte Carlo method. Firstly the X-ray depositions in the detectors with different thickness were calculated, and then the discrimination effects with different detector structure and parameters were calculated. The simulation results validated that using appropriate multi-spectrum detector can improve the discrimination accuracy of thin material, particularly thin high-Z material. (authors)

  12. Forest industries energy research

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G. C.

    1977-10-15

    Data on energy use in the manufacturing process of the wood products industry in 1974 are tabulated. The forest industries contributed 10% of New Zealand's factory production and consumed 25% of all industrial energy (including that produced from self-generated sources such as waste heat liquors and wood wastes) in that year. An evaluation of the potential for savings in process heat systems in existing production levels is shown to be 3% in the short, medium, and long-term time periods. The industry has a high potential for fuel substitution in all sectors. The payback periods for the implementation of the conservation measures are indicated.

  13. Fiscal 1999 achievement report on development of wide-area energy utilization network system. Research on energy system design technology (Research on Eco-Energy City systematization); Eco ene toshi no system ka kenkyu 1999 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Efforts are being exerted to develop systems for effectively utilizing various kinds of waste heat in presence in cities and their neighborhood. In fiscal 1999, investigations were conducted into cases of low temperature waste heat utilization at 16 locations in Japan and into trends of heat utilization in five European countries, with a visit paid to European District Heating Association. There are 128 district heat supplying sites in service in Japan, of which 25 handles low temperature waste heat. As for their types of utilization, 12 are of the temperature difference energy utilization type while 13 are of the heat recovery type. When it comes to the system details, the importance of proper selection of structures and materials for heat accumulating systems and heat exchangers on the secondary side should be emphasized although it is the heat pump that assumes the key role. In Europe, indications are that district systems are developing into wide-area networks and that they are growing increasingly marketable. In the northern and eastern parts of Europe, 30-70% of demand for heat is met by district heating. Waste heat from power generation is the heat source, and this occupies 30-80% of the whole. Thanks to the introduction of the environmental tax, in addition, environments are now complete under which recoverable energy utilization will enjoy an advantageous position. (NEDO)

  14. Bioprocessing research for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Gaden, E.L. Jr.; Humphrey, A.E.; Carta, G.; Kirwan, D.J.

    1989-04-01

    The new biotechnology that is emerging could have a major impact on many of the industries important to our country, especially those associated with energy production and conservation. Advances in bioprocessing systems will provide important alternatives for the future utilization of various energy resources and for the control of environmental hazards that can result from energy generation. Although research in the fundamental biological sciences has helped set the scene for a ''new biotechnology,'' the major impediment to rapid commercialization for energy applications is the lack of a firm understanding of the necessary engineering concepts. Engineering research is now the essential ''bridge'' that will allow the development of a wide range of energy-related bioprocessing systems. A workshop entitled ''Bioprocessing Research for Energy Applications'' was held to address this technological area, to define the engineering research needs, and to identify those opportunities which would encourage rapid implementation of advanced bioprocessing concepts.

  15. Control system of test and research facilities for nuclear energy industry

    International Nuclear Information System (INIS)

    1983-01-01

    IHI manufactures several kinds of test and research facilities used for research and development of new type power reactor and solidification system of high level radioactive liquid waste and safety research of light water reactor. These facilities are usually new type plants themselves, so that their control systems have to be designed individually for each plant with the basic conception. They have many operation modes because of their purposes of research and development, so the operation has to be automatized and requires the complicated sequence control system. In addition to these requirements, the detail design is hardly fixed on schedule and often modified during the initial start up period. Therefore, the computer control system was applied to these facilities with CRT display for man-machine communication earlier than to commercial power plants, because in the computer system the control logic is not hard wired but soft programmed and can be easily modified. In this paper, two typical computer control systems, one for PWR reflood test facility and another for mock-up test facility for solidification of liquid waste, are introduced. (author)

  16. Research on Improved VSG Control Algorithm Based on Capacity-Limited Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yanfeng Ma

    2018-03-01

    Full Text Available A large scale of renewable energy employing grid connected electronic inverters fail to contribute inertia or damping to power systems, and, therefore, may bring negative effects to the stability of power system. As a solution, an advanced Virtual Synchronous Generator (VSG control technology based on Hamilton approach is introduced in this paper firstly to support the frequency and enhance the suitability and robustness of the system. The charge and discharge process of power storage devices forms the virtual inertia and damping of VSG, and, therefore, limits on storage capacity may change the coefficients of VSG. To provide a method in keeping system output in an acceptable level with the capacity restriction in a transient period, an energy control algorithm is designed for VSG adaptive control. Finally, simulations are conducted in DIgSILENT to demonstrate the correctness of the algorithm. The demonstration shows: (1 the proposed control model aims at better system robustness and stability; and (2 the model performs in the environment closer to practical engineering by fitting the operation state of storage system.

  17. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  18. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    Science.gov (United States)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  19. Developing a plasma focus research training system for the fusion energy age

    International Nuclear Information System (INIS)

    Lee, S.

    2014-01-01

    The 3 kJ UNU/ICTP Plasma Focus Facility is the most significant device associated with the AAAPT (Asian African Association for Plasma Training). In original and modified/upgraded form it has trained generations of plasma focus (PF) researchers internationally, producing many PhD theses and peer-reviewed papers. The Lee Model code was developed for the design of this PF. This code has evolved to cover all PF machines for design, interpretation and optimization, for derivation of radiation scaling laws; and to provide insights into yield scaling limitations, radiative collapse, speed-enhanced and current-stepped PF variants. As example of fresh perspectives derivable from this code, this paper presents new results on energy transfers of the axial and radial phases of generalized PF devices. As the world moves inexorably towards the Fusion Energy Age it becomes ever more important to train plasma fusion researchers. A recent workshop in Nepal shows that demand for such training continues. Even commercial project development consultants are showing interest. We propose that the AAAPT-proven research package be upgraded, by modernizing the small PF for extreme modes of operation, switchable from the typical strong-focus mode to a slow-mode which barely pinches, thus producing a larger, more uniform plasma stream with superior deposition properties. Such a small device would be cost-effective and easily duplicated, and have the versatility of a range of experiments from intense multi-radiation generation and target damage studies to superior advanced-materials deposition. The complementary code is used to reference experiments up to the largest existing machine. This is ideal for studying machine limitations and scaling laws and to suggest new experiments. Such a modernized versatile PF machine complemented by the universally versatile code would extend the utility of the PF experience; so that AAAPT continues to provide leadership in pulsed plasma research training in

  20. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    International Nuclear Information System (INIS)

    Turitzin, N.M.

    1975-01-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  1. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    International Nuclear Information System (INIS)

    Turitzin, N.M.

    1976-05-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  2. Achievement report for fiscal 1998 on development of environmentally friendly high-efficiency energy utilization system. 2. Research of technology of effectively utilizing high-efficiency energy / research of optimum system designing technology; 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu, saiteki system sekkei gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This 2nd volume deals with the transportation and storage of energy in the above-named research. In search of technologies for transporting exhausted heat from the industrial area to the urban section for consumers to utilize the heat for driving their air-conditioners and hot water supply systems, the decomposition and composition reactions of methanol are utilized for a long-range transportation system. The subjects taken up in this connection include the research and development of a methanol energy system, non-equilibrium high-efficiency methanol decomposition technology, multifunctional catalysts, and highly active/selective catalysts capable of promoting reversible endoergic/exoergic reactions. Research and development is also conducted of a high-efficiency heat pump technology using hydrogen-absorbing alloys, and such a pump will realize an air-conditioning system not dependent on chlorofluorocarbon. In the research and development of a long-range heat transportation system using hydrogen-absorbing alloys, a study is made of technologies of heat/hydrogen recovery, transportation, and utilization. (NEDO)

  3. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  4. Research on the Multi-Energy Management Strategy of the Electric Drive System of a Tracked Bulldozer

    Directory of Open Access Journals (Sweden)

    Ming Pan

    2016-01-01

    Full Text Available The multi-energy management strategy of electric drive system of tracked bulldozer was researched. Firstly, based on power requirement of typical working condition of a tracked bulldozer, the power distribution strategy for three energy sources in the front power chain was proposed by using wavelet theory and fuzzy control theory. Secondly, the electric drive system simulation platform was built in MATLAB/Simulink. At last, a driver-controller based HILS (hardware-in-the-loop simulation platform was built and the multi-energy management strategy was verified. The HILS result shows that front power chain’s power output can meet the back power chain’s requirement, the engine-generator set works near the best fuel consumption curve, and the battery pack’s charge-discharge frequency and current are low. Thus the designed multi-energy management strategy can be used in real-time control of electric drive bulldozer.

  5. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  6. Research and development activities of the Joint Research Centre -JRC and its involvement in the development of future nuclear energy systems

    International Nuclear Information System (INIS)

    Schenkel, R.

    2007-01-01

    Besides the policy driven support which the JRC gives to the European Commission and its Member States, the nuclear activities of the JRC also fulfil the Research and Development obligations as enshrined in the EURATOM Treaty. These have for objectives to develop and assemble knowledge in the field of nuclear energy and concern basic actinide research, nuclear data and nuclear measurements, radiation monitoring and radionuclides in the environment, health and nuclear medicine, management of spent fuel and waste, safety of reactors and fuel cycle and nuclear safeguards and non proliferation. The European Union currently imports 50% of its energy and, going by the present trend, this may increase to 70% within 20 years. One third of the electricity in Europe is currently been produced via nuclear fission and the move to innovative reactor systems holds great promise. In May 2006, the European Atomic Energy Community became a Party to the Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems (GIF Framework Agreement). The 'Generation IV' initiative concerns concepts for nuclear energy systems that can be operated in a manner that will provide a competitive and reliable supply of energy, while satisfactorily addressing nuclear safety, waste, proliferation and public perception concerns. The JRC with its strong international dimension is not only the implementing agent for EURATOM in the Generation IV international forum, but also participates actively in related Research and Development projects. The Research and Development projects are focused on fuel development, reprocessing and irradiation testing, fuel cladding interaction and corrosion, basic data for fuel and reprocessing, reprocessing and waste treatment. In this paper the Research and Development the nuclear activities of the JRC will be presented especially those related to its participation to GIF

  7. Reports on 1979 result of Sunshine Project. Investigation and research on solar energy utilization system (solar thermal power generation system); 1979 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyonetsu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    An investigation and research were conducted on the operation method of various solar thermal power generation systems and on the evaluation of the rating and cost performance; in the environmental test method for the equipment, the examination was continued for the test method and evaluation method concerning the absorbing surface and transmitting film; in the heat storing technology, an investigative research was done on the optimum heat storing method and energy conversion method suitable for the operation of the thermal power generation system, as well as performing, as an objective, a computer simulation on the total system with the purpose of clarifying the heat storing capacity. The results in the year were as follows. The operation method for solar thermal power generation was examined, as were the energy analysis, evaluation method of 1 MW pilot plant, the optimum utilization system of solar energy in the long run including its application, and technological economical problems to be solved for the next large solar thermal power generating plant. A discussion was carried out on the endurance test of the selective absorbing surface and transmitting film and on the durability of the reflection mirror. Evaluation and examination were made on the various materials of the 1 MW pilot plant. A review was done on various heat accumulating devices for solar thermal generation, mathematical thermal characteristics of heat accumulating devices, and future energy storing methods and problems. (NEDO)

  8. [Medium energy meson research

    International Nuclear Information System (INIS)

    Crowe, K.M.

    1992-01-01

    The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p bar p annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report

  9. Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-02-12

    Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

  10. Building Student Awareness of Societal Decision-Making Challenges about Energy through the Study of Earth System Data and Innovations in Energy-Related Materials Research

    Science.gov (United States)

    Zalles, D. R.; Acker, J. G.; Berding, M.

    2014-12-01

    Energy literacy requires knowledge about the trade-offs inherent in energy alternatives, about how humans use energy and have choices in how much energy to use, and about what changes to the Earth system are occurring from energy uses. It also requires collaborative decision-making skills coupled with awareness about what values we bring to the table as we negotiate solutions that serve both personal needs and the common good. Coming up with a notion of the common good requires delineating how environmental crises occurring in other parts of the world compare to our own. We also need to understand criteria for judging what might be viable solutions. This presentation describes work that SRI International is carrying out to meet these awareness-building needs. SRI educational researchers created a curriculum that immerses students in studying regional climate change data about California in comparison to global climate change. Students ponder solution energy-related strategies and impact analyses. The curriculum will be described, as will a collaboration between SRI educational researchers and materials scientists. The scientists are designing and testing technologies for producing biofuels and solar power, and for sequestering carbon from coal fired power plants. As they apply principles of science and engineering to test materials intended to meet these energy challenges, they understand that even if the tests prove successful, if there is not economic feasibility or environmental advantage, the technology may not stand as a viable solution. This educator-scientist team is using the Essential Energy Principles and Next Generation Science Standards to articulate milestones along a trajectory of energy learning. The trajectory starts with simple understandings of what energy is and what constitute our energy challenges. It ends with more the types of more sophisticated understandings needed for designing and testing energy technology solutions.

  11. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  12. Fiscal 1976 Sunshine Project result report. Research on solar energy system (weather survey); 1976 nendo taiyo energy system no kenkyu seika hokokusho. Kisho chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-31

    This report describes the fiscal 1976 research result on weather survey for solar energy systems. Study was made on preparation of the global solar radiation (GSR) map of Japan. To obtain the estimation equation of GSR based on related weather data, analysis was made on data at A type GSR observation sites and related weather data. As some factors effective for estimating monthly mean GSR, a relative sunshine duration, snowfall index (ratio of days more than 10cm in snowfall) and solar altitude index (sine of solar altitude at culmination hour) were selected. The estimation equation was prepared on the basis of these above factors. GSR was affected by relative sunshine duration exceedingly, snowfall by 12%, and solar altitude difference by 6% within an error of 5%. The monthly and annual GSR maps were prepared every site by the above calculation. The continuous observation results in Kagoshima and Fukuoka by recording direct pyranometers are presented. Scattered solar radiation is defined as the difference between simultaneously measured GSR and direct solar radiation. Weather data preparation in Fukuoka for design of solar cooling/heating and hot water supply systems is also described. (NEDO)

  13. Swiss Federal Energy Research Concept 2008 - 2011

    International Nuclear Information System (INIS)

    2007-04-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the plan for the activities of the Swiss Federal Commission on Energy Research CORE during the period 2008 - 2011. The motivation behind the state promotion of energy research is discussed. The visions, aims and strategies of the energy research programme are discussed. The main areas of research to be addressed during the period are presented. These include the efficient use of energy in buildings and traffic - batteries and supercaps, electrical technologies, combustion systems, fuel cells and power generation are discussed. Research to be done in the area of renewable sources of energy are listed. Here, solar-thermal, photovoltaics, hydrogen, biomass, geothermal energy, wind energy and ambient heat are among the areas to be examined. Research on nuclear energy and safety aspects are mentioned. Finally, work on the basics of energy economy are looked at and the allocation of funding during the period 2008 - 2011 is looked at

  14. The Research of Super Capacitor and Battery Hybrid Energy Storage System with the THIPWM

    Directory of Open Access Journals (Sweden)

    Jianwei Ma

    2014-02-01

    Full Text Available It has to be considered that dynamic performance of Super Capacitor and Battery hybrid energy storage system is poor and the output waveform of AC voltage distorted seriously. The Third Harmonic Injection PWM (THIPWM with the three-level inverter, which has a excellent performance to improve the dynamic performance of the super capacitor and battery, gathers information from ends of the DC output voltage or current and the total current of the DC side to solve the problem of unbalanced neutral line voltage of three-level inverter .It also keeps super capacitor and battery controlled smoothly during the operation, and reduces the final output waveform distortion index. The simulation results verify the practicality and correctness of the three-level inverter topology and its control algorithm.

  15. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    grids. In terms of paper sessions, NREL ESI researcher Santosh Veda chaired a session on energy Kroposki chaired a session on advanced renewable energy power systems. While Veda, Muljadi, and Kroposki

  16. Achievement report for fiscal 1982 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1982 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    In this research on a hydrogen energy total system, studies are conducted on the plan of a hydrogen energy proving pilot base and on hydrogen as fuel for automobiles. It is estimated that the construction of a hydrogen energy proving pilot base will cost 7.125-billion yen in total. The sum includes 6.410-billion yen for the construction of a system on an island named Island A, 500-million yen for structures on an island named Island B, and 215-million yen for the construction of a marine transportation system between the two islands. Large shares will go to a hydroelectric power plant and a hydrogen liquefaction system, the two occupying approximately half of the total sum. In the study of hydrogen as fuel for automobiles, it is concluded that hydrogen is advantageously employed as fuel for automobiles. When comparison is made in terms of heat value, it is found that even a hydrogen engine which is a mere modification of a currently used engine is comparable to the currently used engine in terms of performance. As for abnormal combustion, a hydrogen/air 2-system injection method is contrived, and this solves the problem almost completely. Cryogenic hydrogen is advantageous in both NOx emission and heat efficiency though within certain limitations. From the viewpoint of safety, the recommended automobile fuel structural formula is GH{sub 2}(MH). (NEDO)

  17. Research report for fiscal 1998 on development of environmentally friendly high-efficiency energy utilization system. Research of optimum system designing technology (Research of effect of eco-energy city system technology introduction to Osaka); Kankyo chowagata kokoritsu energy riyo system kaihatsu Saiteki system sekkei gijutsu no kenkyu 1998 nendo chosa hokokusho (Osakafu). Ekoene toshi system gijutsu donyu koka no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Concerning the district in Osaka Prefecture selected for study in fiscal 1997, it is investigated whether energy efficiency is enhanced, and environmental impact reduced, by the introduction of element technologies, and the findings are compared with the results expected to be produced without their introduction. Problems about their introduction are also discussed. Taken up for study are the collection and utilization of heat from a water granulated slag manufacturing plant of an iron mill, exhaust heat reform and recovery system at a chemical plant, heat supply system driven by a high-performance heat pump capable of dealing with various kinds of fuels, compression/suction hybrid heat utilization system, and a cold heat supply system using microspheres. Annual energy consumption, CO2 and NOx emissions, and costs are calculated for each of them. Concerning these element technologies, various tasks are discussed, related to the technology of their systematization, economy, dissemination of district heat supply, and wide-area heat supply businesses utilizing exhaust heat. As the result, it is concluded that the primary energy consumption as a whole is reduced upon their introduction and that energy saving effect and environmental impact reducing effect are in presence. (NEDO)

  18. Fiscal 1974 Sunshine Project result report. Research on solar energy utilization systems (solar heat power generation); 1974 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyonetsu hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report summarizes the fiscal 1974 research result on solar heat power generation. The following are promising as solar heat power plant sites in Japan: Large-scale sites such as the foot of volcanos, riverbed, railway site and road, medium-scale sites such as isolated island, saltpan site and industrial park, and small-scale sites such as factory site, factory roof floor, housing complex, warehouse and school. Based on the primary concept design of both curved reflector type and tower type 1,000kW class solar heat power plants, various requirements were clarified roughly. It was clarified that food, fiber and non-ferrous metal factories can cover 80-90% of their thermal energy requirements with high- temperature solar heat, while factories related to food and fiber can cover even nearly 100% of their electric power requirements with solar heat. Study was also made on specifications of a solar simulator as common use facility necessary for characteristic evaluation of equipment and materials for solar heat power generation systems. (NEDO)

  19. Fiscal 1974 Sunshine Project result report. Research on solar energy utilization systems (solar furnace); 1974 nendo taiyo energy riyo system chosa kenkyu. Taiyoro

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    In fiscal 1974, analysis was made on the concept design of solar furnace hardware, and utilization and use purpose of solar furnaces as high-temperature industrial heat source. Detailed survey was also made on the history of high- temperature solar furnaces. Based on the history of large- scale solar furnaces and the current state of some industries consuming a large amount of thermal energy, wide consideration was made on the applicability of large-scale solar furnaces as heat source in the future. Although various applications of large-scale solar furnaces are expected in the future, their current main applications are production of high-melting point materials, research on high-temperature physical properties, production of silicon, and solar heat power generation. A solar furnace is mainly composed of a parabolic reflector and heliostat plane reflector as optical system. It is necessary for practical industrial use of solar furnaces to study on furnace core design, profitability, installation site, temperature control, and reflector maintenance enough. (NEDO)

  20. Alternative Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    West, M.; Duckers, L.; Lockett, P.; Loughridge, B.; Peatfield, T.; White, P.

    1984-01-01

    The Coventry (Lanchester) Polytechnic Wave Energy Group has been involved in the United Kingdom wave energy research programme since its inception in 1975. Whilst the work of the group is mainly concerned with wave energy, and currently is directed towards the design of a wave energy device tailored to the needs of isolated/island communities, it has some involvement with other aspects of the alternatives. This conference, dealing with alternative energy systems and their electrical integration and utilisation was engendered by the general interest which the Polytechnic group members have in the alternatives and their use. The scope for electrical integration and utilisation is very broad. Energy for family groups may be provided in a relatively unsophisticated way which is acceptable to them. Small population centres, for example island communities relying upon diesel equipment, can reap the benefits of the alternatives through their ability to accept novel integration schemes and a flexible approach to the use of the energy available. Consumers already enjoying the benefits of a 'firm' electricity grid supply can use energy from a variety of alternative systems, via the grid, without having to modify their energy consumption habits. In addition to the domestic and industrial applications and coastal possibilities, specialist applications in isolated environments have also emerged. The Proceedings detail practical, technical and economic aspects of the alternatives and their electrical integration and utilisation.

  1. Energy Research & Development

    Science.gov (United States)

    Skip to Main Content CA.gov California Energy Commission CA.gov | Contact | Newsroom | Quick Links convenience of our website visitors and is for informational purposes only. The California Energy Commission Google Translate™. The California Energy Commission does not endorse the use of Google TranslateÂ

  2. Achievement report on research and development in the Sunshine Project in fiscal 1979. Research hydrogen energy subsystems (Research on hydrogen fueled automobiles); 1979 nendo suiso energy subsystem no kenkyu seika hokokusho. Suiso jidosha system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper describes research achievements in fiscal 1979 in research on hydrogen fueled automobiles as a research on hydrogen energy subsystems. The previous fiscal year has researched heat insulation methods to reduce evaporation loss from a hydrogen tank, prototype liquid level meters, prototype feed pumps (especially material selection for sliding parts) and a flow rate control method. Fiscal 1979 performed measurements of temperatures in different parts in the tank to elucidate how the heat makes invasion. Measurements were performed for the pump on suction valve behavior, internal pump compression force, liner temperatures, and leakage amount. The status of operation was identified and a high performance pump for use in very low temperatures was developed successfully. The pump has high delivery pressure, good durability, and capability of fine adjustment in the delivery quantity. This made the direct injection system for hydrogen fuel possible. Injection of hydrogen into an engine was possible by vaporizing liquefied hydrogen and supplying it as a low temperature gas used at 0 to -40 degrees C. The system has high efficiency. Fuel feed control was possible at the same level as in the existing automobiles. The prototype direct injection system can handle stably the load in actual cars. Material for the fuel tank is an important problem in terms of weight, whose solution is urged. (NEDO)

  3. FY 1977 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Solar thermal power generation systems); 1977 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyo netsu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at surveys and researches on operation, economic efficiency and performance evaluation of solar thermal power generation systems, and test methods, e.g., for aging the materials for their devices, in order to establish the methods for evaluating their performance. For operation of solar thermal power generation systems, a feasible system is a hybrid with another system, e.g., thermal power or nuclear system. For economic efficiency, heat-storage capacity will be based on power generation for around 4 hours a day for a solar system to be installed in Japan. The construction and light/heat-collecting costs should be reduced to around 300,000 yen/kW and 13,000 to 21,000 yen/m{sup 2}, respectively, in order to keep the power generation cost at around 23 yen/kWH. The energy analysis of solar thermal power generation, based on the data given by the industrial correlation tables, indicates that the total energy required for construction of the system can be recovered in 2 to 3 years. Also outlined are construction of a 1MW pilot plant and its facilities, and designs of the pilot plants with a curved surface or tower type light collector. A total of 12 types of reflection mirrors are screened for establishing the air-exposure testing methods. Methods for treating back surface edges of the reflection mirrors are also investigated. (NEDO)

  4. A numerically research on energy loss evaluation in a centrifugal pump system based on local entropy production method

    Directory of Open Access Journals (Sweden)

    Hou Hucan

    2017-01-01

    Full Text Available Inspired by wide application of the second law of thermodynamics to flow and heat transfer devices, local entropy production analysis method was creatively introduced into energy assessment system of centrifugal water pump. Based on Reynolds stress turbulent model and energy equation model, the steady numerical simulation of the whole flow passage of one IS centrifugal pump was carried out. The local entropy production terms were calculated by user defined functions, mainly including wall entropy production, turbulent entropy production, and viscous entropy production. The numerical results indicated that the irreversible energy loss calculated by the local entropy production method agreed well with that calculated by the traditional method but with some deviations which were probably caused by high rotatability and high curvature of impeller and volute. The wall entropy production and turbulent entropy production took up large part of the whole entropy production about 48.61% and 47.91%, respectively, which indicated that wall friction and turbulent fluctuation were the major factors in affecting irreversible energy loss. Meanwhile, the entropy production rate distribution was discussed and compared with turbulent kinetic energy dissipation rate distribution, it showed that turbulent entropy production rate increased sharply at the near wall regions and both distributed more uniformly. The blade region in leading edge near suction side, trailing edge and volute tongue were the main regions to generate irreversible exergy loss. This research broadens a completely new view in evaluating energy loss and further optimizes pump using entropy production minimization.

  5. A contribution of the FVEE to the 6th German energy research program. Research projects in the area of renewable energy sources, energy efficiency and system integration; Beitrag des FVEE zum 6. Energieforschungsprogramm der Bundesregierung. Forschungsaufgaben in den Bereichen erneuerbare Energien, Energieeffizienz und Systemintegration

    Energy Technology Data Exchange (ETDEWEB)

    Stryi-Hipp, Gerhard; Stadermann, Gerd (comps.)

    2010-10-15

    Due to the increasing climate change, increasing dependence of imports from constant scarce fossil and nuclear energy resources and due to the strongly fluctuating energy prices, fundamental settings of the agenda for the power supply are placed at present in Germany and Europe. In the contribution under consideration, the Renewable Energy Research Association (Berlin, Federal Republic of Germany) recommends ways to the research and development of a power system in which renewable energies and energy efficiency play a central role. For the 6th energy research program of the Federal Government two principles can be derived: (a) The energy research must be intensified clearly and permanently; (b) In the energy research a clear stabilization of the renewable energies and the energy efficiency have to be performed, since they are the most important contributions to the future energy system.

  6. The Smart Energy System

    DEFF Research Database (Denmark)

    Jurowetzki, Roman; Dyrelund, Anders; Hummelmose, Lars

    Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses on...... production, large scale solar heat, fuel cells, heat storage, waste incineration, among others, the report draws a picture of Denmark as a research and development hub for smart energy system solutions.......Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses...... on the synergies which are obtained through integration of the district heating and district cooling, gas, and electricity grid into a single smart energy system. Besides documenting the technology and innovation strengths that Danish companies possess particularly relating to wind, district heating, CHP...

  7. Energy Information Systems

    Science.gov (United States)

    Home > Building Energy Information Systems and Performance Monitoring (EIS-PM) Building Energy evaluate and improve performance monitoring tools for energy savings in commercial buildings. Within the and visualization capabilities to energy and facility managers. As an increasing number of

  8. National Energy Outlook Modelling System

    Energy Technology Data Exchange (ETDEWEB)

    Volkers, C.M. [ECN Policy Studies, Petten (Netherlands)

    2013-12-15

    For over 20 years, the Energy research Centre of the Netherlands (ECN) has been developing the National Energy Outlook Modelling System (NEOMS) for Energy projections and policy evaluations. NEOMS enables 12 energy models of ECN to exchange data and produce consistent and detailed results.

  9. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  10. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  11. Research on wind energy

    CSIR Research Space (South Africa)

    Szewczuk, S

    2012-10-01

    Full Text Available heights; short-term predictions ? CSIR 2012 Slide 9 Innovation & preliminary wind energy technology tree ? South African Industry?s propensity to innovate is in the same league as their counterparts in Europe. To state this differently, South African...? ? CSIR 2012 Slide 18 Modular form of electrification in rural communities Project funded by the Royal Danish Embassy in Pretoria and carried out by: ? eThekwini (Durban) Municipality ? Ris? DTU (Danish National Laboratory for Sustainable Energy...

  12. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  13. Neutrons and sustainable energy research

    International Nuclear Information System (INIS)

    Peterson, V.

    2009-01-01

    Full text: Neutron scattering is essential for the study of sustainable energy materials, including the areas of hydrogen research (such as its separation, storage, and use in fuel-cells) and energy transport (such as fuel-cell and battery materials). Researchers at the Bragg Institute address critical questions in sustainable energy research, with researchers providing a source of expertise for external collaborators, specialist analysis equipment, and acting as a point of contact for the study of sustainable energy materials using neutron scattering. Some recent examples of sustainable energy materials research using neutron scattering will be presented. These examples include the storage of energy, in the form of hydrogen through a study of its location in and interaction with new porous hydrogen storage materials [1-3] and in battery materials through in-situ studies of structure during charge-discharge cycling, and use of energy in fuel cells by studying proton diffusion through fuel cell membranes.

  14. Achievement report on research and development in the Sunshine Project in fiscal 1980. Research on a hydrogen energy total system; 1980 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This paper describes research on a hydrogen energy total system. Fiscal 1980 has surveyed R/D technologies in the sectors anticipated to have large possibility of introducing hydrogen in Japan's energy systems in the future (ammonia/methanol industries, automobiles and aircraft fuel), and discussed the possibility of the introduction. The value factors (VF) applied to them are 1.7 for the ammonia industry, 1.1 to 1.6 for the methanol industry, 1.4 for gasoline as automobile and jet fuel, and 2.8 for jet fuel. Whether hydrogen would be introduced in all of these sectors depends on conditions of introducing hydrogen utilizing HTGR heat, and the VF of hydrogen against competing energies. Therefore, case studies were performed by using these factors as the parameters. If the VF is fixed and HTGR introduction speed is accelerated, introduction of hydrogen will be accelerated in the fields of chemical materials, air conditioning and process heat. On the other hand, the introduction will decrease in the automobile and aircraft fuel fields. If the methanol VF is made smaller, hydrogen introduction will be decelerated in the chemical industry field (methanol), and that in the air conditioning, automobiles and aircraft fuel fields will be accelerated. (NEDO)

  15. Multiaperture Optical System Research.

    Science.gov (United States)

    1987-11-06

    pp. 179-185 (1965). 6. Welford, W. T. and Winston , R., The Optics of Nonimaging Concentrators , P. 3, Academic Press, New York (1978). 7. Schneider, R...Welford and Winston investigated it was a possible concentrator for solar energy. They came up with the "ideal concentrator ", which has walls shaped...MULTIAPZRTURE OPTICAL SYSTEM RESEARCH ." Office of Naval Research Contract Number N00014-85-C-0862 . FINAL REPORT by RTS LABORATORIES, INC. 1663

  16. Research Reactors for the Development of Materials and Fuels for Innovative Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2017-01-01

    This publication presents an overview of research reactor capabilities and capacities in the development of fuels and materials for innovative nuclear reactors, such as GenIV reactors. The compendium provides comprehensive information on the potential for materials and fuel testing research of 30 research reactors, both operational and in development. This information includes their power levels, mode of operation, current status, availability and historical overview of their utilization. A summary of these capabilities and capacities is presented in the overview tables of section 6. Papers providing a technical description of the research reactors, including their specific features for utilization are collected as profiles on a CD-ROM and represent an integral part of this publication. The publication is intended to foster wider access to information on existing research reactors with capacity for advanced material testing research and thus ensure their increased utilization in this particular domain. It is expected that it can also serve as a supporting tool for the establishment of regional and international networking through research reactor coalitions and IAEA designated international centres based on research reactors.

  17. The research of the beam phase and energy test system for DTL in the proton accelerator of CSNS

    International Nuclear Information System (INIS)

    Zhao Lei; Liu Shubin; An Qi

    2009-01-01

    China Spallation Neutron Source is now in the process of research and design,in which the proton accelerator is an important part. This beam phase and energy test system imports the signal from the Drift Tube Linac and computes its phase and energy, which is feedback to tune the beam. The signals to be processed here are modulated impulses of high frequency (repetition rate is 352.2 MHz, while the leading edge is only hundreds of ps), and the dynamic range of the amplitude is from 20 mv to 900 mv (peak to peak); therefore, special techniques are required to obtain its phase information. Moreover, to confirm the basic theory of corresponding techniques and evaluate their effects, some simulations are implemented in the platform of Matlab. (authors)

  18. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  19. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  20. Croatian Energy System Defossilization

    International Nuclear Information System (INIS)

    Potocnik, V.

    2013-01-01

    Defossilization of an energy system, as primary cause of the actual climate change, means exchange of predominantly imported fossil fuels with climate more convenient energy carriers, facilitating thus the way out of crisis.Overview of the world and Croatian energy system situation is presented as well as the overview of climate change. The most important Croatian energy system defossilization measures-energy efficiency increase, renewable energy inclusion and others - are described.(author)

  1. Energy systems security

    CERN Document Server

    Voeller, John G

    2014-01-01

    Energy Systems Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering topics related to electricity transmission grids and their protection, risk assessment of energy systems, analysis of interdependent energy networks. Methods to manage electricity transmission disturbances so as to avoid blackouts are discussed, and self-healing energy system and a nano-enabled power source are presented.

  2. THE DEVELOPMENT OF AN ENTERPRISE RESOURCE PLANNING SYSTEM (ERP FOR A RESEARCH AND TECHNOLOGY INSTITUTE: THE CASE OF THE NUCLEAR AND ENERGY RESEARCH INSTITUTE -IPEN

    Directory of Open Access Journals (Sweden)

    Willy Hoppe de Souza

    2011-05-01

    Full Text Available This paper reports the history of the development of an enterprise resource planning (ERP dedicated to managing the technical activities of the Nuclear and Energy Research Institute, a governmental research and technology institute in Brazil. After the implementation of the new planning process, the development of a new management information system named SIGEPI was immediately initiated. The implementation of this system followed a strategy of integrating databases already available and developing new ones in order to facilitate the data collecting process and to improve the quality and the reliability of these data. This paper describes the evolution of SIGEPI, its main features and it also reports the difficulties faced for almost ten years of developments. The success factors of the case were classified into three groups: strategic, technical and behavioral ones. The impact of these factors and recommendation for future similar developments are presented.

  3. Fiscal 1974 Sunshine Project result report. Research on solar energy utilization systems (photovoltaic power generation); Taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyoko hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report summarizes the research result on the guide for developing solar cells. The report includes (1) standard measurement method for solar cells, (2) system configuration and installation site, (3) optimum design and profitability of solar cells and (4) raw materials and pollution prevention. In the 1st research, study was made on the standard for solar radiation intensity, the definition and measurement methods for spectral profiles, and the measurement conditions for solar cells. In the 2nd research, study was made on various basic data for the scale of photovoltaic power systems. In the 3rd research, since it is necessary to obtain characteristics of solar cells with any profiles of physical constants such as impurity, minority carrier life and mobility by simulation of solar cell actions, research was made on the measurement method of minority carrier lives by using a prepared computer program. Technical and economical comparisons were also made between Si solar cells with various structures. In the 4th research, survey was made on various data for compound semiconductors, and study was made on industrial waste pollution. (NEDO)

  4. Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building

    International Nuclear Information System (INIS)

    Singh, Anand; Baredar, Prashant; Gupta, Bhupendra

    2017-01-01

    Highlights: • A HFC and SPV HRES for stand-alone applications is proposed. • The FC program computes the optimum cost of HRES components. • HOMER pro software to calculate the optimum performance of HRES. - Abstract: A hydrogen fuel cell (HFC) and solar photovoltaic (SPV) hybrid renewable energy system (HRES) for stand-alone applications is proposed. This system arrangement of a hydrogen tank, battery, and an electrolyzer are used as like the energy storage. The economic viability of using HRES power to supply the electrical load demand of academic research building located at 23°12′N latitude and 77°24′E longitudes, India is examined. The fuzzy logic program computes the optimum value of capital and replacement cost of the components, which is then utilized in HOMER pro software to calculate the optimum performance of HRES. The results shows the HFC and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The AC primary load consuming 20712.63 kWh/year out of total power generation of HRES which is 24570.72 kWh/year. The excess of electricity produced by HRES is 791.7709 kWh/year with the optimized cost of energy, unmet electrical load and capacity shortage of 0%.

  5. U.S. Department Of Energy's nuclear engineering education research: highlights of recent and current research-I. 7. The Research and Development of the Radioisotope Energy Conversion System

    International Nuclear Information System (INIS)

    Steinfelds, Eric V.; Ghosh, Tushar K.; Prelas, Mark A.; Tompson, Robert V.; Loyalka, Sudarshan K.

    2001-01-01

    The topic of this paper is the development of the radioisotope energy conversion system (RECS) in a project that utilizes analytical computational assisted design and laboratory research. RECSs shall supplement and ideally replace the radioactive thermal generator (RTG) power systems, which supply the crucial electricity currently on the deep space mission capsules and potentially on future satellites. Indeed, a very efficient radiation-driven electrical generator presents many advantages over a solar-driven generator. RTG systems used by the United States (i.e., Voyager spacecraft) have a maximum efficiency in electrical power from a radiative kinetic power of only 8%.A 238 Pu-driven RECS could have an efficiency of 20% in the ratio of electrical power over radiative kinetic power. Some RECSs driven radiatively by isotopes other than 238 Pu could potentially have efficiencies somewhat higher than 20%. This efficiency is due to the involvement of mediating fluorescing gas. For example, an energy conversion system that uses fission for its power source and has fluorescing ionic mediators plus robust photovoltaic cells could have efficiencies as high as 40% (Refs. 2 and 3). Indeed, a compact generator system of even 20% efficiency is better than a compact system with only 8% efficiency (of RTG). The promise of a high-efficiency, durable energy conversion system affirmatively justifies the committed research and development of RECS. RECS consists of the following components: 1. a radioisotope for producing fluxes of particles; 2. ambient fluorescent gas that readily produces photons at the blue and ultraviolet range when energetically perturbed; 3. photovoltaic cells to convert the blue and ultraviolet photons into electrical energy; 4. electrical circuitry that includes a load in order to harness the converted energy. The ambient fluorescent gas shall either surround or be mixed 'homogeneously' with the radioisotope material. The radioisotope material shall be either

  6. Research in Support of the Use of Rankine Cycle Energy Conversion Systems for Space Power and Propulsion

    Science.gov (United States)

    Lahey, Richard T., Jr.; Dhir, Vijay

    2004-01-01

    This is the report of a Scientific Working Group (SWG) formed by NASA to determine the feasibility of using a liquid metal cooled nuclear reactor and Rankine energy conversion cycle for dual purpose power and propulsion in space. This is a high level technical report which is intended for use by NASA management in program planning. The SWG was composed of a team of specialists in nuclear energy and multiphase flow and heat transfer technology from academia, national laboratories, NASA and industry. The SWG has identified the key technology issues that need to be addressed and have recommended an integrated short term (approx. 2 years) and a long term (approx. 10 year) research and development (R&D) program to qualify a Rankine cycle power plant for use in space. This research is ultimately intended to give NASA and its contractors the ability to reliably predict both steady and transient multiphase flow and heat transfer phenomena at reduced gravity, so they can analyze and optimize designs and scale-up experimental data on Rankine cycle components and systems. In addition, some of these results should also be useful for the analysis and design of various multiphase life support and thermal management systems being considered by NASA.

  7. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    , utilities can operate more efficiently and profitably. That can increase the use of renewable energy sources challenge to utility companies, grid operators, and other stakeholders involved in wind energy integration recording is available from the July 16 webinar "Smart Grid Research at NREL's Energy Systems

  8. Fiscal 1998 research report on International Clean Energy Network using Hydrogen Conversion (WE-NET). Subtask 2. Research on promotion of international cooperation (research on standardization of hydrogen energy technologies); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) sub task. 2. Kokusai kyoryoku suishin no tame no chosa kento (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report summarizes the fiscal 1998 research result on the basic research on standardization of hydrogen energy technologies, and ISO/TC197. As for the standardization, in relation to the hydrogen station in the WE-NET second phase research, the laws related to handling of gaseous hydrogen, and the basic issues on facility and safe handling were studied. As for ISO/TC197, the following draft standards were examined: Fuel supply system interface for liquid hydrogen vehicles, fuel tank for liquid hydrogen vehicles, container for liquid hydrogen transport, specification of hydrogen fuel, hydrogen fuel supply facility for air ports, gaseous hydrogen and hydrogen mixture fuel system for vehicles, gaseous hydrogen fuel connector for vehicles, gaseous hydrogen fuel tank for vehicles, and basic items for hydrogen system safety. Final examination of the fuel supply system interface for liquid hydrogen vehicles, and the specification of hydrogen fuel was finished, and these are scheduled to be registered for ISO. (NEDO)

  9. Tidal Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  10. Energy research, national and international

    International Nuclear Information System (INIS)

    Rhijn, A.A.T. van

    1976-01-01

    The Dutch Energy Research Programme inaugurated by the National Steering Group for Energy Research (LSEO) is discussed. Three types of criteria to be borne in mind in the selection of new directions in development are considered: the setting of targets for energy policy: the general central social and economic aims of the country; and the scientific, financial and organisational possibilities. International aspects are reviewed with reference to the IEA, CERN, Euratom, ELDO and ESRO. (D.J.B.)

  11. Energy systems transformation.

    Science.gov (United States)

    Dangerman, A T C Jérôme; Schellnhuber, Hans Joachim

    2013-02-12

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO(2) emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the "Success to the Successful" mode. The present way of generating, distributing, and consuming energy--the largest business on Earth--expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders.

  12. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  13. Kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  14. FY 1977 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Heat-storage subsystems); 1977 nendo taiyo energy riyo system chosa kenkyu. Chikunetsu sub system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at surveys and researches on materials for heat-storage systems for solar thermal power generation systems and solar energy systems for air conditioning and hot water supply; analysis of current status of heat-storage subsystems and extraction of problems involved therein; and sorting out the research themes. Surveyed are the tower type light-collecting systems under development for solar thermal power generation systems, heat-storage subsystems with flat- and curved-surface type light-collecting systems; heat-storage systems being developed by the Electrotechnical Laboratory; heat-storage materials for solar thermal power generation techniques; regenerative heat exchangers; thermodynamic considerations for heat storage and molten salt techniques; and relationship between heat storage material properties and containers. Problems involved in each item are also extracted. The heat-storage subsystems for solar energy systems for air conditioning and hot water supply are now being under development, some being already commercialized, and the classification of and surveys on the related techniques are conducted. At the same time, problems involved in the heat-storage subsystems, being developed for residential buildings, condominiums and large-size buildings, are also extracted. The research themes for the heat-storage subsystems for solar air conditioning and hot water supply systems are sorted out, and case studies are conducted, based on the discussions on, e.g., thermal properties of heat-storage materials, behavior and heat transfer characteristics of latent heat type heat-storage materials, and corrosion of the heat-storage materials. (NEDO)

  15. Research progress about chemical energy storage of solar energy

    Science.gov (United States)

    Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun

    2018-01-01

    In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.

  16. Basic and applied research related to the technology of space energy conversion systems

    Science.gov (United States)

    Hertzberg, A.; Mattick, A. T.; Bruckner, A. P.

    1988-01-01

    The first six months' research effort on the Liquid Droplet Radiator (LDR) focussed on experimental and theoretical studies of radiation by an LDR droplet cloud. Improvements in the diagnostics for the radiation facility have been made which have permitted an accurate experimental test of theoretical predictions of LDR radiation over a wide range of optical depths, using a cloud of Dow silicone oil droplets. In conjunction with these measurements an analysis was made of the evolution of the cylindrical droplet cloud generated by a 2300-hole orifice plate. This analysis indicates that a considerable degree of agglomeration of droplets occurs over the first meter of travel. Theoretical studies have centered on developments of an efficient means of computing the angular scattering distribution from droplets in an LDR droplet cloud, so that a parameter study can be carried out for LDR radiative performance vs fluid optical properties and cloud geometry.

  17. High energy physics research

    International Nuclear Information System (INIS)

    Piroue, P.A.

    1992-10-01

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e + e - interactions and Z 0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e + e - pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  18. Fiscal 1976 Sunshine Project result report. Research on solar energy utilization systems (photovoltaic power generation); 1976 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyoko hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1976 research result on the technical and economical perspectives of various solar cells, high-efficiency solar cell and its evaluation technique, and a photovoltaic power generation system and its applications. On Si single-crystal slice solar cell, it was pointed out that cost reduction by automatic production process using no vacuum process is essential. On Si thin film solar cell, some problems to be solved for development of particle accelerating growth technique were pointed out. Study was also made on 2-6 group compound semiconductor solar cell, 3-5 group bulk crystal solar cell, 3-5 group thin film solar cell, solar collection solar cell, and raw polycrystal Si materials. On photovoltaic power generation systems, it was reconfirmed through reconsideration of power generation systems for every application that the photovoltaic power generation system for residences is promising. On medium- scale power generation systems, study was made on power load and system configuration in consideration of applications to electric railway, highway, and power source of isolated islands. (NEDO)

  19. Reports on 1979 result of Sunshine Project. Research on solar energy system (meteorological investigation); 1979 nendo taiyo energy system no kenkyu seika hokokusho. Kisho chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-31

    The following were implemented with the purpose of collecting, measuring and putting in order the meteorological data required for the R and D on solar energy technology. (1) Observation of direct solar radiation (Nagoya/Sendai), (2) Meteorological observation for the pilot plant site of 1,000kW solar thermal power generation, (3) Studies on estimation of quantity of direct solar radiation, and (4) Studies on characteristics of quantity of direct solar radiation. In (1), the summary and the results were explained on the continuous observation of the quantity of the direct solar radiation conducted in Nagoya and Sendai using a self-recording actinometer. In (2), meteorological observation was conducted for building lots reclaimed from a salt pan at Nio-cho, Mitoyo county, Kagawa prefecture, a scheduled site for the pilot plant. The items were the quantity of global solar radiation, quantity of sky solar radiation, quantity of direct solar radiation, temperature, wet-bulb temperature, wind direction and wind velocity. In (3), A method was developed for estimating the monthly average quantity of the global solar radiation, normal direct solar radiation, horizontal sky solar radiation at an arbitrary spot. In (4), the characteristics of direct/specified direct solar radiation flux curves were elucidated as the basic data for the technological development of solar energy utilization using a sun follower type heat collecting device, with research done on a method for estimating these curves from other meteorological factors. (NEDO)

  20. Public Engagement in Energy Research

    NARCIS (Netherlands)

    Jellema, Jako; Mulder, Henk A. J.

    Public Engagement in Research is a key element in "Responsible Research and Innovation"; a cross-cutting issue in current European research funding. Public engagement can advance energy R&D, by delivering results that are more in-line with society's views and demands; and collaboration also unlocks

  1. Achievement report for fiscal 1998 on development of wide-area energy utilization network system. Study of energy system designing technology (Research into factory area energy system); Koiki energy riyo network system kaihatsu, energy system sekkei gijutsu no kenkyu 1998 nendo seika hokokusho. Kojogun no energy system ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Actualities of exhaust heat and demand for heat in the area are investigated on the result of which a wide-area energy utilization network system will be built. In fiscal 1998, further questionnaires are distributed in addition to last fiscal year's, and door-to-door visits are made on leading factories representing 10 types of industries. The result of data analysis places the nationwide total of exhaust heat at 320,000 Tcal/year including heat generated by electric power generation. When it is so defined that usable heat be above 150 degrees C for exhaust gas, above 40 degrees C for hot water, and above 200 degrees for solids, the total will be reduced to 230,000 Tcal/year. Cleaning plants (plants that treat refuse or sewage) as the sources of exhaust heat besides the factories are investigated for the amount of heat they discharge, and then it is found that the amount of heat they discharge is the fourth largest following electric power plants, iron and steel mills, and chemical plants. It is also found that most of their exhaust heat is of good quality because it is latent in steam or hot water. It is acknowledged, partly because many of such plants are situated relatively near to the urban district, that their role is important when studies are made on the utilization of exhaust heat. (NEDO)

  2. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  3. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  4. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  5. FY 1991 Report on research and development of super heat pump energy accumulation system. Part 2. Construction and operation of the prototype system (researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaihatsu 1991 nendo seika hokokusho. 2. System shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-05-01

    Summarized herein are R and D results of the researches on the chemical heat storage systems, plant simulation techniques and combined systems, and international technical exchanges, for R and D of the super heat pump energy accumulation system. For the high temperature heat storage type (utilizing ammonia complexes), the initial research targets are almost attained, as a result of the designs of a chemical heat storage unit having heat storage capacity of 1,000 kWh. For the high temperature heat storage type (utilizing hydration reactions), a 25 Mcal-scale pilot partial test unit is operated, to study applicability of the practical materials and other operation-related themes. For the low temperature heat storage type (utilizing hydration reactions by solute mixing), a pilot system is operated, to attain heat recovery of 75% or more, heat storage density of 30 kcal/kg or more, and output temperature of 7 degrees C. For the low temperature heat storage type (utilizing clathrates), the evaluation tests by a pilot plant produce heat recovery of 93.2% and heat storage density of 32.0 kcal/kg. In addition, the R and D efforts are directed to, e.g., researches on plant simulation techniques and combined systems. (NEDO)

  6. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  7. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  8. Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad; Connolly, David

    2014-01-01

    on the electricity sector, smart energy systems include the entire energy system in its approach to identifying suitable energy infrastructure designs and operation strategies. The typical smart grid sole focus on the electricity sector often leads to the conclusion that transmission lines, flexible electricity......This paper presents the learning of a series of studies that analyse the problems and perspectives of converting the present energy system into a 100 % renewable energy system using a smart energy systems approach. As opposed to, for instance, the smart grid concept, which takes a sole focus...... are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transportation sector. Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. The paper illustrates why electricity smart...

  9. International energy: Research organizations, 1986--1990

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, P.; Jordan, S. (eds.) (USDOE Office of Scientific and Technical Information, Oak Ridge, TN (USA))

    1991-03-01

    The International Energy: Research Organizations publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases Energy Science Technology'' on DIALOG and Energy'' on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 34,000 organizations that reported energy-related literature from 1986 to 1990 and updates the DOE Energy Data Base: Corporate Author Entries.

  10. Review of severe accidents and the results of accident consequence assessment in different energy systems (Contract research)

    International Nuclear Information System (INIS)

    Matsuki, Yoshio; Muramatsu, Ken

    2008-05-01

    The cases of severe accidents and the consequence assessments in different energy systems, Coal, Oil, Gas, Hydro and Nuclear, were collected, and then they were further analyzed. In this report, the information on the accidents in various energy systems were collected from the sources of the Paul Scherrer Institute (hereinafter, 'PSI') and the International Atomic Energy Agency (hereinafter, 'IAEA'). The information on the severe accidents of nuclear power plants were collected from the report of the US Presidential Commission on Catastrophic Nuclear Accidents and several relevant reports issued in the countries of the European Union, together with the reports of the PSI and the IAEA. To analyze the collected information, several parameters, which are numbers of fatalities, injuries, evacuees and the costs of the damages, were chosen to characterize those accidents in different energy systems. And then, upon the comparison of these characteristics of different accidents, the impacts of the accidents in nuclear and other energy systems were compared. Upon the results of the analysis, it is pointed out that the cost caused by the Chernobyl Accident, the severe accident in nuclear energy, tends to be higher than in the other energy systems. On the other hand, from the aspects of fatalities and injuries, it is not confirmed that the damages of the Chernobyl Accident are larger than in the other energy systems. However, it is also recognized, as the specific characteristics of the severe nuclear accident, that the impacts of the accident spread in a wider area, and stay for a longer period, in comparison with the ones in the other energy systems. (author)

  11. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  12. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  13. Environmental and Economic Performance of Commercial-scale Solar Photovoltaic Systems: A Field Study of Complex Energy Systems at the Desert Research Institute (DRI)

    Science.gov (United States)

    Liu, X.

    2014-12-01

    Solar photovoltaic (PV) systems are being aggressively deployed at residential, commercial, and utility scales to complement power generation from conventional sources. This is motivated both by the desire to reduce carbon footprints and by policy-driven financial incentives. Although several life cycle analyses (LCA) have investigated environmental impacts and energy payback times of solar PV systems, most results are based on hypothetical systems rather than actual, deployed systems that can provide measured performance data. Over the past five years, Desert Research Institute (DRI) in Nevada has installed eight solar PV systems of scales from 3 to 1000 kW, the sum of which supply approximately 40% of the total power use at DRI's Reno and Las Vegas campuses. The goal of this work is to explore greenhouse gas (GHG) impacts and examine the economic performance of DRI's PV systems by developing and applying a comprehensive LCA and techno-economic (TEA) model. This model is built using data appropriate for each type of panel used in the DRI systems. Power output is modeled using the National Renewable Energy Laboratory (NREL) model PVWatts. The performance of PVWatts is verified by the actual measurements from DRI's PV systems. Several environmental and economic metrics are quantified for the DRI systems, including life cycle GHG emissions and energy return. GHG results are compared with Nevada grid-based electricity. Initial results indicate that DRI's solar-derived electricity offers clear GHG benefits compared to conventional grid electricity. DRI's eight systems have GHG intensity values of 29-56 gCO2e/kWh, as compared to the GHG intensity of 212 gCO2e/kWh of national average grid power. The major source of impacts (82-92% of the total) is the upstream life cycle burden of manufacturing PV panels, which are made of either mono-crystalline or multi-crystalline silicon. Given the same type of PV panel, GHG intensity decreases as the scale of the system increases

  14. Flexible energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper discusses and analyses diffent national strategies and points out key changes in the energy system in order to achieve a system which can benefit from a high percentage of wind and CHP without having surplus production problems, introduced here as a flexible energy system....

  15. Sustainable energy research at DTU

    DEFF Research Database (Denmark)

    Nielsen, Rolf Haugaard; Andersen, Morten

    In the coming years, Denmark and other countries worldwide are set to increase their focus on transforming their energy supplies towards more sustainablew technologies. As part of this process, they can make extensive use of the knowledge generated by the Technical University of Denmark (DTU...... technologies, energy systems and energy consumption in buildings, the transport sector and for lighting purposes. The university alsolooks at challenges, opportunities and limitations.This publication present a selection of the sustainable energy related activities at DTU, which all point towards future...

  16. LCA of Energy Systems

    DEFF Research Database (Denmark)

    Laurent, Alexis; Espinosa Martinez, Nieves; Hauschild, Michael Zwicky

    2018-01-01

    Energy systems are essential in the support of modern societies’ activities, and can span a wide spectrum of electricity and heat generation systems and cooling systems. Along with their central role and large diversity, these systems have been demonstrated to cause serious impacts on human health...... , ecosystems and natural resources. Over the past two decades, energy systems have thus been the focus of more than 1000 LCA studies, with the aim to identify and reduce these impacts. This chapter addresses LCA applications to energy systems for generation of electricity and heat . The chapter gives insight...

  17. The results of the investigations of Russian Research Center-'Kurchatov Institute' on molten salt applications to problems of nuclear energy systems

    International Nuclear Information System (INIS)

    Novikov, Vladimir M.

    1995-01-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research 'Kurchatov Institute' are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on a way of MS application to different nuclear energy systems

  18. The results of the investigations of Russian Research Center - {open_quotes}Kurchatov Institute{close_quotes} on molten salt applications to problems of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V.M. [Russian Research Center, Moscow (Russian Federation)

    1995-10-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research {open_quotes}Kurchatov Institute{close_quotes} are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on way of MS application to different nuclear energy systems.

  19. Energy transformation in molecular electronic systems: Research progress report for the period December 1, 1986-November 30, 1987

    International Nuclear Information System (INIS)

    Kasha, M.

    1987-01-01

    The main research activity on our project continues to be the very active field of proton-transfer spectroscopy. Categories of research are: (1) Systematics of Proton-Transfer classes; (2) Picosecond Spectroscopy of Proton-Transfer in Lumichrome (a photolysis product of riboflavin); (3) Proton-Transfer Laser Research; (4) Computer Calculations on Proton-Transfer Systems; and (5) Unscheduled Research. New facets of the research program are: (1) Charge-Transfer (CT) Perturbation of Proton-Transfer Spectroscopy; (2) Super Computer Calculations on Proton-Transfer; (3) Dielectric Effects on Extended Dipoles in Proton-Transfer Spectroscopy; and (4) Proton-Transfer in Biological Systems

  20. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  1. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  2. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  3. Renewable Energy Tracking Systems

    Science.gov (United States)

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  4. Achievement report on surveys and researches in the Sunshine Project in fiscal 1980. Surveys and researches on total energy systems; 1980 nendo total energy system ni kansuru chosa kenkyu seika hokokusho yoyaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-06-01

    Identifying the energy demand system as a total system covering from energy generation to the ultimate utilization, a quantitative and theoretical analysis method was developed in achieving selection and development of long-term strategy of Japan for 50 years from about 1975 to about 2025. Development was made on a supply estimation model by using the system dynamics method, that includes international fluctuation factors in primary energy supply structure and time-based relevant elements. Improvements were made in several occasions on the demand estimation model that includes movements of Japan's industrial structures and nation's needs for living, and fluctuation factors of population configuration. Development and improvement were made on the energy flow model to link the supply side with the demand side and analyze the energy flow. In addition, efforts were made on arranging data for inputting these models (data collection, putting them in order, and processing). These models are now in the phase of practical use, and three models have also been nearly completed. Quantitative analysis will be possible if arranging the input database is continued. (NEDO)

  5. Fiscal 2000 report on result of development project of marine resources utilization system for energy conservation. Development of marine resources utilization system for energy conservation (Model demonstrative research and basic study); 2000 nendo energy shiyo gorika kaiyo shigen katsuyo system kaihatsu jigyo seika hokokusho. Energy shiyo gorika kaiyo shigen katsuyo system kaihatsu (model jissho kenkyu oyobi kiban kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    This paper explains the development of marine resources utilization system for energy conservation. The conceptual system is designed to take a large amount of deep sea water of 100 thousand to 1 million tons a day, to utilize it from the viewpoint of energy conservation using its coldness and purity characteristics, to then discharge it to the area of the sea in minimizing the environmental effect as well as obtaining effect such as absorption of carbon dioxide gas through cultivation of phyto-plankton. In pump-up technology, a piping system attaching on sea bed or floating with one or multiple constraints is applicable at present to all sites of geographical and oceanographic conditions. In utilization technology, use of deep-sea water as cooling water at a steam power plant, for example, improves generation efficiency by one point or more. In discharge and environment-related technologies, the research revealed that the deep-sea water from 300 m below releases carbon dioxide gas at surface, while photosynthesis can absorb the gas in the process of using nutrition contained in the deep-sea water; therefore, comprehensive examination is necessary taking energy utilization effect into account. Candidate sites were selected in areas of 200 m depth and within 5 km off-shore, with the optimum system examined at each site. (NEDO)

  6. New secondary energy systems

    International Nuclear Information System (INIS)

    Schulten, R.

    1977-01-01

    As an introduction, the FRG's energy industry situation is described, secondary energy systems to be taken into consideration are classified, and appropriate market requirements are analyzed. Dealt with is district heating, i.e. the direct transport of heat by means of circulating media, and long-distance energy, i.e. the long-distance energy transport by means of chemical conversion in closed- or open-cycle systems. In closed-cycle systems heat is transported in the form of chemical latent energy. In contrast to this, chemical energy is transported in open-cycle systems in the form of fuel gases produced by coal gasification or by thermochemical water splitting. (GG) [de

  7. Research and development of grid computing technology in center for computational science and e-systems of Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2007-01-01

    Center for Computational Science and E-systems of the Japan Atomic Energy Agency (CCSE/JAEA) has carried out R and D of grid computing technology. Since 1995, R and D to realize computational assistance for researchers called Seamless Thinking Aid (STA) and then to share intellectual resources called Information Technology Based Laboratory (ITBL) have been conducted, leading to construct an intelligent infrastructure for the atomic energy research called Atomic Energy Grid InfraStructure (AEGIS) under the Japanese national project 'Development and Applications of Advanced High-Performance Supercomputer'. It aims to enable synchronization of three themes: 1) Computer-Aided Research and Development (CARD) to realize and environment for STA, 2) Computer-Aided Engineering (CAEN) to establish Multi Experimental Tools (MEXT), and 3) Computer Aided Science (CASC) to promote the Atomic Energy Research and Investigation (AERI). This article reviewed achievements in R and D of grid computing technology so far obtained. (T. Tanaka)

  8. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  9. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  10. Renewable energy research and development in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, M S

    1979-12-01

    Canadian research and development (R and D) in renewable energy began as a result of the oil crisis in 1974, and in keeping with government policy, is predominantly carried out in the private sector under contract to the federal government. The variety in technical maturity of the renewable energy technologies is reflected in the non-uniform funding levels among the five constituent programs. The greatest support is allotted to solar energy in recognition of its enormous potential, both in low to mid-temperature thermal and in photovoltaic applications. This report describes the technical content of these five renewable energy and R and D programs, and outlines the organization and management structures used to direct the effort. Biomass energy R and D concentrates on the harvesting, processing and conversion of wood wastes into convenient fuel forms. Near-term applications will continue to be in the forest products industries. Wind energy R and D in geothermal energy are focussed on identification and quantification of the resource. A five-megawatt experimental geothermal heating system is being established at the University of Regina. The hydraulic energy R and D program does not consider conventional hydro-electric systems which are well developed; rather, it primarily covers laboratory-scale tests on conversion devices for wave, tidal, and river flow energy systems. A substantial effort is also underway in analytic and modelling techniques for hydraulic energy systems of all types. 3 figs., 2 tabs.

  11. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  12. Indicators of energy innovation systems and their dynamics. A review of current practice and research in the field

    DEFF Research Database (Denmark)

    Borup, Mads; Klitkou, Antje; Andersen, Maj Munch

    . However, a one-way communication picture is not entirely correct. Not only do researchers in many cases build on nationally or internationally recognized indicator schemes and databases established by governmental bodies, statistics agencies or international organizations like the OECD (Organisation...... of Economic Cooperation and Development) and the IEA (International Energy Agency). Researchers are also in a number of cases involved in establishment and development of official indicator schemes for example by acting as advisors or carrying out background studies. The interaction between research...

  13. Research and development of utilization technology of solar thermal system for industrial and other use. Research and development of solar system (research for solar/energy-conservation technology retrofitted to existing buildings); Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Solar system no chosa kenkyu (solar toshi muke gijutsu ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for solar/energy-conversion technologies retrofitted to existing buildings. The estimated effects and economic viability of retrofitting technologies show that they bring very high energy-saving effects when applied to heating and hot water supply, which consume a large portion of energy, but relatively low energy-saving effects when applied to cooling, solar walls, glazed balconies and transparent insulators. The study on applicability of these technologies in Japan indicates that the technologies which can recover cost within an average life time are those applied to windows, solar collector systems for hot water supply and heating, and transparent insulators. Although these technologies are low in applicability to cooling viewed from the angle of cost recovery, retrofitted radiation type cooling systems improve not only cooling and energy-saving effects but also comfortableness.

  14. Achievement report on research and development in the Sunshine Project in fiscal 1978. Research on hydrogen energy subsystems (research on hydrogen fueled automobile systems); 1978 nendo suiso energy subsystem no kenkyu seika hokokusho. Suiso jidosha system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    This paper describes the result of discussions on hydrogen fueled automobiles in fiscal 1978. Hydrogen fueled automobiles have a difficulty in developing methods for transporting hydrogen, whereas the liquefied hydrogen method and the metal hydride method are being studied in parallel at the present. It is also necessary to solve such basic problems as the method for supplying hydrogen to engines, the injection method, and countermeasures for abnormal combustion. Safety assurance is also important. Very little information is available presently on methods for storing hydrogen inside a car and supplying thereof, which are required for evaluating utilization of liquefied hydrogen to automobiles. Demonstrative surveys and researches are required to acquire basic materials for hydrogen feeding methods in broader meaning including storage and control. Therefore, fiscal 1977 has begun trial fabrication of experimental liquefied hydrogen tanks, and preliminary and experimental researches on types and materials for feed pumps. Fiscal 1978 has moved forward improvements in prototype tank performance (heat insulation method to reduce evaporation loss), trial fabrication of liquid level meters, trial fabrication of feed pumps (especially selection of materials for the sliding parts), and researches on flow rate control methods. Drawings for modification and experiment of the liquefied hydrogen tanks were prepared, and the promising candidates were selected for material combination in pump sliding parts. Durability tests are continuing thereon. Flow rate control was also discussed. (NEDO)

  15. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    considered when selecting a generator for a wind power plant, including capacity of the AC system, types of loads, availability of spare parts, voltage regulation, technical personal and cost. If several loads are likely inductive, such asphase-controlled converters, motors and fluorescent lights......This chapter intends to serve as a brief guide when someone is considering the use of wind energy for small power applications. It is discussed that small wind energy systems act as the major energy source for residential or commercial applications, or how to make it part of a microgrid...... as a distributed generator. In this way, sources and loads are connected in such a way to behave as a renewable dispatch center. With this regard, non-critical loads might be curtailed or shed during times of energy shortfall or periods of high costs of energy production. If such a wind energy system is connected...

  16. Smart energy management system

    Science.gov (United States)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  17. FY 1986 Report on research and development of super heat pump energy accumulation system. Part 2. Development of elementary techniques; 1986 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 2. Yoso gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-04-01

    Summarized in detail herein are R and D results of the chemical heat storage techniques and plant simulation, for R and D of the super heat pump energy accumulation system. For R and D of the chemical heat storage techniques, the R and D efforts are directed to the researches on the fundamental reactions and continuous exothermic reactions involved for the high temperature heat storage type (utilizing the metathesis reactions); researches on the physical properties, heat storage systems, solid-phase reactions, liquid-phase reactors, corrosion of the materials, and so on for the high temperature heat storage type (utilizing ammonia complex); collection of the data related to media and structural materials, tests of the elementary equipment for the absorption and hydration reactions, and so on for the high temperature heat storage type (chemical heat storage utilizing hydration); researches on the media properties and system performance, tests of equipment, and so on for the high temperature heat storage type (heat storage/heating utilizing solvation); researches on the heat storage media, heat storage techniques, corrosion of the materials, systems, and so on for the low temperature heat storage type (utilizing the hydration reactions by mixing solutes); and researches on the media, corrosion and elementary equipment, optimization of the system, and so on for the low temperature heat storage type (clathrate low temperature heat storage systems). (NEDO)

  18. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  19. A National Energy-Water System Assessment Framework (NEWS): Synopsis of Stage 1 Research Strategy and Results

    Science.gov (United States)

    Vorosmarty, C. J.; Miara, A.; Macknick, J.; Newmark, R. L.; Cohen, S.; Sun, Y.; Tidwell, V. C.; Corsi, F.; Melillo, J. M.; Fekete, B. M.; Proussevitch, A. A.; Glidden, S.; Suh, S.

    2017-12-01

    The focus of this talk is on climate adaptation and the reliability of power supply infrastructure when viewed through the lens of strategic water issues. Power supply is critically dependent upon water resources, particularly to cool thermoelectric plants, making the sector particularly sensitive to any shifts in the geography or seasonality of water supply. We report on results from an NSF-Funded Water Sustainability and Climate effort aimed at uncovering key energy and economic system vulnerabilities. We have developed the National Energy-Water System assessment framework (NEWS) to systematically evaluate: a) the performance of the nation's electricity sector under multiple climate scenarios; b) the feasibility of alternative pathways to improve climate adaptation; and, c) the impacts of energy technology and investment tradeoffs on the economic productivity, water availability and aquatic ecosystem condition. Our project combines core engineering and geophysical models (ReEDS [Regional Energy Deployment System], TP2M [Thermoelectric Power and Thermal Pollution], and WBM [Water Balance]) through unique digital "handshake" protocols that operate across different institutions and modeling platforms. Combined system outputs are fed into a regional-to-national scale economic input/output model to evaluate economic consequences of climate constraints, technology choices, and environmental regulation. The impact assessments in NEWS are carried out through a series of climate/energy policy scenario studies to 2050. We find that despite significant climate-water impacts on individual plants, the current US power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. However, the magnitude and implications of climate-water impacts vary depending on the configuration of the future power sector. To evaluate future power supply performance, we

  20. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  1. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  2. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  3. Nuclear energy research in Indonesia

    International Nuclear Information System (INIS)

    Supadi, S.; Soentono, S.; Djokolelono, M.

    1988-01-01

    Indonesia's National Atomic Energy Authority, BATAN (Badan Tenaga Atom Nasional), was founded to implement, regulate and monitor the development and launching of programs for the peaceful uses of nuclear power. These programs constitute part of the efforts made to change to a more industrialized level the largely agricultural society of Indonesia. BATAN elaborated extensive nuclear research and development programs in a variety of fields, such as medicine, the industrial uses of isotopes and radiation, the nuclear fuel cycle, nuclear technology and power generation, and in fundamental research. The Puspiptek Nuclear Research Center has been equipped with a multi-purpose research reactor and will also have a fuel element fabrication plant, a facility for treating radioactive waste, a radiometallurgical laboratory, and laboratories for working with radioisotopes and for radiopharmaceutical research. (orig.) [de

  4. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making.

    Science.gov (United States)

    Li, Yan

    2017-05-25

    The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.

  5. FY 1978 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Photovoltaic power generation systems); 1978 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyoko hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    This survey report provides the basic data for planning national projects to smoothly raise the large industry of solar cell industry in the future by studying how to promote the research and development projects for this area, continuously pursued from the establishment of the Sunshine Project. This report clarifies, first of all, the concept of long-term schedules for research and development of solar thermal power generation systems, based on which technical themes are concretely surveyed, and their economic viability and ripple effects on the other industries are analyzed. The industry of solar thermal power generation systems is a new industry, even based on the global horizons, backed up by the Japan's high-technological areas of electronics and semiconductor industries. It is one of important projects to be urgently developed, also viewed from the above standpoint. This report describes the long-term visions of solar thermal power generation systems, and the research and development projects therefor; stock materials for solar cells and problems involved therein; research and development projects for low-cost solar cells; photovoltaic power generation systems, and the research and development projects therefor; conceptual designs of photovoltaic power generation systems; and standard analytical procedures for solar cells, and technical problems involved therein. (NEDO)

  6. FY 1978 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Photovoltaic power generation systems); 1978 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyoko hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    This survey report provides the basic data for planning national projects to smoothly raise the large industry of solar cell industry in the future by studying how to promote the research and development projects for this area, continuously pursued from the establishment of the Sunshine Project. This report clarifies, first of all, the concept of long-term schedules for research and development of solar thermal power generation systems, based on which technical themes are concretely surveyed, and their economic viability and ripple effects on the other industries are analyzed. The industry of solar thermal power generation systems is a new industry, even based on the global horizons, backed up by the Japan's high-technological areas of electronics and semiconductor industries. It is one of important projects to be urgently developed, also viewed from the above standpoint. This report describes the long-term visions of solar thermal power generation systems, and the research and development projects therefor; stock materials for solar cells and problems involved therein; research and development projects for low-cost solar cells; photovoltaic power generation systems, and the research and development projects therefor; conceptual designs of photovoltaic power generation systems; and standard analytical procedures for solar cells, and technical problems involved therein. (NEDO)

  7. Worldwide clean energy system technology using hydrogen (WE-NET). Interim report of the research and development in Phase 1; Suiso riyo kokusai clean energy system gijutsu (WE-NET). Daiikki kenkyu kaihatsu chukan seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    Large scale and effective utilization of renewable energy including hydroelectric power, photovoltaic power, and wind power which are abundant on the earth can contribute to the solution of global environmental issues as well as the release of energy demand and supply. Hydrogen can be produced from the renewable energy, and is converted, transferred and stored if necessary. Such hydrogen can be used in various fields for power generation, fuel for transport, and city gas. In order to establish the technology by which worldwide energy network can be introduced for wide range of fields, conceptual design of a total system has been conducted, and elemental core technologies have been developed. Conceptual design of a practical scale system (total system) including a wide range from production of hydrogen to its utilization has been conducted, and its constitution has been illustrated. In addition, the energy balance and cost of hydrogen have been calculated and analyzed as a trial. Hydrogen production technology, transport and storage technology, and hydrogen utilization technology are introduced as individual elemental technologies. Research results of innovative and leading technologies obtained in FY 1996 are reviewed. 80 figs., 56 tabs.

  8. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  9. Survey of the development of an energy use rationalization home welfare apparatus system. Report on results of the research under consignment; 1996 nendo energy shiyo gorika zaitaku fukushi kiki system kaihatsu chosa itaku kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper analyzed characteristics of structures of houses considered of aged people, characteristics of use of home welfare apparatus, etc. and investigated/studied energy effective use type home welfare apparatus systems. As to the energy assessment of home welfare apparatus, measurement/evaluation of the energy consumption were conducted in the state of the use according to shapes of life/action of aged people/people needing care in terms of electric-driven bed, care lift, electric-driven wheel chair, etc. Concerning the assessment on energy demand in houses considered of aged people in accordance with regional characteristics, three welfare technohouses were used. In Sapporo, Hokkaido, conducted were evaluation of the present situation of indoor environment and the energy demand, the snow disposal problem at the approach and the energy demand assessment on road heating, etc. In Kamogawa, Chiba prefecture, a research study was made of factors of the increasing energy consumption caused by the use of care apparatus. In Shiga prefecture, an analytical study was carried out of biological effects of the thermal environment in home care houses on aged people, etc. 21 refs., 341 figs., 70 tabs.

  10. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  11. Strategic research on CO{sub 2} emission reduction for China. Application of MARKAL to China energy system

    Energy Technology Data Exchange (ETDEWEB)

    Yongping, Wang [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-09-01

    MARKAL was applied to the energy system for analyzing the CO{sub 2} emission reduction in China over the time period from 1990 to 2050. First the Chinese Reference Energy System (CRES) was established based on the framework of MARKAL model. The following conclusions can be drawn from this study. When shifting from scenario LH (low useful energy demand and high import fuel prices) to HL (high demand and low prices), another 33 EJ of primary energy will be consumed and another 2.31 billion tons of CO{sub 2} will be emitted in 2050. Detailed analyses on the disaggregation of CO{sub 2} emissions by Kaya Formula show. The energy intensity (primary energy/GDP) decreases much faster in scenario HL, but the higher growth rate of GDP per capita is the overwhelming factor that results in higher CO{sub 2} emission per capita in the baseline case of scenario HL in comparison with LH. When the carbon taxes are imposed on CO{sub 2} emissions, the residential sector will make the biggest contribution to CO{sub 2} emission abatement from a long-term point of view. However, it`s difficult to stabilize CO{sub 2} emission per capita before 2030 in both scenarios even with heavy carbon taxes. When nuclear moratorium occurs, more 560 million tons of CO{sub 2} will be emitted to the atmosphere in 2050 under the same CO{sub 2} tax regime. From the analysis of value flow, CO{sub 2} emission reduction depends largely on new or advanced technologies particularly in the field of electricity generation. The competent technologies switch to those CO{sub 2} less-emitting technologies when surcharging CO{sub 2} emissions. Nuclear power shows significant potential in saving fossil energy resources and reducing CO{sub 2} emissions. (J.P.N.).

  12. Smart Energy Systems and Energy Transition

    International Nuclear Information System (INIS)

    Duic, N.

    2016-01-01

    not only for huge increase of energy efficiency, but also, electric cars due to low daily use may be excellent for demand response and even for storage potential, through vehicle to grid technology. Self-driven cars will change way the transport works, decoupling the demand from supply, so that transport supply service may be used for demand response by the power system. Buildings and cities will become important with their high potential for demand response implemented through smart retail markets. That will allow reaching 80% renewable in energy system, but the remaining 20% may be more an uphill battle without technology breakthrough. Long haul freight road transport, aviation and ship transport, as well as some high temperature industrial processes, cannot yet be easily electrified. Biomass, if not used for producing electricity and heat, may cover half of those needs, but the rest will have to come from some other technology. Inductive highways, innovative high energy density batteries and power to synthetic fuels, or so called e-fuels, which may include hydrogen, are all very hot research issues. During the energy transition fossil fuels will continue to be used. Beneficial is to use waste heat from power plants, making cogeneration a rule, and to move from base load towards flexible power plants. That will mean replacing base load coal power plants with flexible gas power plants. That can only happen if the price of gas on European markets is brought into line with other liquid markets, bringing forward the fuel switch, which means diversifying the infrastructure, especially through more floating LNG terminals and South corridor. Croatia is on the right path to transition, starting up investment in nearly zero energy buildings, electrification of transport and having lively wind sector. The highest priorities in the next decade are solarisation, much more district heating and cooling based on renewable energy and waste heat, development of sustainable biomass

  13. Energy Monitoring System Berbasis Web

    Directory of Open Access Journals (Sweden)

    Novan Zulkarnain

    2013-12-01

    Full Text Available Government through the Ministry of Energy and Mineral Resources (ESDM encourages the energy savings at whole buildings in Indonesia. Energy Monitoring System (EMS is a web-based solution to monitor energy usage in a building. The research methods used are the analysis, prototype design and testing. EMSconsists of hardware which consists of electrical sensors, temperature-humidity sensor, and a computer. Data on EMS are designed using Modbus protocol, stored in MySQL database application, and displayed on charts through Dashboard on LED TV using PHP programming.

  14. Energy Usage Analysis System

    Data.gov (United States)

    General Services Administration — The EUAS application is a web based system which serves Energy Center of Expertise, under the Office of Facilitates Management and Service Programs. EUAS is used for...

  15. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  16. FY 1977 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Photovoltaic power generation systems); 1977 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyoko hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at investigation on irradiation conditions of natural solar radiation to establish the performance evaluation methods; establishment of standard evaluation methods under natural solar radiation; and investigation on practical problems involved in the photovoltaic power generation systems. The research items are (1) photovoltaic power generation systems, and (2) standard evaluation methods for photovoltaic power generation systems installed on the ground. The item (1) includes the effect analysis in which existing Japanese residential buildings are selected to estimate possibility of installation of photovoltaic power generation systems and possible quantity of power generated; conceptual designs in which several systems conceivable at present are proposed and outlined, and a 30kW photovoltaic power generation system is taken up to investigate, e.g., solar cell arrays for the system, orthogonal conversion devices, associated facilities, conceptual designs of storage batteries, problems involved therein, and future research themes; and operation of the cell, which takes up operational examples of solar cell power sources, and operational problems viewed from the power transmission side. The item (2) proposes the standard evaluation methods (primary drafts) for the solar cell arrays and panels as those for photovoltaic power generation systems installed on the ground. (NEDO)

  17. Ocean energy researchers information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on ocean energy systems. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Only high-priority groups were examined. Results from 2 groups of researchers are analyzed in this report: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  18. World energy data system (WENDS)

    International Nuclear Information System (INIS)

    Lareau, W.E.

    1979-01-01

    This paper presents a unique application of System 2000: the storage of preformatted textual information in a completely user oriented data base. The World Energy Data System is an information system which allows qualified users online access to non-classified management level data on worldwide energy technology and research and development activities. WENDS has been used to transmit up-to-date informaion on foreign energy technology and research and development programs to DOE program divisions, the Congress, and other U.S. government officials going abroad. The WENDS concept is first described. Then, the method of storage of the textual information is discussed followed by a discussion of the retrieval system which is thoroughly designed to serve the user

  19. Living Systems Energy Module

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-26

    The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyage from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.

  20. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  1. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...... or low quality of energy; (iii) Negotiating collective conditions to interconnect the microgrid with the public network or with other sources of energy that is independent of wind resources; (iv) Establishing a performance criteria of power quality and reliability to end-users, in order to reduce costs...... and guaranteeing an acceptable energy supply. This paper discuss how performance is affected by local conditions and random nature of the wind, power demand profiles, turbine related factors, and presents the technical issues for implementing a self-excited induction generator system, or a permanent magnet based...

  2. PSI nuclear energy research progress report 1989

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-01-01

    This report gives on overview on the PSI's nuclear energy research in the field of reactor physics and systems, thermal-hydraulics, materials technology and nuclear processes, waste management program and LWR safety program. It contains also papers dealing with reactor safety, high temperature materials, decontamination, radioactive waste management and materials testing. 74 figs., 20 tabs., 256 refs

  3. Research Toward Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hammon

    2010-12-31

    This final report was compiled from the detailed annual reports that were submitted for efforts in 2008 and 2009, and from individual task reports from 2010. Reports, case studies, and presentations derived from this work are available through the Building America website. The BIRA team is led by ConSol, a leading provider of energy solutions for builders since 1983. In partnership with over fifty builders, developers, architects, manufactures, researchers, utilities, and agencies, research work was performed in California, Colorado, Utah, New Mexico, Washington, Oregon, and Hawaii and five (5) climate regions (Hot-Dry, Marine, Hot-Humid, Cold, and Hot/Mixed Dry). In addition to research work, the team provided technical assistance to our partners whose interests span the entire building process. During the three year budget period, the BIRA team performed analyses of several emerging technologies, prototype homes, and high performance communities through detailed computer simulations and extensive field monitoring to meet the required climate joule milestone targets.

  4. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1984-04-01

    An overview is given for the DOE research programs in high energy and nuclear physics; fusion energy; basic energy sciences; health and environmental research; and advisory, assessment and support activities

  5. Energy saving synergies in national energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2015-01-01

    In the transition towards a 100% renewable energy system, energy savings are essential. The possibility of energy savings through conservation or efficiency increases can be identified in, for instance, the heating and electricity sectors, in industry, and in transport. Several studies point...... to various optimal levels of savings in the different sectors of the energy system. However, these studies do not investigate the idea of energy savings being system dependent. This paper argues that such system dependency is critical to understand, as it does not make sense to analyse an energy saving...... without taking into account the actual benefit of the saving in relation to the energy system. The study therefore identifies a need to understand how saving methods may interact with each other and the system in which they are conducted. By using energy system analysis to do hourly simulation...

  6. Energy Systems Integration Newsletter - December 2016 | Energy Systems

    Science.gov (United States)

    system makes renewable energy integration easier. ESIF Research Shows That Connected Residential Devices and business intelligence. Baggu also noted the opportunity to harness next-generation graphical -through, ramp rate control, soft-start reconnection, and voltage-watt control. NREL then conducted power

  7. Energy Technology Division research summary 2004

    International Nuclear Information System (INIS)

    Poeppel, R. B.; Shack, W. J.

    2004-01-01

    The Energy Technology (ET) Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy (DOE). The Division's capabilities are generally applied to technical issues associated with energy systems, biomedical engineering, transportation, and homeland security. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the US Nuclear Regulatory Commission (NRC) remains another significant area of interest for the Division. The pie chart below summarizes the ET sources of funding for FY 2004

  8. Electrical energy systems

    CERN Document Server

    El-Hawary, Mohamed E

    2007-01-01

    Features discussions ranging from the technical aspects of generation, transmission, distribution, and utilization to power system components, theory, protection, and the energy control center that offer an introduction to effects of deregulating electric power systems, blackouts and their causes, and minimizing their effects.

  9. Strategies and directions of Malaysian energy research

    International Nuclear Information System (INIS)

    Baharudin Yatim

    1995-01-01

    Research on energy efficiency could reconcile environmental issues associated with economic development. It could enhance energy supplies, improve the environment and develop alternative energy sources. Author reviews some of Malaysia's best energy R and D programmes

  10. Systems engineering research

    OpenAIRE

    Sahraoui , Abd-El-Kader; Buede , Dennis ,; Sage , Andrew ,

    2008-01-01

    International audience; In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that ar...

  11. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  12. FY 1991 Report on research and development of super heat pump energy accumulation system. Construction and operation of the prototype system (Researches on systematization); 1981 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. System shisaku unten kenkyu (system ka kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This research and development program includes the conceptual designs of and simulation studies on the super heat pump energy accumulation systems, to realize 30,000 kW-class commercial-scale plant. The district air conditioning and hot water supply by the plant of the above size are studied for the domestic area, including houses, office buildings, commercial facilities, and accommodations. The results indicate that the system has both merits and demerits, and should be further investigated for improvement. The merits include reduced power consumption by the heat pump, because of its high efficiency, reduction in the running cost, and increased ratio of late-night power, and the demerits include increased power consumption by the pumps for the heat source, increased initial costs of the facilities, and increased space-related cost. The industrial plants studied for application of the super heat pump energy accumulation system are those for production of corn starch, distilled sake and diary products. The other items studied include analysis/evaluation of economic distance for carrying heat source water, and improvement of simulator functions. (NEDO)

  13. Results and assessment of participation of VUPEK in coordinated research project of the IAEA ''Comparison of cost-effectiveness of risk reduction among different energy systems''

    International Nuclear Information System (INIS)

    Kadlec, J.; Horacek, P.

    1989-01-01

    The results and conclusions are summarized of the research programme ''Comparison of cost-effectiveness of risk reduction among different energy systems'' co-ordinated in 1983 to 1988 by the International Atomic Energy Agency. Institutes in 18 member states were involved which performed 33 case studies in the field of risk reduction in various power systems or their parts. A comparison with cost-effectiveness of risk reduction in other fields was made as well. The health risks (occupational, those of population) and the environmental risks were evaluated. The case studies cover various stages of the decision-making process and various decision makers. The solution resulted in 5 methodological studies and 16 models. 11 case studies and 1 methodological study were conducted by the Research Institute of the Fuel and Energy Complex. The experiences obtained, the questions so far unanswered and recommendations for those who will perform similar studies are given. (author). 1 fig., 2 tabs., 3 refs

  14. Summarized achievement report on research and development in the Sunshine Project in fiscal 1979. Research on hydrogen energy total systems; 1979 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper describes discussions on future possibility of introducing hydrogen, by adding the latest data acquired in fiscal 1979 into a hydrogen energy total system calculation model. The critical cost of hydrogen is higher always than other secondary energies up to about 2030. Since it is a presupposition that hydrogen manufacturing is technologically feasible only by using the electrolytic manufacturing process, the hydrogen cost changes with the critical cost of electric power. Thereafter, if a hydrogen manufacturing process of mixed type utilizing heat from a high temperature gas reactor (HTGR) is introduced, the cost will be reduced. However, introduction of HTGR is governed by the nuclear power plan such as HTGR technology development, rather than simply by the economic performance. Value factors showing qualitative advantage of hydrogen have been assigned to different demand sectors, whereas acceptable economic performance may emerge from this effect from about 2010 in sectors having large value factors (such as 2.8 in aircraft fuels). Hydrogen contribution would be about 2.1% in 2020 and 5.5% in 2030 of the whole energy demand. (NEDO)

  15. Research and application of an intelligent control system in central air-conditioning based on energy consumption simulation

    Science.gov (United States)

    Cao, Ling; Che, Wenbin

    2018-05-01

    For the central air-conditioning energy-saving, it is common practice to use a wide range of PTD controllers in engineering to optimize energy savings. However, the shortcomings of the PTD controller have also been magnified on this issue, such as: calculation accuracy is not enough, the calculation time is too long. Particle swarm optimization has the advantage of fast convergence. This paper is based on Particle Swarm Optimization apply in PTD controller tuning parameters in order to achieve the purpose of saving energy while ensuring comfort. The algorithm proposed in this paper can adjust the weight according to the change of population fitness, reduce the weights of particles with lower fitness and enhance the weights of particles with higher fitness in the population, and fully release the population vitality. The method in this paper is validated by the TRNSYS model based on the central air-conditioning system. The experimental results show that the room temperature fluctuation is small, the overshoot is small, the adjustment speed is fast, and the energy-saving fluctuates at 10%.

  16. Research on Heat Recovery Technology for Reducing the Energy Consumption of Dedicated Ventilation Systems: An Application to the Operating Model of a Laboratory

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2016-01-01

    Full Text Available In this research, the application of heat pipes in the air handler dedicated to decoupling dehumidification from cooling to reduce energy consumption was simulated and investigated by simulations and experimental studies. The cooling load profiles and heat pipes with effectiveness of 0.45 and 0.6, respectively, were evaluated in achieving the desired space conditions and calculated hour by hour. The results demonstrated that for all examined cases, a heat pipe heat exchanger (HPHX can be used to save over 80% of the energy during the hours of operation of air conditioning. The overall energy reduction rate was from 3.2% to 4.5% under air conditioning system conditions. It was found that the energy saving potential of a laboratory was higher than for other kinds of buildings. Therefore, the dedicated ventilation system combined with heat recovery technology can be efficiently applied to buildings, especially for laboratories in subtropical areas.

  17. Understanding renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Quaschning, Volker

    2005-01-15

    Beginning with an overview of renewable energy sources including biomass, hydroelectricity, geothermal, tidal, wind and solar power, this book explores the fundamentals of different renewable energy systems. The main focus is on technologies with high development potential such as solar thermal systems, photovoltaics and wind power. This text not only describes technological aspects, but also deals consciously with problems of the energy industry. In this way, the topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential. The book also contains a free CD-ROM resource, which includes a variety of specialist simulation software and detailed figures from the book. (Author)

  18. Atomic Energy Research benchmark activity

    International Nuclear Information System (INIS)

    Makai, M.

    1998-01-01

    The test problems utilized in the validation and verification process of computer programs in Atomic Energie Research are collected into one bunch. This is the first step towards issuing a volume in which tests for VVER are collected, along with reference solutions and a number of solutions. The benchmarks do not include the ZR-6 experiments because they have been published along with a number of comparisons in the Final reports of TIC. The present collection focuses on operational and mathematical benchmarks which cover almost the entire range of reaktor calculation. (Author)

  19. Report on an investigational research on energy conservation by a combination system between air compressor and pneumatic equipment in fiscal 1995; 1995 nendo kuki asshukuki to kukiatsu kiki no kumiawase system ni yoru sho energy no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The air compressor which rises pneumatics for actuating pneumatic equipment is very low in energy efficiency also including the power source. Conventionally, at works which use large lots of compressor power, for example, improvements have been made on such as leakage of pneumatics from compressor and pneumatic equipment and piping for power reduction, but the present situation is that processing including compressor and pneumatic compressor through exhaust gas treatment is not regarded as a synthetic system. Therefore, the following problems should be studied: (1) distributed installation of compressors at right place from centralized installation, reduction of pressure loss of piping, etc., and how to use pneumatic equipment and how to improve its performance; (2) energy conservation by lessening gap between compressor pressure and pressure in using pneumatic equipment; (3) energy conservation by improving exhaust gas treatment, etc. This time, an investigational research on these items was systematically conducted to study measures for energy reduction of power source and increase of efficiency. The study was made on making guides such as manuals which becomes effective for energy conservation measures and policies to be guidelines on the development of equipment. 9 refs., 46 figs., 9 tabs.

  20. System design of a proton linac for the neutron science project at Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hasegawa, Kazuo; Mizumoto, Motoharu; Ouchi, Nobuo; Honda, Yoichiro; Ino, Hiroshi

    1999-01-01

    The Japan Atomic Energy Research Institute has been proposing the Neutron Science Project (NSP). The NSP requires pulse and CW proton beams with an energy of 1.5 GeV and an average beam power up to 8MW. This paper describes design concepts and parameters of the linac. A front end part of the linac, which consists of RFQ, DTL and SDTL sections, uses normal conducting structures and a high energy part uses superconducting (SC) structures. The linac has two injector lines for the pulse and the CW modes, respectively, and the two lines merge at 7 MeV. The total linac length is approximately 900 m and most of the part (>75%) is the superconducting section. An equipartitioning design, which is a new idea to suppress an emittance growth for high power linacs, has been taken for the DTL, the SDTL and the SC sections. Compared with the conventional constant phase advance design scheme, the equipartitioning design scheme is proved to be a good approach to suppress the longitudinal emittance growth. (author)

  1. Interim report on research and development of super heat pump energy accumulation system by the evaluation working group; Super heat pump energy shuseki system hyoka work group chukan hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The evaluation working group of the Large-scale Energy-saving Technology Research and Development Promotion Council has made an interim evaluation of the results obtained so far by the R and D project for the super heat pump energy accumulation systems. The working group evaluates the bench plant operation test results comprehensively, covering technical, economic and social aspects, and R and D promotion methodology. The working group has concluded that a significant technological break-through is made for the super high performance compression heat pumps, and the technological groundwork is now established for the future pilot system. For the chemical heat storage technologies, it is concluded that system feasibility is demonstrated, and the technological groundwork for the future development is established. The super heat pump is evaluated to potentially realize significant economic superiority over the conventional devices both in the domestic and industrial areas, and to be highly rated potentially in the areas of energy-saving, power load leveling and environmental preservation. (NEDO)

  2. Management Information Systems Research.

    Science.gov (United States)

    Research on management information systems is illusive in many respects. Part of the basic research problem in MIS stems from the absence of standard...decision making. But the transition from these results to the realization of ’satisfactory’ management information systems remains difficult indeed. The...paper discusses several aspects of research on management information systems and reviews a selection of efforts that appear significant for future progress. (Author)

  3. Evolving energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.

    1991-04-01

    This thesis presents scenarios of future energy systems, a cost-benefit analysis of measures to avoid greenhouse-gas emissions, an analysis of the effect of energy prices on end-use efficiencies and fuel choices, and an evaluation of financial-incentive programs designed to induce investments in efficient energy use. Twelve integrated energy supply/demand scenarios for the Swedish heat-and-power sector are presented to illustrate the potential for improvements in end-use efficiency and increased utilization of renewable energy sources. The results show that greenhouse-gas emissions could be reduced by 35 per cent from 1987 levels by 2010, with a net economic benefit compared to a business-as-usual scenario. A generalized methodology for calculating the net costs of reducing greenhouse-gas emissions is applied to a variety of fuel choices and energy end-use technologies. A key finding is that a combination of increased end-use efficiencies and use of renewable energy systems is required to achieve maximum cost-effective emissions reductions. End-use efficiencies and inter-fuel competition in Denmark and Sweden are compared during a time period in which real electricity prices were declining in Sweden and increasing in Denmark. Despite these different price environments, efficiencies and choices of heating fuels did not generally develop as expected according to economic theory. The influences of counter-price and non-price factors are important in understanding this outcome. Relying on prices alone injects considerable uncertainty into the energy planning process, and precludes efficiency improvements and fuel choices attainable with other mechanisms. Incentive programs can be used to promote energy-efficient technologies. Utilities in Europe have recently offered financial incentives intended to stimulate the adoption of compact-fluorescent lamps. These programs have been cost-effective in comparison to new electric supply. (au).

  4. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1986-04-01

    The programs of the Office of Energy Research, DOE, include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The major programs and activities are described briefly, and include high energy and nuclear physics, fusion energy, basic energy sciences, and health and environmental research, as well as advisory, assessment, support, and scientific computing activities

  5. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...... and the fundamental and increasing role of power electronics as an enabler for renewable energy integration, and for the future power system and smart grid. Recent examples of research and development, including new devices and system installations for utility power plants, as well for as residential and commercial......, fuel cells, and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in a final section. This paper also represents an editorial introduction for two special issues of the Electric Power Component...

  6. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  7. Reports on 1979 result of Sunshine Project. Investigation and research on solar energy utilization system (solar thermal power generation system); 1979 nendo taiyo energy riyo system chosa kenkyu. Taiyoko hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    In connection with the practicability of a solar thermal power generation system, examination was made on the technical economic problems and the operation method as well as on the problems of required performance of the constituent equipment, with the measuring method and performance evaluation method examined that are suitable for various devices. The items for the examination are as follows: (1) Silicon as the raw material for solar cells and its R and D, (2) Amorphous silicon solar cells, (3) R and D on low cost solar cells and array, (4) Basic design for photovoltaic generation system, and (5) Problems and technical subjects for solar cell standard measurement. The research themes and items for the above examination are listed as below: (1) Demand trend for raw material silicon, overseas trend, and development plan for polycrystalline silicon; (2) R and D plan for amorphous Si solar cell and its system, their optimum design, and their cost analysis and economic effect; (3) Technological investigation on cells and examination on array; (4) Basic design, peripheral equipment for system, and development schedule; (5) Report on the first actual state investigation concerning instrumentation of solar cells, i.e., on 'instrumentation and deviation in transformation efficiency', calibration system, problems of instrumentation of new device, problems of reliability test method, situation in various countries, and trend in atmospheric turbidimeter. (NEDO)

  8. Reports on 1979 result of Sunshine Project. Investigation and research on solar energy utilization system (solar thermal power generation system); 1979 nendo taiyo energy riyo system chosa kenkyu. Taiyoko hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    In connection with the practicability of a solar thermal power generation system, examination was made on the technical economic problems and the operation method as well as on the problems of required performance of the constituent equipment, with the measuring method and performance evaluation method examined that are suitable for various devices. The items for the examination are as follows: (1) Silicon as the raw material for solar cells and its R and D, (2) Amorphous silicon solar cells, (3) R and D on low cost solar cells and array, (4) Basic design for photovoltaic generation system, and (5) Problems and technical subjects for solar cell standard measurement. The research themes and items for the above examination are listed as below: (1) Demand trend for raw material silicon, overseas trend, and development plan for polycrystalline silicon; (2) R and D plan for amorphous Si solar cell and its system, their optimum design, and their cost analysis and economic effect; (3) Technological investigation on cells and examination on array; (4) Basic design, peripheral equipment for system, and development schedule; (5) Report on the first actual state investigation concerning instrumentation of solar cells, i.e., on 'instrumentation and deviation in transformation efficiency', calibration system, problems of instrumentation of new device, problems of reliability test method, situation in various countries, and trend in atmospheric turbidimeter. (NEDO)

  9. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  10. The current state of the development of the supercomputer system in plasma science and nuclear fusion research in the case of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Azumi, Masafumi

    2004-01-01

    The progress of large scale scientific simulation environment in JAERI is briefly described. The expansion of fusion simulation science has been played a key role in the increasing performances of super computers and computer network system in JAERI. Both scalar parallel and vector parallel computer systems are now working at the Naka and Tokai sites respectively, and particle and fluid simulation codes developed under the fusion simulation project, NEXT, are running on each system. The storage grid system has been also successfully developed for effective visualization analysis by remote users. Fusion research is going to enter the new phase of ITER, and the need for the super computer system with higher performance are increasing more than as ever along with the development of reliable simulation models. (author)

  11. US Department of Energy nuclear energy research initiative

    International Nuclear Information System (INIS)

    Ross, F.

    2001-01-01

    This paper describes the Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) that has been established to address and help overcome the principal technical and scientific issues affecting the future use of nuclear energy in the United States. (author)

  12. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  13. Solar Energy Innovation Network | Solar Research | NREL

    Science.gov (United States)

    Energy Innovation Network Solar Energy Innovation Network The Solar Energy Innovation Network grid. Text version The Solar Energy Innovation Network is a collaborative research effort administered (DOE) Solar Energy Technologies Office to develop and demonstrate new ways for solar energy to improve

  14. Wind Energy Systems.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  15. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  16. FY 1977 Annual report on Sunshine Project results. Research on solar energy systems for air conditioning and hot water supply; 1977 nendo taiyo netsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at research and development of utilization of solar energy for air conditioning and hot water supply, as part of the researches on systems under Sunshine Project for utilization of solar energy. This project is focused on the research items, selected from those pursued by the 3-year project beginning in FY1974 as the ones considered to be important for the future diffusion and promotion of the systems for utilization of solar energy. The 3-year project has produced the software and hardware results, based on development of the devices and construction of a solar house. At this stage of time, it is pointed out that studies on economic viability of the system, development of the software for diffusion of the solar systems, and development of new, more suitable systems and methods for utilization of solar energy are important. In this fiscal year, the four themes (studies on economic viability of the conceptual solar system designs, simplified methods for designing the systems, evaluation of system performance, and studies on energy-saving effects and economic viability) are taken up, viewed from development of the software for diffusion and promotion of the systems for utilizing solar energy, based on the results obtained by the previous 3-year project. (NEDO)

  17. Energy Systems Integration: Demonstrating Distributed Resource Communications

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Electric Power Research Institute (EPRI) and Schneider Electric Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  18. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  19. Pulse shaping system research of CdZnTe radiation detector for high energy x-ray diagnostic

    Science.gov (United States)

    Li, Miao; Zhao, Mingkun; Ding, Keyu; Zhou, Shousen; Zhou, Benjie

    2018-02-01

    As one of the typical wide band-gap semiconductor materials, the CdZnTe material has high detection efficiency and excellent energy resolution for the hard X-ray and the Gamma ray. The generated signal of the CdZnTe detector needs to be transformed to the pseudo-Gaussian pulse with a small impulse-width to remove noise and improve the energy resolution by the following nuclear spectrometry data acquisition system. In this paper, the multi-stage pseudo-Gaussian shaping-filter has been investigated based on the nuclear electronic principle. The optimized circuit parameters were also obtained based on the analysis of the characteristics of the pseudo-Gaussian shaping-filter in our following simulations. Based on the simulation results, the falling-time of the output pulse was decreased and faster response time can be obtained with decreasing shaping-time τs-k. And the undershoot was also removed when the ratio of input resistors was set to 1 to 2.5. Moreover, a two stage sallen-key Gaussian shaping-filter was designed and fabricated by using a low-noise voltage feedback operation amplifier LMH6628. A detection experiment platform had been built by using the precise pulse generator CAKE831 as the imitated radiation pulse which was equivalent signal of the semiconductor CdZnTe detector. Experiment results show that the output pulse of the two stage pseudo-Gaussian shaping filter has minimum 200ns pulse width (FWHM), and the output pulse of each stage was well consistent with the simulation results. Based on the performance in our experiment, this multi-stage pseudo-Gaussian shaping-filter can reduce the event-lost caused by pile-up in the CdZnTe semiconductor detector and improve the energy resolution effectively.

  20. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  1. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  2. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  3. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.

    1993-01-01

    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  4. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1992-09-01

    The programs of the Office of Energy Research provide basic science support for energy technologies as well as advancing understanding in general science and training future scientists. Energy Research provides insights into fundamental science and associated phenomena and develops new or advanced concepts and techniques. Research of this type has been supported by the Department of Energy and its predecessors for over 40 years and includes research in the natural and physical sciences, including high energy and nuclear physics; magnetic fusion energy; biological and environmental research; and basic energy sciences research in the materials, chemical, and applied mathematical sciences, engineering and geosciences, and energy biosciences. These basic research programs help build the science and technology base that underpins energy development by Government and industry

  5. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  6. Comparison of cost effectiveness of risk reduction among different energy systems: French case studies. Final report of the co-ordinated research programme

    International Nuclear Information System (INIS)

    Lochard, Jacques

    1989-08-01

    This report presents the three French case studies performed in the framework of the coordinated research program on 'Comparison of Cost-effectiveness of Risk Reduction among different Energy Systems': Cost effectiveness of robotics and remote tooling for occupational risk reduction at a nuclear fuel fabrication facility; Cost-effectiveness of protection actions to reduce occupational exposures in underground uranium mines; Cost-effectiveness of safety measures to reduce public risk associated with the transportation of UF 6 by truck and trains

  7. Achievement report on research and development in the Sunshine Project in fiscal 1977. Studies on hydrogen energy total systems and the safety assuring technologies thereon (Studies on hydrogen energy total systems); 1977 nendo suiso energy total system to sono hoan gijutsu ni kansuru kenkyu seika hokokusho. Suiso energy total system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    A numerical model was prepared to express fields and size of hydrogen energy introduction in Japan's energy systems in the future. Dividing Japan into 13 weather sections, one to two energy bases (import and secondary production bases in coastal areas) were assumed on each section. Secondary energies produced in these energy bases are transported to intermediate bases, from which the energies are distributed into cities and consumed. For the purpose of simplification, final consumption departments are hypothesized to exist in these intermediate bases. Parameters that characterize the flows on networks in the processes of supply, distribution, production, storage, transportation and utilization are divided largely into energy efficiency and cost of the processes. The amount of energy demand in each final consumption department was defined as an amount to maximize the expected effects as a result of having satisfied the demand. The result of trial calculations revealed that, as long as the hydrogen to be introduced is limited to hydrogen produced via electrolysis using thermally generated power, the hydrogen introduction into the future energy systems is difficult in terms of economic performance. (NEDO)

  8. Research and development in alternative energy sources

    International Nuclear Information System (INIS)

    Lamptey, J.; Moo-Young, M.; Sullivan, H.F.

    1990-01-01

    This paper comprehensively discusses the various bioconversion and thermochemical processes. It recommends that the most urgent research and development issues should relate to direct microbial conversion systems for starch and cellulosic material and to basic biomass combustion rates and mechanisms. An overview of some of the major renewable energy resources and conversion technologies along with the potentials and problems associated with these are also presented.(author). 235 refs., 2 tabs

  9. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Palanisamy, Giri [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, Thomas A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Voyles, Jimmy W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  10. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  11. Wellons Canada energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Wellons Canada is a British Columbia-based company that specializes in the manufacture and installation of lumber drying and energy conversion equipment. This brochure provided details of the Wellons energy system designed for oriented strand board (OSB) plants. The brochure outlined the system's scope of supply, and provided illustrations of system procedures from the initial wet fuel bin through to the electric precipitator used for air clean-up. During the process, fuel was conveyed from the bin to metering bins into combustors and through a cyclo-blast cell. Forced draft fan systems were then used to provide primary and secondary combustion air. Radiant heaters were then used. A drop-out chamber was supplied to allow for complete combustion of fuel particles and to provide a drop-out of ash. A fan was then used to deliver diluent air to maintain the set point temperature in the hot gas stream. Refractory lined hot gas ducts were used to deliver heat to the dryers. Hot gas was then drawn through a multi-cyclone collector for ash removal. Electrostatic precipitators were used to clean up emissions on a continuous operating basis. An automatic system was used to collect ash from the combustion system grates and other areas. Details of installation services provided by the company were also included. 42 figs.

  12. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  13. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  14. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  15. Project for a renewable energy research centre

    Directory of Open Access Journals (Sweden)

    Andrea Giachetta

    2011-04-01

    Full Text Available In Liguria, where sustainable approaches to the design, construction and management of buildings enjoy scant currency, the idea of a company from Milan (FERA s.r.l. setting up a research centre for studies into renewable energy resources, could well open up very interesting development opportunities.The project includes: environmental rehabilitation (restoration projects; strategies for the protection of water resources and waste management systems; passive and active solar systems (solar thermal and experiments with thermodynamic solar energy; hyperinsulation systems, passive cooling of buildings; use of natural materials; bio-climatic use of vegetation. The author describes the project content within the context of the multidisciplinary work that has gone into it.

  16. International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    International Nuclear Information System (INIS)

    Simpson, M.F.; Kim, K.-R.

    2010-01-01

    In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

  17. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1991-06-01

    This report discusses research conducted on the following topics: transverse from factors of 117 Sn; elastic magnetic electron scattering from 13 C at Q 2 = 1 GeV 2 /c 2 ; a re-analysis of 13 C elastic scattering; deuteron threshold electrodisintegration; measurement of the elastic magnetic form factor of 3 He at high momentum transfer; coincidence measurement of the D(e,e'p) cross-section at low excitation energy and high momentum transfer; measurement of the quadrupole contribution to the N → Δ excitation; measurement of the x-, Q 2 -, and A-dependence of R = σ L /σ T ; the PEGASYS project; PEP beam-gas event analysis; plans for other experiments at SLAC: polarized electron scattering on polarized nuclei; experiment PR-89-015: study of coincidence reactions in the dip and delta-resonance regions; experiment PR-89-031: multi-nulceon knockout using the CLAS detector; drift chamber tests; a memorandum of understanding and test experiments; photoprotons from 10 B; and hadronic electroproduction at LEP

  18. The Energy Science and Technology Database on a local library system: A case study at the Los Alamos National Research Library

    Energy Technology Data Exchange (ETDEWEB)

    Holtkamp, I.S.

    1994-10-01

    This paper presents an overview of efforts at Los Alamos National Laboratory to acquire and mount the Energy Science and Technology Database (EDB) as a citation database on the Research Library`s Geac Advance system. The rationale for undertaking this project and expected benefits are explained. Significant issues explored are loading non-USMARC records into a MARC-based library system, the use of EDB records to replace or supplement in-house cataloging of technical reports, the impact of different cataloging standards and database size on searching and retrieval, and how integrating an external database into the library`s online catalog may affect staffing and workflow.

  19. Multiple Energy System Analysis of Smart Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    2015-01-01

    thermal grids and smart gas grids, Smart Energy Systems moves the flexibility away from the fuel as is the case in current energy systems and into the system itself. However, most studies applying a Smart Energy System approach deals with analyses for either single countries or whole continents......To eliminate the use of fossil fuels in the energy sector it is necessary to transition to future 100% renewable energy systems. One approach for this radical change in our energy systems is Smart Energy Systems. With a focus on development and interaction between smart electricity grids, smart......, but it is unclear how regions, municipalities, and communities should deal with these national targets. It is necessary to be able to provide this information since Smart Energy Systems utilize energy resources and initiatives that have strong relations to local authorities and communities, such as onshore wind...

  20. Energy systems in transition

    International Nuclear Information System (INIS)

    Haefele, W.

    1989-01-01

    The principal point of the author was to discuss energy systems (ES) in transition, transition addresses the next 10-25 years, and strategy of the transition. He considers different scenarios of future development of ES. Further he presents considerations elaborated during the last years on the concept of novel horizontally integrated ES which gives promise to be at least an approximation to the desired object of no emissions. The main ideas of the concept are: to decompose and thereby clean all the primary inputs before they are brought to combustion; to develop a network combining all the primary inputs to an integrated supply structure of high absorption, buffer, and storage capacity that resembles in some way the supply and utility functions of the well established electric grid but completes it at best on the basis of mass flows; to achieve a high flexibility in supplying the final energy. The author considers the long run perspective of hydrogen, solar, and nuclear energy with respect to alternative energy sources. 6 refs, 24 figs

  1. Basin-Scale Assessment of the Land Surface Energy Budget in the National Centers for Environmental Prediction Operational and Research NLDAS-2 Systems

    Science.gov (United States)

    Xia, Youlong; Peters-Lidard, Christa D.; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa; Ek, Michael B.; Kumar, Sujay V.; Mocko, David M.; Wei, Helin

    2015-01-01

    This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15%formean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.

  2. Basin-scale assessment of the land surface energy budget in the National Centers for Environmental Prediction operational and research NLDAS-2 systems

    Science.gov (United States)

    Xia, Youlong; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa D.; Ek, Michael B.; Kumar, Sujay; Mocko, David; Wei, Helin

    2016-01-01

    This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15% for mean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.

  3. Energy in Ireland: context, management and research

    International Nuclear Information System (INIS)

    Saintherant, N.; Lerouge, Ch.; Welcker, A.

    2008-01-01

    In the framework of the climatic change and the fossil fuels shortage, the Ireland defined a new energy policy. The priority is the energy supply security and the research programs present a great interest in the ocean energies, which represent an important source in Ireland. The report presents the context, the irish energy policy, the research programs on energy and the different actors of the domain. (A.L.B.)

  4. Decentralized energy studies: compendium of international studies and research

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, C.

    1980-03-01

    The purpose of the compendium is to provide information about research activities in decentralized energy systems to researchers, government officials, and interested citizens. The compendium lists and briefly describes a number of studies in other industrialized nations that involve decentralized energy systems. A contact person is given for each of the activities listed so that interested readers can obtain more information.

  5. A proposed programme for energy risk research

    International Nuclear Information System (INIS)

    1979-01-01

    The report consists of two parts. Part I presents an overview of technological risk management, noting major contributions and current research needs. Part II details a proposed program of energy research, including discussions of some seven recommended projects. The proposed energy risk research program addresses two basic problem areas: improving the management of energy risks and energy risk communication and public response. Specific recommended projects are given for each. (Auth.)

  6. A tool for analysing, researching and modeling energy efficiency, sustainability and flexibility of biogas chains operating as load balancer within decentralized (smart) energy systems

    NARCIS (Netherlands)

    Pierie, Frank; Broekhuijsen, J.; Vonder, M.

    Renewable energy is often suggested as a possible solution for reducing greenhouse gas emissions and decreasing dependency on fossil energy sources. The most readily available renewable energy sources in Europe, wind, solar and biomass are dispersed by nature, making them ideally suited for use

  7. MEMS - Munich Energy Management System. FIA Project: Exchange of research information; MEMS - Muenchner Energiemanagement-System. FIA-Projekt - Forschungs-Informations-Austausch

    Energy Technology Data Exchange (ETDEWEB)

    Funk, H.; Fries, W.

    2001-10-01

    The City of Munich developed the project 'Munich Energy-Management-Systems (MEMS)' with financial support from the Federal Ministry of Economy and Technology. The project is based on a system of building automation using as many standard elements of hardware and software as possible. This will guarantee a high degree of independence from suppliers and subcontractors. The project has led to a reliable working base for the evaluation, measuring and control for ca. 150 municipal buildings. (orig.) [German] Mit dem Projekt 'Muenchner Energie-Management-System (MEMS)' erstellte die Landeshauptstadt Muenchen mit finanzieller Unterstuetzung des Bundesministeriums fuer Wirtschaft und Technologie ein auf der Leitzentrale Haustechnik (LZH) basierendes zentrales Energiemanagementsystem. Die Verwendung moeglichst vieler Standards in Hard- und Software ist dabei ein wesentlicher Gesichtspunkt. Dadurch wurde eine weitgehende Unabhaengigkeit von einem einzelnen Hersteller erreicht. Damit wurde ein Erfassungs-, Auswerte- und Steuerungssystem fuer derzeit rund 150 staedtische Gebaeude geschaffen. (orig.)

  8. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  9. Energy Sources | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Sources Energy Sources Many opportunities exist to improve the efficiency of energy supply systems at the central plant and then evaluate potential renewable energy sources and systems. Central Plant Begin by evaluating energy efficiency at the central plant through: Fuel Sources Heat Pumps and Combined

  10. Integrated electrofuels and renewable energy systems

    DEFF Research Database (Denmark)

    Ridjan, Iva

    energy into chemical energy by means of electrolysers, thus connecting fluctuating renewable energy to the vast amount of fuel storage already available in today’s energy systems. The conducted research indicates that electrofuels for heavy-duty transportation are technically and economically viable...... in energy systems and could play an important role in future energy systems. The cross-sector approach in the fuel production, by redirecting the excess electricity to the transport sector, is creating the flexibility and storage buffer for fluctuating electricity. The key concern in the short term should...

  11. FY 1988 Report on research and development of super heat pump energy accumulation system. Part 1; 1988 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-11-01

    Summarized in detail herein are the 1988 R and D results of the super high performance compression heat pumps and elementary equipment/media, for R and D of the super heat pump energy accumulation system. For R and D of the heat pumps, the R and D efforts are directed to manufacture, on a trial basis, and installation of the bench plant, and preparation of the basic plan for the pilot system for the highly efficient type (for heating only); to researches on the screw compressor, bench plant operation, heat exchanger, and so on for the highly efficient type (for cooling and heating); to development of the compressor with which a screw type expander is integrated at the low-temperature side, evaporator and so on, test runs of the bench plant, researches on the control methods, and so on for the high temperature type (utilization low temperature heat source); and to manufacture, on a trial basis, of the high-speed reciprocating compressor and steam supercharger, and tests for demonstrating their performance for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment and working fluids, the R and D efforts are directed to the evaporator and EHD condenser for the mixed working fluids, heat exchanger, working fluids (alcohol-based and nonalcohol-based), and so on. (NEDO)

  12. Energy System Analysis of 100 Per cent Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2007-01-01

    This paper presents the methodology and results of the overall energy system analysis of a 100 per cent renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed...... and designed a model for the future energy system of Denmark, putting emphasis on energy efficiency, CO2 reduction, and industrial development. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance...... the electricity supply and demand and to exchange electricity productions on the international electricity markets. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100 per cent renewable energy from biomass and combinations of wind, wave and solar power...

  13. Building Energy Management Systems BEMS, German contribution to the IEA research projects Annex 16 and 17. Building Energy Management System BEMS; deutscher Beitrag zu den IEA-Forschungsvorhaben Annex 16 und 17

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H.; Stephan, W.; Madjidi, M. (Univ. Stuttgart, IKE, Abt. HLK (Germany)); Brendel, T.; Schneider, A. (Ingenieurbuero Dr. Brendel, Frankfurt am Main (Germany)); Ast, H.; Kellner, H. (IFB, Dr. R. Braschel GmbH, Stuttgart (Germany))

    1991-01-01

    As part of the IEA project Annex 16 and 17 Germany carries out the project Building Energy Management Systems (BEMS). With digital control systems energetic and low-cost operation of space hvac systems can be attained. The project aims at abolishing impediments to efficient use of energy. Potential savings are shown for three examples: A conventional heating system for an office building, a VAV system (circulating air, heating, cooling, washer humidifcation) for an office building and VAV systems (FWRG, heating, cooling, steam humidification) for an office building in compact design. (BWI).

  14. Energy 2007. Research, development, demonstration; Energi 07. Forskning, udvikling, demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Byriel, I.P.; Justesen, Helle; Beck, A.; Borup Jensen, J.; Rosenfeldt Jakobsen, Kl; Jacobsen, Steen Hartvig (eds.)

    2007-08-10

    Danish energy research is in an exciting and challenging situation. Rising oil prices, unstable energy supply, climate policy responsibilities and globalization have brought development of new environmentally friendly and more efficient energy technologies into focus. Promising international markets for newly developed energy technologies are emerging, and at the same time well established Danish positions of strength are challenged by new strong actors on the global market. The Danish government has set to work on its vision of an appreciable strengthening of public energy research funding through the recent law on the energy technological development and demonstration programme EUDP and the realization of globalization funds. The interaction between basic and applied research must be kept intact. In this report the various Danish energy research programmes administered by Energinet.dk, Danish Energy Authority, Danish Energy Association, Danish Council for Strategic Research's Programme Commission on Energy and Environment and Danish National Advanced Technology Foundation, coordinate their annual reports for the first time. The aim of Energy 2007 is to give the reader an idea of how the energy research programmes collaborate on solving the major energy technology challenges - also in an international context. (BA)

  15. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T 20 experiment, the UMass group was able to complete data acquisition on experiments involving 180 degrees elastic magnetic scattering on 117 Sn and 41 Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e') measurements were made in November of 1987 on 10 B in order to better determine the p 3/2 wave function from the transition from the J pi = 3 + ground state to the O + excited state at 1.74 MeV. In 1988, (e,e'p) coincidence measurements on 10 B were completed. The objective was to obtain information on the p 3/2 wave function by another means

  16. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  17. Emerging e-Practices, Information Flows and the Home: A Sociological Research Agenda on Smart Energy Systems

    NARCIS (Netherlands)

    Vliet, van B.J.M.; Naus, J.; Smale, R.; Spaargaren, G.

    2016-01-01

    This chapter examines the emergence and development of smart grids from a sociological perspective. In particular we draw on ‘social practice theory’ to
    understand the dynamics of domestic energy consumption and production in
    emerging smart energy configurations. There are two focal points

  18. Multiyear Plan for Validation of EnergyPlus Multi-Zone HVAC System Modeling using ORNL's Flexible Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Im, Piljae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bhandari, Mahabir S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    This document describes the Oak Ridge National Laboratory (ORNL) multiyear experimental plan for validation and uncertainty characterization of whole-building energy simulation for a multi-zone research facility using a traditional rooftop unit (RTU) as a baseline heating, ventilating, and air conditioning (HVAC) system. The project’s overarching objective is to increase the accuracy of energy simulation tools by enabling empirical validation of key inputs and algorithms. Doing so is required to inform the design of increasingly integrated building systems and to enable accountability for performance gaps between design and operation of a building. The project will produce documented data sets that can be used to validate key functionality in different energy simulation tools and to identify errors and inadequate assumptions in simulation engines so that developers can correct them. ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2004), currently consists primarily of tests to compare different simulation programs with one another. This project will generate sets of measured data to enable empirical validation, incorporate these test data sets in an extended version of Standard 140, and apply these tests to the Department of Energy’s (DOE) EnergyPlus software (EnergyPlus 2016) to initiate the correction of any significant deficiencies. The fitness-for-purpose of the key algorithms in EnergyPlus will be established and demonstrated, and vendors of other simulation programs will be able to demonstrate the validity of their products. The data set will be equally applicable to validation of other simulation engines as well.

  19. Research for the energy turnaround. Phase transitions actively shape. Contributions

    International Nuclear Information System (INIS)

    Szczepanski, Petra; Wunschick, Franziska; Martin, Niklas

    2015-01-01

    The Annual Conference 2014 of the Renewable Energy Research Association was held in Berlin on 6 and 7 November 2014. This book documents the contributions of the conference on research for the energy turnaround, phase transitions actively shape. After an introduction and two contributions to the political framework, the contributions to the economic phases of the energy transition, the phase of the current turn, the phases of social energy revolution, the stages of heat turnaround (Waermewende), and the stages of the mobility turn deal with the stages of development of the energy system. Finally, the Research Association Renewable Energy is briefly presented. [de

  20. 3rd programme 'Energy research and energy technologies'

    International Nuclear Information System (INIS)

    1990-01-01

    In the light of developments in the 80s, the questions of dependence and available resources seem less grave in the long and medium term; on the other hand, a further problem has arisen which might prove even more serious with a view to the safeguarding of long-term energy supply: the use of fossil energy sources such as coal; petroleum, and natural gas involves effects constituting a considerable threat to the environment and the world climate. Examples are acid rain and the greenhouse effect. Furthermore, new safety issues and, to a larger extent, also acceptance issues have arisen as regards nuclear energy utilization. To contribute towards solving these problems by research and development is the main objective of this programme. The strategy adopted comprices two approaches complementary to each other: elaboration of scientific bases, system connections, and new techniques permitting - continued use of primary and secondary energy sources to the extent required while taking into account the needs of an increasingly more vulnerable environment; - to ensure the lowest possible energy consumption in the future, reducing, at the same time, considerably the amount of greenhouse gases emitted. (orig./UA) [de

  1. Energy Systems Integration: A Convergence of Ideas

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Garrett, B.; MacMillan, S.; Rice, B.; Komomua, C.; O' Malley, M.; Zimmerle, D.

    2012-07-01

    Energy systems integration (ESI) enables the effective analysis, design, and control of these interactions and interdependencies along technical, economic, regulatory, and social dimensions. By focusing on the optimization of energy from all systems, across all pathways, and at all scales, we can better understand and make use of the co-benefits that result to increase reliability and performance, reduce cost, and minimize environmental impacts. This white paper discusses systems integration and the research in new control architectures that are optimized at smaller scales but can be aggregated to optimize energy systems at any scale and would allow replicable energy solutions across boundaries of existing and new energy pathways.

  2. Smart energy and smart energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2017-01-01

    In recent years, the terms “Smart Energy” and “Smart Energy Systems” have been used to express an approach that reaches broader than the term “Smart grid”. Where Smart Grids focus primarily on the electricity sector, Smart Energy Systems take an integrated holistic focus on the inclusion of more...... sectors (electricity, heating, cooling, industry, buildings and transportation) and allows for the identification of more achievable and affordable solutions to the transformation into future renewable and sustainable energy solutions. This paper first makes a review of the scientific literature within...... the field. Thereafter it discusses the term Smart Energy Systems with regard to the issues of definition, identification of solu- tions, modelling, and integration of storage. The conclusion is that the Smart Energy System concept represents a scientific shift in paradigms away from single-sector thinking...

  3. Assessment Report on the national research strategy for energy

    International Nuclear Information System (INIS)

    2009-01-01

    This report was issued in 2009 by the French Parliament commission in charge of evaluating the scientific and technological choices of France's research in the field of energy. With environmental, economical and national independence concerns in view, the objective of the report is to assess the national research strategy for energy and to propose some directions for its future development. The scientific priority given in France to nuclear energy, petroleum, photovoltaic energy, second generation bio fuels and energy storage should be maintained. Mass energy storage should be considered as an essential condition for the development of renewable energies, such as offshore wind farms and storage systems

  4. Fiscal 1999 achievement report on development of wide-range energy utilization network system development. Research on energy system design technology (Survey and research on factory group energy system); Kojogun no energy system ni kansuru chosa kenkyu 1999 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Waste heat may be made good use of only after available waste heat is grasped. From this viewpoint, efforts were made to develop databases which would enable the preparation of an available waste heat map. Activities were conducted in the three fields of (1) the construction of an available waste heat database, (2) the construction of a database for estimating waste heat planar density distribution, and (3) the study of correlations between such databases and input-output tables. In Field (1), information on waste heat, gathered for each business type and facility type by questionnairing, was classified into 20 facility-oriented categories, and was used for the calculation of the amount of Japan's waste heat actually in existence with each business type and facility type. In Field (2), relations between the questionnairing-provided waste heat, purchased energy, number of employees, and the amount of shipment were analyzed for the estimation of the magnitude of factory waste heat using the number of employees. The amount of waste heat from each business type thus estimated was 310,000 T cal/year, which occupied 97% of the amount estimated by use of purchased energy. In Field (3), no satisfying correlation was detected between the amount of shipment and the amount of waste heat. (NEDO)

  5. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on promotion of international cooperation in the WE-NET project in fiscal 1996. The WE-NET project aims at development of the total system for hydrogen production, transport, storage and utilization, and construction of the earth-friendly innovative global clean energy network integrating elemental technologies. Since the standpoint is different between latent resource supplying countries and technology supplying countries, the WE-NET project should be constantly promoted under international understanding and cooperation. The committee distributed the annual summary report prepared by NEDO to overseas organizations, and made positive PR activities in the 11th World Conference and others. The committee made the evaluation on the improvement effect of air pollution by introducing a hydrogen vehicle in combination with Stanford University, and preparation of PR video tapes for hydrogen energy. Preliminary arrangement of Internet home pages, establishment of a long-term vision for international cooperation, and proposal toward the practical WE-NET are also made. 9 figs., 13 tabs.

  6. Energy research and development in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Hultberg, S.; Lindstroem Thomsen, P.

    1996-06-01

    The document describes some of the most important results produced during the last twenty years under the Danish government`s Energy Research Programme (ERP). Some of the involved research groups, and their current research projects, are described. The aim is to invite international cooperation on research in this field. Research areas are divided under the main headings of energy policy, energy supply and energy end-use. The document is illustrated with coloured photographs, diagrams and graphs. The names of contact persons, firms and institutions relevant to the described projects are listed. (AB)

  7. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  8. 3rd annual biomass energy systems conference

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

  9. FY 1999 research and development results. Preparatory study for the underground thermal energy storage system; 1999 nendo chichu jiban chikunetsu system gijutsu sendo kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The study is conducted for the underground thermal energy storage system which utilizes heat capacity of the underground, e.g., aquifer, to exchange heat with the underground, and the FY 1999 results are described. For establishment of the concept of the underground heat storage systems, 2 sites are selected for each of Tokyo, Osaka and Sapporo for the study as the geological ground models, for their weather characteristics. Two cases are considered for the site where underground heat exchangers are installed, open space and immediately below a building. The heat-storage system comprises a high-efficiency heat pump, water heat-storage tank and cooling tower. The evaluation results indicate that energy saving rate of 37% or more and CO2 reduction rate of 9.5% or more are achievable in all areas except Sapporo, i.e., Tokyo and Osaka. The economic evaluation results indicate that the simple pay-out period is around 100 years for Tokyo and Osaka, and 80 years for Sapporo. The underground heat storage system is approximately 10% lower in life-cycle cost than the conventional system, 3 versus 3.3 billion yen for the period of 60 years. (NEDO)

  10. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning me...

  11. Smart and usable home energy management systems

    NARCIS (Netherlands)

    Van Dam, S.S.

    2009-01-01

    This paper reviews research into Home Energy Management Systems (HEMS). These are intermediary products that can visualize, manage, and/or monitor the energy use of other products or whole households. HEMS have lately received increasing attention for their possible role in conserving energy within

  12. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  13. Nanomaterials driven energy, environmental and biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F. [Department of Physics, College of Arts and Sciences, Tuskegee University, Tuskegee, AL 36088 (United States)

    2014-03-31

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO{sub 2} nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH{sub 2} and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe{sub 2}O{sub 4} have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)

  14. Rationale for energy research and development programme

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    This paper describes the rationale for the expenditure of government money on energy research and development. The Committee, organized in 1974, established the following order of project priorities: projects to determine current and future energy demand; projects concerned with the conservation and more efficient use of energy; projects concerned with the assessment of indigenous energy resources; projects concerned with the assessment of the human, financial, and organizational resources for energy production and use; and projects concerned with economic, technological, social, and environmental aspects of energy use and production over the next 15 years and beyond the next 15 years. Significant factors affecting the national energy economy, the strategy for energy research and development, and the results of committee activities are summarized. An energy scenario research is laid out. (MCW)

  15. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  16. Comparison of cost effectiveness of risk reduction among different energy systems: French case studies. Final report of the co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    Lochard, Jacques [ed.

    1989-08-01

    This report presents the three French case studies performed in the framework of the coordinated research program on 'Comparison of Cost-effectiveness of Risk Reduction among different Energy Systems': Cost effectiveness of robotics and remote tooling for occupational risk reduction at a nuclear fuel fabrication facility; Cost-effectiveness of protection actions to reduce occupational exposures in underground uranium mines; Cost-effectiveness of safety measures to reduce public risk associated with the transportation of UF{sub 6} by truck and trains.

  17. FY 1986 Report on research and development of super heat pump energy accumulation system. Part 1. Development of elementary techniques; 1986 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 1. Yoso gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-04-01

    Summarized in detail herein are R and D results of the super high performance heat pumps and elementary equipment and working fluids, for R and D of the super heat pump energy accumulation system. For R and D of the super high performance compression heat pumps, the R and D efforts are directed to development of new working fluids, high-performance heat exchangers, closed motors and so on for the highly efficient type (for heating only); to researches on mixed coolants, high-efficiency screw compressors and so on for the highly efficient type (for cooling and heating); to development of tooth shape of the screw compression section, surveys on thermal stability of the working fluids for heating and so on for the high temperature type (utilizing low temperature heat source); and to R and D of the high-speed reciprocating compressors and steam superchargers for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment and working fluids, researches are conducted on evaporators for mixed working fluids, condensers utilizing the EHD effect, stainless steel plate fin type heat exchangers, heat exchangers for the chemical heat accumulation unit, and so on. The R and D efforts are also directed to the working fluids (alcohol-based and nonalcohol-based). (NEDO)

  18. Integrated energy systems and local energy markets

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable...... energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade...

  19. Research and development of system to utilize photovoltaic energy. Study on large-scale PV power supply system; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyo energy kyokyu system no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on large-scale PV power supply systems in fiscal 1994. (1) On optimization of large-scale systems, the conceptual design of the model system was carried out which supposes a large-scale integrated PV power generation system in desert area. As a result, a pair of 250kW generation system was designed as minimum one consisting power unit. Its frame and construction method were designed considering weather conditions in the inland of China. (2) On optimization of large-scale transmission systems, as large-scale power transmission systems for PV power generation, the following were studied: AC aerial transmission, DC aerial transmission, superconducting transmission, hydrogen gas pipeline, and LH2 tanker transport. (3) On the influence of large-scale systems, it was estimated that emission control is expected by substituting PV power generation for coal fired power generation, the negative influence on natural environment cannot be supposed, and the favorable economic effect is expected as influence on social environment. 4 tabs.

  20. Energy research in the public sector

    International Nuclear Information System (INIS)

    Gfeller, J.

    1980-01-01

    The objects of state-sponsored energy research in Switzerland are stated to include specialist training in co-operation with the technical universities, and long term energy technology as well as international liaison. Tables are presented which indicate the trends in sources of funding for research, and the division between various technological areas, including energy conservation (10%), solar energy (10%), bioenergy, geothermal energy and wind power (4.5%), atomic energy (40%), nuclear fusion (20%), electricity (6%) and environmental studies (7%). These ratios are compared with those for other developed countries and it is concluded that the aim must be to approach smoothly the 'post-oil era'. (Auth.)

  1. Achievement report on research and development in the Sunshine Project in fiscal 1978. Studies on a hydrogen energy total system; 1978 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    Analysis was made on timing, patterns and scales of introducing hydrogen energy into the Japan's total energy system, and case studies were made on transfer of the comprehensive systems that can be realized in the years of 1985, 2000 and 2025. The basic conception for the analytic method employed a method to analyze and present theoretically the conditions in which prerequisites or results of the estimation can be established, rather than intending elucidation of the estimation itself. An energy model was used for the theoretical means thereof. The objective function to be optimized was assumed to maximize (estimate over the planned period of time) the total effectiveness of the hydrogen energy system converted into the present value being given appropriate discount. The economic performance measures for different secondary energies working as the comparison measures are the limiting production cost of each energy. A consideration was given to the point that the electrolytic hydrogen cannot compete with that made by using the thermo-chemical method (if developed successfully) using heat from high-temperature gas reactor if the fossil fuel price rises sharply. Considerations are also required in replaceability of hydrogen energy with other energies, and hydrogen utilization in petroleum refining. (NEDO)

  2. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  3. University of Maryland Energy Research Center |

    Science.gov (United States)

    breakthroughs into commercial, clean energy solutions. The Clark School Celebrates Women's History Month The Clark School is featuring our female engineering faculty members throughout March. UMD Researchers

  4. Accelerator Center for Energy Research (ACER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Accelerator Center for Energy Research (ACER) exploits radiation chemistry techniques to study chemical reactions (and other phenomena) by subjecting samples to...

  5. Between research and energy production

    International Nuclear Information System (INIS)

    Kirbus, F.B.

    1977-01-01

    When on March 20th, 1974, the nuclear power plant in Atucha, 100 km to the north-west of Argentine's capital Buenos Aires, built by Siemens, was taken into operation, it seemed as if South America had resolutely stepped into the atomic age. In the meantime, Brazil makes preparations for fortified construction of nuclear power plants and its own nuclear industry, and Mexico is accelerating its investigations in order to replace its dwindlung hydroelectric reserves as soon as possible with nuclear energy. The effect of the oil crisis was that Latin American countries, too, take a different look at the peaceful uses of atomic energy. (orig.) [de

  6. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation (standardization of hydrogen energy technology); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento (suiso energy gijutsu hyojunka ni kansuru chosa kento)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the basic study on standardization of hydrogen energy technology, and the research study on ISO/TC197 in fiscal 1996. As a part of the WE-NET project, the subtask 2 aims at preparation of standards necessary for practical use and promotion. Developmental states in every field of hydrogen energy technologies, current states of domestic/overseas related standards and laws, and needs and issues of standardization were surveyed. In particular, the needs and issues were clarified in relation to existing standards and laws from the viewpoint of specific hydrogen property. ISO/TC197 was established in 1989 for standardization of the systems and equipment for production, storage, transport, measurement and utilization of hydrogen energy. Four working groups are in action for the supply system and tank of liquid hydrogen fuel for automobiles, the container and ship for complex transport of liquid hydrogen, the specifications of hydrogen products for energy, and the hydrogen supply facility for airports. The draft international standards were proposed to the international conference in 1996. 16 refs., 21 figs., 41 tabs.

  7. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve......Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  8. Energy Storage Publications | Transportation Research | NREL

    Science.gov (United States)

    , California. 23 pp.; NREL Report No. PR-5400-60290. Optimal Sizing of Energy Storage and Photovoltaic Power (11) 2017 pp. 1095-1118. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System Prediction Model for Grid-Connected Li-ion Battery Energy Storage System - Preprint Paper Source: Smith

  9. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Energy, Power, and Thermal Technologies and Processes Experimental Research. Subtask: Thermal Management of Electromechanical Actuation System for Aircraft Primary Flight Control Surfaces

    Science.gov (United States)

    2014-05-01

    Computer FHPCP Flexible Heat Pipe Cold Plate HPEAS High Performance Electric Actuation System HPU Hydraulic Power Unit HSM Hydraulic Service...provide improved thermal paths and phase change materials offer energy storage. Loop heat pipes (LHP’s) and Flexible Heat Pipe Cold Plates (FHPCP’s...flows upward due to density difference through centrally located vapor channels called risers and then condenses on the colder surface associated

  10. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    organization and independent system operator settle energy transactions in its real-time markets at the same time interval it dispatches energy, and settle operating reserves transactions in its real-time markets the electric grid. These control systems will enable real-time coordination between distributed energy

  11. Renewable energy covernance systems

    International Nuclear Information System (INIS)

    Hvelplund, F.

    2001-01-01

    The 'political quota-/certificate price market' system introduces an inefficient competition between energy robots, and weakens the increasingly important competition between equipment producers. It hampers the competition between investors by making it difficult for neighbours and local investors to invest in wind turbines. Due to its mono price character, it gives too high profits to wind turbine owners at very good wind sites, and not high enough to wind turbine owners at poor wind sites. The 'political quota-/certificate price market' system is very far from being a market model, as the RE amount is politically decided and the certificate market price is also political influenced. The conclusion, therefore, is that it is time to find a RE governance model that considers the specific needs and characteristics of RE technologies. The present analysis strongly indicates that a 'political price-/amount market' model in this connection is far better than the 'political quota-/certificate price market' model. Furthermore, a common EU model, based on the principle of site efficiency, would be much more flexible, cheaper and easier to pursue than the 'political quota-/certificate price market', or mono price model, which is designed for uranium and fossil fuel technologies, and represents a governance model designed for the technologies of yesterday. (EHS)

  12. [Research in high energy physics

    International Nuclear Information System (INIS)

    LoSecco, J.

    1989-01-01

    We review the efforts of the Notre Dame non accelerator high energy physics group. Our major effort has been directed toward the IMB deep underground detector. Since the departure of the Michigan group our responsibilities to the group have grown. We are also very active in pursuing physics with the IMB 3 detector. Currently we are studying proton decay, point neutrino sources and neutrino oscillations with the contained event sample

  13. General program of energy research: innovation in hard coal, 1974-1977. New drivage systems. Rahmenprogramm energieforschung: innovation steinkohle, 1974-1977. Neue vortriebssysteme. Volume 1, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    During the four year period of the program, initiated by the German Federal government, 19 research and machine development projects in the field of road heading machines were subsidized. The Juelich energy research project management oversaw the progress of the programs. Projects for developing new machines at a total cost of 0.1 to 3.2 million DM per project were subsidized by 50%. The developed machinery includes the Roboter, WAV 200 and AM 50 high powered road cutter loaders, HSV 4 and Hausherr Mini ripper hydraulic percussion hammer heading machines, the DEMAG/SVM full face tunneling machine with a cutting head of 6 m in diameter, efficient drilling and blasting equipment for road drivage in rock and mechanized systems for achieving efficient support work, and keeping pace with the speed of mine drivage.

  14. FY 1991 Report on research and development of super heat pump energy accumulation system. Part 1. Construction and operation of the prototype system (researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaiahtsu 1981 nendo seika hokokusho. 1. System shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-05-01

    Summarized herein are R and D results of the super high performance heat pumps and elementary equipment, for R and D of the super heat pump energy accumulation system. For R and D of the super high performance compression heat pumps, the R and D efforts are directed to tests and evaluation of the pilot plant for the highly efficient type (for heating only), which produce the results of COP exceeding the target of 8; to tests of the anti-corrosion measures for the aluminum heat exchangers for the highly efficient type (for cooling and heating), by which the effective inhibitors are selected. The hybrid systems of the super high performance compression heat pumps and chemical heat storage are also studied in detail. The R and D efforts are directed to construction and operation of the hybrid heat pump system to collect underground heat for the high temperature type (utilizing low temperature heat source), which produce the results of confirming possibility of efficient heat collection for extended periods; and to improvement, construction on a trial basis and operation of the high-speed reciprocating compressors and steam superchargers for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment, tests and evaluation are conducted for the EHD heat exchangers which use R123 as the new working fluid. (NEDO)

  15. Fiscal 1975 Sunshine Project research report. Research on safety technology for hydrogen energy systems; 1975 nendo suiso energy system ni okeru hoan gijutsu ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-05-01

    Important notices and problems on the safety for hydrogen gas were analyzed. Analysis was made on hydrogen gas property, flammability, explosivility, bio-toxicity, equipment, storage, transport, leakage, fire, technology and education for safety management, and quality and analysis of products. Study was also made on the relation between the above items and every domestic or overseas standard. Important notices and problems on the safety for liquid hydrogen were analyzed. Analysis was made on liquid hydrogen property, liquefaction and refining equipment, transport, storage, materials concerned, bio-toxicity, leakage, fire fighting technique, and safety management. Among them, such problems are pointed out from the viewpoint of accident prevention, as O-P conversion, refining of hydrogen gas for liquefaction, selection of structural materials, hydrogen embrittlement, layout of various equipment and devices, explosion-proof electric devices, and leakage detection. Research on effective fire fighting and fire preventive measures against hydrogen leakage and diffusion from tanks or piping are also in demand. (NEDO)

  16. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  17. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  18. Research for energy efficiency; Forschung fuer Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The Federal Ministry of Economy enhanced its funding for research in the field of non-nuclear energy in the programme ''Forschung fuer Energieeffizienz'' (Research for Energy Efficiency). The programme focuses on established areas like modern power plant technologies (''Moderne Kraftwerkstechnologien''), fuel cells and hydrogen (''Brennstoffzelle, Wasserstoff''), and energy-optimized building construction (''Energieoptimiertes Bauen''). New subjects are energy-efficient towns and cities (''Energieeffiziente Stadt''), power grids for future power supply (''Netze fuer die Stromversorgung der Zukunft''), power storage (''Stromspeicher''), and electromobility (''Elektromobilitaet''). The brochure presents research and demonstration projects that illustrate the situation in 2010 when the programme was initiated. (orig.)

  19. Home and Building Energy Management Systems | Grid Modernization | NREL

    Science.gov (United States)

    Home and Building Energy Management Systems Home and Building Energy Management Systems NREL researchers are developing tools to understand the impact of changes in home and building energy use and how researchers who received a record of invention for a home energy management system in a smart home laboratory

  20. Overview of energy-conservation research opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, W.J.; Hauser, S.G.; Hane, G.J.; Gurwell, W.E.; Bird, S.P.; Cliff, W.C.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

    1981-12-01

    This document is a study of research opportunities that are important to developing advanced technologies for efficient energy use. The study's purpose is to describe a wide array of attractive technical areas from which specific research and development programs could be implemented. Research areas are presented for potential application in each of the major end-use sectors. The study develops and applies a systematic approach to identifying and screening applied energy conservation research opportunities. To broadly cover the energy end-use sectors, this study develops useful information relating to the areas where federally-funded applied research will most likely play an important role in promoting energy conservation. This study is not designed to produce a detailed agenda of specific recommended research activities. The general information presented allows uniform comparisons of disparate research areas and as such provides the basis for formulating a cost-effective, comprehensive federal-applied energy conservation research strategy. Chapter 2 discusses the various methodologies that have been used in the past to identify research opportunities and details the approach used here. In Chapters 3, 4, and 5 the methodology is applied to the buildings, transportation, and industrial end-use sectors and the opportunities for applied research in these sectors are discussed.Chapter 6 synthesizes the results of the previous three chapters to give a comprehensive picture of applied energy conservation research opportunities across all end-use sectors and presents the conclusions to the report.

  1. Research@ARL: Energy & Energetics

    Science.gov (United States)

    2012-06-01

    LiNi0.80Co0.15Al0.05O2 ( NCA ), cathode in a full cell, we found that the activation energy, Ea, for the charge transfer at the graphite/electrolyte interface...kinetics at the graphite anode and the lithium nickel cobalt aluminum oxide, LiNi0.80Co0.15Al0.05O2 ( NCA ), cathode in a full cell, we found that the...Both the NCA and the graphite electrodes are porous electrodes. The dimension of the NCA cathode was 6.35 cm × 3.81 cm, the dimension of the graphite

  2. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume I. Study summary and concept screening. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This study was directed at a review of storage technologies, and particularly those which might be best suited for use in conjunction with wind and photovoltaics. The potential ''worth'' added by incorporating storage was extensively analyzed for both wind and photovoltaics. Energy storage concepts studied include (1) above ground pumped hydro storage, (2) underground pumped hydro storage, (3) thermal storage-oil, (4) thermal storage-steam, (5) underground compressed air storage, (6) pneumatic storage, (7) lead-acid batteries, (8) advanced batteries, (9) inertial storage (flywheel), (10) hydrogen generation and storage, and (11) superconducting magnetic energy storage. The investigations performed and the major results, conclusions, and recommendations are presented in this volume. (WHK)

  3. Jointly Sponsored Research Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2013-12-31

    several criteria. Using the deployment of the federal funding with industrial participation as a performance criterion, over the course of the program, the copsonsors contributed more dollars than the federal funds. As stated earlier, a little more than half of the funding for the Program was derived from industrial partners. The industrial partners also enthusiastically supported the research and development activities with cash contribution of $4,710,372.67, nearly 65% of the required cost share. Work on all of the tasks proposed under the Cooperative Agreement has been completed. This report summarizes and highlights the results from the Program. Under the Cooperative Agreement Program, energy-related tasks emphasized petroleum processing, upgrading and characterization, coal and biomass beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils using microbial fuel cells, development of processes and sorbents for emissions reduction and recovery of water from power plant flue gas, and biological carbon capture and reuse. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts associated with energy production and utilization. Technologies being brought to commercialization as a result of the funds provided by the Cooperative Agreement contribute to the overall goals of the USDOE and the nation. Each has broad applicability both within the United States and abroad, thereby helping to enhance the

  4. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was shell space that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy

  5. Synthesis of the 1. ANR Energy Assessment colloquium - Which research for tomorrow's energy?

    International Nuclear Information System (INIS)

    Lecourtier, Jacqueline; Pappalardo, Michele; Bucaille, Alain; Falanga, Anne; Fouillac, Christian; Amouroux, Jacques; Bouchard, Patrick; Cadet, Daniel; Fioni, Gabriele; Appert, Olivier; Le Quere, Patrick; Bernard, Herve; Moisan, Francois; Witte, Marc de; Cochevelou, Gilles; Bastien, Remi; Heitzmann, Martha; Lefebvre, Thierry; Michon, Ulysse; Perrier, Olivier; Tarascon, Jean-Marie; Lincot, Daniel; Hadziioannou, Georges; Jacquemelle, Michele; Mermilliod, Nicole; Saulnier, Jean-Bernard

    2009-11-01

    Proposed by representatives of the main involved companies, agencies and institutions, the contributions of this colloquium addressed the following issues: the role of new energy technologies in the French and World sustainable development; The programmes 'New energy technologies'; Research priorities for these new technologies; Industry Perspectives and challenges; SMEs and the ANR; Research perspectives and challenges (electrochemical storage of energy, solar photovoltaic energy, new materials for energy, integration of renewable energies in electric systems, technological innovations for new energy technologies)

  6. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1990-01-01

    The Office of Energy Research sponsors long-term research in certain fundamental areas and in technical areas associated with energy resources, production, use, and resulting health and environmental effects. This document describes these activities, including recent accomplishments, types of facilities, and gives some impacts on energy, science, and scientific manpower development. The document is intended to respond to the many requests from diverse communities --- such as government, education, and public and private research --- for a summary of the types of research sponsored by the Department of Energy's Office of Energy Research. This is important since the Office relies to a considerable extent on unsolicited proposals from capable university and industrial groups, self-motivated interested individuals, and organizations that may wish to use the Department's extensive facilities and resources. By describing our activities and facilities, we hope not only to inform, but to also encourage interest and participation

  7. Sociologies of energy. Towards a research agenda

    Directory of Open Access Journals (Sweden)

    Tomás Ariztía

    2017-12-01

    Full Text Available This article offers a panoramic view of the field of the social studies of energy while introducing the articles of the special issue. It begins by discussing the progressive interest on studying the social aspects of energy. We relate this interest to the increasing challenges imposed by global climate change as well as the growing sociological attention to the material dimension of social life. The article suggests understanding energy and energy related phenomena as a socio-technical object which involve material, social, cultural and technical elements. The article then briefly describes different research areas concerning the intersection between energy and society and present the contributions to the monograph. We suggest that the articles comprised in this special issue are not only relevant for social scientist interested on energy related issues; they might also help energy professionals and researchers from outside the social sciences to further problematize the social aspects and challenges of energy.

  8. Magnetic confinement fusion energy research

    International Nuclear Information System (INIS)

    Grad, H.

    1977-03-01

    Controlled Thermonuclear Fusion offers probably the only relatively clean energy solution with completely inexhaustible fuel and unlimited power capacity. The scientific and technological problem consists in magnetically confining a hot, dense plasma (pressure several to hundreds of atmospheres, temperature 10 8 degrees or more) for an appreciable fraction of a second. The scientific and mathematical problem is to describe the behavior, such as confinement, stability, flow, compression, heating, energy transfer and diffusion of this medium in the presence of electromagnetic fields just as we now can for air or steam. Some of the extant theory consists of applications, routine or ingenious, of known mathematical structures in the theory of differential equations and in traditional analysis. Other applications of known mathematical structures offer surprises and new insights: the coordination between sub-supersonic and elliptic-hyperbolic is fractured; supersonic propagation goes upstream; etc. Other completely nonstandard mathematical structures with significant theory are being rapidly uncovered (and somewhat less rapidly understood) such as non-elliptic variational equations and new types of weak solutions. It is these new mathematical structures which one should expect to supply the foundation for the next generation's pure mathematics, if history is a guide. Despite the substantial effort over a period of some twenty years, there are still basic and important scintific and mathematical discoveries to be made, lying just beneath the surface

  9. FY1995 research report on the survey of cryogenic energy utilization systems for environmentally friendly energy community project. Case studies of LNG cryogenic energy cascade-wise utilization; 1995 nendo kankyo chowagata energycommunity jigyo ni kakawaru reinetsu riyo system kento chosa hokokusho. LNG reinetsu no cascade teki riyo case study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Japan's import of LNG (liquefied natural gas) has increased in these 15 years from 13-million tons to 43-million tons at a high rate of 2-million tons a year. At present LNG is used only in power generation and town gas business, and its cryogenic feature which may be useful in various fields is not being utilized. In this survey, factors impeding the wider application of the cryogenic energy are investigated, methods for using the energy more widely and mechanisms required therefor are studied, and discussion is made about the feasibility of the utilization of the energy in a cascade-wise form under the environmentally friendly energy community project. Researches are conducted and the results are evaluated in a study carried out on the comprehensive utilization of LNG cryogenic energy. These researches involve the actualities and trends of LNG cryogenic energy utilization in Japan; current status and prospect of the involvement of LNG bases with their neighboring industries and communities; technological measures for cryogenic energy utilization; technological measures related to low-temperature media and cold heat transportation systems; technological measures for the cascade-wise multidirectional utilization of cryogenic energy; and case studies on assumed local models. (NEDO)

  10. FY1995 research report on the survey of cryogenic energy utilization systems for environmentally friendly energy community project. Case studies of LNG cryogenic energy cascade-wise utilization; 1995 nendo kankyo chowagata energycommunity jigyo ni kakawaru reinetsu riyo system kento chosa hokokusho. LNG reinetsu no cascade teki riyo case study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Japan's import of LNG (liquefied natural gas) has increased in these 15 years from 13-million tons to 43-million tons at a high rate of 2-million tons a year. At present LNG is used only in power generation and town gas business, and its cryogenic feature which may be useful in various fields is not being utilized. In this survey, factors impeding the wider application of the cryogenic energy are investigated, methods for using the energy more widely and mechanisms required therefor are studied, and discussion is made about the feasibility of the utilization of the energy in a cascade-wise form under the environmentally friendly energy community project. Researches are conducted and the results are evaluated in a study carried out on the comprehensive utilization of LNG cryogenic energy. These researches involve the actualities and trends of LNG cryogenic energy utilization in Japan; current status and prospect of the involvement of LNG bases with their neighboring industries and communities; technological measures for cryogenic energy utilization; technological measures related to low-temperature media and cold heat transportation systems; technological measures for the cascade-wise multidirectional utilization of cryogenic energy; and case studies on assumed local models. (NEDO)

  11. Research and development of utilization technology of solar thermal energy system for industrial and other use. Research and development of solar system (investigation of popular type snow melting systems); Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Solar system no chosa kenkyu (fukyugata yusetsu system no kenkyu chosa)

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for investigation for popular type snow melting systems using solar energy. Two types of technologies are proposed to utilize solar energy for snow melting in winter and create comfortable environments. One is combined (active plus passive) type, which transfers solar heat it collects by the whole wall surfaces to an attic to heat it totally, and makes the whole roof as a radiator to melt snow. However, heat radiated from the roof is insufficient to melt all snow on the roof, allowing it to remain to an extent that it works as an insulator. The other is active type, which transfers heat it collects by the collector to the heat storage tank, from which heat is extracted in winter for various purposes, including snow melting. Such a system must store heat for an extended period, for which a highly insulating heat storage tank is proposed to balance capacity of heat storage between seasons and building size.

  12. Solar energy storage researchers information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar energy storage are described. In the current study only high-priority groups were examined. Results from 2 groups of researchers are analyzed: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  13. Council of Energy Engineering Research. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Richard J.

    2003-08-22

    The Engineering Research Program, a component program of the DOE Office of Basic Energy Sciences (BES), was established in 1979 to aid in resolving the numerous engineering issues arising from efforts to meet U.S. energy needs. The major product of the program became part of the body of knowledge and data upon which the applied energy technologies are founded; the product is knowledge relevant to energy exploration, production, conversion and use.

  14. Research and Energy Efficiency: Selected Success Stories

    Science.gov (United States)

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  15. Developement of a large proton accelerator for innovative researches; development of low energy high current beam transport system

    Energy Technology Data Exchange (ETDEWEB)

    Ko, In Soo; Namkung, Won; Cho, M. H.; Kim, K. N.; Kim, J. H.; Bae, Y. S.; Kim, Y.; Kim, K. H.; Shim, K. Y. [Pohang University of Science and Technology, Pohang (Korea)

    2001-04-01

    We have designed the beam transport system to connect the ion source and the RFQ. In this design, we have finalized the positions of solenoids and various beam diagnostic device. We have finalize the physical and mechanical designs of solenoids, and these designs are already adopted to produce the actual solenoids. We have also studied about EPICS, Experimental Physics and Industrial Control System, to control a stepper motor as a tuner of the RFQ designed for KOMACEPICS is a real time control system for a large scale system such as accelerators and tokamaks. The purpose of this thesis is to establish a test system based on the EPICS. A Sun UtraSPARC 5 workstation is used as the Operator Interface(OPI) console, and a VME chassis contained a Motorola MVME162 single board computer is used as the Input/Output Controller(IOC). A stepper motor controller is connected to the IOC via an RS-232C as a field bus. The EPICS base, extensions, and the real time OS vxWorks are installed on the workstation. The real time OS image can be downloaded to the IOC via the FTP when the test station is started. We have installed an IOC application as a device and driver support layer for the serial communication with an RS-232C on the workstation. We have designed the IOC database configuration files and a graphic user interface style OPI panel which was programmed by the MEDM. With this OPI, we can control the stepper motor using EPICS. 17 refs., 33 figs., 9 tabs. (Author)

  16. Energy information systems: a general overview

    International Nuclear Information System (INIS)

    Sen, B.K.

    1991-01-01

    The unprecedented energy crises that engulfed the world in early 1970s brought about a spurt in energy research all over the world, which in turn caused the rapid growth of literature in the field. In order to achieve effective bibliographical control, proper dissemination of information, and rapid access to the desired document, energy information systems of diverse scope came into being. The paper describes the special features of several information systems like (i) International Nuclear Information Systems, which covers world literature on nuclear science and technology (ii) Energy Information Services which takes cares of energy information transfer among the Commonwealth countries of the Asia and Pacific region; (ii) Information Network on New Energy Sources and Technologies for Asia And Pacific. This system is being developed to ensure smooth energy information transfer amongst non-commonwealth countries of Asia and the Pacific. (author)

  17. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  18. Polish energy-system modernisation

    International Nuclear Information System (INIS)

    Drozdz, M.

    2003-01-01

    The Polish energy-system needs intensive investments in new technologies, which are energy efficient, clean and cost effective. Since the early 1990s, the Polish economy has had practically full access to modern technological devices, equipment and technologies. Introducing new technologies is a difficult task for project teams, constructors and investors. The author presents a set of principles for project teams useful in planning and energy modernisation. Several essential features are discussed: Energy-efficient appliances and systems; Choice of energy carriers, media and fuels; Optimal tariffs, maximum power and installed power; Intelligent, integrated, steering systems; Waste-energy recovery; Renewable-energy recovery. In practice there are several difficulties connected with planning and realising good technological and economic solutions. The author presents his own experiences of energy-system modernisation of industrial processes and building new objects. (Author)

  19. Constitutional compatibility of energy systems

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1983-01-01

    The paper starts from the results of the Enquiry Commission on 'Future Nuclear Energy Policy' of the 8th Federal German Parliament outlining technically feasible energy futures in four 'pathways'. For the purpose of the project, which was to establish the comparative advantages and disadvantages of different energy systems, these four scenarios were reduced to two alternatives: cases K (= nuclear energy) and S (= solar energy). The question to Ge put is: Which changes within our legal system will be ushered in by certain technological developments and how do these changes relate to the legal condition intended so far. Proceeding in this manner will not lead to the result of a nuclear energy system or a solar energy system being in conformity or in contradiction with the constitutional law, but will provide a catalogue of implications orientated to the aims of legal standards: a person deciding in favour of a nuclear energy system or a solar energy system supports this or that development of constitutional policy, and a person purishing this or that aim of legal policy should be consistent and decide in favour of this or that energy system. The investigation of constitutional compatibility leads to the question what effects different energy systems will have on the forms of political intercourse laid down in the constitutional law, which are orientated to models of a liberal constitutional tradition of citizens. (orig./HSCH) [de

  20. Survey report of FY 1997 on the long-term energy technology strategy. Survey on the pre-assessment system of energy and environmental technology research and development; 1997 nendo chosa hokokusho (choki energy gijutsu senryaku chosa). Energy kankyo gijutsu kenkyu kaihatsu no jizen hyoka ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    To select projects of the New Sunshine Program which is the locomotive for Japan`s research and development of energy and environmental technologies and to map out the Program`s long-term strategy, it is required to develop an effective methodology of assessing research and development themes. It is also necessary to establish the pre-assessment system which makes the assessment process more logical and which will enable the priority setting among different themes on the basis of objective and quantitative analysis. Additionally, transparency should be ensured for such a pre-assessment process through disclosure to the public and other means. The present survey aims to concretize the pre-assessment system by studying the system and techniques of an assessment system which is applicable to the research and development themes of the New Sunshine Program and is objective, quantitative and logical and which can ensure transparency and by receiving suggestions on the pre-assessment of Japan`s research and development of energies and environmental technologies through research on overseas trends of government-led research and development. 3 refs., 7 figs., 26 tabs.

  1. Swedish-Estonian energy forest research cooperation

    International Nuclear Information System (INIS)

    Ross, J.; Kirt, E.; Koppel, A.; Kull, K.; Noormets, A.; Roostalu, H.; Ross, V.; Ross, M.

    1996-01-01

    The Organization of Estonian energetic economy is aimed at cutting the usage of oil, gas and coal and increasing the local resources firewood, oil-shale and peat for fuel. The resources of low-valued firewood-brushwood, fallen deadwood etc. are available during the following 10-15 years, but in the future the cultivation of energy forest (willow) plantations will be actual. During the last 20 years the Swedish scientists have been extensively studying the willow forest selection, cultivation and use in energetics and waste water purification systems. A Swedish-Estonian energy forest research project was started in 1993 between the Swedish Agricultural University on one hand and Toravere Observatory, Institute of Zoology and Botany, Estonian Academy of Sciences and Estonian Potato Processing Association on the other hand. In spring 5 willow plantations were established with the help of Swedish colleagues and obtained from Sweden 36000 willow cuttings. The aim of the project: a) To study experimentally and by means of mathematical modelling the biogeophysical aspects of growth and productivity of willow plantations in Sweden and Estonian climatological conditions. b) To study the possibility of using the willow plantations in waste waters purification. c) To study the economical efficiency of energy forest as an energy resource under the economic and environmental conditions of Estonia. d) To study the economic efficiency of willow plantations as a raw material for the basket industry in Estonia. e) To select the most productive and least vulnerable willow clones for practical application in energy plantations. During 1993 in all five plantations detailed analysis of soil properties has been carried out. In the plantation at Toravere Observatory phytometrical measurements were carried out - the growth of plant biomass leaf and stem area, vertical distribution of dry matter content, biomass and phyto area separately for leaves and stems has been performed. Some

  2. Wind energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  3. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  4. Summaries of FY 1977, research in high energy physics

    International Nuclear Information System (INIS)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977

  5. Summaries of FY 1984 research in high energy physics

    International Nuclear Information System (INIS)

    1984-12-01

    The US Department of Energy, through the Office of Energy Research, Division of High Energy and Nuclear Physics, provides approximately 90 percent of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major US high energy accelerator facilities and over 90 universities under contract to do experimental and theoretical investigations on the properties, structure, and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the US Department of Energy. The areas covered include: (1) conception, design, construction, and operation of particle accelerators; (2) experimental research using the accelerators and ancillary equipment; (3) theoretical research; and (4) research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of unerstanding the basic nature of matter and energy

  6. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1992-06-01

    This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q 2 ; Measurement of the 5th Structure Function in Deuterium and 12 C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of 117 Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from 13 C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of 3 He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e'p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N → Δ Excitation; Experiment E-140: Measurement of the x-, Q 2 and A-Dependence of R = σ L /σ T ; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2γ Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions

  7. Research planning in the energy sector

    International Nuclear Information System (INIS)

    Graenicher, H.

    1977-06-01

    The author considers research planning split into four separate aspects: the character of the research situation; the function of planning stages; the type of research target; and the limit of the application of research planning by planning stages. He then considers the specific problem of energy research and discusses the question of what the state is to do and how to do it with particular attention to the Swiss situation. (G.T.H)

  8. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  9. Smart Energy Systems

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2013-01-01

    • To reduce the costs of energy towards 2050 This transition faces many challenges from a variety of different perspectives, including: • Technology: The development of new technologies and infrastructures, which will enable us to utilise renewable energy resources. • Business: The design of new markets...

  10. Model systems in photosynthesis research

    International Nuclear Information System (INIS)

    Katz, J.J.; Hindman, J.C.

    1981-01-01

    After a general discussion of model studies in photosynthesis research, three recently developed model systems are described. The current status of covalently linked chlorophyll pairs as models for P700 and P865 is first briefly reviewed. Mg-tris(pyrochlorophyllide)1,1,1-tris(hydroxymethyl) ethane triester in its folded configuration is then discussed as a rudimentary antenna-photoreaction center model. Finally, self-assembled chlorophyll systems that contain a mixture of monomeric, oligomeric and special pair chlorophyll are shown to have fluorescence emission characteristics that resemble thoe of intact Tribonema aequale at room temperature in that both show fluorescence emission at 675 and 695 nm. In the self-assembled systems the wavelength of the emitted fluorescence depends on the wavelength of excitation, arguing that energy transfer between different chlorophyll species in these systems may be more complex than previously suspected

  11. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  12. Low Energy Dissipation Nano Device Research

    Science.gov (United States)

    Yu, Jenny

    2015-03-01

    The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.

  13. Energy Technologies Research and Education Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Abbas [New Mexico State Univ., Las Cruces, NM (United States); Ranade, Satish [New Mexico State Univ., Las Cruces, NM (United States)

    2014-12-31

    For this project, the intended goal of the microgrid component was to investigate issues in policy and technology that would drive higher penetration of renewable energy, and to demonstrate implementation in a utility system. The work accomplished on modeling the dynamics of photovoltaic (PV) penetration can be expanded for practical application. Using such a tool those involved in public policy can examine what the effect of a particular policy initiative, e.g., renewable portfolio standards (RPS) requirements, might be in terms of the desired targets. The work in the area of microgrid design, protection, and operation is fundamental to the development of microgrids. In particular the “Energy Delivery” paradigm provides new opportunities and business models for utilities. Ultimately, Energy Delivery could accrue significant benefits in terms of costs and resiliency. The experimental microgrid will support continued research and allow the demonstration of technology for better integration of renewables. The algal biofuels component of the project was developed to enhance the test facility and to investigate the technical and economic feasibility of a commercial-scale geothermal algal biofuels operation for replication elsewhere in the arid Southwest. The project was housed at New Mexico State University’s (NMSU’s) Geothermal Aquaculture Facility (GAF) and a design for the inoculation train and algae grow-out process was developed. The facility was upgraded with modifications to existing electrical, plumbing and structural components on the GAF and surrounding grounds. The research work was conducted on biomass-processing, harvesting, dewatering, and extraction. Additionally, research was conducted to determine viability of using low-cost, wastewater from municipal treatment plants in the cultivation units as make-up water and as a source of nutrients, including nitrogen and soluble phosphorus. Data was collected on inputs and outputs, growth evaluation and

  14. Energy innovation systems indicator report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M. [Technical Univ. of Denmark. DTU Management Engineering, Kgs. Lyngby (Denmark); Klitkou, A.; Iversen, E. [Nordic Institute for Studies in Innovation, Research and Education, Oslo (Norway)

    2012-12-15

    Knowledge about the innovation systems with respect to new energy solutions and technologies is of central importance for understanding the dynamics of change in the energy sector and assessment of opportunities for moving towards more climate-friendly and sustainable energy systems and for socio-economic development in the field, creation of new businesses, work places, etc.. This is the topic that in general is addressed in the research activities of the ''EIS - Strategic research alliance for Energy Innovation Systems and their dynamics - Denmark in global competition''. As part of this, the present report gives an overview of the available indicators of energy innovation systems and points out some of the limitations and potentials there currently are in this connection. Focus is on Denmark. Figures for other countries, primarily Nordic or European, are in some cases showed as well, offering a comparative perspective. (Author)

  15. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  16. Netherlands Energy Research Foundation Annual Report 1987

    International Nuclear Information System (INIS)

    1988-06-01

    This Annual Report includes a brief survey of the nuclear research activities of the Netherlands Energy Research Center (ECN) in Petten during 1987. They cover the following subjects: reactor safety, processing, storage and disposal of radioactive waste, advanced nuclear reactors, radiation protection, nuclear analysis, and contributions to the European thermonuclear-fusion research. (H.W.). 20 figs.; 18 fotos; 1 tab

  17. Long-term nuclear knowledge management (NKM) of innovative nuclear energy systems (INES). A case study of the Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Bezdek, Roger H.; Sawada, Tetsuo

    2008-01-01

    Within JAERI, funds invested in a 45-year study of LWR totaled 4.2b$ for research and 3.4b$ (34,718 man years) for personnel. The benefits to taxpayers from this JAERI work were estimated to be about 6.3b$ , resulting in a favorable cost-benefit ratio of 1.5 (6.3/4.2). JAERI is a national research institute and this figure may be regarded as sufficiently high, and many high risk and complex tasks were completed successfully. Funds invested in the 32-year study of HTGR were 1.5b$ for R and D and 0.3b$ (2966 man years) for personnel. Commercialized HTGR will result in a cost reduction of electricity during power generation. Retail cost is 0.36b$/year and the share of JAERI (MCP) is 0.018b$/year. Funds invested in the 32-year study of FR were 5.4b$ for R and D and 0.6b$ (6331 man years) for personnel. Estimate is that after commercialization in 2050, a FR will generate revenue from electricity as high as 1687b$ during the period 2050-2100, or 34b$/year - which is greater than that of LWR. However, there is substantial uncertainty in these estimates. To achieve long-term INES, it is necessary to develop the sustainable scenarios and the long-term robust NKM, as shown in the present study. (author)

  18. Sustainable automotive energy system in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiliang (ed.) [Tsinghua Univ. Beijing (China). China Automotive Energy Research Center

    2013-06-01

    The latest research available on automotive energy system analysis in China. Thorough introduction on automotive energy system in China. Provides the broad perspective to aid in planning sustainable road transport in China. Sustainable Automotive Energy System in China aims at identifying and addressing the key issues of automotive energy in China in a systematic way, covering demography, economics, technology and policy, based on systematic and in-depth, multidisciplinary and comprehensive studies. Five scenarios of China's automotive energy development are created to analyze the possible contributions in the fields of automotive energy, vehicle fuel economy improvement, electric vehicles, fuel cell vehicles and the 2nd generation biofuel development. Thanks to this book, readers can gain a better understanding of the nature of China's automotive energy development and be informed about: (1) the current status of automotive energy consumption, vehicle technology development, automotive energy technology development and policy; (2) the future of automotive energy development, fuel consumption, propulsion technology penetration and automotive energy technology development, and (3) the pathways of sustainable automotive energy transformation in China, in particular, the technological and the policy-related options. This book is intended for researchers, engineers and graduates students in the low-carbon transportation and environmental protection field.

  19. Wave Energy Research, Testing and Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States)

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  20. Energy Technology Division research summary -- 1994

    International Nuclear Information System (INIS)

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE's Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division's Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments

  1. Energy Technology Division research summary -- 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  2. Base Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  3. Energy Systems Integration News - October 2016 | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL October 2016 Energy Systems Integration News A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives October Integration Facility's main control room. OMNETRIC Group Demonstrates a Distributed Control Hierarchy for

  4. Energy in Ireland: context, strategy and research

    International Nuclear Information System (INIS)

    Saintherant, N.; Lerouge, Ch.; Welcker, A.

    2008-01-01

    In the present day situation of sudden awareness about climatic change and announced fossil fuels shortage, Ireland has defined a new strategy for its energy future. Context: Ireland is strongly dependent of oil and gas imports which increase regularly to meet the demand. A small part of the electricity consumed is imported from Ulster. The share of renewable energies remains weak but is increasing significantly. Therefore, from 1990 to 2006, the proportion of renewable energies increased from 1.9% (mainly of hydroelectric origin) to 4.5%. Wind power represents now the main renewable energy source. The transportation sector is the most energy consuming and the biggest source of greenhouse gases. Strategy: the Irish policy is driven by pluri-annual strategic plans which define the objectives and means. Priority is given to the security of supplies at affordable prices: 8.5 billion euros will be invested during the 2007-2013 era for the modernization of existing energy infrastructures and companies, and in a lesser extent for the development of renewable energy sources. During this period, 415 million euros more will be devoted to the research, development and demonstration (RD and D) of new energy solutions. Research: in 2005 the energy RD and D expenses reached 12.8 million euros shared between 54% for R and D and 46% for demonstration projects. Half of the financing is given to higher education schools and is devoted to energy saving purposes (33%) and to renewable energies (29%, mainly wind power and biomass). Academic research gives a particular attention to ocean energy which represents an important potential resource in Ireland and which has already led to the creation of innovative companies. The integration of renewable energy sources to the power grid and the stability of supplies are also the object of active researches. (J.S.)

  5. Stochastic Energy Deployment System

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-30

    SEDS is an economy-wide energy model of the U.S. The model captures dynamics between supply, demand, and pricing of the major energy types consumed and produced within the U.S. These dynamics are captured by including: the effects of macroeconomics; the resources and costs of primary energy types such as oil, natural gas, coal, and biomass; the conversion of primary fuels into energy products like petroleum products, electricity, biofuels, and hydrogen; and lastly the end- use consumption attributable to residential and commercial buildings, light and heavy transportation, and industry. Projections from SEDS extend to the year 2050 by one-year time steps and are generally projected at the national level. SEDS differs from other economy-wide energy models in that it explicitly accounts for uncertainty in technology, markets, and policy. SEDS has been specifically developed to avoid the computational burden, and sometimes fruitless labor, that comes from modeling significantly low-level details. Instead, SEDS focuses on the major drivers within the energy economy and evaluates the impact of uncertainty around those drivers.

  6. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  7. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-12-01

    This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  8. Framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available In this paper a framework is proposed to perform systems engineering research within South Africa. It is proposed that within the reference of the National Research Foundation (NRF) classification of research, systems engineering is a Field...

  9. Achievement report for fiscal 2000 on the phase II research and development for the hydrogen utilizing international clean energy system technology (WE-NET). Task 1. Investigations and researched on system assessment; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 1. System hyoka ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for Task-1. Technologies drawing attentions relate to fuel cell driven automobiles and hybrid automobiles in the field of utilizing hydrogen derived from reproducible energies and fossil energies, and fuel cell co-generation and micro gas turbine co-generation in the field of electric power generation. Hydrogen reformed from gasoline on board the automobile as the fuel for fuel cell driven automobiles, hydrogen as a by-product of coke furnace off-gas (COG), and reproducible energy hydrogen have the same fuel consumption performance as in the hybrid automobiles. Particularly the COG is low in cost, and has large supply potential. Liquefied hydrogen is as promising as compressed hydrogen in view of the cost for automotive hydrogen supply stations. What has high economic performance as the self-sustaining systems for islands are photovoltaic and wind power generation, and the system using hydrogen as the secondary energy. Since much of the reproducible energies is used for electric power demand in Japan, the by-product hydrogen and the reformed hydrogen in an amount of 9.3 billion Nm{sup 3}/year would take care of majority of the demand in view of the short time period. For a longer time span, hydrogen originated from the reproduced energies in the Pan-Pacific Region should be introduced. (NEDO)

  10. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  11. International energy: Research organizations, 1988--1992. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, P.; Jordan, S. [eds.] [USDOE Office of Scientific and Technical Information, Oak Ridge, TN (United States)

    1993-06-01

    This publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the US DOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). ETDE member countries are also members of the International Nuclear Information System (INIS). Nuclear organization names recorded for INIS by these ETDE member countries are also included in the ETDE Energy Database. Therefore, these organization names are cooperatively standardized for use in both information systems. This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases ``Energy Science & Technology`` on DIALOG and ``Energy`` on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 31,000 organizations that reported energy-related literature from 1988 to 1992 and updates the DOE Energy Data Base: Corporate Author Entries.

  12. Fiscal year 1986 Department of Energy Authorization (uranium enrichment and electric energy systems, energy storage and small-scale hydropower programs). Volume VI. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Ninth Congress, First Session, February 28; March 5, 7, 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Volume VI of the hearing record covers three days of testimony on the future of US uranium enrichment and on programs involving electric power and energy storage. There were four areas of concern about uranium enrichment: the choice between atomic vapor laser isotope separation (AVLIS) and the advanced gas centrifuge (AGC) technologies, cost-effective operation of gaseous diffusion plants, plans for a gas centrifuge enrichment plant, and how the DOE will make its decision. The witnesses represented major government contractors, research laboratories, and energy suppliers. The discussion on the third day focused on the impact of reductions in funding for electric energy systems and energy storage and a small budget increase to encourage small hydropower technology transfer to the private sector. Two appendices with additional statements and correspondence follow the testimony of 17 witnesses

  13. Research challenges for energy data management (panel)

    DEFF Research Database (Denmark)

    Pedersen, Torben Bach; Lehner, Wolfgang

    2013-01-01

    This panel paper aims at initiating discussion at the Second International Workshop on Energy Data Management (EnDM 2013) about the important research challenges within Energy Data Management. The authors are the panel organizers, extra panelists will be recruited before the workshop...

  14. New energy technologies. Research program proposition

    International Nuclear Information System (INIS)

    2005-02-01

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO 2 , the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  15. On energy conservation and energy research. Om energioekonomisering og energiforskning

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report to the Storting (Parliament) is the third one on energy conservation during the last 10 years. As earlier, the report mainly treats the use of energy for stationary objects. The background for this report is, above all, the increased environmental requirements to the energy policy attached to the use of fossil fuels. The economic energy conservation potential of Norway is estimated on the basis of the present energy prices and available technology. For stationary energy use it amounts to ca 23 TWh, of which 16 TWh refer to electric power and 7 TWh to oil. Among the measures of the authorities to realize this potential, information about energy economy and energy technology is one of the most important. Other important measures are research and development activities as well as temporary arrangements for economic support. Energy conservation efforts, and efforts for a better environment should often be considered together, because higher energy efficiency in general can result in important positive environmental impacts. In the long term, the global enviromental problems may be the strongest motive power for an increased effort in energy conservation. 38 figs., 22 tabs.

  16. Energy policies and renewable energy systems monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Di Nisio, Attilio; Savino, Mario; Spadavecchia, Maurizio [Electrical and Electronic Measurements Laboratory, Dept. of Electrical and Electronic Engineering - Politecnico di Bari, Bari (Italy)], e-mails: dinisio@misure.poliba.it, savino@misure.poliba.it, spadavecchia@misure.poliba.it

    2011-07-01

    Full text: The global energy crisis is forcing every country worldwide to review its policies on energy. The environmental disaster at Japan's Fukushima Daiichi nuclear power plant has accelerated this process. Many people around the world are citing the disaster as evidence that nuclear power would endanger the survival of mankind on earth and should be banned. Today we need to focus more substantially on energy saving, especially using smart devices with low power consumption. We have also to review the approach to the exploitation of energy and move from a philosophy 'from the ground to the subsurface' to another 'from the earth to the sun'. This paper highlights the increasing importance of solar power in meeting energy needs while achieving security of supply and minimising carbon dioxide (CO{sub 2}) emissions. It deals also with the development of solar power plants, which require a supervisory control system that improves their efficiency and reliability. (author)

  17. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  18. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1985-07-01

    The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The current organization of ER is shown. The budgets for the various ER programs for the last two fiscal years are shown. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large

  19. Energy Innovation Systems Indicator Report 2012

    DEFF Research Database (Denmark)

    Klitkou, Antje; Borup, Mads; Iversen, Eric

    This report is the first report in a series of reports on energy innovation system indicators produced as part of the activities in the “EIS Strategic research alliance for Energy Innovation Systems and their dynamics – Denmark in global competition”. The work is based on a number of existing......). The report received also valuable input from a project commissioned by IPTS. This project addressed co-operation patterns and knowledge flows in patent documents in the fields of wind energy, photovoltaic energy and concentrating solar power (Iversen and Patel, 2010). The results relevant for this project...

  20. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  1. Tomorrow the energy. Words of researchers

    International Nuclear Information System (INIS)

    Metenier, Beatrice; Huret, Christophe; Bordenave, Aurelie; Tourrasse, Corinne; Nourry, Didier; Bellet, Daniel; Blanquet, Elisabeth; Bonjour, Jocelyn; Brochier, Elisabeth; Fave, Alain; Grunenwald, Perrine; Herri, Jean-Michel; Menanteau, Philippe; Normand, Bernard; Raison, Bertrand; Stutz, Benoit

    2015-01-01

    Based on interviews of researchers in various disciplines and areas, this book proposes a prospective vision of energy. It starts with a presentation of points of view of a philosopher, a climatologist, an economist and a scientific on the definition of energy transition. The second part addresses how to be committed in energy efficiency by saving energy in buildings (towards an inter-seasonal storage and an active management of energy), in transports (a change of behaviours, lighter materials), and in industry (optimised air conditioning, a more efficient industry). The next part discusses how to diversify resources: hydraulic resources where the main issue or challenge is to produce and store a more flexible production, nuclear energy (to improve safety and to develop technologies towards the use of extreme materials), solar energy (to capture this energy at a reduced cost by using highly efficient cells), fossil energies (to optimize the exploitation and to decrease emissions by capturing CO 2 ), and biomass (to assess the resource). The last chapter discusses the challenges related to energy storage and distribution: how to store energy and for which use (towards solid hydrogen storage), and how to adapt the grid to the emergence of renewable energies (towards a grid self-healing)

  2. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  3. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Materials Science and Engineering Dept.

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  4. Energy transitions research: Insights and cautionary tales

    International Nuclear Information System (INIS)

    Grubler, Arnulf

    2012-01-01

    This short essay first reviews the pioneers of energy transition research both in terms of data as well as theories. Three major insights that have emerged from this nascent research fields are summarized highlighting the importance of energy end-use and services, the lengthy process of transitions, as well as the patterns that characterize successful scale up of technologies and industries that drive historical energy transitions. The essay concludes with cautionary notes also derived from historical experience. In order to trigger a next energy transition policies and innovation efforts need to be persistent and continuous, aligned, as well as balanced. It is argued that current policy frameworks in place invariably do not meet these criteria and need to change in order to successfully trigger a next energy transition towards sustainability. - Highlights: ► Includes the first literature review of early energy transition research. ► Summarizes three major research findings from the literature. ► Reviews policy implications of recent case studies of energy technology innovation. ► Argues that current policy frameworks are deficient in view of above lessons.

  5. Basic Energy Sciences FY 2012 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  6. Basic Energy Sciences FY 2014 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  7. Nuclear methods in environmental and energy research

    International Nuclear Information System (INIS)

    Vogt, J.R.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research

  8. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J R [ed.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  9. Energy engineering: Student-researcher collaboration

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Beckowska, Patrycja Maria

    2013-01-01

    This article reports on cooperation methods between researchers and students at different levels. Levels included in this work are BSc, MSc and PhD student levels. At Aalborg University, Department of Energy Technology education and research are closely linked. The relationship between student...

  10. Basic Energy Sciences FY 2011 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  11. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  12. Research on Utilization of Geo-Energy

    Science.gov (United States)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field

  13. Decarbonization of Croatian Energy System

    International Nuclear Information System (INIS)

    Potocnik, V.

    2012-01-01

    Energy system decarbonization is reduction of greenhouse gases (CO 2 ) emission, chiefly from the fossil fuels (coal, oil, natural gas) combustion. The main objective of an energy system decarbonization is the climate change mitigation, and at the same time development of local industry and employment, better environment and health protection, as well as reduction of the fossil fuels import and foreign debt. Croatia has small fossil fuels reserves and large renewable energy sources (RES) reserves, energy efficiency (ENEF) is relatively low, and energy import, according to the actual Energy strategy 2009, should increase from 50% to 70% until 2020. Croatian energy system participates with about one third in the Croatian foreign trade deficit. The main measures of the Croatian energy system decarbonization should be: increasing ENEF (energy savings), switch from fossil fuels to RES, administrative measures (low carbon development strategy, environmental tax reform, and decoupling income from energy sales). By urgent application of these measures, Croatia could become fossil fuels free until the year 2050.(author)

  14. Road map for renewable energy research and development in Egypt

    Directory of Open Access Journals (Sweden)

    Adel K. Khalil

    2010-01-01

    Full Text Available Egypt possesses excellent potential for renewable energy (RE including solar, wind and biomass energy. Renewable energy technologies (RETs and systems have different needs for support in terms of research and development, demonstration and market development. For this purpose, the Energy Research Center (ERC at Cairo University has carried out a study with the ultimate goal of formulating a national development strategy and action plan for the local manufacture of renewable energy systems (RESs and components. The present study positions the different RETs and RESs and identifies the research and development needs for each technology. The study also suggests how to establish a competitive market for RET. For this purpose it builds and analyses a set of likely scenarios, and proposes a practical development strategy and a detailed action plan for achieving it.

  15. Introduction to wind energy systems

    Science.gov (United States)

    Wagner, H.-J.

    2017-07-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  16. Production, consumption and research on solar energy

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sánchez, Maria Luisa; Serrano-Lopez, Antonio Eleazar

    2014-01-01

    An analysis of scientific publications on solar energy was conducted to determine whether public interest in the subject is mirrored by more intense research in the area. To this end, the research published by Spain and Germany, the two EU countries with the highest installed photovoltaic capacity......, was analyzed based on Web of Science data. The results show that: solar output has risen substantially; solar research has a greater impact (measured in terms of citations) than publications on other renewables such as wind power; scientific production on solar energy is high in Germany and Spain, which...... intense. The main conclusion is the divergence in Germany and Spain between solar energy demand/output growth, being exponential, and the growth of research papers on the subject, which is linear...

  17. Integrated energy systems and local energy markets

    International Nuclear Information System (INIS)

    Lund, Henrik; Muenster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade on the international market. The conclusion is that it is feasible for the Danish society to include the CHP plants in the balancing of fluctuating wind power. There are major advantages in equipping small CHP plants as well as the large CHP plants with heat pumps. By doing so, it will be possible to increase the share of wind power from the present 20 to 40% without causing significant problems of imbalance between electricity consumption and production. Investment in increased flexibility is in itself profitable. Furthermore, the feasibility of wind power is improved

  18. NASA Earth Systems, Technology and Energy Education for Minority University and Research Education Program Promotes Climate Literacy by Engaging Students at Minority Serving Institutions in STEM

    Science.gov (United States)

    Murray, B.; Alston, E. J.; Chambers, L. H.; Bynum, A.; Montgomery, C.; Blue, S.; Kowalczak, C.; Leighton, A.; Bosman, L.

    2017-12-01

    NASA Earth Systems, Technology and Energy Education for Minority University Research & Education Program - MUREP (ESTEEM) activities enhance institutional capacity of minority serving institutions (MSIs) related to Earth System Science, Technology and energy education; in turn, increasing access of underrepresented groups to science careers and opportunities. ESTEEM is a competitive portfolio that has been providing funding to institutions across the United States for 10 years. Over that time 76 separate activities have been funded. Beginning in 2011 ESTEEM awards focused on MSIs and public-school districts with high under-represented enrollment. Today ESTEEM awards focus on American Indian/Alaska Native serving institutions (Tribal Colleges and Universities), the very communities most severely in need of ability to deal with climate adaptation and resiliency. ESTEEM engages a multi-faceted approach to address economic and cultural challenges facing MSI communities. PIs (Principal Investigators) receive support from a management team at NASA, and are supported by a larger network, the ESTEEM Cohort, which connects regularly through video calls, virtual video series and in-person meetings. The cohort acts as a collective unit to foster interconnectivity and knowledge sharing in both physical and virtual settings. ESTEEM partners with NASA's Digital Learning Network (DLNTM) in a unique non-traditional model to leverage technical expertise. DLN services over 10,000 participants each year through interactive web-based synchronous and asynchronous events. These events allow for cost effective (no travel) engagement of multiple, geographically dispersed audiences to share local experiences with one another. Events allow PIs to grow their networks, technical base, professional connections, and develop a sense of community, encouraging expansion into larger and broader interactions. Over 256 connections, beyond the 76 individual members, exist within the cohort. PIs report

  19. Fiscal 1999 international energy conservation model project. Report on result of demonstrative research concerning cement clinker cooling system; 1999 nendo kokusai energy shohi koritsuka nado model jigyo seika hokokusho. Cement clinker reikyaku sochi ni kakawaru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing energy consumption and CO2 discharge in a cement plant in Indonesia, R and D was conducted on new clinker cooling system, high performance kiln combustion system, and technology for steady kiln operation and control, with the fiscal 1999 results reported. In the research on the optimum clinker cooling system, a new type clinker cooling system (CCS) was developed in which air beams are applied only to stationary grate rows, in an air beam type clinker cooling system where cooling air is fed to each block, with grate plates used as the air duct. This year, in an actual machine testing equipment (capacity 2,500 t/d), the whole heat recuperation area was modified for the CCS, with the operation started since February, 1999, aiming at the optimal clinker cooling effect and high heat recovery efficiency. The heat quantity for the entire system showed a decrease of 60 kcal/kg in the heat consumption rate through CCS modification, kiln burner adjustment, etc. So long as the demonstration plant is concerned, design of a new type burner and study/design for the kiln stabilization were nearly completed. (NEDO)

  20. Summaries of research in high energy physics

    International Nuclear Information System (INIS)

    1987-11-01

    The compilation of summaries of research and technology R and D efforts contained in this volume is intended to present a detailed narrative description of the scope and nature of the HEP activities funded by the Department of Energy in the FY 1985/FY 1986 time period. Topic areas covered include the following: experimental research using the accelerators and particle detector facilities and other related research; theoretical research; conception, design, construction, and operation of particle accelerators and detectors facilities; and research and development programs intended to advance accelerator technology, particle detector technology, and data analysis capabilities

  1. [Applications of GIS in biomass energy source research].

    Science.gov (United States)

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  2. Energy research shows the way to sustainable energy policy

    International Nuclear Information System (INIS)

    Glatthard, T.

    2000-01-01

    This article takes a look at the work of the Swiss research programme on energy economics basics that aims to provide advice for policy makers. The programme investigates not only the technological but also the social and economic factors to be taken into consideration. In particular, the article reviews the programme's work on promotion strategies for sustainability in the energy area in connection with a proposed levy on energy. Examples are given of possible implementation strategies concerning new and existing buildings. The responsibilities of the parties to be involved in the implementation of promotional measures such as cantonal authorities, professional associations and agencies are discussed

  3. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  4. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  5. Pulsed power liner for PLT energy systems

    International Nuclear Information System (INIS)

    Armellino, C.A.; Bronner, G.; Murray, J.G.

    1975-01-01

    PLT is Princeton University's latest Tokamak machine in the controlled thermonuclear fusion research effort. The OH (ohmic heating) and SF (shaping field) systems for the machine place a very high energy pulsed current load on the AC line feeding them. This paper describes the two systems and the steps taken to insure minimum effect on line regulation during the pulsed operation

  6. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    Science.gov (United States)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  7. Jointly working on research for the energies of the future. Objectives of research 2013; Gemeinsam forschen fuer die Energie der Zukunft. Forschungsziele 2013

    Energy Technology Data Exchange (ETDEWEB)

    Szczepanski, Petra (comp.)

    2012-11-01

    The Renewable Energy Research Association (Berlin-Adlershof, Federal Republic of Germany) is a nationwide cooperation of research institutes. The members of this Research Association develop technologies for renewable energies and their system oriented cooperation as well as technologies for energy efficiency, energy storage and power distribution grids. The spectrum of research areas covers all renewable energy sources. These renewable energy sources complement each other quantitatively and temporarily in an electrical-thermal-chemical energy mix which is optimized by system technology, efficiency and storage technologies.

  8. Geochemical, hydrological, and biological cycling of energy residual. Research plan

    International Nuclear Information System (INIS)

    Wobber, F.J.

    1983-03-01

    Proposed research goals and specific research areas designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biophysical mechanisms that contribute to the transport and long term fate of energy residuals in natural systems can be understood are described. Energy development and production have resulted in a need for advanced scientific information on the geochemical transformations, transport rates, and potential for bioaccumulation of contaminants in subsurface environments

  9. Principles of sustainable energy systems

    CERN Document Server

    Kreith, Frank

    2013-01-01

    … ""This is an ideal book for seniors and graduate students interested in learning about the sustainable energy field and its penetration. The authors provide very strong discussion on cost-benefit analysis and ROI calculations for various alternate energy systems in current use. This is a descriptive book with detailed case-based analyses of various systems and engineering applications. The text book provides real-world case studies and related problems pertaining to sustainable energy systems.""--Dr. Kuruvilla John, University of North Texas""The new edition of ""Principles of Sustainable En

  10. Energy transfer in plasmonic systems

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N; Urbas, Augustine M; Shahbazyan, Tigran V

    2014-01-01

    We present our results on energy transfer between donor and acceptor molecules or quantum dots near a plasmonic nanoparticle. In such systems, the Förster resonance energy transfer is strongly modified due to plasmon-mediated coupling between donors and acceptors. The transfer efficiency is determined by a competition between transfer, radiation and dissipation that depends sensitively on system parameters. When donor and accepror spectral bands overlap with dipole surface plasmon resonance, the dominant transfer mechanism is through plasmon-enhanced radiative coupling. When transfer takes place from an ensemble of donors to an acceptor, a cooperative amplification of energy transfer takes place in a wide range of system parameters. (paper)

  11. General program of energy research: innovation in hard coal, 1974-1977. New logistical systems. Volume 2. Rahmenprogramm energieforschung: innovation steinkohle, 1976-1977. Neue logistische systeme. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The Federal Ministry of Economy subsidized 22 research and development projects in the field of new logistic systems in underground coal mines. The Juelich energy research project management, as the representative of the ministry, examined and endorsed all projects before the financial aid of 50% of the total project cost was granted. The 22 projects included development of the following underground equipment: electrical motor brakes for belt conveyors, automatic operation of underground locomotive transportation, protected batteries for use in firedamp conditions, rack wheel drives for the rack rail train and suspended monorail trolley, electrical equipment for 10 kV power supply, flame proof electrical switches, capacitors, circuit breakers, transformers and vacuum contactors,a chair lift system for personnel transportation, and also computerized monitoring systems in the field of mine operation and mine safety.

  12. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  13. Photovoltaic Energy Conversion Systems

    DEFF Research Database (Denmark)

    Kouro, Samir; Wu, Bin; Abu-Rub, Haitham

    2014-01-01

    This chapter presents a comprehensive overview of grid-connected PV systems, including power curves, grid-connected configurations, different converter topologies (both single- and three-phase), control schemes, MPPT, and anti-islanding detection methods. The focus of the chapter has been on the ...

  14. Fiscal 1976 Sunshine Project research report. Interim report (hydrogen energy); 1976 nendo chukan hokokushoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-11-01

    This report summarizes the Sunshine Project research interim reports on hydrogen energy of every organizations. The report includes research items, laboratories, institutes and enterprises concerned, research targets, research plans, and progress conditions. The research items are as follows. (1) Hydrogen production technology (electrolysis, high- temperature high-pressure water electrolysis, 4 kinds of thermochemical techniques, direct thermolysis). (2) Hydrogen transport and storage technology (2 kinds of solidification techniques). (3) Hydrogen use technology (combustion technology, fuel cell, solid electrolyte fuel cell, fuel cell power system, hydrogen fuel engine). (4) Hydrogen safety measures technology (disaster preventive technology for gaseous and liquid hydrogen, preventing materials from embrittlement due to hydrogen, hydrogen refining, transport and storage systems, their safety technology). (5) Hydrogen energy system (hydrogen energy system, hydrogen use subsystems, peripheral technologies). (NEDO)

  15. Probabilistic Approaches to Energy Systems

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning

    of renewable energy generation. Particularly we focus on producing forecasting models that can predict renewable energy generation, single user demand, and provide advanced forecast products that are needed for an efficient integration of renewable energy into the power generation mix. Such forecasts can...... integration of renewable energy.Thus forecast products should be developed in unison with the decision making tool as they are two sides of the same overall challenge.......Energy generation from wind and sun is increasing rapidly in many parts of the world. This presents new challenges on how to integrate this uncertain, intermittent and non-dispatchable energy source. This thesis deals with forecasting and decision making in energy systems with a large proportion...

  16. Secure Automated Microgrid Energy System

    Science.gov (United States)

    2016-12-01

    O&M Operations and Maintenance PSO Power System Optimization PV Photovoltaic RAID Redundant Array of Independent Disks RBAC Role...elements of the initial study and operational power system model (feeder size , protective devices, generation sources, controllable loads, transformers...EW-201340) Secure Automated Microgrid Energy System December 2016 This document has been cleared for public release; Distribution Statement A

  17. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of systems for new residential buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at development of devices for solar energy systems for air conditioning and hot water supply, in order to commercialize innovative systems for economic air conditioning and hot water supply for new residential buildings. The research items are (1) development of materials for the devices (e.g., heat collectors and absorption refrigerators), (2) operation of the systems in the test building, and measurement (methods for measurement and evaluation of the systems in the test building, instrumentation systems and operation thereof, and analysis of the measured data), and (3) system analysis (system simulation, comparison of the simulated results with the observed results, and system variations). The item (1) studies economic efficiency, durability and stability of the vacuum glass tube type collectors. The item (2) studies a dripping type generator, refrigerant recycling type generator and generator with a built-in auxiliary heat source for the absorption refrigerators. These types have their own advantages and disadvantages, and it is necessary to establish how these results are to be included in the products. The item (3) changes the collector arrangement, based on the observed data, and improves heat-collecting pump starting/stopping conditions, refrigerator operating conditions and insulation around the primary heat-storage tank. It is necessary to analyze the improved systems. (NEDO)

  18. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R. [Univ. of Texas, Dallas, TX (United States); Cho, K. J. [Univ. of Texas, Dallas, TX (United States); Ferraris, John [Univ. of Texas, Dallas, TX (United States); Balkus, Ken [Univ. of Texas, Dallas, TX (United States); Chabal, Yves [Univ. of Texas, Dallas, TX (United States); Gnade, Bruce [Univ. of Texas, Dallas, TX (United States); Rotea, Mario [Univ. of Texas, Dallas, TX (United States); Vasselli, John [Univ. of Texas, Dallas, TX (United States)

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  19. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  20. Fusion energy research for ITER and beyond

    International Nuclear Information System (INIS)

    Romanelli, Francesco; Laxaaback, Martin

    2011-01-01

    The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century. (orig.)

  1. Balmorel open source energy system model

    DEFF Research Database (Denmark)

    Wiese, Frauke; Bramstoft, Rasmus; Koduvere, Hardi

    2018-01-01

    As the world progresses towards a cleaner energy future with more variable renewable energy sources, energy system models are required to deal with new challenges. This article describes design, development and applications of the open source energy system model Balmorel, which is a result...... of a long and fruitful cooperation between public and private institutions within energy system research and analysis. The purpose of the article is to explain the modelling approach, to highlight strengths and challenges of the chosen approach, to create awareness about the possible applications...... of Balmorel as well as to inspire to new model developments and encourage new users to join the community. Some of the key strengths of the model are the flexible handling of the time and space dimensions and the combination of operation and investment optimisation. Its open source character enables diverse...

  2. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  3. Restructuring the Energy System. Report of the Energy Commission

    International Nuclear Information System (INIS)

    1995-01-01

    The commission was instructed to examine the current energy policy programs for restructuring and developing the energy system (i.e. phasing out nuclear power and moving to renewable sources) and to analyze the needs for changes; to propose measures for ensuring an efficient electricity supply under the new conditions of a liberalized electricity market; and to present proposals for a schedule for reorganizing the energy system. The report gives a full picture of the Swedish energy system including supply, consumption, prices, environmental impacts, R and D, and international aspects. The commission concludes that one nuclear power plant can be closed during the 1990's without upsetting the power balances. Phasing out all nuclear plants by year 2010 will create problems with the price levels of electricity supply, and will conflict with the CO 2 reduction objective. The proposals for economic control measures for performing the restructuring include: An environmental bonus (or investment support) for environmentally sound electricity production financed by an electricity tax, a tax on nuclear power increasing with the age of the reactors, a reorganization fund to finance new and environmentally acceptable electricity production. Also, energy research should be allotted greater resources, in particular for new technology for electricity production. The commission points towards the possibilities for reducing energy consumption, and especially electricity consumption. Space heating should gradually move away from electric heating. Examples are given on measures for improving energy efficiency and problems with financing such measures should be studied

  4. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  5. Healthcare Energy Efficiency Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Black, Douglas R.; Lai, Judy; Lanzisera, Steven M; Parrish, Kristen D.; Singer, Brett C.

    2011-01-31

    Hospitals are known to be among the most energy intensive commercial buildings in California. Estimates of energy end-uses (e.g. for heating, cooling, lighting, etc.) in hospitals are uncertain for lack of information about hospital-specific mechanical system operations and process loads. Lawrence Berkeley National Laboratory developed and demonstrated a benchmarking system designed specifically for hospitals. Version 1.0 featured metrics to assess energy performance for the broad variety of ventilation and thermal systems that are present in California hospitals. It required moderate to extensive sub-metering or supplemental monitoring. In this new project, we developed a companion handbook with detailed equations that can be used toconvert data from energy and other sensors that may be added to or already part of hospital heating, ventilation and cooling systems into metrics described in the benchmarking document.This report additionally includes a case study and guidance on including metering into designs for new hospitals, renovations and retrofits. Despite widespread concern that this end-use is large and growing, there is limited reliable information about energy use by distributed medical equipment and other miscellaneouselectrical loads in hospitals. This report proposes a framework for quantifying aggregate energy use of medical equipment and miscellaneous loads. Novel approaches are suggested and tried in an attempt to obtain data to support this framework.

  6. The baltic states' energy system

    OpenAIRE

    Nikitaravičius, Martynas

    2006-01-01

    THE BALTIC STATES’ ENERGY SYSTEM SUMMARY The goal of paper – the comparative analysis of Baltic states‘ (i.e. of Lithuania, Latvia, Estonia) energy systems in 1990-2004. The main causes that affected the development of Baltic states’ energetics are indicated in this work. By the method of statistical analysis, the comparative advantages of Baltic states‘ energetics are detected. Moreover, the main trends of further development of integration of Baltic states ‘ energetics into the energetics o...

  7. TEXT Energy Storage System

    International Nuclear Information System (INIS)

    Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    The Texas Experimental Tokamak (TEXT) Enery Storage System, designed by the Center for Electromechanics (CEM), consists of four 50 MJ, 125 V homopolar generators and their auxiliaries and is designed to power the toroidal and poloidal field coils of TEXT on a two-minute duty cycle. The four 50 MJ generators connected in series were chosen because they represent the minimum cost configuration and also represent a minimal scale up from the successful 5.0 MJ homopolar generator designed, built, and operated by the CEM

  8. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    determine how well a solar photovoltaic (PV) system with battery energy storage can provide backup power to . These analyses will result in a design guide for climate-specific sizing of the system. NREL's Erfan , feasibility, and operational analyses for photovoltaic and concentrating solar power generation projects

  9. 1997: BMBF expenditures for energy research

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Departmental budget No. 30 in the 1997 draft federal budget covers the activities of the Federal Ministry for Research and Technology (BMFT). It level of DM 15,000 million represents a 4.5% decrease from the funds earmarked for the current year of 1996. DM 72.600 million is to be spent on safety research for nuclear plants, and DM 239.978 million has been planned for decommissioning and demolition of nuclear experimental and demonstration plants. The operation of, and investements into, the research centers are funded to the tune of DM 1314.268 million and DM 325.728 million, respectively. Institutions of basic research will receive DM 444.088 million, and renewable energies, economical energy uses, conversion and combustion technologies will be funded in the amount of DM 328.100 million. (orig.) [de

  10. 1999: BMBF expenditures for energy research

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Departmental budget No. 30 in the 1999 draft federal budget covers the activities of the Federal Ministry for Education, Science, Research and Technology (BMBF). Its level of DM 15428 million represents a 3,34% increase from the funds earmarked for the current year of 1998. DM 66 million is to be spent on safety research for nuclear plants, and DM 220 million has been planned for decommissioning and demolition of nuclear experimental and demonstration plants. The operation of, and investments into, the research centers are funded to the tune of DM 1307 million and DM 350 million, respectively. Institutions of basic research will receive DM 471 million, and renewable energies, economical energy uses, conversion and combustion technologies will be funded in the amount of DM 234 million [de

  11. Consumer energy research: an annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.D.; McDougall, G.H.G.

    1980-01-01

    This document is an updated and expanded version of an earlier annotated bibliography by Dr. C. Dennis Anderson and Carman Cullen (A Review and Annotation of Energy Research on Consumers, March 1978). It is the final draft of the major report that will be published in English and French and made publicly available through the Consumer Research and Evaluation Branch of Consumer and Corporate Affairs, Canada. Two agencies granting permission to include some of their energy abstracts are the Rand Corporation and the DOE Technical Information Center. The bibliography consists mainly of empirical studies, including surveys and experiments. It also includes a number of descriptive and econometric studies that utilize secondary data. Many of the studies provide summaries of research is specific areas, and point out directions for future research efforts. 14 tables.

  12. Jointly working on research for the energies of the future. Objectives of research; Gemeinsam forschen fuer die Energie der Zukunft. Forschungsziele

    Energy Technology Data Exchange (ETDEWEB)

    Stadermann, G.; Szczepanski, P. (comps.)

    2006-07-01

    The booklet consists of chapters and various articles: Doing research work with joint efforts; R and D - political objectives of FVS; fields of research and development; electrical system techniques; network management and separated power plants; heat and coolness from renewable energies; solar construction works: building covers and system techniques; generating and utilizing chemical energy sources from renewable energies; estimating consequences of techniques.

  13. Proceedings of Nova Scotia's 2006 energy research and development forum

    International Nuclear Information System (INIS)

    2006-01-01

    The Nova Scotia 2006 energy research and development forum provided a venue for experts from industry, research institutions and government to discuss how research and development will shape the future of energy in the province. The forum was divided into 3 sessions: (1) building knowledge about the marine environment, (2) building knowledge about geoscience, and (3) building knowledge about sustainable energy. A wide ranges of issues related to the Nova Scotia region included whale identification; fisheries mapping; the commercialization of hydrocarbon discoveries; carbon capture and storage and petroleum system analysis and prospect evaluation. Keynote addresses were presented on produced water in Norway; deepwater exploration in Morocco; renewable energy and Canada's role as an energy superpower. The conference featured more than 57 presentations, of which 4 have been catalogued separately for inclusion in this database. refs., tabs., figs

  14. Energy Innovation Systems Indicator Report 2016

    DEFF Research Database (Denmark)

    Borup, Mads; Klitkou, Antje; Iversen, Eric

    This report collates a set of indicators, figures and tables for the energy innovation system in Denmark. Emphasis is on renewable energy and other technologies for moving towards sustainability. The purpose is to provide an overview of indicators available for illuminating dynamics and character...... in “EIS – Strategic research alliance for Energy Innovation Systems and their dynamics – Denmark in global competition”. EIS is funded by the Danish Council for Strategic Research (Innovation Fund Denmark) and by the involved research organisations.......This report collates a set of indicators, figures and tables for the energy innovation system in Denmark. Emphasis is on renewable energy and other technologies for moving towards sustainability. The purpose is to provide an overview of indicators available for illuminating dynamics...... and characteristics of energy innovation systems and to the extent possible offer figures of the developments in the individual indicators. The report is an update of a report published in 2012. Graphs and numbers are updated with the most recent data available. The text is updated where needed in connection...

  15. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    International Nuclear Information System (INIS)

    Domen, Kazunari

    2011-01-01

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, 'Global Perspectives on Frontiers in Energy Research.' In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  16. Smart Cities and National Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    Energy system analysis follows two tracks, either through plans for future transitions of national energy systems, or local development of smart cities and regions. These two tracks seldom overlap. National plans neglect the local implementation of intermittent renewable technology and use of local...... resources, and smart cities and local development do not relate to national targets and fail to evaluate sub-optimization. Thus, there is a need for approaches that help researchers creating links between country analyses and local energy system transitions. This paper investigates the effects...... of such an approach, by investigating Western Denmark. By splitting Western Denmark into regions, it is possible to create individual energy systems for each region. Through interconnection, these regions can exchange electricity with each other. This enables analyses of interaction between smart cities and national...

  17. Energy-Aware Cognitive Radio Systems

    KAUST Repository

    Bedeer, Ebrahim

    2016-01-15

    The concept of energy-aware communications has spurred the interest of the research community in the most recent years due to various environmental and economical reasons. It becomes indispensable for wireless communication systems to shift their resource allocation problems from optimizing traditional metrics, such as throughput and latency, to an environmental-friendly energy metric. Although cognitive radio systems introduce spectrum efficient usage techniques, they employ new complex technologies for spectrum sensing and sharing that consume extra energy to compensate for overhead and feedback costs. Considering an adequate energy efficiency metric—that takes into account the transmit power consumption, circuitry power, and signaling overhead—is of momentous importance such that optimal resource allocations in cognitive radio systems reduce the energy consumption. A literature survey of recent energy-efficient based resource allocations schemes is presented for cognitive radio systems. The energy efficiency performances of these schemes are analyzed and evaluated under power budget, co-channel and adjacent-channel interferences, channel estimation errors, quality-of-service, and/or fairness constraints. Finally, the opportunities and challenges of energy-aware design for cognitive radio systems are discussed.

  18. SMES for wind energy systems

    Science.gov (United States)

    Paul Antony, Anish

    Renewable energy sources are ubiquitous, wind energy in particular is one of the fastest growing forms of renewable energy, yet the stochastic nature of wind creates fluctuations that threaten the stability of the electrical grid. In addition to stability with increased wind energy, the need for additional load following capability is a major concern hindering increased wind energy penetration. Improvements in power electronics are required to increase wind energy penetration, but these improvements are hindered by a number of limitations. Changes in physical weather conditions, insufficient capacity of the transmission line and inaccurate wind forecasting greatly stymie their effect and ultimately lead to equipment damage. With this background, the overall goal of this research effort is to pitch a case for superconducting magnetic energy storage (SMES) by (1) optimally designing the SMES to be coupled with wind turbines thus reducing wind integration challenges and (2) to help influence decision makers in either increasing superconducting wire length/fill factor or improving superconducting splice technology thereby increasing the storage capacity of the SMES. Chapter 1 outlines the scope of this thesis by answering the following questions (1) why focus on wind energy? (2) What are the problems associated with increasing wind energy on the electric grid? (3) What are the current solutions related to wind integration challenges and (4) why SMES? Chapter 2, presents a detailed report on the study performed on categorizing the challenges associated with integrating wind energy into the electric grid. The conditions under which wind energy affected the electric grid are identified both in terms of voltage stability and excess wind generation. Chapter 3, details a comprehensive literature review on the different superconducting wires. A technology assessment of the five selected superconductors: [Niobium Titanium (NbTi), Niobium Tin (Nb3Sn), Bismuth strontium calcium

  19. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  20. Energy Systems Integration Partnerships: NREL + Cogent Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Sonja E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.

  1. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  2. Development of environmentally-friendly high-efficiency energy utilization system. Research on optimum system design technology (Case study report on wide-area energy supply network system in Osaka Prefecture); Osakafu ni okeru koiki energy kyokyu network system no case study hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A wide-area energy supply network model is fabricated for a region to be re-developed, and the model is assessed from the viewpoints of economy, environmental preservation, and energy conservation. The model is a combination of element technologies being developed under an Eco-Energy City project and some existing technologies. Although a wide-area heat supply system using high-temperature water is superior to district heating systems in energy conservation and environmental friendliness, yet it contains some unsolved problems relating to cost efficiency. The use of a vacuum-insulated tube as the heat supply main is better than the use of a double tube from every point of view. It is noted here that in the study of the Sakai district, the neighborhood of the old Sakai Port, an area in front of Sakai-shi Station of the Nankai Main Line, Nakamozu-Minami district, and Nakamozu-Kita district are defined to be the areas to be supplied with heat. Petroleum company C, glass mill C, and the Sakai Municipal Incineration Plant situated in the bay area are assumed to be the sources of waste heat. It is so set that the high-temperature water is to be transported at 170 degrees C and is to return at 140 degrees C. (NEDO)

  3. Biomass energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  4. Next generation of energy production systems

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Carre, F.

    2003-01-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources

  5. Energy research at DOE, was it worth it?: energy efficiency and fossil energy research 1978 to 2000

    National Research Council Canada - National Science Library

    2001-01-01

    ... from the R&D conducted since 1978 in DOE's energy efficiency and fossil energy programs. In response to the congressional charge, the National Research Council formed the Committee on Benefits of DOE...

  6. Analysis of integrated energy systems

    International Nuclear Information System (INIS)

    Matsuhashi, Takaharu; Kaya, Yoichi; Komiyama, Hiroshi; Hayashi, Taketo; Yasukawa, Shigeru.

    1988-01-01

    World attention is now attracted to the concept of Novel Horizontally Integrated Energy System (NHIES). In NHIES, all fossil fuels are fist converted into CO and H 2 . Potential environmental contaminants such as sulfur are removed during this process. CO turbines are mainly used to generate electric power. Combustion is performed in pure oxygen produced through air separation, making it possible to completely prevent the formation of thermal NOx. Thus, NHIES would release very little amount of such substances that would contribute to acid rain. In this system, the intermediate energy sources of CO, H 2 and O 2 are integrated horizontally. They are combined appropriately to produce a specific form of final energy source. The integration of intermediate energy sources can provide a wide variety of final energy sources, allowing any type of fossil fuel to serve as an alternative to other types of fossil fuel. Another feature of NHIES is the positive use of nuclear fuel to reduce the formation of CO 2 . Studies are under way in Japan to develop a new concept of integrated energy system. These studies are especially aimed at decreased overall efficiency and introduction of new liquid fuels that are high in conversion efficiency. Considerations are made on the final form of energy source, robust control, acid fallout, and CO 2 reduction. (Nogami, K.)

  7. Funding of energy research: BMFT expenditures for energy research and energy technologies, 3rd program, a review and a forecast

    International Nuclear Information System (INIS)

    Jacke, S.

    1990-01-01

    Between the early sixties and late 1989, the German Federal Government spent some DM 23 billion to support research and development of the entire field of nuclear technology (such as fundamental research, industrial applications, medicine, safety technology, advanced energy systems) in the Federal Republic of Germany. Of this amount, approx. DM 11 billion was spent on the technology of nuclear power plants equipped with light water reactors, on safety research, and on the nuclear fuel cycle. Comparing the expenditures of the Federal Government for the conversion of nuclear power into electricity with the savings achieved in electricity generating costs of approx. DM 58 billion by late 1989 (the cost advantage of nuclear power being approx. Pf 5/kWh), one arrives at a cost advantage to the whole economy of approx. DM 47 billion by the date shown above; by the year 2000, this advantage will have risen to some DM 150 billion. (orig.) [de

  8. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  9. Simulation approach towards energy flexible manufacturing systems

    CERN Document Server

    Beier, Jan

    2017-01-01

    This authored monograph provides in-depth analysis and methods for aligning electricity demand of manufacturing systems to VRE supply. The book broaches both long-term system changes and real-time manufacturing execution and control, and the author presents a concept with different options for improved energy flexibility including battery, compressed air and embodied energy storage. The reader will also find a detailed application procedure as well as an implementation into a simulation prototype software. The book concludes with two case studies. The target audience primarily comprises research experts in the field of green manufacturing systems. .

  10. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems,this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  11. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    J. Williamson and S. Puttagunta

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems, this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  12. The I-Cleen Project (Inquiring on CLimate & ENergy). Research Meets Education in AN Inquiry-Based Approach to Earth System Science in Italian Classrooms

    Science.gov (United States)

    Cattadori, M.; Editorial Staff of the I-CLEN Project

    2011-12-01

    Italian citizens' perception of the seriousness of the issue of climate change is one of the lowest in Europe (Eurobarometer survey, 2008), running next to last among the 28 EU Nations. This has recently driven many national science institutions to take action in order to connect society with the complexities and consequences of climate change. These connection initiatives have encountered a certain deal of opposition in Italian schools. A fact most likely due both to a further weakening of the use of inquiry-based educational practices adopted by teachers and to their reluctance to cooperate on a professional level, which hinders the diffusion of educational practices. I-CLEEN (Inquiring on CLimate and Energy, www.icleen.museum) is a service that offers a new type of link between schools and the complexity of climate change. The project took off in 2008 thanks to the Trento Science Museum (former Tridentine Museum of Natural Science), one of the major Italian science museums that includes both research and science education and dissemination departments. The main aim is to create, using the tools of professional cooperation, a free repository of educational resources that can support teachers in preparing inquiry-based lessons on climate change and earth system science topics, making the task less of a burden. I-CLEEN is inspired by many models, which include: the ARISE (Andrill Research Immersion for Science Educators), the OER (Open Educational Resources) models and those of other projects that have developed similar information gateways such as LRE (Learning Resource Exchange) and DLESE (Digital Library on Earth Science Education). One of the strategies devised by I-CLEEN is to rely upon an editorial team made up of a highly selected group of teachers that interacts with the researchers of the museum and of other Earth system science research centres like the National Institute of Geophysics and Volcanology (INGV). Resource selection, production, revision and

  13. Research and development of system to utilize photovoltaic energy. Survey on the specific purpose modules; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyoto module ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on the specific purpose modules for photovoltaic power generation in fiscal 1994. (1) On the feasibility survey on new application fields, it was clarified that photovoltaic power generation is applicable to extensive areas such as farmland, road, railway and public facility as latent demand sites. (2) On the optimum modules for various specific purposes, the structure, production method, cost estimation and issues of various modules were studied for desert, wasteland, coast, ocean, river, embankment, railway, road, mobile facility and arcade. (3) On the survey on new materials and material development, various conventional materials and materials promising for required performance were surveyed for every application. (4) On the survey on technology trends, the survey members participated in the first international photovoltaic energy conversion conference and the photovoltaic power generation workshop, while the members held the 1st-5th specific purpose module subcommittees. 1 tab.

  14. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use - Research and development of solar beam power generation and utilization systems and ancillary technologies (Investigations and researches on large-size energy supply system); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (ogata energy kyokyu system no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    With an objective to propose large-size system development scenarios assuming installations in deserts, the following investigations have been carried out: (1) collection of data on societies, economy, and energies in China and other countries where the large systems are assumed to be installed, (2) in order to reduce the costs, comparison was given on power generation cost by using a fixed tracking frame, a single axial tracking frame, and a biaxial tracking frame, (3) in order to evaluate the life cycle, discussions were given on the required energy inputs for system equipment, transmission and transformer equipment, and the installation construction to estimate the energy payback time (EPT) and CO2 emission unit requirement, and (4) discussions on development scenarios. In Item (1), while China expects on natural gas and atomic energy as the supply source, 80% of the energy would be supplied from coal in 2010. The development of new energies in India would further be delayed than in China. In item (2), the trially calculated power generation costs in Mongol by using the fixed frame, single axial tracking frame, and biaxial tracking frame were 8.72, 8.23 and 6.94 yen per watt. In Item (3) The EPT was two years or less in a 100-MW system, and the CO2 emission unit requirements in the silicon systems were 10 to 19 kg-C/kWh. (NEDO)

  15. Renewable energy systems a smart energy systems approach to the choice and modeling of 100% renewable solutions

    CERN Document Server

    Lund, Henrik

    2014-01-01

    In this new edition of Renewable Energy Systems, globally recognized renewable energy researcher and professor, Henrik Lund, sets forth a straightforward, comprehensive methodology for comparing different energy systems' abilities to integrate fluctuating and intermittent renewable energy sources. The book does this by presenting an energy system analysis methodology and offering a freely available accompanying software tool, EnergyPLAN, which automates and simplifies the calculations supporting such a detailed comparative analysis. The book provides the results of more than fifteen comprehensive energy system analysis studies, examines the large-scale integration of renewable energy into the present system, and presents concrete design examples derived from a dozen renewable energy systems around the globe. Renewable Energy Systems, Second Edition also undertakes the socio-political realities governing the implementation of renewable energy systems by introducing a theoretical framework approach aimed at ...

  16. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  17. Introduction to Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Blaabjerg, Frede

    2014-01-01

    . It is concluded that as the quick development of renewable energy, wind power and PV power both show great potential to be largely integrated into the power grid. Power electronics is playing essential role in both of the systems to achieve more controllable, efficient, and reliable energy production......In this chapter, the state-of-the-arts developments of renewable energy are reviewed in respect to the installed power and market share, where wind power and photovoltaic power generation are the main focuses due to the fast growing speed and large share of installed capacity. Some basic principles...... of operation, mission profiles, as well as power electronics solutions and corresponding controls are discussed respectively in the case of wind power and photovoltaic power systems. Finally a few development trends for renewable energy conversions are also given from a power electronics point of view...

  18. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  19. The Danish energy crop research and development project - main conclusions

    International Nuclear Information System (INIS)

    Gylling, Morten

    2003-01-01

    Production of energy crops in Denmark is more or less non-existent in Denmark at the time being. However, the need for biomass on the other side of year 2005 exceeds the existing biomass resources and a substantial amount of energy crops will be necessary in order to fulfil the goals in Energy 21. The targeted share of the use of renewable energy sources by year 2030 is approximately 30%. Energy crops are seen as the most important new resource in order to create a balanced input mix of renewable in the energy system. The energy crops are mainly seen as fuel in small and medium sized CHP plants and in the big power plants. The Danish energy crop project consists of three main parts: a demonstration part, a research and development part, and an overall assessment part. Based on the results from the project the following overall conclusions can be made: Seen from a strictly market and production economic point of view energy crops will not be competitive in a foreseeable future, neither as a production for farmers nor as a fuel at the utility companies; The costs per GJ of energy crops are still higher than a GJ of straw; The cost difference between annual and perennial energy crops are slightly in favour of perennials, however the conditions on the individual farms should govern the choice between annual and perennial energy crops; Energy crops must be seen as part of an overall environmental scheme covering both agriculture and the energy sector; Given the right production scheme energy crops can be grown on environmental sensitive areas and on most ground water protection areas; Adding the potential sustainability benefits like reduced nutrient leakage and reduced CO 2 emissions energy crops seem to be a sensible and sustainable solution; Due to different handling, storage and fuel characteristics an all year delivery scheme of energy crops should include a mix of different energy crops to keep overall cost down. (BA)

  20. The perspectives of fusion energy: The roadmap towards energy production and fusion energy in a distributed energy system

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Korsholm, Søren Bang

    2014-01-01

    at very high temperature where all matter is in the plasma state as the involved energies are orders of magnitude higher than typical chemical binding energies. It is one of the great science and engineering challenges to construct a viable power plant based on fusion energy. Fusion research is a world...... The presentation will discuss the present status of the fusion energy research and review the EU Roadmap towards a fusion power plant. Further the cost of fusion energy is assessed as well as how it can be integrated in the distributed energy system......Controlled thermonuclear fusion has the potential of providing an environmentally friendly and inexhaustible energy source for mankind. Fusion energy, which powers our sun and the stars, is released when light elements, such as the hydrogen isotopes deuterium and tritium, fuse together. This occurs...